diff options
Diffstat (limited to 'src/3rdparty/libjpeg/jquant1.c')
| -rw-r--r-- | src/3rdparty/libjpeg/jquant1.c | 856 | 
1 files changed, 0 insertions, 856 deletions
diff --git a/src/3rdparty/libjpeg/jquant1.c b/src/3rdparty/libjpeg/jquant1.c deleted file mode 100644 index 89fbf7497..000000000 --- a/src/3rdparty/libjpeg/jquant1.c +++ /dev/null @@ -1,856 +0,0 @@ -/* - * jquant1.c - * - * Copyright (C) 1991-1996, Thomas G. Lane. - * This file is part of the Independent JPEG Group's software. - * For conditions of distribution and use, see the accompanying README file. - * - * This file contains 1-pass color quantization (color mapping) routines. - * These routines provide mapping to a fixed color map using equally spaced - * color values.  Optional Floyd-Steinberg or ordered dithering is available. - */ - -#define JPEG_INTERNALS -#include "jinclude.h" -#include "jpeglib.h" - -#ifdef TQUANT_1PASS_SUPPORTED - - -/* - * The main purpose of 1-pass quantization is to provide a fast, if not very - * high quality, colormapped output capability.  A 2-pass quantizer usually - * gives better visual quality; however, for quantized grayscale output this - * quantizer is perfectly adequate.  Dithering is highly recommended with this - * quantizer, though you can turn it off if you really want to. - * - * In 1-pass quantization the colormap must be chosen in advance of seeing the - * image.  We use a map consisting of all combinations of Ncolors[i] color - * values for the i'th component.  The Ncolors[] values are chosen so that - * their product, the total number of colors, is no more than that requested. - * (In most cases, the product will be somewhat less.) - * - * Since the colormap is orthogonal, the representative value for each color - * component can be determined without considering the other components; - * then these indexes can be combined into a colormap index by a standard - * N-dimensional-array-subscript calculation.  Most of the arithmetic involved - * can be precalculated and stored in the lookup table colorindex[]. - * colorindex[i][j] maps pixel value j in component i to the nearest - * representative value (grid plane) for that component; this index is - * multiplied by the array stride for component i, so that the - * index of the colormap entry closest to a given pixel value is just - *    sum( colorindex[component-number][pixel-component-value] ) - * Aside from being fast, this scheme allows for variable spacing between - * representative values with no additional lookup cost. - * - * If gamma correction has been applied in color conversion, it might be wise - * to adjust the color grid spacing so that the representative colors are - * etquidistant in linear space.  At this writing, gamma correction is not - * implemented by jdcolor, so nothing is done here. - */ - - -/* Declarations for ordered dithering. - * - * We use a standard 16x16 ordered dither array.  The basic concept of ordered - * dithering is described in many references, for instance Dale Schumacher's - * chapter II.2 of Graphics Gems II (James Arvo, ed. Academic Press, 1991). - * In place of Schumacher's comparisons against a "threshold" value, we add a - * "dither" value to the input pixel and then round the result to the nearest - * output value.  The dither value is equivalent to (0.5 - threshold) times - * the distance between output values.  For ordered dithering, we assume that - * the output colors are equally spaced; if not, results will probably be - * worse, since the dither may be too much or too little at a given point. - * - * The normal calculation would be to form pixel value + dither, range-limit - * this to 0..MAXJSAMPLE, and then index into the colorindex table as usual. - * We can skip the separate range-limiting step by extending the colorindex - * table in both directions. - */ - -#define ODITHER_SIZE  16	/* dimension of dither matrix */ -/* NB: if ODITHER_SIZE is not a power of 2, ODITHER_MASK uses will break */ -#define ODITHER_CELLS (ODITHER_SIZE*ODITHER_SIZE)	/* # cells in matrix */ -#define ODITHER_MASK  (ODITHER_SIZE-1) /* mask for wrapping around counters */ - -typedef int ODITHER_MATRIX[ODITHER_SIZE][ODITHER_SIZE]; -typedef int (*ODITHER_MATRIX_PTR)[ODITHER_SIZE]; - -static const UINT8 base_dither_matrix[ODITHER_SIZE][ODITHER_SIZE] = { -  /* Bayer's order-4 dither array.  