summaryrefslogtreecommitdiffstats
path: root/digikam/libs/sqlite3
diff options
context:
space:
mode:
authortpearson <tpearson@283d02a7-25f6-0310-bc7c-ecb5cbfe19da>2010-01-17 08:33:13 +0000
committertpearson <tpearson@283d02a7-25f6-0310-bc7c-ecb5cbfe19da>2010-01-17 08:33:13 +0000
commit5543c8d9438bdee5065f9c30e418f9b664aee170 (patch)
tree3f360005ae611849a11adab769c34033dee2147f /digikam/libs/sqlite3
downloaddigikam-5543c8d9438bdee5065f9c30e418f9b664aee170.tar.gz
digikam-5543c8d9438bdee5065f9c30e418f9b664aee170.zip
Added developer-abandoned KDE3 version of Digikam
git-svn-id: svn://anonsvn.kde.org/home/kde/branches/trinity/applications/digikam@1075997 283d02a7-25f6-0310-bc7c-ecb5cbfe19da
Diffstat (limited to 'digikam/libs/sqlite3')
-rw-r--r--digikam/libs/sqlite3/Makefile.am9
-rw-r--r--digikam/libs/sqlite3/sqlite3.c87003
-rw-r--r--digikam/libs/sqlite3/sqlite3.h5638
3 files changed, 92650 insertions, 0 deletions
diff --git a/digikam/libs/sqlite3/Makefile.am b/digikam/libs/sqlite3/Makefile.am
new file mode 100644
index 0000000..b672e2c
--- /dev/null
+++ b/digikam/libs/sqlite3/Makefile.am
@@ -0,0 +1,9 @@
+noinst_LTLIBRARIES = libsqlite3.la
+
+INCLUDES = $(all_includes)
+
+libsqlite3_la_CFLAGS = -w
+
+libsqlite3_la_LDFLAGS = $(LIBPTHREAD) -no-undefined
+
+libsqlite3_la_SOURCES = sqlite3.c \ No newline at end of file
diff --git a/digikam/libs/sqlite3/sqlite3.c b/digikam/libs/sqlite3/sqlite3.c
new file mode 100644
index 0000000..3b3b067
--- /dev/null
+++ b/digikam/libs/sqlite3/sqlite3.c
@@ -0,0 +1,87003 @@
+/******************************************************************************
+** This file is an amalgamation of many separate C source files from SQLite
+** version 3.5.9. By combining all the individual C code files into this
+** single large file, the entire code can be compiled as a one translation
+** unit. This allows many compilers to do optimizations that would not be
+** possible if the files were compiled separately. Performance improvements
+** of 5% are more are commonly seen when SQLite is compiled as a single
+** translation unit.
+**
+** This file is all you need to compile SQLite. To use SQLite in other
+** programs, you need this file and the "sqlite3.h" header file that defines
+** the programming interface to the SQLite library. (If you do not have
+** the "sqlite3.h" header file at hand, you will find a copy in the first
+** 5638 lines past this header comment.) Additional code files may be
+** needed if you want a wrapper to interface SQLite with your choice of
+** programming language. The code for the "sqlite3" command-line shell
+** is also in a separate file. This file contains only code for the core
+** SQLite library.
+**
+** This amalgamation was generated on 2008-05-14 16:30:52 UTC.
+*/
+#define SQLITE_CORE 1
+#define SQLITE_AMALGAMATION 1
+#ifndef SQLITE_PRIVATE
+# define SQLITE_PRIVATE static
+#endif
+#ifndef SQLITE_API
+# define SQLITE_API
+#endif
+/************** Begin file sqliteInt.h ***************************************/
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** Internal interface definitions for SQLite.
+**
+** @(#) $Id: sqliteInt.h,v 1.704 2008/05/13 13:27:34 drh Exp $
+*/
+#ifndef _SQLITEINT_H_
+#define _SQLITEINT_H_
+
+/*
+** Include the configuration header output by 'configure' if we're using the
+** autoconf-based build
+*/
+#ifdef _HAVE_SQLITE_CONFIG_H
+#include "config.h"
+#endif
+
+/************** Include sqliteLimit.h in the middle of sqliteInt.h ***********/
+/************** Begin file sqliteLimit.h *************************************/
+/*
+** 2007 May 7
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+**
+** This file defines various limits of what SQLite can process.
+**
+** @(#) $Id: sqliteLimit.h,v 1.8 2008/03/26 15:56:22 drh Exp $
+*/
+
+/*
+** The maximum length of a TEXT or BLOB in bytes. This also
+** limits the size of a row in a table or index.
+**
+** The hard limit is the ability of a 32-bit signed integer
+** to count the size: 2^31-1 or 2147483647.
+*/
+#ifndef SQLITE_MAX_LENGTH
+# define SQLITE_MAX_LENGTH 1000000000
+#endif
+
+/*
+** This is the maximum number of
+**
+** * Columns in a table
+** * Columns in an index
+** * Columns in a view
+** * Terms in the SET clause of an UPDATE statement
+** * Terms in the result set of a SELECT statement
+** * Terms in the GROUP BY or ORDER BY clauses of a SELECT statement.
+** * Terms in the VALUES clause of an INSERT statement
+**
+** The hard upper limit here is 32676. Most database people will
+** tell you that in a well-normalized database, you usually should
+** not have more than a dozen or so columns in any table. And if
+** that is the case, there is no point in having more than a few
+** dozen values in any of the other situations described above.
+*/
+#ifndef SQLITE_MAX_COLUMN
+# define SQLITE_MAX_COLUMN 2000
+#endif
+
+/*
+** The maximum length of a single SQL statement in bytes.
+**
+** It used to be the case that setting this value to zero would
+** turn the limit off. That is no longer true. It is not possible
+** to turn this limit off.
+*/
+#ifndef SQLITE_MAX_SQL_LENGTH
+# define SQLITE_MAX_SQL_LENGTH 1000000000
+#endif
+
+/*
+** The maximum depth of an expression tree. This is limited to
+** some extent by SQLITE_MAX_SQL_LENGTH. But sometime you might
+** want to place more severe limits on the complexity of an
+** expression.
+**
+** A value of 0 used to mean that the limit was not enforced.
+** But that is no longer true. The limit is now strictly enforced
+** at all times.
+*/
+#ifndef SQLITE_MAX_EXPR_DEPTH
+# define SQLITE_MAX_EXPR_DEPTH 1000
+#endif
+
+/*
+** The maximum number of terms in a compound SELECT statement.
+** The code generator for compound SELECT statements does one
+** level of recursion for each term. A stack overflow can result
+** if the number of terms is too large. In practice, most SQL
+** never has more than 3 or 4 terms. Use a value of 0 to disable
+** any limit on the number of terms in a compount SELECT.
+*/
+#ifndef SQLITE_MAX_COMPOUND_SELECT
+# define SQLITE_MAX_COMPOUND_SELECT 500
+#endif
+
+/*
+** The maximum number of opcodes in a VDBE program.
+** Not currently enforced.
+*/
+#ifndef SQLITE_MAX_VDBE_OP
+# define SQLITE_MAX_VDBE_OP 25000
+#endif
+
+/*
+** The maximum number of arguments to an SQL function.
+*/
+#ifndef SQLITE_MAX_FUNCTION_ARG
+# define SQLITE_MAX_FUNCTION_ARG 100
+#endif
+
+/*
+** The maximum number of in-memory pages to use for the main database
+** table and for temporary tables. The SQLITE_DEFAULT_CACHE_SIZE
+*/
+#ifndef SQLITE_DEFAULT_CACHE_SIZE
+# define SQLITE_DEFAULT_CACHE_SIZE 2000
+#endif
+#ifndef SQLITE_DEFAULT_TEMP_CACHE_SIZE
+# define SQLITE_DEFAULT_TEMP_CACHE_SIZE 500
+#endif
+
+/*
+** The maximum number of attached databases. This must be between 0
+** and 30. The upper bound on 30 is because a 32-bit integer bitmap
+** is used internally to track attached databases.
+*/
+#ifndef SQLITE_MAX_ATTACHED
+# define SQLITE_MAX_ATTACHED 10
+#endif
+
+
+/*
+** The maximum value of a ?nnn wildcard that the parser will accept.
+*/
+#ifndef SQLITE_MAX_VARIABLE_NUMBER
+# define SQLITE_MAX_VARIABLE_NUMBER 999
+#endif
+
+/* Maximum page size. The upper bound on this value is 32768. This a limit
+** imposed by the necessity of storing the value in a 2-byte unsigned integer
+** and the fact that the page size must be a power of 2.
+*/
+#ifndef SQLITE_MAX_PAGE_SIZE
+# define SQLITE_MAX_PAGE_SIZE 32768
+#endif
+
+
+/*
+** The default size of a database page.
+*/
+#ifndef SQLITE_DEFAULT_PAGE_SIZE
+# define SQLITE_DEFAULT_PAGE_SIZE 1024
+#endif
+#if SQLITE_DEFAULT_PAGE_SIZE>SQLITE_MAX_PAGE_SIZE
+# undef SQLITE_DEFAULT_PAGE_SIZE
+# define SQLITE_DEFAULT_PAGE_SIZE SQLITE_MAX_PAGE_SIZE
+#endif
+
+/*
+** Ordinarily, if no value is explicitly provided, SQLite creates databases
+** with page size SQLITE_DEFAULT_PAGE_SIZE. However, based on certain
+** device characteristics (sector-size and atomic write() support),
+** SQLite may choose a larger value. This constant is the maximum value
+** SQLite will choose on its own.
+*/
+#ifndef SQLITE_MAX_DEFAULT_PAGE_SIZE
+# define SQLITE_MAX_DEFAULT_PAGE_SIZE 8192
+#endif
+#if SQLITE_MAX_DEFAULT_PAGE_SIZE>SQLITE_MAX_PAGE_SIZE
+# undef SQLITE_MAX_DEFAULT_PAGE_SIZE
+# define SQLITE_MAX_DEFAULT_PAGE_SIZE SQLITE_MAX_PAGE_SIZE
+#endif
+
+
+/*
+** Maximum number of pages in one database file.
+**
+** This is really just the default value for the max_page_count pragma.
+** This value can be lowered (or raised) at run-time using that the
+** max_page_count macro.
+*/
+#ifndef SQLITE_MAX_PAGE_COUNT
+# define SQLITE_MAX_PAGE_COUNT 1073741823
+#endif
+
+/*
+** Maximum length (in bytes) of the pattern in a LIKE or GLOB
+** operator.
+*/
+#ifndef SQLITE_MAX_LIKE_PATTERN_LENGTH
+# define SQLITE_MAX_LIKE_PATTERN_LENGTH 50000
+#endif
+
+/************** End of sqliteLimit.h *****************************************/
+/************** Continuing where we left off in sqliteInt.h ******************/
+
+/* Disable nuisance warnings on Borland compilers */
+#if defined(__BORLANDC__)
+#pragma warn -rch /* unreachable code */
+#pragma warn -ccc /* Condition is always true or false */
+#pragma warn -aus /* Assigned value is never used */
+#pragma warn -csu /* Comparing signed and unsigned */
+#pragma warn -spa /* Suspicous pointer arithmetic */
+#endif
+
+/* Needed for various definitions... */
+#define _GNU_SOURCE
+
+/*
+** Include standard header files as necessary
+*/
+#ifdef HAVE_STDINT_H
+#include <stdint.h>
+#endif
+#ifdef HAVE_INTTYPES_H
+#include <inttypes.h>
+#endif
+
+/*
+** A macro used to aid in coverage testing. When doing coverage
+** testing, the condition inside the argument must be evaluated
+** both true and false in order to get full branch coverage.
+** This macro can be inserted to ensure adequate test coverage
+** in places where simple condition/decision coverage is inadequate.
+*/
+#ifdef SQLITE_COVERAGE_TEST
+SQLITE_PRIVATE void sqlite3Coverage(int);
+# define testcase(X) if( X ){ sqlite3Coverage(__LINE__); }
+#else
+# define testcase(X)
+#endif
+
+
+/*
+** The macro unlikely() is a hint that surrounds a boolean
+** expression that is usually false. Macro likely() surrounds
+** a boolean expression that is usually true. GCC is able to
+** use these hints to generate better code, sometimes.
+*/
+#if defined(__GNUC__) && 0
+# define likely(X) __builtin_expect((X),1)
+# define unlikely(X) __builtin_expect((X),0)
+#else
+# define likely(X) !!(X)
+# define unlikely(X) !!(X)
+#endif
+
+
+/*
+** These #defines should enable >2GB file support on Posix if the
+** underlying operating system supports it. If the OS lacks
+** large file support, or if the OS is windows, these should be no-ops.
+**
+** Ticket #2739: The _LARGEFILE_SOURCE macro must appear before any
+** system #includes. Hence, this block of code must be the very first
+** code in all source files.
+**
+** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch
+** on the compiler command line. This is necessary if you are compiling
+** on a recent machine (ex: RedHat 7.2) but you want your code to work
+** on an older machine (ex: RedHat 6.0). If you compile on RedHat 7.2
+** without this option, LFS is enable. But LFS does not exist in the kernel
+** in RedHat 6.0, so the code won't work. Hence, for maximum binary
+** portability you should omit LFS.
+**
+** Similar is true for MacOS. LFS is only supported on MacOS 9 and later.
+*/
+#ifndef SQLITE_DISABLE_LFS
+# define _LARGE_FILE 1
+# ifndef _FILE_OFFSET_BITS
+# define _FILE_OFFSET_BITS 64
+# endif
+# define _LARGEFILE_SOURCE 1
+#endif
+
+
+/*
+** The SQLITE_THREADSAFE macro must be defined as either 0 or 1.
+** Older versions of SQLite used an optional THREADSAFE macro.
+** We support that for legacy
+*/
+#if !defined(SQLITE_THREADSAFE)
+#if defined(THREADSAFE)
+# define SQLITE_THREADSAFE THREADSAFE
+#else
+# define SQLITE_THREADSAFE 1
+#endif
+#endif
+
+/*
+** Exactly one of the following macros must be defined in order to
+** specify which memory allocation subsystem to use.
+**
+** SQLITE_SYSTEM_MALLOC // Use normal system malloc()
+** SQLITE_MEMDEBUG // Debugging version of system malloc()
+** SQLITE_MEMORY_SIZE // internal allocator #1
+** SQLITE_MMAP_HEAP_SIZE // internal mmap() allocator
+** SQLITE_POW2_MEMORY_SIZE // internal power-of-two allocator
+**
+** If none of the above are defined, then set SQLITE_SYSTEM_MALLOC as
+** the default.
+*/
+#if defined(SQLITE_SYSTEM_MALLOC)+defined(SQLITE_MEMDEBUG)+\
+ defined(SQLITE_MEMORY_SIZE)+defined(SQLITE_MMAP_HEAP_SIZE)+\
+ defined(SQLITE_POW2_MEMORY_SIZE)>1
+# error "At most one of the following compile-time configuration options\
+ is allows: SQLITE_SYSTEM_MALLOC, SQLITE_MEMDEBUG, SQLITE_MEMORY_SIZE,\
+ SQLITE_MMAP_HEAP_SIZE, SQLITE_POW2_MEMORY_SIZE"
+#endif
+#if defined(SQLITE_SYSTEM_MALLOC)+defined(SQLITE_MEMDEBUG)+\
+ defined(SQLITE_MEMORY_SIZE)+defined(SQLITE_MMAP_HEAP_SIZE)+\
+ defined(SQLITE_POW2_MEMORY_SIZE)==0
+# define SQLITE_SYSTEM_MALLOC 1
+#endif
+
+/*
+** If SQLITE_MALLOC_SOFT_LIMIT is defined, then try to keep the
+** sizes of memory allocations below this value where possible.
+*/
+#if defined(SQLITE_POW2_MEMORY_SIZE) && !defined(SQLITE_MALLOC_SOFT_LIMIT)
+# define SQLITE_MALLOC_SOFT_LIMIT 1024
+#endif
+
+/*
+** We need to define _XOPEN_SOURCE as follows in order to enable
+** recursive mutexes on most unix systems. But Mac OS X is different.
+** The _XOPEN_SOURCE define causes problems for Mac OS X we are told,
+** so it is omitted there. See ticket #2673.
+**
+** Later we learn that _XOPEN_SOURCE is poorly or incorrectly
+** implemented on some systems. So we avoid defining it at all
+** if it is already defined or if it is unneeded because we are
+** not doing a threadsafe build. Ticket #2681.
+**
+** See also ticket #2741.
+*/
+#if !defined(_XOPEN_SOURCE) && !defined(__DARWIN__) && !defined(__APPLE__) && SQLITE_THREADSAFE
+# define _XOPEN_SOURCE 500 /* Needed to enable pthread recursive mutexes */
+#endif
+
+#if defined(SQLITE_TCL) || defined(TCLSH)
+# include <tcl.h>
+#endif
+
+/*
+** Many people are failing to set -DNDEBUG=1 when compiling SQLite.
+** Setting NDEBUG makes the code smaller and run faster. So the following
+** lines are added to automatically set NDEBUG unless the -DSQLITE_DEBUG=1
+** option is set. Thus NDEBUG becomes an opt-in rather than an opt-out
+** feature.
+*/
+#if !defined(NDEBUG) && !defined(SQLITE_DEBUG)
+# define NDEBUG 1
+#endif
+
+/************** Include sqlite3.h in the middle of sqliteInt.h ***************/
+/************** Begin file sqlite3.h *****************************************/
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This header file defines the interface that the SQLite library
+** presents to client programs. If a C-function, structure, datatype,
+** or constant definition does not appear in this file, then it is
+** not a published API of SQLite, is subject to change without
+** notice, and should not be referenced by programs that use SQLite.
+**
+** Some of the definitions that are in this file are marked as
+** "experimental". Experimental interfaces are normally new
+** features recently added to SQLite. We do not anticipate changes
+** to experimental interfaces but reserve to make minor changes if
+** experience from use "in the wild" suggest such changes are prudent.
+**
+** The official C-language API documentation for SQLite is derived
+** from comments in this file. This file is the authoritative source
+** on how SQLite interfaces are suppose to operate.
+**
+** The name of this file under configuration management is "sqlite.h.in".
+** The makefile makes some minor changes to this file (such as inserting
+** the version number) and changes its name to "sqlite3.h" as
+** part of the build process.
+**
+** @(#) $Id: sqlite.h.in,v 1.312 2008/05/12 12:39:56 drh Exp $
+*/
+#ifndef _SQLITE3_H_
+#define _SQLITE3_H_
+#include <stdarg.h> /* Needed for the definition of va_list */
+
+/*
+** Make sure we can call this stuff from C++.
+*/
+#if 0
+extern "C" {
+#endif
+
+
+/*
+** Add the ability to override 'extern'
+*/
+#ifndef SQLITE_EXTERN
+# define SQLITE_EXTERN extern
+#endif
+
+/*
+** Make sure these symbols where not defined by some previous header
+** file.
+*/
+#ifdef SQLITE_VERSION
+# undef SQLITE_VERSION
+#endif
+#ifdef SQLITE_VERSION_NUMBER
+# undef SQLITE_VERSION_NUMBER
+#endif
+
+/*
+** CAPI3REF: Compile-Time Library Version Numbers {F10010}
+**
+** The SQLITE_VERSION and SQLITE_VERSION_NUMBER #defines in
+** the sqlite3.h file specify the version of SQLite with which
+** that header file is associated.
+**
+** The "version" of SQLite is a string of the form "X.Y.Z".
+** The phrase "alpha" or "beta" might be appended after the Z.
+** The X value is major version number always 3 in SQLite3.
+** The X value only changes when backwards compatibility is
+** broken and we intend to never break
+** backwards compatibility. The Y value is the minor version
+** number and only changes when
+** there are major feature enhancements that are forwards compatible
+** but not backwards compatible. The Z value is release number
+** and is incremented with
+** each release but resets back to 0 when Y is incremented.
+**
+** See also: [sqlite3_libversion()] and [sqlite3_libversion_number()].
+**
+** INVARIANTS:
+**
+** {F10011} The SQLITE_VERSION #define in the sqlite3.h header file
+** evaluates to a string literal that is the SQLite version
+** with which the header file is associated.
+**
+** {F10014} The SQLITE_VERSION_NUMBER #define resolves to an integer
+** with the value (X*1000000 + Y*1000 + Z) where X, Y, and
+** Z are the major version, minor version, and release number.
+*/
+#define SQLITE_VERSION "3.5.9"
+#define SQLITE_VERSION_NUMBER 3005009
+
+/*
+** CAPI3REF: Run-Time Library Version Numbers {F10020}
+** KEYWORDS: sqlite3_version
+**
+** These features provide the same information as the [SQLITE_VERSION]
+** and [SQLITE_VERSION_NUMBER] #defines in the header, but are associated
+** with the library instead of the header file. Cautious programmers might
+** include a check in their application to verify that
+** sqlite3_libversion_number() always returns the value
+** [SQLITE_VERSION_NUMBER].
+**
+** The sqlite3_libversion() function returns the same information as is
+** in the sqlite3_version[] string constant. The function is provided
+** for use in DLLs since DLL users usually do not have direct access to string
+** constants within the DLL.
+**
+** INVARIANTS:
+**
+** {F10021} The [sqlite3_libversion_number()] interface returns an integer
+** equal to [SQLITE_VERSION_NUMBER].
+**
+** {F10022} The [sqlite3_version] string constant contains the text of the
+** [SQLITE_VERSION] string.
+**
+** {F10023} The [sqlite3_libversion()] function returns
+** a pointer to the [sqlite3_version] string constant.
+*/
+SQLITE_API const char sqlite3_version[];
+SQLITE_API const char *sqlite3_libversion(void);
+SQLITE_API int sqlite3_libversion_number(void);
+
+/*
+** CAPI3REF: Test To See If The Library Is Threadsafe {F10100}
+**
+** SQLite can be compiled with or without mutexes. When
+** the SQLITE_THREADSAFE C preprocessor macro is true, mutexes
+** are enabled and SQLite is threadsafe. When that macro is false,
+** the mutexes are omitted. Without the mutexes, it is not safe
+** to use SQLite from more than one thread.
+**
+** There is a measurable performance penalty for enabling mutexes.
+** So if speed is of utmost importance, it makes sense to disable
+** the mutexes. But for maximum safety, mutexes should be enabled.
+** The default behavior is for mutexes to be enabled.
+**
+** This interface can be used by a program to make sure that the
+** version of SQLite that it is linking against was compiled with
+** the desired setting of the SQLITE_THREADSAFE macro.
+**
+** INVARIANTS:
+**
+** {F10101} The [sqlite3_threadsafe()] function returns nonzero if
+** SQLite was compiled with its mutexes enabled or zero
+** if SQLite was compiled with mutexes disabled.
+*/
+SQLITE_API int sqlite3_threadsafe(void);
+
+/*
+** CAPI3REF: Database Connection Handle {F12000}
+** KEYWORDS: {database connection} {database connections}
+**
+** Each open SQLite database is represented by pointer to an instance of the
+** opaque structure named "sqlite3". It is useful to think of an sqlite3
+** pointer as an object. The [sqlite3_open()], [sqlite3_open16()], and
+** [sqlite3_open_v2()] interfaces are its constructors
+** and [sqlite3_close()] is its destructor. There are many other interfaces
+** (such as [sqlite3_prepare_v2()], [sqlite3_create_function()], and
+** [sqlite3_busy_timeout()] to name but three) that are methods on this
+** object.
+*/
+typedef struct sqlite3 sqlite3;
+
+
+/*
+** CAPI3REF: 64-Bit Integer Types {F10200}
+** KEYWORDS: sqlite_int64 sqlite_uint64
+**
+** Because there is no cross-platform way to specify 64-bit integer types
+** SQLite includes typedefs for 64-bit signed and unsigned integers.
+**
+** The sqlite3_int64 and sqlite3_uint64 are the preferred type
+** definitions. The sqlite_int64 and sqlite_uint64 types are
+** supported for backwards compatibility only.
+**
+** INVARIANTS:
+**
+** {F10201} The [sqlite_int64] and [sqlite3_int64] types specify a
+** 64-bit signed integer.
+**
+** {F10202} The [sqlite_uint64] and [sqlite3_uint64] types specify
+** a 64-bit unsigned integer.
+*/
+#ifdef SQLITE_INT64_TYPE
+ typedef SQLITE_INT64_TYPE sqlite_int64;
+ typedef unsigned SQLITE_INT64_TYPE sqlite_uint64;
+#elif defined(_MSC_VER) || defined(__BORLANDC__)
+ typedef __int64 sqlite_int64;
+ typedef unsigned __int64 sqlite_uint64;
+#else
+ typedef long long int sqlite_int64;
+ typedef unsigned long long int sqlite_uint64;
+#endif
+typedef sqlite_int64 sqlite3_int64;
+typedef sqlite_uint64 sqlite3_uint64;
+
+/*
+** If compiling for a processor that lacks floating point support,
+** substitute integer for floating-point
+*/
+#ifdef SQLITE_OMIT_FLOATING_POINT
+# define double sqlite3_int64
+#endif
+
+/*
+** CAPI3REF: Closing A Database Connection {F12010}
+**
+** This routine is the destructor for the [sqlite3] object.
+**
+** Applications should [sqlite3_finalize | finalize] all
+** [prepared statements] and
+** [sqlite3_blob_close | close] all [sqlite3_blob | BLOBs]
+** associated with the [sqlite3] object prior
+** to attempting to close the [sqlite3] object.
+**
+** <todo>What happens to pending transactions? Are they
+** rolled back, or abandoned?</todo>
+**
+** INVARIANTS:
+**
+** {F12011} The [sqlite3_close()] interface destroys an [sqlite3] object
+** allocated by a prior call to [sqlite3_open()],
+** [sqlite3_open16()], or [sqlite3_open_v2()].
+**
+** {F12012} The [sqlite3_close()] function releases all memory used by the
+** connection and closes all open files.
+**
+** {F12013} If the database connection contains
+** [prepared statements] that have not been
+** finalized by [sqlite3_finalize()], then [sqlite3_close()]
+** returns [SQLITE_BUSY] and leaves the connection open.
+**
+** {F12014} Giving sqlite3_close() a NULL pointer is a harmless no-op.
+**
+** LIMITATIONS:
+**
+** {U12015} The parameter to [sqlite3_close()] must be an [sqlite3] object
+** pointer previously obtained from [sqlite3_open()] or the
+** equivalent, or NULL.
+**
+** {U12016} The parameter to [sqlite3_close()] must not have been previously
+** closed.
+*/
+SQLITE_API int sqlite3_close(sqlite3 *);
+
+/*
+** The type for a callback function.
+** This is legacy and deprecated. It is included for historical
+** compatibility and is not documented.
+*/
+typedef int (*sqlite3_callback)(void*,int,char**, char**);
+
+/*
+** CAPI3REF: One-Step Query Execution Interface {F12100}
+**
+** The sqlite3_exec() interface is a convenient way of running
+** one or more SQL statements without a lot of C code. The
+** SQL statements are passed in as the second parameter to
+** sqlite3_exec(). The statements are evaluated one by one
+** until either an error or an interrupt is encountered or
+** until they are all done. The 3rd parameter is an optional
+** callback that is invoked once for each row of any query results
+** produced by the SQL statements. The 5th parameter tells where
+** to write any error messages.
+**
+** The sqlite3_exec() interface is implemented in terms of
+** [sqlite3_prepare_v2()], [sqlite3_step()], and [sqlite3_finalize()].
+** The sqlite3_exec() routine does nothing that cannot be done
+** by [sqlite3_prepare_v2()], [sqlite3_step()], and [sqlite3_finalize()].
+** The sqlite3_exec() is just a convenient wrapper.
+**
+** INVARIANTS:
+**
+** {F12101} The [sqlite3_exec()] interface evaluates zero or more UTF-8
+** encoded, semicolon-separated, SQL statements in the
+** zero-terminated string of its 2nd parameter within the
+** context of the [sqlite3] object given in the 1st parameter.
+**
+** {F12104} The return value of [sqlite3_exec()] is SQLITE_OK if all
+** SQL statements run successfully.
+**
+** {F12105} The return value of [sqlite3_exec()] is an appropriate
+** non-zero error code if any SQL statement fails.
+**
+** {F12107} If one or more of the SQL statements handed to [sqlite3_exec()]
+** return results and the 3rd parameter is not NULL, then
+** the callback function specified by the 3rd parameter is
+** invoked once for each row of result.
+**
+** {F12110} If the callback returns a non-zero value then [sqlite3_exec()]
+** will aborted the SQL statement it is currently evaluating,
+** skip all subsequent SQL statements, and return [SQLITE_ABORT].
+** <todo>What happens to *errmsg here? Does the result code for
+** sqlite3_errcode() get set?</todo>
+**
+** {F12113} The [sqlite3_exec()] routine will pass its 4th parameter through
+** as the 1st parameter of the callback.
+**
+** {F12116} The [sqlite3_exec()] routine sets the 2nd parameter of its
+** callback to be the number of columns in the current row of
+** result.
+**
+** {F12119} The [sqlite3_exec()] routine sets the 3rd parameter of its
+** callback to be an array of pointers to strings holding the
+** values for each column in the current result set row as
+** obtained from [sqlite3_column_text()].
+**
+** {F12122} The [sqlite3_exec()] routine sets the 4th parameter of its
+** callback to be an array of pointers to strings holding the
+** names of result columns as obtained from [sqlite3_column_name()].
+**
+** {F12125} If the 3rd parameter to [sqlite3_exec()] is NULL then
+** [sqlite3_exec()] never invokes a callback. All query
+** results are silently discarded.
+**
+** {F12128} If an error occurs while parsing or evaluating any of the SQL
+** statements handed to [sqlite3_exec()] then [sqlite3_exec()] will
+** return an [error code] other than [SQLITE_OK].
+**
+** {F12131} If an error occurs while parsing or evaluating any of the SQL
+** handed to [sqlite3_exec()] and if the 5th parameter (errmsg)
+** to [sqlite3_exec()] is not NULL, then an error message is
+** allocated using the equivalent of [sqlite3_mprintf()] and
+** *errmsg is made to point to that message.
+**
+** {F12134} The [sqlite3_exec()] routine does not change the value of
+** *errmsg if errmsg is NULL or if there are no errors.
+**
+** {F12137} The [sqlite3_exec()] function sets the error code and message
+** accessible via [sqlite3_errcode()], [sqlite3_errmsg()], and
+** [sqlite3_errmsg16()].
+**
+** LIMITATIONS:
+**
+** {U12141} The first parameter to [sqlite3_exec()] must be an valid and open
+** [database connection].
+**
+** {U12142} The database connection must not be closed while
+** [sqlite3_exec()] is running.
+**
+** {U12143} The calling function is should use [sqlite3_free()] to free
+** the memory that *errmsg is left pointing at once the error
+** message is no longer needed.
+**
+** {U12145} The SQL statement text in the 2nd parameter to [sqlite3_exec()]
+** must remain unchanged while [sqlite3_exec()] is running.
+*/
+SQLITE_API int sqlite3_exec(
+ sqlite3*, /* An open database */
+ const char *sql, /* SQL to be evaluted */
+ int (*callback)(void*,int,char**,char**), /* Callback function */
+ void *, /* 1st argument to callback */
+ char **errmsg /* Error msg written here */
+);
+
+/*
+** CAPI3REF: Result Codes {F10210}
+** KEYWORDS: SQLITE_OK {error code} {error codes}
+**
+** Many SQLite functions return an integer result code from the set shown
+** here in order to indicates success or failure.
+**
+** See also: [SQLITE_IOERR_READ | extended result codes]
+*/
+#define SQLITE_OK 0 /* Successful result */
+/* beginning-of-error-codes */
+#define SQLITE_ERROR 1 /* SQL error or missing database */
+#define SQLITE_INTERNAL 2 /* Internal logic error in SQLite */
+#define SQLITE_PERM 3 /* Access permission denied */
+#define SQLITE_ABORT 4 /* Callback routine requested an abort */
+#define SQLITE_BUSY 5 /* The database file is locked */
+#define SQLITE_LOCKED 6 /* A table in the database is locked */
+#define SQLITE_NOMEM 7 /* A malloc() failed */
+#define SQLITE_READONLY 8 /* Attempt to write a readonly database */
+#define SQLITE_INTERRUPT 9 /* Operation terminated by sqlite3_interrupt()*/
+#define SQLITE_IOERR 10 /* Some kind of disk I/O error occurred */
+#define SQLITE_CORRUPT 11 /* The database disk image is malformed */
+#define SQLITE_NOTFOUND 12 /* NOT USED. Table or record not found */
+#define SQLITE_FULL 13 /* Insertion failed because database is full */
+#define SQLITE_CANTOPEN 14 /* Unable to open the database file */
+#define SQLITE_PROTOCOL 15 /* NOT USED. Database lock protocol error */
+#define SQLITE_EMPTY 16 /* Database is empty */
+#define SQLITE_SCHEMA 17 /* The database schema changed */
+#define SQLITE_TOOBIG 18 /* String or BLOB exceeds size limit */
+#define SQLITE_CONSTRAINT 19 /* Abort due to constraint violation */
+#define SQLITE_MISMATCH 20 /* Data type mismatch */
+#define SQLITE_MISUSE 21 /* Library used incorrectly */
+#define SQLITE_NOLFS 22 /* Uses OS features not supported on host */
+#define SQLITE_AUTH 23 /* Authorization denied */
+#define SQLITE_FORMAT 24 /* Auxiliary database format error */
+#define SQLITE_RANGE 25 /* 2nd parameter to sqlite3_bind out of range */
+#define SQLITE_NOTADB 26 /* File opened that is not a database file */
+#define SQLITE_ROW 100 /* sqlite3_step() has another row ready */
+#define SQLITE_DONE 101 /* sqlite3_step() has finished executing */
+/* end-of-error-codes */
+
+/*
+** CAPI3REF: Extended Result Codes {F10220}
+** KEYWORDS: {extended error code} {extended error codes}
+** KEYWORDS: {extended result codes}
+**
+** In its default configuration, SQLite API routines return one of 26 integer
+** [SQLITE_OK | result codes]. However, experience has shown that
+** many of these result codes are too course-grained. They do not provide as
+** much information about problems as programmers might like. In an effort to
+** address this, newer versions of SQLite (version 3.3.8 and later) include
+** support for additional result codes that provide more detailed information
+** about errors. The extended result codes are enabled or disabled
+** for each database connection using the [sqlite3_extended_result_codes()]
+** API.
