# # Pyrex - Parse tree nodes # import string, sys import Code from Errors import error, one_time_warning, InternalError import Naming import PyrexTypes from PyrexTypes import py_object_type, c_int_type, error_type, \ CTypedefType, CFuncType from Symtab import ModuleScope, LocalScope, \ StructOrUnionScope, PyClassScope, CClassScope from Pyrex.Utils import open_new_file, replace_suffix import Options from DebugFlags import debug_disposal_code class Node: # pos (string, int, int) Source file position # is_name boolean Is a NameNode # is_literal boolean Is a ConstNode is_name = 0 is_literal = 0 def __init__(self, pos, **kw): self.pos = pos self.__dict__.update(kw) gil_message = "Operation" def gil_check(self, env): if env.nogil: self.gil_error() def gil_error(self, message = None): error(self.pos, "%s not allowed without gil" % (message or self.gil_message)) # # There are 3 phases of parse tree processing, applied in order to # all the statements in a given scope-block: # # (1) analyse_declarations # Make symbol table entries for all declarations at the current # level, both explicit (def, cdef, etc.) and implicit (assignment # to an otherwise undeclared name). # # (2) analyse_expressions # Determine the result types of expressions and fill in the # 'type' attribute of each ExprNode. Insert coercion nodes into the # tree where needed to convert to and from Python objects. # Allocate temporary locals for intermediate results. # # (3) generate_code # Emit C code for all declarations, statements and expressions. # Recursively applies the 3 processing phases to the bodies of # functions. # def analyse_declarations(self, env): pass def analyse_expressions(self, env): raise InternalError("analyse_expressions not implemented for %s" % \ self.__class__.__name__) def generate_code(self, code): raise InternalError("generate_code not implemented for %s" % \ self.__class__.__name__) class BlockNode: # Mixin class for nodes representing a declaration block. pass # def generate_const_definitions(self, env, code): # if env.const_entries: # code.putln("") # for entry in env.const_entries: # if not entry.is_interned: # code.put_var_declaration(entry, static = 1) # def generate_interned_name_decls(self, env, code): # # Flush accumulated interned names from the global scope # # and generate declarations for them. # genv = env.global_scope() # intern_map = genv.intern_map # names = genv.interned_names # if names: # code.putln("") # for name in names: # code.putln( # "static PyObject *%s;" % intern_map[name]) # del names[:] # def generate_py_string_decls(self, env, code): # entries = env.pystring_entries # if entries: # code.putln("") # for entry in entries: # code.putln( # "static PyObject *%s;" % entry.pystring_cname) class StatListNode(Node): # stats a list of StatNode def analyse_declarations(self, env): #print "StatListNode.analyse_declarations" ### for stat in self.stats: stat.analyse_declarations(env) def analyse_expressions(self, env): #print "StatListNode.analyse_expressions" ### for stat in self.stats: stat.analyse_expressions(env) def generate_function_definitions(self, env, code): #print "StatListNode.generate_function_definitions" ### for stat in self.stats: stat.generate_function_definitions(env, code) def generate_execution_code(self, code): #print "StatListNode.generate_execution_code" ### for stat in self.stats: code.mark_pos(stat.pos) stat.generate_execution_code(code) class StatNode(Node): # # Code generation for statements is split into the following subphases: # # (1) generate_function_definitions # Emit C code for the definitions of any structs, # unions, enums and functions defined in the current # scope-block. # # (2) generate_execution_code # Emit C code for executable statements. # def generate_function_definitions(self, env, code): pass def generate_execution_code(self, code): raise InternalError("generate_execution_code not implemented for %s" % \ self.__class__.__name__) class CDefExternNode(StatNode): # include_file string or None # body StatNode def analyse_declarations(self, env): if self.include_file: env.add_include_file(self.include_file) old_cinclude_flag = env.in_cinclude env.in_cinclude = 1 self.body.analyse_declarations(env) env.in_cinclude = old_cinclude_flag def analyse_expressions(self, env): pass def generate_execution_code(self, code): pass class CDeclaratorNode(Node): # Part of a C declaration. # # Processing during analyse_declarations phase: # # analyse # Returns (name, type) pair where name is the # CNameDeclaratorNode of the name being declared # and type is the type it is being declared as. # # calling_convention string Calling convention of CFuncDeclaratorNode # for which this is a base calling_convention = "" class CNameDeclaratorNode(CDeclaratorNode): # name string The Pyrex name being declared # cname string or None C name, if specified def analyse(self, base_type, env): return self, base_type class CPtrDeclaratorNode(CDeclaratorNode): # base CDeclaratorNode def analyse(self, base_type, env): if base_type.is_pyobject: error(self.pos, "Pointer base type cannot be a Python object") ptr_type = PyrexTypes.c_ptr_type(base_type) return self.base.analyse(ptr_type, env) class CArrayDeclaratorNode(CDeclaratorNode): # base CDeclaratorNode # dimension ExprNode def analyse(self, base_type, env): if self.dimension: self.dimension.analyse_const_expression(env) if not self.dimension.type.is_int: error(self.dimension.pos, "Array dimension not integer") size = self.dimension.result() else: size = None if not base_type.is_complete(): error(self.pos, "Array element type '%s' is incomplete" % base_type) if base_type.is_pyobject: error(self.pos, "Array element cannot be a Python object") if base_type.is_cfunction: error(self.pos, "Array element cannot be a function") array_type = PyrexTypes.c_array_type(base_type, size) return self.base.analyse(array_type, env) class CFuncDeclaratorNode(CDeclaratorNode): # base CDeclaratorNode # args [CArgDeclNode] # has_varargs boolean # exception_value ConstNode # exception_check boolean True if PyErr_Occurred check needed # nogil boolean Can be called without gil # with_gil boolean Acquire gil around function body def analyse(self, return_type, env): func_type_args = [] for arg_node in self.args: name_declarator, type = arg_node.analyse(env) name = name_declarator.name if name_declarator.cname: error(self.pos, "Function argument cannot have C name specification") # Turn *[] argument into ** if type.is_array: type = PyrexTypes.c_ptr_type(type.base_type) # Catch attempted C-style func(void) decl if type.is_void: error(arg_node.pos, "Function argument cannot be void") func_type_args.append( PyrexTypes.CFuncTypeArg(name, type, arg_node.pos)) if arg_node.default: error(arg_node.pos, "C function argument cannot have default value") exc_val = None exc_check = 0 if return_type.is_pyobject \ and (self.exception_value or self.exception_check): error(self.pos, "Exception clause not allowed for function returning Python object") else: if self.exception_value: self.exception_value.analyse_const_expression(env) exc_val = self.exception_value.result() if not return_type.assignable_from(self.exception_value.type): error(self.exception_value.pos, "Exception value incompatible with function return type") exc_check = self.exception_check if return_type.is_array: error(self.pos, "Function cannot return an array") if return_type.is_cfunction: error(self.pos, "Function cannot return a function") func_type = PyrexTypes.CFuncType( return_type, func_type_args, self.has_varargs, exception_value = exc_val, exception_check = exc_check, calling_convention = self.base.calling_convention, nogil = self.nogil, with_gil = self.with_gil) return self.base.analyse(func_type, env) class CArgDeclNode(Node): # Item in a function declaration argument list. # # base_type CBaseTypeNode # declarator CDeclaratorNode # #not_none boolean Tagged with 'not None' # allow_none tristate True == 'or None', False == 'not None', None = unspecified # default ExprNode or None # default_entry Symtab.Entry Entry for the variable holding the default value # is_self_arg boolean Is the "self" arg of an extension type method # is_kw_only boolean Is a keyword-only argument is_self_arg = 0 def analyse(self, env): #print "CArgDeclNode.analyse: is_self_arg =", self.is_self_arg ### base_type = self.base_type.analyse(env) return self.declarator.analyse(base_type, env) class CBaseTypeNode(Node): # Abstract base class for C base type nodes. # # Processing during analyse_declarations phase: # # analyse # Returns the type. pass class CSimpleBaseTypeNode(CBaseTypeNode): # name string # module_path [string] Qualifying name components # is_basic_c_type boolean # signed boolean # longness integer # is_self_arg boolean Is self argument of C method def analyse(self, env): # Return type descriptor. #print "CSimpleBaseTypeNode.analyse: is_self_arg =", self.is_self_arg ### type = None if self.is_basic_c_type: type = PyrexTypes.simple_c_type(self.signed, self.longness, self.name) if not type: error(self.pos, "Unrecognised type modifier combination") elif self.name == "object" and not self.module_path: type = py_object_type elif self.name is None: if self.is_self_arg and env.is_c_class_scope: #print "CSimpleBaseTypeNode.analyse: defaulting to parent type" ### type = env.parent_type else: type = py_object_type else: scope = env.find_imported_module(self.module_path, self.pos) if scope: entry = scope.find(self.name, self.pos) if entry and entry.is_type: type = entry.type else: error(self.pos, "'%s' is not a type identifier" % self.name) if type: return type else: return PyrexTypes.error_type class CComplexBaseTypeNode(CBaseTypeNode): # base_type CBaseTypeNode # declarator CDeclaratorNode def analyse(self, env): base = self.base_type.analyse(env) _, type = self.declarator.analyse(base, env) return type class CVarDefNode(StatNode): # C variable definition or forward/extern function declaration. # # visibility 'private' or 'public' or 'extern' # base_type CBaseTypeNode # declarators [CDeclaratorNode] # in_pxd boolean # api boolean def analyse_declarations(self, env, dest_scope = None): if not dest_scope: dest_scope = env base_type = self.base_type.analyse(env) for declarator in self.declarators: name_declarator, type = declarator.analyse(base_type, env) if not type.is_complete(): if not (self.visibility == 'extern' and type.is_array): error(declarator.pos, "Variable type '%s' is incomplete" % type) if self.visibility == 'extern' and type.is_pyobject: error(declarator.pos, "Python object cannot be declared extern") name = name_declarator.name cname = name_declarator.cname if type.is_cfunction: entry = dest_scope.declare_cfunction(name, type, declarator.pos, cname = cname, visibility = self.visibility, in_pxd = self.in_pxd, api = self.api) else: if self.in_pxd and self.visibility <> 'extern': error(self.pos, "Only 'extern' C variable declaration allowed in .pxd file") dest_scope.declare_var(name, type, declarator.pos, cname = cname, visibility = self.visibility, is_cdef = 1) def analyse_expressions(self, env): pass def generate_execution_code(self, code): pass class CStructOrUnionDefNode(StatNode): # name string # cname string or None # module_path [string] # kind "struct" or "union" # typedef_flag boolean # cplus_flag boolean # visibility "public" or "private" # in_pxd boolean # attributes [CVarDefNode] or None # entry Entry # bases [([name, ...], name), ...] def analyse_declarations(self, env): scope = None base_scopes = [] for base in self.bases: base_entry = env.find_qualified_name(base, self.pos) if base_entry: if base_entry.is_type and base_entry.type.is_struct_or_union \ and base_entry.type.scope.is_cplus: base_scopes.append(base_entry.type.scope) else: error(self.pos, "Base type '%s' is not a C++ struct" % ".".join(base[0] + [base[1]])) if self.attributes is not None: scope = StructOrUnionScope(base_scopes = base_scopes, is_cplus = self.cplus_flag) if self.module_path: home_scope = env.find_imported_module(self.module_path, self.pos) if not home_scope: return else: home_scope = env def declare(): self.entry = home_scope.declare_struct_or_union( self.name, self.kind, scope, self.typedef_flag, self.pos, self.cname, visibility = self.visibility) if self.attributes is not None: if self.in_pxd and not env.in_cinclude: self.entry.defined_in_pxd = 1 if not self.typedef_flag: declare() if self.attributes is not None: for attr in self.attributes: attr.analyse_declarations(env, scope) if self.typedef_flag: declare() def analyse_expressions(self, env): pass def generate_execution_code(self, code): pass class CEnumDefNode(StatNode): # name string or None # cname string or None # items [CEnumDefItemNode] # typedef_flag boolean # visibility "public" or "private" # in_pxd boolean # entry Entry def analyse_declarations(self, env): self.entry = env.declare_enum(self.name, self.pos, cname = self.cname, typedef_flag = self.typedef_flag, visibility = self.visibility) if self.items is not None: if self.in_pxd and not env.in_cinclude: self.entry.defined_in_pxd = 1 for item in self.items: item.analyse_declarations(env, self.entry) def analyse_expressions(self, env): pass def generate_execution_code(self, code): pass class CEnumDefItemNode(StatNode): # name string # cname string or None # value ExprNode or None def analyse_declarations(self, env, enum_entry): value_node = self.value if value_node: value_node.analyse_const_expression(env) type = value_node.type if type.is_int or type.is_enum: value = value_node.result() else: error(self.pos, "Type '%s' is not a valid enum value" % type) value = "" else: value = self.name entry = env.declare_const(self.name, enum_entry.type, value, self.pos, cname = self.cname) enum_entry.enum_values.append(entry) class CTypeDefNode(StatNode): # base_type CBaseTypeNode # declarator CDeclaratorNode # visibility "public" or "private" # in_pxd boolean def analyse_declarations(self, env): base = self.base_type.analyse(env) name_declarator, type = self.declarator.analyse(base, env) name = name_declarator.name cname = name_declarator.cname entry = env.declare_typedef(name, type, self.pos, cname = cname, visibility = self.visibility) if self.in_pxd and not env.in_cinclude: entry.defined_in_pxd = 1 def analyse_expressions(self, env): pass def generate_execution_code(self, code): pass class FuncDefNode(StatNode, BlockNode): # Base class for function definition nodes. # # return_type PyrexType # #filename string C name of filename string const # entry Symtab.Entry def analyse_expressions(self, env): pass def need_gil_acquisition(self, lenv): return 0 def generate_function_definitions(self, env, code): # Generate C code for header and body of function genv = env.global_scope() lenv = LocalScope(name = self.entry.name, outer_scope = genv) lenv.return_type = self.return_type type = self.entry.type if type.is_cfunction: lenv.nogil = type.nogil and not type.with_gil code.init_labels() self.declare_arguments(lenv) self.body.analyse_declarations(lenv) self.body.analyse_expressions(lenv) # Code for nested function definitions would go here # if we supported them, which we probably won't. # ----- Function header code.putln("") self.generate_function_header(code, with_pymethdef = env.is_py_class_scope) # ----- Local variable declarations self.generate_argument_declarations(lenv, code) code.put_var_declarations(lenv.var_entries) init = "" if not self.return_type.is_void: code.putln( "%s%s;" % (self.return_type.declaration_code( Naming.retval_cname), init)) code.put_var_declarations(lenv.temp_entries) self.generate_keyword_list(code) # ----- Extern library function declarations lenv.generate_library_function_declarations(code) # ----- GIL acquisition acquire_gil = self.need_gil_acquisition(lenv) if acquire_gil: lenv.global_scope().gil_used = 1 code.putln("PyGILState_STATE _save = PyGILState_Ensure();") # ----- Fetch arguments self.generate_argument_parsing_code(code) self.generate_argument_increfs(lenv, code) # ----- Initialise local variables for entry in lenv.var_entries: if entry.type.is_pyobject and entry.init_to_none and entry.used: code.put_init_var_to_py_none(entry) # ----- Check and convert arguments self.generate_argument_conversion_code(code) self.generate_argument_type_tests(code) # ----- Function body self.body.generate_execution_code(code) # ----- Default return value code.putln("") if self.return_type.is_pyobject: #if self.return_type.is_extension_type: # lhs = "(PyObject *)%s" % Naming.retval_cname #else: lhs = Naming.retval_cname code.put_init_to_py_none(lhs, self.return_type) else: val = self.return_type.default_value if val: code.putln("%s = %s;" % (Naming.retval_cname, val)) #code.putln("goto %s;" % code.return_label) # ----- Error cleanup if code.error_label in code.labels_used: code.put_goto(code.return_label) code.put_label(code.error_label) code.put_var_xdecrefs(lenv.temp_entries) default_retval = self.return_type.default_value err_val = self.error_value() exc_check = self.caller_will_check_exceptions() if err_val or exc_check: code.putln( '__Pyx_AddTraceback("%s");' % self.entry.qualified_name) val = err_val or default_retval if val: code.putln( "%s = %s;" % ( Naming.retval_cname, val)) else: code.use_utility_code(unraisable_exception_utility_code) code.putln( '__Pyx_WriteUnraisable("%s");' % self.entry.qualified_name) #if not self.return_type.is_void: if default_retval: code.putln( "%s = %s;" % ( Naming.retval_cname, default_retval)) #self.return_type.default_value)) # ----- Return cleanup code.put_label(code.return_label) code.put_var_decrefs(lenv.var_entries, used_only = 1) #code.put_var_decrefs(lenv.arg_entries) self.generate_argument_decrefs(lenv, code) self.put_stararg_decrefs(code) if acquire_gil: code.putln("PyGILState_Release(_save);") if not self.return_type.is_void: code.putln("return %s;" % Naming.retval_cname) code.putln("}") def put_stararg_decrefs(self, code): pass def declare_argument(self, env, arg, readonly = 0): if arg.type.is_void: error(arg.pos, "Invalid use of 'void'") elif not arg.type.is_complete() and not arg.type.is_array: error(arg.pos, "Argument type '%s' is incomplete" % arg.type) return env.declare_arg(arg.name, arg.type, arg.pos, readonly = readonly) def generate_argument_increfs(self, env, code): # Turn writable borrowed argument refs into owned refs. # This is necessary, because if the argument is assigned to, # it will be decrefed. for entry in env.arg_entries: if not entry.is_readonly: code.put_var_incref(entry) def generate_argument_decrefs(self, env, code): for entry in env.arg_entries: if not entry.is_readonly: code.put_var_decref(entry) def generate_execution_code(self, code): pass class CFuncDefNode(FuncDefNode): # C function definition. # # visibility 'private' or 'public' or 'extern' # base_type CBaseTypeNode # declarator CDeclaratorNode # body StatListNode # api boolean # # with_gil boolean Acquire GIL around body # type CFuncType def unqualified_name(self): return self.entry.name def analyse_declarations(self, env): base_type = self.base_type.analyse(env) name_declarator, type = self.declarator.analyse(base_type, env) if not type.is_cfunction: error(self.pos, "Suite attached to non-function declaration") # Remember the actual type according to the function header # written here, because the type in the symbol table entry # may be different if we're overriding a C method inherited # from the base type of an extension type. self.type = type name = name_declarator.name cname = name_declarator.cname self.entry = env.declare_cfunction( name, type, self.pos, cname = cname, visibility = self.visibility, defining = self.body is not None, api = self.api) self.return_type = type.return_type def declare_arguments(self, env): type = self.type without_gil = type.nogil and not type.with_gil for arg in type.args: if not arg.name: error(arg.pos, "Missing argument name") self.declare_argument(env, arg, readonly = without_gil and arg.type.is_pyobject) def need_gil_acquisition(self, lenv): type = self.type with_gil = type.with_gil if type.nogil and not with_gil: # for arg in type.args: # if arg.type.is_pyobject: # error(self.pos, # "Function with Python argument cannot be declared nogil") if type.return_type.is_pyobject: error(self.pos, "Function with Python return type cannot be declared nogil") for entry in lenv.var_entries + lenv.temp_entries: #print "CFuncDefNode.need_gil_acquisition:", entry.name, entry.cname, "readonly =", entry.is_readonly ### if entry.type.is_pyobject and not entry.is_readonly: error(self.pos, "Function declared nogil has Python locals or temporaries") return with_gil def generate_function_header(self, code, with_pymethdef): arg_decls = [] type = self.type visibility = self.entry.visibility for arg in type.args: arg_decls.append(arg.declaration_code()) if type.has_varargs: arg_decls.append("...") if not arg_decls: arg_decls = ["void"] entity = type.function_header_code(self.entry.func_cname, string.join(arg_decls, ",")) if visibility == 'public': dll_linkage = "DL_EXPORT" else: dll_linkage = None header = self.return_type.declaration_code(entity, dll_linkage = dll_linkage) if visibility <> 'private': storage_class = "%s " % Naming.extern_c_macro else: storage_class = "static " code.putln("%s%s {" % ( storage_class, header)) def generate_argument_declarations(self, env, code): # Arguments already declared in function header pass def generate_keyword_list(self, code): pass def generate_argument_parsing_code(self, code): pass def generate_argument_conversion_code(self, code): pass def generate_argument_type_tests(self, code): pass def error_value(self): if self.return_type.is_pyobject: return "0" else: #return None return self.entry.type.exception_value def caller_will_check_exceptions(self): return self.entry.type.exception_check class PyArgDeclNode(Node): # Argument which must be a Python object (used # for * and ** arguments). # # name string # entry Symtab.Entry pass class DefNode(FuncDefNode): # A Python function definition. # # name string the Python name of the function # args [CArgDeclNode] formal arguments # star_arg PyArgDeclNode or None * argument # starstar_arg PyArgDeclNode or None ** argument # doc string or None # body StatListNode # # The following subnode is constructed internally # when the def statement is inside a Python class definition. # # assmt AssignmentNode Function construction/assignment assmt = None num_kwonly_args = 0 reqd_kw_flags_cname = "0" has_star_or_kwonly_args = 0 def __init__(self, pos, **kwds): FuncDefNode.