summaryrefslogtreecommitdiffstats
path: root/kstars/kstars/indi/indicom.c
blob: 15b02c8e341b1783c01e2b014386c84d0df9818d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
/*
    INDI LIB
    Common routines used by all drivers
    Copyright (C) 2003 by Jason Harris (jharris@30doradus.org)
                          Elwood C. Downey

    This is the C version of the astronomical library in KStars
    modified by Jasem Mutlaq (mutlaqja@ikarustech.com)

    This library is free software; you can redistribute it and/or
    modify it under the terms of the GNU Lesser General Public
    License as published by the Free Software Foundation; either
    version 2.1 of the License, or (at your option) any later version.

    This library is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
    Lesser General Public License for more details.

    You should have received a copy of the GNU Lesser General Public
    License along with this library; if not, write to the Free Software
    Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA

*/

/* needed for sincos() in math.h */
#define _GNU_SOURCE

#include <stdlib.h>
#include <math.h>
#include <stdio.h>
#include <string.h>

#include "indicom.h"

const char * Direction[] = { "North", "West", "East", "South", "All"};
const char * SolarSystem[] = { "Mercury", "Venus", "Moon", "Mars", "Jupiter", "Saturn", "Uranus", "Neptune", "Pluto"};

/* make it compile on solaris */
#ifndef M_PI
#define M_PI 3.14159265358979323846264338327950288419716939937510582097494459
#endif

/******** Prototypes ***********/
double DegToRad( double num );
double RadToDeg( double num );
void SinCos( double Degrees, double *sina, double *cosa );

double obliquity(void);
double constAberr(void);
double sunMeanAnomaly(void);
double sunMeanLongitude(void);
double sunTrueAnomaly(void);
double sunTrueLongitude(void);
double earthPerihelionLongitude(void);
double earthEccentricity(void);
double dObliq(void);
double dEcLong(void);
double julianCenturies(void);
double p1( int i1, int i2 );
double p2( int i1, int i2 );
void updateAstroValues( double jd );
void nutate(double *RA, double *Dec);
void aberrate(double *RA, double *Dec);
void precessFromAnyEpoch(double jd0, double jdf, double *RA, double *Dec);
void apparentCoord(double jd0, double jdf, double *RA, double *Dec);
void getSexComponents(double value, int *d, int *m, int *s);

double K = ( 20.49552 / 3600. );
double Obliquity, K, L, L0, LM, M, M0, O, P;
double XP, YP, ZP;
double CX, SX, CY, SY, CZ, SZ;
double P1[3][3], P2[3][3];
double deltaObliquity, deltaEcLong;
double e, T;

double obliquity() { return Obliquity; }
double constAberr() { return K; }
double sunMeanAnomaly() { return M; }
double sunMeanLongitude() { return L; }
double sunTrueAnomaly() { return M0; }
double sunTrueLongitude() { return L0; }
double earthPerihelionLongitude() { return P; }
double earthEccentricity() { return e; }
double dObliq() { return deltaObliquity; }
double dEcLong() { return deltaEcLong; }
double julianCenturies() { return T; }
double p1( int i1, int i2 ) { return P1[i1][i2]; }
double p2( int i1, int i2 ) { return P2[i1][i2]; }

void updateAstroValues( double jd )
{
	static double days = 0;
	double jm;
	double C, U, dObliq2;
	/* Nutation parameters */
	double  L2, M2, O2;
	double sin2L, cos2L, sin2M, cos2M;
	double sinO, cosO, sin2O, cos2O;

	/* no need to recalculate if same as previous JD */
	if (days == jd)
	 return;

	days = jd;

	/* Julian Centuries since J2000.0 */
	T = ( jd - J2000 ) / 36525.;

	/* Julian Millenia since J2000.0 */
	jm = T / 10.0;

	/* Sun's Mean Longitude */
	L = ( 280.46645 + 36000.76983*T + 0.0003032*T*T );

	/* Sun's Mean Anomaly */
	M = ( 357.52910 + 35999.05030*T - 0.0001559*T*T - 0.00000048*T*T*T );

	/* Moon's Mean Longitude */
	LM = ( 218.3164591 + 481267.88134236*T - 0.0013268*T*T + T*T*T/538841. - T*T*T*T/6519400.);

	/* Longitude of Moon's Ascending Node */
	O = ( 125.04452 - 1934.136261*T + 0.0020708*T*T + T*T*T/450000.0 );