Generated by the code given in -   * Stephen Hawley's article "Ordered Dithering" in Graphics Gems I. -   * The values in this array must range from 0 to ODITHER_CELLS-1. -   */ -  {   0,192, 48,240, 12,204, 60,252,  3,195, 51,243, 15,207, 63,255 }, -  { 128, 64,176,112,140, 76,188,124,131, 67,179,115,143, 79,191,127 }, -  {  32,224, 16,208, 44,236, 28,220, 35,227, 19,211, 47,239, 31,223 }, -  { 160, 96,144, 80,172,108,156, 92,163, 99,147, 83,175,111,159, 95 }, -  {   8,200, 56,248,  4,196, 52,244, 11,203, 59,251,  7,199, 55,247 }, -  { 136, 72,184,120,132, 68,180,116,139, 75,187,123,135, 71,183,119 }, -  {  40,232, 24,216, 36,228, 20,212, 43,235, 27,219, 39,231, 23,215 }, -  { 168,104,152, 88,164,100,148, 84,171,107,155, 91,167,103,151, 87 }, -  {   2,194, 50,242, 14,206, 62,254,  1,193, 49,241, 13,205, 61,253 }, -  { 130, 66,178,114,142, 78,190,126,129, 65,177,113,141, 77,189,125 }, -  {  34,226, 18,210, 46,238, 30,222, 33,225, 17,209, 45,237, 29,221 }, -  { 162, 98,146, 82,174,110,158, 94,161, 97,145, 81,173,109,157, 93 }, -  {  10,202, 58,250,  6,198, 54,246,  9,201, 57,249,  5,197, 53,245 }, -  { 138, 74,186,122,134, 70,182,118,137, 73,185,121,133, 69,181,117 }, -  {  42,234, 26,218, 38,230, 22,214, 41,233, 25,217, 37,229, 21,213 }, -  { 170,106,154, 90,166,102,150, 86,169,105,153, 89,165,101,149, 85 } -}; - - -/* Declarations for Floyd-Steinberg dithering. - * - * Errors are accumulated into the array fserrors[], at a resolution of - * 1/16th of a pixel count.  The error at a given pixel is propagated - * to its not-yet-processed neighbors using the standard F-S fractions, - *		...	(here)	7/16 - *		3/16	5/16	1/16 - * We work left-to-right on even rows, right-to-left on odd rows. - * - * We can get away with a single array (holding one row's worth of errors) - * by using it to store the current row's errors at pixel columns not yet - * processed, but the next row's errors at columns already processed.  We - * need only a few extra variables to hold the errors immediately around the - * current column.  (If we are lucky, those variables are in registers, but - * even if not, they're probably cheaper to access than array elements are.) - * - * The fserrors[] array is indexed [component#][position]. - * We provide (#columns + 2) entries per component; the extra entry at each - * end saves us from special-casing the first and last pixels. - * - * Note: on a wide image, we might not have enough room in a PC's near data - * segment to hold the error array; so it is allocated with alloc_large. - */ - -#if BITS_IN_JSAMPLE == 8 -typedef INT16 FSERROR;		/* 16 bits should be enough */ -typedef int LOCFSERROR;		/* use 'int' for calculation temps */ -#else -typedef INT32 FSERROR;		/* may need more than 16 bits */ -typedef INT32 LOCFSERROR;	/* be sure calculation temps are big enough */ -#endif - -typedef FSERROR FAR *FSERRPTR;	/* pointer to error array (in FAR storage!) */ - - -/* Private subobject */ - -#define MAX_Q_COMPS 4		/* max components I can handle */ - -typedef struct { -  struct jpeg_color_quantizer pub; /* public fields */ - -  /* Initially allocated colormap is saved here */ -  JSAMPARRAY sv_colormap;	/* The color map as a 2-D pixel array */ -  int sv_actual;		/* number of entries in use */ - -  JSAMPARRAY colorindex;	/* Precomputed mapping for speed */ -  /* colorindex[i][j] = index of color closest to pixel value j in component i, -   * premultiplied as described above.  