summaryrefslogtreecommitdiffstats
path: root/debian/lcms/lcms-1.19.dfsg2/src/cmswtpnt.c
diff options
context:
space:
mode:
Diffstat (limited to 'debian/lcms/lcms-1.19.dfsg2/src/cmswtpnt.c')
-rwxr-xr-xdebian/lcms/lcms-1.19.dfsg2/src/cmswtpnt.c695
1 files changed, 695 insertions, 0 deletions
diff --git a/debian/lcms/lcms-1.19.dfsg2/src/cmswtpnt.c b/debian/lcms/lcms-1.19.dfsg2/src/cmswtpnt.c
new file mode 100755
index 00000000..c3ec50d9
--- /dev/null
+++ b/debian/lcms/lcms-1.19.dfsg2/src/cmswtpnt.c
@@ -0,0 +1,695 @@
+//
+// Little cms
+// Copyright (C) 1998-2007 Marti Maria
+//
+// Permission is hereby granted, free of charge, to any person obtaining
+// a copy of this software and associated documentation files (the "Software"),
+// to deal in the Software without restriction, including without limitation
+// the rights to use, copy, modify, merge, publish, distribute, sublicense,
+// and/or sell copies of the Software, and to permit persons to whom the Software
+// is furnished to do so, subject to the following conditions:
+//
+// The above copyright notice and this permission notice shall be included in
+// all copies or substantial portions of the Software.
+//
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
+// THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
+// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
+// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
+// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+
+#include "lcms.h"
+
+
+// Conversions
+
+void LCMSEXPORT cmsXYZ2xyY(LPcmsCIExyY Dest, const cmsCIEXYZ* Source)
+{
+ double ISum;
+
+ ISum = 1./(Source -> X + Source -> Y + Source -> Z);
+
+ Dest -> x = (Source -> X) * ISum;
+ Dest -> y = (Source -> Y) * ISum;
+ Dest -> Y = Source -> Y;
+}
+
+
+void LCMSEXPORT cmsxyY2XYZ(LPcmsCIEXYZ Dest, const cmsCIExyY* Source)
+{
+
+ Dest -> X = (Source -> x / Source -> y) * Source -> Y;
+ Dest -> Y = Source -> Y;
+ Dest -> Z = ((1 - Source -> x - Source -> y) / Source -> y) * Source -> Y;
+}
+
+
+// Obtains WhitePoint from Temperature
+
+LCMSBOOL LCMSEXPORT cmsWhitePointFromTemp(int TempK, LPcmsCIExyY WhitePoint)
+{
+ double x, y;
+ double T, T2, T3;
+ // double M1, M2;
+
+
+ // No optimization provided.
+
+ T = TempK;
+ T2 = T*T; // Square
+ T3 = T2*T; // Cube
+
+ // For correlated color temperature (T) between 4000K and 7000K:
+
+ if (T >= 4000. && T <= 7000.)
+ {
+ x = -4.6070*(1E9/T3) + 2.9678*(1E6/T2) + 0.09911*(1E3/T) + 0.244063;
+ }
+ else
+ // or for correlated color temperature (T) between 7000K and 25000K:
+
+ if (T > 7000.0 && T <= 25000.0)
+ {
+ x = -2.0064*(1E9/T3) + 1.9018*(1E6/T2) + 0.24748*(1E3/T) + 0.237040;
+ }
+ else {
+ cmsSignalError(LCMS_ERRC_ABORTED, "cmsWhitePointFromTemp: invalid temp");
+ return FALSE;
+ }
+
+ // Obtain y(x)
+
+ y = -3.000*(x*x) + 2.870*x - 0.275;
+
+ // wave factors (not used, but here for futures extensions)
+
+ // M1 = (-1.3515 - 1.7703*x + 5.9114 *y)/(0.0241 + 0.2562*x - 0.7341*y);
+ // M2 = (0.0300 - 31.4424*x + 30.0717*y)/(0.0241 + 0.2562*x - 0.7341*y);
+
+
+
+ // Fill WhitePoint struct
+
+ WhitePoint -> x = x;
+ WhitePoint -> y = y;
+ WhitePoint -> Y = 1.0;
+
+ return TRUE;
+}
+
+// Build a White point, primary chromas transfer matrix from RGB to CIE XYZ
+// This is just an approximation, I am not handling all the non-linear
+// aspects of the RGB to XYZ process, and assumming that the gamma correction
+// has transitive property in the tranformation chain.