__init__(self, pos, **kwds) n = 0 for arg in self.args: if arg.kw_only: n += 1 self.num_kwonly_args = n if self.star_arg or self.starstar_arg or n > 0: self.has_star_or_kwonly_args = 1 def analyse_declarations(self, env): for arg in self.args: base_type = arg.base_type.analyse(env) name_declarator, type = \ arg.declarator.analyse(base_type, env) arg.name = name_declarator.name if name_declarator.cname: error(self.pos, "Python function argument cannot have C name specification") arg.type = type.as_argument_type() arg.hdr_type = None arg.needs_conversion = 0 arg.needs_type_test = 0 arg.is_generic = 1 if arg.allow_none is not None and not arg.type.is_extension_type: error(self.pos, "Only extension type arguments can have 'or None' or 'not None'") self.declare_pyfunction(env) self.analyse_signature(env) self.return_type = self.entry.signature.return_type() # if self.has_star_or_kwonly_args: # env.use_utility_code(get_starargs_utility_code) def analyse_signature(self, env): any_type_tests_needed = 0 sig = self.entry.signature nfixed = sig.num_fixed_args() for i in range(nfixed): if i < len(self.args): arg = self.args[i] arg.is_generic = 0 if sig.is_self_arg(i): arg.is_self_arg = 1 arg.hdr_type = arg.type = env.parent_type arg.needs_conversion = 0 else: arg.hdr_type = sig.fixed_arg_type(i) if not arg.type.same_as(arg.hdr_type): if arg.hdr_type.is_pyobject and arg.type.is_pyobject: arg.needs_type_test = 1 any_type_tests_needed = 1 else: arg.needs_conversion = 1 if arg.needs_conversion: arg.hdr_cname = Naming.arg_prefix + arg.name else: arg.hdr_cname = Naming.var_prefix + arg.name else: self.bad_signature() return if nfixed < len(self.args): if not sig.has_generic_args: self.bad_signature() for arg in self.args: if arg.is_generic and arg.type.is_extension_type: arg.needs_type_test = 1 any_type_tests_needed = 1 # if any_type_tests_needed: # env.use_utility_code(arg_type_test_utility_code) def bad_signature(self): sig = self.entry.signature expected_str = "%d" % sig.num_fixed_args() if sig.has_generic_args: expected_str = expected_str + " or more" name = self.name if name.startswith("__") and name.endswith("__"): desc = "Special method" else: desc = "Method" error(self.pos, "%s %s has wrong number of arguments " "(%d declared, %s expected)" % ( desc, self.name, len(self.args), expected_str)) def declare_pyfunction(self, env): #print "DefNode.declare_pyfunction:", self.name, "in", env ### name = self.name entry = env.declare_pyfunction(self.name, self.pos) self.entry = entry prefix = env.scope_prefix entry.func_cname = \ Naming.func_prefix + prefix + name entry.pymethdef_cname = \ Naming.pymethdef_prefix + prefix + name if not entry.is_special: entry.doc = self.doc entry.doc_cname = \ Naming.funcdoc_prefix + prefix + name def declare_arguments(self, env): for arg in self.args: if not arg.name: error(arg.pos, "Missing argument name") if arg.needs_conversion: arg.entry = env.declare_var(arg.name, arg.type, arg.pos) if arg.type.is_pyobject: arg.entry.init = "0" arg.entry.init_to_none = 0 else: arg.entry = self.declare_argument(env, arg) arg.entry.used = 1 arg.entry.is_self_arg = arg.is_self_arg if arg.hdr_type: if arg.is_self_arg or \ (arg.type.is_extension_type and not arg.hdr_type.is_extension_type): arg.entry.is_declared_generic = 1 self.declare_python_arg(env, self.star_arg) self.declare_python_arg(env, self.starstar_arg) def declare_python_arg(self, env, arg): if arg: entry = env.declare_var(arg.name, PyrexTypes.py_object_type, arg.pos) entry.used = 1 entry.init = "0" entry.init_to_none = 0 entry.xdecref_cleanup = 1 arg.entry = entry def analyse_expressions(self, env): self.analyse_default_values(env) if env.is_py_class_scope: self.synthesize_assignment_node(env) def analyse_default_values(self, env): for arg in self.args: if arg.default: if arg.is_generic: arg.default.analyse_types(env) arg.default = arg.default.coerce_to(arg.type, env) arg.default.allocate_temps(env) arg.default_entry = env.add_default_value(arg.type) arg.default_entry.used = 1 else: error(arg.pos, "This argument cannot have a default value") arg.default = None def synthesize_assignment_node(self, env): import ExprNodes self.assmt = SingleAssignmentNode(self.pos, lhs = ExprNodes.NameNode(self.pos, name = self.name), rhs = ExprNodes.UnboundMethodNode(self.pos, class_cname = env.class_obj_cname, function = ExprNodes.PyCFunctionNode(self.pos, pymethdef_cname = self.entry.pymethdef_cname))) self.assmt.analyse_declarations(env) self.assmt.analyse_expressions(env) def generate_function_header(self, code, with_pymethdef): arg_code_list = [] sig = self.entry.signature if sig.has_dummy_arg: arg_code_list.append( "PyObject *%s" % Naming.self_cname) for arg in self.args: if not arg.is_generic: if arg.is_self_arg: arg_code_list.append("PyObject *%s" % arg.hdr_cname) else: arg_code_list.append( arg.hdr_type.declaration_code(arg.hdr_cname)) if sig.has_generic_args: arg_code_list.append( "PyObject *%s, PyObject *%s" % (Naming.args_cname, Naming.kwds_cname)) arg_code = ", ".join(arg_code_list) dc = self.return_type.declaration_code(self.entry.func_cname) header = "static %s(%s)" % (dc, arg_code) code.putln("%s; /*proto*/" % header) if self.entry.doc: code.putln( 'static char %s[] = "%s";' % ( self.entry.doc_cname, self.entry.doc)) if with_pymethdef: code.put( "static PyMethodDef %s = " % self.entry.pymethdef_cname) code.put_pymethoddef(self.entry, ";") code.putln("%s {" % header) def generate_argument_declarations(self, env, code): for arg in self.args: if arg.is_generic: # or arg.needs_conversion: code.put_var_declaration(arg.entry) def generate_keyword_list(self, code): if self.entry.signature.has_generic_args: reqd_kw_flags = [] has_reqd_kwds = False code.put( "static char *%s[] = {" % Naming.kwdlist_cname) for arg in self.args: if arg.is_generic: code.put( '"%s",' % arg.name) if arg.kw_only and not arg.default: has_reqd_kwds = 1 flag = "1" else: flag = "0" reqd_kw_flags.append(flag) code.putln( "0};") if has_reqd_kwds: flags_name = Naming.reqd_kwds_cname self.reqd_kw_flags_cname = flags_name code.putln( "static char %s[] = {%s};" % ( flags_name, ",".join(reqd_kw_flags))) def generate_argument_parsing_code(self, code): # Generate PyArg_ParseTuple call for generic # arguments, if any. has_kwonly_args = self.num_kwonly_args > 0 has_star_or_kw_args = self.star_arg is not None \ or self.starstar_arg is not None or has_kwonly_args if not self.entry.signature.has_generic_args: if has_star_or_kw_args: error(self.pos, "This method cannot have * or keyword arguments") else: arg_addrs = [] arg_formats = [] default_seen = 0 for arg in self.args: arg_entry = arg.entry if arg.is_generic: if arg.default: code.putln( "%s = %s;" % ( arg_entry.cname, arg.default_entry.cname)) if not default_seen: arg_formats.append("|") default_seen = 1 elif default_seen and not arg.kw_only: error(arg.pos, "Non-default argument following default argument") arg_addrs.append("&" + arg_entry.cname) format = arg_entry.type.parsetuple_format if format: arg_formats.append(format) else: error(arg.pos, "Cannot convert Python object argument to type '%s'" % arg.type) error_return_code = "return %s;" % self.error_value() argformat = '"%s"' % string.join(arg_formats, "") if has_star_or_kw_args: self.generate_stararg_getting_code(code) pt_arglist = [Naming.args_cname, Naming.kwds_cname, argformat, Naming.kwdlist_cname] + arg_addrs pt_argstring = string.join(pt_arglist, ", ") code.put( 'if (!PyArg_ParseTupleAndKeywords(%s)) ' % pt_argstring) if has_star_or_kw_args: code.putln("{") code.put_xdecref(Naming.args_cname, py_object_type) code.put_xdecref(Naming.kwds_cname, py_object_type) self.generate_arg_xdecref(self.star_arg, code) self.generate_arg_xdecref(self.starstar_arg, code) code.putln(error_return_code) code.putln("}") else: code.putln(error_return_code) def put_stararg_decrefs(self, code): if self.has_star_or_kwonly_args: code.put_xdecref(Naming.args_cname, py_object_type) code.put_xdecref(Naming.kwds_cname, py_object_type) def generate_arg_xdecref(self, arg, code): if arg: code.put_var_xdecref(arg.entry) def arg_address(self, arg): if arg: return "&%s" % arg.entry.cname else: return 0 def generate_stararg_getting_code(self, code): num_kwonly = self.num_kwonly_args nargs = len(self.args) - num_kwonly - self.entry.signature.num_fixed_args() star_arg_addr = self.arg_address(self.star_arg) starstar_arg_addr = self.arg_address(self.starstar_arg) code.use_utility_code(get_starargs_utility_code) code.putln( "if (__Pyx_GetStarArgs(&%s, &%s, %s, %s, %s, %s, %s) < 0) return %s;" % ( Naming.args_cname, Naming.kwds_cname, Naming.kwdlist_cname, nargs, star_arg_addr, starstar_arg_addr, self.reqd_kw_flags_cname, self.error_value())) def generate_argument_conversion_code(self, code): # Generate code to convert arguments from # signature type to declared type, if needed. for arg in self.args: if arg.needs_conversion: self.generate_arg_conversion(arg, code) def generate_arg_conversion(self, arg, code): # Generate conversion code for one argument. old_type = arg.hdr_type new_type = arg.type if old_type.is_pyobject: self.generate_arg_conversion_from_pyobject(arg, code) elif new_type.is_pyobject: self.generate_arg_conversion_to_pyobject(arg, code) else: if new_type.assignable_from(old_type): code.putln( "%s = %s;" % (arg.entry.cname, arg.hdr_cname)) else: error(arg.pos, "Cannot convert argument from '%s' to '%s'" % (old_type, new_type)) def generate_arg_conversion_from_pyobject(self, arg, code): new_type = arg.type func = new_type.from_py_function if func: code.putln("%s = %s(%s); if (PyErr_Occurred()) %s" % ( arg.entry.cname, func, arg.hdr_cname, code.error_goto(arg.pos))) else: error(arg.pos, "Cannot convert Python object argument to type '%s'" % new_type) def generate_arg_conversion_to_pyobject(self, arg, code): old_type = arg.hdr_type func = old_type.to_py_function if func: code.putln("%s = %s(%s); if (!