Since colormap indexes must fit into -   * JSAMPLEs, the entries of this array will too. -   */ -  boolean is_padded;		/* is the colorindex padded for odither? */ - -  int Ncolors[MAX_Q_COMPS];	/* # of values alloced to each component */ - -  /* Variables for ordered dithering */ -  int row_index;		/* cur row's vertical index in dither matrix */ -  ODITHER_MATRIX_PTR odither[MAX_Q_COMPS]; /* one dither array per component */ - -  /* Variables for Floyd-Steinberg dithering */ -  FSERRPTR fserrors[MAX_Q_COMPS]; /* accumulated errors */ -  boolean on_odd_row;		/* flag to remember which row we are on */ -} my_cquantizer; - -typedef my_cquantizer * my_cquantize_ptr; - - -/* - * Policy-making subroutines for create_colormap and create_colorindex. - * These routines determine the colormap to be used.  The rest of the module - * only assumes that the colormap is orthogonal. - * - *  * select_ncolors decides how to divvy up the available colors - *    among the components. - *  * output_value defines the set of representative values for a component. - *  * largest_input_value defines the mapping from input values to - *    representative values for a component. - * Note that the latter two routines may impose different policies for - * different components, though this is not currently done. - */ - - -LOCAL(int) -select_ncolors (j_decompress_ptr cinfo, int Ncolors[]) -/* Determine allocation of desired colors to components, */ -/* and fill in Ncolors[] array to indicate choice. */ -/* Return value is total number of colors (product of Ncolors[] values). */ -{ -  int nc = cinfo->out_color_components; /* number of color components */ -  int max_colors = cinfo->desired_number_of_colors; -  int total_colors, iroot, i, j; -  boolean changed; -  long temp; -  static const int RGB_order[3] = { RGB_GREEN, RGB_RED, RGB_BLUE }; - -  /* We can allocate at least the nc'th root of max_colors per component. */ -  /* Compute floor(nc'th root of max_colors). */ -  iroot = 1; -  do { -    iroot++; -    temp = iroot;		/* set temp = iroot ** nc */ -    for (i = 1; i < nc; i++) -      temp *= iroot; -  } while (temp <= (long) max_colors); /* repeat till iroot exceeds root */ -  iroot--;			/* now iroot = floor(root) */ - -  /* Must have at least 2 color values per component */ -  if (iroot < 2) -    ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, (int) temp); - -  /* Initialize to iroot color values for each component */ -  total_colors = 1; -  for (i = 0; i < nc; i++) { -    Ncolors[i] = iroot; -    total_colors *= iroot; -  } -  /* We may be able to increment the count for one or more components without -   * exceeding max_colors, though we know not all can be incremented. -   * Sometimes, the first component can be incremented more than once! -   * (Example: for 16 colors, we start at 2*2*2, go to 3*2*2, then 4*2*2.) -   * In RGB colorspace, try to increment G first, then R, then B. -   */ -  do { -    changed = FALSE; -    for (i = 0; i < nc; i++) { -      j = (cinfo->out_color_space == JCS_RGB ? RGB_order[i] : i); -      /* calculate new total_colors if Ncolors[j] is incremented */ -      temp = total_colors / Ncolors[j]; -      temp *= Ncolors[j]+1;	/* done in long arith to avoid oflo */ -      if (temp > (long) max_colors) -	break;			/* won't fit, done with this pass */ -      Ncolors[j]++;		/* OK, apply the increment */ -      total_colors = (int) temp; -      changed = TRUE; -    } -  } while (changed); - -  return total_colors; -} - - -LOCAL(int) -output_value (j_decompress_ptr cinfo, int ci, int j, int maxj) -/* Return j'th output value, where j will range from 0 to maxj */ -/* The output values must fall in 0..MAXJSAMPLE in increasing order */ -{ -  /* We always provide values 0 and MAXJSAMPLE for each component; -   * any additional values are equally spaced between these limits. -   * (Forcing the upper and lower values to the limits ensures that -   * dithering can't produce a color outside the selected gamut.) -   */ -  return (int) (((INT32) j * MAXJSAMPLE + maxj/2) / maxj); -} - - -LOCAL(int) -largest_input_value (j_decompress_ptr cinfo, int ci, int j, int maxj) -/* Return largest input value that should map to j'th output value */ -/* Must have largest(j=0) >= 0, and largest(j=maxj) >= MAXJSAMPLE */ -{ -  /* Breakpoints are halfway between values returned by output_value */ -  return (int) (((INT32) (2*j + 1) * MAXJSAMPLE + maxj) / (2*maxj)); -} - - -/* - * Create the colormap. - */ - -LOCAL(void) -create_colormap (j_decompress_ptr cinfo) -{ -  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; -  JSAMPARRAY colormap;		/* Created colormap */ -  int total_colors;		/* Number of distinct output colors */ -  int i,j,k, nci, blksize, blkdist, ptr, val; - -  /* Select number of colors for each component */ -  total_colors = select_ncolors(cinfo, cquantize->Ncolors); - -  /* Report selected color counts */ -  if (cinfo->out_color_components == 3) -    TRACEMS4(cinfo, 1, JTRC_QUANT_3_NCOLORS, -	     total_colors, cquantize->Ncolors[0], -	     cquantize->Ncolors[1], cquantize->Ncolors[2]); -  else -    TRACEMS1(cinfo, 1, JTRC_QUANT_NCOLORS, total_colors); - -  /* Allocate and fill in the colormap. */ -  /* The colors are ordered in the map in standard row-major order, */ -  /* i.e. rightmost (highest-indexed) color changes most rapidly. */ - -  colormap = (*cinfo->mem->alloc_sarray) -    ((j_common_ptr) cinfo, JPOOL_IMAGE, -     (JDIMENSION) total_colors, (JDIMENSION) cinfo->out_color_components); - -  /* blksize is number of adjacent repeated entries for a component */ -  /* blkdist is distance between groups of identical entries for a component */ -  blkdist = total_colors; - -  for (i = 0; i < cinfo->out_color_components; i++) { -    /* fill in colormap entries for i'th color component */ -    nci = cquantize->Ncolors[i]; /* # of distinct values for this color */ -    blksize = blkdist / nci; -    for (j = 0; j < nci; j++) { -      /* Compute j'th output value (out of nci) for component */ -      val = output_value(cinfo, i, j, nci-1); -      /* Fill in all colormap entries that have this value of this component */ -      for (ptr = j * blksize; ptr < total_colors; ptr += blkdist) { -	/* fill in blksize entries beginning at ptr */ -	for (k = 0; k < blksize; k++) -	  colormap[i][ptr+k] = (JSAMPLE) val; -      } -    } -    blkdist = blksize;		/* blksize of this color is blkdist of next */ -  } - -  /* Save the colormap in private storage, -   * where it will survive color quantization mode changes. -   */ -  cquantize->sv_colormap = colormap; -  cquantize->sv_actual = total_colors; -} - - -/* - * Create the color index table. - */ - -LOCAL(void) -create_colorindex (j_decompress_ptr cinfo) -{ -  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; -  JSAMPROW indexptr; -  int i,j,k, nci, blksize, val, pad; - -  /* For ordered dither, we pad the color index tables by MAXJSAMPLE in -   * each direction (input index values can be -MAXJSAMPLE .. 2*MAXJSAMPLE). -   * This is not necessary in the other dithering modes.  However, we -   * flag whether it was done in case user changes dithering mode. -   */ -  if (cinfo->dither_mode == JDITHER_ORDERED) { -    pad = MAXJSAMPLE*2; -    cquantize->is_padded = TRUE; -  } else { -    pad = 0; -    cquantize->is_padded = FALSE; -  } - -  cquantize->colorindex = (*cinfo->mem->alloc_sarray) -    ((j_common_ptr) cinfo, JPOOL_IMAGE, -     (JDIMENSION) (MAXJSAMPLE+1 + pad), -     (JDIMENSION) cinfo->out_color_components); - -  /* blksize is number of adjacent repeated entries for a component */ -  blksize = cquantize->sv_actual; - -  for (i = 0; i < cinfo->out_color_components; i++) { -    /* fill in colorindex entries for i'th color component */ -    nci = cquantize->Ncolors[i]; /* # of distinct values for this color */ -    blksize = blksize / nci; - -    /* adjust colorindex pointers to provide padding at negative indexes. */ -    if (pad) -      cquantize->colorindex[i] += MAXJSAMPLE; - -    /* in loop, val = index of current output value, */ -    /* and k = largest j that maps to current val */ -    indexptr = cquantize->colorindex[i]; -    val = 0; -    k = largest_input_value(cinfo, i, 0, nci-1); -    for (j = 0; j <= MAXJSAMPLE; j++) { -      while (j > k)		/* advance val if past boundary */ -	k = largest_input_value(cinfo, i, ++val, nci-1); -      /* premultiply so that no multiplication needed in main processing */ -      