1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
|
/*
This file is part of the TDE games library
Copyright (C) 2001-02 Nicolas Hadacek (hadacek@kde.org)
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public
License version 2 as published by the Free Software Foundation.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.
You should have received a copy of the GNU Library General Public License
along with this library; see the file COPYING.LIB. If not, write to
the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301, USA.
*/
#ifndef __KGRID2D_H_
#define __KGRID2D_H_
#include <math.h>
#include <tqpair.h>
#include <tqvaluelist.h>
#include <tqvaluevector.h>
#include <tdeglobal.h>
//-----------------------------------------------------------------------------
namespace KGrid2D
{
/**
* This type represents coordinates on a bidimensionnal grid.
* @since 3.2
*/
typedef TQPair<int, int> Coord;
/**
* This type represents a list of @ref Coord.
* @since 3.2
*/
typedef TQValueList<Coord> CoordList;
}
inline KGrid2D::Coord
operator +(const KGrid2D::Coord &c1, const KGrid2D::Coord &c2) {
return KGrid2D::Coord(c1.first + c2.first, c1.second + c2.second);
}
inline KGrid2D::Coord
operator -(const KGrid2D::Coord &c1, const KGrid2D::Coord &c2) {
return KGrid2D::Coord(c1.first - c2.first, c1.second - c2.second);
}
/**
* @return the maximum of both coordinates.
* @since 3.2
*/
inline KGrid2D::Coord
maximum(const KGrid2D::Coord &c1, const KGrid2D::Coord &c2) {
return KGrid2D::Coord(kMax(c1.first, c2.first), kMax(c1.second, c2.second));
}
/**
* @return the minimum of both coordinates.
* @since 3.2
*/
inline KGrid2D::Coord
minimum(const KGrid2D::Coord &c1, const KGrid2D::Coord &c2) {
return KGrid2D::Coord(kMin(c1.first, c2.first), kMin(c1.second, c2.second));
}
inline TQTextStream &operator <<(TQTextStream &s, const KGrid2D::Coord &c) {
return s << '(' << c.second << ", " << c.first << ')';
}
inline TQTextStream &operator <<(TQTextStream &s, const KGrid2D::CoordList &list)
{
for(KGrid2D::CoordList::const_iterator i=list.begin(); i!=list.end(); ++i)
s << *i;
return s;
}
//-----------------------------------------------------------------------------
namespace KGrid2D
{
/**
* This template class represents a generic bidimensionnal grid. Each node
* contains an element of the template type.
*
* @since 3.2
*/
template <class Type>
class Generic
{
public:
/**
* Constructor.
*/
Generic(uint width = 0, uint height = 0) {
resize(width, height);
}
virtual ~Generic() {}
/**
* Resize the grid.
*/
void resize(uint width, uint height) {
_width = width;
_height = height;
_vector.resize(width*height);
}
/**
* Fill the nodes with the given value.
*/
void fill(const Type &value) {
for (uint i=0; i<_vector.count(); i++) _vector[i] = value;
}
/**
* @return the width.
*/
uint width() const { return _width; }
/**
* @return the height.
*/
uint height() const { return _height; }
/**
* @return the number of nodes (ie width*height).
*/
uint size() const { return _width*_height; }
/**
* @return the linear index for the given coordinate.
*/
uint index(const Coord &c) const {
return c.first + c.second*_width;
}
/**
* @return the coordinate corresponding to the linear index.
*/
Coord coord(uint index) const {
return Coord(index % _width, index / _width);
}
/**
* @return the value at the given coordinate.
*/
const Type &at(const Coord &c) const { return _vector[index(c)]; }
/**
* @return the value at the given coordinate.
*/
Type &at(const Coord &c) { return _vector[index(c)]; }
/**
* @return the value at the given coordinate.
*/
const Type &operator [](const Coord &c) const { return _vector[index(c)]; }
/**
* @return the value at the given coordinate.
*/
Type &operator [](const Coord &c) { return _vector[index(c)]; }
/**
* @return the value at the given linear index.
*/
const Type &at(uint index) const { return _vector[index]; }
/**
* @return the value at the given linear index.
*/
Type &at(uint index) { return _vector[index]; }
/**
* @return the value at the given linear index.
*/
const Type &operator [](uint index) const { return _vector[index]; }
/**
* @return the value at the given linear index.
*/
Type &operator [](uint index) { return _vector[index]; }
/**
* @return if the given coordinate is inside the grid.
*/
bool inside(const Coord &c) const {
return ( c.first>=0 && c.first<(int)_width
&& c.second>=0 && c.second<(int)_height );
}
/**
* Bound the given coordinate with the grid dimensions.