+//
+// the alghoritm:
+//
+// - First I build the absolute conversion matrix using
+// primaries in XYZ. This matrix is next inverted
+// - Then I eval the source white point across this matrix
+// obtaining the coeficients of the transformation
+// - Then, I apply these coeficients to the original matrix
+
+
+LCMSBOOL LCMSEXPORT cmsBuildRGB2XYZtransferMatrix(LPMAT3 r, LPcmsCIExyY WhitePt,
+ LPcmsCIExyYTRIPLE Primrs)
+{
+ VEC3 WhitePoint, Coef;
+ MAT3 Result, Primaries;
+ double xn, yn;
+ double xr, yr;
+ double xg, yg;
+ double xb, yb;
+
+
+ xn = WhitePt -> x;
+ yn = WhitePt -> y;
+ xr = Primrs -> Red.x;
+ yr = Primrs -> Red.y;
+ xg = Primrs -> Green.x;
+ yg = Primrs -> Green.y;
+ xb = Primrs -> Blue.x;
+ yb = Primrs -> Blue.y;
+
+
+ // Build Primaries matrix
+ VEC3init(&Primaries.v[0], xr, xg, xb);
+ VEC3init(&Primaries.v[1], yr, yg, yb);
+ VEC3init(&Primaries.v[2], (1-xr-yr), (1-xg-yg), (1-xb-yb));
+
+
+ // Result = Primaries ^ (-1) inverse matrix
+ if (!MAT3inverse(&Primaries, &Result))
+ return FALSE;
+
+
+ VEC3init(&WhitePoint, xn/yn, 1.0, (1.0-xn-yn)/yn);
+
+ // Across inverse primaries ...
+ MAT3eval(&Coef, &Result, &WhitePoint);
+
+ // Give us the Coefs, then I build transformation matrix
+ VEC3init(&r -> v[0], Coef.n[VX]*xr, Coef.n[VY]*xg, Coef.n[VZ]*xb);
+ VEC3init(&r -> v[1], Coef.n[VX]*yr, Coef.n[VY]*yg, Coef.n[VZ]*yb);
+ VEC3init(&r -> v[2], Coef.n[VX]*(1.0-xr-yr), Coef.n[VY]*(1.0-xg-yg), Coef.n[VZ]*(1.0-xb-yb));
+
+
+ return TRUE;
+}
+
+
+
+// Compute chromatic adaptation matrix using Chad as cone matrix
+
+static
+void ComputeChromaticAdaptation(LPMAT3 Conversion,
+ LPcmsCIEXYZ SourceWhitePoint,
+ LPcmsCIEXYZ DestWhitePoint,
+ LPMAT3 Chad)
+
+{
+
+ MAT3 Chad_Inv;
+ VEC3 ConeSourceXYZ, ConeSourceRGB;
+ VEC3 ConeDestXYZ, ConeDestRGB;
+ MAT3 Cone, Tmp;
+
+
+ Tmp = *Chad;
+ MAT3inverse(&Tmp, &Chad_Inv);
+
+ VEC3init(&ConeSourceXYZ, SourceWhitePoint -> X,
+ SourceWhitePoint -> Y,