indexptr[j] = (JSAMPLE) (val * blksize); -    } -    /* Pad at both ends if necessary */ -    if (pad) -      for (j = 1; j <= MAXJSAMPLE; j++) { -	indexptr[-j] = indexptr[0]; -	indexptr[MAXJSAMPLE+j] = indexptr[MAXJSAMPLE]; -      } -  } -} - - -/* - * Create an ordered-dither array for a component having ncolors - * distinct output values. - */ - -LOCAL(ODITHER_MATRIX_PTR) -make_odither_array (j_decompress_ptr cinfo, int ncolors) -{ -  ODITHER_MATRIX_PTR odither; -  int j,k; -  INT32 num,den; - -  odither = (ODITHER_MATRIX_PTR) -    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, -				SIZEOF(ODITHER_MATRIX)); -  /* The inter-value distance for this color is MAXJSAMPLE/(ncolors-1). -   * Hence the dither value for the matrix cell with fill order f -   * (f=0..N-1) should be (N-1-2*f)/(2*N) * MAXJSAMPLE/(ncolors-1). -   * On 16-bit-int machine, be careful to avoid overflow. -   */ -  den = 2 * ODITHER_CELLS * ((INT32) (ncolors - 1)); -  for (j = 0; j < ODITHER_SIZE; j++) { -    for (k = 0; k < ODITHER_SIZE; k++) { -      num = ((INT32) (ODITHER_CELLS-1 - 2*((int)base_dither_matrix[j][k]))) -	    * MAXJSAMPLE; -      /* Ensure round towards zero despite C's lack of consistency -       * about rounding negative values in integer division... -       */ -      odither[j][k] = (int) (num<0 ? -((-num)/den) : num/den); -    } -  } -  return odither; -} - - -/* - * Create the ordered-dither tables. - * Components having the same number of representative colors may  - * share a dither table. - */ - -LOCAL(void) -create_odither_tables (j_decompress_ptr cinfo) -{ -  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; -  ODITHER_MATRIX_PTR odither; -  int i, j, nci; - -  for (i = 0; i < cinfo->out_color_components; i++) { -    nci = cquantize->Ncolors[i]; /* # of distinct values for this color */ -    odither = NULL;		/* search for matching prior component */ -    for (j = 0; j < i; j++) { -      if (nci == cquantize->Ncolors[j]) { -	odither = cquantize->odither[j]; -	break; -      } -    } -    if (odither == NULL)	/* need a new table? */ -      odither = make_odither_array(cinfo, nci); -    cquantize->odither[i] = odither; -  } -} - - -/* - * Map some rows of pixels to the output colormapped representation. - */ - -METHODDEF(void) -color_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf, -		JSAMPARRAY output_buf, int num_rows) -/* General case, no dithering */ -{ -  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; -  JSAMPARRAY colorindex = cquantize->colorindex; -  register int pixcode, ci; -  register JSAMPROW ptrin, ptrout; -  int row; -  JDIMENSION col; -  JDIMENSION width = cinfo->output_width; -  register int nc = cinfo->out_color_components; - -  for (row = 0; row < num_rows; row++) { -    ptrin = input_buf[row]; -    ptrout = output_buf[row]; -    for (col = width; col > 0; col--) { -      pixcode = 0; -      for (ci = 0; ci < nc; ci++) { -	pixcode += GETJSAMPLE(colorindex[ci][GETJSAMPLE(*ptrin++)]); -      } -      *ptrout++ = (JSAMPLE) pixcode; -    } -  } -} - - -METHODDEF(void) -color_quantize3 (j_decompress_ptr cinfo, JSAMPARRAY input_buf, -		 JSAMPARRAY output_buf, int num_rows) -/* Fast path for out_color_components==3, no dithering */ -{ -  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; -  register int pixcode; -  register JSAMPROW ptrin, ptrout; -  JSAMPROW colorindex0 = cquantize->colorindex[0]; -  JSAMPROW colorindex1 = cquantize->colorindex[1]; -  JSAMPROW colorindex2 = cquantize->colorindex[2]; -  int row; -  JDIMENSION col; -  JDIMENSION width = cinfo->output_width; - -  for (row = 0; row < num_rows; row++) { -    ptrin = input_buf[row]; -    ptrout = output_buf[row]; -    for (col = width; col > 0; col--) { -      pixcode  = GETJSAMPLE(colorindex0[GETJSAMPLE(*ptrin++)]); -      pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*ptrin++)]); -      pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*ptrin++)]); -      *ptrout++ = (JSAMPLE) pixcode; -    } -  } -} - - -METHODDEF(void) -quantize_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf, -		     