+**
+** Some of the available extended result codes are listed here.
+** One may expect the number of extended result codes will be expand
+** over time. Software that uses extended result codes should expect
+** to see new result codes in future releases of SQLite.
+**
+** The SQLITE_OK result code will never be extended. It will always
+** be exactly zero.
+**
+** INVARIANTS:
+**
+** {F10223} The symbolic name for an extended result code always contains
+** a related primary result code as a prefix.
+**
+** {F10224} Primary result code names contain a single "_" character.
+**
+** {F10225} Extended result code names contain two or more "_" characters.
+**
+** {F10226} The numeric value of an extended result code contains the
+** numeric value of its corresponding primary result code in
+** its least significant 8 bits.
+*/
+#define SQLITE_IOERR_READ (SQLITE_IOERR | (1<<8))
+#define SQLITE_IOERR_SHORT_READ (SQLITE_IOERR | (2<<8))
+#define SQLITE_IOERR_WRITE (SQLITE_IOERR | (3<<8))
+#define SQLITE_IOERR_FSYNC (SQLITE_IOERR | (4<<8))
+#define SQLITE_IOERR_DIR_FSYNC (SQLITE_IOERR | (5<<8))
+#define SQLITE_IOERR_TRUNCATE (SQLITE_IOERR | (6<<8))
+#define SQLITE_IOERR_FSTAT (SQLITE_IOERR | (7<<8))
+#define SQLITE_IOERR_UNLOCK (SQLITE_IOERR | (8<<8))
+#define SQLITE_IOERR_RDLOCK (SQLITE_IOERR | (9<<8))
+#define SQLITE_IOERR_DELETE (SQLITE_IOERR | (10<<8))
+#define SQLITE_IOERR_BLOCKED (SQLITE_IOERR | (11<<8))
+#define SQLITE_IOERR_NOMEM (SQLITE_IOERR | (12<<8))
+
+/*
+** CAPI3REF: Flags For File Open Operations {F10230}
+**
+** These bit values are intended for use in the
+** 3rd parameter to the [sqlite3_open_v2()] interface and
+** in the 4th parameter to the xOpen method of the
+** [sqlite3_vfs] object.
+*/
+#define SQLITE_OPEN_READONLY 0x00000001
+#define SQLITE_OPEN_READWRITE 0x00000002
+#define SQLITE_OPEN_CREATE 0x00000004
+#define SQLITE_OPEN_DELETEONCLOSE 0x00000008
+#define SQLITE_OPEN_EXCLUSIVE 0x00000010
+#define SQLITE_OPEN_MAIN_DB 0x00000100
+#define SQLITE_OPEN_TEMP_DB 0x00000200
+#define SQLITE_OPEN_TRANSIENT_DB 0x00000400
+#define SQLITE_OPEN_MAIN_JOURNAL 0x00000800
+#define SQLITE_OPEN_TEMP_JOURNAL 0x00001000
+#define SQLITE_OPEN_SUBJOURNAL 0x00002000
+#define SQLITE_OPEN_MASTER_JOURNAL 0x00004000
+
+/*
+** CAPI3REF: Device Characteristics {F10240}
+**
+** The xDeviceCapabilities method of the [sqlite3_io_methods]
+** object returns an integer which is a vector of the these
+** bit values expressing I/O characteristics of the mass storage
+** device that holds the file that the [sqlite3_io_methods]
+** refers to.
+**
+** The SQLITE_IOCAP_ATOMIC property means that all writes of
+** any size are atomic. The SQLITE_IOCAP_ATOMICnnn values
+** mean that writes of blocks that are nnn bytes in size and
+** are aligned to an address which is an integer multiple of
+** nnn are atomic. The SQLITE_IOCAP_SAFE_APPEND value means
+** that when data is appended to a file, the data is appended
+** first then the size of the file is extended, never the other
+** way around. The SQLITE_IOCAP_SEQUENTIAL property means that
+** information is written to disk in the same order as calls
+** to xWrite().
+*/
+#define SQLITE_IOCAP_ATOMIC 0x00000001
+#define SQLITE_IOCAP_ATOMIC512 0x00000002
+#define SQLITE_IOCAP_ATOMIC1K 0x00000004
+#define SQLITE_IOCAP_ATOMIC2K 0x00000008
+#define SQLITE_IOCAP_ATOMIC4K 0x00000010
+#define SQLITE_IOCAP_ATOMIC8K 0x00000020
+#define SQLITE_IOCAP_ATOMIC16K 0x00000040
+#define SQLITE_IOCAP_ATOMIC32K 0x00000080
+#define SQLITE_IOCAP_ATOMIC64K 0x00000100
+#define SQLITE_IOCAP_SAFE_APPEND 0x00000200
+#define SQLITE_IOCAP_SEQUENTIAL 0x00000400
+
+/*
+** CAPI3REF: File Locking Levels {F10250}
+**
+** SQLite uses one of these integer values as the second
+** argument to calls it makes to the xLock() and xUnlock() methods
+** of an [sqlite3_io_methods] object.
+*/
+#define SQLITE_LOCK_NONE 0
+#define SQLITE_LOCK_SHARED 1
+#define SQLITE_LOCK_RESERVED 2
+#define SQLITE_LOCK_PENDING 3
+#define SQLITE_LOCK_EXCLUSIVE 4
+
+/*
+** CAPI3REF: Synchronization Type Flags {F10260}
+**
+** When SQLite invokes the xSync() method of an
+** [sqlite3_io_methods] object it uses a combination of
+** these integer values as the second argument.
+**
+** When the SQLITE_SYNC_DATAONLY flag is used, it means that the
+** sync operation only needs to flush data to mass storage. Inode
+** information need not be flushed. The SQLITE_SYNC_NORMAL flag means
+** to use normal fsync() semantics. The SQLITE_SYNC_FULL flag means
+** to use Mac OS-X style fullsync instead of fsync().
+*/
+#define SQLITE_SYNC_NORMAL 0x00002
+#define SQLITE_SYNC_FULL 0x00003
+#define SQLITE_SYNC_DATAONLY 0x00010
+
+
+/*
+** CAPI3REF: OS Interface Open File Handle {F11110}
+**
+** An [sqlite3_file] object represents an open file in the OS
+** interface layer. Individual OS interface implementations will
+** want to subclass this object by appending additional fields
+** for their own use. The pMethods entry is a pointer to an
+** [sqlite3_io_methods] object that defines methods for performing
+** I/O operations on the open file.
+*/
+typedef struct sqlite3_file sqlite3_file;
+struct sqlite3_file {
+ const struct sqlite3_io_methods *pMethods; /* Methods for an open file */
+};
+
+/*
+** CAPI3REF: OS Interface File Virtual Methods Object {F11120}
+**
+** Every file opened by the [sqlite3_vfs] xOpen method contains a pointer to
+** an instance of this object. This object defines the
+** methods used to perform various operations against the open file.
+**
+** The flags argument to xSync may be one of [SQLITE_SYNC_NORMAL] or
+** [SQLITE_SYNC_FULL]. The first choice is the normal fsync().
+* The second choice is an
+** OS-X style fullsync. The SQLITE_SYNC_DATA flag may be ORed in to
+** indicate that only the data of the file and not its inode needs to be
+** synced.
+**
+** The integer values to xLock() and xUnlock() are one of
+** <ul>
+** <li> [SQLITE_LOCK_NONE],
+** <li> [SQLITE_LOCK_SHARED],
+** <li> [SQLITE_LOCK_RESERVED],
+** <li> [SQLITE_LOCK_PENDING], or
+** <li> [SQLITE_LOCK_EXCLUSIVE].
+** </ul>
+** xLock() increases the lock. xUnlock() decreases the lock.
+** The xCheckReservedLock() method looks
+** to see if any database connection, either in this
+** process or in some other process, is holding an RESERVED,
+** PENDING, or EXCLUSIVE lock on the file. It returns true
+** if such a lock exists and false if not.
+**
+** The xFileControl() method is a generic interface that allows custom
+** VFS implementations to directly control an open file using the
+** [sqlite3_file_control()] interface. The second "op" argument
+** is an integer opcode. The third
+** argument is a generic pointer which is intended to be a pointer
+** to a structure that may contain arguments or space in which to
+** write return values. Potential uses for xFileControl() might be
+** functions to enable blocking locks with timeouts, to change the
+** locking strategy (for example to use dot-file locks), to inquire
+** about the status of a lock, or to break stale locks. The SQLite
+** core reserves opcodes less than 100 for its own use.
+** A [SQLITE_FCNTL_LOCKSTATE | list of opcodes] less than 100 is available.
+** Applications that define a custom xFileControl method should use opcodes
+** greater than 100 to avoid conflicts.
+**
+** The xSectorSize() method returns the sector size of the
+** device that underlies the file. The sector size is the
+** minimum write that can be performed without disturbing
+** other bytes in the file. The xDeviceCharacteristics()
+** method returns a bit vector describing behaviors of the
+** underlying device:
+**
+** <ul>
+** <li> [SQLITE_IOCAP_ATOMIC]
+** <li> [SQLITE_IOCAP_ATOMIC512]
+** <li> [SQLITE_IOCAP_ATOMIC1K]
+** <li> [SQLITE_IOCAP_ATOMIC2K]
+** <li> [SQLITE_IOCAP_ATOMIC4K]
+** <li> [SQLITE_IOCAP_ATOMIC8K]
+** <li> [SQLITE_IOCAP_ATOMIC16K]
+** <li> [SQLITE_IOCAP_ATOMIC32K]
+** <li> [SQLITE_IOCAP_ATOMIC64K]
+** <li> [SQLITE_IOCAP_SAFE_APPEND]
+** <li> [SQLITE_IOCAP_SEQUENTIAL]
+** </ul>
+**
+** The SQLITE_IOCAP_ATOMIC property means that all writes of
+** any size are atomic. The SQLITE_IOCAP_ATOMICnnn values
+** mean that writes of blocks that are nnn bytes in size and
+** are aligned to an address which is an integer multiple of
+** nnn are atomic. The SQLITE_IOCAP_SAFE_APPEND value means
+** that when data is appended to a file, the data is appended
+** first then the size of the file is extended, never the other
+** way around. The SQLITE_IOCAP_SEQUENTIAL property means that
+** information is written to disk in the same order as calls
+** to xWrite().
+*/
+typedef struct sqlite3_io_methods sqlite3_io_methods;
+struct sqlite3_io_methods {
+ int iVersion;
+ int (*xClose)(sqlite3_file*);
+ int (*xRead)(sqlite3_file*, void*, int iAmt, sqlite3_int64 iOfst);
+ int (*xWrite)(sqlite3_file*, const void*, int iAmt, sqlite3_int64 iOfst);
+ int (*xTruncate)(sqlite3_file*, sqlite3_int64 size);
+ int (*xSync)(sqlite3_file*, int flags);
+ int (*xFileSize)(sqlite3_file*, sqlite3_int64 *pSize);
+ int (*xLock)(sqlite3_file*, int);
+ int (*xUnlock)(sqlite3_file*, int);
+ int (*xCheckReservedLock)(sqlite3_file*);
+ int (*xFileControl)(sqlite3_file*, int op, void *pArg);
+ int (*xSectorSize)(sqlite3_file*);
+ int (*xDeviceCharacteristics)(sqlite3_file*);
+ /* Additional methods may be added in future releases */
+};
+
+/*
+** CAPI3REF: Standard File Control Opcodes {F11310}
+**
+** These integer constants are opcodes for the xFileControl method
+** of the [sqlite3_io_methods] object and to the [sqlite3_file_control()]
+** interface.
+**
+** The [SQLITE_FCNTL_LOCKSTATE] opcode is used for debugging. This
+** opcode causes the xFileControl method to write the current state of
+** the lock (one of [SQLITE_LOCK_NONE], [SQLITE_LOCK_SHARED],
+** [SQLITE_LOCK_RESERVED], [SQLITE_LOCK_PENDING], or [SQLITE_LOCK_EXCLUSIVE])
+** into an integer that the pArg argument points to. This capability
+** is used during testing and only needs to be supported when SQLITE_TEST
+** is defined.
+*/
+#define SQLITE_FCNTL_LOCKSTATE 1
+
+/*
+** CAPI3REF: Mutex Handle {F17110}
+**
+** The mutex module within SQLite defines [sqlite3_mutex] to be an
+** abstract type for a mutex object. The SQLite core never looks
+** at the internal representation of an [sqlite3_mutex]. It only
+** deals with pointers to the [sqlite3_mutex] object.
+**
+** Mutexes are created using [sqlite3_mutex_alloc()].
+*/
+typedef struct sqlite3_mutex sqlite3_mutex;
+
+/*
+** CAPI3REF: OS Interface Object {F11140}
+**
+** An instance of this object defines the interface between the
+** SQLite core and the underlying operating system. The "vfs"
+** in the name of the object stands for "virtual file system".
+**
+** The iVersion field is initially 1 but may be larger for future
+** versions of SQLite. Additional fields may be appended to this
+** object when the iVersion value is increased.
+**
+** The szOsFile field is the size of the subclassed [sqlite3_file]
+** structure used by this VFS. mxPathname is the maximum length of
+** a pathname in this VFS.
+**
+** Registered sqlite3_vfs objects are kept on a linked list formed by
+** the pNext pointer. The [sqlite3_vfs_register()]
+** and [sqlite3_vfs_unregister()] interfaces manage this list
+** in a thread-safe way. The [sqlite3_vfs_find()] interface
+** searches the list.
+**
+** The pNext field is the only field in the sqlite3_vfs
+** structure that SQLite will ever modify. SQLite will only access
+** or modify this field while holding a particular static mutex.
+** The application should never modify anything within the sqlite3_vfs
+** object once the object has been registered.
+**
+** The zName field holds the name of the VFS module. The name must
+** be unique across all VFS modules.
+**
+** {F11141} SQLite will guarantee that the zFilename string passed to
+** xOpen() is a full pathname as generated by xFullPathname() and
+** that the string will be valid and unchanged until xClose() is
+** called. {END} So the [sqlite3_file] can store a pointer to the
+** filename if it needs to remember the filename for some reason.
+**
+** {F11142} The flags argument to xOpen() includes all bits set in
+** the flags argument to [sqlite3_open_v2()]. Or if [sqlite3_open()]
+** or [sqlite3_open16()] is used, then flags includes at least
+** [SQLITE_OPEN_READWRITE] | [SQLITE_OPEN_CREATE]. {END}
+** If xOpen() opens a file read-only then it sets *pOutFlags to
+** include [SQLITE_OPEN_READONLY]. Other bits in *pOutFlags may be
+** set.
+**
+** {F11143} SQLite will also add one of the following flags to the xOpen()
+** call, depending on the object being opened:
+**
+** <ul>
+** <li> [SQLITE_OPEN_MAIN_DB]
+** <li> [SQLITE_OPEN_MAIN_JOURNAL]
+** <li> [SQLITE_OPEN_TEMP_DB]
+** <li> [SQLITE_OPEN_TEMP_JOURNAL]
+** <li> [SQLITE_OPEN_TRANSIENT_DB]
+** <li> [SQLITE_OPEN_SUBJOURNAL]
+** <li> [SQLITE_OPEN_MASTER_JOURNAL]
+** </ul> {END}
+**
+** The file I/O implementation can use the object type flags to
+** changes the way it deals with files. For example, an application
+** that does not care about crash recovery or rollback might make
+** the open of a journal file a no-op. Writes to this journal would
+** also be no-ops, and any attempt to read the journal would return
+** SQLITE_IOERR. Or the implementation might recognize that a database
+** file will be doing page-aligned sector reads and writes in a random
+** order and set up its I/O subsystem accordingly.
+**
+** SQLite might also add one of the following flags to the xOpen
+** method:
+**
+** <ul>
+** <li> [SQLITE_OPEN_DELETEONCLOSE]
+** <li> [SQLITE_OPEN_EXCLUSIVE]
+** </ul>
+**
+** {F11145} The [SQLITE_OPEN_DELETEONCLOSE] flag means the file should be
+** deleted when it is closed. {F11146} The [SQLITE_OPEN_DELETEONCLOSE]
+** will be set for TEMP databases, journals and for subjournals.
+** {F11147} The [SQLITE_OPEN_EXCLUSIVE] flag means the file should be opened
+** for exclusive access. This flag is set for all files except
+** for the main database file. {END}
+**
+** {F11148} At least szOsFile bytes of memory are allocated by SQLite
+** to hold the [sqlite3_file] structure passed as the third
+** argument to xOpen. {END} The xOpen method does not have to
+** allocate the structure; it should just fill it in.
+**
+** {F11149} The flags argument to xAccess() may be [SQLITE_ACCESS_EXISTS]
+** to test for the existance of a file,
+** or [SQLITE_ACCESS_READWRITE] to test to see
+** if a file is readable and writable, or [SQLITE_ACCESS_READ]
+** to test to see if a file is at least readable. {END} The file can be a
+** directory.
+**
+** {F11150} SQLite will always allocate at least mxPathname+1 bytes for
+** the output buffers for xGetTempname and xFullPathname. {F11151} The exact
+** size of the output buffer is also passed as a parameter to both
+** methods. {END} If the output buffer is not large enough, SQLITE_CANTOPEN
+** should be returned. As this is handled as a fatal error by SQLite,
+** vfs implementations should endeavor to prevent this by setting
+** mxPathname to a sufficiently large value.
+**
+** The xRandomness(), xSleep(), and xCurrentTime() interfaces
+** are not strictly a part of the filesystem, but they are
+** included in the VFS structure for completeness.
+** The xRandomness() function attempts to return nBytes bytes
+** of good-quality randomness into zOut. The return value is
+** the actual number of bytes of randomness obtained. The
+** xSleep() method causes the calling thread to sleep for at
+** least the number of microseconds given. The xCurrentTime()
+** method returns a Julian Day Number for the current date and
+** time.
+*/
+typedef struct sqlite3_vfs sqlite3_vfs;
+struct sqlite3_vfs {
+ int iVersion; /* Structure version number */
+ int szOsFile; /* Size of subclassed sqlite3_file */
+ int mxPathname; /* Maximum file pathname length */
+ sqlite3_vfs *pNext; /* Next registered VFS */
+ const char *zName; /* Name of this virtual file system */
+ void *pAppData; /* Pointer to application-specific data */
+ int (*xOpen)(sqlite3_vfs*, const char *zName, sqlite3_file*,
+ int flags, int *pOutFlags);
+ int (*xDelete)(sqlite3_vfs*, const char *zName, int syncDir);
+ int (*xAccess)(sqlite3_vfs*, const char *zName, int flags);
+ int (*xGetTempname)(sqlite3_vfs*, int nOut, char *zOut);
+ int (*xFullPathname)(sqlite3_vfs*, const char *zName, int nOut, char *zOut);
+ void *(*xDlOpen)(sqlite3_vfs*, const char *zFilename);
+ void (*xDlError)(sqlite3_vfs*, int nByte, char *zErrMsg);
+ void *(*xDlSym)(sqlite3_vfs*,void*, const char *zSymbol);
+ void (*xDlClose)(sqlite3_vfs*, void*);
+ int (*xRandomness)(sqlite3_vfs*, int nByte, char *zOut);
+ int (*xSleep)(sqlite3_vfs*, int microseconds);
+ int (*xCurrentTime)(sqlite3_vfs*, double*);
+ /* New fields may be appended in figure versions. The iVersion
+ ** value will increment whenever this happens. */
+};
+
+/*
+** CAPI3REF: Flags for the xAccess VFS method {F11190}
+**
+** {F11191} These integer constants can be used as the third parameter to
+** the xAccess method of an [sqlite3_vfs] object. {END} They determine
+** what kind of permissions the xAccess method is
+** looking for. {F11192} With SQLITE_ACCESS_EXISTS, the xAccess method
+** simply checks to see if the file exists. {F11193} With
+** SQLITE_ACCESS_READWRITE, the xAccess method checks to see
+** if the file is both readable and writable. {F11194} With
+** SQLITE_ACCESS_READ the xAccess method
+** checks to see if the file is readable.
+*/
+#define SQLITE_ACCESS_EXISTS 0
+#define SQLITE_ACCESS_READWRITE 1
+#define SQLITE_ACCESS_READ 2
+
+/*
+** CAPI3REF: Enable Or Disable Extended Result Codes {F12200}
+**
+** The sqlite3_extended_result_codes() routine enables or disables the
+** [SQLITE_IOERR_READ | extended result codes] feature of SQLite.
+** The extended result codes are disabled by default for historical
+** compatibility.
+**
+** INVARIANTS:
+**
+** {F12201} Each new [database connection] has the
+** [extended result codes] feature
+** disabled by default.
+**
+** {F12202} The [sqlite3_extended_result_codes(D,F)] interface will enable
+** [extended result codes] for the
+** [database connection] D if the F parameter
+** is true, or disable them if F is false.
+*/
+SQLITE_API int sqlite3_extended_result_codes(sqlite3*, int onoff);
+
+/*
+** CAPI3REF: Last Insert Rowid {F12220}
+**
+** Each entry in an SQLite table has a unique 64-bit signed
+** integer key called the "rowid". The rowid is always available
+** as an undeclared column named ROWID, OID, or _ROWID_ as long as those
+** names are not also used by explicitly declared columns. If
+** the table has a column of type INTEGER PRIMARY KEY then that column
+** is another alias for the rowid.
+**
+** This routine returns the rowid of the most recent
+** successful INSERT into the database from the database connection
+** shown in the first argument. If no successful inserts
+** have ever occurred on this database connection, zero is returned.
+**
+** If an INSERT occurs within a trigger, then the rowid of the
+** inserted row is returned by this routine as long as the trigger
+** is running. But once the trigger terminates, the value returned
+** by this routine reverts to the last value inserted before the
+** trigger fired.
+**
+** An INSERT that fails due to a constraint violation is not a
+** successful insert and does not change the value returned by this
+** routine. Thus INSERT OR FAIL, INSERT OR IGNORE, INSERT OR ROLLBACK,
+** and INSERT OR ABORT make no changes to the return value of this
+** routine when their insertion fails. When INSERT OR REPLACE
+** encounters a constraint violation, it does not fail. The
+** INSERT continues to completion after deleting rows that caused
+** the constraint problem so INSERT OR REPLACE will always change
+** the return value of this interface.
+**
+** For the purposes of this routine, an insert is considered to
+** be successful even if it is subsequently rolled back.
+**
+** INVARIANTS:
+**
+** {F12221} The [sqlite3_last_insert_rowid()] function returns the
+** rowid of the most recent successful insert done
+** on the same database connection and within the same
+** trigger context, or zero if there have
+** been no qualifying inserts on that connection.
+**
+** {F12223} The [sqlite3_last_insert_rowid()] function returns
+** same value when called from the same trigger context
+** immediately before and after a ROLLBACK.
+**
+** LIMITATIONS:
+**
+** {U12232} If a separate thread does a new insert on the same
+** database connection while the [sqlite3_last_insert_rowid()]
+** function is running and thus changes the last insert rowid,
+** then the value returned by [sqlite3_last_insert_rowid()] is
+** unpredictable and might not equal either the old or the new
+** last insert rowid.
+*/
+SQLITE_API sqlite3_int64 sqlite3_last_insert_rowid(sqlite3*);
+
+/*
+** CAPI3REF: Count The Number Of Rows Modified {F12240}
+**
+** This function returns the number of database rows that were changed
+** or inserted or deleted by the most recently completed SQL statement
+** on the connection specified by the first parameter. Only
+** changes that are directly specified by the INSERT, UPDATE, or
+** DELETE statement are counted. Auxiliary changes caused by
+** triggers are not counted. Use the [sqlite3_total_changes()] function
+** to find the total number of changes including changes caused by triggers.
+**
+** A "row change" is a change to a single row of a single table
+** caused by an INSERT, DELETE, or UPDATE statement. Rows that
+** are changed as side effects of REPLACE constraint resolution,
+** rollback, ABORT processing, DROP TABLE, or by any other
+** mechanisms do not count as direct row changes.
+**
+** A "trigger context" is a scope of execution that begins and
+** ends with the script of a trigger. Most SQL statements are
+** evaluated outside of any trigger. This is the "top level"
+** trigger context. If a trigger fires from the top level, a
+** new trigger context is entered for the duration of that one
+** trigger. Subtriggers create subcontexts for their duration.
+**
+** Calling [sqlite3_exec()] or [sqlite3_step()] recursively does
+** not create a new trigger context.
+**
+** This function returns the number of direct row changes in the
+** most recent INSERT, UPDATE, or DELETE statement within the same
+** trigger context.
+**
+** So when called from the top level, this function returns the
+** number of changes in the most recent INSERT, UPDATE, or DELETE
+** that also occurred at the top level.
+** Within the body of a trigger, the sqlite3_changes() interface
+** can be called to find the number of
+** changes in the most recently completed INSERT, UPDATE, or DELETE
+** statement within the body of the same trigger.
+** However, the number returned does not include in changes
+** caused by subtriggers since they have their own context.
+**
+** SQLite implements the command "DELETE FROM table" without
+** a WHERE clause by dropping and recreating the table. (This is much
+** faster than going through and deleting individual elements from the
+** table.) Because of this optimization, the deletions in
+** "DELETE FROM table" are not row changes and will not be counted
+** by the sqlite3_changes() or [sqlite3_total_changes()] functions.
+** To get an accurate count of the number of rows deleted, use
+** "DELETE FROM table WHERE 1" instead.
+**
+** INVARIANTS:
+**
+** {F12241} The [sqlite3_changes()] function returns the number of
+** row changes caused by the most recent INSERT, UPDATE,
+** or DELETE statement on the same database connection and
+** within the same trigger context, or zero if there have
+** not been any qualifying row changes.
+**
+** LIMITATIONS:
+**
+** {U12252} If a separate thread makes changes on the same database connection
+** while [sqlite3_changes()] is running then the value returned
+** is unpredictable and unmeaningful.
+*/
+SQLITE_API int sqlite3_changes(sqlite3*);
+
+/*
+** CAPI3REF: Total Number Of Rows Modified {F12260}
+***
+** This function returns the number of row changes caused
+** by INSERT, UPDATE or DELETE statements since the database handle
+** was opened. The count includes all changes from all trigger
+** contexts. But the count does not include changes used to
+** implement REPLACE constraints, do rollbacks or ABORT processing,
+** or DROP table processing.
+** The changes
+** are counted as soon as the statement that makes them is completed
+** (when the statement handle is passed to [sqlite3_reset()] or
+** [sqlite3_finalize()]).
+**
+** SQLite implements the command "DELETE FROM table" without
+** a WHERE clause by dropping and recreating the table. (This is much
+** faster than going
+** through and deleting individual elements from the table.) Because of
+** this optimization, the change count for "DELETE FROM table" will be
+** zero regardless of the number of elements that were originally in the
+** table. To get an accurate count of the number of rows deleted, use
+** "DELETE FROM table WHERE 1" instead.
+**
+** See also the [sqlite3_changes()] interface.
+**
+** INVARIANTS:
+**
+** {F12261} The [sqlite3_total_changes()] returns the total number
+** of row changes caused by INSERT, UPDATE, and/or DELETE
+** statements on the same [database connection], in any
+** trigger context, since the database connection was
+** created.
+**
+** LIMITATIONS:
+**
+** {U12264} If a separate thread makes changes on the same database connection
+** while [sqlite3_total_changes()] is running then the value
+** returned is unpredictable and unmeaningful.
+*/
+SQLITE_API int sqlite3_total_changes(sqlite3*);
+
+/*
+** CAPI3REF: Interrupt A Long-Running Query {F12270}
+**
+** This function causes any pending database operation to abort and
+** return at its earliest opportunity. This routine is typically
+** called in response to a user action such as pressing "Cancel"
+** or Ctrl-C where the user wants a long query operation to halt
+** immediately.
+**
+** It is safe to call this routine from a thread different from the
+** thread that is currently running the database operation. But it
+** is not safe to call this routine with a database connection that
+** is closed or might close before sqlite3_interrupt() returns.
+**
+** If an SQL is very nearly finished at the time when sqlite3_interrupt()
+** is called, then it might not have an opportunity to be interrupted.
+** It might continue to completion.
+** An SQL operation that is interrupted will return
+** [SQLITE_INTERRUPT]. If the interrupted SQL operation is an
+** INSERT, UPDATE, or DELETE that is inside an explicit transaction,
+** then the entire transaction will be rolled back automatically.
+** A call to sqlite3_interrupt() has no effect on SQL statements
+** that are started after sqlite3_interrupt() returns.
+**
+** INVARIANTS:
+**
+** {F12271} The [sqlite3_interrupt()] interface will force all running
+** SQL statements associated with the same database connection
+** to halt after processing at most one additional row of
+** data.
+**
+** {F12272} Any SQL statement that is interrupted by [sqlite3_interrupt()]
+** will return [SQLITE_INTERRUPT].
+**
+** LIMITATIONS:
+**
+** {U12279} If the database connection closes while [sqlite3_interrupt()]
+** is running then bad things will likely happen.
+*/
+SQLITE_API void sqlite3_interrupt(sqlite3*);
+
+/*
+** CAPI3REF: Determine If An SQL Statement Is Complete {F10510}
+**
+** These routines are useful for command-line input to determine if the
+** currently entered text seems to form complete a SQL statement or
+** if additional input is needed before sending the text into
+** SQLite for parsing. These routines return true if the input string
+** appears to be a complete SQL statement. A statement is judged to be
+** complete if it ends with a semicolon token and is not a fragment of a
+** CREATE TRIGGER statement. Semicolons that are embedded within
+** string literals or quoted identifier names or comments are not
+** independent tokens (they are part of the token in which they are
+** embedded) and thus do not count as a statement terminator.
+**
+** These routines do not parse the SQL and
+** so will not detect syntactically incorrect SQL.
+**
+** INVARIANTS:
+**
+** {F10511} The sqlite3_complete() and sqlite3_complete16() functions
+** return true (non-zero) if and only if the last
+** non-whitespace token in their input is a semicolon that
+** is not in between the BEGIN and END of a CREATE TRIGGER
+** statement.
+**
+** LIMITATIONS:
+**
+** {U10512} The input to sqlite3_complete() must be a zero-terminated
+** UTF-8 string.
+**
+** {U10513} The input to sqlite3_complete16() must be a zero-terminated
+** UTF-16 string in native byte order.
+*/
+SQLITE_API int sqlite3_complete(const char *sql);
+SQLITE_API int sqlite3_complete16(const void *sql);
+
+/*
+** CAPI3REF: Register A Callback To Handle SQLITE_BUSY Errors {F12310}
+**
+** This routine identifies a callback function that might be
+** invoked whenever an attempt is made to open a database table
+** that another thread or process has locked.
+** If the busy callback is NULL, then [SQLITE_BUSY]
+** or [SQLITE_IOERR_BLOCKED]
+** is returned immediately upon encountering the lock.
+** If the busy callback is not NULL, then the
+** callback will be invoked with two arguments. The
+** first argument to the handler is a copy of the void* pointer which
+** is the third argument to this routine. The second argument to
+** the handler is the number of times that the busy handler has
+** been invoked for this locking event. If the
+** busy callback returns 0, then no additional attempts are made to
+** access the database and [SQLITE_BUSY] or [SQLITE_IOERR_BLOCKED] is returned.
+** If the callback returns non-zero, then another attempt
+** is made to open the database for reading and the cycle repeats.
+**
+** The presence of a busy handler does not guarantee that
+** it will be invoked when there is lock contention.
+** If SQLite determines that invoking the busy handler could result in
+** a deadlock, it will go ahead and return [SQLITE_BUSY] or
+** [SQLITE_IOERR_BLOCKED] instead of invoking the
+** busy handler.
+** Consider a scenario where one process is holding a read lock that
+** it is trying to promote to a reserved lock and
+** a second process is holding a reserved lock that it is trying
+** to promote to an exclusive lock. The first process cannot proceed
+** because it is blocked by the second and the second process cannot
+** proceed because it is blocked by the first. If both processes
+** invoke the busy handlers, neither will make any progress. Therefore,
+** SQLite returns [SQLITE_BUSY] for the first process, hoping that this
+** will induce the first process to release its read lock and allow
+** the second process to proceed.
+**
+** The default busy callback is NULL.
+**
+** The [SQLITE_BUSY] error is converted to [SQLITE_IOERR_BLOCKED]
+** when SQLite is in the middle of a large transaction where all the
+** changes will not fit into the in-memory cache. SQLite will
+** already hold a RESERVED lock on the database file, but it needs
+** to promote this lock to EXCLUSIVE so that it can spill cache
+** pages into the database file without harm to concurrent
+** readers. If it is unable to promote the lock, then the in-memory
+** cache will be left in an inconsistent state and so the error
+** code is promoted from the relatively benign [SQLITE_BUSY] to
+** the more severe [SQLITE_IOERR_BLOCKED]. This error code promotion
+** forces an automatic rollback of the changes. See the
+** <a href="http://www.sqlite.org/cvstrac/wiki?p=CorruptionFollowingBusyError">
+** CorruptionFollowingBusyError</a> wiki page for a discussion of why
+** this is important.
+**
+** There can only be a single busy handler defined for each database
+** connection. Setting a new busy handler clears any previous one.
+** Note that calling [sqlite3_busy_timeout()] will also set or clear
+** the busy handler.
+**
+** INVARIANTS:
+**
+** {F12311} The [sqlite3_busy_handler()] function replaces the busy handler
+** callback in the database connection identified by the 1st
+** parameter with a new busy handler identified by the 2nd and 3rd
+** parameters.
+**
+** {F12312} The default busy handler for new database connections is NULL.
+**
+** {F12314} When two or more database connection share a common cache,
+** the busy handler for the database connection currently using
+** the cache is invoked when the cache encounters a lock.
+**
+** {F12316} If a busy handler callback returns zero, then the SQLite
+** interface that provoked the locking event will return
+** [SQLITE_BUSY].
