summaryrefslogtreecommitdiffstats
path: root/kviewshell/plugins/djvu/libdjvu/GRect.h
blob: 1a86f80d0856cfd06b623a47e819b860c44f702f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
//C-  -*- C++ -*-
//C- -------------------------------------------------------------------
//C- DjVuLibre-3.5
//C- Copyright (c) 2002  Leon Bottou and Yann Le Cun.
//C- Copyright (c) 2001  AT&T
//C-
//C- This software is subject to, and may be distributed under, the
//C- GNU General Public License, Version 2. The license should have
//C- accompanied the software or you may obtain a copy of the license
//C- from the Free Software Foundation at http://www.fsf.org .
//C-
//C- This program is distributed in the hope that it will be useful,
//C- but WITHOUT ANY WARRANTY; without even the implied warranty of
//C- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
//C- GNU General Public License for more details.
//C- 
//C- DjVuLibre-3.5 is derived from the DjVu(r) Reference Library
//C- distributed by Lizardtech Software.  On July 19th 2002, Lizardtech 
//C- Software authorized us to replace the original DjVu(r) Reference 
//C- Library notice by the following text (see doc/lizard2002.djvu):
//C-
//C-  ------------------------------------------------------------------
//C- | DjVu (r) Reference Library (v. 3.5)
//C- | Copyright (c) 1999-2001 LizardTech, Inc. All Rights Reserved.
//C- | The DjVu Reference Library is protected by U.S. Pat. No.
//C- | 6,058,214 and patents pending.
//C- |
//C- | This software is subject to, and may be distributed under, the
//C- | GNU General Public License, Version 2. The license should have
//C- | accompanied the software or you may obtain a copy of the license
//C- | from the Free Software Foundation at http://www.fsf.org .
//C- |
//C- | The computer code originally released by LizardTech under this
//C- | license and unmodified by other parties is deemed "the LIZARDTECH
//C- | ORIGINAL CODE."  Subject to any third party intellectual property
//C- | claims, LizardTech grants recipient a worldwide, royalty-free, 
//C- | non-exclusive license to make, use, sell, or otherwise dispose of 
//C- | the LIZARDTECH ORIGINAL CODE or of programs derived from the 
//C- | LIZARDTECH ORIGINAL CODE in compliance with the terms of the GNU 
//C- | General Public License.   This grant only confers the right to 
//C- | infringe patent claims underlying the LIZARDTECH ORIGINAL CODE to 
//C- | the extent such infringement is reasonably necessary to enable 
//C- | recipient to make, have made, practice, sell, or otherwise dispose 
//C- | of the LIZARDTECH ORIGINAL CODE (or portions thereof) and not to 
//C- | any greater extent that may be necessary to utilize further 
//C- | modifications or combinations.
//C- |
//C- | The LIZARDTECH ORIGINAL CODE is provided "AS IS" WITHOUT WARRANTY
//C- | OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
//C- | TO ANY WARRANTY OF NON-INFRINGEMENT, OR ANY IMPLIED WARRANTY OF
//C- | MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
//C- +------------------------------------------------------------------
// 
// $Id: GRect.h,v 1.9 2003/11/07 22:08:21 leonb Exp $
// $Name: release_3_5_15 $

#ifndef _GRECT_H_
#define _GRECT_H_
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#if NEED_GNUG_PRAGMAS
# pragma interface
#endif


/** @name GRect.h
    Files #"GRect.h"# and #"GRect.cpp"# implement basic operations on
    rectangles. Class \Ref{GRect} is used to represent rectangles.  Class
    \Ref{GRectMapper} represent the correspondence between points relative to
    given rectangles.  Class \Ref{GRatio} is used to represent scaling factors
    as rational numbers.
    @memo
    Rectangle manipulation class.
    @author
    L\'eon Bottou <leonb@research.att.com> -- initial implementation.
    @version
    #$Id: GRect.h,v 1.9 2003/11/07 22:08:21 leonb Exp $# */
//@{

#include "DjVuGlobal.h"

#ifdef HAVE_NAMESPACES
namespace DJVU {
# ifdef NOT_DEFINED // Just to fool emacs c++ mode
}
#endif
#endif



/** @name Point Coordinates vs. Pixel Coordinates

    The DjVu technology relies on the accurate superposition of images at
    different resolutions.  Such an accuracy cannot be reached with the usual
    assumption that pixels are small enough to be considered infinitesimally
    small.  We must distinguish very precisely ``points'' and ``pixels''.
    This distinction is essential for performing scaling operations.

