
Indexlib

Report on the Implementation of an

Indexing Library

Lúıs Pedro Coelho
luis@luispedro.org

Abstract

With the widespread use of search engines and considering the success
of gmail as a search based email interface and the number of requests of
user for fast text and particularly email search, there is definitely a need
for indexing email for fast access and search.

This need was badly provided for by open-source email clients. There-
fore, the purpose of this project was to provide email indexing for kmail,
an open-source email client.

As underlying indexing structure, inverted files were used. The project
is broadly divided into a core library and its use by kmail.

1 Problem

Email indexing is a very desirable feature of an email client. This allows one to
construct search-based interfaces, be they built around concepts such as virtual
folders1, search engine-like message search and filtering or others . . .

This is all possible, of course, without text-indexing and has been imple-
mented in all major mail clients for some time, but the performance is so poor
that the value of these features is much diminished.

2 Semantic Details

2.1 Words

The first step in indexing a file is to break it into words. The library allows a
way to change the definition of word easily, requiring no more than that it be a
string of non-null bytes2.

Right now, the following, admittedly European-centric, interpretation is
used: A word is a string of alphabetic characters. These characters are then
normalized which involves the removal of diacritics (like the conversion from É
to E or Ç to C) and the conversion to upper case.

1aka search folders, these are analogous to views in databases, in that they look like
traditional folders, but contain a group of messages fulfilling a certain criteria which are
physically stored in other real folders. Unlike traditional folders with automatic filters, these
allow a message to be present in more than one folder at once

2Using the UTF-8 encoding, this allows the full Unicode set to be used.

1

2.2 Use of Quotes

The basic search method works as follows: searching for one two will return
elements where both the words one and two appear even if they do not appear
consecutively. The use of quotes around the expression, allows one to search for
the exact expression.

This is implemented by keeping a copy of the original text, the general
inverted file structure is used to return a list of files where the search items
appear ch and then, exact case-insensitive matching is done using shift-and.
The need for keeping a copy of the original text, could, of course, be removed if
there was sufficient integration with the application to allow this process to be
done over the original text without a copy.

3 Design

3.1 Underlying structure

The system developed is an implementation of inverted files. Inverted files
were chosen as having a right balance between disk-space usage, search time,
updatability and feature set. Also considered were suffix trees, which have a
disk-space cost which is too large and suffix arrays which are difficult to update.

3.2 Design Decisions

The implementation is divided into a core library and the kmail integration glue
code. The core is the major part of this project and where the bulk of this
report will be focused.

3.3 From the Ground Up

A new implementation was written from the ground up even though several al-
ternatives existed. These are however, not stand-alone library implementations
and rely on databases and often other services, even webservers. Therefore,
an application which wants to use indexing will need to open a connection to
these services and negotiate with them. Some efforts are under way to hide
this complexity behind simple Application Programming Interfaces, but these
do not take away the need to run a separate server with a potential impact
on startup time and may incur in a performance penalty as possibly leading to
maintainability issues as the application needs to deal with an external service
whose version and settings it does not control.

This implementation achieves the following:

Ease of use To use it, one just needs to #include ¡index/index.h¿ and link in
the appropriate library (using -lindex, or the platform’s equivalent)

No external run time dependencies No external service needs to be in-
stalled. The library is sufficiently small to be bundled with the application
if desired.

2

Limited compile time dependencies Besides the basic C++ environment,
this library needs only boost’s library headers. These are currently bun-
dled with indexlib. There is no need for any of boost libraries to be
installed, it is a header only dependency3.

No startup penalties As will be seen, only a small startup time is needed.

The code was implemented in C++. This language also allows C bindings
to be easily written. C being the native tongue of Unix, this allows almost
universal access to the features.

3.4 Library Interface

The Library has a simple interface. Forgetting language details, here is the main
interface

index* create index(string name) Returns a new index identified by name.
Name should be a filesystem path.

void index::add(string docname, string doc) Add the file doc to the in-
dex, calling it docname.

void index::remove(string docname) Remove the file docname from the
index

vector<string> index::search(string pattern) Returns the set of files where
pattern occurs.