JSAMPARRAY output_buf, int num_rows) -/* General case, with ordered dithering */ -{ -  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; -  register JSAMPROW input_ptr; -  register JSAMPROW output_ptr; -  JSAMPROW colorindex_ci; -  int * dither;			/* points to active row of dither matrix */ -  int row_index, col_index;	/* current indexes into dither matrix */ -  int nc = cinfo->out_color_components; -  int ci; -  int row; -  JDIMENSION col; -  JDIMENSION width = cinfo->output_width; - -  for (row = 0; row < num_rows; row++) { -    /* Initialize output values to 0 so can process components separately */ -    jzero_far((void FAR *) output_buf[row], -	      (size_t) (width * SIZEOF(JSAMPLE))); -    row_index = cquantize->row_index; -    for (ci = 0; ci < nc; ci++) { -      input_ptr = input_buf[row] + ci; -      output_ptr = output_buf[row]; -      colorindex_ci = cquantize->colorindex[ci]; -      dither = cquantize->odither[ci][row_index]; -      col_index = 0; - -      for (col = width; col > 0; col--) { -	/* Form pixel value + dither, range-limit to 0..MAXJSAMPLE, -	 * select output value, accumulate into output code for this pixel. -	 * Range-limiting need not be done explicitly, as we have extended -	 * the colorindex table to produce the right answers for out-of-range -	 * inputs.  The maximum dither is +- MAXJSAMPLE; this sets the -	 * required amount of padding. -	 */ -	*output_ptr += colorindex_ci[GETJSAMPLE(*input_ptr)+dither[col_index]]; -	input_ptr += nc; -	output_ptr++; -	col_index = (col_index + 1) & ODITHER_MASK; -      } -    } -    /* Advance row index for next row */ -    row_index = (row_index + 1) & ODITHER_MASK; -    cquantize->row_index = row_index; -  } -} - - -METHODDEF(void) -quantize3_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf, -		      JSAMPARRAY output_buf, int num_rows) -/* Fast path for out_color_components==3, with ordered dithering */ -{ -  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; -  register int pixcode; -  register JSAMPROW input_ptr; -  register JSAMPROW output_ptr; -  JSAMPROW colorindex0 = cquantize->colorindex[0]; -  JSAMPROW colorindex1 = cquantize->colorindex[1]; -  JSAMPROW colorindex2 = cquantize->colorindex[2]; -  int * dither0;		/* points to active row of dither matrix */ -  int * dither1; -  int * dither2; -  int row_index, col_index;	/* current indexes into dither matrix */ -  int row; -  JDIMENSION col; -  JDIMENSION width = cinfo->output_width; - -  for (row = 0; row < num_rows; row++) { -    row_index = cquantize->row_index; -    input_ptr = input_buf[row]; -    output_ptr = output_buf[row]; -    dither0 = cquantize->odither[0][row_index]; -    dither1 = cquantize->odither[1][row_index]; -    dither2 = cquantize->odither[2][row_index]; -    col_index = 0; - -    for (col = width; col > 0; col--) { -      pixcode  = GETJSAMPLE(colorindex0[GETJSAMPLE(*input_ptr++) + -					dither0[col_index]]); -      pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*input_ptr++) + -					dither1[col_index]]); -      pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*input_ptr++) + -					dither2[col_index]]); -      *output_ptr++ = (JSAMPLE) pixcode; -      col_index = (col_index + 1) & ODITHER_MASK; -    } -    row_index = (row_index + 1) & ODITHER_MASK; -    cquantize->row_index = row_index; -  } -} - - -METHODDEF(void) -quantize_fs_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf, -		    JSAMPARRAY output_buf, int num_rows) -/* General case, with Floyd-Steinberg dithering */ -{ -  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; -  register LOCFSERROR cur;	/* current error or pixel value */ -  LOCFSERROR belowerr;		/* error for pixel below cur */ -  LOCFSERROR bpreverr;		/* error for below/prev col */ -  LOCFSERROR bnexterr;		/* error for below/next col */ -  LOCFSERROR delta; -  register FSERRPTR errorptr;	/* => fserrors[] at column before current */ -  register JSAMPROW input_ptr; -  register JSAMPROW output_ptr; -  JSAMPROW colorindex_ci; -  JSAMPROW colormap_ci; -  int pixcode; -  int nc = cinfo->out_color_components; -  int dir;			/* 1 for left-to-right, -1 for right-to-left */ -  int dirnc;			/* dir * nc */ -  int ci; -  int row; -  JDIMENSION col; -  JDIMENSION width = cinfo->output_width; -  JSAMPLE *range_limit = cinfo->sample_range_limit; -  SHIFT_TEMPS - -  for (row = 0; row < num_rows; row++) { -    /* Initialize output values to 0 so can process components separately */ -    jzero_far((void FAR *) output_buf[row], -	      (size_t) (width * SIZEOF(JSAMPLE))); -    for (ci = 0; ci < nc; ci++) { -      input_ptr = input_buf[row] + ci; -      output_ptr = output_buf[row]; -      if (cquantize->on_odd_row) { -	/* work right to left in this row */ -	input_ptr += (width-1) * nc; /* so point to rightmost pixel */ -	output_ptr += width-1; -	dir = -1; -	dirnc = -nc; -	errorptr = cquantize->fserrors[ci] + (width+1); /* => entry after last column */ -      } else { -	/* work left to right in this row */ -	dir = 1; -	dirnc = nc; -	errorptr = cquantize->fserrors[ci]; /* => entry before first column */ -      } -      colorindex_ci = cquantize->colorindex[ci]; -      colormap_ci = cquantize->sv_colormap[ci]; -      /* Preset error values: no error propagated to first pixel from left */ -      cur = 0; -      /* and no error propagated to row below yet */ -      belowerr = bpreverr = 0; - -      for (col = width; col > 0; col--) { -	/* cur holds the error propagated from the previous pixel on the -	 * current line.  Add the error propagated from the previous line -	 * to form the complete error correction term for this pixel, and -	 * round the error term (which is expressed * 16) to an integer. -	 * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct -	 * for either sign of the error value. -	 * Note: errorptr points to *previous* column's array entry. -	 */ -	cur = RIGHT_SHIFT(cur + errorptr[dir] + 8, 4); -	/* Form pixel value + error, and range-limit to 0..MAXJSAMPLE. -	 * The maximum error is +- MAXJSAMPLE; this sets the required size -	 * of the range_limit array. -	 */ -	cur += GETJSAMPLE(*input_ptr); -	cur = GETJSAMPLE(range_limit[cur]); -	/* Select output value, accumulate into output code for this pixel */ -	pixcode = GETJSAMPLE(colorindex_ci[cur]); -	*output_ptr += (JSAMPLE) pixcode; -	/* Compute actual representation error at this pixel */ -	/* Note: we can do this even though we don't have the final */ -	/* pixel code, because the colormap is orthogonal. */ -	cur -= GETJSAMPLE(colormap_ci[pixcode]); -	/* Compute error fractions to be propagated to adjacent pixels. -	 * Add these into the running sums, and simultaneously shift the -	 * next-line error sums left by 1 column. -	 */ -	bnexterr = cur; -	delta = cur * 2; -	cur += delta;		/* form error * 3 */ -	errorptr[0] = (FSERROR) (bpreverr + cur); -	cur += delta;		/* form error * 5 */ -	bpreverr = belowerr + cur; -	belowerr = bnexterr; -	cur += delta;		/* form error * 7 */ -	/* At this point cur contains the 7/16 error value to be propagated -	 * to the next pixel on the current line, and all the errors for the -	 * next line have been shifted over. We are therefore ready to move on. -	 */ -	input_ptr += dirnc;	/* advance input ptr to next column */ -	output_ptr += dir;	/* advance output ptr to next column */ -	errorptr += dir;	/* advance errorptr to current column */ -      } -      /* Post-loop cleanup: we must unload the final error value into the -       * final fserrors[] entry.  Note we need not unload belowerr because -       * it is for the dummy column before or after the actual array. -       */ -      errorptr[0] = (FSERROR) bpreverr; /* unload prev err into array */ -    } -    cquantize->on_odd_row = (cquantize->on_odd_row ? FALSE : TRUE); -  } -} - - -/* - * Allocate workspace for Floyd-Steinberg errors. - */ - -LOCAL(void) -alloc_fs_workspace (j_decompress_ptr cinfo) -{ -  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; -  size_t arraysize; -  int i; - -  arraysize = (size_t) ((cinfo->output_width + 2) * SIZEOF(FSERROR)); -  for (i = 0; i < cinfo->out_color_components; i++) { -    