From e6ba08c3b21cdb14ee3a97b5d584759a4597b54b Mon Sep 17 00:00:00 2001 From: Michele Calgaro Date: Sun, 21 Nov 2021 17:04:21 +0900 Subject: uncrustify-trinity: updated based on upstream version 0.74.0 Signed-off-by: Michele Calgaro --- .../expected/cpp/31700-toggle_processing_cmt.cpp | 63 ---------------------- 1 file changed, 63 deletions(-) delete mode 100644 debian/uncrustify-trinity/uncrustify-trinity-0.73.0/tests/expected/cpp/31700-toggle_processing_cmt.cpp (limited to 'debian/uncrustify-trinity/uncrustify-trinity-0.73.0/tests/expected/cpp/31700-toggle_processing_cmt.cpp') diff --git a/debian/uncrustify-trinity/uncrustify-trinity-0.73.0/tests/expected/cpp/31700-toggle_processing_cmt.cpp b/debian/uncrustify-trinity/uncrustify-trinity-0.73.0/tests/expected/cpp/31700-toggle_processing_cmt.cpp deleted file mode 100644 index 03615082..00000000 --- a/debian/uncrustify-trinity/uncrustify-trinity-0.73.0/tests/expected/cpp/31700-toggle_processing_cmt.cpp +++ /dev/null @@ -1,63 +0,0 @@ -void func() { -} - -// **ABC** -void func() { } -// *INDENT-ON* - -void func() { -} - -/** - * Function to solve for roots of a generic quartic polynomial of the following form: - * \verbatim - - p(x) = a * x^4 + b * x^3 + c * x^2 + d * x + e, - - where a, b, c, d, and e are real coefficients - - * \endverbatim - * - * This object's tolerance defines a threshold for root solutions above which iterative methods will be employed to achieve the desired accuracy - * - * \verbatim - this should cause the following line to not wrap due to cmt_width - * Upon success, the roots array contains the solution to the polynomial p(x) = 0 - * \endverbatim - * + Return value on output: - * - 0, if an error occurs (invalid coefficients) - * - 1, if all roots are real - * - 2, if two roots are real and two roots are complex conjugates - * - 3, if the roots are two pairs of complex conjugates - */ -int solve(double a, - double b, - double c, - double d, - double e, - std::complex roots[4]); - -/** - * Function to solve for roots of a generic quartic polynomial of the following form: - * - - p(x) = a * x^4 + b * x^3 + c * x^2 + d * x + e, - where a, b, c, d, and e are real coefficients - * - * Upon success, root1, root2, root3, and root4 contain the solution to the polynomial p(x) = 0 - * + Return value on output: - * - 0, if an error occurs (invalid coefficients) - * - 1, if all roots are real - * - 2, if two roots are real and two roots are complex conjugates - * - 3, if the roots are two pairs of complex conjugates - */ -/* **ABC** */ - int solve(double a, - double b, - double c, - double d, - double e, - std::complex &root1, - std::complex &root2, - std::complex &root3, - std::complex &root4); -/* ??DEF?? */ -- cgit v1.2.3