diff options
Diffstat (limited to 'tqtinterface/qt4/src/3rdparty/libjpeg/jidctred.c')
| -rw-r--r-- | tqtinterface/qt4/src/3rdparty/libjpeg/jidctred.c | 398 | 
1 files changed, 398 insertions, 0 deletions
diff --git a/tqtinterface/qt4/src/3rdparty/libjpeg/jidctred.c b/tqtinterface/qt4/src/3rdparty/libjpeg/jidctred.c new file mode 100644 index 0000000..6461bb3 --- /dev/null +++ b/tqtinterface/qt4/src/3rdparty/libjpeg/jidctred.c @@ -0,0 +1,398 @@ +/* + * jidctred.c + * + * Copyright (C) 1994-1998, Thomas G. Lane. + * This file is part of the Independent JPEG Group's software. + * For conditions of distribution and use, see the accompanying README file. + * + * This file tqcontains inverse-DCT routines that produce reduced-size output: + * either 4x4, 2x2, or 1x1 pixels from an 8x8 DCT block. + * + * The implementation is based on the Loeffler, Ligtenberg and Moschytz (LL&M) + * algorithm used in jidctint.c.  We simply tqreplace each 8-to-8 1-D IDCT step + * with an 8-to-4 step that produces the four averages of two adjacent outputs + * (or an 8-to-2 step producing two averages of four outputs, for 2x2 output). + * These steps were derived by computing the corresponding values at the end + * of the normal LL&M code, then simplifying as much as possible. + * + * 1x1 is trivial: just take the DC coefficient divided by 8. + * + * See jidctint.c for additional comments. + */ + +#define JPEG_INTERNALS +#include "jinclude.h" +#include "jpeglib.h" +#include "jdct.h"		/* Private declarations for DCT subsystem */ + +#ifdef IDCT_SCALING_SUPPORTED + + +/* + * This module is specialized to the case DCTSIZE = 8. + */ + +#if DCTSIZE != 8 +  Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ +#endif + + +/* Scaling is the same as in jidctint.c. */ + +#if BITS_IN_JSAMPLE == 8 +#define CONST_BITS  13 +#define PASS1_BITS  2 +#else +#define CONST_BITS  13 +#define PASS1_BITS  1		/* lose a little precision to avoid overflow */ +#endif + +/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus + * causing a lot of useless floating-point operations at run time. + * To get around this we use the following pre-calculated constants. + * If you change CONST_BITS you may want to add appropriate values. + * (With a reasonable C compiler, you can just rely on the FIX() macro...) + */ + +#if CONST_BITS == 13 +#define FIX_0_211164243  ((INT32)  1730)	/* FIX(0.211164243) */ +#define FIX_0_509795579  ((INT32)  4176)	/* FIX(0.509795579) */ +#define FIX_0_601344887  ((INT32)  4926)	/* FIX(0.601344887) */ +#define FIX_0_720959822  ((INT32)  5906)	/* FIX(0.720959822) */ +#define FIX_0_765366865  ((INT32)  6270)	/* FIX(0.765366865) */ +#define FIX_0_850430095  ((INT32)  6967)	/* FIX(0.850430095) */ +#define FIX_0_899976223  ((INT32)  7373)	/* FIX(0.899976223) */ +#define FIX_1_061594337  ((INT32)  8697)	/* FIX(1.061594337) */ +#define FIX_1_272758580  ((INT32)  10426)	/* FIX(1.272758580) */ +#define FIX_1_451774981  ((INT32)  11893)	/* FIX(1.451774981) */ +#define FIX_1_847759065  ((INT32)  15137)	/* FIX(1.847759065) */ +#define FIX_2_172734803  ((INT32)  17799)	/* FIX(2.172734803) */ +#define FIX_2_562915447  ((INT32)  20995)	/* FIX(2.562915447) */ +#define FIX_3_624509785  ((INT32)  29692)	/* FIX(3.624509785) */ +#else +#define FIX_0_211164243  FIX(0.211164243) +#define FIX_0_509795579  FIX(0.509795579) +#define FIX_0_601344887  FIX(0.601344887) +#define FIX_0_720959822  FIX(0.720959822) +#define FIX_0_765366865  FIX(0.765366865) +#define FIX_0_850430095  FIX(0.850430095) +#define FIX_0_899976223  FIX(0.899976223) +#define FIX_1_061594337  FIX(1.061594337) +#define FIX_1_272758580  FIX(1.272758580) +#define