+ SourceWhitePoint -> Z);
+
+ VEC3init(&ConeDestXYZ, DestWhitePoint -> X,
+ DestWhitePoint -> Y,
+ DestWhitePoint -> Z);
+
+ MAT3eval(&ConeSourceRGB, Chad, &ConeSourceXYZ);
+ MAT3eval(&ConeDestRGB, Chad, &ConeDestXYZ);
+
+ // Build matrix
+
+ VEC3init(&Cone.v[0], ConeDestRGB.n[0]/ConeSourceRGB.n[0], 0.0, 0.0);
+ VEC3init(&Cone.v[1], 0.0, ConeDestRGB.n[1]/ConeSourceRGB.n[1], 0.0);
+ VEC3init(&Cone.v[2], 0.0, 0.0, ConeDestRGB.n[2]/ConeSourceRGB.n[2]);
+
+
+ // Normalize
+ MAT3per(&Tmp, &Cone, Chad);
+ MAT3per(Conversion, &Chad_Inv, &Tmp);
+
+}
+
+
+// Returns the final chrmatic adaptation from illuminant FromIll to Illuminant ToIll
+// The cone matrix can be specified in ConeMatrix. If NULL, Bradford is assumed
+
+LCMSBOOL cmsAdaptationMatrix(LPMAT3 r, LPMAT3 ConeMatrix, LPcmsCIEXYZ FromIll, LPcmsCIEXYZ ToIll)
+{
+ MAT3 LamRigg = {{ // Bradford matrix
+ {{ 0.8951, 0.2664, -0.1614 }},
+ {{ -0.7502, 1.7135, 0.0367 }},
+ {{ 0.0389, -0.0685, 1.0296 }}
+ }};
+
+
+ if (ConeMatrix == NULL)
+ ConeMatrix = &LamRigg;
+
+ ComputeChromaticAdaptation(r, FromIll, ToIll, ConeMatrix);
+ return TRUE;
+
+}
+
+// Same as anterior, but assuming D50 destination. White point is given in xyY
+
+LCMSBOOL cmsAdaptMatrixToD50(LPMAT3 r, LPcmsCIExyY SourceWhitePt)
+{
+ cmsCIEXYZ Dn;
+ MAT3 Bradford;
+ MAT3 Tmp;
+
+ cmsxyY2XYZ(&Dn, SourceWhitePt);
+
+ cmsAdaptationMatrix(&Bradford, NULL, &Dn, cmsD50_XYZ());
+
+ Tmp = *r;
+ MAT3per(r, &Bradford, &Tmp);
+
+ return TRUE;
+}
+
+
+// Same as anterior, but assuming D50 source. White point is given in xyY
+
+LCMSBOOL cmsAdaptMatrixFromD50(LPMAT3 r, LPcmsCIExyY DestWhitePt)
+{
+ cmsCIEXYZ Dn;
+ MAT3 Bradford;
+ MAT3 Tmp;
+
+ cmsxyY2XYZ(&Dn, DestWhitePt);
+
+ cmsAdaptationMatrix(&Bradford, NULL, cmsD50_XYZ(), &Dn);
+
+ Tmp = *r;
+ MAT3per(r, &Bradford, &Tmp);
+
+ return TRUE;
+}
+
+
+// Adapts a color to a given illuminant. Original color is expected to have
+// a SourceWhitePt white point.