cquantize->fserrors[i] = (FSERRPTR) -      (*cinfo->mem->alloc_large)((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize); -  } -} - - -/* - * Initialize for one-pass color quantization. - */ - -METHODDEF(void) -start_pass_1_quant (j_decompress_ptr cinfo, boolean is_pre_scan) -{ -  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; -  size_t arraysize; -  int i; - -  /* Install my colormap. */ -  cinfo->colormap = cquantize->sv_colormap; -  cinfo->actual_number_of_colors = cquantize->sv_actual; - -  /* Initialize for desired dithering mode. */ -  switch (cinfo->dither_mode) { -  case JDITHER_NONE: -    if (cinfo->out_color_components == 3) -      cquantize->pub.color_quantize = color_quantize3; -    else -      cquantize->pub.color_quantize = color_quantize; -    break; -  case JDITHER_ORDERED: -    if (cinfo->out_color_components == 3) -      cquantize->pub.color_quantize = quantize3_ord_dither; -    else -      cquantize->pub.color_quantize = quantize_ord_dither; -    cquantize->row_index = 0;	/* initialize state for ordered dither */ -    /* If user changed to ordered dither from another mode, -     * we must recreate the color index table with padding. -     * This will cost extra space, but probably isn't very likely. -     */ -    if (! cquantize->is_padded) -      create_colorindex(cinfo); -    /* Create ordered-dither tables if we didn't already. */ -    if (cquantize->odither[0] == NULL) -      create_odither_tables(cinfo); -    break; -  case JDITHER_FS: -    cquantize->pub.color_quantize = quantize_fs_dither; -    cquantize->on_odd_row = FALSE; /* initialize state for F-S dither */ -    /* Allocate Floyd-Steinberg workspace if didn't already. */ -    if (cquantize->fserrors[0] == NULL) -      alloc_fs_workspace(cinfo); -    /* Initialize the propagated errors to zero. */ -    arraysize = (size_t) ((cinfo->output_width + 2) * SIZEOF(FSERROR)); -    for (i = 0; i < cinfo->out_color_components; i++) -      jzero_far((void FAR *) cquantize->fserrors[i], arraysize); -    break; -  default: -    ERREXIT(cinfo, JERR_NOT_COMPILED); -    break; -  } -} - - -/* - * Finish up at the end of the pass. - */ - -METHODDEF(void) -finish_pass_1_quant (j_decompress_ptr cinfo) -{ -  /* no work in 1-pass case */ -} - - -/* - * Switch to a new external colormap between output passes. - * Shouldn't get to this module! - */ - -METHODDEF(void) -new_color_map_1_quant (j_decompress_ptr cinfo) -{ -  ERREXIT(cinfo, JERR_MODE_CHANGE); -} - - -/* - * Module initialization routine for 1-pass color quantization. - */ - -GLOBAL(void) -jinit_1pass_quantizer (j_decompress_ptr cinfo) -{ -  my_cquantize_ptr cquantize; - -  cquantize = (my_cquantize_ptr) -    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, -				SIZEOF(my_cquantizer)); -  cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize; -  cquantize->pub.start_pass = start_pass_1_quant; -  cquantize->pub.finish_pass = finish_pass_1_quant; -  cquantize->pub.new_color_map = new_color_map_1_quant; -  cquantize->fserrors[0] = NULL; /* Flag FS workspace not allocated */ -  cquantize->odither[0] = NULL;	/* Also flag odither arrays not allocated */ - -  /* Make sure my internal arrays won't overflow */ -  if (cinfo->out_color_components > MAX_Q_COMPS) -    ERREXIT1(cinfo, JERR_QUANT_COMPONENTS, MAX_Q_COMPS); -  /* Make sure colormap indexes can be represented by JSAMPLEs */ -  if (cinfo->desired_number_of_colors > (MAXJSAMPLE+1)) -    ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXJSAMPLE+1); - -  /* Create the colormap and color index table. */ -  create_colormap(cinfo); -  create_colorindex(cinfo); - -  /* Allocate Floyd-Steinberg workspace now if requested. -   * We do this now since it is FAR storage and may affect the memory -   * manager's space calculations.  If the user changes to FS dither -   * mode in a later pass, we will allocate the space then, and will -   * possibly overrun the max_memory_to_use setting. -   */ -  if (cinfo->dither_mode == JDITHER_FS) -    alloc_fs_workspace(cinfo); -} - -#endif /* TQUANT_1PASS_SUPPORTED */  | 