FIX_1_451774981  FIX(1.451774981) +#define FIX_1_847759065  FIX(1.847759065) +#define FIX_2_172734803  FIX(2.172734803) +#define FIX_2_562915447  FIX(2.562915447) +#define FIX_3_624509785  FIX(3.624509785) +#endif + + +/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result. + * For 8-bit samples with the recommended scaling, all the variable + * and constant values involved are no more than 16 bits wide, so a + * 16x16->32 bit multiply can be used instead of a full 32x32 multiply. + * For 12-bit samples, a full 32-bit multiplication will be needed. + */ + +#if BITS_IN_JSAMPLE == 8 +#define MULTIPLY(var,const)  MULTIPLY16C16(var,const) +#else +#define MULTIPLY(var,const)  ((var) * (const)) +#endif + + +/* Dequantize a coefficient by multiplying it by the multiplier-table + * entry; produce an int result.  In this module, both inputs and result + * are 16 bits or less, so either int or short multiply will work. + */ + +#define DETQUANTIZE(coef,quantval)  (((ISLOW_MULT_TYPE) (coef)) * (quantval)) + + +/* + * Perform dequantization and inverse DCT on one block of coefficients, + * producing a reduced-size 4x4 output block. + */ + +GLOBAL(void) +jpeg_idct_4x4 (j_decompress_ptr cinfo, jpeg_component_info * compptr, +	       JCOEFPTR coef_block, +	       JSAMPARRAY output_buf, JDIMENSION output_col) +{ +  INT32 tmp0, tmp2, tmp10, tmp12; +  INT32 z1, z2, z3, z4; +  JCOEFPTR inptr; +  ISLOW_MULT_TYPE * quantptr; +  int * wsptr; +  JSAMPROW outptr; +  JSAMPLE *range_limit = IDCT_range_limit(cinfo); +  int ctr; +  int workspace[DCTSIZE*4];	/* buffers data between passes */ +  SHIFT_TEMPS + +  /* Pass 1: process columns from input, store into work array. */ + +  inptr = coef_block; +  quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; +  wsptr = workspace; +  for (ctr = DCTSIZE; ctr > 0; inptr++, quantptr++, wsptr++, ctr--) { +    /* Don't bother to process column 4, because second pass won't use it */ +    if (ctr == DCTSIZE-4) +      continue; +    if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 && +	inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*5] == 0 && +	inptr[DCTSIZE*6] == 0 && inptr[DCTSIZE*7] == 0) { +      /* AC terms all zero; we need not examine term 4 for 4x4 output */ +      int dcval = DETQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS; +       +      wsptr[DCTSIZE*0] = dcval; +      wsptr[DCTSIZE*1] = dcval; +      wsptr[DCTSIZE*2] = dcval; +      wsptr[DCTSIZE*3] = dcval; +       +      continue; +    } +     +    /* Even part */ +     +    tmp0 = DETQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); +    tmp0 <<= (CONST_BITS+1); +     +    z2 = DETQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); +    z3 = DETQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]); + +    tmp2 = MULTIPLY(z2, FIX_1_847759065) + MULTIPLY(z3, - FIX_0_765366865); +     +    tmp10 = tmp0 + tmp2; +    tmp12 = tmp0 - tmp2; +     +    /* Odd part */ +     +    z1 = DETQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]); +    z2 = DETQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); +    z3 = DETQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); +    z4 = DETQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); +     +    tmp0 = MULTIPLY(z1, - FIX_0_211164243) /* sqrt(2) * (c3-c1) */ +	 + MULTIPLY(z2, FIX_1_451774981) /* sqrt(2) * (c3+c7) */ +	 + MULTIPLY(z3, - FIX_2_172734803) /* sqrt(2) * (-c1-c5) */ +	 + MULTIPLY(z4, FIX_1_061594337); /* sqrt(2) * (c5+c7) */ +     +    tmp2 = MULTIPLY(z1, - FIX_0_509795579) /* sqrt(2) * (c7-c5) */ +	 + MULTIPLY(z2, - FIX_0_601344887) /* sqrt(2) * (c5-c1) */ +	 + MULTIPLY(z3, FIX_0_899976223) /* sqrt(2) * (c3-c7) */ +	 + MULTIPLY(z4, FIX_2_562915447); /* sqrt(2) * (c1+c3) */ + +    /* Final output stage */ +     +    wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp2, CONST_BITS-PASS1_BITS+1); +    wsptr[DCTSIZE*3] = (int) DESCALE(tmp10 - tmp2, CONST_BITS-PASS1_BITS+1); +    wsptr[DCTSIZE*1] = (int) DESCALE(tmp12 + tmp0, CONST_BITS-PASS1_BITS+1); +    wsptr[DCTSIZE*2] = (int) DESCALE(tmp12 - tmp0, CONST_BITS-PASS1_BITS+1); +  } +   +  /* Pass 2: process 4 rows from work array, store into output array. */ + +  wsptr = workspace; +  for (ctr = 0; ctr < 4; ctr++) { +    outptr = output_buf[ctr] + output_col; +    /* It's not clear whether a zero row test is worthwhile here ... */ + +#ifndef NO_ZERO_ROW_TEST +    if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && +	wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) { +      /* AC terms all zero */ +      JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3) +				  & RANGE_MASK]; +       +      outptr[0] = dcval; +      outptr[1] = dcval; +      outptr[2] = dcval; +      outptr[3] = dcval; +       +      wsptr += DCTSIZE;		/* advance pointer to next row */ +      continue; +    } +#endif +     +    /* Even part */ +     +    tmp0 = ((INT32) wsptr[0]) << (CONST_BITS+1); +     +    tmp2 = MULTIPLY((INT32) wsptr[2], FIX_1_847759065) +	 + MULTIPLY((INT32) wsptr[6], - FIX_0_765366865); +     +    tmp10 = tmp0 + tmp2; +    tmp12 = tmp0 - tmp2; +     +    /* Odd part */ +     +    z1 = (INT32) wsptr[7]; +    z2 = (INT32) wsptr[5]; +    z3 = (INT32) wsptr[3]; +    z4 = (INT32) wsptr[1]; +     +    tmp0 = MULTIPLY(z1, - FIX_0_211164243) /* sqrt(2) * (c3-c1) */ +	 + MULTIPLY(z2, FIX_1_451774981) /* sqrt(2) * (c3+c7) */ +	 + MULTIPLY(z3, - FIX_2_172734803) /* sqrt(2) * (-c1-c5) */ +	 + MULTIPLY(z4, FIX_1_061594337); /* sqrt(2) * (c5+c7) */ +     +    tmp2 = MULTIPLY(z1, - FIX_0_509795579) /* sqrt(2) * (c7-c5) */ +	 + MULTIPLY(z2, - FIX_0_601344887) /* sqrt(2) * (c5-c1) */ +	 + MULTIPLY(z3, FIX_0_899976223) /* sqrt(2) * (c3-c7) */ +	 + MULTIPLY(z4, FIX_2_562915447); /* sqrt(2) * (c1+c3) */ + +    /* Final output stage */ +     +    outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp2, +					  CONST_BITS+PASS1_BITS+3+1) +			    & RANGE_MASK]; +    outptr[3] = range_limit[(int) DESCALE(tmp10 - tmp2, +					  CONST_BITS+PASS1_BITS+3+1) +			    & RANGE_MASK]; +    outptr[1] = range_limit[(int) DESCALE(tmp12 + tmp0, +					  CONST_BITS+PASS1_BITS+3+1) +			    & RANGE_MASK]; +    outptr[2] = range_limit[(int) DESCALE(tmp12 - tmp0, +					  CONST_BITS+PASS1_BITS+3+1) +			    & RANGE_MASK]; +     +    wsptr += DCTSIZE;		/* advance pointer to next row */ +  } +} + + +/* + * Perform dequantization and inverse DCT on one block of coefficients, + * producing a reduced-size 2x2 output block. + */ + +GLOBAL(void) +jpeg_idct_2x2 (j_decompress_ptr cinfo, jpeg_component_info * compptr, +	       JCOEFPTR coef_block, +	       JSAMPARRAY output_buf, JDIMENSION output_col) +{ +  INT32 tmp0, tmp10, z1; +  JCOEFPTR inptr; +  ISLOW_MULT_TYPE * quantptr; +  int * wsptr; +  JSAMPROW outptr; +  JSAMPLE *range_limit = IDCT_range_limit(cinfo); +  int ctr; +  int workspace[DCTSIZE*2];	/* buffers data between passes */ +  SHIFT_TEMPS + +  /* Pass 1: process columns from input, store into work array. */ + +  inptr = coef_block; +  quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; +  wsptr = workspace; +  for (ctr = DCTSIZE; ctr > 0; inptr++, quantptr++, wsptr++, ctr--) { +    /* Don't bother to process columns 2,4,6 */ +    if (ctr == DCTSIZE-2 || ctr == DCTSIZE-4 || ctr == DCTSIZE-6) +      