+
+LCMSBOOL LCMSEXPORT cmsAdaptToIlluminant(LPcmsCIEXYZ Result,
+ LPcmsCIEXYZ SourceWhitePt,
+ LPcmsCIEXYZ Illuminant,
+ LPcmsCIEXYZ Value)
+{
+ MAT3 Bradford;
+ VEC3 In, Out;
+
+ // BradfordLamRiggChromaticAdaptation(&Bradford, SourceWhitePt, Illuminant);
+
+ cmsAdaptationMatrix(&Bradford, NULL, SourceWhitePt, Illuminant);
+
+ VEC3init(&In, Value -> X, Value -> Y, Value -> Z);
+ MAT3eval(&Out, &Bradford, &In);
+
+ Result -> X = Out.n[0];
+ Result -> Y = Out.n[1];
+ Result -> Z = Out.n[2];
+
+ return TRUE;
+}
+
+
+
+typedef struct {
+
+ double mirek; // temp (in microreciprocal kelvin)
+ double ut; // u coord of intersection w/ blackbody locus
+ double vt; // v coord of intersection w/ blackbody locus
+ double tt; // slope of ISOTEMPERATURE. line
+
+ } ISOTEMPERATURE,FAR* LPISOTEMPERATURE;
+
+static ISOTEMPERATURE isotempdata[] = {
+// {Mirek, Ut, Vt, Tt }
+ {0, 0.18006, 0.26352, -0.24341},
+ {10, 0.18066, 0.26589, -0.25479},
+ {20, 0.18133, 0.26846, -0.26876},
+ {30, 0.18208, 0.27119, -0.28539},
+ {40, 0.18293, 0.27407, -0.30470},
+ {50, 0.18388, 0.27709, -0.32675},
+ {60, 0.18494, 0.28021, -0.35156},
+ {70, 0.18611, 0.28342, -0.37915},
+ {80, 0.18740, 0.28668, -0.40955},
+ {90, 0.18880, 0.28997, -0.44278},
+ {100, 0.19032, 0.29326, -0.47888},
+ {125, 0.19462, 0.30141, -0.58204},
+ {150, 0.19962, 0.30921, -0.70471},
+ {175, 0.20525, 0.31647, -0.84901},
+ {200, 0.21142, 0.32312, -1.0182 },
+ {225, 0.21807, 0.32909, -1.2168 },
+ {250, 0.22511, 0.33439, -1.4512 },
+ {275, 0.23247, 0.33904, -1.7298 },
+ {300, 0.24010, 0.34308, -2.0637 },
+ {325, 0.24702, 0.34655, -2.4681 },
+ {350, 0.25591, 0.34951, -2.9641 },
+ {375, 0.26400, 0.35200, -3.5814 },
+ {400, 0.27218, 0.35407, -4.3633 },
+ {425, 0.28039, 0.35577, -5.3762 },
+ {450, 0.28863, 0.35714, -6.7262 },
+ {475, 0.29685, 0.35823, -8.5955 },
+ {500, 0.30505, 0.35907, -11.324 },
+ {525, 0.31320, 0.35968, -15.628 },
+ {550, 0.32129, 0.36011, -23.325 },
+ {575, 0.32931, 0.36038, -40.770 },
+ {600, 0.33724, 0.36051, -116.45 }
+};
+
+#define NISO sizeof(isotempdata)/sizeof(ISOTEMPERATURE)
+
+
+// Robertson's method
+
+static
+double Robertson(LPcmsCIExyY v)
+{
+ int j;
+ double us,vs;
+ double uj,vj,tj,di,dj,mi,mj;
+ double Tc = -1, xs, ys;
+
+ di = mi = 0;
+ xs = v -> x;
+ ys = v -> y;
+
+ // convert (x,y) to CIE 1960 (u,v)
+
+ us = (2*xs) / (-xs + 6*ys + 1.5);
+ vs = (3*ys) / (-xs + 6*ys + 1.5);
+
+
+ for (j=0; j < NISO; j++) {
+
+ uj = isotempdata[j].ut;
+ vj = isotempdata[j].vt;
+ tj = isotempdata[j].tt;
+ mj = isotempdata[j].mirek;
+
+ dj = ((vs - vj) - tj * (us - uj)) / sqrt(1 + tj*tj);
+
+ if ((j!=0) && (di/dj < 0.0)) {
+ Tc = 1000000.0 / (mi + (di / (di - dj)) * (mj - mi));
+ break;
+ }
+
+ di = dj;
+ mi = mj;
+ }
+
+
+ if (j == NISO) return -1;
+ return Tc;
+}
+
+
+
+static
+LCMSBOOL InRange(LPcmsCIExyY a, LPcmsCIExyY b, double tolerance)