+**
+** {F12318} SQLite will invokes the busy handler with two argument which
+** are a copy of the pointer supplied by the 3rd parameter to
+** [sqlite3_busy_handler()] and a count of the number of prior
+** invocations of the busy handler for the same locking event.
+**
+** LIMITATIONS:
+**
+** {U12319} A busy handler should not call close the database connection
+** or prepared statement that invoked the busy handler.
+*/
+SQLITE_API int sqlite3_busy_handler(sqlite3*, int(*)(void*,int), void*);
+
+/*
+** CAPI3REF: Set A Busy Timeout {F12340}
+**
+** This routine sets a [sqlite3_busy_handler | busy handler]
+** that sleeps for a while when a
+** table is locked. The handler will sleep multiple times until
+** at least "ms" milliseconds of sleeping have been done. {F12343} After
+** "ms" milliseconds of sleeping, the handler returns 0 which
+** causes [sqlite3_step()] to return [SQLITE_BUSY] or [SQLITE_IOERR_BLOCKED].
+**
+** Calling this routine with an argument less than or equal to zero
+** turns off all busy handlers.
+**
+** There can only be a single busy handler for a particular database
+** connection. If another busy handler was defined
+** (using [sqlite3_busy_handler()]) prior to calling
+** this routine, that other busy handler is cleared.
+**
+** INVARIANTS:
+**
+** {F12341} The [sqlite3_busy_timeout()] function overrides any prior
+** [sqlite3_busy_timeout()] or [sqlite3_busy_handler()] setting
+** on the same database connection.
+**
+** {F12343} If the 2nd parameter to [sqlite3_busy_timeout()] is less than
+** or equal to zero, then the busy handler is cleared so that
+** all subsequent locking events immediately return [SQLITE_BUSY].
+**
+** {F12344} If the 2nd parameter to [sqlite3_busy_timeout()] is a positive
+** number N, then a busy handler is set that repeatedly calls
+** the xSleep() method in the VFS interface until either the
+** lock clears or until the cumulative sleep time reported back
+** by xSleep() exceeds N milliseconds.
+*/
+SQLITE_API int sqlite3_busy_timeout(sqlite3*, int ms);
+
+/*
+** CAPI3REF: Convenience Routines For Running Queries {F12370}
+**
+** Definition: A <b>result table</b> is memory data structure created by the
+** [sqlite3_get_table()] interface. A result table records the
+** complete query results from one or more queries.
+**
+** The table conceptually has a number of rows and columns. But
+** these numbers are not part of the result table itself. These
+** numbers are obtained separately. Let N be the number of rows
+** and M be the number of columns.
+**
+** A result table is an array of pointers to zero-terminated
+** UTF-8 strings. There are (N+1)*M elements in the array.
+** The first M pointers point to zero-terminated strings that
+** contain the names of the columns.
+** The remaining entries all point to query results. NULL
+** values are give a NULL pointer. All other values are in
+** their UTF-8 zero-terminated string representation as returned by
+** [sqlite3_column_text()].
+**
+** A result table might consists of one or more memory allocations.
+** It is not safe to pass a result table directly to [sqlite3_free()].
+** A result table should be deallocated using [sqlite3_free_table()].
+**
+** As an example of the result table format, suppose a query result
+** is as follows:
+**
+** <blockquote><pre>
+** Name | Age
+** -----------------------
+** Alice | 43
+** Bob | 28
+** Cindy | 21
+** </pre></blockquote>
+**
+** There are two column (M==2) and three rows (N==3). Thus the
+** result table has 8 entries. Suppose the result table is stored
+** in an array names azResult. Then azResult holds this content:
+**
+** <blockquote><pre>
+** azResult&#91;0] = "Name";
+** azResult&#91;1] = "Age";
+** azResult&#91;2] = "Alice";
+** azResult&#91;3] = "43";
+** azResult&#91;4] = "Bob";
+** azResult&#91;5] = "28";
+** azResult&#91;6] = "Cindy";
+** azResult&#91;7] = "21";
+** </pre></blockquote>
+**
+** The sqlite3_get_table() function evaluates one or more
+** semicolon-separated SQL statements in the zero-terminated UTF-8
+** string of its 2nd parameter. It returns a result table to the
+** pointer given in its 3rd parameter.
+**
+** After the calling function has finished using the result, it should
+** pass the pointer to the result table to sqlite3_free_table() in order to
+** release the memory that was malloc-ed. Because of the way the
+** [sqlite3_malloc()] happens within sqlite3_get_table(), the calling
+** function must not try to call [sqlite3_free()] directly. Only
+** [sqlite3_free_table()] is able to release the memory properly and safely.
+**
+** The sqlite3_get_table() interface is implemented as a wrapper around
+** [sqlite3_exec()]. The sqlite3_get_table() routine does not have access
+** to any internal data structures of SQLite. It uses only the public
+** interface defined here. As a consequence, errors that occur in the
+** wrapper layer outside of the internal [sqlite3_exec()] call are not
+** reflected in subsequent calls to [sqlite3_errcode()] or
+** [sqlite3_errmsg()].
+**
+** INVARIANTS:
+**
+** {F12371} If a [sqlite3_get_table()] fails a memory allocation, then
+** it frees the result table under construction, aborts the
+** query in process, skips any subsequent queries, sets the
+** *resultp output pointer to NULL and returns [SQLITE_NOMEM].
+**
+** {F12373} If the ncolumn parameter to [sqlite3_get_table()] is not NULL
+** then [sqlite3_get_table()] write the number of columns in the
+** result set of the query into *ncolumn if the query is
+** successful (if the function returns SQLITE_OK).
+**
+** {F12374} If the nrow parameter to [sqlite3_get_table()] is not NULL
+** then [sqlite3_get_table()] write the number of rows in the
+** result set of the query into *nrow if the query is
+** successful (if the function returns SQLITE_OK).
+**
+** {F12376} The [sqlite3_get_table()] function sets its *ncolumn value
+** to the number of columns in the result set of the query in the
+** sql parameter, or to zero if the query in sql has an empty
+** result set.
+*/
+SQLITE_API int sqlite3_get_table(
+ sqlite3*, /* An open database */
+ const char *sql, /* SQL to be evaluated */
+ char ***pResult, /* Results of the query */
+ int *nrow, /* Number of result rows written here */
+ int *ncolumn, /* Number of result columns written here */
+ char **errmsg /* Error msg written here */
+);
+SQLITE_API void sqlite3_free_table(char **result);
+
+/*
+** CAPI3REF: Formatted String Printing Functions {F17400}
+**
+** These routines are workalikes of the "printf()" family of functions
+** from the standard C library.
+**
+** The sqlite3_mprintf() and sqlite3_vmprintf() routines write their
+** results into memory obtained from [sqlite3_malloc()].
+** The strings returned by these two routines should be
+** released by [sqlite3_free()]. Both routines return a
+** NULL pointer if [sqlite3_malloc()] is unable to allocate enough
+** memory to hold the resulting string.
+**
+** In sqlite3_snprintf() routine is similar to "snprintf()" from
+** the standard C library. The result is written into the
+** buffer supplied as the second parameter whose size is given by
+** the first parameter. Note that the order of the
+** first two parameters is reversed from snprintf(). This is an
+** historical accident that cannot be fixed without breaking
+** backwards compatibility. Note also that sqlite3_snprintf()
+** returns a pointer to its buffer instead of the number of
+** characters actually written into the buffer. We admit that
+** the number of characters written would be a more useful return
+** value but we cannot change the implementation of sqlite3_snprintf()
+** now without breaking compatibility.
+**
+** As long as the buffer size is greater than zero, sqlite3_snprintf()
+** guarantees that the buffer is always zero-terminated. The first
+** parameter "n" is the total size of the buffer, including space for
+** the zero terminator. So the longest string that can be completely
+** written will be n-1 characters.
+**
+** These routines all implement some additional formatting
+** options that are useful for constructing SQL statements.
+** All of the usual printf formatting options apply. In addition, there
+** is are "%q", "%Q", and "%z" options.
+**
+** The %q option works like %s in that it substitutes a null-terminated
+** string from the argument list. But %q also doubles every '\'' character.
+** %q is designed for use inside a string literal. By doubling each '\''
+** character it escapes that character and allows it to be inserted into
+** the string.
+**
+** For example, so some string variable contains text as follows:
+**
+** <blockquote><pre>
+** char *zText = "It's a happy day!";
+** </pre></blockquote>
+**
+** One can use this text in an SQL statement as follows:
+**
+** <blockquote><pre>
+** char *zSQL = sqlite3_mprintf("INSERT INTO table VALUES('%q')", zText);
+** sqlite3_exec(db, zSQL, 0, 0, 0);
+** sqlite3_free(zSQL);
+** </pre></blockquote>
+**
+** Because the %q format string is used, the '\'' character in zText
+** is escaped and the SQL generated is as follows:
+**
+** <blockquote><pre>
+** INSERT INTO table1 VALUES('It''s a happy day!')
+** </pre></blockquote>
+**
+** This is correct. Had we used %s instead of %q, the generated SQL
+** would have looked like this:
+**
+** <blockquote><pre>
+** INSERT INTO table1 VALUES('It's a happy day!');
+** </pre></blockquote>
+**
+** This second example is an SQL syntax error. As a general rule you
+** should always use %q instead of %s when inserting text into a string
+** literal.
+**
+** The %Q option works like %q except it also adds single quotes around
+** the outside of the total string. Or if the parameter in the argument
+** list is a NULL pointer, %Q substitutes the text "NULL" (without single
+** quotes) in place of the %Q option. {END} So, for example, one could say:
+**
+** <blockquote><pre>
+** char *zSQL = sqlite3_mprintf("INSERT INTO table VALUES(%Q)", zText);
+** sqlite3_exec(db, zSQL, 0, 0, 0);
+** sqlite3_free(zSQL);
+** </pre></blockquote>
+**
+** The code above will render a correct SQL statement in the zSQL
+** variable even if the zText variable is a NULL pointer.
+**
+** The "%z" formatting option works exactly like "%s" with the
+** addition that after the string has been read and copied into
+** the result, [sqlite3_free()] is called on the input string. {END}
+**
+** INVARIANTS:
+**
+** {F17403} The [sqlite3_mprintf()] and [sqlite3_vmprintf()] interfaces
+** return either pointers to zero-terminated UTF-8 strings held in
+** memory obtained from [sqlite3_malloc()] or NULL pointers if
+** a call to [sqlite3_malloc()] fails.
+**
+** {F17406} The [sqlite3_snprintf()] interface writes a zero-terminated
+** UTF-8 string into the buffer pointed to by the second parameter
+** provided that the first parameter is greater than zero.
+**
+** {F17407} The [sqlite3_snprintf()] interface does not writes slots of
+** its output buffer (the second parameter) outside the range
+** of 0 through N-1 (where N is the first parameter)
+** regardless of the length of the string
+** requested by the format specification.
+**
+*/
+SQLITE_API char *sqlite3_mprintf(const char*,...);
+SQLITE_API char *sqlite3_vmprintf(const char*, va_list);
+SQLITE_API char *sqlite3_snprintf(int,char*,const char*, ...);
+
+/*
+** CAPI3REF: Memory Allocation Subsystem {F17300}
+**
+** The SQLite core uses these three routines for all of its own
+** internal memory allocation needs. "Core" in the previous sentence
+** does not include operating-system specific VFS implementation. The
+** windows VFS uses native malloc and free for some operations.
+**
+** The sqlite3_malloc() routine returns a pointer to a block
+** of memory at least N bytes in length, where N is the parameter.
+** If sqlite3_malloc() is unable to obtain sufficient free
+** memory, it returns a NULL pointer. If the parameter N to
+** sqlite3_malloc() is zero or negative then sqlite3_malloc() returns
+** a NULL pointer.
+**
+** Calling sqlite3_free() with a pointer previously returned
+** by sqlite3_malloc() or sqlite3_realloc() releases that memory so
+** that it might be reused. The sqlite3_free() routine is
+** a no-op if is called with a NULL pointer. Passing a NULL pointer
+** to sqlite3_free() is harmless. After being freed, memory
+** should neither be read nor written. Even reading previously freed
+** memory might result in a segmentation fault or other severe error.
+** Memory corruption, a segmentation fault, or other severe error
+** might result if sqlite3_free() is called with a non-NULL pointer that
+** was not obtained from sqlite3_malloc() or sqlite3_free().
+**
+** The sqlite3_realloc() interface attempts to resize a
+** prior memory allocation to be at least N bytes, where N is the
+** second parameter. The memory allocation to be resized is the first
+** parameter. If the first parameter to sqlite3_realloc()
+** is a NULL pointer then its behavior is identical to calling
+** sqlite3_malloc(N) where N is the second parameter to sqlite3_realloc().
+** If the second parameter to sqlite3_realloc() is zero or
+** negative then the behavior is exactly the same as calling
+** sqlite3_free(P) where P is the first parameter to sqlite3_realloc().
+** Sqlite3_realloc() returns a pointer to a memory allocation
+** of at least N bytes in size or NULL if sufficient memory is unavailable.
+** If M is the size of the prior allocation, then min(N,M) bytes
+** of the prior allocation are copied into the beginning of buffer returned
+** by sqlite3_realloc() and the prior allocation is freed.
+** If sqlite3_realloc() returns NULL, then the prior allocation
+** is not freed.
+**
+** The memory returned by sqlite3_malloc() and sqlite3_realloc()
+** is always aligned to at least an 8 byte boundary. {END}
+**
+** The default implementation
+** of the memory allocation subsystem uses the malloc(), realloc()
+** and free() provided by the standard C library. {F17382} However, if
+** SQLite is compiled with the following C preprocessor macro
+**
+** <blockquote> SQLITE_MEMORY_SIZE=<i>NNN</i> </blockquote>
+**
+** where <i>NNN</i> is an integer, then SQLite create a static
+** array of at least <i>NNN</i> bytes in size and use that array
+** for all of its dynamic memory allocation needs. {END} Additional
+** memory allocator options may be added in future releases.
+**
+** In SQLite version 3.5.0 and 3.5.1, it was possible to define
+** the SQLITE_OMIT_MEMORY_ALLOCATION which would cause the built-in
+** implementation of these routines to be omitted. That capability
+** is no longer provided. Only built-in memory allocators can be
+** used.
+**
+** The windows OS interface layer calls
+** the system malloc() and free() directly when converting
+** filenames between the UTF-8 encoding used by SQLite
+** and whatever filename encoding is used by the particular windows
+** installation. Memory allocation errors are detected, but
+** they are reported back as [SQLITE_CANTOPEN] or
+** [SQLITE_IOERR] rather than [SQLITE_NOMEM].
+**
+** INVARIANTS:
+**
+** {F17303} The [sqlite3_malloc(N)] interface returns either a pointer to
+** newly checked-out block of at least N bytes of memory
+** that is 8-byte aligned,
+** or it returns NULL if it is unable to fulfill the request.
+**
+** {F17304} The [sqlite3_malloc(N)] interface returns a NULL pointer if
+** N is less than or equal to zero.
+**
+** {F17305} The [sqlite3_free(P)] interface releases memory previously
+** returned from [sqlite3_malloc()] or [sqlite3_realloc()],
+** making it available for reuse.
+**
+** {F17306} A call to [sqlite3_free(NULL)] is a harmless no-op.
+**
+** {F17310} A call to [sqlite3_realloc(0,N)] is equivalent to a call
+** to [sqlite3_malloc(N)].
+**
+** {F17312} A call to [sqlite3_realloc(P,0)] is equivalent to a call
+** to [sqlite3_free(P)].
+**
+** {F17315} The SQLite core uses [sqlite3_malloc()], [sqlite3_realloc()],
+** and [sqlite3_free()] for all of its memory allocation and
+** deallocation needs.
+**
+** {F17318} The [sqlite3_realloc(P,N)] interface returns either a pointer
+** to a block of checked-out memory of at least N bytes in size
+** that is 8-byte aligned, or a NULL pointer.
+**
+** {F17321} When [sqlite3_realloc(P,N)] returns a non-NULL pointer, it first
+** copies the first K bytes of content from P into the newly allocated
+** where K is the lessor of N and the size of the buffer P.
+**
+** {F17322} When [sqlite3_realloc(P,N)] returns a non-NULL pointer, it first
+** releases the buffer P.
+**
+** {F17323} When [sqlite3_realloc(P,N)] returns NULL, the buffer P is
+** not modified or released.
+**
+** LIMITATIONS:
+**
+** {U17350} The pointer arguments to [sqlite3_free()] and [sqlite3_realloc()]
+** must be either NULL or else a pointer obtained from a prior
+** invocation of [sqlite3_malloc()] or [sqlite3_realloc()] that has
+** not been released.
+**
+** {U17351} The application must not read or write any part of
+** a block of memory after it has been released using
+** [sqlite3_free()] or [sqlite3_realloc()].
+**
+*/
+SQLITE_API void *sqlite3_malloc(int);
+SQLITE_API void *sqlite3_realloc(void*, int);
+SQLITE_API void sqlite3_free(void*);
+
+/*
+** CAPI3REF: Memory Allocator Statistics {F17370}
+**
+** SQLite provides these two interfaces for reporting on the status
+** of the [sqlite3_malloc()], [sqlite3_free()], and [sqlite3_realloc()]
+** the memory allocation subsystem included within the SQLite.
+**
+** INVARIANTS:
+**
+** {F17371} The [sqlite3_memory_used()] routine returns the
+** number of bytes of memory currently outstanding
+** (malloced but not freed).
+**
+** {F17373} The [sqlite3_memory_highwater()] routine returns the maximum
+** value of [sqlite3_memory_used()]
+** since the highwater mark was last reset.
+**
+** {F17374} The values returned by [sqlite3_memory_used()] and
+** [sqlite3_memory_highwater()] include any overhead
+** added by SQLite in its implementation of [sqlite3_malloc()],
+** but not overhead added by the any underlying system library
+** routines that [sqlite3_malloc()] may call.
+**
+** {F17375} The memory highwater mark is reset to the current value of
+** [sqlite3_memory_used()] if and only if the parameter to
+** [sqlite3_memory_highwater()] is true. The value returned
+** by [sqlite3_memory_highwater(1)] is the highwater mark
+** prior to the reset.
+*/
+SQLITE_API sqlite3_int64 sqlite3_memory_used(void);
+SQLITE_API sqlite3_int64 sqlite3_memory_highwater(int resetFlag);
+
+/*
+** CAPI3REF: Pseudo-Random Number Generator {F17390}
+**
+** SQLite contains a high-quality pseudo-random number generator (PRNG) used to
+** select random ROWIDs when inserting new records into a table that
+** already uses the largest possible ROWID. The PRNG is also used for
+** the build-in random() and randomblob() SQL functions. This interface allows
+** appliations to access the same PRNG for other purposes.
+**
+** A call to this routine stores N bytes of randomness into buffer P.
+**
+** The first time this routine is invoked (either internally or by
+** the application) the PRNG is seeded using randomness obtained
+** from the xRandomness method of the default [sqlite3_vfs] object.
+** On all subsequent invocations, the pseudo-randomness is generated
+** internally and without recourse to the [sqlite3_vfs] xRandomness
+** method.
+**
+** INVARIANTS:
+**
+** {F17392} The [sqlite3_randomness(N,P)] interface writes N bytes of
+** high-quality pseudo-randomness into buffer P.
+*/
+SQLITE_API void sqlite3_randomness(int N, void *P);
+
+/*
+** CAPI3REF: Compile-Time Authorization Callbacks {F12500}
+**
+** This routine registers a authorizer callback with a particular
+** [database connection], supplied in the first argument.
+** The authorizer callback is invoked as SQL statements are being compiled
+** by [sqlite3_prepare()] or its variants [sqlite3_prepare_v2()],
+** [sqlite3_prepare16()] and [sqlite3_prepare16_v2()]. At various
+** points during the compilation process, as logic is being created
+** to perform various actions, the authorizer callback is invoked to
+** see if those actions are allowed. The authorizer callback should
+** return [SQLITE_OK] to allow the action, [SQLITE_IGNORE] to disallow the
+** specific action but allow the SQL statement to continue to be
+** compiled, or [SQLITE_DENY] to cause the entire SQL statement to be
+** rejected with an error. If the authorizer callback returns
+** any value other than [SQLITE_IGNORE], [SQLITE_OK], or [SQLITE_DENY]
+** then [sqlite3_prepare_v2()] or equivalent call that triggered
+** the authorizer will fail with an error message.
+**
+** When the callback returns [SQLITE_OK], that means the operation
+** requested is ok. When the callback returns [SQLITE_DENY], the
+** [sqlite3_prepare_v2()] or equivalent call that triggered the
+** authorizer will fail with an error message explaining that
+** access is denied. If the authorizer code is [SQLITE_READ]
+** and the callback returns [SQLITE_IGNORE] then the
+** [prepared statement] statement is constructed to substitute
+** a NULL value in place of the table column that would have
+** been read if [SQLITE_OK] had been returned. The [SQLITE_IGNORE]
+** return can be used to deny an untrusted user access to individual
+** columns of a table.
+**
+** The first parameter to the authorizer callback is a copy of
+** the third parameter to the sqlite3_set_authorizer() interface.
+** The second parameter to the callback is an integer
+** [SQLITE_COPY | action code] that specifies the particular action
+** to be authorized. The third through sixth
+** parameters to the callback are zero-terminated strings that contain
+** additional details about the action to be authorized.
+**
+** An authorizer is used when [sqlite3_prepare | preparing]
+** SQL statements from an untrusted
+** source, to ensure that the SQL statements do not try to access data
+** that they are not allowed to see, or that they do not try to
+** execute malicious statements that damage the database. For
+** example, an application may allow a user to enter arbitrary
+** SQL queries for evaluation by a database. But the application does
+** not want the user to be able to make arbitrary changes to the
+** database. An authorizer could then be put in place while the
+** user-entered SQL is being [sqlite3_prepare | prepared] that
+** disallows everything except [SELECT] statements.
+**
+** Applications that need to process SQL from untrusted sources
+** might also consider lowering resource limits using [sqlite3_limit()]
+** and limiting database size using the [max_page_count] [PRAGMA]
+** in addition to using an authorizer.
+**
+** Only a single authorizer can be in place on a database connection
+** at a time. Each call to sqlite3_set_authorizer overrides the
+** previous call. Disable the authorizer by installing a NULL callback.
+** The authorizer is disabled by default.
+**
+** Note that the authorizer callback is invoked only during
+** [sqlite3_prepare()] or its variants. Authorization is not
+** performed during statement evaluation in [sqlite3_step()].
+**
+** INVARIANTS:
+**
+** {F12501} The [sqlite3_set_authorizer(D,...)] interface registers a
+** authorizer callback with database connection D.
+**
+** {F12502} The authorizer callback is invoked as SQL statements are
+** being compiled
+**
+** {F12503} If the authorizer callback returns any value other than
+** [SQLITE_IGNORE], [SQLITE_OK], or [SQLITE_DENY] then
+** the [sqlite3_prepare_v2()] or equivalent call that caused
+** the authorizer callback to run shall fail with an
+** [SQLITE_ERROR] error code and an appropriate error message.
+**
+** {F12504} When the authorizer callback returns [SQLITE_OK], the operation
+** described is coded normally.
+**
+** {F12505} When the authorizer callback returns [SQLITE_DENY], the
+** [sqlite3_prepare_v2()] or equivalent call that caused the
+** authorizer callback to run shall fail
+** with an [SQLITE_ERROR] error code and an error message
+** explaining that access is denied.
+**
+** {F12506} If the authorizer code (the 2nd parameter to the authorizer
+** callback) is [SQLITE_READ] and the authorizer callback returns
+** [SQLITE_IGNORE] then the prepared statement is constructed to
+** insert a NULL value in place of the table column that would have
+** been read if [SQLITE_OK] had been returned.
+**
+** {F12507} If the authorizer code (the 2nd parameter to the authorizer
+** callback) is anything other than [SQLITE_READ], then
+** a return of [SQLITE_IGNORE] has the same effect as [SQLITE_DENY].
+**
+** {F12510} The first parameter to the authorizer callback is a copy of
+** the third parameter to the [sqlite3_set_authorizer()] interface.
+**
+** {F12511} The second parameter to the callback is an integer
+** [SQLITE_COPY | action code] that specifies the particular action
+** to be authorized.
+**
+** {F12512} The third through sixth parameters to the callback are
+** zero-terminated strings that contain
+** additional details about the action to be authorized.
+**
+** {F12520} Each call to [sqlite3_set_authorizer()] overrides the
+** any previously installed authorizer.
+**
+** {F12521} A NULL authorizer means that no authorization
+** callback is invoked.
+**
+** {F12522} The default authorizer is NULL.
+*/
+SQLITE_API int sqlite3_set_authorizer(
+ sqlite3*,
+ int (*xAuth)(void*,int,const char*,const char*,const char*,const char*),
+ void *pUserData
+);
+
+/*
+** CAPI3REF: Authorizer Return Codes {F12590}
+**
+** The [sqlite3_set_authorizer | authorizer callback function] must
+** return either [SQLITE_OK] or one of these two constants in order
+** to signal SQLite whether or not the action is permitted. See the
+** [sqlite3_set_authorizer | authorizer documentation] for additional
+** information.
+*/
+#define SQLITE_DENY 1 /* Abort the SQL statement with an error */
+#define SQLITE_IGNORE 2 /* Don't allow access, but don't generate an error */
+
+/*
+** CAPI3REF: Authorizer Action Codes {F12550}
+**
+** The [sqlite3_set_authorizer()] interface registers a callback function
+** that is invoked to authorizer certain SQL statement actions. The
+** second parameter to the callback is an integer code that specifies
+** what action is being authorized. These are the integer action codes that
+** the authorizer callback may be passed.
+**
+** These action code values signify what kind of operation is to be
+** authorized. The 3rd and 4th parameters to the authorization
+** callback function will be parameters or NULL depending on which of these
+** codes is used as the second parameter. The 5th parameter to the
+** authorizer callback is the name of the database ("main", "temp",
+** etc.) if applicable. The 6th parameter to the authorizer callback
+** is the name of the inner-most trigger or view that is responsible for
+** the access attempt or NULL if this access attempt is directly from
+** top-level SQL code.
+**
+** INVARIANTS:
+**
+** {F12551} The second parameter to an
+** [sqlite3_set_authorizer | authorizer callback is always an integer
+** [SQLITE_COPY | authorizer code] that specifies what action
+** is being authorized.
+**
+** {F12552} The 3rd and 4th parameters to the
+** [sqlite3_set_authorizer | authorization callback function]
+** will be parameters or NULL depending on which
+** [SQLITE_COPY | authorizer code] is used as the second parameter.
+**
+** {F12553} The 5th parameter to the
+** [sqlite3_set_authorizer | authorizer callback] is the name
+** of the database (example: "main", "temp", etc.) if applicable.
+**
+** {F12554} The 6th parameter to the
+** [sqlite3_set_authorizer | authorizer callback] is the name
+** of the inner-most trigger or view that is responsible for
+** the access attempt or NULL if this access attempt is directly from
+** top-level SQL code.
+*/
+/******************************************* 3rd ************ 4th ***********/
+#define SQLITE_CREATE_INDEX 1 /* Index Name Table Name */
+#define SQLITE_CREATE_TABLE 2 /* Table Name NULL */
+#define SQLITE_CREATE_TEMP_INDEX 3 /* Index Name Table Name */
+#define SQLITE_CREATE_TEMP_TABLE 4 /* Table Name NULL */
+#define SQLITE_CREATE_TEMP_TRIGGER 5 /* Trigger Name Table Name */
+#define SQLITE_CREATE_TEMP_VIEW 6 /* View Name NULL */
+#define SQLITE_CREATE_TRIGGER 7 /* Trigger Name Table Name */
+#define SQLITE_CREATE_VIEW 8 /* View Name NULL */
+#define SQLITE_DELETE 9 /* Table Name NULL */
+#define SQLITE_DROP_INDEX 10 /* Index Name Table Name */
+#define SQLITE_DROP_TABLE 11 /* Table Name NULL */
+#define SQLITE_DROP_TEMP_INDEX 12 /* Index Name Table Name */
+#define SQLITE_DROP_TEMP_TABLE 13 /* Table Name NULL */
+#define SQLITE_DROP_TEMP_TRIGGER 14 /* Trigger Name Table Name */
+#define SQLITE_DROP_TEMP_VIEW 15 /* View Name NULL */
+#define SQLITE_DROP_TRIGGER 16 /* Trigger Name Table Name */
+#define SQLITE_DROP_VIEW 17 /* View Name NULL */
+#define SQLITE_INSERT 18 /* Table Name NULL */
+#define SQLITE_PRAGMA 19 /* Pragma Name 1st arg or NULL */
+#define SQLITE_READ 20 /* Table Name Column Name */
+#define SQLITE_SELECT 21 /* NULL NULL */
+#define SQLITE_TRANSACTION 22 /* NULL NULL */
+#define SQLITE_UPDATE 23 /* Table Name Column Name */
+#define SQLITE_ATTACH 24 /* Filename NULL */
+#define SQLITE_DETACH 25 /* Database Name NULL */
+#define SQLITE_ALTER_TABLE 26 /* Database Name Table Name */
+#define SQLITE_REINDEX 27 /* Index Name NULL */
+#define SQLITE_ANALYZE 28 /* Table Name NULL */
+#define SQLITE_CREATE_VTABLE 29 /* Table Name Module Name */
+#define SQLITE_DROP_VTABLE 30 /* Table Name Module Name */
+#define SQLITE_FUNCTION 31 /* Function Name NULL */
+#define SQLITE_COPY 0 /* No longer used */
+
+/*
+** CAPI3REF: Tracing And Profiling Functions {F12280}
+**
+** These routines register callback functions that can be used for
+** tracing and profiling the execution of SQL statements.
+**
+** The callback function registered by sqlite3_trace() is invoked at
+** various times when an SQL statement is being run by [sqlite3_step()].
+** The callback returns a UTF-8 rendering of the SQL statement text
+** as the statement first begins executing. Additional callbacks occur
+** as each triggersubprogram is entered. The callbacks for triggers
+** contain a UTF-8 SQL comment that identifies the trigger.
+**
+** The callback function registered by sqlite3_profile() is invoked
+** as each SQL statement finishes. The profile callback contains
+** the original statement text and an estimate of wall-clock time
+** of how long that statement took to run.
+**
+** The sqlite3_profile() API is currently considered experimental and
+** is subject to change or removal in a future release.
+**
+** The trigger reporting feature of the trace callback is considered
+** experimental and is subject to change or removal in future releases.
+** Future versions of SQLite might also add new trace callback
+** invocations.
+**
+** INVARIANTS:
+**
+** {F12281} The callback function registered by [sqlite3_trace()] is
+** whenever an SQL statement first begins to execute and
+** whenever a trigger subprogram first begins to run.
+**
+** {F12282} Each call to [sqlite3_trace()] overrides the previously
+** registered trace callback.
+**
+** {F12283} A NULL trace callback disables tracing.
+**
+** {F12284} The first argument to the trace callback is a copy of
+** the pointer which was the 3rd argument to [sqlite3_trace()].
+**
+** {F12285} The second argument to the trace callback is a
+** zero-terminated UTF8 string containing the original text
+** of the SQL statement as it was passed into [sqlite3_prepare_v2()]
+** or the equivalent, or an SQL comment indicating the beginning
+** of a trigger subprogram.
+**
+** {F12287} The callback function registered by [sqlite3_profile()] is invoked
+** as each SQL statement finishes.
+**
+** {F12288} The first parameter to the profile callback is a copy of
+** the 3rd parameter to [sqlite3_profile()].
+**
+** {F12289} The second parameter to the profile callback is a
+** zero-terminated UTF-8 string that contains the complete text of
+** the SQL statement as it was processed by [sqlite3_prepare_v2()]
+** or the equivalent.
+**
+** {F12290} The third parameter to the profile callback is an estimate
+** of the number of nanoseconds of wall-clock time required to
+** run the SQL statement from start to finish.
+*/
+SQLITE_API void *sqlite3_trace(sqlite3*, void(*xTrace)(void*,const char*), void*);
+SQLITE_API void *sqlite3_profile(sqlite3*,
+ void(*xProfile)(void*,const char*,sqlite3_uint64), void*);
+
+/*
+** CAPI3REF: Query Progress Callbacks {F12910}
+**
+** This routine configures a callback function - the
+** progress callback - that is invoked periodically during long
+** running calls to [sqlite3_exec()], [sqlite3_step()] and
+** [sqlite3_get_table()]. An example use for this
+** interface is to keep a GUI updated during a large query.
+**
+** If the progress callback returns non-zero, the opertion is
+** interrupted. This feature can be used to implement a
+** "Cancel" button on a GUI dialog box.
+**
+** INVARIANTS:
+**
+** {F12911} The callback function registered by [sqlite3_progress_handler()]
+** is invoked periodically during long running calls to
+** [sqlite3_step()].
+**
+** {F12912} The progress callback is invoked once for every N virtual
+** machine opcodes, where N is the second argument to
+** the [sqlite3_progress_handler()] call that registered
+** the callback. <todo>What if N is less than 1?</todo>
+**
+** {F12913} The progress callback itself is identified by the third
+** argument to [sqlite3_progress_handler()].
+**
+** {F12914} The fourth argument [sqlite3_progress_handler()] is a
+*** void pointer passed to the progress callback
+** function each time it is invoked.
+**
+** {F12915} If a call to [sqlite3_step()] results in fewer than
+** N opcodes being executed,
+** then the progress callback is never invoked. {END}
+**
+** {F12916} Every call to [sqlite3_progress_handler()]
+** overwrites any previously registere progress handler.
+**
+** {F12917} If the progress handler callback is NULL then no progress
+** handler is invoked.
+**
+** {F12918} If the progress callback returns a result other than 0, then
+** the behavior is a if [sqlite3_interrupt()] had been called.
+*/
+SQLITE_API void sqlite3_progress_handler(sqlite3*, int, int(*)(void*), void*);
+
+/*
+** CAPI3REF: Opening A New Database Connection {F12700}
+**
+** These routines open an SQLite database file whose name
+** is given by the filename argument.
+** The filename argument is interpreted as UTF-8
+** for [sqlite3_open()] and [sqlite3_open_v2()] and as UTF-16
+** in the native byte order for [sqlite3_open16()].