*/
void bound(Coord &c) const {
c.first = kMax(kMin(c.first, (int)_width-1), 0);
c.second = kMax(kMin(c.second, (int)_height-1), 0);
}
protected:
uint _width, _height;
TQValueVector<Type> _vector;
};
}
template <class Type>
TQDataStream &operator <<(TQDataStream &s, const KGrid2D::Generic<Type> &m) {
s << (TQ_UINT32)m.width() << (TQ_UINT32)m.height();
for (uint i=0; i<m.size(); i++) s << m[i];
return s;
}
template <class Type>
TQDataStream &operator >>(TQDataStream &s, KGrid2D::Generic<Type> &m) {
TQ_UINT32 w, h;
s >> w >> h;
m.resize(w, h);
for (uint i=0; i<m.size(); i++) s >> m[i];
return s;
}
namespace KGrid2D
{
//-----------------------------------------------------------------------------
/**
* This class contains static methods to manipulate coordinates for a
* square bidimensionnal grid.
*
* @since 3.2
*/
class SquareBase
{
public:
/**
* Identify the eight neighbours.
*/
enum Neighbour { Left=0, Right, Up, Down, LeftUp, LeftDown,
RightUp, RightDown, Nb_Neighbour };
/**
* @return the trigonometric angle in radians for the given neighbour.
*/
static double angle(Neighbour n) {
switch (n) {
case Left: return M_PI;
case Right: return 0;
case Up: return M_PI_2;
case Down: return -M_PI_2;
case LeftUp: return 3.0*M_PI_4;
case LeftDown: return -3.0*M_PI_4;
case RightUp: return M_PI_4;
case RightDown: return -M_PI_4;
case Nb_Neighbour: Q_ASSERT(false);
}
return 0;
}
/**
* @return the opposed neighbour.
*/
static Neighbour opposed(Neighbour n) {
switch (n) {
case Left: return Right;
case Right: return Left;
case Up: return Down;
case Down: return Up;
case LeftUp: return RightDown;
case LeftDown: return RightUp;
case RightUp: return LeftDown;
case RightDown: return LeftUp;
case Nb_Neighbour: Q_ASSERT(false);
}
return Nb_Neighbour;
}
/**
* @return true if the neighbour is a direct one (ie is one of the four
* nearest).
*/
static bool isDirect(Neighbour n) { return n<LeftUp; }
/**
* @return the neighbour for the given coordinate.
*/
static Coord neighbour(const Coord &c, Neighbour n) {
switch (n) {
case Left: return c + Coord(-1, 0);
case Right: return c + Coord( 1, 0);
case Up: return c + Coord( 0, -1);
case Down: return c + Coord( 0, 1);
case LeftUp: return c + Coord(-1, -1);
case LeftDown: return c + Coord(-1, 1);
case RightUp: return c + Coord( 1, -1);
case RightDown: return c + Coord( 1, 1);
case Nb_Neighbour: Q_ASSERT(false);
}
return c;
}
};
/**
* This template is a @ref Generic implementation for a square bidimensionnal
* grid (@ref SquareBase).
*
* @since 3.2
*/
template <class T>
class Square : public Generic<T>, public SquareBase
{
public:
/**
* Constructor.
*/
Square(uint width = 0, uint height = 0)
: Generic<T>(width, height) {}
/**
* @return the neighbours of coordinate @param c
* to the given set of coordinates
* @param c the coordinate to use as the reference point
* @param insideOnly only add coordinates that are inside the grid.
* @param directOnly only add the four nearest neighbours.
*/
CoordList neighbours(const Coord &c, bool insideOnly = true,
bool directOnly = false) const {
CoordList neighbours;
for (uint i=0; i<(directOnly ? LeftUp : Nb_Neighbour); i++) {
Coord n = neighbour(c, (Neighbour)i);
if ( insideOnly && !Generic<T>::inside(n) ) continue;
neighbours.append(n);
}
return neighbours;
}
/**
* @return the "projection" of the given coordinate on the grid edges.
*
* @param c the coordinate to use as the reference point
* @param n the direction of projection.
*/
Coord toEdge(const Coord &c, Neighbour n) const {
switch (n) {
case Left: return Coord(0, c.second);
case Right: return Coord(Generic<T>::width()-1, c.second);
case Up: return Coord(c.first, 0);
case Down: return Coord(c.first, Generic<T>::height()-1);
case LeftUp: return Coord(0, 0);
case LeftDown: return Coord(0, Generic<T>::height()-1);
case RightUp: return Coord(Generic<T>::width()-1, 0);
case RightDown: return Coord(Generic<T>::width()-1, Generic<T>::height()-1);
case Nb_Neighbour: Q_ASSERT(false);
}
return c;
}
};
//-----------------------------------------------------------------------------
/**
* This class contains static methods to manipulate coordinates on an
* hexagonal grid where hexagons form horizontal lines:
* <pre>
* (0,0) (0,1) (0,2)
* (1,0) (1,1) (1,2)
* (2,0) (2,1) (2,2)
* </pre>
*
* @since 3.2
*/
class HexagonalBase
{
public:
/**
* Identify the six neighbours.
