/************************************************************************ 4x4 Matrix class $Id: mat4.cxx 427 2004-09-27 04:45:31Z garland $ ************************************************************************/ #include #include namespace gfx { Mat4 Mat4::I() { return Mat4(Vec4(1,0,0,0),Vec4(0,1,0,0),Vec4(0,0,1,0),Vec4(0,0,0,1)); } Mat4 translation_matrix(const Vec3& d) { return Mat4(Vec4(1, 0, 0, d[0]), Vec4(0, 1, 0, d[1]), Vec4(0, 0, 1, d[2]), Vec4(0, 0, 0, 1)); } Mat4 scaling_matrix(const Vec3& s) { return Mat4(Vec4(s[0], 0, 0, 0), Vec4(0, s[1], 0, 0), Vec4(0, 0, s[2], 0), Vec4(0, 0, 0, 1)); } Mat4 rotation_matrix_rad(double theta, const Vec3& axis) { double c=cos(theta), s=sin(theta), xx=axis[0]*axis[0], yy=axis[1]*axis[1], zz=axis[2]*axis[2], xy=axis[0]*axis[1], yz=axis[1]*axis[2], xz=axis[0]*axis[2]; double xs=axis[0]*s, ys=axis[1]*s, zs=axis[2]*s; Mat4 M; M(0,0)=xx*(1-c)+c; M(0,1)=xy*(1-c)-zs; M(0,2)=xz*(1-c)+ys; M(0,3) = 0; M(1,0)=xy*(1-c)+zs; M(1,1)=yy*(1-c)+c; M(1,2)=yz*(1-c)-xs; M(1,3)=0; M(2,0)=xz*(1-c)-ys; M(2,1)=yz*(1-c)+xs; M(2,2)=zz*(1-c)+c; M(2,3)=0; M(3,0)=0; M(3,1)=0; M(3,2)=0; M(3,3)=1; return M; } Mat4 perspective_matrix(double fovy, double aspect, double zmin, double zmax) { double A, B; Mat4 M; if( zmax==0.0 ) { A = B = 1.0; } else { A = (zmax+zmin)/(zmin-zmax); B = (2*zmax*zmin)/(zmin-zmax); } double f = 1.0/tan(fovy*M_PI/180.0/2.0); M(0,0) = f/aspect; M(1,1) = f; M(2,2) = A; M(2,3) = B; M(3,2) = -1; M(3,3) = 0; return M; } Mat4 lookat_matrix(const Vec3& from, const Vec3& at, const Vec3& v_up) { Vec3 up = v_up; unitize(up); Vec3 f = at - from; unitize(f); Vec3 s=f^up; Vec3 u=s^f; // NOTE: These steps are left out of the GL man page!! unitize(s); unitize(u); Mat4 M(Vec4(s, 0), Vec4(u, 0), Vec4(-f, 0), Vec4(0, 0, 0, 1)); return M * translation_matrix(-from); } Mat4 viewport_matrix(double w, double h) { return scaling_matrix(Vec3(w/2.0, -h/2.0, 1)) * translation_matrix(Vec3(1, -1, 0)); } Mat4 operator*(const Mat4& n, const Mat4& m) { Mat4 A; int i,j; for(i=0;i<4;i++) for(j=0;j<4;j++) A(i,j) = n[i]*m.col(j); return A; } Mat4 adjoint(const Mat4& m) { Mat4 A; A[0] = cross( m[1], m[2], m[3]); A[1] = cross(-m[0], m[2], m[3]); A[2] = cross( m[0], m[1], m[3]); A[3] = cross(-m[0], m[1], m[2]); return A; } double invert_cramer(Mat4& inv, const Mat4& m) { Mat4 A = adjoint(m); double d = A[0] * m[0]; if( d==0.0 ) return 0.0; inv = transpose(A) / d; return d; } // Matrix inversion code for 4x4 matrices using Gaussian elimination // with partial pivoting. This is a specialized version of a // procedure originally due to Paul Heckbert . // // Returns determinant of A, and B=inverse(A) // If matrix A is singular, returns 0 and leaves trash in B. // #define SWAP(a, b, t) {t = a; a = b; b = t;} double invert(Mat4& B, const Mat4& m) { Mat4 A = m; int i, j, k; double max, t, det, pivot; /*---------- forward elimination ----------*/ for (i=0; i<4; i++) /* put identity matrix in B */ for (j=0; j<4; j++) B(i, j) = (double)(i==j); det = 1.0; for (i=0; i<4; i++) { /* eliminate in column i, below diag */ max = -1.; for (k=i; k<4; k++) /* find pivot for column i */ if (fabs(A(k, i)) > max) { max = fabs(A(k, i)); j = k; } if (max<=0.) return 0.; /* if no nonzero pivot, PUNT */ if (j!=i) { /* swap rows i and j */ for (k=i; k<4; k++) SWAP(A(i, k), A(j, k), t); for (k=0; k<4; k++) SWAP(B(i, k), B(j, k), t); det = -det; } pivot = A(i, i); det *= pivot; for (k=i+1; k<4; k++) /* only do elems to right of pivot */ A(i, k) /= pivot; for (k=0; k<4; k++) B(i, k) /= pivot; /* we know that A(i, i) will be set to 1, so don't bother to do it */ for (j=i+1; j<4; j++) { /* eliminate in rows below i */ t = A(j, i); /* we're gonna zero this guy */ for (k=i+1; k<4; k++) /* subtract scaled row i from row j */ A(j, k) -= A(i, k)*t; /* (ignore k<=i, we know they're 0) */ for (k=0; k<4; k++) B(j, k) -= B(i, k)*t; } } /*---------- backward elimination ----------*/ for (i=4-1; i>0; i--) { /* eliminate in column i, above diag */ for (j=0; j