+** An [sqlite3*] handle is usually returned in *ppDb, even
+** if an error occurs. The only exception is if SQLite is unable
+** to allocate memory to hold the [sqlite3] object, a NULL will
+** be written into *ppDb instead of a pointer to the [sqlite3] object.
+** If the database is opened (and/or created)
+** successfully, then [SQLITE_OK] is returned. Otherwise an
+** error code is returned. The
+** [sqlite3_errmsg()] or [sqlite3_errmsg16()] routines can be used to obtain
+** an English language description of the error.
+**
+** The default encoding for the database will be UTF-8 if
+** [sqlite3_open()] or [sqlite3_open_v2()] is called and
+** UTF-16 in the native byte order if [sqlite3_open16()] is used.
+**
+** Whether or not an error occurs when it is opened, resources
+** associated with the [sqlite3*] handle should be released by passing it
+** to [sqlite3_close()] when it is no longer required.
+**
+** The [sqlite3_open_v2()] interface works like [sqlite3_open()]
+** except that it acccepts two additional parameters for additional control
+** over the new database connection. The flags parameter can be
+** one of:
+**
+** <ol>
+** <li> [SQLITE_OPEN_READONLY]
+** <li> [SQLITE_OPEN_READWRITE]
+** <li> [SQLITE_OPEN_READWRITE] | [SQLITE_OPEN_CREATE]
+** </ol>
+**
+** The first value opens the database read-only.
+** If the database does not previously exist, an error is returned.
+** The second option opens
+** the database for reading and writing if possible, or reading only if
+** if the file is write protected. In either case the database
+** must already exist or an error is returned. The third option
+** opens the database for reading and writing and creates it if it does
+** not already exist.
+** The third options is behavior that is always used for [sqlite3_open()]
+** and [sqlite3_open16()].
+**
+** If the 3rd parameter to [sqlite3_open_v2()] is not one of the
+** combinations shown above then the behavior is undefined.
+**
+** If the filename is ":memory:", then an private
+** in-memory database is created for the connection. This in-memory
+** database will vanish when the database connection is closed. Future
+** version of SQLite might make use of additional special filenames
+** that begin with the ":" character. It is recommended that
+** when a database filename really does begin with
+** ":" that you prefix the filename with a pathname like "./" to
+** avoid ambiguity.
+**
+** If the filename is an empty string, then a private temporary
+** on-disk database will be created. This private database will be
+** automatically deleted as soon as the database connection is closed.
+**
+** The fourth parameter to sqlite3_open_v2() is the name of the
+** [sqlite3_vfs] object that defines the operating system
+** interface that the new database connection should use. If the
+** fourth parameter is a NULL pointer then the default [sqlite3_vfs]
+** object is used.
+**
+** <b>Note to windows users:</b> The encoding used for the filename argument
+** of [sqlite3_open()] and [sqlite3_open_v2()] must be UTF-8, not whatever
+** codepage is currently defined. Filenames containing international
+** characters must be converted to UTF-8 prior to passing them into
+** [sqlite3_open()] or [sqlite3_open_v2()].
+**
+** INVARIANTS:
+**
+** {F12701} The [sqlite3_open()], [sqlite3_open16()], and
+** [sqlite3_open_v2()] interfaces create a new
+** [database connection] associated with
+** the database file given in their first parameter.
+**
+** {F12702} The filename argument is interpreted as UTF-8
+** for [sqlite3_open()] and [sqlite3_open_v2()] and as UTF-16
+** in the native byte order for [sqlite3_open16()].
+**
+** {F12703} A successful invocation of [sqlite3_open()], [sqlite3_open16()],
+** or [sqlite3_open_v2()] writes a pointer to a new
+** [database connection] into *ppDb.
+**
+** {F12704} The [sqlite3_open()], [sqlite3_open16()], and
+** [sqlite3_open_v2()] interfaces return [SQLITE_OK] upon success,
+** or an appropriate [error code] on failure.
+**
+** {F12706} The default text encoding for a new database created using
+** [sqlite3_open()] or [sqlite3_open_v2()] will be UTF-8.
+**
+** {F12707} The default text encoding for a new database created using
+** [sqlite3_open16()] will be UTF-16.
+**
+** {F12709} The [sqlite3_open(F,D)] interface is equivalent to
+** [sqlite3_open_v2(F,D,G,0)] where the G parameter is
+** [SQLITE_OPEN_READWRITE]|[SQLITE_OPEN_CREATE].
+**
+** {F12711} If the G parameter to [sqlite3_open_v2(F,D,G,V)] contains the
+** bit value [SQLITE_OPEN_READONLY] then the database is opened
+** for reading only.
+**
+** {F12712} If the G parameter to [sqlite3_open_v2(F,D,G,V)] contains the
+** bit value [SQLITE_OPEN_READWRITE] then the database is opened
+** reading and writing if possible, or for reading only if the
+** file is write protected by the operating system.
+**
+** {F12713} If the G parameter to [sqlite3_open(v2(F,D,G,V)] omits the
+** bit value [SQLITE_OPEN_CREATE] and the database does not
+** previously exist, an error is returned.
+**
+** {F12714} If the G parameter to [sqlite3_open(v2(F,D,G,V)] contains the
+** bit value [SQLITE_OPEN_CREATE] and the database does not
+** previously exist, then an attempt is made to create and
+** initialize the database.
+**
+** {F12717} If the filename argument to [sqlite3_open()], [sqlite3_open16()],
+** or [sqlite3_open_v2()] is ":memory:", then an private,
+** ephemeral, in-memory database is created for the connection.
+** <todo>Is SQLITE_OPEN_CREATE|SQLITE_OPEN_READWRITE required
+** in sqlite3_open_v2()?</todo>
+**
+** {F12719} If the filename is NULL or an empty string, then a private,
+** ephermeral on-disk database will be created.
+** <todo>Is SQLITE_OPEN_CREATE|SQLITE_OPEN_READWRITE required
+** in sqlite3_open_v2()?</todo>
+**
+** {F12721} The [database connection] created by
+** [sqlite3_open_v2(F,D,G,V)] will use the
+** [sqlite3_vfs] object identified by the V parameter, or
+** the default [sqlite3_vfs] object is V is a NULL pointer.
+*/
+SQLITE_API int sqlite3_open(
+ const char *filename, /* Database filename (UTF-8) */
+ sqlite3 **ppDb /* OUT: SQLite db handle */
+);
+SQLITE_API int sqlite3_open16(
+ const void *filename, /* Database filename (UTF-16) */
+ sqlite3 **ppDb /* OUT: SQLite db handle */
+);
+SQLITE_API int sqlite3_open_v2(
+ const char *filename, /* Database filename (UTF-8) */
+ sqlite3 **ppDb, /* OUT: SQLite db handle */
+ int flags, /* Flags */
+ const char *zVfs /* Name of VFS module to use */
+);
+
+/*
+** CAPI3REF: Error Codes And Messages {F12800}
+**
+** The sqlite3_errcode() interface returns the numeric
+** [SQLITE_OK | result code] or [SQLITE_IOERR_READ | extended result code]
+** for the most recent failed sqlite3_* API call associated
+** with [sqlite3] handle 'db'. If a prior API call failed but the
+** most recent API call succeeded, the return value from sqlite3_errcode()
+** is undefined.
+**
+** The sqlite3_errmsg() and sqlite3_errmsg16() return English-language
+** text that describes the error, as either UTF8 or UTF16 respectively.
+** Memory to hold the error message string is managed internally.
+** The application does not need to worry with freeing the result.
+** However, the error string might be overwritten or deallocated by
+** subsequent calls to other SQLite interface functions.
+**
+** INVARIANTS:
+**
+** {F12801} The [sqlite3_errcode(D)] interface returns the numeric
+** [SQLITE_OK | result code] or
+** [SQLITE_IOERR_READ | extended result code]
+** for the most recently failed interface call associated
+** with [database connection] D.
+**
+** {F12803} The [sqlite3_errmsg(D)] and [sqlite3_errmsg16(D)]
+** interfaces return English-language text that describes
+** the error in the mostly recently failed interface call,
+** encoded as either UTF8 or UTF16 respectively.
+**
+** {F12807} The strings returned by [sqlite3_errmsg()] and [sqlite3_errmsg16()]
+** are valid until the next SQLite interface call.
+**
+** {F12808} Calls to API routines that do not return an error code
+** (example: [sqlite3_data_count()]) do not
+** change the error code or message returned by
+** [sqlite3_errcode()], [sqlite3_errmsg()], or [sqlite3_errmsg16()].
+**
+** {F12809} Interfaces that are not associated with a specific
+** [database connection] (examples:
+** [sqlite3_mprintf()] or [sqlite3_enable_shared_cache()]
+** do not change the values returned by
+** [sqlite3_errcode()], [sqlite3_errmsg()], or [sqlite3_errmsg16()].
+*/
+SQLITE_API int sqlite3_errcode(sqlite3 *db);
+SQLITE_API const char *sqlite3_errmsg(sqlite3*);
+SQLITE_API const void *sqlite3_errmsg16(sqlite3*);
+
+/*
+** CAPI3REF: SQL Statement Object {F13000}
+** KEYWORDS: {prepared statement} {prepared statements}
+**
+** An instance of this object represent single SQL statements. This
+** object is variously known as a "prepared statement" or a
+** "compiled SQL statement" or simply as a "statement".
+**
+** The life of a statement object goes something like this:
+**
+** <ol>
+** <li> Create the object using [sqlite3_prepare_v2()] or a related
+** function.
+** <li> Bind values to host parameters using
+** [sqlite3_bind_blob | sqlite3_bind_* interfaces].
+** <li> Run the SQL by calling [sqlite3_step()] one or more times.
+** <li> Reset the statement using [sqlite3_reset()] then go back
+** to step 2. Do this zero or more times.
+** <li> Destroy the object using [sqlite3_finalize()].
+** </ol>
+**
+** Refer to documentation on individual methods above for additional
+** information.
+*/
+typedef struct sqlite3_stmt sqlite3_stmt;
+
+/*
+** CAPI3REF: Run-time Limits {F12760}
+**
+** This interface allows the size of various constructs to be limited
+** on a connection by connection basis. The first parameter is the
+** [database connection] whose limit is to be set or queried. The
+** second parameter is one of the [limit categories] that define a
+** class of constructs to be size limited. The third parameter is the
+** new limit for that construct. The function returns the old limit.
+**
+** If the new limit is a negative number, the limit is unchanged.
+** For the limit category of SQLITE_LIMIT_XYZ there is a hard upper
+** bound set by a compile-time C-preprocess macro named SQLITE_MAX_XYZ.
+** (The "_LIMIT_" in the name is changed to "_MAX_".)
+** Attempts to increase a limit above its hard upper bound are
+** silently truncated to the hard upper limit.
+**
+** Run time limits are intended for use in applications that manage
+** both their own internal database and also databases that are controlled
+** by untrusted external sources. An example application might be a
+** webbrowser that has its own databases for storing history and
+** separate databases controlled by javascript applications downloaded
+** off the internet. The internal databases can be given the
+** large, default limits. Databases managed by external sources can
+** be given much smaller limits designed to prevent a denial of service
+** attach. Developers might also want to use the [sqlite3_set_authorizer()]
+** interface to further control untrusted SQL. The size of the database
+** created by an untrusted script can be contained using the
+** [max_page_count] [PRAGMA].
+**
+** This interface is currently considered experimental and is subject
+** to change or removal without prior notice.
+**
+** INVARIANTS:
+**
+** {F12762} A successful call to [sqlite3_limit(D,C,V)] where V is
+** positive changes the
+** limit on the size of construct C in [database connection] D
+** to the lessor of V and the hard upper bound on the size
+** of C that is set at compile-time.
+**
+** {F12766} A successful call to [sqlite3_limit(D,C,V)] where V is negative
+** leaves the state of [database connection] D unchanged.
+**
+** {F12769} A successful call to [sqlite3_limit(D,C,V)] returns the
+** value of the limit on the size of construct C in
+** in [database connection] D as it was prior to the call.
+*/
+SQLITE_API int sqlite3_limit(sqlite3*, int id, int newVal);
+
+/*
+** CAPI3REF: Run-Time Limit Categories {F12790}
+** KEYWORDS: {limit category} {limit categories}
+**
+** These constants define various aspects of a [database connection]
+** that can be limited in size by calls to [sqlite3_limit()].
+** The meanings of the various limits are as follows:
+**
+** <dl>
+** <dt>SQLITE_LIMIT_LENGTH</dt>
+** <dd>The maximum size of any
+** string or blob or table row.<dd>
+**
+** <dt>SQLITE_LIMIT_SQL_LENGTH</dt>
+** <dd>The maximum length of an SQL statement.</dd>
+**
+** <dt>SQLITE_LIMIT_COLUMN</dt>
+** <dd>The maximum number of columns in a table definition or in the
+** result set of a SELECT or the maximum number of columns in an index
+** or in an ORDER BY or GROUP BY clause.</dd>
+**
+** <dt>SQLITE_LIMIT_EXPR_DEPTH</dt>
+** <dd>The maximum depth of the parse tree on any expression.</dd>
+**
+** <dt>SQLITE_LIMIT_COMPOUND_SELECT</dt>
+** <dd>The maximum number of terms in a compound SELECT statement.</dd>
+**
+** <dt>SQLITE_LIMIT_VDBE_OP</dt>
+** <dd>The maximum number of instructions in a virtual machine program
+** used to implement an SQL statement.</dd>
+**
+** <dt>SQLITE_LIMIT_FUNCTION_ARG</dt>
+** <dd>The maximum number of arguments on a function.</dd>
+**
+** <dt>SQLITE_LIMIT_ATTACHED</dt>
+** <dd>The maximum number of attached databases.</dd>
+**
+** <dt>SQLITE_LIMIT_LIKE_PATTERN_LENGTH</dt>
+** <dd>The maximum length of the pattern argument to the LIKE or
+** GLOB operators.</dd>
+**
+** <dt>SQLITE_LIMIT_VARIABLE_NUMBER</dt>
+** <dd>The maximum number of variables in an SQL statement that can
+** be bound.</dd>
+** </dl>
+*/
+#define SQLITE_LIMIT_LENGTH 0
+#define SQLITE_LIMIT_SQL_LENGTH 1
+#define SQLITE_LIMIT_COLUMN 2
+#define SQLITE_LIMIT_EXPR_DEPTH 3
+#define SQLITE_LIMIT_COMPOUND_SELECT 4
+#define SQLITE_LIMIT_VDBE_OP 5
+#define SQLITE_LIMIT_FUNCTION_ARG 6
+#define SQLITE_LIMIT_ATTACHED 7
+#define SQLITE_LIMIT_LIKE_PATTERN_LENGTH 8
+#define SQLITE_LIMIT_VARIABLE_NUMBER 9
+
+/*
+** CAPI3REF: Compiling An SQL Statement {F13010}
+**
+** To execute an SQL query, it must first be compiled into a byte-code
+** program using one of these routines.
+**
+** The first argument "db" is an [database connection]
+** obtained from a prior call to [sqlite3_open()], [sqlite3_open_v2()]
+** or [sqlite3_open16()].
+** The second argument "zSql" is the statement to be compiled, encoded
+** as either UTF-8 or UTF-16. The sqlite3_prepare() and sqlite3_prepare_v2()
+** interfaces uses UTF-8 and sqlite3_prepare16() and sqlite3_prepare16_v2()
+** use UTF-16. {END}
+**
+** If the nByte argument is less
+** than zero, then zSql is read up to the first zero terminator.
+** If nByte is non-negative, then it is the maximum number of
+** bytes read from zSql. When nByte is non-negative, the
+** zSql string ends at either the first '\000' or '\u0000' character or
+** the nByte-th byte, whichever comes first. If the caller knows
+** that the supplied string is nul-terminated, then there is a small
+** performance advantage to be had by passing an nByte parameter that
+** is equal to the number of bytes in the input string <i>including</i>
+** the nul-terminator bytes.{END}
+**
+** *pzTail is made to point to the first byte past the end of the
+** first SQL statement in zSql. These routines only compiles the first
+** statement in zSql, so *pzTail is left pointing to what remains
+** uncompiled.
+**
+** *ppStmt is left pointing to a compiled [prepared statement] that can be
+** executed using [sqlite3_step()]. Or if there is an error, *ppStmt is
+** set to NULL. If the input text contains no SQL (if the input
+** is and empty string or a comment) then *ppStmt is set to NULL.
+** {U13018} The calling procedure is responsible for deleting the
+** compiled SQL statement
+** using [sqlite3_finalize()] after it has finished with it.
+**
+** On success, [SQLITE_OK] is returned. Otherwise an
+** [error code] is returned.
+**
+** The sqlite3_prepare_v2() and sqlite3_prepare16_v2() interfaces are
+** recommended for all new programs. The two older interfaces are retained
+** for backwards compatibility, but their use is discouraged.
+** In the "v2" interfaces, the prepared statement
+** that is returned (the [sqlite3_stmt] object) contains a copy of the
+** original SQL text. {END} This causes the [sqlite3_step()] interface to
+** behave a differently in two ways:
+**
+** <ol>
+** <li>
+** If the database schema changes, instead of returning [SQLITE_SCHEMA] as it
+** always used to do, [sqlite3_step()] will automatically recompile the SQL
+** statement and try to run it again. If the schema has changed in
+** a way that makes the statement no longer valid, [sqlite3_step()] will still
+** return [SQLITE_SCHEMA]. But unlike the legacy behavior,
+** [SQLITE_SCHEMA] is now a fatal error. Calling
+** [sqlite3_prepare_v2()] again will not make the
+** error go away. Note: use [sqlite3_errmsg()] to find the text
+** of the parsing error that results in an [SQLITE_SCHEMA] return. {END}
+** </li>
+**
+** <li>
+** When an error occurs,
+** [sqlite3_step()] will return one of the detailed
+** [error codes] or [extended error codes].
+** The legacy behavior was that [sqlite3_step()] would only return a generic
+** [SQLITE_ERROR] result code and you would have to make a second call to
+** [sqlite3_reset()] in order to find the underlying cause of the problem.
+** With the "v2" prepare interfaces, the underlying reason for the error is
+** returned immediately.
+** </li>
+** </ol>
+**
+** INVARIANTS:
+**
+** {F13011} The [sqlite3_prepare(db,zSql,...)] and
+** [sqlite3_prepare_v2(db,zSql,...)] interfaces interpret the
+** text in their zSql parameter as UTF-8.
+**
+** {F13012} The [sqlite3_prepare16(db,zSql,...)] and
+** [sqlite3_prepare16_v2(db,zSql,...)] interfaces interpret the
+** text in their zSql parameter as UTF-16 in the native byte order.
+**
+** {F13013} If the nByte argument to [sqlite3_prepare_v2(db,zSql,nByte,...)]
+** and its variants is less than zero, then SQL text is
+** read from zSql is read up to the first zero terminator.
+**
+** {F13014} If the nByte argument to [sqlite3_prepare_v2(db,zSql,nByte,...)]
+** and its variants is non-negative, then at most nBytes bytes
+** SQL text is read from zSql.
+**
+** {F13015} In [sqlite3_prepare_v2(db,zSql,N,P,pzTail)] and its variants
+** if the zSql input text contains more than one SQL statement
+** and pzTail is not NULL, then *pzTail is made to point to the
+** first byte past the end of the first SQL statement in zSql.
+** <todo>What does *pzTail point to if there is one statement?</todo>
+**
+** {F13016} A successful call to [sqlite3_prepare_v2(db,zSql,N,ppStmt,...)]
+** or one of its variants writes into *ppStmt a pointer to a new
+** [prepared statement] or a pointer to NULL
+** if zSql contains nothing other than whitespace or comments.
+**
+** {F13019} The [sqlite3_prepare_v2()] interface and its variants return
+** [SQLITE_OK] or an appropriate [error code] upon failure.
+**
+** {F13021} Before [sqlite3_prepare(db,zSql,nByte,ppStmt,pzTail)] or its
+** variants returns an error (any value other than [SQLITE_OK])
+** it first sets *ppStmt to NULL.
+*/
+SQLITE_API int sqlite3_prepare(
+ sqlite3 *db, /* Database handle */
+ const char *zSql, /* SQL statement, UTF-8 encoded */
+ int nByte, /* Maximum length of zSql in bytes. */
+ sqlite3_stmt **ppStmt, /* OUT: Statement handle */
+ const char **pzTail /* OUT: Pointer to unused portion of zSql */
+);
+SQLITE_API int sqlite3_prepare_v2(
+ sqlite3 *db, /* Database handle */
+ const char *zSql, /* SQL statement, UTF-8 encoded */
+ int nByte, /* Maximum length of zSql in bytes. */
+ sqlite3_stmt **ppStmt, /* OUT: Statement handle */
+ const char **pzTail /* OUT: Pointer to unused portion of zSql */
+);
+SQLITE_API int sqlite3_prepare16(
+ sqlite3 *db, /* Database handle */
+ const void *zSql, /* SQL statement, UTF-16 encoded */
+ int nByte, /* Maximum length of zSql in bytes. */
+ sqlite3_stmt **ppStmt, /* OUT: Statement handle */
+ const void **pzTail /* OUT: Pointer to unused portion of zSql */
+);
+SQLITE_API int sqlite3_prepare16_v2(
+ sqlite3 *db, /* Database handle */
+ const void *zSql, /* SQL statement, UTF-16 encoded */
+ int nByte, /* Maximum length of zSql in bytes. */
+ sqlite3_stmt **ppStmt, /* OUT: Statement handle */
+ const void **pzTail /* OUT: Pointer to unused portion of zSql */
+);
+
+/*
+** CAPIREF: Retrieving Statement SQL {F13100}
+**
+** This intereface can be used to retrieve a saved copy of the original
+** SQL text used to create a [prepared statement].
+**
+** INVARIANTS:
+**
+** {F13101} If the [prepared statement] passed as
+** the an argument to [sqlite3_sql()] was compiled
+** compiled using either [sqlite3_prepare_v2()] or
+** [sqlite3_prepare16_v2()],
+** then [sqlite3_sql()] function returns a pointer to a
+** zero-terminated string containing a UTF-8 rendering
+** of the original SQL statement.
+**
+** {F13102} If the [prepared statement] passed as
+** the an argument to [sqlite3_sql()] was compiled
+** compiled using either [sqlite3_prepare()] or
+** [sqlite3_prepare16()],
+** then [sqlite3_sql()] function returns a NULL pointer.
+**
+** {F13103} The string returned by [sqlite3_sql(S)] is valid until the
+** [prepared statement] S is deleted using [sqlite3_finalize(S)].
+*/
+SQLITE_API const char *sqlite3_sql(sqlite3_stmt *pStmt);
+
+/*
+** CAPI3REF: Dynamically Typed Value Object {F15000}
+** KEYWORDS: {protected sqlite3_value} {unprotected sqlite3_value}
+**
+** SQLite uses the sqlite3_value object to represent all values
+** that can be stored in a database table.
+** SQLite uses dynamic typing for the values it stores.
+** Values stored in sqlite3_value objects can be
+** be integers, floating point values, strings, BLOBs, or NULL.
+**
+** An sqlite3_value object may be either "protected" or "unprotected".
+** Some interfaces require a protected sqlite3_value. Other interfaces
+** will accept either a protected or an unprotected sqlite3_value.
+** Every interface that accepts sqlite3_value arguments specifies
+** whether or not it requires a protected sqlite3_value.
+**
+** The terms "protected" and "unprotected" refer to whether or not
+** a mutex is held. A internal mutex is held for a protected
+** sqlite3_value object but no mutex is held for an unprotected
+** sqlite3_value object. If SQLite is compiled to be single-threaded
+** (with SQLITE_THREADSAFE=0 and with [sqlite3_threadsafe()] returning 0)
+** then there is no distinction between
+** protected and unprotected sqlite3_value objects and they can be
+** used interchangable. However, for maximum code portability it
+** is recommended that applications make the distinction between
+** between protected and unprotected sqlite3_value objects even if
+** they are single threaded.
+**
+** The sqlite3_value objects that are passed as parameters into the
+** implementation of application-defined SQL functions are protected.
+** The sqlite3_value object returned by
+** [sqlite3_column_value()] is unprotected.
+** Unprotected sqlite3_value objects may only be used with
+** [sqlite3_result_value()] and [sqlite3_bind_value()]. All other
+** interfaces that use sqlite3_value require protected sqlite3_value objects.
+*/
+typedef struct Mem sqlite3_value;
+
+/*
+** CAPI3REF: SQL Function Context Object {F16001}
+**
+** The context in which an SQL function executes is stored in an
+** sqlite3_context object. A pointer to an sqlite3_context
+** object is always first parameter to application-defined SQL functions.
+*/
+typedef struct sqlite3_context sqlite3_context;
+
+/*
+** CAPI3REF: Binding Values To Prepared Statements {F13500}
+**
+** In the SQL strings input to [sqlite3_prepare_v2()] and its
+** variants, literals may be replace by a parameter in one
+** of these forms:
+**
+** <ul>
+** <li> ?
+** <li> ?NNN
+** <li> :VVV
+** <li> @VVV
+** <li> $VVV
+** </ul>
+**
+** In the parameter forms shown above NNN is an integer literal,
+** VVV alpha-numeric parameter name.
+** The values of these parameters (also called "host parameter names"
+** or "SQL parameters")
+** can be set using the sqlite3_bind_*() routines defined here.
+**
+** The first argument to the sqlite3_bind_*() routines always
+** is a pointer to the [sqlite3_stmt] object returned from
+** [sqlite3_prepare_v2()] or its variants. The second
+** argument is the index of the parameter to be set. The
+** first parameter has an index of 1. When the same named
+** parameter is used more than once, second and subsequent
+** occurrences have the same index as the first occurrence.
+** The index for named parameters can be looked up using the
+** [sqlite3_bind_parameter_name()] API if desired. The index
+** for "?NNN" parameters is the value of NNN.
+** The NNN value must be between 1 and the compile-time
+** parameter SQLITE_MAX_VARIABLE_NUMBER (default value: 999).
+**
+** The third argument is the value to bind to the parameter.
+**
+** In those
+** routines that have a fourth argument, its value is the number of bytes
+** in the parameter. To be clear: the value is the number of <u>bytes</u>
+** in the value, not the number of characters.
+** If the fourth parameter is negative, the length of the string is
+** number of bytes up to the first zero terminator.
+**
+** The fifth argument to sqlite3_bind_blob(), sqlite3_bind_text(), and
+** sqlite3_bind_text16() is a destructor used to dispose of the BLOB or
+** string after SQLite has finished with it. If the fifth argument is
+** the special value [SQLITE_STATIC], then SQLite assumes that the
+** information is in static, unmanaged space and does not need to be freed.
+** If the fifth argument has the value [SQLITE_TRANSIENT], then
+** SQLite makes its own private copy of the data immediately, before
+** the sqlite3_bind_*() routine returns.
+**
+** The sqlite3_bind_zeroblob() routine binds a BLOB of length N that
+** is filled with zeros. A zeroblob uses a fixed amount of memory
+** (just an integer to hold it size) while it is being processed.
+** Zeroblobs are intended to serve as place-holders for BLOBs whose
+** content is later written using
+** [sqlite3_blob_open | increment BLOB I/O] routines. A negative
+** value for the zeroblob results in a zero-length BLOB.
+**
+** The sqlite3_bind_*() routines must be called after
+** [sqlite3_prepare_v2()] (and its variants) or [sqlite3_reset()] and
+** before [sqlite3_step()].
+** Bindings are not cleared by the [sqlite3_reset()] routine.
+** Unbound parameters are interpreted as NULL.
+**
+** These routines return [SQLITE_OK] on success or an error code if
+** anything goes wrong. [SQLITE_RANGE] is returned if the parameter
+** index is out of range. [SQLITE_NOMEM] is returned if malloc fails.
+** [SQLITE_MISUSE] might be returned if these routines are called on a
+** virtual machine that is the wrong state or which has already been finalized.
+** Detection of misuse is unreliable. Applications should not depend
+** on SQLITE_MISUSE returns. SQLITE_MISUSE is intended to indicate a
+** a logic error in the application. Future versions of SQLite might
+** panic rather than return SQLITE_MISUSE.
+**
+** See also: [sqlite3_bind_parameter_count()],
+** [sqlite3_bind_parameter_name()], and
+** [sqlite3_bind_parameter_index()].
+**
+** INVARIANTS:
+**
+** {F13506} The [sqlite3_prepare | SQL statement compiler] recognizes
+** tokens of the forms "?", "?NNN", "$VVV", ":VVV", and "@VVV"
+** as SQL parameters, where NNN is any sequence of one or more
+** digits and where VVV is any sequence of one or more
+** alphanumeric characters or "::" optionally followed by
+** a string containing no spaces and contained within parentheses.
+**
+** {F13509} The initial value of an SQL parameter is NULL.
+**
+** {F13512} The index of an "?" SQL parameter is one larger than the
+** largest index of SQL parameter to the left, or 1 if
+** the "?" is the leftmost SQL parameter.
+**
+** {F13515} The index of an "?NNN" SQL parameter is the integer NNN.
+**
+** {F13518} The index of an ":VVV", "$VVV", or "@VVV" SQL parameter is
+** the same as the index of leftmost occurances of the same
+** parameter, or one more than the largest index over all
+** parameters to the left if this is the first occurrance
+** of this parameter, or 1 if this is the leftmost parameter.
+**
+** {F13521} The [sqlite3_prepare | SQL statement compiler] fail with
+** an [SQLITE_RANGE] error if the index of an SQL parameter
+** is less than 1 or greater than SQLITE_MAX_VARIABLE_NUMBER.
+**
+** {F13524} Calls to [sqlite3_bind_text | sqlite3_bind(S,N,V,...)]
+** associate the value V with all SQL parameters having an
+** index of N in the [prepared statement] S.
+**
+** {F13527} Calls to [sqlite3_bind_text | sqlite3_bind(S,N,...)]
+** override prior calls with the same values of S and N.
+**
+** {F13530} Bindings established by [sqlite3_bind_text | sqlite3_bind(S,...)]
+** persist across calls to [sqlite3_reset(S)].
+**
+** {F13533} In calls to [sqlite3_bind_blob(S,N,V,L,D)],
+** [sqlite3_bind_text(S,N,V,L,D)], or
+** [sqlite3_bind_text16(S,N,V,L,D)] SQLite binds the first L
+** bytes of the blob or string pointed to by V, when L
+** is non-negative.
+**
+** {F13536} In calls to [sqlite3_bind_text(S,N,V,L,D)] or
+** [sqlite3_bind_text16(S,N,V,L,D)] SQLite binds characters
+** from V through the first zero character when L is negative.
+**
+** {F13539} In calls to [sqlite3_bind_blob(S,N,V,L,D)],
+** [sqlite3_bind_text(S,N,V,L,D)], or
+** [sqlite3_bind_text16(S,N,V,L,D)] when D is the special
+** constant [SQLITE_STATIC], SQLite assumes that the value V
+** is held in static unmanaged space that will not change
+** during the lifetime of the binding.
+**
+** {F13542} In calls to [sqlite3_bind_blob(S,N,V,L,D)],
+** [sqlite3_bind_text(S,N,V,L,D)], or
+** [sqlite3_bind_text16(S,N,V,L,D)] when D is the special
+** constant [SQLITE_TRANSIENT], the routine makes a
+** private copy of V value before it returns.
+**
+** {F13545} In calls to [sqlite3_bind_blob(S,N,V,L,D)],
+** [sqlite3_bind_text(S,N,V,L,D)], or
+** [sqlite3_bind_text16(S,N,V,L,D)] when D is a pointer to
+** a function, SQLite invokes that function to destroy the
+** V value after it has finished using the V value.
+**
+** {F13548} In calls to [sqlite3_bind_zeroblob(S,N,V,L)] the value bound
+** is a blob of L bytes, or a zero-length blob if L is negative.
+**
+** {F13551} In calls to [sqlite3_bind_value(S,N,V)] the V argument may
+** be either a [protected sqlite3_value] object or an
+** [unprotected sqlite3_value] object.
+*/
+SQLITE_API int sqlite3_bind_blob(sqlite3_stmt*, int, const void*, int n, void(*)(void*));
+SQLITE_API int sqlite3_bind_double(sqlite3_stmt*, int, double);
+SQLITE_API int sqlite3_bind_int(sqlite3_stmt*, int, int);
+SQLITE_API int sqlite3_bind_int64(sqlite3_stmt*, int, sqlite3_int64);
+SQLITE_API int sqlite3_bind_null(sqlite3_stmt*, int);
+SQLITE_API int sqlite3_bind_text(sqlite3_stmt*, int, const char*, int n, void(*)(void*));
+SQLITE_API int sqlite3_bind_text16(sqlite3_stmt*, int, const void*, int, void(*)(void*));
+SQLITE_API int sqlite3_bind_value(sqlite3_stmt*, int, const sqlite3_value*);
+SQLITE_API int sqlite3_bind_zeroblob(sqlite3_stmt*, int, int n);
+
+/*
+** CAPI3REF: Number Of SQL Parameters {F13600}
+**
+** This routine can be used to find the number of SQL parameters
+** in a prepared statement. SQL parameters are tokens of the
+** form "?", "?NNN", ":AAA", "$AAA", or "@AAA" that serve as
+** place-holders for values that are [sqlite3_bind_blob | bound]
+** to the parameters at a later time.
+**
+** This routine actually returns the index of the largest parameter.
+** For all forms except ?NNN, this will correspond to the number of
+** unique parameters. If parameters of the ?NNN are used, there may
+** be gaps in the list.
+**
+** See also: [sqlite3_bind_blob|sqlite3_bind()],
+** [sqlite3_bind_parameter_name()], and
+** [sqlite3_bind_parameter_index()].
+**
+** INVARIANTS:
+**
+** {F13601} The [sqlite3_bind_parameter_count(S)] interface returns
+** the largest index of all SQL parameters in the
+** [prepared statement] S, or 0 if S
+** contains no SQL parameters.
+*/
+SQLITE_API int sqlite3_bind_parameter_count(sqlite3_stmt*);
+
+/*
+** CAPI3REF: Name Of A Host Parameter {F13620}
+**
+** This routine returns a pointer to the name of the n-th
+** SQL parameter in a [prepared statement].