3.5 Use of Memory Mapped Files

Memory-mapped files (or mmapped files, after the system call mmap()) is an
operating systems concept which allows one to use a disk-based file in the same
manner one uses memory. The whole implementation will be based around
memory-mapped files. This has the following advantages:

• Fast startup time. Since there is no load time from the disk to the mem-
ory on load, there is no time penalty on application startup related to
converting from a disk to a memory format.

• Intelligent page-in and page-out algorithms. Since the use of mmapped
files relies on the base operating system algorithms for on-demand paging,
these algorithms are likely to be better than any that might be developed
by this project.

This decision forces the manual management of memory and the reimplemen-
tation of functions equivalent to malloc() and free(). These are reimplemented
on the basis of free-lists. These are not generic implementations, but rely on
specific knowledge about the types used. This is mostly a space optimization
to avoid using extra accounting overhead, since they could easily be adapted to
allocate anything.

3This may seem odd to traditional C programmers, but in modern C++ a lot of things
are implemented using templates which mangles the difference between implementation and
interface.

3

Figure 1: Term List

4 Implementation Overview

4.1 Term Lists

Term lists are implemented as shown in Figure 1.
The string data is kept in a contiguous array of null-terminated strings.

There are also two auxiliary arrays. The first one, marked Identification contains
an indeces into the string data, to the start of strings. By transversing this array,
we can transverse the array of strings. To add a string, one needs only to add
it to the end of the string data and add a pointer to it in the first auxiliary
array. This also keeps a unique numeric identifier for each string in the form of
its order of insertion which is the offset in this identification array.

To speed up the search in this set of strings, a second auxiliary array is
used which is ordered by the lexicographical order of the strings. When a string
is added, that might mean that a new entry needs to be added to this array
somewhere inside it as well, which results in all the other entries being down
shifted (except in the unlikely case that the string is added to the end of the
array).

Removing a string is a potentially expensive operation. Also, removing a
string might change the ids for all the strings below it in the identification ar-
ray, which would force other changes to the index to maintain consistency since
(as will be illustrated below) other structures rely on this value. Therefore, the
removal of a string is implemented simply by deleting its entry in the ordered
array, so that it will not be found anymore. Later, an expensive cleanup op-
eration over the whole index will remove all the stale data and readjust the
changed references.

To look up a word, we need to use binary search over the ordered array. A
use of a trie-like structure might speed things up, but the speed obtained by
binary search is already good enough and such a structure might be added on
top of the present implementation at a later time.

4

Figure 2: File Reference Lists

4.2 Index Lists

At the heart of the inverted file structure is an array of lists of file identifiers.
This basic structure is shown in Figure 2.

Externally each file is identified by a string. Internally, this string is kept
in an array and each file is identified by its index into this array of document
names in much the same way as terms can be mapped to numbers using the
term list above.

To look up the files where a certain word appears, we use its numeric id as
an index into the first level array and follow the pointer there to the list of files
where the string appears.

Since the file list might grow as new documents are added, it might overfill
the space allocated to it and might need a reallocation.

Over this basic structure, three simple space optimizations were imple-
mented. First, a special case was made for one element lists. Secondly, file
references are 32 bit numbers, but, where possible, we only save 8 bit deltas
which saves space in very dense file lists. Thirdly, a general purpose algorithm
is run over the lists, using zlib, the library implementation of deflate, the algo-
rithm used by gzip.

4.2.1 One Element Lists

Some words appear in only one document. Treating this as a special case allows
a simple optimization: instead of allocating a vector to hold this, use the space
where the pointer was held to save the reference there directly as shown in
Figure 3.

Using positive and negative numbers allows one to distinguish between the
two types of data kept in the same array: pointers and one-element lists.

This simple optimization carries neither run-time nor memory penalties and
costs just a small complexity penalty in the implementation.

4.2.2 8-bit deltas

Some words appear very often, leading to very large lists. Given that element
references are assigned sequentially, the values are always increasing. Therefore,

5

Figure 3: File Reference Lists With One Element Optimization

it is reasonable to assume that, for very dense lists, the difference between con-
secutive references will be small enough to fit in an eight bit number. Switching
to eight-bit numbers and storing differences instead of absolute values allows
a space saving. Of course, eight bits may not be enough in certain situations
and there is a need to store a longer sequence: a zero byte, followed by the full
four byte number.