    The pixels of an image are identified by ``pixel coordinates''.  The
    bottom-left corner pixel has coordinates #(0,0)# and the top-right corner
    pixel has coordinates #(w-1,h-1)# where #w# and #h# are the image size.
    Pixel coordinates are necessarily integers since pixels never overlap.

    An infinitesimally small point is identified by its ``point coordinates''.
    There may be fractional point coordinates, although this library does not
    make use of them.  Points with integer coordinates are located {\em on the
    corners of each pixel}.  They are not located on the pixel centers.  The
    center of the pixel with pixel coordinates #(i,j)# is located at point
    coordinates #(i+1/2,j+1/2)#.  In other words, the pixel #(i,j)# extends
    from point #(i,j)# to point #(i+1,j+1)#.

    Therefore, the point located on the bottom left corner of an image has
    coordinates #(0,0)#.  This point is in fact the bottom left corner of the
    bottom left pixel of the image.  The point located on the top right corner
    of an image has coordinates #(w,h)# where #w# and #h# are the image size.
    This is in fact the top right corner of pixel #(w-1,h-1)# which is the
    image pixel with the highest coordinates.
*/
//@{
//@}



/** Rectangle class.  Each instance of this class represents a rectangle whose
    sides are parallel to the axis. Such a rectangle represents all the points
    whose coordinates lies between well defined minimal and maximal values.
    Member functions can combine several rectangles by computing the
    intersection of rectangles (\Ref{intersect}) or the smallest rectangle
    enclosing two rectangles (\Ref{recthull}).  */

class GRect 
{
public:
  /** #OrientationBits# defines 3 mutually exclusive
     bits to indicate the image orientation.

     There are four possible rotation values for an image
     which are 0 degrees, 90 degrees, 180 degrees, and 270 degrees.
     In addition the image can be mirrored backwards in any of these
     orientations, giving a possible of 8 orientations.  To sanely deal
     with these orientations, we have defined 3 mutually exclusive
     bits.  These are BOTTOM_UP, MIRROR, and ROTATE90_CW.
  */
  enum OrientationBits
  {
    BOTTOM_UP=0x1,  /* Upside down */
    MIRROR=0x2,     /* Written backwards. (right to left) */
    ROTATE90_CW=0x4 /* rotated 90 degrees */
  };

  /**  #Orientations# defines all 8 possible orientations, using
   the three \Ref{OrientationBits}.
   \begin{itemize}
   \item {\em TDLRNR} for Top Down, Left to Right, No Rotation.
   \item {\em BULRNR} for Bottom Up, Left to Right, No Rotation.
   \item {\em TDRLNR} for Top Down, Right to Left, No Rotation.
   \item {\em BURLNR} for Bottom Up, Right to Left, No Rotation.
   \item {\em TDLRCW} for Top Down, Left to Right, 90 degree CW rotation.
   \item {\em BULRCW} for Bottom Up, Left to Right, 90 degree CW rotation.
   \item {\em TDRLCW} for Top Down, Right to Left, 90 degree CW rotation.
   \item {\em BURLCW} for Bottom Up, Right to Left, 90 degree CW rotation.
   \end{itemize}
  */
  enum Orientations
  {
    TDLRNR=0,                                     /* normal orientation */
    BULRNR=BOTTOM_UP,                               /* upside down */
    TDRLNR=MIRROR,                    /* backwards (right to left) */
    BURLNR=MIRROR|BOTTOM_UP,                    /* rotate 180 */
    TDLRCW=ROTATE90_CW,                              /* rotated 90 */
    BULRCW=ROTATE90_CW|BOTTOM_UP, /* backwards and rotate 180 */
    TDRLCW=ROTATE90_CW|MIRROR,     /* backwards and rotate 90 */
    BURLCW=ROTATE90_CW|MIRROR|BOTTOM_UP    /* rotate 270 */
  };