+** SQL parameters of the form "?NNN" or ":AAA" or "@AAA" or "$AAA"
+** have a name which is the string "?NNN" or ":AAA" or "@AAA" or "$AAA"
+** respectively.
+** In other words, the initial ":" or "$" or "@" or "?"
+** is included as part of the name.
+** Parameters of the form "?" without a following integer have no name.
+**
+** The first host parameter has an index of 1, not 0.
+**
+** If the value n is out of range or if the n-th parameter is
+** nameless, then NULL is returned. The returned string is
+** always in the UTF-8 encoding even if the named parameter was
+** originally specified as UTF-16 in [sqlite3_prepare16()] or
+** [sqlite3_prepare16_v2()].
+**
+** See also: [sqlite3_bind_blob|sqlite3_bind()],
+** [sqlite3_bind_parameter_count()], and
+** [sqlite3_bind_parameter_index()].
+**
+** INVARIANTS:
+**
+** {F13621} The [sqlite3_bind_parameter_name(S,N)] interface returns
+** a UTF-8 rendering of the name of the SQL parameter in
+** [prepared statement] S having index N, or
+** NULL if there is no SQL parameter with index N or if the
+** parameter with index N is an anonymous parameter "?".
+*/
+SQLITE_API const char *sqlite3_bind_parameter_name(sqlite3_stmt*, int);
+
+/*
+** CAPI3REF: Index Of A Parameter With A Given Name {F13640}
+**
+** Return the index of an SQL parameter given its name. The
+** index value returned is suitable for use as the second
+** parameter to [sqlite3_bind_blob|sqlite3_bind()]. A zero
+** is returned if no matching parameter is found. The parameter
+** name must be given in UTF-8 even if the original statement
+** was prepared from UTF-16 text using [sqlite3_prepare16_v2()].
+**
+** See also: [sqlite3_bind_blob|sqlite3_bind()],
+** [sqlite3_bind_parameter_count()], and
+** [sqlite3_bind_parameter_index()].
+**
+** INVARIANTS:
+**
+** {F13641} The [sqlite3_bind_parameter_index(S,N)] interface returns
+** the index of SQL parameter in [prepared statement]
+** S whose name matches the UTF-8 string N, or 0 if there is
+** no match.
+*/
+SQLITE_API int sqlite3_bind_parameter_index(sqlite3_stmt*, const char *zName);
+
+/*
+** CAPI3REF: Reset All Bindings On A Prepared Statement {F13660}
+**
+** Contrary to the intuition of many, [sqlite3_reset()] does not
+** reset the [sqlite3_bind_blob | bindings] on a
+** [prepared statement]. Use this routine to
+** reset all host parameters to NULL.
+**
+** INVARIANTS:
+**
+** {F13661} The [sqlite3_clear_bindings(S)] interface resets all
+** SQL parameter bindings in [prepared statement] S
+** back to NULL.
+*/
+SQLITE_API int sqlite3_clear_bindings(sqlite3_stmt*);
+
+/*
+** CAPI3REF: Number Of Columns In A Result Set {F13710}
+**
+** Return the number of columns in the result set returned by the
+** [prepared statement]. This routine returns 0
+** if pStmt is an SQL statement that does not return data (for
+** example an UPDATE).
+**
+** INVARIANTS:
+**
+** {F13711} The [sqlite3_column_count(S)] interface returns the number of
+** columns in the result set generated by the
+** [prepared statement] S, or 0 if S does not generate
+** a result set.
+*/
+SQLITE_API int sqlite3_column_count(sqlite3_stmt *pStmt);
+
+/*
+** CAPI3REF: Column Names In A Result Set {F13720}
+**
+** These routines return the name assigned to a particular column
+** in the result set of a SELECT statement. The sqlite3_column_name()
+** interface returns a pointer to a zero-terminated UTF8 string
+** and sqlite3_column_name16() returns a pointer to a zero-terminated
+** UTF16 string. The first parameter is the
+** [prepared statement] that implements the SELECT statement.
+** The second parameter is the column number. The left-most column is
+** number 0.
+**
+** The returned string pointer is valid until either the
+** [prepared statement] is destroyed by [sqlite3_finalize()]
+** or until the next call sqlite3_column_name() or sqlite3_column_name16()
+** on the same column.
+**
+** If sqlite3_malloc() fails during the processing of either routine
+** (for example during a conversion from UTF-8 to UTF-16) then a
+** NULL pointer is returned.
+**
+** The name of a result column is the value of the "AS" clause for
+** that column, if there is an AS clause. If there is no AS clause
+** then the name of the column is unspecified and may change from
+** one release of SQLite to the next.
+**
+** INVARIANTS:
+**
+** {F13721} A successful invocation of the [sqlite3_column_name(S,N)]
+** interface returns the name
+** of the Nth column (where 0 is the left-most column) for the
+** result set of [prepared statement] S as a
+** zero-terminated UTF-8 string.
+**
+** {F13723} A successful invocation of the [sqlite3_column_name16(S,N)]
+** interface returns the name
+** of the Nth column (where 0 is the left-most column) for the
+** result set of [prepared statement] S as a
+** zero-terminated UTF-16 string in the native byte order.
+**
+** {F13724} The [sqlite3_column_name()] and [sqlite3_column_name16()]
+** interfaces return a NULL pointer if they are unable to
+** allocate memory memory to hold there normal return strings.
+**
+** {F13725} If the N parameter to [sqlite3_column_name(S,N)] or
+** [sqlite3_column_name16(S,N)] is out of range, then the
+** interfaces returns a NULL pointer.
+**
+** {F13726} The strings returned by [sqlite3_column_name(S,N)] and
+** [sqlite3_column_name16(S,N)] are valid until the next
+** call to either routine with the same S and N parameters
+** or until [sqlite3_finalize(S)] is called.
+**
+** {F13727} When a result column of a [SELECT] statement contains
+** an AS clause, the name of that column is the indentifier
+** to the right of the AS keyword.
+*/
+SQLITE_API const char *sqlite3_column_name(sqlite3_stmt*, int N);
+SQLITE_API const void *sqlite3_column_name16(sqlite3_stmt*, int N);
+
+/*
+** CAPI3REF: Source Of Data In A Query Result {F13740}
+**
+** These routines provide a means to determine what column of what
+** table in which database a result of a SELECT statement comes from.
+** The name of the database or table or column can be returned as
+** either a UTF8 or UTF16 string. The _database_ routines return
+** the database name, the _table_ routines return the table name, and
+** the origin_ routines return the column name.
+** The returned string is valid until
+** the [prepared statement] is destroyed using
+** [sqlite3_finalize()] or until the same information is requested
+** again in a different encoding.
+**
+** The names returned are the original un-aliased names of the
+** database, table, and column.
+**
+** The first argument to the following calls is a [prepared statement].
+** These functions return information about the Nth column returned by
+** the statement, where N is the second function argument.
+**
+** If the Nth column returned by the statement is an expression
+** or subquery and is not a column value, then all of these functions
+** return NULL. These routine might also return NULL if a memory
+** allocation error occurs. Otherwise, they return the
+** name of the attached database, table and column that query result
+** column was extracted from.
+**
+** As with all other SQLite APIs, those postfixed with "16" return
+** UTF-16 encoded strings, the other functions return UTF-8. {END}
+**
+** These APIs are only available if the library was compiled with the
+** SQLITE_ENABLE_COLUMN_METADATA preprocessor symbol defined.
+**
+** {U13751}
+** If two or more threads call one or more of these routines against the same
+** prepared statement and column at the same time then the results are
+** undefined.
+**
+** INVARIANTS:
+**
+** {F13741} The [sqlite3_column_database_name(S,N)] interface returns either
+** the UTF-8 zero-terminated name of the database from which the
+** Nth result column of [prepared statement] S
+** is extracted, or NULL if the the Nth column of S is a
+** general expression or if unable to allocate memory
+** to store the name.
+**
+** {F13742} The [sqlite3_column_database_name16(S,N)] interface returns either
+** the UTF-16 native byte order
+** zero-terminated name of the database from which the
+** Nth result column of [prepared statement] S
+** is extracted, or NULL if the the Nth column of S is a
+** general expression or if unable to allocate memory
+** to store the name.
+**
+** {F13743} The [sqlite3_column_table_name(S,N)] interface returns either
+** the UTF-8 zero-terminated name of the table from which the
+** Nth result column of [prepared statement] S
+** is extracted, or NULL if the the Nth column of S is a
+** general expression or if unable to allocate memory
+** to store the name.
+**
+** {F13744} The [sqlite3_column_table_name16(S,N)] interface returns either
+** the UTF-16 native byte order
+** zero-terminated name of the table from which the
+** Nth result column of [prepared statement] S
+** is extracted, or NULL if the the Nth column of S is a
+** general expression or if unable to allocate memory
+** to store the name.
+**
+** {F13745} The [sqlite3_column_origin_name(S,N)] interface returns either
+** the UTF-8 zero-terminated name of the table column from which the
+** Nth result column of [prepared statement] S
+** is extracted, or NULL if the the Nth column of S is a
+** general expression or if unable to allocate memory
+** to store the name.
+**
+** {F13746} The [sqlite3_column_origin_name16(S,N)] interface returns either
+** the UTF-16 native byte order
+** zero-terminated name of the table column from which the
+** Nth result column of [prepared statement] S
+** is extracted, or NULL if the the Nth column of S is a
+** general expression or if unable to allocate memory
+** to store the name.
+**
+** {F13748} The return values from
+** [sqlite3_column_database_name|column metadata interfaces]
+** are valid
+** for the lifetime of the [prepared statement]
+** or until the encoding is changed by another metadata
+** interface call for the same prepared statement and column.
+**
+** LIMITATIONS:
+**
+** {U13751} If two or more threads call one or more
+** [sqlite3_column_database_name|column metadata interfaces]
+** the same [prepared statement] and result column
+** at the same time then the results are undefined.
+*/
+SQLITE_API const char *sqlite3_column_database_name(sqlite3_stmt*,int);
+SQLITE_API const void *sqlite3_column_database_name16(sqlite3_stmt*,int);
+SQLITE_API const char *sqlite3_column_table_name(sqlite3_stmt*,int);
+SQLITE_API const void *sqlite3_column_table_name16(sqlite3_stmt*,int);
+SQLITE_API const char *sqlite3_column_origin_name(sqlite3_stmt*,int);
+SQLITE_API const void *sqlite3_column_origin_name16(sqlite3_stmt*,int);
+
+/*
+** CAPI3REF: Declared Datatype Of A Query Result {F13760}
+**
+** The first parameter is a [prepared statement].
+** If this statement is a SELECT statement and the Nth column of the
+** returned result set of that SELECT is a table column (not an
+** expression or subquery) then the declared type of the table
+** column is returned. If the Nth column of the result set is an
+** expression or subquery, then a NULL pointer is returned.
+** The returned string is always UTF-8 encoded. {END}
+** For example, in the database schema:
+**
+** CREATE TABLE t1(c1 VARIANT);
+**
+** And the following statement compiled:
+**
+** SELECT c1 + 1, c1 FROM t1;
+**
+** Then this routine would return the string "VARIANT" for the second
+** result column (i==1), and a NULL pointer for the first result column
+** (i==0).
+**
+** SQLite uses dynamic run-time typing. So just because a column
+** is declared to contain a particular type does not mean that the
+** data stored in that column is of the declared type. SQLite is
+** strongly typed, but the typing is dynamic not static. Type
+** is associated with individual values, not with the containers
+** used to hold those values.
+**
+** INVARIANTS:
+**
+** {F13761} A successful call to [sqlite3_column_decltype(S,N)]
+** returns a zero-terminated UTF-8 string containing the
+** the declared datatype of the table column that appears
+** as the Nth column (numbered from 0) of the result set to the
+** [prepared statement] S.
+**
+** {F13762} A successful call to [sqlite3_column_decltype16(S,N)]
+** returns a zero-terminated UTF-16 native byte order string
+** containing the declared datatype of the table column that appears
+** as the Nth column (numbered from 0) of the result set to the
+** [prepared statement] S.
+**
+** {F13763} If N is less than 0 or N is greater than or equal to
+** the number of columns in [prepared statement] S
+** or if the Nth column of S is an expression or subquery rather
+** than a table column or if a memory allocation failure
+** occurs during encoding conversions, then
+** calls to [sqlite3_column_decltype(S,N)] or
+** [sqlite3_column_decltype16(S,N)] return NULL.
+*/
+SQLITE_API const char *sqlite3_column_decltype(sqlite3_stmt*,int);
+SQLITE_API const void *sqlite3_column_decltype16(sqlite3_stmt*,int);
+
+/*
+** CAPI3REF: Evaluate An SQL Statement {F13200}
+**
+** After an [prepared statement] has been prepared with a call
+** to either [sqlite3_prepare_v2()] or [sqlite3_prepare16_v2()] or to one of
+** the legacy interfaces [sqlite3_prepare()] or [sqlite3_prepare16()],
+** then this function must be called one or more times to evaluate the
+** statement.
+**
+** The details of the behavior of this sqlite3_step() interface depend
+** on whether the statement was prepared using the newer "v2" interface
+** [sqlite3_prepare_v2()] and [sqlite3_prepare16_v2()] or the older legacy
+** interface [sqlite3_prepare()] and [sqlite3_prepare16()]. The use of the
+** new "v2" interface is recommended for new applications but the legacy
+** interface will continue to be supported.
+**
+** In the legacy interface, the return value will be either [SQLITE_BUSY],
+** [SQLITE_DONE], [SQLITE_ROW], [SQLITE_ERROR], or [SQLITE_MISUSE].
+** With the "v2" interface, any of the other [SQLITE_OK | result code]
+** or [SQLITE_IOERR_READ | extended result code] might be returned as
+** well.
+**
+** [SQLITE_BUSY] means that the database engine was unable to acquire the
+** database locks it needs to do its job. If the statement is a COMMIT
+** or occurs outside of an explicit transaction, then you can retry the
+** statement. If the statement is not a COMMIT and occurs within a
+** explicit transaction then you should rollback the transaction before
+** continuing.
+**
+** [SQLITE_DONE] means that the statement has finished executing
+** successfully. sqlite3_step() should not be called again on this virtual
+** machine without first calling [sqlite3_reset()] to reset the virtual
+** machine back to its initial state.
+**
+** If the SQL statement being executed returns any data, then
+** [SQLITE_ROW] is returned each time a new row of data is ready
+** for processing by the caller. The values may be accessed using
+** the [sqlite3_column_int | column access functions].
+** sqlite3_step() is called again to retrieve the next row of data.
+**
+** [SQLITE_ERROR] means that a run-time error (such as a constraint
+** violation) has occurred. sqlite3_step() should not be called again on
+** the VM. More information may be found by calling [sqlite3_errmsg()].
+** With the legacy interface, a more specific error code (example:
+** [SQLITE_INTERRUPT], [SQLITE_SCHEMA], [SQLITE_CORRUPT], and so forth)
+** can be obtained by calling [sqlite3_reset()] on the
+** [prepared statement]. In the "v2" interface,
+** the more specific error code is returned directly by sqlite3_step().
+**
+** [SQLITE_MISUSE] means that the this routine was called inappropriately.
+** Perhaps it was called on a [prepared statement] that has
+** already been [sqlite3_finalize | finalized] or on one that had
+** previously returned [SQLITE_ERROR] or [SQLITE_DONE]. Or it could
+** be the case that the same database connection is being used by two or
+** more threads at the same moment in time.
+**
+** <b>Goofy Interface Alert:</b>
+** In the legacy interface,
+** the sqlite3_step() API always returns a generic error code,
+** [SQLITE_ERROR], following any error other than [SQLITE_BUSY]
+** and [SQLITE_MISUSE]. You must call [sqlite3_reset()] or
+** [sqlite3_finalize()] in order to find one of the specific
+** [error codes] that better describes the error.
+** We admit that this is a goofy design. The problem has been fixed
+** with the "v2" interface. If you prepare all of your SQL statements
+** using either [sqlite3_prepare_v2()] or [sqlite3_prepare16_v2()] instead
+** of the legacy [sqlite3_prepare()] and [sqlite3_prepare16()], then the
+** more specific [error codes] are returned directly
+** by sqlite3_step(). The use of the "v2" interface is recommended.
+**
+** INVARIANTS:
+**
+** {F13202} If [prepared statement] S is ready to be
+** run, then [sqlite3_step(S)] advances that prepared statement
+** until to completion or until it is ready to return another
+** row of the result set or an interrupt or run-time error occurs.
+**
+** {F15304} When a call to [sqlite3_step(S)] causes the
+** [prepared statement] S to run to completion,
+** the function returns [SQLITE_DONE].
+**
+** {F15306} When a call to [sqlite3_step(S)] stops because it is ready
+** to return another row of the result set, it returns
+** [SQLITE_ROW].
+**
+** {F15308} If a call to [sqlite3_step(S)] encounters an
+** [sqlite3_interrupt|interrupt] or a run-time error,
+** it returns an appropraite error code that is not one of
+** [SQLITE_OK], [SQLITE_ROW], or [SQLITE_DONE].
+**
+** {F15310} If an [sqlite3_interrupt|interrupt] or run-time error
+** occurs during a call to [sqlite3_step(S)]
+** for a [prepared statement] S created using
+** legacy interfaces [sqlite3_prepare()] or
+** [sqlite3_prepare16()] then the function returns either
+** [SQLITE_ERROR], [SQLITE_BUSY], or [SQLITE_MISUSE].
+*/
+SQLITE_API int sqlite3_step(sqlite3_stmt*);
+
+/*
+** CAPI3REF: Number of columns in a result set {F13770}
+**
+** Return the number of values in the current row of the result set.
+**
+** INVARIANTS:
+**
+** {F13771} After a call to [sqlite3_step(S)] that returns
+** [SQLITE_ROW], the [sqlite3_data_count(S)] routine
+** will return the same value as the
+** [sqlite3_column_count(S)] function.
+**
+** {F13772} After [sqlite3_step(S)] has returned any value other than
+** [SQLITE_ROW] or before [sqlite3_step(S)] has been
+** called on the [prepared statement] for
+** the first time since it was [sqlite3_prepare|prepared]
+** or [sqlite3_reset|reset], the [sqlite3_data_count(S)]
+** routine returns zero.
+*/
+SQLITE_API int sqlite3_data_count(sqlite3_stmt *pStmt);
+
+/*
+** CAPI3REF: Fundamental Datatypes {F10265}
+** KEYWORDS: SQLITE_TEXT
+**
+** {F10266}Every value in SQLite has one of five fundamental datatypes:
+**
+** <ul>
+** <li> 64-bit signed integer
+** <li> 64-bit IEEE floating point number
+** <li> string
+** <li> BLOB
+** <li> NULL
+** </ul> {END}
+**
+** These constants are codes for each of those types.
+**
+** Note that the SQLITE_TEXT constant was also used in SQLite version 2
+** for a completely different meaning. Software that links against both
+** SQLite version 2 and SQLite version 3 should use SQLITE3_TEXT not
+** SQLITE_TEXT.
+*/
+#define SQLITE_INTEGER 1
+#define SQLITE_FLOAT 2
+#define SQLITE_BLOB 4
+#define SQLITE_NULL 5
+#ifdef SQLITE_TEXT
+# undef SQLITE_TEXT
+#else
+# define SQLITE_TEXT 3
+#endif
+#define SQLITE3_TEXT 3
+
+/*
+** CAPI3REF: Results Values From A Query {F13800}
+**
+** These routines form the "result set query" interface.
+**
+** These routines return information about
+** a single column of the current result row of a query. In every
+** case the first argument is a pointer to the
+** [prepared statement] that is being
+** evaluated (the [sqlite3_stmt*] that was returned from
+** [sqlite3_prepare_v2()] or one of its variants) and
+** the second argument is the index of the column for which information
+** should be returned. The left-most column of the result set
+** has an index of 0.
+**
+** If the SQL statement is not currently point to a valid row, or if the
+** the column index is out of range, the result is undefined.
+** These routines may only be called when the most recent call to
+** [sqlite3_step()] has returned [SQLITE_ROW] and neither
+** [sqlite3_reset()] nor [sqlite3_finalize()] has been call subsequently.
+** If any of these routines are called after [sqlite3_reset()] or
+** [sqlite3_finalize()] or after [sqlite3_step()] has returned
+** something other than [SQLITE_ROW], the results are undefined.
+** If [sqlite3_step()] or [sqlite3_reset()] or [sqlite3_finalize()]
+** are called from a different thread while any of these routines
+** are pending, then the results are undefined.
+**
+** The sqlite3_column_type() routine returns
+** [SQLITE_INTEGER | datatype code] for the initial data type
+** of the result column. The returned value is one of [SQLITE_INTEGER],
+** [SQLITE_FLOAT], [SQLITE_TEXT], [SQLITE_BLOB], or [SQLITE_NULL]. The value
+** returned by sqlite3_column_type() is only meaningful if no type
+** conversions have occurred as described below. After a type conversion,
+** the value returned by sqlite3_column_type() is undefined. Future
+** versions of SQLite may change the behavior of sqlite3_column_type()
+** following a type conversion.
+**
+** If the result is a BLOB or UTF-8 string then the sqlite3_column_bytes()
+** routine returns the number of bytes in that BLOB or string.
+** If the result is a UTF-16 string, then sqlite3_column_bytes() converts
+** the string to UTF-8 and then returns the number of bytes.
+** If the result is a numeric value then sqlite3_column_bytes() uses
+** [sqlite3_snprintf()] to convert that value to a UTF-8 string and returns
+** the number of bytes in that string.
+** The value returned does not include the zero terminator at the end
+** of the string. For clarity: the value returned is the number of
+** bytes in the string, not the number of characters.
+**
+** Strings returned by sqlite3_column_text() and sqlite3_column_text16(),
+** even empty strings, are always zero terminated. The return
+** value from sqlite3_column_blob() for a zero-length blob is an arbitrary
+** pointer, possibly even a NULL pointer.
+**
+** The sqlite3_column_bytes16() routine is similar to sqlite3_column_bytes()
+** but leaves the result in UTF-16 in native byte order instead of UTF-8.
+** The zero terminator is not included in this count.
+**
+** The object returned by [sqlite3_column_value()] is an
+** [unprotected sqlite3_value] object. An unprotected sqlite3_value object
+** may only be used with [sqlite3_bind_value()] and [sqlite3_result_value()].
+** If the [unprotected sqlite3_value] object returned by
+** [sqlite3_column_value()] is used in any other way, including calls
+** to routines like
+** [sqlite3_value_int()], [sqlite3_value_text()], or [sqlite3_value_bytes()],
+** then the behavior is undefined.
+**
+** These routines attempt to convert the value where appropriate. For
+** example, if the internal representation is FLOAT and a text result
+** is requested, [sqlite3_snprintf()] is used internally to do the conversion
+** automatically. The following table details the conversions that
+** are applied:
+**
+** <blockquote>
+** <table border="1">
+** <tr><th> Internal<br>Type <th> Requested<br>Type <th> Conversion
+**
+** <tr><td> NULL <td> INTEGER <td> Result is 0
+** <tr><td> NULL <td> FLOAT <td> Result is 0.0
+** <tr><td> NULL <td> TEXT <td> Result is NULL pointer
+** <tr><td> NULL <td> BLOB <td> Result is NULL pointer
+** <tr><td> INTEGER <td> FLOAT <td> Convert from integer to float
+** <tr><td> INTEGER <td> TEXT <td> ASCII rendering of the integer
+** <tr><td> INTEGER <td> BLOB <td> Same as for INTEGER->TEXT
+** <tr><td> FLOAT <td> INTEGER <td> Convert from float to integer
+** <tr><td> FLOAT <td> TEXT <td> ASCII rendering of the float
+** <tr><td> FLOAT <td> BLOB <td> Same as FLOAT->TEXT
+** <tr><td> TEXT <td> INTEGER <td> Use atoi()
+** <tr><td> TEXT <td> FLOAT <td> Use atof()
+** <tr><td> TEXT <td> BLOB <td> No change
+** <tr><td> BLOB <td> INTEGER <td> Convert to TEXT then use atoi()
+** <tr><td> BLOB <td> FLOAT <td> Convert to TEXT then use atof()
+** <tr><td> BLOB <td> TEXT <td> Add a zero terminator if needed
+** </table>
+** </blockquote>
+**
+** The table above makes reference to standard C library functions atoi()
+** and atof(). SQLite does not really use these functions. It has its
+** on equavalent internal routines. The atoi() and atof() names are
+** used in the table for brevity and because they are familiar to most
+** C programmers.
+**
+** Note that when type conversions occur, pointers returned by prior
+** calls to sqlite3_column_blob(), sqlite3_column_text(), and/or
+** sqlite3_column_text16() may be invalidated.
+** Type conversions and pointer invalidations might occur
+** in the following cases:
+**
+** <ul>
+** <li><p> The initial content is a BLOB and sqlite3_column_text()
+** or sqlite3_column_text16() is called. A zero-terminator might
+** need to be added to the string.</p></li>
+**
+** <li><p> The initial content is UTF-8 text and sqlite3_column_bytes16() or
+** sqlite3_column_text16() is called. The content must be converted
+** to UTF-16.</p></li>
+**
+** <li><p> The initial content is UTF-16 text and sqlite3_column_bytes() or
+** sqlite3_column_text() is called. The content must be converted
+** to UTF-8.</p></li>
+** </ul>
+**
+** Conversions between UTF-16be and UTF-16le are always done in place and do
+** not invalidate a prior pointer, though of course the content of the buffer
+** that the prior pointer points to will have been modified. Other kinds
+** of conversion are done in place when it is possible, but sometime it is
+** not possible and in those cases prior pointers are invalidated.
+**
+** The safest and easiest to remember policy is to invoke these routines
+** in one of the following ways:
+**
+** <ul>
+** <li>sqlite3_column_text() followed by sqlite3_column_bytes()</li>
+** <li>sqlite3_column_blob() followed by sqlite3_column_bytes()</li>
+** <li>sqlite3_column_text16() followed by sqlite3_column_bytes16()</li>
+** </ul>
+**
+** In other words, you should call sqlite3_column_text(), sqlite3_column_blob(),
+** or sqlite3_column_text16() first to force the result into the desired
+** format, then invoke sqlite3_column_bytes() or sqlite3_column_bytes16() to
+** find the size of the result. Do not mix call to sqlite3_column_text() or
+** sqlite3_column_blob() with calls to sqlite3_column_bytes16(). And do not
+** mix calls to sqlite3_column_text16() with calls to sqlite3_column_bytes().
+**
+** The pointers returned are valid until a type conversion occurs as
+** described above, or until [sqlite3_step()] or [sqlite3_reset()] or
+** [sqlite3_finalize()] is called. The memory space used to hold strings
+** and blobs is freed automatically. Do <b>not</b> pass the pointers returned
+** [sqlite3_column_blob()], [sqlite3_column_text()], etc. into
+** [sqlite3_free()].
+**
+** If a memory allocation error occurs during the evaluation of any
+** of these routines, a default value is returned. The default value
+** is either the integer 0, the floating point number 0.0, or a NULL
+** pointer. Subsequent calls to [sqlite3_errcode()] will return
+** [SQLITE_NOMEM].
+**
+** INVARIANTS:
+**
+** {F13803} The [sqlite3_column_blob(S,N)] interface converts the
+** Nth column in the current row of the result set for
+** [prepared statement] S into a blob and then returns a
+** pointer to the converted value.
+**
+** {F13806} The [sqlite3_column_bytes(S,N)] interface returns the
+** number of bytes in the blob or string (exclusive of the
+** zero terminator on the string) that was returned by the
+** most recent call to [sqlite3_column_blob(S,N)] or
+** [sqlite3_column_text(S,N)].
+**
+** {F13809} The [sqlite3_column_bytes16(S,N)] interface returns the
+** number of bytes in the string (exclusive of the
+** zero terminator on the string) that was returned by the
+** most recent call to [sqlite3_column_text16(S,N)].
+**
+** {F13812} The [sqlite3_column_double(S,N)] interface converts the
+** Nth column in the current row of the result set for
+** [prepared statement] S into a floating point value and
+** returns a copy of that value.
+**
+** {F13815} The [sqlite3_column_int(S,N)] interface converts the
+** Nth column in the current row of the result set for
+** [prepared statement] S into a 64-bit signed integer and
+** returns the lower 32 bits of that integer.
+**
+** {F13818} The [sqlite3_column_int64(S,N)] interface converts the
+** Nth column in the current row of the result set for
+** [prepared statement] S into a 64-bit signed integer and
+** returns a copy of that integer.
+**
+** {F13821} The [sqlite3_column_text(S,N)] interface converts the
+** Nth column in the current row of the result set for
+** [prepared statement] S into a zero-terminated UTF-8
+** string and returns a pointer to that string.
+**
+** {F13824} The [sqlite3_column_text16(S,N)] interface converts the
+** Nth column in the current row of the result set for
+** [prepared statement] S into a zero-terminated 2-byte
+** aligned UTF-16 native byte order
+** string and returns a pointer to that string.
+**
+** {F13827} The [sqlite3_column_type(S,N)] interface returns
+** one of [SQLITE_NULL], [SQLITE_INTEGER], [SQLITE_FLOAT],
+** [SQLITE_TEXT], or [SQLITE_BLOB] as appropriate for
+** the Nth column in the current row of the result set for
+** [prepared statement] S.
+**
+** {F13830} The [sqlite3_column_value(S,N)] interface returns a
+** pointer to an [unprotected sqlite3_value] object for the
+** Nth column in the current row of the result set for
+** [prepared statement] S.
+*/
+SQLITE_API const void *sqlite3_column_blob(sqlite3_stmt*, int iCol);
+SQLITE_API int sqlite3_column_bytes(sqlite3_stmt*, int iCol);
+SQLITE_API int sqlite3_column_bytes16(sqlite3_stmt*, int iCol);
+SQLITE_API double sqlite3_column_double(sqlite3_stmt*, int iCol);
+SQLITE_API int sqlite3_column_int(sqlite3_stmt*, int iCol);
+SQLITE_API sqlite3_int64 sqlite3_column_int64(sqlite3_stmt*, int iCol);
+SQLITE_API const unsigned char *sqlite3_column_text(sqlite3_stmt*, int iCol);
+SQLITE_API const void *sqlite3_column_text16(sqlite3_stmt*, int iCol);
+SQLITE_API int sqlite3_column_type(sqlite3_stmt*, int iCol);
+SQLITE_API sqlite3_value *sqlite3_column_value(sqlite3_stmt*, int iCol);
+
+/*
+** CAPI3REF: Destroy A Prepared Statement Object {F13300}
+**
+** The sqlite3_finalize() function is called to delete a
+** [prepared statement]. If the statement was
+** executed successfully, or not executed at all, then SQLITE_OK is returned.
+** If execution of the statement failed then an
+** [error code] or [extended error code]
+** is returned.
+**
+** This routine can be called at any point during the execution of the
+** [prepared statement]. If the virtual machine has not
+** completed execution when this routine is called, that is like
+** encountering an error or an interrupt. (See [sqlite3_interrupt()].)
+** Incomplete updates may be rolled back and transactions cancelled,
+** depending on the circumstances, and the
+** [error code] returned will be [SQLITE_ABORT].
+**
+** INVARIANTS:
+**
+** {F11302} The [sqlite3_finalize(S)] interface destroys the
+** [prepared statement] S and releases all
+** memory and file resources held by that object.
+**
+** {F11304} If the most recent call to [sqlite3_step(S)] for the
+** [prepared statement] S returned an error,
+** then [sqlite3_finalize(S)] returns that same error.
+*/
+SQLITE_API int sqlite3_finalize(sqlite3_stmt *pStmt);
+
+/*
+** CAPI3REF: Reset A Prepared Statement Object {F13330}
+**
+** The sqlite3_reset() function is called to reset a
+** [prepared statement] object.
+** back to its initial state, ready to be re-executed.
+** Any SQL statement variables that had values bound to them using
+** the [sqlite3_bind_blob | sqlite3_bind_*() API] retain their values.
+** Use [sqlite3_clear_bindings()] to reset the bindings.
+**
+** {F11332} The [sqlite3_reset(S)] interface resets the [prepared statement] S
+** back to the beginning of its program.
+**
+** {F11334} If the most recent call to [sqlite3_step(S)] for
+** [prepared statement] S returned [SQLITE_ROW] or [SQLITE_DONE],
+** or if [sqlite3_step(S)] has never before been called on S,
+** then [sqlite3_reset(S)] returns [SQLITE_OK].
+**
+** {F11336} If the most recent call to [sqlite3_step(S)] for
+** [prepared statement] S indicated an error, then
+** [sqlite3_reset(S)] returns an appropriate [error code].
+**
+** {F11338} The [sqlite3_reset(S)] interface does not change the values
+** of any [sqlite3_bind_blob|bindings] on [prepared statement] S.
+*/
+SQLITE_API int sqlite3_reset(sqlite3_stmt *pStmt);
+
+/*
+** CAPI3REF: Create Or Redefine SQL Functions {F16100}
+** KEYWORDS: {function creation routines}
+**
+** These two functions (collectively known as
+** "function creation routines") are used to add SQL functions or aggregates
+** or to redefine the behavior of existing SQL functions or aggregates. The
+** difference only between the two is that the second parameter, the
+** name of the (scalar) function or aggregate, is encoded in UTF-8 for
+** sqlite3_create_function() and UTF-16 for sqlite3_create_function16().
+**
+** The first parameter is the [database connection] to which the SQL
+** function is to be added. If a single
+** program uses more than one [database connection] internally, then SQL
+** functions must be added individually to each [database connection].
+**
+** The second parameter is the name of the SQL function to be created
+** or redefined.
+** The length of the name is limited to 255 bytes, exclusive of the
+** zero-terminator. Note that the name length limit is in bytes, not
+** characters. Any attempt to create a function with a longer name
+** will result in an SQLITE_ERROR error.
+**
+** The third parameter is the number of arguments that the SQL function or
+** aggregate takes. If this parameter is negative, then the SQL function or
+** aggregate may take any number of arguments.