+{
+ double dist_x, dist_y;
+
+ dist_x = fabs(a->x - b->x);
+ dist_y = fabs(a->y - b->y);
+
+ return (tolerance >= dist_x * dist_x + dist_y * dist_y);
+
+}
+
+
+typedef struct {
+ char Name[30];
+ cmsCIExyY Val;
+
+ } WHITEPOINTS,FAR *LPWHITEPOINTS;
+
+static
+int FromD40toD150(LPWHITEPOINTS pts)
+{
+ int i, n;
+
+ n = 0;
+ for (i=40; i < 150; i ++)
+ {
+ sprintf(pts[n].Name, "D%d", i);
+ cmsWhitePointFromTemp((int) (i*100.0), &pts[n].Val);
+ n++;
+ }
+
+ return n;
+}
+
+
+// To be removed in future versions
+void _cmsIdentifyWhitePoint(char *Buffer, LPcmsCIEXYZ WhitePt)
+{
+ int i, n;
+ cmsCIExyY Val;
+ double T;
+ WHITEPOINTS SomeIlluminants[140] = {
+
+ {"CIE illuminant A", {0.4476, 0.4074, 1.0}},
+ {"CIE illuminant C", {0.3101, 0.3162, 1.0}},
+ {"D65 (daylight)", {0.3127, 0.3291, 1.0}},
+ };
+
+ n = FromD40toD150(&SomeIlluminants[3]) + 3;
+
+ cmsXYZ2xyY(&Val, WhitePt);
+
+ Val.Y = 1.;
+ for (i=0; i < n; i++)
+ {
+
+ if (InRange(&Val, &SomeIlluminants[i].Val, 0.000005))
+ {
+ strcpy(Buffer, "WhitePoint : ");
+ strcat(Buffer, SomeIlluminants[i].Name);
+ return;
+ }
+ }
+
+ T = Robertson(&Val);
+
+ if (T > 0)
+ sprintf(Buffer, "White point near %dK", (int) T);
+ else
+ {
+ sprintf(Buffer, "Unknown white point (X:%1.2g, Y:%1.2g, Z:%1.2g)",
+ WhitePt -> X, WhitePt -> Y, WhitePt -> Z);
+
+ }
+
+}
+
+
+// Use darker colorant to obtain black point
+
+static
+int BlackPointAsDarkerColorant(cmsHPROFILE hInput,
+ int Intent,
+ LPcmsCIEXYZ BlackPoint,
+ DWORD dwFlags)
+{
+ WORD *Black, *White;
+ cmsHTRANSFORM xform;
+ icColorSpaceSignature Space;
+ int nChannels;
+ DWORD dwFormat;
+ cmsHPROFILE hLab;
+ cmsCIELab Lab;
+ cmsCIEXYZ BlackXYZ, MediaWhite;
+
+ // If the profile does not support input direction, assume Black point 0
+ if (!cmsIsIntentSupported(hInput, Intent, LCMS_USED_AS_INPUT)) {
+
+ BlackPoint -> X = BlackPoint ->Y = BlackPoint -> Z = 0.0;
+ return 0;
+ }
+
+
+ // Try to get black by using black colorant
+ Space = cmsGetColorSpace(hInput);
+
+ if (!_cmsEndPointsBySpace(Space, &White, &Black, &nChannels)) {
+
+ BlackPoint -> X = BlackPoint ->Y = BlackPoint -> Z = 0.0;
+ return 0;
+ }
+
+ dwFormat = CHANNELS_SH(nChannels)|BYTES_SH(2);
+
+ hLab = cmsCreateLabProfile(NULL);
+
+ xform = cmsCreateTransform(hInput, dwFormat,
+ hLab, TYPE_Lab_DBL, Intent, cmsFLAGS_NOTPRECALC);
+
+
+ cmsDoTransform(xform, Black, &Lab, 1);
+
+ // Force it to be neutral, clip to max. L* of 50
+
+ Lab.a = Lab.b = 0;
+ if (Lab.L > 50) Lab.L = 50;
+
+ cmsCloseProfile(hLab);
+ cmsDeleteTransform(xform);
+
+ cmsLab2XYZ(NULL, &BlackXYZ, &Lab);
+
+ if (Intent == INTENT_ABSOLUTE_COLORIMETRIC) {
+
+ *BlackPoint = BlackXYZ;
+ }
+ else {
+
+ if (!(dwFlags & LCMS_BPFLAGS_D50_ADAPTED)) {
+
+ cmsTakeMediaWhitePoint(&MediaWhite, hInput);
+ cmsAdaptToIlluminant(BlackPoint, cmsD50_XYZ(), &MediaWhite, &BlackXYZ);