  static Orientations
  rotate(const int angle,Orientations orientation)
  {
    for(int a=(((angle)%360)+405)%360;a>90;a-=90)
      orientation=(Orientations)((int)orientation^(int)(orientation&ROTATE90_CW)?BURLCW:TDLRCW);
    return orientation;
  }

  static int
  findangle(const Orientations orientation)
  {
    int a=270;
    while(a&&(rotate(a,BURLNR)!=orientation)&&(rotate(a,TDRLNR)!=orientation))
      a-=90;
    return a;
  }

  /** Constructs an empty rectangle */
  GRect();
  /** Constructs a rectangle given its minimal coordinates #xmin# and #ymin#,
      and its measurements #width# and #height#. Setting #width# or #height# to zero
      produces an empty rectangle.  */
  GRect(int xmin, int ymin, unsigned int width=0, unsigned int height=0);
  /** Returns the rectangle width. */
  int  width() const;
  /** Returns the rectangle height. */
  int  height() const;
  /** Returns the area of the rectangle. */
  int  area() const;
  /** Returns true if the rectangle is empty. */
  int  isempty() const;
  /** Returns true if the rectangle contains pixel (#x#,#y#).  A rectangle
      contains all pixels with horizontal pixel coordinates in range #xmin#
      (inclusive) to #xmax# (exclusive) and vertical coordinates #ymin#
      (inclusive) to #ymax# (exclusive). */
  int  contains(int x, int y) const;
  /** Returns true if this rectangle contains the passed rectangle #rect#.
      The function basically checks, that the intersection of this rectangle
      with #rect# is #rect#. */
  int  contains(const GRect & rect) const;
  /** Returns true if rectangles #r1# and #r2# are equal. */
  friend int operator==(const GRect & r1, const GRect & r2);
  /** Returns true if rectangles #r1# and #r2# are not equal. */
  friend int operator!=(const GRect & r1, const GRect & r2);
  /** Resets the rectangle to the empty rectangle */
  void clear();
  /** Fatten the rectangle. Both vertical sides of the rectangle are pushed
      apart by #dx# units. Both horizontal sides of the rectangle are pushed
      apart by #dy# units. Setting arguments #dx# (resp. #dy#) to a negative
      value reduces the rectangle horizontal (resp. vertical) size. */
  int  inflate(int dx, int dy);
  /** Translate the rectangle. The new rectangle is composed of all the points
      of the old rectangle translated by #dx# units horizontally and #dy#
      units vertically. */
  int  translate(int dx, int dy);
  /** Sets the rectangle to the intersection of rectangles #rect1# and #rect2#.
      This function returns true if the intersection rectangle is not empty. */
  int  intersect(const GRect &rect1, const GRect &rect2);
  /** Sets the rectangle to the smallest rectangle containing the points of
      both rectangles #rect1# and #rect2#. This function returns true if the
      created rectangle is not empty. */
  int  recthull(const GRect &rect1, const GRect &rect2);
  /** Multiplies xmin, ymin, xmax, ymax by factor and scales the rectangle*/
  void scale(float factor);
  /** Multiplies xmin, xmax by xfactor and ymin, ymax by yfactor and scales the rectangle*/
  void scale(float xfactor, float yfactor);
  /** Minimal horizontal point coordinate of the rectangle. */
  int xmin;
  /** Minimal vertical point coordinate of the rectangle. */
  int ymin;
  /** Maximal horizontal point coordinate of the rectangle. */
  int xmax;
  /** Maximal vertical point coordinate of the rectangle. */
  int ymax;
};