continue; +    if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*3] == 0 && +	inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*7] == 0) { +      /* AC terms all zero; we need not examine terms 2,4,6 for 2x2 output */ +      int dcval = DETQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS; +       +      wsptr[DCTSIZE*0] = dcval; +      wsptr[DCTSIZE*1] = dcval; +       +      continue; +    } +     +    /* Even part */ +     +    z1 = DETQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); +    tmp10 = z1 << (CONST_BITS+2); +     +    /* Odd part */ + +    z1 = DETQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]); +    tmp0 = MULTIPLY(z1, - FIX_0_720959822); /* sqrt(2) * (c7-c5+c3-c1) */ +    z1 = DETQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); +    tmp0 += MULTIPLY(z1, FIX_0_850430095); /* sqrt(2) * (-c1+c3+c5+c7) */ +    z1 = DETQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); +    tmp0 += MULTIPLY(z1, - FIX_1_272758580); /* sqrt(2) * (-c1+c3-c5-c7) */ +    z1 = DETQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); +    tmp0 += MULTIPLY(z1, FIX_3_624509785); /* sqrt(2) * (c1+c3+c5+c7) */ + +    /* Final output stage */ +     +    wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp0, CONST_BITS-PASS1_BITS+2); +    wsptr[DCTSIZE*1] = (int) DESCALE(tmp10 - tmp0, CONST_BITS-PASS1_BITS+2); +  } +   +  /* Pass 2: process 2 rows from work array, store into output array. */ + +  wsptr = workspace; +  for (ctr = 0; ctr < 2; ctr++) { +    outptr = output_buf[ctr] + output_col; +    /* It's not clear whether a zero row test is worthwhile here ... */ + +#ifndef NO_ZERO_ROW_TEST +    if (wsptr[1] == 0 && wsptr[3] == 0 && wsptr[5] == 0 && wsptr[7] == 0) { +      /* AC terms all zero */ +      JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3) +				  & RANGE_MASK]; +       +      outptr[0] = dcval; +      outptr[1] = dcval; +       +      wsptr += DCTSIZE;		/* advance pointer to next row */ +      continue; +    } +#endif +     +    /* Even part */ +     +    tmp10 = ((INT32) wsptr[0]) << (CONST_BITS+2); +     +    /* Odd part */ + +    tmp0 = MULTIPLY((INT32) wsptr[7], - FIX_0_720959822) /* sqrt(2) * (c7-c5+c3-c1) */ +	 + MULTIPLY((INT32) wsptr[5], FIX_0_850430095) /* sqrt(2) * (-c1+c3+c5+c7) */ +	 + MULTIPLY((INT32) wsptr[3], - FIX_1_272758580) /* sqrt(2) * (-c1+c3-c5-c7) */ +	 + MULTIPLY((INT32) wsptr[1], FIX_3_624509785); /* sqrt(2) * (c1+c3+c5+c7) */ + +    /* Final output stage */ +     +    outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp0, +					  CONST_BITS+PASS1_BITS+3+2) +			    & RANGE_MASK]; +    outptr[1] = range_limit[(int) DESCALE(tmp10 - tmp0, +					  CONST_BITS+PASS1_BITS+3+2) +			    & RANGE_MASK]; +     +    wsptr += DCTSIZE;		/* advance pointer to next row */ +  } +} + + +/* + * Perform dequantization and inverse DCT on one block of coefficients, + * producing a reduced-size 1x1 output block. + */ + +GLOBAL(void) +jpeg_idct_1x1 (j_decompress_ptr cinfo, jpeg_component_info * compptr, +	       JCOEFPTR coef_block, +	       JSAMPARRAY output_buf, JDIMENSION output_col) +{ +  int dcval; +  ISLOW_MULT_TYPE * quantptr; +  JSAMPLE *range_limit = IDCT_range_limit(cinfo); +  SHIFT_TEMPS + +  /* We hardly need an inverse DCT routine for this: just take the +   * average pixel value, which is one-eighth of the DC coefficient. +   */ +  quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; +  dcval = DETQUANTIZE(coef_block[0], quantptr[0]); +  dcval = (int) DESCALE((INT32) dcval, 3); + +  output_buf[0][output_col] = range_limit[dcval & RANGE_MASK]; +} + +#endif /* IDCT_SCALING_SUPPORTED */  | 