%s) %s" % ( arg.entry.cname, func, arg.hdr_cname, arg.entry.cname, code.error_goto(arg.pos))) else: error(arg.pos, "Cannot convert argument of type '%s' to Python object" % old_type) def generate_argument_type_tests(self, code): # Generate type tests for args whose signature # type is PyObject * and whose declared type is # a subtype thereof. for arg in self.args: if arg.needs_type_test: self.generate_arg_type_test(arg, code) def generate_arg_type_test(self, arg, code): # Generate type test for one argument. if arg.type.typeobj_is_available(): typeptr_cname = arg.type.typeptr_cname arg_code = "((PyObject *)%s)" % arg.entry.cname code.use_utility_code(arg_type_test_utility_code) code.putln( 'if (!__Pyx_ArgTypeTest(%s, %s, %d, "%s")) %s' % ( arg_code, typeptr_cname, #not arg.not_none, arg.allow_none <> False, arg.name, code.error_goto(arg.pos))) if arg.allow_none is None: one_time_warning(arg.pos, 'or_none', "'not None' will become the default in a future version of Pyrex. " "Use 'or None' to allow passing None.") else: error(arg.pos, "Cannot test type of extern C class " "without type object name specification") def generate_execution_code(self, code): # Evaluate and store argument default values for arg in self.args: default = arg.default if default: default.generate_evaluation_code(code) default.make_owned_reference(code) code.putln( "%s = %s;" % ( arg.default_entry.cname, default.result_as(arg.default_entry.type))) default.generate_post_assignment_code(code) # if default.is_temp and default.type.is_pyobject: # code.putln( # "%s = 0;" % # default.result()) # For Python class methods, create and store function object if self.assmt: self.assmt.generate_execution_code(code) def error_value(self): return self.entry.signature.error_value def caller_will_check_exceptions(self): return 1 class PyClassDefNode(StatNode, BlockNode): # A Python class definition. # # name string Name of the class # doc string or None # body StatNode Attribute definition code # entry Symtab.Entry # scope PyClassScope # # The following subnodes are constructed internally: # # dict DictNode Class dictionary # classobj ClassNode Class object # target NameNode Variable to assign class object to def __init__(self, pos, name, bases, doc, body): StatNode.__init__(self, pos) self.name = name self.doc = doc self.body = body import ExprNodes self.dict = ExprNodes.DictNode(pos, key_value_pairs = []) if self.doc: doc_node = ExprNodes.StringNode(pos, value = self.doc) else: doc_node = None self.classobj = ExprNodes.ClassNode(pos, name = ExprNodes.StringNode(pos, value = name), bases = bases, dict = self.dict, doc = doc_node) self.target = ExprNodes.NameNode(pos, name = name) def analyse_declarations(self, env): self.target.analyse_target_declaration(env) def analyse_expressions(self, env): self.dict.analyse_expressions(env) self.classobj.analyse_expressions(env) genv = env.global_scope() cenv = PyClassScope(name = self.name, outer_scope = genv) cenv.class_dict_cname = self.dict.result() cenv.class_obj_cname = self.classobj.result() self.scope = cenv self.body.analyse_declarations(cenv) self.body.analyse_expressions(cenv) self.target.analyse_target_expression(env, self.classobj) self.dict.release_temp(env) #self.classobj.release_temp(env) #self.target.release_target_temp(env) def generate_function_definitions(self, env, code): #self.generate_py_string_decls(self.scope, code) self.body.generate_function_definitions( self.scope, code) def generate_execution_code(self, code): self.dict.generate_evaluation_code(code) self.classobj.generate_evaluation_code(code) self.body.generate_execution_code(code) self.target.generate_assignment_code(self.classobj, code) self.dict.generate_disposal_code(code) class CClassDefNode(StatNode): # An extension type definition. # # visibility 'private' or 'public' or 'extern' # typedef_flag boolean # api boolean # module_name string or None For import of extern type objects # class_name string Unqualified name of class # as_name string or None Name to declare as in this scope # base_class_module string or None Module containing the base class # base_class_name string or None Name of the base class # options CClassOptions: # objstruct_name string or None Specified C name of object struct # typeobj_name string or None Specified C name of type object # no_gc boolean Suppress GC support # in_pxd boolean Is in a .pxd file # doc string or None # body StatNode or None # entry Symtab.Entry # base_type PyExtensionType or None entry = None def analyse_declarations(self, env): #print "CClassDefNode.analyse_declarations:", self.class_name #print "...visibility =", self.visibility #print "...module_name =", self.module_name if env.in_cinclude and not self.options.objstruct_cname: error(self.pos, "Object struct name specification required for " "C class defined in 'extern from' block") self.base_type = None has_body = self.body is not None if self.base_class_name: if self.base_class_module: base_class_scope = env.find_module(self.base_class_module, self.pos) else: base_class_scope = env if base_class_scope: base_class_entry = base_class_scope.find(self.base_class_name, self.pos) if base_class_entry: if not base_class_entry.is_type: error(self.pos, "'%s' is not a type name" % self.base_class_name) elif not base_class_entry.type.is_extension_type: error(self.pos, "'%s' is not an extension type" % self.base_class_name) elif has_body and base_class_entry.visibility <> 'extern' and not base_class_entry.type.is_defined(): error(self.pos, "Base class '%s' is incomplete" % self.base_class_name) else: self.base_type = base_class_entry.type if self.module_name and self.visibility <> 'extern': module_path = self.module_name.split(".") home_scope = env.find_imported_module(module_path, self.pos) if not home_scope: return else: home_scope = env self.entry = home_scope.declare_c_class( name = self.class_name, pos = self.pos, defining = has_body and self.in_pxd, implementing = has_body and not self.in_pxd, module_name = self.module_name, base_type = self.base_type, visibility = self.visibility, typedef_flag = self.typedef_flag, api = self.api, options = self.options) if home_scope is not env and self.visibility == 'extern': env.add_imported_entry(self.class_name, self.entry, pos) scope = self.entry.type.scope if self.doc: scope.doc = self.doc if has_body: self.body.analyse_declarations(scope) if self.in_pxd: scope.defined = 1 else: scope.implemented = 1 env.allocate_vtable_names(self.entry) def analyse_expressions(self, env): if self.body: self.body.analyse_expressions(env) def generate_function_definitions(self, env, code): if self.entry and self.body: # self.body.generate_function_definitions( # self.entry.type.scope, code) self.body.generate_function_definitions(env, code) def generate_execution_code(self, code): # This is needed to generate evaluation code for # default values of method arguments. if self.body: self.body.generate_execution_code(code) class PropertyNode(StatNode): # Definition of a property in an extension type. # # name string # doc string or None Doc string # body StatListNode def analyse_declarations(self, env): #print "PropertyNode.analyse_declarations:", env ### entry = env.declare_property(self.name, self.doc, self.pos) if entry: #if self.doc: # doc_entry = env.get_string_const(self.doc) # entry.doc_cname = doc_entry.cname self.body.analyse_declarations(entry.scope) def analyse_expressions(self, env): self.body.analyse_expressions(env) def generate_function_definitions(self, env, code): self.body.generate_function_definitions(env, code) def generate_execution_code(self, code): pass class GlobalNode(StatNode): # Global variable declaration. # # names [string] def analyse_declarations(self, env): for name in self.names: env.declare_global(name, self.pos) def analyse_expressions(self, env): pass def generate_execution_code(self, code): pass class ExprStatNode(StatNode): # Expression used as a statement. # # expr ExprNode def analyse_expressions(self, env): self.expr.analyse_expressions(env) self.expr.release_temp(env) def generate_execution_code(self, code): self.expr.generate_evaluation_code(code) if not self.expr.is_temp and self.expr.result(): code.putln("%s;" % self.expr.result()) self.expr.generate_disposal_code(code) class AssignmentNode(StatNode): # Abstract base class for assignment nodes. # # The analyse_expressions and generate_execution_code # phases of assignments are split into two sub-phases # each, to enable all the right hand sides of a # parallel assignment to be evaluated before assigning # to any of the left hand sides. def analyse_expressions(self, env): self.analyse_types(env) self.allocate_rhs_temps(env) self.allocate_lhs_temps(env) def generate_execution_code(self, code): self.generate_rhs_evaluation_code(code) self.generate_assignment_code(code) class SingleAssignmentNode(AssignmentNode): # The simplest case: # # a = b # # lhs ExprNode Left hand side # rhs ExprNode Right hand side def analyse_declarations(self, env): self.lhs.analyse_target_declaration(env) def analyse_types(self, env, use_temp = 0): self.rhs.analyse_types(env) self.lhs.analyse_target_types(env) self.lhs.gil_assignment_check(env) self.rhs = self.rhs.coerce_to(self.lhs.type, env) if use_temp: self.rhs = self.rhs.coerce_to_temp(env) def allocate_rhs_temps(self, env): self.rhs.allocate_temps(env) def allocate_lhs_temps(self, env): self.lhs.allocate_target_temps(env, self.rhs) def generate_rhs_evaluation_code(self, code): self.rhs.generate_evaluation_code(code) def generate_assignment_code(self, code): self.lhs.generate_assignment_code(self.rhs, code) class AugmentedAssignmentNode(SingleAssignmentNode): # An in-place operation: # # a op= b # # lhs ExprNode Left hand side # operator string # rhs ExprNode Right hand side def analyse_types(self, env): op = self.operator self.rhs.analyse_types(env) self.lhs.analyse_inplace_types(env) type = self.lhs.type if type.is_pyobject: type = py_object_type else: if type.is_ptr and (op == '+=' or op == '-='): type = c_int_type elif op == "**=": error(self.pos, "**= operator not supported for non-Python types") return self.rhs = self.rhs.coerce_to(type, env) def allocate_lhs_temps(self, env): self.lhs.allocate_inplace_target_temps(env, self.rhs) def generate_assignment_code(self, code): self.lhs.generate_inplace_assignment_code(self.operator, self.rhs, code) class CascadedAssignmentNode(AssignmentNode): # An assignment with multiple left hand sides: # # a = b = c # # lhs_list [ExprNode] Left hand sides # rhs ExprNode Right hand sides # # Used internally: # # coerced_rhs_list [ExprNode] RHS coerced to type of each LHS def analyse_declarations(self, env): for