+ }
+ else
+ *BlackPoint = BlackXYZ;
+ }
+
+ return 1;
+}
+
+
+// Get a black point of output CMYK profile, discounting any ink-limiting embedded
+// in the profile. For doing that, use perceptual intent in input direction:
+// Lab (0, 0, 0) -> [Perceptual] Profile -> CMYK -> [Rel. colorimetric] Profile -> Lab
+
+static
+int BlackPointUsingPerceptualBlack(LPcmsCIEXYZ BlackPoint,
+ cmsHPROFILE hProfile,
+ DWORD dwFlags)
+{
+ cmsHTRANSFORM hPercLab2CMYK, hRelColCMYK2Lab;
+ cmsHPROFILE hLab;
+ cmsCIELab LabIn, LabOut;
+ WORD CMYK[MAXCHANNELS];
+ cmsCIEXYZ BlackXYZ, MediaWhite;
+
+
+ if (!cmsIsIntentSupported(hProfile, INTENT_PERCEPTUAL, LCMS_USED_AS_INPUT)) {
+
+ BlackPoint -> X = BlackPoint ->Y = BlackPoint -> Z = 0.0;
+ return 0;
+ }
+
+ hLab = cmsCreateLabProfile(NULL);
+
+ hPercLab2CMYK = cmsCreateTransform(hLab, TYPE_Lab_DBL,
+ hProfile, TYPE_CMYK_16,
+ INTENT_PERCEPTUAL, cmsFLAGS_NOTPRECALC);
+
+ hRelColCMYK2Lab = cmsCreateTransform(hProfile, TYPE_CMYK_16,
+ hLab, TYPE_Lab_DBL,
+ INTENT_RELATIVE_COLORIMETRIC, cmsFLAGS_NOTPRECALC);
+
+ LabIn.L = LabIn.a = LabIn.b = 0;
+
+ cmsDoTransform(hPercLab2CMYK, &LabIn, CMYK, 1);
+ cmsDoTransform(hRelColCMYK2Lab, CMYK, &LabOut, 1);
+
+ if (LabOut.L > 50) LabOut.L = 50;
+ LabOut.a = LabOut.b = 0;
+
+ cmsDeleteTransform(hPercLab2CMYK);
+ cmsDeleteTransform(hRelColCMYK2Lab);
+ cmsCloseProfile(hLab);
+
+ cmsLab2XYZ(NULL, &BlackXYZ, &LabOut);
+
+ if (!(dwFlags & LCMS_BPFLAGS_D50_ADAPTED)){
+ cmsTakeMediaWhitePoint(&MediaWhite, hProfile);
+ cmsAdaptToIlluminant(BlackPoint, cmsD50_XYZ(), &MediaWhite, &BlackXYZ);
+ }
+ else
+ *BlackPoint = BlackXYZ;
+
+ return 1;
+
+}
+
+
+// Get Perceptual black of v4 profiles.
+static
+int GetV4PerceptualBlack(LPcmsCIEXYZ BlackPoint, cmsHPROFILE hProfile, DWORD dwFlags)
+{
+ if (dwFlags & LCMS_BPFLAGS_D50_ADAPTED) {
+
+ BlackPoint->X = PERCEPTUAL_BLACK_X;
+ BlackPoint->Y = PERCEPTUAL_BLACK_Y;
+ BlackPoint->Z = PERCEPTUAL_BLACK_Z;
+ }
+ else {
+
+ cmsCIEXYZ D50BlackPoint, MediaWhite;
+
+ cmsTakeMediaWhitePoint(&MediaWhite, hProfile);
+ D50BlackPoint.X = PERCEPTUAL_BLACK_X;
+ D50BlackPoint.Y = PERCEPTUAL_BLACK_Y;
+ D50BlackPoint.Z = PERCEPTUAL_BLACK_Z;
+
+ // Obtain the absolute XYZ. Adapt perceptual black back from D50 to whatever media white
+ cmsAdaptToIlluminant(BlackPoint, cmsD50_XYZ(), &MediaWhite, &D50BlackPoint);
+ }
+
+
+ return 1;
+}
+
+
+// This function shouldn't exist at all -- there is such quantity of broken
+// profiles on black point tag, that we must somehow fix chromaticity to
+// avoid huge tint when doing Black point compensation. This function does
+// just that. There is a special flag for using black point tag, but turned
+// off by default because it is bogus on most profiles. The detection algorithm
+// involves to turn BP to neutral and to use only L component.