This optimization carries both a slight run-time cost and a slight complexity
penalty regarding the code to implement it.

4.2.3 ZLib Compression

A more general compression scheme is also implemented. This consists of using
a general purpose compression algorithm (in this case, deflate, implemented by
the zlib library), to compress and uncompress the data on a as needed basis.
Due to the way that the deflate algorithm works, we compress the data by blocks
(we chose a block of size 212 = 4 096 which is the natural page size of the test
machine).

This scheme achieves very good disk space compression at the cost of some
run time penalty as well as RAM costs. This RAM cost might be tunable
by specifying a write-back scheme. In the current implementation, the system
writes everything back at the end of the session.

5 Limitations

5.1 Language Dependency

The first step in indexing is to break up the input text into words and these
are turned into their uppercase version. This simple phrase hides a mountain
of assumptions on the structure of the language. Defining how these concepts
map into non-European languages are beyond this project.

5.2 Error Recovery

At the moment, there is no effort taken to try and recover an index recov-
ered from a damaged form (be it from a non-correct exit, ie. crash, or other

6

Figure 4: KMail Screenshot

problems).

6 KMail Integration

6.1 User Interface

The user interface is very simple. We reused an interface element which was
already present as outlined in Figure 4. However, until now, this search bar
filtered only on the headers and not on the contents of the message.

6.2 Integration Method

Each mailbox is indexed separately as the search bar makes sense for the current
mailbox only. There is a script to index existing messages. New messages are
handled by a filter on incoming email.

6.3 Upstream Integration

As of early March 2005, the whole KDE Project is in a freeze due to the immi-
nent release of a new version. This means that it is impossible for this project
to merged into the official tree before the new version is released and the code
is unfrozen.

7

Disk Space (total) 389 MB
Disk Space (text) 7 MB
Number of messages 9,502
Number of mailboxes 15

Table 1: Size of Test Mailboxes

However, there is a great desire for this feature. Particularly, Don Sanders,
one of the kmail maintainers, has shown great interest in this.

7 Results

7.1 Data Set

This are the results obtained over my private email. It is a small data set and
I do not argue that it is a significant sample, but it is enough to provide an
indication of the expected values.

In Table 1 the main values of this dataset are presented. Note that these are
aggregate values, the messages are divided among 15 different mailboxes. The
huge difference between the total size and the text size is due to attachments and
headers. Also, the total space is the space used by the maildir representation
where each individual message is a single file where the size is normally rounded
up to a multiple of a page, while the text size was measured as only the text
size.

7.2 Disk-space Usage

Using zlib compression, the index size is 3.5MB. Without this compression,
it expands to 4.9MB. This is under the text size which is a typical value for
inverted files.

7.3 Time

Indexing the mails takes 40 minutes if zlib compression is being used. Without
this compression the time drops to 15 minutes. Both these times include the
time taken for parsing the text of the raw messages, extracting the text only
parts including any character encoding changes if necessary (email messages
are normally sent in pure ASCII and non-ASCII characters need a special en-
coding). Given this large differential and the modest space savings, using this
compression scheme is something which should remain an optional feature.

Search is very fast. Searching for any “algoritmo”, “inesc” or “pre” took less
than one second (this last entry generates a large result set because it is prefix
to a large number of words). Using zlib compression does not seem to affect
these results.

The tests were run in an Apple Powerbook machine with a 1.3 GHz G4 Pro-
cessor.

8

8 Future Work

The current integration with kmail while functional, has certain important limi-
tations, especially on the need for manual installation. This work should proceed
with the help of the kmail team.

As it stands, the code does not attempt to limit the damages in case of a
crash. At least limiting and detecting the corruption of the index is a need.

A lock mechanism for access to the index is also a necessity for widespread
adoptions. Kmail already limits itself to one instance accessing the mailboxes
at any given time, so in this problem setting we can piggy-back on this existing
mechanism.

9