+**
+** The fourth parameter, eTextRep, specifies what
+** [SQLITE_UTF8 | text encoding] this SQL function prefers for
+** its parameters. Any SQL function implementation should be able to work
+** work with UTF-8, UTF-16le, or UTF-16be. But some implementations may be
+** more efficient with one encoding than another. It is allowed to
+** invoke sqlite3_create_function() or sqlite3_create_function16() multiple
+** times with the same function but with different values of eTextRep.
+** When multiple implementations of the same function are available, SQLite
+** will pick the one that involves the least amount of data conversion.
+** If there is only a single implementation which does not care what
+** text encoding is used, then the fourth argument should be
+** [SQLITE_ANY].
+**
+** The fifth parameter is an arbitrary pointer. The implementation
+** of the function can gain access to this pointer using
+** [sqlite3_user_data()].
+**
+** The seventh, eighth and ninth parameters, xFunc, xStep and xFinal, are
+** pointers to C-language functions that implement the SQL
+** function or aggregate. A scalar SQL function requires an implementation of
+** the xFunc callback only, NULL pointers should be passed as the xStep
+** and xFinal parameters. An aggregate SQL function requires an implementation
+** of xStep and xFinal and NULL should be passed for xFunc. To delete an
+** existing SQL function or aggregate, pass NULL for all three function
+** callback.
+**
+** It is permitted to register multiple implementations of the same
+** functions with the same name but with either differing numbers of
+** arguments or differing perferred text encodings. SQLite will use
+** the implementation most closely matches the way in which the
+** SQL function is used.
+**
+** INVARIANTS:
+**
+** {F16103} The [sqlite3_create_function16()] interface behaves exactly
+** like [sqlite3_create_function()] in every way except that it
+** interprets the zFunctionName argument as
+** zero-terminated UTF-16 native byte order instead of as a
+** zero-terminated UTF-8.
+**
+** {F16106} A successful invocation of
+** the [sqlite3_create_function(D,X,N,E,...)] interface registers
+** or replaces callback functions in [database connection] D
+** used to implement the SQL function named X with N parameters
+** and having a perferred text encoding of E.
+**
+** {F16109} A successful call to [sqlite3_create_function(D,X,N,E,P,F,S,L)]
+** replaces the P, F, S, and L values from any prior calls with
+** the same D, X, N, and E values.
+**
+** {F16112} The [sqlite3_create_function(D,X,...)] interface fails with
+** a return code of [SQLITE_ERROR] if the SQL function name X is
+** longer than 255 bytes exclusive of the zero terminator.
+**
+** {F16118} Either F must be NULL and S and L are non-NULL or else F
+** is non-NULL and S and L are NULL, otherwise
+** [sqlite3_create_function(D,X,N,E,P,F,S,L)] returns [SQLITE_ERROR].
+**
+** {F16121} The [sqlite3_create_function(D,...)] interface fails with an
+** error code of [SQLITE_BUSY] if there exist [prepared statements]
+** associated with the [database connection] D.
+**
+** {F16124} The [sqlite3_create_function(D,X,N,...)] interface fails with an
+** error code of [SQLITE_ERROR] if parameter N (specifying the number
+** of arguments to the SQL function being registered) is less
+** than -1 or greater than 127.
+**
+** {F16127} When N is non-negative, the [sqlite3_create_function(D,X,N,...)]
+** interface causes callbacks to be invoked for the SQL function
+** named X when the number of arguments to the SQL function is
+** exactly N.
+**
+** {F16130} When N is -1, the [sqlite3_create_function(D,X,N,...)]
+** interface causes callbacks to be invoked for the SQL function
+** named X with any number of arguments.
+**
+** {F16133} When calls to [sqlite3_create_function(D,X,N,...)]
+** specify multiple implementations of the same function X
+** and when one implementation has N>=0 and the other has N=(-1)
+** the implementation with a non-zero N is preferred.
+**
+** {F16136} When calls to [sqlite3_create_function(D,X,N,E,...)]
+** specify multiple implementations of the same function X with
+** the same number of arguments N but with different
+** encodings E, then the implementation where E matches the
+** database encoding is preferred.
+**
+** {F16139} For an aggregate SQL function created using
+** [sqlite3_create_function(D,X,N,E,P,0,S,L)] the finializer
+** function L will always be invoked exactly once if the
+** step function S is called one or more times.
+**
+** {F16142} When SQLite invokes either the xFunc or xStep function of
+** an application-defined SQL function or aggregate created
+** by [sqlite3_create_function()] or [sqlite3_create_function16()],
+** then the array of [sqlite3_value] objects passed as the
+** third parameter are always [protected sqlite3_value] objects.
+*/
+SQLITE_API int sqlite3_create_function(
+ sqlite3 *db,
+ const char *zFunctionName,
+ int nArg,
+ int eTextRep,
+ void *pApp,
+ void (*xFunc)(sqlite3_context*,int,sqlite3_value**),
+ void (*xStep)(sqlite3_context*,int,sqlite3_value**),
+ void (*xFinal)(sqlite3_context*)
+);
+SQLITE_API int sqlite3_create_function16(
+ sqlite3 *db,
+ const void *zFunctionName,
+ int nArg,
+ int eTextRep,
+ void *pApp,
+ void (*xFunc)(sqlite3_context*,int,sqlite3_value**),
+ void (*xStep)(sqlite3_context*,int,sqlite3_value**),
+ void (*xFinal)(sqlite3_context*)
+);
+
+/*
+** CAPI3REF: Text Encodings {F10267}
+**
+** These constant define integer codes that represent the various
+** text encodings supported by SQLite.
+*/
+#define SQLITE_UTF8 1
+#define SQLITE_UTF16LE 2
+#define SQLITE_UTF16BE 3
+#define SQLITE_UTF16 4 /* Use native byte order */
+#define SQLITE_ANY 5 /* sqlite3_create_function only */
+#define SQLITE_UTF16_ALIGNED 8 /* sqlite3_create_collation only */
+
+/*
+** CAPI3REF: Obsolete Functions
+**
+** These functions are all now obsolete. In order to maintain
+** backwards compatibility with older code, we continue to support
+** these functions. However, new development projects should avoid
+** the use of these functions. To help encourage people to avoid
+** using these functions, we are not going to tell you want they do.
+*/
+SQLITE_API int sqlite3_aggregate_count(sqlite3_context*);
+SQLITE_API int sqlite3_expired(sqlite3_stmt*);
+SQLITE_API int sqlite3_transfer_bindings(sqlite3_stmt*, sqlite3_stmt*);
+SQLITE_API int sqlite3_global_recover(void);
+SQLITE_API void sqlite3_thread_cleanup(void);
+SQLITE_API int sqlite3_memory_alarm(void(*)(void*,sqlite3_int64,int),void*,sqlite3_int64);
+
+/*
+** CAPI3REF: Obtaining SQL Function Parameter Values {F15100}
+**
+** The C-language implementation of SQL functions and aggregates uses
+** this set of interface routines to access the parameter values on
+** the function or aggregate.
+**
+** The xFunc (for scalar functions) or xStep (for aggregates) parameters
+** to [sqlite3_create_function()] and [sqlite3_create_function16()]
+** define callbacks that implement the SQL functions and aggregates.
+** The 4th parameter to these callbacks is an array of pointers to
+** [protected sqlite3_value] objects. There is one [sqlite3_value] object for
+** each parameter to the SQL function. These routines are used to
+** extract values from the [sqlite3_value] objects.
+**
+** These routines work only with [protected sqlite3_value] objects.
+** Any attempt to use these routines on an [unprotected sqlite3_value]
+** object results in undefined behavior.
+**
+** These routines work just like the corresponding
+** [sqlite3_column_blob | sqlite3_column_* routines] except that
+** these routines take a single [protected sqlite3_value] object pointer
+** instead of an [sqlite3_stmt*] pointer and an integer column number.
+**
+** The sqlite3_value_text16() interface extracts a UTF16 string
+** in the native byte-order of the host machine. The
+** sqlite3_value_text16be() and sqlite3_value_text16le() interfaces
+** extract UTF16 strings as big-endian and little-endian respectively.
+**
+** The sqlite3_value_numeric_type() interface attempts to apply
+** numeric affinity to the value. This means that an attempt is
+** made to convert the value to an integer or floating point. If
+** such a conversion is possible without loss of information (in other
+** words if the value is a string that looks like a number)
+** then the conversion is done. Otherwise no conversion occurs. The
+** [SQLITE_INTEGER | datatype] after conversion is returned.
+**
+** Please pay particular attention to the fact that the pointer that
+** is returned from [sqlite3_value_blob()], [sqlite3_value_text()], or
+** [sqlite3_value_text16()] can be invalidated by a subsequent call to
+** [sqlite3_value_bytes()], [sqlite3_value_bytes16()], [sqlite3_value_text()],
+** or [sqlite3_value_text16()].
+**
+** These routines must be called from the same thread as
+** the SQL function that supplied the [sqlite3_value*] parameters.
+**
+**
+** INVARIANTS:
+**
+** {F15103} The [sqlite3_value_blob(V)] interface converts the
+** [protected sqlite3_value] object V into a blob and then returns a
+** pointer to the converted value.
+**
+** {F15106} The [sqlite3_value_bytes(V)] interface returns the
+** number of bytes in the blob or string (exclusive of the
+** zero terminator on the string) that was returned by the
+** most recent call to [sqlite3_value_blob(V)] or
+** [sqlite3_value_text(V)].
+**
+** {F15109} The [sqlite3_value_bytes16(V)] interface returns the
+** number of bytes in the string (exclusive of the
+** zero terminator on the string) that was returned by the
+** most recent call to [sqlite3_value_text16(V)],
+** [sqlite3_value_text16be(V)], or [sqlite3_value_text16le(V)].
+**
+** {F15112} The [sqlite3_value_double(V)] interface converts the
+** [protected sqlite3_value] object V into a floating point value and
+** returns a copy of that value.
+**
+** {F15115} The [sqlite3_value_int(V)] interface converts the
+** [protected sqlite3_value] object V into a 64-bit signed integer and
+** returns the lower 32 bits of that integer.
+**
+** {F15118} The [sqlite3_value_int64(V)] interface converts the
+** [protected sqlite3_value] object V into a 64-bit signed integer and
+** returns a copy of that integer.
+**
+** {F15121} The [sqlite3_value_text(V)] interface converts the
+** [protected sqlite3_value] object V into a zero-terminated UTF-8
+** string and returns a pointer to that string.
+**
+** {F15124} The [sqlite3_value_text16(V)] interface converts the
+** [protected sqlite3_value] object V into a zero-terminated 2-byte
+** aligned UTF-16 native byte order
+** string and returns a pointer to that string.
+**
+** {F15127} The [sqlite3_value_text16be(V)] interface converts the
+** [protected sqlite3_value] object V into a zero-terminated 2-byte
+** aligned UTF-16 big-endian
+** string and returns a pointer to that string.
+**
+** {F15130} The [sqlite3_value_text16le(V)] interface converts the
+** [protected sqlite3_value] object V into a zero-terminated 2-byte
+** aligned UTF-16 little-endian
+** string and returns a pointer to that string.
+**
+** {F15133} The [sqlite3_value_type(V)] interface returns
+** one of [SQLITE_NULL], [SQLITE_INTEGER], [SQLITE_FLOAT],
+** [SQLITE_TEXT], or [SQLITE_BLOB] as appropriate for
+** the [sqlite3_value] object V.
+**
+** {F15136} The [sqlite3_value_numeric_type(V)] interface converts
+** the [protected sqlite3_value] object V into either an integer or
+** a floating point value if it can do so without loss of
+** information, and returns one of [SQLITE_NULL],
+** [SQLITE_INTEGER], [SQLITE_FLOAT], [SQLITE_TEXT], or
+** [SQLITE_BLOB] as appropriate for
+** the [protected sqlite3_value] object V after the conversion attempt.
+*/
+SQLITE_API const void *sqlite3_value_blob(sqlite3_value*);
+SQLITE_API int sqlite3_value_bytes(sqlite3_value*);
+SQLITE_API int sqlite3_value_bytes16(sqlite3_value*);
+SQLITE_API double sqlite3_value_double(sqlite3_value*);
+SQLITE_API int sqlite3_value_int(sqlite3_value*);
+SQLITE_API sqlite3_int64 sqlite3_value_int64(sqlite3_value*);
+SQLITE_API const unsigned char *sqlite3_value_text(sqlite3_value*);
+SQLITE_API const void *sqlite3_value_text16(sqlite3_value*);
+SQLITE_API const void *sqlite3_value_text16le(sqlite3_value*);
+SQLITE_API const void *sqlite3_value_text16be(sqlite3_value*);
+SQLITE_API int sqlite3_value_type(sqlite3_value*);
+SQLITE_API int sqlite3_value_numeric_type(sqlite3_value*);
+
+/*
+** CAPI3REF: Obtain Aggregate Function Context {F16210}
+**
+** The implementation of aggregate SQL functions use this routine to allocate
+** a structure for storing their state.
+** The first time the sqlite3_aggregate_context() routine is
+** is called for a particular aggregate, SQLite allocates nBytes of memory
+** zeros that memory, and returns a pointer to it.
+** On second and subsequent calls to sqlite3_aggregate_context()
+** for the same aggregate function index, the same buffer is returned.
+** The implementation
+** of the aggregate can use the returned buffer to accumulate data.
+**
+** SQLite automatically frees the allocated buffer when the aggregate
+** query concludes.
+**
+** The first parameter should be a copy of the
+** [sqlite3_context | SQL function context] that is the first
+** parameter to the callback routine that implements the aggregate
+** function.
+**
+** This routine must be called from the same thread in which
+** the aggregate SQL function is running.
+**
+** INVARIANTS:
+**
+** {F16211} The first invocation of [sqlite3_aggregate_context(C,N)] for
+** a particular instance of an aggregate function (for a particular
+** context C) causes SQLite to allocation N bytes of memory,
+** zero that memory, and return a pointer to the allocationed
+** memory.
+**
+** {F16213} If a memory allocation error occurs during
+** [sqlite3_aggregate_context(C,N)] then the function returns 0.
+**
+** {F16215} Second and subsequent invocations of
+** [sqlite3_aggregate_context(C,N)] for the same context pointer C
+** ignore the N parameter and return a pointer to the same
+** block of memory returned by the first invocation.
+**
+** {F16217} The memory allocated by [sqlite3_aggregate_context(C,N)] is
+** automatically freed on the next call to [sqlite3_reset()]
+** or [sqlite3_finalize()] for the [prepared statement] containing
+** the aggregate function associated with context C.
+*/
+SQLITE_API void *sqlite3_aggregate_context(sqlite3_context*, int nBytes);
+
+/*
+** CAPI3REF: User Data For Functions {F16240}
+**
+** The sqlite3_user_data() interface returns a copy of
+** the pointer that was the pUserData parameter (the 5th parameter)
+** of the the [sqlite3_create_function()]
+** and [sqlite3_create_function16()] routines that originally
+** registered the application defined function. {END}
+**
+** This routine must be called from the same thread in which
+** the application-defined function is running.
+**
+** INVARIANTS:
+**
+** {F16243} The [sqlite3_user_data(C)] interface returns a copy of the
+** P pointer from the [sqlite3_create_function(D,X,N,E,P,F,S,L)]
+** or [sqlite3_create_function16(D,X,N,E,P,F,S,L)] call that
+** registered the SQL function associated with
+** [sqlite3_context] C.
+*/
+SQLITE_API void *sqlite3_user_data(sqlite3_context*);
+
+/*
+** CAPI3REF: Database Connection For Functions {F16250}
+**
+** The sqlite3_context_db_handle() interface returns a copy of
+** the pointer to the [database connection] (the 1st parameter)
+** of the the [sqlite3_create_function()]
+** and [sqlite3_create_function16()] routines that originally
+** registered the application defined function.
+**
+** INVARIANTS:
+**
+** {F16253} The [sqlite3_context_db_handle(C)] interface returns a copy of the
+** D pointer from the [sqlite3_create_function(D,X,N,E,P,F,S,L)]
+** or [sqlite3_create_function16(D,X,N,E,P,F,S,L)] call that
+** registered the SQL function associated with
+** [sqlite3_context] C.
+*/
+SQLITE_API sqlite3 *sqlite3_context_db_handle(sqlite3_context*);
+
+/*
+** CAPI3REF: Function Auxiliary Data {F16270}
+**
+** The following two functions may be used by scalar SQL functions to
+** associate meta-data with argument values. If the same value is passed to
+** multiple invocations of the same SQL function during query execution, under
+** some circumstances the associated meta-data may be preserved. This may
+** be used, for example, to add a regular-expression matching scalar
+** function. The compiled version of the regular expression is stored as
+** meta-data associated with the SQL value passed as the regular expression
+** pattern. The compiled regular expression can be reused on multiple
+** invocations of the same function so that the original pattern string
+** does not need to be recompiled on each invocation.
+**
+** The sqlite3_get_auxdata() interface returns a pointer to the meta-data
+** associated by the sqlite3_set_auxdata() function with the Nth argument
+** value to the application-defined function.
+** If no meta-data has been ever been set for the Nth
+** argument of the function, or if the cooresponding function parameter
+** has changed since the meta-data was set, then sqlite3_get_auxdata()
+** returns a NULL pointer.
+**
+** The sqlite3_set_auxdata() interface saves the meta-data
+** pointed to by its 3rd parameter as the meta-data for the N-th
+** argument of the application-defined function. Subsequent
+** calls to sqlite3_get_auxdata() might return this data, if it has
+** not been destroyed.
+** If it is not NULL, SQLite will invoke the destructor
+** function given by the 4th parameter to sqlite3_set_auxdata() on
+** the meta-data when the corresponding function parameter changes
+** or when the SQL statement completes, whichever comes first.
+**
+** SQLite is free to call the destructor and drop meta-data on
+** any parameter of any function at any time. The only guarantee
+** is that the destructor will be called before the metadata is
+** dropped.
+**
+** In practice, meta-data is preserved between function calls for
+** expressions that are constant at compile time. This includes literal
+** values and SQL variables.
+**
+** These routines must be called from the same thread in which
+** the SQL function is running.
+**
+** INVARIANTS:
+**
+** {F16272} The [sqlite3_get_auxdata(C,N)] interface returns a pointer
+** to metadata associated with the Nth parameter of the SQL function
+** whose context is C, or NULL if there is no metadata associated
+** with that parameter.
+**
+** {F16274} The [sqlite3_set_auxdata(C,N,P,D)] interface assigns a metadata
+** pointer P to the Nth parameter of the SQL function with context
+** C.
+**
+** {F16276} SQLite will invoke the destructor D with a single argument
+** which is the metadata pointer P following a call to
+** [sqlite3_set_auxdata(C,N,P,D)] when SQLite ceases to hold
+** the metadata.
+**
+** {F16277} SQLite ceases to hold metadata for an SQL function parameter
+** when the value of that parameter changes.
+**
+** {F16278} When [sqlite3_set_auxdata(C,N,P,D)] is invoked, the destructor
+** is called for any prior metadata associated with the same function
+** context C and parameter N.
+**
+** {F16279} SQLite will call destructors for any metadata it is holding
+** in a particular [prepared statement] S when either
+** [sqlite3_reset(S)] or [sqlite3_finalize(S)] is called.
+*/
+SQLITE_API void *sqlite3_get_auxdata(sqlite3_context*, int N);
+SQLITE_API void sqlite3_set_auxdata(sqlite3_context*, int N, void*, void (*)(void*));
+
+
+/*
+** CAPI3REF: Constants Defining Special Destructor Behavior {F10280}
+**
+** These are special value for the destructor that is passed in as the
+** final argument to routines like [sqlite3_result_blob()]. If the destructor
+** argument is SQLITE_STATIC, it means that the content pointer is constant
+** and will never change. It does not need to be destroyed. The
+** SQLITE_TRANSIENT value means that the content will likely change in
+** the near future and that SQLite should make its own private copy of
+** the content before returning.
+**
+** The typedef is necessary to work around problems in certain
+** C++ compilers. See ticket #2191.
+*/
+typedef void (*sqlite3_destructor_type)(void*);
+#define SQLITE_STATIC ((sqlite3_destructor_type)0)
+#define SQLITE_TRANSIENT ((sqlite3_destructor_type)-1)
+
+/*
+** CAPI3REF: Setting The Result Of An SQL Function {F16400}
+**
+** These routines are used by the xFunc or xFinal callbacks that
+** implement SQL functions and aggregates. See
+** [sqlite3_create_function()] and [sqlite3_create_function16()]
+** for additional information.
+**
+** These functions work very much like the
+** [sqlite3_bind_blob | sqlite3_bind_*] family of functions used
+** to bind values to host parameters in prepared statements.
+** Refer to the
+** [sqlite3_bind_blob | sqlite3_bind_* documentation] for
+** additional information.
+**
+** The sqlite3_result_blob() interface sets the result from
+** an application defined function to be the BLOB whose content is pointed
+** to by the second parameter and which is N bytes long where N is the
+** third parameter.
+** The sqlite3_result_zeroblob() inerfaces set the result of
+** the application defined function to be a BLOB containing all zero
+** bytes and N bytes in size, where N is the value of the 2nd parameter.
+**
+** The sqlite3_result_double() interface sets the result from
+** an application defined function to be a floating point value specified
+** by its 2nd argument.
+**
+** The sqlite3_result_error() and sqlite3_result_error16() functions
+** cause the implemented SQL function to throw an exception.
+** SQLite uses the string pointed to by the
+** 2nd parameter of sqlite3_result_error() or sqlite3_result_error16()
+** as the text of an error message. SQLite interprets the error
+** message string from sqlite3_result_error() as UTF8. SQLite
+** interprets the string from sqlite3_result_error16() as UTF16 in native
+** byte order. If the third parameter to sqlite3_result_error()
+** or sqlite3_result_error16() is negative then SQLite takes as the error
+** message all text up through the first zero character.
+** If the third parameter to sqlite3_result_error() or
+** sqlite3_result_error16() is non-negative then SQLite takes that many
+** bytes (not characters) from the 2nd parameter as the error message.
+** The sqlite3_result_error() and sqlite3_result_error16()
+** routines make a copy private copy of the error message text before
+** they return. Hence, the calling function can deallocate or
+** modify the text after they return without harm.
+** The sqlite3_result_error_code() function changes the error code
+** returned by SQLite as a result of an error in a function. By default,
+** the error code is SQLITE_ERROR. A subsequent call to sqlite3_result_error()
+** or sqlite3_result_error16() resets the error code to SQLITE_ERROR.
+**
+** The sqlite3_result_toobig() interface causes SQLite
+** to throw an error indicating that a string or BLOB is to long
+** to represent. The sqlite3_result_nomem() interface
+** causes SQLite to throw an exception indicating that the a
+** memory allocation failed.
+**
+** The sqlite3_result_int() interface sets the return value
+** of the application-defined function to be the 32-bit signed integer
+** value given in the 2nd argument.
+** The sqlite3_result_int64() interface sets the return value
+** of the application-defined function to be the 64-bit signed integer
+** value given in the 2nd argument.
+**
+** The sqlite3_result_null() interface sets the return value
+** of the application-defined function to be NULL.
+**
+** The sqlite3_result_text(), sqlite3_result_text16(),
+** sqlite3_result_text16le(), and sqlite3_result_text16be() interfaces
+** set the return value of the application-defined function to be
+** a text string which is represented as UTF-8, UTF-16 native byte order,
+** UTF-16 little endian, or UTF-16 big endian, respectively.
+** SQLite takes the text result from the application from
+** the 2nd parameter of the sqlite3_result_text* interfaces.
+** If the 3rd parameter to the sqlite3_result_text* interfaces
+** is negative, then SQLite takes result text from the 2nd parameter
+** through the first zero character.
+** If the 3rd parameter to the sqlite3_result_text* interfaces
+** is non-negative, then as many bytes (not characters) of the text
+** pointed to by the 2nd parameter are taken as the application-defined
+** function result.
+** If the 4th parameter to the sqlite3_result_text* interfaces
+** or sqlite3_result_blob is a non-NULL pointer, then SQLite calls that
+** function as the destructor on the text or blob result when it has
+** finished using that result.
+** If the 4th parameter to the sqlite3_result_text* interfaces
+** or sqlite3_result_blob is the special constant SQLITE_STATIC, then
+** SQLite assumes that the text or blob result is constant space and
+** does not copy the space or call a destructor when it has
+** finished using that result.
+** If the 4th parameter to the sqlite3_result_text* interfaces
+** or sqlite3_result_blob is the special constant SQLITE_TRANSIENT
+** then SQLite makes a copy of the result into space obtained from
+** from [sqlite3_malloc()] before it returns.
+**
+** The sqlite3_result_value() interface sets the result of
+** the application-defined function to be a copy the
+** [unprotected sqlite3_value] object specified by the 2nd parameter. The
+** sqlite3_result_value() interface makes a copy of the [sqlite3_value]
+** so that [sqlite3_value] specified in the parameter may change or
+** be deallocated after sqlite3_result_value() returns without harm.
+** A [protected sqlite3_value] object may always be used where an
+** [unprotected sqlite3_value] object is required, so either
+** kind of [sqlite3_value] object can be used with this interface.
+**
+** If these routines are called from within the different thread
+** than the one containing the application-defined function that recieved
+** the [sqlite3_context] pointer, the results are undefined.
+**
+** INVARIANTS:
+**
+** {F16403} The default return value from any SQL function is NULL.
+**
+** {F16406} The [sqlite3_result_blob(C,V,N,D)] interface changes the
+** return value of function C to be a blob that is N bytes
+** in length and with content pointed to by V.
+**
+** {F16409} The [sqlite3_result_double(C,V)] interface changes the
+** return value of function C to be the floating point value V.
+**
+** {F16412} The [sqlite3_result_error(C,V,N)] interface changes the return
+** value of function C to be an exception with error code
+** [SQLITE_ERROR] and a UTF8 error message copied from V up to the
+** first zero byte or until N bytes are read if N is positive.
+**
+** {F16415} The [sqlite3_result_error16(C,V,N)] interface changes the return
+** value of function C to be an exception with error code
+** [SQLITE_ERROR] and a UTF16 native byte order error message
+** copied from V up to the first zero terminator or until N bytes
+** are read if N is positive.
+**
+** {F16418} The [sqlite3_result_error_toobig(C)] interface changes the return
+** value of the function C to be an exception with error code
+** [SQLITE_TOOBIG] and an appropriate error message.
+**
+** {F16421} The [sqlite3_result_error_nomem(C)] interface changes the return
+** value of the function C to be an exception with error code
+** [SQLITE_NOMEM] and an appropriate error message.
+**
+** {F16424} The [sqlite3_result_error_code(C,E)] interface changes the return
+** value of the function C to be an exception with error code E.
+** The error message text is unchanged.
+**
+** {F16427} The [sqlite3_result_int(C,V)] interface changes the
+** return value of function C to be the 32-bit integer value V.
+**
+** {F16430} The [sqlite3_result_int64(C,V)] interface changes the
+** return value of function C to be the 64-bit integer value V.
+**
+** {F16433} The [sqlite3_result_null(C)] interface changes the
+** return value of function C to be NULL.
+**
+** {F16436} The [sqlite3_result_text(C,V,N,D)] interface changes the
+** return value of function C to be the UTF8 string
+** V up to the first zero if N is negative
+** or the first N bytes of V if N is non-negative.
+**
+** {F16439} The [sqlite3_result_text16(C,V,N,D)] interface changes the
+** return value of function C to be the UTF16 native byte order
+** string V up to the first zero if N is
+** negative or the first N bytes of V if N is non-negative.
+**
+** {F16442} The [sqlite3_result_text16be(C,V,N,D)] interface changes the
+** return value of function C to be the UTF16 big-endian
+** string V up to the first zero if N is
+** is negative or the first N bytes or V if N is non-negative.
+**
+** {F16445} The [sqlite3_result_text16le(C,V,N,D)] interface changes the
+** return value of function C to be the UTF16 little-endian
+** string V up to the first zero if N is
+** negative or the first N bytes of V if N is non-negative.
+**
+** {F16448} The [sqlite3_result_value(C,V)] interface changes the
+** return value of function C to be [unprotected sqlite3_value]
+** object V.
+**
+** {F16451} The [sqlite3_result_zeroblob(C,N)] interface changes the
+** return value of function C to be an N-byte blob of all zeros.
+**
+** {F16454} The [sqlite3_result_error()] and [sqlite3_result_error16()]
+** interfaces make a copy of their error message strings before
+** returning.
+**
+** {F16457} If the D destructor parameter to [sqlite3_result_blob(C,V,N,D)],
+** [sqlite3_result_text(C,V,N,D)], [sqlite3_result_text16(C,V,N,D)],
+** [sqlite3_result_text16be(C,V,N,D)], or
+** [sqlite3_result_text16le(C,V,N,D)] is the constant [SQLITE_STATIC]
+** then no destructor is ever called on the pointer V and SQLite
+** assumes that V is immutable.
+**
+** {F16460} If the D destructor parameter to [sqlite3_result_blob(C,V,N,D)],
+** [sqlite3_result_text(C,V,N,D)], [sqlite3_result_text16(C,V,N,D)],
+** [sqlite3_result_text16be(C,V,N,D)], or
+** [sqlite3_result_text16le(C,V,N,D)] is the constant
+** [SQLITE_TRANSIENT] then the interfaces makes a copy of the
+** content of V and retains the copy.
+**
+** {F16463} If the D destructor parameter to [sqlite3_result_blob(C,V,N,D)],
+** [sqlite3_result_text(C,V,N,D)], [sqlite3_result_text16(C,V,N,D)],
+** [sqlite3_result_text16be(C,V,N,D)], or
+** [sqlite3_result_text16le(C,V,N,D)] is some value other than
+** the constants [SQLITE_STATIC] and [SQLITE_TRANSIENT] then
+** SQLite will invoke the destructor D with V as its only argument
+** when it has finished with the V value.
+*/
+SQLITE_API void sqlite3_result_blob(sqlite3_context*, const void*, int, void(*)(void*));
+SQLITE_API void sqlite3_result_double(sqlite3_context*, double);
+SQLITE_API void sqlite3_result_error(sqlite3_context*, const char*, int);
+SQLITE_API void sqlite3_result_error16(sqlite3_context*, const void*, int);
+SQLITE_API void sqlite3_result_error_toobig(sqlite3_context*);
+SQLITE_API void sqlite3_result_error_nomem(sqlite3_context*);
+SQLITE_API void sqlite3_result_error_code(sqlite3_context*, int);
+SQLITE_API void sqlite3_result_int(sqlite3_context*, int);
+SQLITE_API void sqlite3_result_int64(sqlite3_context*, sqlite3_int64);
+SQLITE_API void sqlite3_result_null(sqlite3_context*);
+SQLITE_API void sqlite3_result_text(sqlite3_context*, const char*, int, void(*)(void*));
+SQLITE_API void sqlite3_result_text16(sqlite3_context*, const void*, int, void(*)(void*));
+SQLITE_API void sqlite3_result_text16le(sqlite3_context*, const void*, int,void(*)(void*));
+SQLITE_API void sqlite3_result_text16be(sqlite3_context*, const void*, int,void(*)(void*));
+SQLITE_API void sqlite3_result_value(sqlite3_context*, sqlite3_value*);
+SQLITE_API void sqlite3_result_zeroblob(sqlite3_context*, int n);
+
+/*
+** CAPI3REF: Define New Collating Sequences {F16600}
+**
+** These functions are used to add new collation sequences to the
+** [sqlite3*] handle specified as the first argument.
+**
+** The name of the new collation sequence is specified as a UTF-8 string
+** for sqlite3_create_collation() and sqlite3_create_collation_v2()
+** and a UTF-16 string for sqlite3_create_collation16(). In all cases
+** the name is passed as the second function argument.
+**
+** The third argument may be one of the constants [SQLITE_UTF8],
+** [SQLITE_UTF16LE] or [SQLITE_UTF16BE], indicating that the user-supplied
+** routine expects to be passed pointers to strings encoded using UTF-8,
+** UTF-16 little-endian or UTF-16 big-endian respectively. The
+** third argument might also be [SQLITE_UTF16_ALIGNED] to indicate that
+** the routine expects pointers to 16-bit word aligned strings
+** of UTF16 in the native byte order of the host computer.
+**
+** A pointer to the user supplied routine must be passed as the fifth
+** argument. If it is NULL, this is the same as deleting the collation
+** sequence (so that SQLite cannot call it anymore).
+** Each time the application
+** supplied function is invoked, it is passed a copy of the void* passed as
+** the fourth argument to sqlite3_create_collation() or
+** sqlite3_create_collation16() as its first parameter.
+**
+** The remaining arguments to the application-supplied routine are two strings,
+** each represented by a (length, data) pair and encoded in the encoding
+** that was passed as the third argument when the collation sequence was
+** registered. {END} The application defined collation routine should
+** return negative, zero or positive if
+** the first string is less than, equal to, or greater than the second
+** string. i.e. (STRING1 - STRING2).
+**
+** The sqlite3_create_collation_v2() works like sqlite3_create_collation()
+** excapt that it takes an extra argument which is a destructor for
+** the collation. The destructor is called when the collation is
+** destroyed and is passed a copy of the fourth parameter void* pointer
+** of the sqlite3_create_collation_v2().
+** Collations are destroyed when
+** they are overridden by later calls to the collation creation functions
+** or when the [sqlite3*] database handle is closed using [sqlite3_close()].
+**
+** INVARIANTS:
+**
+** {F16603} A successful call to the
+** [sqlite3_create_collation_v2(B,X,E,P,F,D)] interface
+** registers function F as the comparison function used to
+** implement collation X on [database connection] B for
+** databases having encoding E.
+**
+** {F16604} SQLite understands the X parameter to
+** [sqlite3_create_collation_v2(B,X,E,P,F,D)] as a zero-terminated
+** UTF-8 string in which case is ignored for ASCII characters and
+** is significant for non-ASCII characters.
+**
+** {F16606} Successive calls to [sqlite3_create_collation_v2(B,X,E,P,F,D)]
+** with the same values for B, X, and E, override prior values
+** of P, F, and D.
+**
+** {F16609} The destructor D in [sqlite3_create_collation_v2(B,X,E,P,F,D)]
+** is not NULL then it is called with argument P when the
+** collating function is dropped by SQLite.