	/* Earth's orbital eccentricity */
	e = 0.016708617 - 0.000042037*T - 0.0000001236*T*T;

	C = ( 1.914600 - 0.004817*T - 0.000014*T*T ) * sin( DegToRad(M) )
						+ ( 0.019993 - 0.000101*T ) * sin( 2.0* DegToRad(M) )
						+ 0.000290 * sin( 3.0* DegToRad(M));

	/* Sun's True Longitude */
	L0 = ( L + C );

	/* Sun's True Anomaly */
	M0 = ( M + C );

	/* Obliquity of the Ecliptic */
	U = T/100.0;
	dObliq2 = -4680.93*U - 1.55*U*U + 1999.25*U*U*U
									- 51.38*U*U*U*U - 249.67*U*U*U*U*U
									- 39.05*U*U*U*U*U*U + 7.12*U*U*U*U*U*U*U
									+ 27.87*U*U*U*U*U*U*U*U + 5.79*U*U*U*U*U*U*U*U*U
									+ 2.45*U*U*U*U*U*U*U*U*U*U;
	Obliquity = ( 23.43929111 + dObliq2/3600.0);

	O2 = ( 2.0 * O );
	L2 = ( 2.0 * L );  /* twice mean ecl. long. of Sun */
	M2 = ( 2.0 * LM);  /* twice mean ecl. long. of Moon */

	SinCos( O, &sinO, &cosO );
	SinCos( O2, &sin2O, &cos2O );
	SinCos( L2, &sin2L, &cos2L );
	SinCos( M2, &sin2M, &cos2M );

	deltaEcLong = ( -17.2*sinO - 1.32*sin2L - 0.23*sin2M + 0.21*sin2O)/3600.0;  /* Ecl. long. correction */
	deltaObliquity = ( 9.2*cosO + 0.57*cos2L + 0.10*cos2M - 0.09*cos2O)/3600.0; /* Obliq. correction */

	/* Compute Precession Matrices: */
	XP = ( 0.6406161*T + 0.0000839*T*T + 0.0000050*T*T*T );
	YP = ( 0.5567530*T - 0.0001185*T*T - 0.0000116*T*T*T );
	ZP = ( 0.6406161*T + 0.0003041*T*T + 0.0000051*T*T*T );

	SinCos(XP, &SX, &CX );
	SinCos(YP, &SY, &CY );
	SinCos(ZP, &SZ, &CZ );

        /* P1 is used to precess from any epoch to J2000 */
	P1[0][0] = CX*CY*CZ - SX*SZ;
	P1[1][0] = CX*CY*SZ + SX*CZ;
	P1[2][0] = CX*SY;
	P1[0][1] = -1.0*SX*CY*CZ - CX*SZ;
	P1[1][1] = -1.0*SX*CY*SZ + CX*CZ;
	P1[2][1] = -1.0*SX*SY;
	P1[0][2] = -1.0*SY*CZ;
	P1[1][2] = -1.0*SY*SZ;
	P1[2][2] = CY;

        /* P2 is used to precess from J2000 to any other epoch (it is the transpose of P1) */
	P2[0][0] = CX*CY*CZ - SX*SZ;
	P2[1][0] = -1.0*SX*CY*CZ - CX*SZ;
	P2[2][0] = -1.0*SY*CZ;
	P2[0][1] = CX*CY*SZ + SX*CZ;
	P2[1][1] = -1.0*SX*CY*SZ + CX*CZ;
	P2[2][1] = -1.0*SY*SZ;
	P2[0][2] = CX*SY;
	P2[1][2] = -1.0*SX*SY;
	P2[2][2] = CY;