lhs in self.lhs_list: lhs.analyse_target_declaration(env) def analyse_types(self, env, use_temp = 0): self.rhs.analyse_types(env) if use_temp: self.rhs = self.rhs.coerce_to_temp(env) else: self.rhs = self.rhs.coerce_to_simple(env) from ExprNodes import CloneNode self.coerced_rhs_list = [] for lhs in self.lhs_list: lhs.analyse_target_types(env) lhs.gil_assignment_check(env) rhs = CloneNode(self.rhs) rhs = rhs.coerce_to(lhs.type, env) self.coerced_rhs_list.append(rhs) def allocate_rhs_temps(self, env): self.rhs.allocate_temps(env) def allocate_lhs_temps(self, env): for lhs, rhs in zip(self.lhs_list, self.coerced_rhs_list): rhs.allocate_temps(env) lhs.allocate_target_temps(env, rhs) #lhs.release_target_temp(env) #rhs.release_temp(env) self.rhs.release_temp(env) def generate_rhs_evaluation_code(self, code): self.rhs.generate_evaluation_code(code) def generate_assignment_code(self, code): for i in range(len(self.lhs_list)): lhs = self.lhs_list[i] rhs = self.coerced_rhs_list[i] rhs.generate_evaluation_code(code) lhs.generate_assignment_code(rhs, code) # Assignment has disposed of the cloned RHS self.rhs.generate_disposal_code(code) class ParallelAssignmentNode(AssignmentNode): # A combined packing/unpacking assignment: # # a, b, c = d, e, f # # This has been rearranged by the parser into # # a = d ; b = e ; c = f # # but we must evaluate all the right hand sides # before assigning to any of the left hand sides. # # stats [AssignmentNode] The constituent assignments def analyse_declarations(self, env): for stat in self.stats: stat.analyse_declarations(env) def analyse_expressions(self, env): for stat in self.stats: stat.analyse_types(env, use_temp = 1) stat.allocate_rhs_temps(env) for stat in self.stats: stat.allocate_lhs_temps(env) def generate_execution_code(self, code): for stat in self.stats: stat.generate_rhs_evaluation_code(code) for stat in self.stats: stat.generate_assignment_code(code) class PrintStatNode(StatNode): # print statement # # args [ExprNode] # ends_with_comma boolean def analyse_expressions(self, env): for i in range(len(self.args)): arg = self.args[i] arg.analyse_types(env) arg = arg.coerce_to_pyobject(env) arg.allocate_temps(env) arg.release_temp(env) self.args[i] = arg # env.use_utility_code(printing_utility_code) self.gil_check(env) gil_message = "Python print statement" def generate_execution_code(self, code): for arg in self.args: arg.generate_evaluation_code(code) code.use_utility_code(printing_utility_code) code.putln( "if (__Pyx_PrintItem(%s) < 0) %s" % ( arg.py_result(), code.error_goto(self.pos))) arg.generate_disposal_code(code) if not self.ends_with_comma: code.use_utility_code(printing_utility_code) code.putln( "if (__Pyx_PrintNewline() < 0) %s" % code.error_goto(self.pos)) class DelStatNode(StatNode): # del statement # # args [ExprNode] def analyse_declarations(self, env): for arg in self.args: arg.analyse_target_declaration(env) def analyse_expressions(self, env): for arg in self.args: arg.analyse_target_expression(env, None) type = arg.type if not (type.is_pyobject or (type.is_ptr and type.base_type.is_struct_or_union and type.base_type.scope.is_cplus)): error(arg.pos, "'del' can only be applied to Python object or pointer to C++ type") if type.is_pyobject: self.gil_check(env) gil_message = "Deleting Python object" def generate_execution_code(self, code): for arg in self.args: if arg.type.is_pyobject: arg.generate_deletion_code(code) else: arg.generate_evaluation_code(code) code.putln("delete %s;" % arg.result()) arg.generate_disposal_code(code) class PassStatNode(StatNode): # pass statement def analyse_expressions(self, env): pass def generate_execution_code(self, code): pass class BreakStatNode(StatNode): def analyse_expressions(self, env): pass def generate_execution_code(self, code): if not code.break_label: error(self.pos, "break statement not inside loop") else: #code.putln( # "goto %s;" % # code.break_label) code.put_goto(code.break_label) class ContinueStatNode(StatNode): def analyse_expressions(self, env): pass def generate_execution_code(self, code): if code.in_try_finally: error(self.pos, "continue statement inside try of try...finally") elif not code.continue_label: error(self.pos, "continue statement not inside loop") else: #code.putln( # "goto %s;" % # code.continue_label) code.put_goto(code.continue_label) class ReturnStatNode(StatNode): # return statement # # value ExprNode or None # return_type PyrexType # temps_in_use [Entry] Temps in use at time of return def analyse_expressions(self, env): return_type = env.return_type self.return_type = return_type self.temps_in_use = env.temps_in_use() if not return_type: error(self.pos, "Return not inside a function body") return if self.value: self.value.analyse_types(env) if return_type.is_void or return_type.is_returncode: error(self.value.pos, "Return with value in void function") else: self.value = self.value.coerce_to(env.return_type, env) self.value.allocate_temps(env) self.value.release_temp(env) else: if (not return_type.is_void and not return_type.is_pyobject and not return_type.is_returncode): error(self.pos, "Return value required") if return_type.is_pyobject: self.gil_check(env) gil_message = "Returning Python object" def generate_execution_code(self, code): if not self.return_type: # error reported earlier return if self.value: self.value.generate_evaluation_code(code) self.value.make_owned_reference(code) code.putln( "%s = %s;" % ( Naming.retval_cname, self.value.result_as(self.return_type))) self.value.generate_post_assignment_code(code) else: if self.return_type.is_pyobject: code.put_init_to_py_none(Naming.retval_cname, self.return_type) elif self.return_type.is_returncode: code.putln( "%s = %s;" % ( Naming.retval_cname, self.return_type.default_value)) for entry in self.temps_in_use: code.put_var_decref_clear(entry) #code.putln( # "goto %s;" % # code.return_label) code.put_goto(code.return_label) class RaiseStatNode(StatNode): # raise statement # # exc_type ExprNode or None # exc_value ExprNode or None # exc_tb ExprNode or None def analyse_expressions(self, env): if self.exc_type: self.exc_type.analyse_types(env) self.exc_type = self.exc_type.coerce_to_pyobject(env) self.exc_type.allocate_temps(env) if self.exc_value: self.exc_value.analyse_types(env) self.exc_value = self.exc_value.coerce_to_pyobject(env) self.exc_value.allocate_temps(env) if self.exc_tb: self.exc_tb.analyse_types(env) self.exc_tb = self.exc_tb.coerce_to_pyobject(env) self.exc_tb.allocate_temps(env) if self.exc_type: self.exc_type.release_temp(env) if self.exc_value: self.exc_value.release_temp(env) if self.exc_tb: self.exc_tb.release_temp(env) self.gil_check(env) gil_message = "Raising exception" def generate_execution_code(self, code): if self.exc_type: self.exc_type.generate_evaluation_code(code) type_code = self.exc_type.py_result() else: type_code = 0 if self.exc_value: self.exc_value.generate_evaluation_code(code) value_code = self.exc_value.py_result() else: value_code = "0" if self.exc_tb: self.exc_tb.generate_evaluation_code(code) tb_code = self.exc_tb.py_result() else: tb_code = "0" code.use_utility_code(raise_utility_code) code.putln( "__Pyx_Raise(%s, %s, %s);" % ( type_code, value_code, tb_code)) if self.exc_type: self.exc_type.generate_disposal_code(code) if self.exc_value: self.exc_value.generate_disposal_code(code) if self.exc_tb: self.exc_tb.generate_disposal_code(code) code.putln( code.error_goto(self.pos)) class ReraiseStatNode(StatNode): def analyse_expressions(self, env): env.reraise_used = 1 self.gil_check(env) gil_message = "Raising exception" def generate_execution_code(self, code): vars = code.exc_vars if vars: tvars = tuple(vars) code.putln("PyErr_Restore(%s, %s, %s);" % tvars) code.putln("%s = %s = %s = 0;" % tvars) code.putln(code.error_goto(self.pos)) else: error(self.pos, "Reraise not inside except clause") class AssertStatNode(StatNode): # assert statement # # cond ExprNode # value ExprNode or None def analyse_expressions(self, env): self.cond = self.cond.analyse_boolean_expression(env) if self.value: self.value.analyse_types(env) self.value = self.value.coerce_to_pyobject(env) self.value.allocate_temps(env) self.cond.release_temp(env) if self.value: self.value.release_temp(env) self.gil_check(env) gil_message = "Raising exception" def generate_execution_code(self, code): code.putln("#ifndef PYREX_WITHOUT_ASSERTIONS") self.cond.generate_evaluation_code(code) code.putln( "if (!%s) {" % self.cond.result()) if self.value: self.value.generate_evaluation_code(code) if self.value: code.putln( "PyErr_SetObject(PyExc_AssertionError, %s);" % self.value.py_result()) else: code.putln( "PyErr_SetNone(PyExc_AssertionError);") code.putln( code.error_goto(self.pos)) code.putln( "}") self.cond.generate_disposal_code(code) # Disposal code for value not needed because exception always raised #if self.value: # self.value.generate_disposal_code(code) code.putln("#endif") class IfStatNode(StatNode): # if statement # # if_clauses [IfClauseNode] # else_clause StatNode or None def analyse_declarations(self, env): for if_clause in self.if_clauses: if_clause.analyse_declarations(env) if self.else_clause: self.else_clause.analyse_declarations(env) def analyse_expressions(self, env): for if_clause in self.if_clauses: if_clause.analyse_expressions(env) if self.else_clause: self.else_clause.analyse_expressions(env) def generate_execution_code(self, code): end_label = code.new_label() for if_clause in self.if_clauses: if_clause.generate_execution_code(code, end_label) if self.else_clause: code.putln("/*else*/ {") self.else_clause.generate_execution_code(code) code.putln("}") code.put_label(end_label) class IfClauseNode(Node): # if or elif clause in an if statement # # condition ExprNode # body StatNode def analyse_declarations(self, env): self.condition.analyse_declarations(env) self.body.analyse_declarations(env) def analyse_expressions(self, env): self.condition = \ self.condition.analyse_temp_boolean_expression(env) self.condition.release_temp(env) self.body.analyse_expressions(env) def generate_execution_code(self, code, end_label): self.condition.generate_evaluation_code(code) code.putln( "if (%s) {" % self.condition.result()) self.body.generate_execution_code(code) #code.putln( # "goto %s;" % # end_label) code.put_goto(end_label) code.putln("}") class WhileStatNode(StatNode): # while statement # # condition ExprNode # body StatNode # else_clause StatNode def analyse_declarations(self, env): self.body.analyse_declarations(env) if self.else_clause: self.else_clause.analyse_declarations(env) def analyse_expressions(self, env): self.condition = \ self.condition.analyse_temp_boolean_expression(env) self.condition.release_temp(env) #env.recycle_pending_temps() # TEMPORARY self.body.analyse_expressions(env) if self.else_clause: self.else_clause.analyse_expressions(env) def generate_execution_code(self, code): old_loop_labels = code.new_loop_labels() code.putln( "while (1) {") self.condition.generate_evaluation_code(code) code.putln( "if (!