+**
+** {F16612} A collating function is dropped when it is overloaded.
+**
+** {F16615} A collating function is dropped when the database connection
+** is closed using [sqlite3_close()].
+**
+** {F16618} The pointer P in [sqlite3_create_collation_v2(B,X,E,P,F,D)]
+** is passed through as the first parameter to the comparison
+** function F for all subsequent invocations of F.
+**
+** {F16621} A call to [sqlite3_create_collation(B,X,E,P,F)] is exactly
+** the same as a call to [sqlite3_create_collation_v2()] with
+** the same parameters and a NULL destructor.
+**
+** {F16624} Following a [sqlite3_create_collation_v2(B,X,E,P,F,D)],
+** SQLite uses the comparison function F for all text comparison
+** operations on [database connection] B on text values that
+** use the collating sequence name X.
+**
+** {F16627} The [sqlite3_create_collation16(B,X,E,P,F)] works the same
+** as [sqlite3_create_collation(B,X,E,P,F)] except that the
+** collation name X is understood as UTF-16 in native byte order
+** instead of UTF-8.
+**
+** {F16630} When multiple comparison functions are available for the same
+** collating sequence, SQLite chooses the one whose text encoding
+** requires the least amount of conversion from the default
+** text encoding of the database.
+*/
+SQLITE_API int sqlite3_create_collation(
+ sqlite3*,
+ const char *zName,
+ int eTextRep,
+ void*,
+ int(*xCompare)(void*,int,const void*,int,const void*)
+);
+SQLITE_API int sqlite3_create_collation_v2(
+ sqlite3*,
+ const char *zName,
+ int eTextRep,
+ void*,
+ int(*xCompare)(void*,int,const void*,int,const void*),
+ void(*xDestroy)(void*)
+);
+SQLITE_API int sqlite3_create_collation16(
+ sqlite3*,
+ const char *zName,
+ int eTextRep,
+ void*,
+ int(*xCompare)(void*,int,const void*,int,const void*)
+);
+
+/*
+** CAPI3REF: Collation Needed Callbacks {F16700}
+**
+** To avoid having to register all collation sequences before a database
+** can be used, a single callback function may be registered with the
+** database handle to be called whenever an undefined collation sequence is
+** required.
+**
+** If the function is registered using the sqlite3_collation_needed() API,
+** then it is passed the names of undefined collation sequences as strings
+** encoded in UTF-8. {F16703} If sqlite3_collation_needed16() is used, the names
+** are passed as UTF-16 in machine native byte order. A call to either
+** function replaces any existing callback.
+**
+** When the callback is invoked, the first argument passed is a copy
+** of the second argument to sqlite3_collation_needed() or
+** sqlite3_collation_needed16(). The second argument is the database
+** handle. The third argument is one of [SQLITE_UTF8],
+** [SQLITE_UTF16BE], or [SQLITE_UTF16LE], indicating the most
+** desirable form of the collation sequence function required.
+** The fourth parameter is the name of the
+** required collation sequence.
+**
+** The callback function should register the desired collation using
+** [sqlite3_create_collation()], [sqlite3_create_collation16()], or
+** [sqlite3_create_collation_v2()].
+**
+** INVARIANTS:
+**
+** {F16702} A successful call to [sqlite3_collation_needed(D,P,F)]
+** or [sqlite3_collation_needed16(D,P,F)] causes
+** the [database connection] D to invoke callback F with first
+** parameter P whenever it needs a comparison function for a
+** collating sequence that it does not know about.
+**
+** {F16704} Each successful call to [sqlite3_collation_needed()] or
+** [sqlite3_collation_needed16()] overrides the callback registered
+** on the same [database connection] by prior calls to either
+** interface.
+**
+** {F16706} The name of the requested collating function passed in the
+** 4th parameter to the callback is in UTF-8 if the callback
+** was registered using [sqlite3_collation_needed()] and
+** is in UTF-16 native byte order if the callback was
+** registered using [sqlite3_collation_needed16()].
+**
+**
+*/
+SQLITE_API int sqlite3_collation_needed(
+ sqlite3*,
+ void*,
+ void(*)(void*,sqlite3*,int eTextRep,const char*)
+);
+SQLITE_API int sqlite3_collation_needed16(
+ sqlite3*,
+ void*,
+ void(*)(void*,sqlite3*,int eTextRep,const void*)
+);
+
+/*
+** Specify the key for an encrypted database. This routine should be
+** called right after sqlite3_open().
+**
+** The code to implement this API is not available in the public release
+** of SQLite.
+*/
+SQLITE_API int sqlite3_key(
+ sqlite3 *db, /* Database to be rekeyed */
+ const void *pKey, int nKey /* The key */
+);
+
+/*
+** Change the key on an open database. If the current database is not
+** encrypted, this routine will encrypt it. If pNew==0 or nNew==0, the
+** database is decrypted.
+**
+** The code to implement this API is not available in the public release
+** of SQLite.
+*/
+SQLITE_API int sqlite3_rekey(
+ sqlite3 *db, /* Database to be rekeyed */
+ const void *pKey, int nKey /* The new key */
+);
+
+/*
+** CAPI3REF: Suspend Execution For A Short Time {F10530}
+**
+** The sqlite3_sleep() function
+** causes the current thread to suspend execution
+** for at least a number of milliseconds specified in its parameter.
+**
+** If the operating system does not support sleep requests with
+** millisecond time resolution, then the time will be rounded up to
+** the nearest second. The number of milliseconds of sleep actually
+** requested from the operating system is returned.
+**
+** SQLite implements this interface by calling the xSleep()
+** method of the default [sqlite3_vfs] object.
+**
+** INVARIANTS:
+**
+** {F10533} The [sqlite3_sleep(M)] interface invokes the xSleep
+** method of the default [sqlite3_vfs|VFS] in order to
+** suspend execution of the current thread for at least
+** M milliseconds.
+**
+** {F10536} The [sqlite3_sleep(M)] interface returns the number of
+** milliseconds of sleep actually requested of the operating
+** system, which might be larger than the parameter M.
+*/
+SQLITE_API int sqlite3_sleep(int);
+
+/*
+** CAPI3REF: Name Of The Folder Holding Temporary Files {F10310}
+**
+** If this global variable is made to point to a string which is
+** the name of a folder (a.ka. directory), then all temporary files
+** created by SQLite will be placed in that directory. If this variable
+** is NULL pointer, then SQLite does a search for an appropriate temporary
+** file directory.
+**
+** It is not safe to modify this variable once a database connection
+** has been opened. It is intended that this variable be set once
+** as part of process initialization and before any SQLite interface
+** routines have been call and remain unchanged thereafter.
+*/
+SQLITE_API char *sqlite3_temp_directory;
+
+/*
+** CAPI3REF: Test To See If The Database Is In Auto-Commit Mode {F12930}
+**
+** The sqlite3_get_autocommit() interfaces returns non-zero or
+** zero if the given database connection is or is not in autocommit mode,
+** respectively. Autocommit mode is on
+** by default. Autocommit mode is disabled by a [BEGIN] statement.
+** Autocommit mode is reenabled by a [COMMIT] or [ROLLBACK].
+**
+** If certain kinds of errors occur on a statement within a multi-statement
+** transactions (errors including [SQLITE_FULL], [SQLITE_IOERR],
+** [SQLITE_NOMEM], [SQLITE_BUSY], and [SQLITE_INTERRUPT]) then the
+** transaction might be rolled back automatically. The only way to
+** find out if SQLite automatically rolled back the transaction after
+** an error is to use this function.
+**
+** INVARIANTS:
+**
+** {F12931} The [sqlite3_get_autocommit(D)] interface returns non-zero or
+** zero if the [database connection] D is or is not in autocommit
+** mode, respectively.
+**
+** {F12932} Autocommit mode is on by default.
+**
+** {F12933} Autocommit mode is disabled by a successful [BEGIN] statement.
+**
+** {F12934} Autocommit mode is enabled by a successful [COMMIT] or [ROLLBACK]
+** statement.
+**
+**
+** LIMITATIONS:
+***
+** {U12936} If another thread changes the autocommit status of the database
+** connection while this routine is running, then the return value
+** is undefined.
+*/
+SQLITE_API int sqlite3_get_autocommit(sqlite3*);
+
+/*
+** CAPI3REF: Find The Database Handle Of A Prepared Statement {F13120}
+**
+** The sqlite3_db_handle interface
+** returns the [sqlite3*] database handle to which a
+** [prepared statement] belongs.
+** The database handle returned by sqlite3_db_handle
+** is the same database handle that was
+** the first argument to the [sqlite3_prepare_v2()] or its variants
+** that was used to create the statement in the first place.
+**
+** INVARIANTS:
+**
+** {F13123} The [sqlite3_db_handle(S)] interface returns a pointer
+** to the [database connection] associated with
+** [prepared statement] S.
+*/
+SQLITE_API sqlite3 *sqlite3_db_handle(sqlite3_stmt*);
+
+
+/*
+** CAPI3REF: Commit And Rollback Notification Callbacks {F12950}
+**
+** The sqlite3_commit_hook() interface registers a callback
+** function to be invoked whenever a transaction is committed.
+** Any callback set by a previous call to sqlite3_commit_hook()
+** for the same database connection is overridden.
+** The sqlite3_rollback_hook() interface registers a callback
+** function to be invoked whenever a transaction is committed.
+** Any callback set by a previous call to sqlite3_commit_hook()
+** for the same database connection is overridden.
+** The pArg argument is passed through
+** to the callback. If the callback on a commit hook function
+** returns non-zero, then the commit is converted into a rollback.
+**
+** If another function was previously registered, its
+** pArg value is returned. Otherwise NULL is returned.
+**
+** Registering a NULL function disables the callback.
+**
+** For the purposes of this API, a transaction is said to have been
+** rolled back if an explicit "ROLLBACK" statement is executed, or
+** an error or constraint causes an implicit rollback to occur.
+** The rollback callback is not invoked if a transaction is
+** automatically rolled back because the database connection is closed.
+** The rollback callback is not invoked if a transaction is
+** rolled back because a commit callback returned non-zero.
+** <todo> Check on this </todo>
+**
+** These are experimental interfaces and are subject to change.
+**
+** INVARIANTS:
+**
+** {F12951} The [sqlite3_commit_hook(D,F,P)] interface registers the
+** callback function F to be invoked with argument P whenever
+** a transaction commits on [database connection] D.
+**
+** {F12952} The [sqlite3_commit_hook(D,F,P)] interface returns the P
+** argument from the previous call with the same
+** [database connection ] D , or NULL on the first call
+** for a particular [database connection] D.
+**
+** {F12953} Each call to [sqlite3_commit_hook()] overwrites the callback
+** registered by prior calls.
+**
+** {F12954} If the F argument to [sqlite3_commit_hook(D,F,P)] is NULL
+** then the commit hook callback is cancelled and no callback
+** is invoked when a transaction commits.
+**
+** {F12955} If the commit callback returns non-zero then the commit is
+** converted into a rollback.
+**
+** {F12961} The [sqlite3_rollback_hook(D,F,P)] interface registers the
+** callback function F to be invoked with argument P whenever
+** a transaction rolls back on [database connection] D.
+**
+** {F12962} The [sqlite3_rollback_hook(D,F,P)] interface returns the P
+** argument from the previous call with the same
+** [database connection ] D , or NULL on the first call
+** for a particular [database connection] D.
+**
+** {F12963} Each call to [sqlite3_rollback_hook()] overwrites the callback
+** registered by prior calls.
+**
+** {F12964} If the F argument to [sqlite3_rollback_hook(D,F,P)] is NULL
+** then the rollback hook callback is cancelled and no callback
+** is invoked when a transaction rolls back.
+*/
+SQLITE_API void *sqlite3_commit_hook(sqlite3*, int(*)(void*), void*);
+SQLITE_API void *sqlite3_rollback_hook(sqlite3*, void(*)(void *), void*);
+
+/*
+** CAPI3REF: Data Change Notification Callbacks {F12970}
+**
+** The sqlite3_update_hook() interface
+** registers a callback function with the database connection identified by the
+** first argument to be invoked whenever a row is updated, inserted or deleted.
+** Any callback set by a previous call to this function for the same
+** database connection is overridden.
+**
+** The second argument is a pointer to the function to invoke when a
+** row is updated, inserted or deleted.
+** The first argument to the callback is
+** a copy of the third argument to sqlite3_update_hook().
+** The second callback
+** argument is one of [SQLITE_INSERT], [SQLITE_DELETE] or [SQLITE_UPDATE],
+** depending on the operation that caused the callback to be invoked.
+** The third and
+** fourth arguments to the callback contain pointers to the database and
+** table name containing the affected row.
+** The final callback parameter is
+** the rowid of the row.
+** In the case of an update, this is the rowid after
+** the update takes place.
+**
+** The update hook is not invoked when internal system tables are
+** modified (i.e. sqlite_master and sqlite_sequence).
+**
+** If another function was previously registered, its pArg value
+** is returned. Otherwise NULL is returned.
+**
+** INVARIANTS:
+**
+** {F12971} The [sqlite3_update_hook(D,F,P)] interface causes callback
+** function F to be invoked with first parameter P whenever
+** a table row is modified, inserted, or deleted on
+** [database connection] D.
+**
+** {F12973} The [sqlite3_update_hook(D,F,P)] interface returns the value
+** of P for the previous call on the same [database connection] D,
+** or NULL for the first call.
+**
+** {F12975} If the update hook callback F in [sqlite3_update_hook(D,F,P)]
+** is NULL then the no update callbacks are made.
+**
+** {F12977} Each call to [sqlite3_update_hook(D,F,P)] overrides prior calls
+** to the same interface on the same [database connection] D.
+**
+** {F12979} The update hook callback is not invoked when internal system
+** tables such as sqlite_master and sqlite_sequence are modified.
+**
+** {F12981} The second parameter to the update callback
+** is one of [SQLITE_INSERT], [SQLITE_DELETE] or [SQLITE_UPDATE],
+** depending on the operation that caused the callback to be invoked.
+**
+** {F12983} The third and fourth arguments to the callback contain pointers
+** to zero-terminated UTF-8 strings which are the names of the
+** database and table that is being updated.
+
+** {F12985} The final callback parameter is the rowid of the row after
+** the change occurs.
+*/
+SQLITE_API void *sqlite3_update_hook(
+ sqlite3*,
+ void(*)(void *,int ,char const *,char const *,sqlite3_int64),
+ void*
+);
+
+/*
+** CAPI3REF: Enable Or Disable Shared Pager Cache {F10330}
+**
+** This routine enables or disables the sharing of the database cache
+** and schema data structures between connections to the same database.
+** Sharing is enabled if the argument is true and disabled if the argument
+** is false.
+**
+** Cache sharing is enabled and disabled
+** for an entire process. {END} This is a change as of SQLite version 3.5.0.
+** In prior versions of SQLite, sharing was
+** enabled or disabled for each thread separately.
+**
+** The cache sharing mode set by this interface effects all subsequent
+** calls to [sqlite3_open()], [sqlite3_open_v2()], and [sqlite3_open16()].
+** Existing database connections continue use the sharing mode
+** that was in effect at the time they were opened.
+**
+** Virtual tables cannot be used with a shared cache. When shared
+** cache is enabled, the [sqlite3_create_module()] API used to register
+** virtual tables will always return an error.
+**
+** This routine returns [SQLITE_OK] if shared cache was
+** enabled or disabled successfully. An [error code]
+** is returned otherwise.
+**
+** Shared cache is disabled by default. But this might change in
+** future releases of SQLite. Applications that care about shared
+** cache setting should set it explicitly.
+**
+** INVARIANTS:
+**
+** {F10331} A successful invocation of [sqlite3_enable_shared_cache(B)]
+** will enable or disable shared cache mode for any subsequently
+** created [database connection] in the same process.
+**
+** {F10336} When shared cache is enabled, the [sqlite3_create_module()]
+** interface will always return an error.
+**
+** {F10337} The [sqlite3_enable_shared_cache(B)] interface returns
+** [SQLITE_OK] if shared cache was enabled or disabled successfully.
+**
+** {F10339} Shared cache is disabled by default.
+*/
+SQLITE_API int sqlite3_enable_shared_cache(int);
+
+/*
+** CAPI3REF: Attempt To Free Heap Memory {F17340}
+**
+** The sqlite3_release_memory() interface attempts to
+** free N bytes of heap memory by deallocating non-essential memory
+** allocations held by the database labrary. {END} Memory used
+** to cache database pages to improve performance is an example of
+** non-essential memory. Sqlite3_release_memory() returns
+** the number of bytes actually freed, which might be more or less
+** than the amount requested.
+**
+** INVARIANTS:
+**
+** {F17341} The [sqlite3_release_memory(N)] interface attempts to
+** free N bytes of heap memory by deallocating non-essential
+** memory allocations held by the database labrary.
+**
+** {F16342} The [sqlite3_release_memory(N)] returns the number
+** of bytes actually freed, which might be more or less
+** than the amount requested.
+*/
+SQLITE_API int sqlite3_release_memory(int);
+
+/*
+** CAPI3REF: Impose A Limit On Heap Size {F17350}
+**
+** The sqlite3_soft_heap_limit() interface
+** places a "soft" limit on the amount of heap memory that may be allocated
+** by SQLite. If an internal allocation is requested
+** that would exceed the soft heap limit, [sqlite3_release_memory()] is
+** invoked one or more times to free up some space before the allocation
+** is made.
+**
+** The limit is called "soft", because if
+** [sqlite3_release_memory()] cannot
+** free sufficient memory to prevent the limit from being exceeded,
+** the memory is allocated anyway and the current operation proceeds.
+**
+** A negative or zero value for N means that there is no soft heap limit and
+** [sqlite3_release_memory()] will only be called when memory is exhausted.
+** The default value for the soft heap limit is zero.
+**
+** SQLite makes a best effort to honor the soft heap limit.
+** But if the soft heap limit cannot honored, execution will
+** continue without error or notification. This is why the limit is
+** called a "soft" limit. It is advisory only.
+**
+** Prior to SQLite version 3.5.0, this routine only constrained the memory
+** allocated by a single thread - the same thread in which this routine
+** runs. Beginning with SQLite version 3.5.0, the soft heap limit is
+** applied to all threads. The value specified for the soft heap limit
+** is an upper bound on the total memory allocation for all threads. In
+** version 3.5.0 there is no mechanism for limiting the heap usage for
+** individual threads.
+**
+** INVARIANTS:
+**
+** {F16351} The [sqlite3_soft_heap_limit(N)] interface places a soft limit
+** of N bytes on the amount of heap memory that may be allocated
+** using [sqlite3_malloc()] or [sqlite3_realloc()] at any point
+** in time.
+**
+** {F16352} If a call to [sqlite3_malloc()] or [sqlite3_realloc()] would
+** cause the total amount of allocated memory to exceed the
+** soft heap limit, then [sqlite3_release_memory()] is invoked
+** in an attempt to reduce the memory usage prior to proceeding
+** with the memory allocation attempt.
+**
+** {F16353} Calls to [sqlite3_malloc()] or [sqlite3_realloc()] that trigger
+** attempts to reduce memory usage through the soft heap limit
+** mechanism continue even if the attempt to reduce memory
+** usage is unsuccessful.
+**
+** {F16354} A negative or zero value for N in a call to
+** [sqlite3_soft_heap_limit(N)] means that there is no soft
+** heap limit and [sqlite3_release_memory()] will only be
+** called when memory is completely exhausted.
+**
+** {F16355} The default value for the soft heap limit is zero.
+**
+** {F16358} Each call to [sqlite3_soft_heap_limit(N)] overrides the
+** values set by all prior calls.
+*/
+SQLITE_API void sqlite3_soft_heap_limit(int);
+
+/*
+** CAPI3REF: Extract Metadata About A Column Of A Table {F12850}
+**
+** This routine
+** returns meta-data about a specific column of a specific database
+** table accessible using the connection handle passed as the first function
+** argument.
+**
+** The column is identified by the second, third and fourth parameters to
+** this function. The second parameter is either the name of the database
+** (i.e. "main", "temp" or an attached database) containing the specified
+** table or NULL. If it is NULL, then all attached databases are searched
+** for the table using the same algorithm as the database engine uses to
+** resolve unqualified table references.
+**
+** The third and fourth parameters to this function are the table and column
+** name of the desired column, respectively. Neither of these parameters
+** may be NULL.
+**
+** Meta information is returned by writing to the memory locations passed as
+** the 5th and subsequent parameters to this function. Any of these
+** arguments may be NULL, in which case the corresponding element of meta
+** information is ommitted.
+**
+** <pre>
+** Parameter Output Type Description
+** -----------------------------------
+**
+** 5th const char* Data type
+** 6th const char* Name of the default collation sequence
+** 7th int True if the column has a NOT NULL constraint
+** 8th int True if the column is part of the PRIMARY KEY
+** 9th int True if the column is AUTOINCREMENT
+** </pre>
+**
+**
+** The memory pointed to by the character pointers returned for the
+** declaration type and collation sequence is valid only until the next
+** call to any sqlite API function.
+**
+** If the specified table is actually a view, then an error is returned.
+**
+** If the specified column is "rowid", "oid" or "_rowid_" and an
+** INTEGER PRIMARY KEY column has been explicitly declared, then the output
+** parameters are set for the explicitly declared column. If there is no
+** explicitly declared IPK column, then the output parameters are set as
+** follows:
+**
+** <pre>
+** data type: "INTEGER"
+** collation sequence: "BINARY"
+** not null: 0
+** primary key: 1
+** auto increment: 0
+** </pre>
+**
+** This function may load one or more schemas from database files. If an
+** error occurs during this process, or if the requested table or column
+** cannot be found, an SQLITE error code is returned and an error message
+** left in the database handle (to be retrieved using sqlite3_errmsg()).
+**
+** This API is only available if the library was compiled with the
+** SQLITE_ENABLE_COLUMN_METADATA preprocessor symbol defined.
+*/
+SQLITE_API int sqlite3_table_column_metadata(
+ sqlite3 *db, /* Connection handle */
+ const char *zDbName, /* Database name or NULL */
+ const char *zTableName, /* Table name */
+ const char *zColumnName, /* Column name */
+ char const **pzDataType, /* OUTPUT: Declared data type */
+ char const **pzCollSeq, /* OUTPUT: Collation sequence name */
+ int *pNotNull, /* OUTPUT: True if NOT NULL constraint exists */
+ int *pPrimaryKey, /* OUTPUT: True if column part of PK */
+ int *pAutoinc /* OUTPUT: True if column is auto-increment */
+);
+
+/*
+** CAPI3REF: Load An Extension {F12600}
+**
+** {F12601} The sqlite3_load_extension() interface
+** attempts to load an SQLite extension library contained in the file
+** zFile. {F12602} The entry point is zProc. {F12603} zProc may be 0
+** in which case the name of the entry point defaults
+** to "sqlite3_extension_init".
+**
+** {F12604} The sqlite3_load_extension() interface shall
+** return [SQLITE_OK] on success and [SQLITE_ERROR] if something goes wrong.
+**
+** {F12605}
+** If an error occurs and pzErrMsg is not 0, then the
+** sqlite3_load_extension() interface shall attempt to fill *pzErrMsg with
+** error message text stored in memory obtained from [sqlite3_malloc()].
+** {END} The calling function should free this memory
+** by calling [sqlite3_free()].
+**
+** {F12606}
+** Extension loading must be enabled using [sqlite3_enable_load_extension()]
+** prior to calling this API or an error will be returned.
+*/
+SQLITE_API int sqlite3_load_extension(
+ sqlite3 *db, /* Load the extension into this database connection */
+ const char *zFile, /* Name of the shared library containing extension */
+ const char *zProc, /* Entry point. Derived from zFile if 0 */
+ char **pzErrMsg /* Put error message here if not 0 */
+);
+
+/*
+** CAPI3REF: Enable Or Disable Extension Loading {F12620}
+**
+** So as not to open security holes in older applications that are
+** unprepared to deal with extension loading, and as a means of disabling
+** extension loading while evaluating user-entered SQL, the following
+** API is provided to turn the [sqlite3_load_extension()] mechanism on and
+** off. {F12622} It is off by default. {END} See ticket #1863.
+**
+** {F12621} Call the sqlite3_enable_load_extension() routine
+** with onoff==1 to turn extension loading on
+** and call it with onoff==0 to turn it back off again. {END}
+*/
+SQLITE_API int sqlite3_enable_load_extension(sqlite3 *db, int onoff);
+
+/*
+** CAPI3REF: Make Arrangements To Automatically Load An Extension {F12640}
+**
+** {F12641} This function
+** registers an extension entry point that is automatically invoked
+** whenever a new database connection is opened using
+** [sqlite3_open()], [sqlite3_open16()], or [sqlite3_open_v2()]. {END}
+**
+** This API can be invoked at program startup in order to register
+** one or more statically linked extensions that will be available
+** to all new database connections.
+**
+** {F12642} Duplicate extensions are detected so calling this routine multiple
+** times with the same extension is harmless.
+**
+** {F12643} This routine stores a pointer to the extension in an array
+** that is obtained from sqlite_malloc(). {END} If you run a memory leak
+** checker on your program and it reports a leak because of this
+** array, then invoke [sqlite3_reset_auto_extension()] prior
+** to shutdown to free the memory.
+**
+** {F12644} Automatic extensions apply across all threads. {END}
+**
+** This interface is experimental and is subject to change or
+** removal in future releases of SQLite.
+*/
+SQLITE_API int sqlite3_auto_extension(void *xEntryPoint);
+
+
+/*
+** CAPI3REF: Reset Automatic Extension Loading {F12660}
+**
+** {F12661} This function disables all previously registered
+** automatic extensions. {END} This
+** routine undoes the effect of all prior [sqlite3_auto_extension()]
+** calls.
+**
+** {F12662} This call disabled automatic extensions in all threads. {END}
+**
+** This interface is experimental and is subject to change or
+** removal in future releases of SQLite.
+*/
+SQLITE_API void sqlite3_reset_auto_extension(void);
+
+
+/*
+****** EXPERIMENTAL - subject to change without notice **************
+**
+** The interface to the virtual-table mechanism is currently considered
+** to be experimental. The interface might change in incompatible ways.
+** If this is a problem for you, do not use the interface at this time.
+**
+** When the virtual-table mechanism stablizes, we will declare the
+** interface fixed, support it indefinitely, and remove this comment.
+*/
+
+/*
+** Structures used by the virtual table interface
+*/
+typedef struct sqlite3_vtab sqlite3_vtab;
+typedef struct sqlite3_index_info sqlite3_index_info;
+typedef struct sqlite3_vtab_cursor sqlite3_vtab_cursor;
+typedef struct sqlite3_module sqlite3_module;
+
+/*
+** CAPI3REF: Virtual Table Object {F18000}
+** KEYWORDS: sqlite3_module
+**
+** A module is a class of virtual tables. Each module is defined
+** by an instance of the following structure. This structure consists
+** mostly of methods for the module.
+*/
+struct sqlite3_module {
+ int iVersion;
+ int (*xCreate)(sqlite3*, void *pAux,
+ int argc, const char *const*argv,
+ sqlite3_vtab **ppVTab, char**);
+ int (*xConnect)(sqlite3*, void *pAux,
+ int argc, const char *const*argv,
+ sqlite3_vtab **ppVTab, char**);
+ int (*xBestIndex)(sqlite3_vtab *pVTab, sqlite3_index_info*);
+ int (*xDisconnect)(sqlite3_vtab *pVTab);
+ int (*xDestroy)(sqlite3_vtab *pVTab);
+ int (*xOpen)(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor);
+ int (*xClose)(sqlite3_vtab_cursor*);
+ int (*xFilter)(sqlite3_vtab_cursor*, int idxNum, const char *idxStr,
+ int argc, sqlite3_value **argv);
+ int (*xNext)(sqlite3_vtab_cursor*);
+ int (*xEof)(sqlite3_vtab_cursor*);
+ int (*xColumn)(sqlite3_vtab_cursor*, sqlite3_context*, int);
+ int (*xRowid)(sqlite3_vtab_cursor*, sqlite3_int64 *pRowid);
+ int (*xUpdate)(sqlite3_vtab *, int, sqlite3_value **, sqlite3_int64 *);
+ int (*xBegin)(sqlite3_vtab *pVTab);
+ int (*xSync)(sqlite3_vtab *pVTab);
+ int (*xCommit)(sqlite3_vtab *pVTab);
+ int (*xRollback)(sqlite3_vtab *pVTab);
+ int (*xFindFunction)(sqlite3_vtab *pVtab, int nArg, const char *zName,
+ void (**pxFunc)(sqlite3_context*,int,sqlite3_value**),
+ void **ppArg);
+
+ int (*xRename)(sqlite3_vtab *pVtab, const char *zNew);
+};
+
+/*
+** CAPI3REF: Virtual Table Indexing Information {F18100}
+** KEYWORDS: sqlite3_index_info
+**
+** The sqlite3_index_info structure and its substructures is used to
+** pass information into and receive the reply from the xBestIndex
+** method of an sqlite3_module. The fields under **Inputs** are the
+** inputs to xBestIndex and are read-only. xBestIndex inserts its
+** results into the **Outputs** fields.
+**
+** The aConstraint[] array records WHERE clause constraints of the
+** form:
+**
+** column OP expr
+**
+** Where OP is =, &lt;, &lt;=, &gt;, or &gt;=.
+** The particular operator is stored
+** in aConstraint[].op. The index of the column is stored in
+** aConstraint[].iColumn. aConstraint[].usable is TRUE if the
+** expr on the right-hand side can be evaluated (and thus the constraint
+** is usable) and false if it cannot.
+**
+** The optimizer automatically inverts terms of the form "expr OP column"
+** and makes other simplifications to the WHERE clause in an attempt to
+** get as many WHERE clause terms into the form shown above as possible.
+** The aConstraint[] array only reports WHERE clause terms in the correct
+** form that refer to the particular virtual table being queried.
+**
+** Information about the ORDER BY clause is stored in aOrderBy[].
+** Each term of aOrderBy records a column of the ORDER BY clause.
+**
+** The xBestIndex method must fill aConstraintUsage[] with information
+** about what parameters to pass to xFilter. If argvIndex>0 then
+** the right-hand side of the corresponding aConstraint[] is evaluated
+** and becomes the argvIndex-th entry in argv. If aConstraintUsage[].omit
+** is true, then the constraint is assumed to be fully handled by the
+** virtual table and is not checked again by SQLite.
+**
+** The idxNum and idxPtr values are recorded and passed into xFilter.
+** sqlite3_free() is used to free idxPtr if needToFreeIdxPtr is true.
+**
+** The orderByConsumed means that output from xFilter will occur in
+** the correct order to satisfy the ORDER BY clause so that no separate
+** sorting step is required.
+**
+** The estimatedCost value is an estimate of the cost of doing the
+** particular lookup. A full scan of a table with N entries should have
+** a cost of N. A binary search of a table of N entries should have a
+** cost of approximately log(N).
+*/
+struct sqlite3_index_info {
+ /* Inputs */
+ int nConstraint; /* Number of entries in aConstraint */
+ struct sqlite3_index_constraint {
+ int iColumn; /* Column on left-hand side of constraint */
+ unsigned char op; /* Constraint operator */
+ unsigned char usable; /* True if this constraint is usable */
+ int iTermOffset; /* Used internally - xBestIndex should ignore */
+ } *aConstraint; /* Table of WHERE clause constraints */
+ int nOrderBy; /* Number of terms in the ORDER BY clause */
+ struct sqlite3_index_orderby {
+ int iColumn; /* Column number */
+ unsigned char desc; /* True for DESC. False for ASC. */
+ } *aOrderBy; /* The ORDER BY clause */
+
+ /* Outputs */
+ struct sqlite3_index_constraint_usage {
+ int argvIndex; /* if >0, constraint is part of argv to xFilter */
+ unsigned char omit; /* Do not code a test for this constraint */
+ } *aConstraintUsage;
+ int idxNum; /* Number used to identify the index */
+ char *idxStr; /* String, possibly obtained from sqlite3_malloc */
+ int needToFreeIdxStr; /* Free idxStr using sqlite3_free() if true */
+ int orderByConsumed; /* True if output is already ordered */
+ double estimatedCost; /* Estimated cost of using this index */
+};
+#define SQLITE_INDEX_CONSTRAINT_EQ 2
+#define SQLITE_INDEX_CONSTRAINT_GT 4
+#define SQLITE_INDEX_CONSTRAINT_LE 8
+#define SQLITE_INDEX_CONSTRAINT_LT 16
+#define SQLITE_INDEX_CONSTRAINT_GE 32
+#define SQLITE_INDEX_CONSTRAINT_MATCH 64
+
+/*
+** CAPI3REF: Register A Virtual Table Implementation {F18200}
+**
+** This routine is used to register a new module name with an SQLite
+** connection. Module names must be registered before creating new
+** virtual tables on the module, or before using preexisting virtual
+** tables of the module.
+*/
+SQLITE_API int sqlite3_create_module(
+ sqlite3 *db, /* SQLite connection to register module with */
+ const char *zName, /* Name of the module */
+ const sqlite3_module *, /* Methods for the module */
+ void * /* Client data for xCreate/xConnect */
+);
+
+/*
+** CAPI3REF: Register A Virtual Table Implementation {F18210}
+**
+** This routine is identical to the sqlite3_create_module() method above,
+** except that it allows a destructor function to be specified. It is
+** even more experimental than the rest of the virtual tables API.
+*/
+SQLITE_API int sqlite3_create_module_v2(
+ sqlite3 *db, /* SQLite connection to register module with */
+ const char *zName, /* Name of the module */
+ const sqlite3_module *, /* Methods for the module */
+ void *, /* Client data for xCreate/xConnect */
+ void(*xDestroy)(void*) /* Module destructor function */
+);
+
+/*
+** CAPI3REF: Virtual Table Instance Object {F18010}
+** KEYWORDS: sqlite3_vtab
+**
+** Every module implementation uses a subclass of the following structure
+** to describe a particular instance of the module. Each subclass will
+** be tailored to the specific needs of the module implementation. The
+** purpose of this superclass is to define certain fields that are common
+** to all module implementations.