}

double DegToRad( double num )
{
  /*return (num * deg_rad);*/
  return (num * (M_PI / 180.0));
}

double RadToDeg( double num )
{
  return (num / (M_PI / 180.0));
}

void SinCos( double Degrees, double *sina, double *cosa )
{
	/**We have two versions of this function.  One is ANSI standard, but
		*slower.  The other is faster, but is GNU only.
		*Using the __GLIBC_ and __GLIBC_MINOR_ constants to determine if the
		* GNU extension sincos() is defined.
		*/
		static int rDirty = 1;
		double Sin, Cos;


		if (rDirty)
		{
                #ifdef __GLIBC__
                #if ( __GLIBC__ >= 2 && __GLIBC_MINOR__ >=1  && !defined(__UCLIBC__))
		/* GNU version */
		sincos( DegToRad(Degrees), &Sin, &Cos );
                #else
		/* For older GLIBC versions */
	        Sin = ::sin( DegToRad(Degrees) );
		Cos = ::cos( DegToRad(Degrees) );
		#endif
		#else
		/* ANSI-compliant version */
		Sin = sin( DegToRad(Degrees) );
		Cos = cos( DegToRad(Degrees) );
		rDirty = 0;
		#endif
	        }
		else
		{
		 Sin = sin( DegToRad(Degrees) );
		 Cos = cos( DegToRad(Degrees) );
		}

  		*sina = Sin;
		*cosa = Cos;
}

double calculateDec(double latitude, double SDTime)
{
  if (SDTime > 12) SDTime -= 12;
  
  return RadToDeg ( atan ( (cos (DegToRad (latitude)) / sin (DegToRad (latitude))) * cos (DegToRad (SDTime))) );

}

double calculateRA(double SDTime)
{
  double ra;
  
  ra = SDTime + 12;
  
  if (ra < 24)
    return ra;
  else
    return (ra - 24);
}


void nutate(double *RA, double *Dec)
{
	double cosRA, sinRA, cosDec, sinDec, tanDec;
	double dRA1, dDec1;
	double cosOb, sinOb;

	SinCos( *RA, &sinRA, &cosRA );
	SinCos( *Dec, &sinDec, &cosDec );

	SinCos( obliquity(), &sinOb, &cosOb );

	/* Step 2: Nutation */
	/* approximate method */
	tanDec = sinDec/cosDec;

	dRA1  = ( dEcLong()*( cosOb + sinOb*sinRA*tanDec ) - dObliq()*cosRA*tanDec );
	dDec1 = ( dEcLong()*( sinOb*cosRA ) + dObliq()*sinRA );

	*RA  = ( *RA + dRA1 );
	*Dec = ( *Dec+ dDec1);
}

void aberrate(double *RA, double *Dec)
{
	double cosRA, sinRA, cosDec, sinDec;
	double dRA2, dDec2;
	double cosOb, sinOb, cosL, sinL, cosP, sinP;
	double K2, e2, tanOb;

	K2 = constAberr();  /* constant of aberration */
	e2 = earthEccentricity();

	SinCos( *RA, &sinRA, &cosRA );
	SinCos( *Dec, &sinDec, &cosDec );

	SinCos( obliquity(), &sinOb, &cosOb );
	tanOb = sinOb/cosOb;

	SinCos( sunTrueLongitude(), &sinL, &cosL );
	SinCos( earthPerihelionLongitude(), &sinP, &cosP );

	/* Step 3: Aberration */
	dRA2 = ( -1.0 * K2 * ( cosRA * cosL * cosOb + sinRA * sinL )/cosDec
		+ e2 * K2 * ( cosRA * cosP * cosOb + sinRA * sinP )/cosDec );

	dDec2 = ( -1.0 * K2 * ( cosL * cosOb * ( tanOb * cosDec - sinRA * sinDec ) + cosRA * sinDec * sinL )
		+ e2 * K2 * ( cosP * cosOb * ( tanOb * cosDec - sinRA * sinDec ) + cosRA * sinDec * sinP ) );

	*RA  = ( *RA  + dRA2 );
	*Dec = ( *Dec + dDec2);
}

void precessFromAnyEpoch(double jd0, double jdf, double *RA, double *Dec)
{
 	double cosRA0, sinRA0, cosDec0, sinDec0;
	double v[3], s[3];
	unsigned int i=0;

	SinCos( *RA, &sinRA0, &cosRA0 );
	SinCos( *Dec, &sinDec0, &cosDec0 );

	/* Need first to precess to J2000.0 coords */

	if ( jd0 != J2000 )
	{

	/* v is a column vector representing input coordinates. */

		updateAstroValues(jd0);

		v[0] = cosRA0*cosDec0;
		v[1] = sinRA0*cosDec0;
		v[2] = sinDec0;


	/*s is the product of P1 and v; s represents the
	coordinates precessed to J2000 */
		for ( i=0; i<3; ++i ) {
			s[i] = p1( 0, i )*v[0] + p1( 1, i )*v[1] +
				p1( 2, i )*v[2];
		}