*/
enum Neighbour { Left = 0, Right, LeftUp, LeftDown,
RightUp, RightDown, Nb_Neighbour };
/**
* @return the trigonometric angle in radians for the given neighbour.
*/
static double angle(Neighbour n) {
switch (n) {
case Left: return M_PI;
case Right: return 0;
case LeftUp: return 2.0*M_PI/3;
case LeftDown: return -2.0*M_PI/3;
case RightUp: return M_PI/3;
case RightDown: return -M_PI/3;
case Nb_Neighbour: Q_ASSERT(false);
}
return 0;
}
/**
* @return the opposed neighbour.
*/
static Neighbour opposed(Neighbour n) {
switch (n) {
case Left: return Right;
case Right: return Left;
case LeftUp: return RightDown;
case LeftDown: return RightUp;
case RightUp: return LeftDown;
case RightDown: return LeftUp;
case Nb_Neighbour: Q_ASSERT(false);
}
return Nb_Neighbour;
}
/**
* @return the neighbour of the given coordinate.
*/
static Coord neighbour(const Coord &c, Neighbour n) {
bool oddRow = c.second%2;
switch (n) {
case Left: return c + Coord(-1, 0);
case Right: return c + Coord( 1, 0);
case LeftUp: return c + (oddRow ? Coord( 0, -1) : Coord(-1, -1));
case LeftDown: return c + (oddRow ? Coord( 0, 1) : Coord(-1, 1));
case RightUp: return c + (oddRow ? Coord( 1, -1) : Coord( 0, -1));
case RightDown: return c + (oddRow ? Coord( 1, 1) : Coord( 0, 1));
case Nb_Neighbour: Q_ASSERT(false);
}
return c;
}
/**
* @return the distance between the two coordinates in term of hexagons.
*/
static uint distance(const Coord &c1, const Coord &c2) {
return kAbs(c1.first - c2.first) + kAbs(c1.second - c2.second)
+ (c1.first==c2.first || c1.second==c2.second ? 0 : -1);
}
};
/**
* This template implements a hexagonal grid
* where hexagons form horizontal lines:
* <pre>
* (0,0) (0,1) (0,2)
* (1,0) (1,1) (1,2)
* (2,0) (2,1) (2,2)
* </pre>
*
* @ since 3.2
*/
template <class Type>
class Hexagonal : public Generic<Type>, public HexagonalBase
{
public:
/**
* Constructor.
*/
Hexagonal(uint width = 0, uint height = 0)
: Generic<Type>(width, height) {}
/**
* @return the neighbours of coordinate @param c
* to the given set of coordinates
* @param c the coordiante to use as the reference point
* @param insideOnly only add coordinates that are inside the grid.
*/
CoordList neighbours(const Coord &c, bool insideOnly = true) const {
CoordList neighbours;
for (uint i=0; i<Nb_Neighbour; i++) {
Coord n = neighbour(c, (Neighbour)i);
if ( insideOnly && !Generic<Type>::inside(n) ) continue;
neighbours.append(n);
}
return neighbours;
}
/**
* @return the neighbours at distance @param distance of coordinate
* @param c the coordinate to use as the reference point
* @param distance distance to the neighbour (1 means at contact).
* @param insideOnly only add coordinates that are inside the grid.
* @param all returns all neighbours at distance equal and less than
* @param distance (the original coordinate is not included).
*/
CoordList neighbours(const Coord &c, uint distance, bool all,
bool insideOnly = true) const {
// brute force algorithm -- you're welcome to make it more efficient :)
CoordList ring;
if ( distance==0 ) return ring;
ring = neighbours(c, insideOnly);
if ( distance==1 ) return ring;
CoordList center;
center.append(c);
for (uint i=1; i<distance; i++) {
CoordList newRing;
CoordList::const_iterator it;
for (it=ring.begin(); it!=ring.end(); ++it) {
CoordList n = neighbours(*it, insideOnly);
CoordList::const_iterator it2;
for (it2=n.begin(); it2!=n.end(); ++it2)
if ( center.find(*it2)==center.end()
&& ring.find(*it2)==ring.end()
&& newRing.find(*it2)==newRing.end() )
newRing.append(*it2);
center.append(*it);
}
ring = newRing;
}
if ( !all ) return ring;
CoordList::const_iterator it;
for (it=ring.begin(); it!=ring.end(); ++it)
center.append(*it);
center.remove(c);
return center;
}
};
} // namespace
#endif
|