%s) break;" % self.condition.result()) self.body.generate_execution_code(code) code.put_label(code.continue_label) code.putln("}") break_label = code.break_label code.set_loop_labels(old_loop_labels) if self.else_clause: code.putln("/*else*/ {") self.else_clause.generate_execution_code(code) code.putln("}") code.put_label(break_label) class ForInStatNode(StatNode): # for statement # # target ExprNode # iterator IteratorNode # body StatNode # else_clause StatNode # item NextNode used internally def analyse_declarations(self, env): self.target.analyse_target_declaration(env) self.body.analyse_declarations(env) if self.else_clause: self.else_clause.analyse_declarations(env) def analyse_expressions(self, env): import ExprNodes self.iterator.analyse_expressions(env) self.target.analyse_target_types(env) self.item = ExprNodes.NextNode(self.iterator, env) self.item = self.item.coerce_to(self.target.type, env) self.item.allocate_temps(env) self.target.allocate_target_temps(env, self.item) #self.item.release_temp(env) #self.target.release_target_temp(env) self.body.analyse_expressions(env) if self.else_clause: self.else_clause.analyse_expressions(env) self.iterator.release_temp(env) def generate_execution_code(self, code): old_loop_labels = code.new_loop_labels() self.iterator.generate_evaluation_code(code) code.putln( "for (;;) {") self.item.generate_evaluation_code(code) self.target.generate_assignment_code(self.item, code) self.body.generate_execution_code(code) code.put_label(code.continue_label) code.putln( "}") break_label = code.break_label code.set_loop_labels(old_loop_labels) if self.else_clause: code.putln("/*else*/ {") self.else_clause.generate_execution_code(code) code.putln("}") code.put_label(break_label) self.iterator.generate_disposal_code(code) class IntegerForStatNode(StatNode): # for expr rel name rel expr # # bound1 ExprNode # relation1 string # target NameNode # relation2 string # bound2 ExprNode # body StatNode # else_clause StatNode or None # # Used internally: # # is_py_target bool # loopvar_name string # py_loopvar_node PyTempNode or None def analyse_declarations(self, env): self.target.analyse_target_declaration(env) self.body.analyse_declarations(env) if self.else_clause: self.else_clause.analyse_declarations(env) def analyse_expressions(self, env): import ExprNodes self.target.analyse_target_types(env) self.bound1.analyse_types(env) self.bound2.analyse_types(env) self.bound1 = self.bound1.coerce_to_integer(env) self.bound2 = self.bound2.coerce_to_integer(env) if not (self.bound2.is_name or self.bound2.is_literal): self.bound2 = self.bound2.coerce_to_temp(env) target_type = self.target.type if not (target_type.is_pyobject or target_type.is_int): error(self.target.pos, "Integer for-loop variable must be of type int or Python object") #if not (target_type.is_pyobject # or target_type.assignable_from(PyrexTypes.c_int_type)): # error(self.target.pos, # "Cannot assign integer to variable of type '%s'" % target_type) if target_type.is_int: self.is_py_target = 0 self.loopvar_name = self.target.entry.cname self.py_loopvar_node = None else: self.is_py_target = 1 c_loopvar_node = ExprNodes.TempNode(self.pos, PyrexTypes.c_long_type, env) c_loopvar_node.allocate_temps(env) self.loopvar_name = c_loopvar_node.result() self.py_loopvar_node = \ ExprNodes.CloneNode(c_loopvar_node).coerce_to_pyobject(env) self.bound1.allocate_temps(env) self.bound2.allocate_temps(env) if self.is_py_target: self.py_loopvar_node.allocate_temps(env) self.target.allocate_target_temps(env, self.py_loopvar_node) #self.target.release_target_temp(env) #self.py_loopvar_node.release_temp(env) self.body.analyse_expressions(env) if self.is_py_target: c_loopvar_node.release_temp(env) if self.else_clause: self.else_clause.analyse_expressions(env) self.bound1.release_temp(env) self.bound2.release_temp(env) def generate_execution_code(self, code): old_loop_labels = code.new_loop_labels() self.bound1.generate_evaluation_code(code) self.bound2.generate_evaluation_code(code) offset, incop = self.relation_table[self.relation1] code.putln( "for (%s = %s%s; %s %s %s; %s%s) {" % ( self.loopvar_name, self.bound1.result(), offset, self.loopvar_name, self.relation2, self.bound2.result(), incop, self.loopvar_name)) if self.py_loopvar_node: self.py_loopvar_node.generate_evaluation_code(code) self.target.generate_assignment_code(self.py_loopvar_node, code) self.body.generate_execution_code(code) code.put_label(code.continue_label) code.putln("}") break_label = code.break_label code.set_loop_labels(old_loop_labels) if self.else_clause: code.putln("/*else*/ {") self.else_clause.generate_execution_code(code) code.putln("}") code.put_label(break_label) self.bound1.generate_disposal_code(code) self.bound2.generate_disposal_code(code) relation_table = { # {relop : (initial offset, increment op)} '<=': ("", "++"), '<' : ("+1", "++"), '>=': ("", "--"), '>' : ("-1", "--") } class TryExceptStatNode(StatNode): # try .. except statement # # body StatNode # except_clauses [ExceptClauseNode] # else_clause StatNode or None # cleanup_list [Entry] temps to clean up on error def analyse_declarations(self, env): self.body.analyse_declarations(env) for except_clause in self.except_clauses: except_clause.analyse_declarations(env) if self.else_clause: self.else_clause.analyse_declarations(env) self.gil_check(env) def analyse_expressions(self, env): self.body.analyse_expressions(env) self.cleanup_list = env.free_temp_entries[:] for except_clause in self.except_clauses: except_clause.analyse_expressions(env) if self.else_clause: self.else_clause.analyse_expressions(env) self.gil_check(env) gil_message = "Try-except statement" def generate_execution_code(self, code): old_error_label = code.new_error_label() our_error_label = code.error_label end_label = code.new_label() code.putln( "/*try:*/ {") self.body.generate_execution_code(code) code.putln( "}") code.error_label = old_error_label if self.else_clause: code.putln( "/*else:*/ {") self.else_clause.generate_execution_code(code) code.putln( "}") code.put_goto(end_label) code.put_label(our_error_label) code.put_var_xdecrefs_clear(self.cleanup_list) default_clause_seen = 0 for except_clause in self.except_clauses: if not except_clause.pattern: default_clause_seen = 1 else: if default_clause_seen: error(except_clause.pos, "Default except clause not last") except_clause.generate_handling_code(code, end_label) if not default_clause_seen: code.put_goto(code.error_label) code.put_label(end_label) class ExceptClauseNode(Node): # Part of try ... except statement. # # pattern ExprNode # exc_target ExprNode or None # tb_target ExprNode or None # body StatNode # match_flag string result of exception match # exc_value ExcValueNode used internally # tb_value ExcValueNode used internally # function_name string qualified name of enclosing function # exc_vars (string * 3) local exception variables # reraise_used boolean body contains reraise statement def analyse_declarations(self, env): if self.exc_target: self.exc_target.analyse_target_declaration(env) if self.tb_target: self.tb_target.analyse_target_declaration(env) self.body.analyse_declarations(env) def analyse_expressions(self, env): genv = env.global_scope() self.function_name = env.qualified_name if self.pattern: self.pattern.analyse_expressions(env) self.pattern = self.pattern.coerce_to_pyobject(env) self.match_flag = env.allocate_temp(PyrexTypes.c_int_type) self.pattern.release_temp(env) env.release_temp(self.match_flag) self.exc_vars = [env.allocate_temp(py_object_type) for i in xrange(3)] self.exc_value = self.analyse_target(env, self.exc_target, 1) self.tb_value = self.analyse_target(env, self.tb_target, 2) old_reraise_used = env.reraise_used env.reraise_used = False self.body.analyse_expressions(env) self.reraise_used = env.reraise_used env.reraise_used = old_reraise_used for var in self.exc_vars: env.release_temp(var) def analyse_target(self, env, target, var_no): if target: import ExprNodes value = ExprNodes.ExcValueNode(self.pos, env, self.exc_vars[var_no]) value.allocate_temps(env) target.analyse_target_expression(env, value) return value def generate_handling_code(self, code, end_label): code.mark_pos(self.pos) if self.pattern: self.pattern.generate_evaluation_code(code) code.putln( "%s = PyErr_ExceptionMatches(%s);" % ( self.match_flag, self.pattern.py_result())) self.pattern.generate_disposal_code(code) code.putln( "if (%s) {" % self.match_flag) else: code.putln( "/*except:*/ {") any_bindings = self.exc_target or self.tb_target exc_vars_used = any_bindings or self.reraise_used if exc_vars_used: if any_bindings: code.putln( '%s; __Pyx_AddTraceback("%s");' % ( code.error_setup(self.pos), self.function_name)) exc_args = "&%s, &%s, &%s" % tuple(self.exc_vars) code.putln("PyErr_Fetch(%s);" % exc_args) if any_bindings: code.use_utility_code(normalize_exception_utility_code) code.putln("if (__Pyx_NormalizeException(%s) < 0) %s" % (exc_args, code.error_goto(self.pos))) if self.exc_target: self.exc_value.generate_evaluation_code(code) self.exc_target.generate_assignment_code(self.exc_value, code) if self.tb_target: self.tb_value.generate_evaluation_code(code) self.tb_target.generate_assignment_code(self.tb_value, code) old_exc_vars = code.exc_vars code.exc_vars = self.exc_vars self.body.generate_execution_code(code) code.exc_vars = old_exc_vars if exc_vars_used: for var in self.exc_vars: code.putln("Py_XDECREF(%s); %s = 0;" % (var, var)) code.put_goto(end_label) code.putln( "}") class TryFinallyStatNode(StatNode): # try ... finally statement # # body StatNode # finally_clause StatNode # # cleanup_list [Entry] temps to clean up on error # # The plan is that we funnel all continue, break # return and error gotos into the beginning of the # finally block, setting a variable to remember which # one we're doing. At the end of the finally block, we # switch on the variable to figure out where to go. # In addition, if we're doing an error, we save the # exception on entry to the finally block and restore # it on exit. preserve_exception = 1 disallow_continue_in_try_finally = 0 # There doesn't seem to be any point in disallowing # continue in the try block, since we have no problem # handling it. def analyse_declarations(self, env): self.body.analyse_declarations(env) self.finally_clause.analyse_declarations(env) def analyse_expressions(self, env): self.body.analyse_expressions(env) self.cleanup_list = env.free_temp_entries[:] self.finally_clause.analyse_expressions(env) self.gil_check(env) gil_message = "Try-finally statement" def generate_execution_code(self, code): old_error_label = code.error_label old_labels = code.all_new_labels() new_labels = code.get_all_labels() new_error_label = code.error_label catch_label = code.new_label() code.putln( "/*try:*/ {") if self.disallow_continue_in_try_finally: was_in_try_finally = code.in_try_finally code.in_try_finally = 1 self.body.generate_execution_code(code) if self.disallow_continue_in_try_finally: code.in_try_finally = was_in_try_finally code.putln( "}") code.putln( "/*finally:*/ {") cases_used = [] error_label_used = 0 for i, new_label in enumerate(new_labels): if new_label in code.labels_used: cases_used.append(i) if new_label == new_error_label: error_label_used = 1 error_label_case = i if cases_used: code.putln( "int __pyx_why;") if error_label_used and self.preserve_exception: code.putln( "PyObject *%s, *%s, *%s;" % Naming.exc_vars) code.putln( "int %s;" % Naming.exc_lineno_name) code.use_label(catch_label) code.putln( "__pyx_why = 0; goto %s;" % catch_label) for i in cases_used: new_label = new_labels[i] #if new_label and new_label <> "": if new_label == new_error_label and self.preserve_exception: self.put_error_catcher(code, new_error_label, i+1, catch_label) else: code.putln( "%s: __pyx_why = %s; goto %s;" % ( new_label, i+1, catch_label)) code.put_label(catch_label) code.set_all_labels(old_labels) if error_label_used: code.new_error_label() finally_error_label = code.error_label self.finally_clause.generate_execution_code(code) if error_label_used: if finally_error_label in code.labels_used and self.preserve_exception: over_label = code.new_label() code.put_goto(over_label); code.put_label(finally_error_label) code.putln("if (__pyx_why == %d) {" % (error_label_case + 1)) for var in Naming.exc_vars: code.putln("Py_XDECREF(%s);" % var) code.putln("}") code.put_goto(old_error_label) code.put_label(over_label) code.error_label = old_error_label if cases_used: code.putln( "switch (__pyx_why) {") for i in cases_used: old_label = old_labels[i] if old_label == old_error_label and self.preserve_exception: self.put_error_uncatcher(code, i+1, old_error_label) else: code.use_label(old_label) code.putln( "case %s: goto %s;" % ( i+1, old_label)) code.putln( "}") code.putln( "}") def put_error_catcher(self, code, error_label, i, catch_label): code.putln( "%s: {" % error_label) code.putln( "__pyx_why = %s;" % i) code.put_var_xdecrefs_clear(self.cleanup_list) code.putln( "PyErr_Fetch(&%s, &%s, &%s);" % Naming.exc_vars) code.putln( "%s = %s;" % ( Naming.exc_lineno_name, Naming.lineno_cname)) #code.putln( # "goto %s;" % # catch_label) code.put_goto(catch_label) code.putln( "}") def put_error_uncatcher(self, code, i, error_label): code.putln( "case %s: {" % i) code.putln( "PyErr_Restore(%s, %s, %s);" % Naming.exc_vars) code.putln( "%s = %s;" % ( Naming.lineno_cname, Naming.exc_lineno_name)) for var in Naming.exc_vars: code.putln( "%s = 0;" % var) code.put_goto(error_label) code.putln( "}") class GILStatNode(TryFinallyStatNode): # 'with gil' or 'with nogil' statement # # state string 'gil' or 'nogil' preserve_exception = 0 def __init__(self, pos, state, body): self.state = state TryFinallyStatNode.__init__(self, pos, body = body, finally_clause = GILExitNode(pos, state = state)) def analyse_expressions(self, env): env.global_scope().gil_used = 1 was_nogil = env.nogil env.nogil = 1 TryFinallyStatNode.analyse_expressions(self, env) env.nogil = was_nogil def gil_check(self, env): pass def generate_execution_code(self, code): code.putln("/*with %s:*/ {" % self.state) if self.state == 'gil': code.putln("PyGILState_STATE _save = PyGILState_Ensure();") else: code.putln("PyThreadState *_save;") code.putln("Py_UNBLOCK_THREADS") TryFinallyStatNode.generate_execution_code(self, code) code.putln("}") class GILExitNode(StatNode): # Used as the 'finally' block in a GILStatNode # # state string 'gil' or 'nogil' def analyse_expressions(self, env): pass def generate_execution_code(self, code): if self.state == 'gil': code.putln("PyGILState_Release();") else: code.putln("Py_BLOCK_THREADS") class CImportStatNode(StatNode): # cimport statement # # module_name string Qualified name of module being imported # as_name string or None Name specified in "as" clause, if any def analyse_declarations(self, env): module_scope = env.find_module(self.module_name, self.pos) if "." in self.module_name: names = self.module_name.split(".") top_name = names[0] top_module_scope = env.context.find_submodule(top_name) module_scope = top_module_scope for name in names[1:]: submodule_scope = module_scope.find_submodule(name) module_scope.declare_module(name, submodule_scope, self.pos) if not self.as_name: env.add_imported_module(submodule_scope) module_scope = submodule_scope if self.as_name: env.declare_module(self.as_name, module_scope, self.pos) env.add_imported_module(module_scope) else: env.declare_module(top_name, top_module_scope, self.pos) env.add_imported_module(top_module_scope) else: name = self.as_name or self.module_name env.declare_module(name, module_scope, self.pos) env.add_imported_module(module_scope) def analyse_expressions(self, env): pass def generate_execution_code(self, code): pass class FromCImportStatNode(StatNode): # from ... cimport statement # # module_name string Qualified name of module # imported_names Parsing.ImportedName Names to be imported def analyse_declarations(self, env): module_scope = env.find_module(self.module_name, self.pos) env.add_imported_module(module_scope) for imp in self.imported_names: kind = imp.kind #entry = module_scope.find(imp.name, imp.pos) entry = module_scope.lookup(imp.name) if entry: if kind and not self.declaration_matches(entry, kind): entry.redeclared(pos) else: if kind == 'struct' or kind == 'union': entry = module_scope.declare_struct_or_union(imp.name, kind = kind, scope = None, typedef_flag = 0, pos = imp.pos) elif kind == 'class': entry = module_scope.declare_c_class(imp.name, pos = imp.pos, module_name = self.module_name) else: error(imp.pos, "Name '%s' not declared in module '%s'" % (imp.name, self.module_name)) if entry: local_name = imp.as_name or imp.name env.add_imported_entry(local_name, entry, imp.pos) def declaration_matches(self, entry, kind): if not entry.is_type: return 0 type = entry.type if kind == 'class': if not type.is_extension_type: return 0 else: if not type.is_struct_or_union: return 0 if kind <> type.kind: return 0 return 1 def analyse_expressions(self, env): pass def generate_execution_code(self, code): pass class FromImportStatNode(StatNode): # from ... import statement # # module ImportNode # items [(string, NameNode)] # #interned_items [(string, NameNode)] # item PyTempNode used internally def analyse_declarations(self, env): for _, target in self.items: target.analyse_target_declaration(env) def analyse_expressions(self, env): import ExprNodes self.module.analyse_expressions(env) self.item = ExprNodes.PyTempNode(self.pos, env) self.item.allocate_temp(env) #self.interned_items = [] for name, target in self.items: #self.interned_items.append((env.intern(name), target)) target.analyse_target_expression(env, None) self.module.release_temp(env) self.item.release_temp(env) def generate_execution_code(self, code): self.module.generate_evaluation_code(code) #for cname, target in self.interned_items: for name, target in self.items: cname = code.intern(name) code.putln( '%s = PyObject_GetAttr(%s, %s); if (!%s) %s' % ( self.item.result(), self.module.py_result(), cname, self.item.result(), code.error_goto(self.pos))) target.generate_assignment_code(self.item, code) self.module.generate_disposal_code(code) #------------------------------------------------------------------------------------ # # Runtime support code # #------------------------------------------------------------------------------------ #utility_function_predeclarations = \ #""" #typedef struct {PyObject **p; char *s;} __Pyx_InternTabEntry; /*proto*/ #typedef struct {PyObject **p; char *s; long n;} __Pyx_StringTabEntry; /*proto*/ #""" utility_function_predeclarations = \ """ typedef struct {PyObject **p; int i; char *s; long n;} __Pyx_StringTabEntry; /*proto*/ """ #get_name_predeclaration = \ #"static PyObject *__Pyx_GetName(PyObject *dict, char *name); /*proto*/" #get_name_interned_predeclaration = \ #"static PyObject *__Pyx_GetName(PyObject *dict, PyObject *name); /*proto*/" #------------------------------------------------------------------------------------ printing_utility_code = [ """ static int __Pyx_PrintItem(PyObject *); /*proto*/ static int __Pyx_PrintNewline(void); /*proto*/ """,r""" static PyObject *__Pyx_GetStdout(void) { PyObject *f = PySys_GetObject("stdout"); if (!f) { PyErr_SetString(PyExc_RuntimeError, "lost sys.stdout"); } return f; } static int __Pyx_PrintItem(PyObject *v) { PyObject *f; if (!(f = __Pyx_GetStdout())) return -1; if (PyFile_SoftSpace(f, 1)) { if (PyFile_WriteString(" ", f) < 0) return -1; } if (PyFile_WriteObject(v, f, Py_PRINT_RAW) < 0) return -1; if (PyString_Check(v)) { char *s = PyString_AsString(v); Py_ssize_t len = PyString_Size(v); if (len > 0 && isspace(Py_CHARMASK(s[len-1])) && s[len-1] != ' ') PyFile_SoftSpace(f, 0); } return 0; } static int __Pyx_PrintNewline(void) { PyObject *f; if (!