	} else
	{

	/* Input coords already in J2000, set s accordingly. */
		s[0] = cosRA0*cosDec0;
		s[1] = sinRA0*cosDec0;
		s[2] = sinDec0;
       }

       updateAstroValues(jdf);

	/* Multiply P2 and s to get v, the vector representing the new coords. */

	for ( i=0; i<3; ++i ) {
		v[i] = p2( 0, i )*s[0] + p2( 1, i )*s[1] +
		p2( 2, i )*s[2];
	}

	/*Extract RA, Dec from the vector:
	RA.setRadians( atan( v[1]/v[0] ) ); */

	*RA  = RadToDeg( atan2( v[1],v[0] ) );
	*Dec = RadToDeg( asin( v[2] ) );

	if (*RA < 0.0 )
	    *RA = ( *RA + 360.0 );
}

void apparentCoord(double jd0, double jdf, double *RA, double *Dec)
{
        *RA = *RA * 15.0;

	precessFromAnyEpoch(jd0,jdf, RA, Dec);

	updateAstroValues(jdf);

	nutate(RA, Dec);
	aberrate(RA, Dec);

	*RA = *RA / 15.0;
}

double UTtoJD(struct tm *utm)
{
  int year, month, day, hour, minute, second;
  int m, y, A, B, C, D;
  double d, jd;

  /* Note: The tm_year was modified by adding +1900 to it since tm_year refers
  to the number of years after 1900. The month field was also modified by adding 1 to it
  since the tm_mon range is from 0 to 11 */
  year   = utm->tm_year + 1900;
  month  = utm->tm_mon  + 1;
  day    = utm->tm_mday;
  hour   = utm->tm_hour;
  minute = utm->tm_min;
  second = utm->tm_sec;


  if (month > 2)
  {
	  m = month;
	  y = year;
  } else
  {
	  y = year - 1;
	  m = month + 12;
  }

 /*  If the date is after 10/15/1582, then take Pope Gregory's modification
	 to the Julian calendar into account */

	 if (( year  >1582 ) ||
		 ( year ==1582 && month  >9 ) ||
		 ( year ==1582 && month ==9 && day >15 ))
	 {
		 A = (int) y/100;
		 B = 2 - A + (int) A/4;
	 } else {
		 B = 0;
	 }

  if (y < 0) {
	  C = (int) ((365.25*y) - 0.75);
  } else {
	  C = (int) (365.25*y);
  }

  D = (int) (30.6001*(m+1));

  d = (double) day + ( (double) hour + ( (double) minute + (double) second/60.0)/60.0)/24.0;
  jd = B + C + D + d + 1720994.5;

  return jd;
}

double JDtoGMST( double jd )
{
	double Gmst;

	/* Julian Centuries since J2000.0 */
	T = ( jd - J2000 ) / 36525.;

	/* Greewich Mean Sidereal Time */

	Gmst = 280.46061837 
		+ 360.98564736629*(jd-J2000) 
		+ 0.000387933*T*T 
		- T*T*T/38710000.0;

	return Gmst;
}

int extractISOTime(char *timestr, struct tm *utm)
{

  if (strptime(timestr, "%Y-%m-%dT%H:%M:%S", utm))
   return (0);
  if (strptime(timestr, "%Y/%m/%dT%H:%M:%S", utm))
   return (0);
  if (strptime(timestr, "%Y:%m:%dT%H:%M:%S", utm))
   return (0);
  if (strptime(timestr, "%Y-%m-%dT%H-%M-%S", utm))
   return (0);

   return (-1);

}

/* sprint the variable a in sexagesimal format into out[].
 * w is the number of spaces for the whole part.
 * fracbase is the number of pieces a whole is to broken into; valid options:
 *	360000:	<w>:mm:ss.ss
 *	36000:	<w>:mm:ss.s
 *	3600:	<w>:mm:ss
 *	600:	<w>:mm.m
 *	60:	<w>:mm
 * return number of characters written to out, not counting final '\0'.
 */
int
fs_sexa (char *out, double a, int w, int fracbase)
{
	char *out0 = out;
	unsigned long n;
	int d;
	int f;
	int m;
	int s;
	int isneg;

	/* save whether it's negative but do all the rest with a positive */
	isneg = (a < 0);
	if (isneg)
	    a = -a;