/** Maps points from one rectangle to another rectangle.  This class
    represents a relation between the points of two rectangles. Given the
    coordinates of a point in the first rectangle (input rectangle), function
    \Ref{map} computes the coordinates of the corresponding point in the
    second rectangle (the output rectangle).  This function actually implements
    an affine transform which maps the corners of the first rectangle onto the
    matching corners of the second rectangle. The scaling operation is
    performed using integer fraction arithmetic in order to maximize
    accuracy. */
class GRectMapper 
{
public:
  /** Constructs a rectangle mapper. */
  GRectMapper();
  /** Resets the rectangle mapper state. Both the input rectangle
      and the output rectangle are marked as undefined. */
  void clear();
  /** Sets the input rectangle. */
  void set_input(const GRect &rect);
  /** Returns the input rectangle. */
  GRect get_input();
  /** Sets the output rectangle. */
  void set_output(const GRect &rect);
  /** Returns the output rectangle. */
  GRect get_output();
  /** Composes the affine transform with a rotation of #count# quarter turns
      counter-clockwise.  This operation essentially is a modification of the
      match between the corners of the input rectangle and the corners of the
      output rectangle. */
  void rotate(int count=1);
  /** Composes the affine transform with a symmetry with respect to the
      vertical line crossing the center of the output rectangle.  This
      operation essentially is a modification of the match between the corners
      of the input rectangle and the corners of the output rectangle. */
  void mirrorx();
  /** Composes the affine transform with a symmetry with respect to the
      horizontal line crossing the center of the output rectangle.  This
      operation essentially is a modification of the match between the corners
      of the input rectangle and the corners of the output rectangle. */
  void mirrory();
  /** Maps a point according to the affine transform.  Variables #x# and #y#
      initially contain the coordinates of a point. This operation overwrites
      these variables with the coordinates of a second point located in the
      same position relative to the corners of the output rectangle as the
      first point relative to the matching corners of the input rectangle.
      Coordinates are rounded to the nearest integer. */
  void map(int &x, int &y);
  /** Maps a rectangle according to the affine transform. This operation
      consists in mapping the rectangle corners and reordering the corners in
      the canonical rectangle representation.  Variable #rect# is overwritten
      with the new rectangle coordinates. */
  void map(GRect &rect);
  /** Maps a point according to the inverse of the affine transform.
      Variables #x# and #y# initially contain the coordinates of a point. This
      operation overwrites these variables with the coordinates of a second
      point located in the same position relative to the corners of input
      rectangle as the first point relative to the matching corners of the
      input rectangle. Coordinates are rounded to the nearest integer. */
  void unmap(int &x, int &y);
  /** Maps a rectangle according to the inverse of the affine transform. This
      operation consists in mapping the rectangle corners and reordering the
      corners in the canonical rectangle representation.  Variable #rect# is
      overwritten with the new rectangle coordinates. */
  void unmap(GRect &rect);
private:
  // GRatio
  struct GRatio {
    GRatio ();
    GRatio (int p, int q);
    int p;
    int q;
  };
  // Data
  GRect rectFrom;
  GRect rectTo;
  int   code;
  // Helper
  void  precalc();
  friend int operator*(int n, GRatio r ); 
  friend int operator/(int n, GRatio r ); 
  GRatio rw;
  GRatio rh;
};


//@}



// ---- INLINES

inline
GRect::GRect()
: xmin(0), ymin(0), xmax(0), ymax(0)
{
}

inline 
GRect::GRect(int xmin, int ymin, unsigned int width, unsigned int height)
: xmin(xmin), ymin(ymin), xmax(xmin+width), ymax(ymin+height)
{
}

inline int 
GRect::width() const
{
  return xmax - xmin;
}

inline int 
GRect::height() const
{
  return ymax - ymin;
}

inline int 
GRect::isempty() const
{
  return (xmin>=xmax || ymin>=ymax);
}

inline int 
GRect::area() const
{
  return isempty() ? 0 : (xmax-xmin)*(ymax-ymin);
}

inline int
GRect::contains(int x, int y) const
{
  return (x>=xmin && x<xmax && y>=ymin && y<ymax);
}
  
inline void 
GRect::clear()
{
  xmin = xmax = ymin = ymax = 0;
}

inline int
operator!=(const GRect & r1, const GRect & r2)
{
   return !(r1==r2);
}

// ---- THE END

#ifdef HAVE_NAMESPACES
}
# ifndef NOT_USING_DJVU_NAMESPACE
using namespace DJVU;
# endif
#endif
#endif