(f = __Pyx_GetStdout())) return -1; if (PyFile_WriteString("\n", f) < 0) return -1; PyFile_SoftSpace(f, 0); return 0; } """] #------------------------------------------------------------------------------------ # The following function is based on do_raise() from ceval.c. raise_utility_code = [ """ static void __Pyx_Raise(PyObject *type, PyObject *value, PyObject *tb); /*proto*/ """,""" static void __Pyx_Raise(PyObject *type, PyObject *value, PyObject *tb) { if (value == Py_None) value = NULL; if (tb == Py_None) tb = NULL; Py_XINCREF(type); Py_XINCREF(value); Py_XINCREF(tb); if (tb && !PyTraceBack_Check(tb)) { PyErr_SetString(PyExc_TypeError, "raise: arg 3 must be a traceback or None"); goto raise_error; } #if PY_VERSION_HEX < 0x02050000 if (!PyClass_Check(type)) #else if (!PyType_Check(type)) #endif { /* Raising an instance. The value should be a dummy. */ if (value) { PyErr_SetString(PyExc_TypeError, "instance exception may not have a separate value"); goto raise_error; } /* Normalize to raise , */ value = type; #if PY_VERSION_HEX < 0x02050000 if (PyInstance_Check(type)) { type = (PyObject*) ((PyInstanceObject*)type)->in_class; Py_INCREF(type); } else { PyErr_SetString(PyExc_TypeError, "raise: exception must be an old-style class or instance"); goto raise_error; } #else type = (PyObject*) type->ob_type; Py_INCREF(type); if (!PyType_IsSubtype((PyTypeObject *)type, (PyTypeObject *)PyExc_BaseException)) { PyErr_SetString(PyExc_TypeError, "raise: exception class must be a subclass of BaseException"); goto raise_error; } #endif } PyErr_Restore(type, value, tb); return; raise_error: Py_XDECREF(value); Py_XDECREF(type); Py_XDECREF(tb); return; } """] #------------------------------------------------------------------------------------ #reraise_utility_code = [ #""" #static void __Pyx_ReRaise(void); /*proto*/ #""",""" #static void __Pyx_ReRaise(void) { # PyThreadState *tstate = PyThreadState_Get(); # PyObject *type = tstate->exc_type; # PyObject *value = tstate->exc_value; # PyObject *tb = tstate->exc_traceback; # Py_XINCREF(type); # Py_XINCREF(value); # Py_XINCREF(tb); # PyErr_Restore(type, value, tb); #} #"""] #------------------------------------------------------------------------------------ arg_type_test_utility_code = [ """ static int __Pyx_ArgTypeTest(PyObject *obj, PyTypeObject *type, int none_allowed, char *name); /*proto*/ """,""" static int __Pyx_ArgTypeTest(PyObject *obj, PyTypeObject *type, int none_allowed, char *name) { if (!type) { PyErr_Format(PyExc_SystemError, "Missing type object"); return 0; } if ((none_allowed && obj == Py_None) || PyObject_TypeCheck(obj, type)) return 1; PyErr_Format(PyExc_TypeError, "Argument '%s' has incorrect type (expected %s, got %s)", name, type->tp_name, obj->ob_type->tp_name); return 0; } """] #------------------------------------------------------------------------------------ # # __Pyx_GetStarArgs splits the args tuple and kwds dict into two parts # each, one part suitable for passing to PyArg_ParseTupleAndKeywords, # and the other containing any extra arguments. On success, replaces # the borrowed references *args and *kwds with references to a new # tuple and dict, and passes back new references in *args2 and *kwds2. # Does not touch any of its arguments on failure. # # Any of *kwds, args2 and kwds2 may be 0 (but not args or kwds). If # *kwds == 0, it is not changed. If kwds2 == 0 and *kwds != 0, a new # reference to the same dictionary is passed back in *kwds. # # If rqd_kwds is not 0, it is an array of booleans corresponding to the # names in kwd_list, indicating required keyword arguments. If any of # these are not present in kwds, an exception is raised. # get_starargs_utility_code = [ """ static int __Pyx_GetStarArgs(PyObject **args, PyObject **kwds, char *kwd_list[], \ Py_ssize_t nargs, PyObject **args2, PyObject **kwds2, char rqd_kwds[]); /*proto*/ """,""" static int __Pyx_GetStarArgs( PyObject **args, PyObject **kwds, char *kwd_list[], Py_ssize_t nargs, PyObject **args2, PyObject **kwds2, char rqd_kwds[]) { PyObject *x = 0, *args1 = 0, *kwds1 = 0; int i; char **p; if (args2) *args2 = 0; if (kwds2) *kwds2 = 0; if (args2) { args1 = PyTuple_GetSlice(*args, 0, nargs); if (!args1) goto bad; *args2 = PyTuple_GetSlice(*args, nargs, PyTuple_GET_SIZE(*args)); if (!*args2) goto bad; } else if (PyTuple_GET_SIZE(*args) > nargs) { int m = nargs; int n = PyTuple_GET_SIZE(*args); PyErr_Format(PyExc_TypeError, "function takes at most %d positional arguments (%d given)", m, n); goto bad; } else { args1 = *args; Py_INCREF(args1); } if (rqd_kwds && !*kwds) for (i = 0, p = kwd_list; *p; i++, p++) if (rqd_kwds[i]) goto missing_kwarg; if (kwds2) { if (*kwds) { kwds1 = PyDict_New(); if (!kwds1) goto bad; *kwds2 = PyDict_Copy(*kwds); if (!*kwds2) goto bad; for (i = 0, p = kwd_list; *p; i++, p++) { x = PyDict_GetItemString(*kwds, *p); if (x) { if (PyDict_SetItemString(kwds1, *p, x) < 0) goto bad; if (PyDict_DelItemString(*kwds2, *p) < 0) goto bad; } else if (rqd_kwds && rqd_kwds[i]) goto missing_kwarg; } } else { *kwds2 = PyDict_New(); if (!*kwds2) goto bad; } } else { kwds1 = *kwds; Py_XINCREF(kwds1); if (rqd_kwds && *kwds) for (i = 0, p = kwd_list; *p; i++, p++) if (rqd_kwds[i] && !PyDict_GetItemString(*kwds, *p)) goto missing_kwarg; } *args = args1; *kwds = kwds1; return 0; missing_kwarg: PyErr_Format(PyExc_TypeError, "required keyword argument '%s' is missing", *p); bad: Py_XDECREF(args1); Py_XDECREF(kwds1); if (args2) { Py_XDECREF(*args2); } if (kwds2) { Py_XDECREF(*kwds2); } return -1; } """] #------------------------------------------------------------------------------------ unraisable_exception_utility_code = [ """ static void __Pyx_WriteUnraisable(char *name); /*proto*/ """,""" static void __Pyx_WriteUnraisable(char *name) { PyObject *old_exc, *old_val, *old_tb; PyObject *ctx; PyGILState_STATE state = PyGILState_Ensure(); PyErr_Fetch(&old_exc, &old_val, &old_tb); ctx = PyString_FromString(name); PyErr_Restore(old_exc, old_val, old_tb); if (!ctx) ctx = Py_None; PyErr_WriteUnraisable(ctx); PyGILState_Release(state); } """] #------------------------------------------------------------------------------------ traceback_utility_code = [ """ static void __Pyx_AddTraceback(char *funcname); /*proto*/ """,""" #include "compile.h" #include "frameobject.h" #include "traceback.h" static void __Pyx_AddTraceback(char *funcname) { PyObject *py_srcfile = 0; PyObject *py_funcname = 0; PyObject *py_globals = 0; PyObject *empty_tuple = 0; PyObject *empty_string = 0; PyCodeObject *py_code = 0; PyFrameObject *py_frame = 0; py_srcfile = PyString_FromString(%(FILENAME)s); if (!py_srcfile) goto bad; py_funcname = PyString_FromString(funcname); if (!py_funcname) goto bad; py_globals = PyModule_GetDict(%(GLOBALS)s); if (!py_globals) goto bad; empty_tuple = PyTuple_New(0); if (!empty_tuple) goto bad; empty_string = PyString_FromString(""); if (!empty_string) goto bad; py_code = PyCode_New( 0, /*int argcount,*/ 0, /*int nlocals,*/ 0, /*int stacksize,*/ 0, /*int flags,*/ empty_string, /*PyObject *code,*/ empty_tuple, /*PyObject *consts,*/ empty_tuple, /*PyObject *names,*/ empty_tuple, /*PyObject *varnames,*/ empty_tuple, /*PyObject *freevars,*/ empty_tuple, /*PyObject *cellvars,*/ py_srcfile, /*PyObject *filename,*/ py_funcname, /*PyObject *name,*/ %(LINENO)s, /*int firstlineno,*/ empty_string /*PyObject *lnotab*/ ); if (!py_code) goto bad; py_frame = PyFrame_New( PyThreadState_Get(), /*PyThreadState *tstate,*/ py_code, /*PyCodeObject *code,*/ py_globals, /*PyObject *globals,*/ 0 /*PyObject *locals*/ ); if (!py_frame) goto bad; py_frame->f_lineno = %(LINENO)s; PyTraceBack_Here(py_frame); bad: Py_XDECREF(py_srcfile); Py_XDECREF(py_funcname); Py_XDECREF(empty_tuple); Py_XDECREF(empty_string); Py_XDECREF(py_code); Py_XDECREF(py_frame); } """ % { 'FILENAME': Naming.filename_cname, 'LINENO': Naming.lineno_cname, 'GLOBALS': Naming.module_cname }] #------------------------------------------------------------------------------------ set_vtable_utility_code = [ """ static int __Pyx_SetVtable(PyObject *dict, void *vtable); /*proto*/ """,""" static int __Pyx_SetVtable(PyObject *dict, void *vtable) { PyObject *pycobj = 0; int result; pycobj = PyCObject_FromVoidPtr(vtable, 0); if (!pycobj) goto bad; if (PyDict_SetItemString(dict, "__pyx_vtable__", pycobj) < 0) goto bad; result = 0; goto done; bad: result = -1; done: Py_XDECREF(pycobj); return result; } """] #------------------------------------------------------------------------------------ get_vtable_utility_code = [ """ static int __Pyx_GetVtable(PyObject *dict, void *vtabptr); /*proto*/ """,r""" static int __Pyx_GetVtable(PyObject *dict, void *vtabptr) { int result; PyObject *pycobj; pycobj = PyMapping_GetItemString(dict, "__pyx_vtable__"); if (!pycobj) goto bad; *(void **)vtabptr = PyCObject_AsVoidPtr(pycobj); if (!*(void **)vtabptr) goto bad; result = 0; goto done; bad: result = -1; done: Py_XDECREF(pycobj); return result; } """] #------------------------------------------------------------------------------------ #init_intern_tab_utility_code = [ #""" #static int __Pyx_InternStrings(__Pyx_InternTabEntry *t); /*proto*/ #""",""" #static int __Pyx_InternStrings(__Pyx_InternTabEntry *t) { # while (t->p) { # *t->p = PyString_InternFromString(t->s); # if (!*t->p) # return -1; # ++t; # } # return 0; #} #"""] #init_intern_tab_utility_code = [ #""" #static int __Pyx_InternStrings(PyObject **t[]); /*proto*/ #""",""" #static int __Pyx_InternStrings(PyObject **t[]) { # while (*t) { # PyString_InternInPlace(*t); # if (!**t) # return -1; # ++t; # } # return 0; #} #"""] #------------------------------------------------------------------------------------ init_string_tab_utility_code = [ """ static int __Pyx_InitStrings(__Pyx_StringTabEntry *t); /*proto*/ """,""" static int __Pyx_InitStrings(__Pyx_StringTabEntry *t) { while (t->p) { *t->p = PyString_FromStringAndSize(t->s, t->n - 1); if (!*t->p) return -1; if (t->i) PyString_InternInPlace(t->p); ++t; } return 0; } """] #------------------------------------------------------------------------------------ #get_exception_utility_code = [ #""" #static int __Pyx_GetException(PyObject **type, PyObject **value, PyObject **tb); /*proto*/ #""",""" #static int __Pyx_GetException(PyObject **type, PyObject **value, PyObject **tb) { # PyThreadState *tstate = PyThreadState_Get(); # PyObject *old_type, *old_value, *old_tb; # PyErr_Fetch(type, value, tb); # PyErr_NormalizeException(type, value, tb); # if (PyErr_Occurred()) # goto bad; # if (!*tb) { # printf("no traceback\n"); # *tb = Py_None; # Py_INCREF(*tb); # } ##if 1 # Py_INCREF(*type); # Py_INCREF(*value); # Py_INCREF(*tb); # old_type = tstate->exc_type; # old_value = tstate->exc_value; # old_tb = tstate->exc_traceback; # tstate->exc_type = *type; # tstate->exc_value = *value; # tstate->exc_traceback = *tb; # Py_XDECREF(old_type); # Py_XDECREF(old_value); # Py_XDECREF(old_tb); ##endif # return 0; #bad: # Py_XDECREF(*type); # Py_XDECREF(*value); # Py_XDECREF(*tb); # return -1; #} #"""] #------------------------------------------------------------------------------------ #get_exception_utility_code = [ #""" #static int __Pyx_GetException(PyObject **type, PyObject **value, PyObject **tb); /*proto*/ #""",""" #static int __Pyx_GetException(PyObject **type, PyObject **value, PyObject **tb) { # PyErr_Fetch(type, value, tb); # PyErr_NormalizeException(type, value, tb); # if (PyErr_Occurred()) # goto bad; # if (!*tb) { # *tb = Py_None; # Py_INCREF(*tb); # } # return 0; #bad: # Py_XDECREF(*type); # Py_XDECREF(*value); # Py_XDECREF(*tb); # return -1; #} #"""] #------------------------------------------------------------------------------------ normalize_exception_utility_code = [ """ static int __Pyx_NormalizeException(PyObject **type, PyObject **value, PyObject **tb); /*proto*/ """,""" static int __Pyx_NormalizeException(PyObject **type, PyObject **value, PyObject **tb) { PyErr_NormalizeException(type, value, tb); if (PyErr_Occurred()) goto bad; if (!*tb) { *tb = Py_None; Py_INCREF(*tb); } return 0; bad: Py_XDECREF(*type); Py_XDECREF(*value); Py_XDECREF(*tb); return -1; } """] #------------------------------------------------------------------------------------