	/* convert to an integral number of whole portions */
	n = (unsigned long)(a * fracbase + 0.5);
	d = n/fracbase;
	f = n%fracbase;

	/* form the whole part; "negative 0" is a special case */
	if (isneg && d == 0)
	    out += sprintf (out, "%*s-0", w-2, "");
	else
	    out += sprintf (out, "%*d", w, isneg ? -d : d);

	/* do the rest */
	switch (fracbase) {
	case 60:	/* dd:mm */
	    m = f/(fracbase/60);
	    out += sprintf (out, ":%02d", m);
	    break;
	case 600:	/* dd:mm.m */
	    out += sprintf (out, ":%02d.%1d", f/10, f%10);
	    break;
	case 3600:	/* dd:mm:ss */
	    m = f/(fracbase/60);
	    s = f%(fracbase/60);
	    out += sprintf (out, ":%02d:%02d", m, s);
	    break;
	case 36000:	/* dd:mm:ss.s*/
	    m = f/(fracbase/60);
	    s = f%(fracbase/60);
	    out += sprintf (out, ":%02d:%02d.%1d", m, s/10, s%10);
	    break;
	case 360000:	/* dd:mm:ss.ss */
	    m = f/(fracbase/60);
	    s = f%(fracbase/60);
	    out += sprintf (out, ":%02d:%02d.%02d", m, s/100, s%100);
	    break;
	default:
	    printf ("fs_sexa: unknown fracbase: %d\n", fracbase);
	    exit(1);
	}

	return (out - out0);
}

/* convert sexagesimal string str AxBxC to double.
 *   x can be anything non-numeric. Any missing A, B or C will be assumed 0.
 *   optional - and + can be anywhere.
 * return 0 if ok, -1 if can't find a thing.
 */
int
f_scansexa (
const char *str0,	/* input string */
double *dp)		/* cracked value, if return 0 */
{
	double a = 0, b = 0, c = 0;
	char str[128];
	char *neg;
	int r;

	/* copy str0 so we can play with it */
	strncpy (str, str0, sizeof(str)-1);
	str[sizeof(str)-1] = '\0';

	neg = strchr(str, '-');
	if (neg)
	    *neg = ' ';
	r = sscanf (str, "%lf%*[^0-9]%lf%*[^0-9]%lf", &a, &b, &c);
	if (r < 1)
	    return (-1);
	*dp = a + b/60 + c/3600;
	if (neg)
	    *dp *= -1;
	return (0);
}

void getSexComponents(double value, int *d, int *m, int *s)
{

  *d = (int) fabs(value);
  *m = (int) ((fabs(value) - *d) * 60.0);
  *s = (int) rint(((fabs(value) - *d) * 60.0 - *m) *60.0);

  if (value < 0)
   *d *= -1;
}

/* fill buf with properly formatted INumber string. return length */
int
numberFormat (char *buf, const char *format, double value)
{
        int w, f, s;
        char m;

        if (sscanf (format, "%%%d.%d%c", &w, &f, &m) == 3 && m == 'm') {
            /* INDI sexi format */
            switch (f) {
            case 9:  s = 360000; break;
            case 8:  s = 36000;  break;
            case 6:  s = 3600;   break;
            case 5:  s = 600;    break;
            default: s = 60;     break;
            }
            return (fs_sexa (buf, value, w-f, s));
        } else {
            /* normal printf format */
            return (sprintf (buf, format, value));
        }
}

double angularDistance(double fromRA, double fromDEC, double toRA, double toDEC)
{

	double dalpha = DegToRad(fromRA) - DegToRad(toRA);
	double ddelta = DegToRad(fromDEC) - DegToRad(toDEC);

	double sa = sin(dalpha/2.);
	double sd = sin(ddelta/2.);
	
	double hava = sa*sa;
	double havd = sd*sd;

	double aux = havd + cos (DegToRad(fromDEC)) * cos(DegToRad(toDEC)) * hava;
	
	return (RadToDeg ( 2 * fabs(asin( sqrt(aux) ))));
}

/* return current system time in message format */
const char *
timestamp()
{
	static char ts[32];
	struct tm *tp;
	time_t t;

	time (&t);
	tp = gmtime (&t);
	strftime (ts, sizeof(ts), "%Y-%m-%dT%H:%M:%S", tp);
	return (ts);
}