+
+int cmsDetectBlackPoint(LPcmsCIEXYZ BlackPoint, cmsHPROFILE hProfile, int Intent, DWORD dwFlags)
+{
+
+ // v4 + perceptual & saturation intents does have its own black point, and it is
+ // well specified enough to use it.
+
+ if ((cmsGetProfileICCversion(hProfile) >= 0x4000000) &&
+ (Intent == INTENT_PERCEPTUAL || Intent == INTENT_SATURATION)) {
+
+ // Matrix shaper share MRC & perceptual intents
+ if (_cmsIsMatrixShaper(hProfile))
+ return BlackPointAsDarkerColorant(hProfile, INTENT_RELATIVE_COLORIMETRIC, BlackPoint, cmsFLAGS_NOTPRECALC);
+
+ // CLUT based - Get perceptual black point (fixed value)
+ return GetV4PerceptualBlack(BlackPoint, hProfile, dwFlags);
+ }
+
+
+#ifdef HONOR_BLACK_POINT_TAG
+
+ // v2, v4 rel/abs colorimetric
+ if (cmsIsTag(hProfile, icSigMediaBlackPointTag) &&
+ Intent == INTENT_RELATIVE_COLORIMETRIC) {
+
+ cmsCIEXYZ BlackXYZ, UntrustedBlackPoint, TrustedBlackPoint, MediaWhite;
+ cmsCIELab Lab;
+
+ // If black point is specified, then use it,
+
+ cmsTakeMediaBlackPoint(&BlackXYZ, hProfile);
+ cmsTakeMediaWhitePoint(&MediaWhite, hProfile);
+
+ // Black point is absolute XYZ, so adapt to D50 to get PCS value
+ cmsAdaptToIlluminant(&UntrustedBlackPoint, &MediaWhite, cmsD50_XYZ(), &BlackXYZ);
+
+ // Force a=b=0 to get rid of any chroma
+
+ cmsXYZ2Lab(NULL, &Lab, &UntrustedBlackPoint);
+ Lab.a = Lab.b = 0;
+ if (Lab.L > 50) Lab.L = 50; // Clip to L* <= 50
+
+ cmsLab2XYZ(NULL, &TrustedBlackPoint, &Lab);
+
+ // Return BP as D50 relative or absolute XYZ (depends on flags)
+ if (!(dwFlags & LCMS_BPFLAGS_D50_ADAPTED))
+ cmsAdaptToIlluminant(BlackPoint, cmsD50_XYZ(), &MediaWhite, &TrustedBlackPoint);
+ else
+ *BlackPoint = TrustedBlackPoint;
+
+ return 1;
+ }
+
+#endif
+
+ // That is about v2 profiles.
+
+ // If output profile, discount ink-limiting and that's all
+ if (Intent == INTENT_RELATIVE_COLORIMETRIC &&
+ (cmsGetDeviceClass(hProfile) == icSigOutputClass) &&
+ (cmsGetColorSpace(hProfile) == icSigCmykData))
+ return BlackPointUsingPerceptualBlack(BlackPoint, hProfile, dwFlags);
+
+ // Nope, compute BP using current intent.
+ return BlackPointAsDarkerColorant(hProfile, Intent, BlackPoint, dwFlags);
+
+}