// -*- c-basic-offset: 2 -*- /* * This file is part of the KDE libraries * Copyright (C) 1999-2000 Harri Porten (porten@kde.org) * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ #include #include #include #include #include #include "value.h" #include "object.h" #include "types.h" #include "interpreter.h" #include "operations.h" #include "math_object.h" #include "math_object.lut.h" #ifndef M_PI #define M_PI 3.14159265358979323846 #endif /* M_PI */ #ifndef signbit #define signbit(x) ((x) < 0.0 || IS_NEGATIVE_ZERO(x)) #endif using namespace KJS; // ------------------------------ MathObjectImp -------------------------------- const ClassInfo MathObjectImp::info = { "Math", 0, &mathTable, 0 }; /* Source for math_object.lut.h @begin mathTable 31 E MathObjectImp::Euler DontEnum|DontDelete|ReadOnly LN2 MathObjectImp::Ln2 DontEnum|DontDelete|ReadOnly LN10 MathObjectImp::Ln10 DontEnum|DontDelete|ReadOnly LOG2E MathObjectImp::Log2E DontEnum|DontDelete|ReadOnly LOG10E MathObjectImp::Log10E DontEnum|DontDelete|ReadOnly PI MathObjectImp::Pi DontEnum|DontDelete|ReadOnly SQRT1_2 MathObjectImp::Sqrt1_2 DontEnum|DontDelete|ReadOnly SQRT2 MathObjectImp::Sqrt2 DontEnum|DontDelete|ReadOnly abs MathObjectImp::Abs DontEnum|Function 1 acos MathObjectImp::ACos DontEnum|Function 1 asin MathObjectImp::ASin DontEnum|Function 1 atan MathObjectImp::ATan DontEnum|Function 1 atan2 MathObjectImp::ATan2 DontEnum|Function 2 ceil MathObjectImp::Ceil DontEnum|Function 1 cos MathObjectImp::Cos DontEnum|Function 1 exp MathObjectImp::Exp DontEnum|Function 1 floor MathObjectImp::Floor DontEnum|Function 1 log MathObjectImp::Log DontEnum|Function 1 max MathObjectImp::Max DontEnum|Function 2 min MathObjectImp::Min DontEnum|Function 2 pow MathObjectImp::Pow DontEnum|Function 2 random MathObjectImp::Random DontEnum|Function 0 round MathObjectImp::Round DontEnum|Function 1 sin MathObjectImp::Sin DontEnum|Function 1 sqrt MathObjectImp::Sqrt DontEnum|Function 1 tan MathObjectImp::Tan DontEnum|Function 1 @end */ MathObjectImp::MathObjectImp(ExecState * /*exec*/, ObjectPrototypeImp *objProto) : ObjectImp(objProto) { unsigned int seed = time(NULL); ::srand(seed); } // ECMA 15.8 Value MathObjectImp::get(ExecState *exec, const Identifier &propertyName) const { return lookupGet( exec, propertyName, &mathTable, this ); } Value MathObjectImp::getValueProperty(ExecState *, int token) const { double d = -42; // ;) switch (token) { case Euler: d = exp(1.0); break; case Ln2: d = log(2.0); break; case Ln10: d = log(10.0); break; case Log2E: d = 1.0/log(2.0); break; case Log10E: d = 1.0/log(10.0); break; case Pi: d = M_PI; break; case Sqrt1_2: d = sqrt(0.5); break; case Sqrt2: d = sqrt(2.0); break; default: fprintf( stderr, "[math_object] Internal error in MathObjectImp: unhandled token %d\n", token ); break; } return Number(d); } // ------------------------------ MathObjectImp -------------------------------- MathFuncImp::MathFuncImp(ExecState *exec, int i, int l) : InternalFunctionImp( static_cast(exec->lexicalInterpreter()->builtinFunctionPrototype().imp()) ), id(i) { Value protect(this); putDirect(lengthPropertyName, l, DontDelete|ReadOnly|DontEnum); } bool MathFuncImp::implementsCall() const { return true; } Value MathFuncImp::call(ExecState *exec, Object &/*thisObj*/, const List &args) { double arg = args[0].toNumber(exec); double arg2 = args[1].toNumber(exec); double result; switch (id) { case MathObjectImp::Abs: result = ( arg < 0 || arg == -0) ? (-arg) : arg; break; case MathObjectImp::ACos: result = ::acos(arg); break; case MathObjectImp::ASin: result = ::asin(arg); break; case MathObjectImp::ATan: result = ::atan(arg); break; case MathObjectImp::ATan2: result = ::atan2(arg, arg2); break; case MathObjectImp::Ceil: result = ::ceil(arg); break; case MathObjectImp::Cos: result = ::cos(arg); break; case MathObjectImp::Exp: result = ::exp(arg); break; case MathObjectImp::Floor: result = ::floor(arg); break; case MathObjectImp::Log: result = ::log(arg); break; case MathObjectImp::Max: { unsigned int argsCount = args.size(); result = -Inf; for ( unsigned int k = 0 ; k < argsCount ; ++k ) { double val = args[k].toNumber(exec); if ( isNaN( val ) ) { result = NaN; break; } if ( val > result || (val == 0 && result == 0 && !signbit(val)) ) result = val; } break; } case MathObjectImp::Min: { unsigned int argsCount = args.size(); result = +Inf; for ( unsigned int k = 0 ; k < argsCount ; ++k ) { double val = args[k].toNumber(exec); if ( isNaN( val ) ) { result = NaN; break; } if ( val < result || (val == 0 && result == 0 && signbit(val)) ) result = val; } break; } case MathObjectImp::Pow: // ECMA 15.8.2.1.13 (::pow takes care of most of the critera) if (KJS::isNaN(arg2)) result = NaN; #ifndef APPLE_CHANGES else if (arg2 == 0) result = 1; #endif else if (KJS::isNaN(arg) && arg2 != 0) result = NaN; #ifndef APPLE_CHANGES else if (::fabs(arg) > 1 && KJS::isPosInf(arg2)) result = Inf; else if (::fabs(arg) > 1 && KJS::isNegInf(arg2)) result = +0; #endif else if (::fabs(arg) == 1 && KJS::isInf(arg2)) result = NaN; #ifndef APPLE_CHANGES else if (::fabs(arg) < 1 && KJS::isPosInf(arg2)) result = +0; else if (::fabs(arg) < 1 && KJS::isNegInf(arg2)) result = Inf; #endif else result = ::pow(arg, arg2); break; case MathObjectImp::Random: result = ::rand(); result = result / RAND_MAX; break; case MathObjectImp::Round: if (signbit(arg) && arg >= -0.5) result = -0.0; else result = ::floor(arg + 0.5); break; case MathObjectImp::Sin: result = ::sin(arg); break; case MathObjectImp::Sqrt: result = ::sqrt(arg); break; case MathObjectImp::Tan: result = ::tan(arg); break; default: result = 0.0; assert(0); } return Number(result); }