+**
+** Virtual tables methods can set an error message by assigning a
+** string obtained from sqlite3_mprintf() to zErrMsg. The method should
+** take care that any prior string is freed by a call to sqlite3_free()
+** prior to assigning a new string to zErrMsg. After the error message
+** is delivered up to the client application, the string will be automatically
+** freed by sqlite3_free() and the zErrMsg field will be zeroed. Note
+** that sqlite3_mprintf() and sqlite3_free() are used on the zErrMsg field
+** since virtual tables are commonly implemented in loadable extensions which
+** do not have access to sqlite3MPrintf() or sqlite3Free().
+*/
+struct sqlite3_vtab {
+ const sqlite3_module *pModule; /* The module for this virtual table */
+ int nRef; /* Used internally */
+ char *zErrMsg; /* Error message from sqlite3_mprintf() */
+ /* Virtual table implementations will typically add additional fields */
+};
+
+/*
+** CAPI3REF: Virtual Table Cursor Object {F18020}
+** KEYWORDS: sqlite3_vtab_cursor
+**
+** Every module implementation uses a subclass of the following structure
+** to describe cursors that point into the virtual table and are used
+** to loop through the virtual table. Cursors are created using the
+** xOpen method of the module. Each module implementation will define
+** the content of a cursor structure to suit its own needs.
+**
+** This superclass exists in order to define fields of the cursor that
+** are common to all implementations.
+*/
+struct sqlite3_vtab_cursor {
+ sqlite3_vtab *pVtab; /* Virtual table of this cursor */
+ /* Virtual table implementations will typically add additional fields */
+};
+
+/*
+** CAPI3REF: Declare The Schema Of A Virtual Table {F18280}
+**
+** The xCreate and xConnect methods of a module use the following API
+** to declare the format (the names and datatypes of the columns) of
+** the virtual tables they implement.
+*/
+SQLITE_API int sqlite3_declare_vtab(sqlite3*, const char *zCreateTable);
+
+/*
+** CAPI3REF: Overload A Function For A Virtual Table {F18300}
+**
+** Virtual tables can provide alternative implementations of functions
+** using the xFindFunction method. But global versions of those functions
+** must exist in order to be overloaded.
+**
+** This API makes sure a global version of a function with a particular
+** name and number of parameters exists. If no such function exists
+** before this API is called, a new function is created. The implementation
+** of the new function always causes an exception to be thrown. So
+** the new function is not good for anything by itself. Its only
+** purpose is to be a place-holder function that can be overloaded
+** by virtual tables.
+**
+** This API should be considered part of the virtual table interface,
+** which is experimental and subject to change.
+*/
+SQLITE_API int sqlite3_overload_function(sqlite3*, const char *zFuncName, int nArg);
+
+/*
+** The interface to the virtual-table mechanism defined above (back up
+** to a comment remarkably similar to this one) is currently considered
+** to be experimental. The interface might change in incompatible ways.
+** If this is a problem for you, do not use the interface at this time.
+**
+** When the virtual-table mechanism stabilizes, we will declare the
+** interface fixed, support it indefinitely, and remove this comment.
+**
+****** EXPERIMENTAL - subject to change without notice **************
+*/
+
+/*
+** CAPI3REF: A Handle To An Open BLOB {F17800}
+**
+** An instance of this object represents an open BLOB on which
+** incremental I/O can be preformed.
+** Objects of this type are created by
+** [sqlite3_blob_open()] and destroyed by [sqlite3_blob_close()].
+** The [sqlite3_blob_read()] and [sqlite3_blob_write()] interfaces
+** can be used to read or write small subsections of the blob.
+** The [sqlite3_blob_bytes()] interface returns the size of the
+** blob in bytes.
+*/
+typedef struct sqlite3_blob sqlite3_blob;
+
+/*
+** CAPI3REF: Open A BLOB For Incremental I/O {F17810}
+**
+** This interfaces opens a handle to the blob located
+** in row iRow, column zColumn, table zTable in database zDb;
+** in other words, the same blob that would be selected by:
+**
+** <pre>
+** SELECT zColumn FROM zDb.zTable WHERE rowid = iRow;
+** </pre> {END}
+**
+** If the flags parameter is non-zero, the blob is opened for
+** read and write access. If it is zero, the blob is opened for read
+** access.
+**
+** Note that the database name is not the filename that contains
+** the database but rather the symbolic name of the database that
+** is assigned when the database is connected using [ATTACH].
+** For the main database file, the database name is "main". For
+** TEMP tables, the database name is "temp".
+**
+** On success, [SQLITE_OK] is returned and the new
+** [sqlite3_blob | blob handle] is written to *ppBlob.
+** Otherwise an error code is returned and
+** any value written to *ppBlob should not be used by the caller.
+** This function sets the database-handle error code and message
+** accessible via [sqlite3_errcode()] and [sqlite3_errmsg()].
+**
+** INVARIANTS:
+**
+** {F17813} A successful invocation of the [sqlite3_blob_open(D,B,T,C,R,F,P)]
+** interface opens an [sqlite3_blob] object P on the blob
+** in column C of table T in database B on [database connection] D.
+**
+** {F17814} A successful invocation of [sqlite3_blob_open(D,...)] starts
+** a new transaction on [database connection] D if that connection
+** is not already in a transaction.
+**
+** {F17816} The [sqlite3_blob_open(D,B,T,C,R,F,P)] interface opens the blob
+** for read and write access if and only if the F parameter
+** is non-zero.
+**
+** {F17819} The [sqlite3_blob_open()] interface returns [SQLITE_OK] on
+** success and an appropriate [error code] on failure.
+**
+** {F17821} If an error occurs during evaluation of [sqlite3_blob_open(D,...)]
+** then subsequent calls to [sqlite3_errcode(D)],
+** [sqlite3_errmsg(D)], and [sqlite3_errmsg16(D)] will return
+** information approprate for that error.
+*/
+SQLITE_API int sqlite3_blob_open(
+ sqlite3*,
+ const char *zDb,
+ const char *zTable,
+ const char *zColumn,
+ sqlite3_int64 iRow,
+ int flags,
+ sqlite3_blob **ppBlob
+);
+
+/*
+** CAPI3REF: Close A BLOB Handle {F17830}
+**
+** Close an open [sqlite3_blob | blob handle].
+**
+** Closing a BLOB shall cause the current transaction to commit
+** if there are no other BLOBs, no pending prepared statements, and the
+** database connection is in autocommit mode.
+** If any writes were made to the BLOB, they might be held in cache
+** until the close operation if they will fit. {END}
+** Closing the BLOB often forces the changes
+** out to disk and so if any I/O errors occur, they will likely occur
+** at the time when the BLOB is closed. {F17833} Any errors that occur during
+** closing are reported as a non-zero return value.
+**
+** The BLOB is closed unconditionally. Even if this routine returns
+** an error code, the BLOB is still closed.
+**
+** INVARIANTS:
+**
+** {F17833} The [sqlite3_blob_close(P)] interface closes an
+** [sqlite3_blob] object P previously opened using
+** [sqlite3_blob_open()].
+**
+** {F17836} Closing an [sqlite3_blob] object using
+** [sqlite3_blob_close()] shall cause the current transaction to
+** commit if there are no other open [sqlite3_blob] objects
+** or [prepared statements] on the same [database connection] and
+** the [database connection] is in
+** [sqlite3_get_autocommit | autocommit mode].
+**
+** {F17839} The [sqlite3_blob_close(P)] interfaces closes the
+** [sqlite3_blob] object P unconditionally, even if
+** [sqlite3_blob_close(P)] returns something other than [SQLITE_OK].
+**
+*/
+SQLITE_API int sqlite3_blob_close(sqlite3_blob *);
+
+/*
+** CAPI3REF: Return The Size Of An Open BLOB {F17840}
+**
+** Return the size in bytes of the blob accessible via the open
+** [sqlite3_blob] object in its only argument.
+**
+** INVARIANTS:
+**
+** {F17843} The [sqlite3_blob_bytes(P)] interface returns the size
+** in bytes of the BLOB that the [sqlite3_blob] object P
+** refers to.
+*/
+SQLITE_API int sqlite3_blob_bytes(sqlite3_blob *);
+
+/*
+** CAPI3REF: Read Data From A BLOB Incrementally {F17850}
+**
+** This function is used to read data from an open
+** [sqlite3_blob | blob-handle] into a caller supplied buffer.
+** N bytes of data are copied into buffer
+** Z from the open blob, starting at offset iOffset.
+**
+** If offset iOffset is less than N bytes from the end of the blob,
+** [SQLITE_ERROR] is returned and no data is read. If N or iOffset is
+** less than zero [SQLITE_ERROR] is returned and no data is read.
+**
+** On success, SQLITE_OK is returned. Otherwise, an
+** [error code] or an [extended error code] is returned.
+**
+** INVARIANTS:
+**
+** {F17853} The [sqlite3_blob_read(P,Z,N,X)] interface reads N bytes
+** beginning at offset X from
+** the blob that [sqlite3_blob] object P refers to
+** and writes those N bytes into buffer Z.
+**
+** {F17856} In [sqlite3_blob_read(P,Z,N,X)] if the size of the blob
+** is less than N+X bytes, then the function returns [SQLITE_ERROR]
+** and nothing is read from the blob.
+**
+** {F17859} In [sqlite3_blob_read(P,Z,N,X)] if X or N is less than zero
+** then the function returns [SQLITE_ERROR]
+** and nothing is read from the blob.
+**
+** {F17862} The [sqlite3_blob_read(P,Z,N,X)] interface returns [SQLITE_OK]
+** if N bytes where successfully read into buffer Z.
+**
+** {F17865} If the requested read could not be completed,
+** the [sqlite3_blob_read(P,Z,N,X)] interface returns an
+** appropriate [error code] or [extended error code].
+**
+** {F17868} If an error occurs during evaluation of [sqlite3_blob_read(P,...)]
+** then subsequent calls to [sqlite3_errcode(D)],
+** [sqlite3_errmsg(D)], and [sqlite3_errmsg16(D)] will return
+** information approprate for that error, where D is the
+** database handle that was used to open blob handle P.
+*/
+SQLITE_API int sqlite3_blob_read(sqlite3_blob *, void *Z, int N, int iOffset);
+
+/*
+** CAPI3REF: Write Data Into A BLOB Incrementally {F17870}
+**
+** This function is used to write data into an open
+** [sqlite3_blob | blob-handle] from a user supplied buffer.
+** n bytes of data are copied from the buffer
+** pointed to by z into the open blob, starting at offset iOffset.
+**
+** If the [sqlite3_blob | blob-handle] passed as the first argument
+** was not opened for writing (the flags parameter to [sqlite3_blob_open()]
+*** was zero), this function returns [SQLITE_READONLY].
+**
+** This function may only modify the contents of the blob; it is
+** not possible to increase the size of a blob using this API.
+** If offset iOffset is less than n bytes from the end of the blob,
+** [SQLITE_ERROR] is returned and no data is written. If n is
+** less than zero [SQLITE_ERROR] is returned and no data is written.
+**
+** On success, SQLITE_OK is returned. Otherwise, an
+** [error code] or an [extended error code] is returned.
+**
+** INVARIANTS:
+**
+** {F17873} The [sqlite3_blob_write(P,Z,N,X)] interface writes N bytes
+** from buffer Z into
+** the blob that [sqlite3_blob] object P refers to
+** beginning at an offset of X into the blob.
+**
+** {F17875} The [sqlite3_blob_write(P,Z,N,X)] interface returns
+** [SQLITE_READONLY] if the [sqlite3_blob] object P was
+** [sqlite3_blob_open | opened] for reading only.
+**
+** {F17876} In [sqlite3_blob_write(P,Z,N,X)] if the size of the blob
+** is less than N+X bytes, then the function returns [SQLITE_ERROR]
+** and nothing is written into the blob.
+**
+** {F17879} In [sqlite3_blob_write(P,Z,N,X)] if X or N is less than zero
+** then the function returns [SQLITE_ERROR]
+** and nothing is written into the blob.
+**
+** {F17882} The [sqlite3_blob_write(P,Z,N,X)] interface returns [SQLITE_OK]
+** if N bytes where successfully written into blob.
+**
+** {F17885} If the requested write could not be completed,
+** the [sqlite3_blob_write(P,Z,N,X)] interface returns an
+** appropriate [error code] or [extended error code].
+**
+** {F17888} If an error occurs during evaluation of [sqlite3_blob_write(D,...)]
+** then subsequent calls to [sqlite3_errcode(D)],
+** [sqlite3_errmsg(D)], and [sqlite3_errmsg16(D)] will return
+** information approprate for that error.
+*/
+SQLITE_API int sqlite3_blob_write(sqlite3_blob *, const void *z, int n, int iOffset);
+
+/*
+** CAPI3REF: Virtual File System Objects {F11200}
+**
+** A virtual filesystem (VFS) is an [sqlite3_vfs] object
+** that SQLite uses to interact
+** with the underlying operating system. Most SQLite builds come with a
+** single default VFS that is appropriate for the host computer.
+** New VFSes can be registered and existing VFSes can be unregistered.
+** The following interfaces are provided.
+**
+** The sqlite3_vfs_find() interface returns a pointer to
+** a VFS given its name. Names are case sensitive.
+** Names are zero-terminated UTF-8 strings.
+** If there is no match, a NULL
+** pointer is returned. If zVfsName is NULL then the default
+** VFS is returned.
+**
+** New VFSes are registered with sqlite3_vfs_register().
+** Each new VFS becomes the default VFS if the makeDflt flag is set.
+** The same VFS can be registered multiple times without injury.
+** To make an existing VFS into the default VFS, register it again
+** with the makeDflt flag set. If two different VFSes with the
+** same name are registered, the behavior is undefined. If a
+** VFS is registered with a name that is NULL or an empty string,
+** then the behavior is undefined.
+**
+** Unregister a VFS with the sqlite3_vfs_unregister() interface.
+** If the default VFS is unregistered, another VFS is chosen as
+** the default. The choice for the new VFS is arbitrary.
+**
+** INVARIANTS:
+**
+** {F11203} The [sqlite3_vfs_find(N)] interface returns a pointer to the
+** registered [sqlite3_vfs] object whose name exactly matches
+** the zero-terminated UTF-8 string N, or it returns NULL if
+** there is no match.
+**
+** {F11206} If the N parameter to [sqlite3_vfs_find(N)] is NULL then
+** the function returns a pointer to the default [sqlite3_vfs]
+** object if there is one, or NULL if there is no default
+** [sqlite3_vfs] object.
+**
+** {F11209} The [sqlite3_vfs_register(P,F)] interface registers the
+** well-formed [sqlite3_vfs] object P using the name given
+** by the zName field of the object.
+**
+** {F11212} Using the [sqlite3_vfs_register(P,F)] interface to register
+** the same [sqlite3_vfs] object multiple times is a harmless no-op.
+**
+** {F11215} The [sqlite3_vfs_register(P,F)] interface makes the
+** the [sqlite3_vfs] object P the default [sqlite3_vfs] object
+** if F is non-zero.
+**
+** {F11218} The [sqlite3_vfs_unregister(P)] interface unregisters the
+** [sqlite3_vfs] object P so that it is no longer returned by
+** subsequent calls to [sqlite3_vfs_find()].
+*/
+SQLITE_API sqlite3_vfs *sqlite3_vfs_find(const char *zVfsName);
+SQLITE_API int sqlite3_vfs_register(sqlite3_vfs*, int makeDflt);
+SQLITE_API int sqlite3_vfs_unregister(sqlite3_vfs*);
+
+/*
+** CAPI3REF: Mutexes {F17000}
+**
+** The SQLite core uses these routines for thread
+** synchronization. Though they are intended for internal
+** use by SQLite, code that links against SQLite is
+** permitted to use any of these routines.
+**
+** The SQLite source code contains multiple implementations
+** of these mutex routines. An appropriate implementation
+** is selected automatically at compile-time. The following
+** implementations are available in the SQLite core:
+**
+** <ul>
+** <li> SQLITE_MUTEX_OS2
+** <li> SQLITE_MUTEX_PTHREAD
+** <li> SQLITE_MUTEX_W32
+** <li> SQLITE_MUTEX_NOOP
+** </ul>
+**
+** The SQLITE_MUTEX_NOOP implementation is a set of routines
+** that does no real locking and is appropriate for use in
+** a single-threaded application. The SQLITE_MUTEX_OS2,
+** SQLITE_MUTEX_PTHREAD, and SQLITE_MUTEX_W32 implementations
+** are appropriate for use on os/2, unix, and windows.
+**
+** If SQLite is compiled with the SQLITE_MUTEX_APPDEF preprocessor
+** macro defined (with "-DSQLITE_MUTEX_APPDEF=1"), then no mutex
+** implementation is included with the library. The
+** mutex interface routines defined here become external
+** references in the SQLite library for which implementations
+** must be provided by the application. This facility allows an
+** application that links against SQLite to provide its own mutex
+** implementation without having to modify the SQLite core.
+**
+** {F17011} The sqlite3_mutex_alloc() routine allocates a new
+** mutex and returns a pointer to it. {F17012} If it returns NULL
+** that means that a mutex could not be allocated. {F17013} SQLite
+** will unwind its stack and return an error. {F17014} The argument
+** to sqlite3_mutex_alloc() is one of these integer constants:
+**
+** <ul>
+** <li> SQLITE_MUTEX_FAST
+** <li> SQLITE_MUTEX_RECURSIVE
+** <li> SQLITE_MUTEX_STATIC_MASTER
+** <li> SQLITE_MUTEX_STATIC_MEM
+** <li> SQLITE_MUTEX_STATIC_MEM2
+** <li> SQLITE_MUTEX_STATIC_PRNG
+** <li> SQLITE_MUTEX_STATIC_LRU
+** <li> SQLITE_MUTEX_STATIC_LRU2
+** </ul> {END}
+**
+** {F17015} The first two constants cause sqlite3_mutex_alloc() to create
+** a new mutex. The new mutex is recursive when SQLITE_MUTEX_RECURSIVE
+** is used but not necessarily so when SQLITE_MUTEX_FAST is used. {END}
+** The mutex implementation does not need to make a distinction
+** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does
+** not want to. {F17016} But SQLite will only request a recursive mutex in
+** cases where it really needs one. {END} If a faster non-recursive mutex
+** implementation is available on the host platform, the mutex subsystem
+** might return such a mutex in response to SQLITE_MUTEX_FAST.
+**
+** {F17017} The other allowed parameters to sqlite3_mutex_alloc() each return
+** a pointer to a static preexisting mutex. {END} Four static mutexes are
+** used by the current version of SQLite. Future versions of SQLite
+** may add additional static mutexes. Static mutexes are for internal
+** use by SQLite only. Applications that use SQLite mutexes should
+** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or
+** SQLITE_MUTEX_RECURSIVE.
+**
+** {F17018} Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST
+** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc()
+** returns a different mutex on every call. {F17034} But for the static
+** mutex types, the same mutex is returned on every call that has
+** the same type number. {END}
+**
+** {F17019} The sqlite3_mutex_free() routine deallocates a previously
+** allocated dynamic mutex. {F17020} SQLite is careful to deallocate every
+** dynamic mutex that it allocates. {U17021} The dynamic mutexes must not be in
+** use when they are deallocated. {U17022} Attempting to deallocate a static
+** mutex results in undefined behavior. {F17023} SQLite never deallocates
+** a static mutex. {END}
+**
+** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt
+** to enter a mutex. {F17024} If another thread is already within the mutex,
+** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return
+** SQLITE_BUSY. {F17025} The sqlite3_mutex_try() interface returns SQLITE_OK
+** upon successful entry. {F17026} Mutexes created using
+** SQLITE_MUTEX_RECURSIVE can be entered multiple times by the same thread.
+** {F17027} In such cases the,
+** mutex must be exited an equal number of times before another thread
+** can enter. {U17028} If the same thread tries to enter any other
+** kind of mutex more than once, the behavior is undefined.
+** {F17029} SQLite will never exhibit
+** such behavior in its own use of mutexes. {END}
+**
+** Some systems (ex: windows95) do not the operation implemented by
+** sqlite3_mutex_try(). On those systems, sqlite3_mutex_try() will
+** always return SQLITE_BUSY. {F17030} The SQLite core only ever uses
+** sqlite3_mutex_try() as an optimization so this is acceptable behavior. {END}
+**
+** {F17031} The sqlite3_mutex_leave() routine exits a mutex that was
+** previously entered by the same thread. {U17032} The behavior
+** is undefined if the mutex is not currently entered by the
+** calling thread or is not currently allocated. {F17033} SQLite will
+** never do either. {END}
+**
+** See also: [sqlite3_mutex_held()] and [sqlite3_mutex_notheld()].
+*/
+SQLITE_API sqlite3_mutex *sqlite3_mutex_alloc(int);
+SQLITE_API void sqlite3_mutex_free(sqlite3_mutex*);
+SQLITE_API void sqlite3_mutex_enter(sqlite3_mutex*);
+SQLITE_API int sqlite3_mutex_try(sqlite3_mutex*);
+SQLITE_API void sqlite3_mutex_leave(sqlite3_mutex*);
+
+/*
+** CAPI3REF: Mutex Verifcation Routines {F17080}
+**
+** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routines
+** are intended for use inside assert() statements. {F17081} The SQLite core
+** never uses these routines except inside an assert() and applications
+** are advised to follow the lead of the core. {F17082} The core only
+** provides implementations for these routines when it is compiled
+** with the SQLITE_DEBUG flag. {U17087} External mutex implementations
+** are only required to provide these routines if SQLITE_DEBUG is
+** defined and if NDEBUG is not defined.
+**
+** {F17083} These routines should return true if the mutex in their argument
+** is held or not held, respectively, by the calling thread. {END}
+**
+** {X17084} The implementation is not required to provided versions of these
+** routines that actually work.
+** If the implementation does not provide working
+** versions of these routines, it should at least provide stubs
+** that always return true so that one does not get spurious
+** assertion failures. {END}
+**
+** {F17085} If the argument to sqlite3_mutex_held() is a NULL pointer then
+** the routine should return 1. {END} This seems counter-intuitive since
+** clearly the mutex cannot be held if it does not exist. But the
+** the reason the mutex does not exist is because the build is not
+** using mutexes. And we do not want the assert() containing the
+** call to sqlite3_mutex_held() to fail, so a non-zero return is
+** the appropriate thing to do. {F17086} The sqlite3_mutex_notheld()
+** interface should also return 1 when given a NULL pointer.
+*/
+SQLITE_API int sqlite3_mutex_held(sqlite3_mutex*);
+SQLITE_API int sqlite3_mutex_notheld(sqlite3_mutex*);
+
+/*
+** CAPI3REF: Mutex Types {F17001}
+**
+** {F17002} The [sqlite3_mutex_alloc()] interface takes a single argument
+** which is one of these integer constants. {END}
+*/
+#define SQLITE_MUTEX_FAST 0
+#define SQLITE_MUTEX_RECURSIVE 1
+#define SQLITE_MUTEX_STATIC_MASTER 2
+#define SQLITE_MUTEX_STATIC_MEM 3 /* sqlite3_malloc() */
+#define SQLITE_MUTEX_STATIC_MEM2 4 /* sqlite3_release_memory() */
+#define SQLITE_MUTEX_STATIC_PRNG 5 /* sqlite3_random() */
+#define SQLITE_MUTEX_STATIC_LRU 6 /* lru page list */
+#define SQLITE_MUTEX_STATIC_LRU2 7 /* lru page list */
+
+/*
+** CAPI3REF: Low-Level Control Of Database Files {F11300}
+**
+** {F11301} The [sqlite3_file_control()] interface makes a direct call to the
+** xFileControl method for the [sqlite3_io_methods] object associated
+** with a particular database identified by the second argument. {F11302} The
+** name of the database is the name assigned to the database by the
+** <a href="lang_attach.html">ATTACH</a> SQL command that opened the
+** database. {F11303} To control the main database file, use the name "main"
+** or a NULL pointer. {F11304} The third and fourth parameters to this routine
+** are passed directly through to the second and third parameters of
+** the xFileControl method. {F11305} The return value of the xFileControl
+** method becomes the return value of this routine.
+**
+** {F11306} If the second parameter (zDbName) does not match the name of any
+** open database file, then SQLITE_ERROR is returned. {F11307} This error
+** code is not remembered and will not be recalled by [sqlite3_errcode()]
+** or [sqlite3_errmsg()]. {U11308} The underlying xFileControl method might
+** also return SQLITE_ERROR. {U11309} There is no way to distinguish between
+** an incorrect zDbName and an SQLITE_ERROR return from the underlying
+** xFileControl method. {END}
+**
+** See also: [SQLITE_FCNTL_LOCKSTATE]
+*/
+SQLITE_API int sqlite3_file_control(sqlite3*, const char *zDbName, int op, void*);
+
+/*
+** CAPI3REF: Testing Interface {F11400}
+**
+** The sqlite3_test_control() interface is used to read out internal
+** state of SQLite and to inject faults into SQLite for testing
+** purposes. The first parameter a operation code that determines
+** the number, meaning, and operation of all subsequent parameters.
+**
+** This interface is not for use by applications. It exists solely
+** for verifying the correct operation of the SQLite library. Depending
+** on how the SQLite library is compiled, this interface might not exist.
+**
+** The details of the operation codes, their meanings, the parameters
+** they take, and what they do are all subject to change without notice.
+** Unlike most of the SQLite API, this function is not guaranteed to
+** operate consistently from one release to the next.
+*/
+SQLITE_API int sqlite3_test_control(int op, ...);
+
+/*
+** CAPI3REF: Testing Interface Operation Codes {F11410}
+**
+** These constants are the valid operation code parameters used
+** as the first argument to [sqlite3_test_control()].
+**
+** These parameters and their meansing are subject to change
+** without notice. These values are for testing purposes only.
+** Applications should not use any of these parameters or the
+** [sqlite3_test_control()] interface.
+*/
+#define SQLITE_TESTCTRL_FAULT_CONFIG 1
+#define SQLITE_TESTCTRL_FAULT_FAILURES 2
+#define SQLITE_TESTCTRL_FAULT_BENIGN_FAILURES 3
+#define SQLITE_TESTCTRL_FAULT_PENDING 4
+#define SQLITE_TESTCTRL_PRNG_SAVE 5
+#define SQLITE_TESTCTRL_PRNG_RESTORE 6
+#define SQLITE_TESTCTRL_PRNG_RESET 7
+#define SQLITE_TESTCTRL_BITVEC_TEST 8
+
+
+/*
+** Undo the hack that converts floating point types to integer for
+** builds on processors without floating point support.
+*/
+#ifdef SQLITE_OMIT_FLOATING_POINT
+# undef double
+#endif
+
+#if 0
+} /* End of the 'extern "C"' block */
+#endif
+#endif
+
+/************** End of sqlite3.h *********************************************/
+/************** Continuing where we left off in sqliteInt.h ******************/
+/************** Include hash.h in the middle of sqliteInt.h ******************/
+/************** Begin file hash.h ********************************************/
+/*
+** 2001 September 22
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This is the header file for the generic hash-table implemenation
+** used in SQLite.
+**
+** $Id: hash.h,v 1.11 2007/09/04 14:31:47 danielk1977 Exp $
+*/
+#ifndef _SQLITE_HASH_H_
+#define _SQLITE_HASH_H_
+
+/* Forward declarations of structures. */
+typedef struct Hash Hash;
+typedef struct HashElem HashElem;
+
+/* A complete hash table is an instance of the following structure.
+** The internals of this structure are intended to be opaque -- client
+** code should not attempt to access or modify the fields of this structure
+** directly. Change this structure only by using the routines below.
+** However, many of the "procedures" and "functions" for modifying and
+** accessing this structure are really macros, so we can't really make
+** this structure opaque.
+*/
+struct Hash {
+ char keyClass; /* SQLITE_HASH_INT, _POINTER, _STRING, _BINARY */
+ char copyKey; /* True if copy of key made on insert */
+ int count; /* Number of entries in this table */
+ int htsize; /* Number of buckets in the hash table */
+ HashElem *first; /* The first element of the array */
+ struct _ht { /* the hash table */
+ int count; /* Number of entries with this hash */
+ HashElem *chain; /* Pointer to first entry with this hash */
+ } *ht;
+};
+
+/* Each element in the hash table is an instance of the following
+** structure. All elements are stored on a single doubly-linked list.
+**
+** Again, this structure is intended to be opaque, but it can't really
+** be opaque because it is used by macros.
+*/
+struct HashElem {
+ HashElem *next, *prev; /* Next and previous elements in the table */
+ void *data; /* Data associated with this element */
+ void *pKey; int nKey; /* Key associated with this element */
+};
+
+/*
+** There are 4 different modes of operation for a hash table:
+**
+** SQLITE_HASH_INT nKey is used as the key and pKey is ignored.
+**
+** SQLITE_HASH_POINTER pKey is used as the key and nKey is ignored.
+**
+** SQLITE_HASH_STRING pKey points to a string that is nKey bytes long
+** (including the null-terminator, if any). Case
+** is ignored in comparisons.
+**
+** SQLITE_HASH_BINARY pKey points to binary data nKey bytes long.
+** memcmp() is used to compare keys.
+**
+** A copy of the key is made for SQLITE_HASH_STRING and SQLITE_HASH_BINARY
+** if the copyKey parameter to HashInit is 1.
+*/
+/* #define SQLITE_HASH_INT 1 // NOT USED */
+/* #define SQLITE_HASH_POINTER 2 // NOT USED */
+#define SQLITE_HASH_STRING 3
+#define SQLITE_HASH_BINARY 4
+
+/*
+** Access routines. To delete, insert a NULL pointer.
+*/
+SQLITE_PRIVATE void sqlite3HashInit(Hash*, int keytype, int copyKey);
+SQLITE_PRIVATE void *sqlite3HashInsert(Hash*, const void *pKey, int nKey, void *pData);
+SQLITE_PRIVATE void *sqlite3HashFind(const Hash*, const void *pKey, int nKey);
+SQLITE_PRIVATE HashElem *sqlite3HashFindElem(const Hash*, const void *pKey, int nKey);
+SQLITE_PRIVATE void sqlite3HashClear(Hash*);
+
+/*
+** Macros for looping over all elements of a hash table. The idiom is
+** like this:
+**
+** Hash h;
+** HashElem *p;
+** ...
+** for(p=sqliteHashFirst(&h); p; p=sqliteHashNext(p)){
+** SomeStructure *pData = sqliteHashData(p);
+** // do something with pData
+** }
+*/
+#define sqliteHashFirst(H) ((H)->first)
+#define sqliteHashNext(E) ((E)->next)
+#define sqliteHashData(E) ((E)->data)
+#define sqliteHashKey(E) ((E)->pKey)
+#define sqliteHashKeysize(E) ((E)->nKey)
+
+/*
+** Number of entries in a hash table
+*/
+#define sqliteHashCount(H) ((H)->count)
+
+#endif /* _SQLITE_HASH_H_ */
+
+/************** End of hash.h ************************************************/
+/************** Continuing where we left off in sqliteInt.h ******************/
+/************** Include parse.h in the middle of sqliteInt.h *****************/
+/************** Begin file parse.h *******************************************/
+#define TK_SEMI 1
+#define TK_EXPLAIN 2
+#define TK_QUERY 3
+#define TK_PLAN 4
+#define TK_BEGIN 5
+#define TK_TRANSACTION 6
+#define TK_DEFERRED 7
+#define TK_IMMEDIATE 8
+#define TK_EXCLUSIVE 9
+#define TK_COMMIT 10
+#define TK_END 11
+#define TK_ROLLBACK 12
+#define TK_CREATE 13
+#define TK_TABLE 14
+#define TK_IF 15
+#define TK_NOT 16
+#define TK_EXISTS 17
+#define TK_TEMP 18
+#define TK_LP 19
+#define TK_RP 20
+#define TK_AS 21
+#define TK_COMMA 22
+#define TK_ID 23
+#define TK_ABORT 24
+#define TK_AFTER 25
+#define TK_ANALYZE 26
+#define TK_ASC 27
+#define TK_ATTACH 28
+#define TK_BEFORE 29
+#define TK_CASCADE 30
+#define TK_CAST 31
+#define TK_CONFLICT 32
+#define TK_DATABASE 33
+#define TK_DESC 34
+#define TK_DETACH 35
+#define TK_EACH 36
+#define TK_FAIL 37
+#define TK_FOR 38
+#define TK_IGNORE 39
+#define TK_INITIALLY 40
+#define TK_INSTEAD 41
+#define TK_LIKE_KW 42
+#define TK_MATCH 43
+#define TK_KEY 44
+#define TK_OF 45
+#define TK_OFFSET 46
+#define TK_PRAGMA 47
+#define TK_RAISE 48
+#define TK_REPLACE 49
+#define TK_RESTRICT 50
+#define TK_ROW 51
+#define TK_TRIGGER 52
+#define TK_VACUUM 53
+#define TK_VIEW 54
+#define TK_VIRTUAL 55
+#define TK_REINDEX 56
+#define TK_RENAME 57
+#define TK_CTIME_KW 58
+#define TK_ANY 59
+#define TK_OR 60
+#define TK_AND 61
+#define TK_IS 62
+#define TK_BETWEEN 63
+#define TK_IN 64
+#define TK_ISNULL 65
+#define TK_NOTNULL 66
+#define TK_NE 67
+#define TK_EQ 68
+#define TK_GT 69
+#define TK_LE 70
+#define TK_LT 71
+#define TK_GE 72
+#define TK_ESCAPE 73
+#define TK_BITAND 74
+#define TK_BITOR 75
+#define TK_LSHIFT 76
+#define TK_RSHIFT 77
+#define TK_PLUS 78
+#define TK_MINUS 79
+#define TK_STAR 80
+#define TK_SLASH 81
+#define TK_REM 82
+#define TK_CONCAT 83
+#define TK_COLLATE 84
+#define TK_UMINUS 85
+#define TK_UPLUS 86
+#define TK_BITNOT 87
+#define TK_STRING 88
+#define TK_JOIN_KW 89
+#define TK_CONSTRAINT 90
+#define TK_DEFAULT 91
+#define TK_NULL 92
+#define TK_PRIMARY 93
+#define TK_UNIQUE 94
+#define TK_CHECK 95
+#define TK_REFERENCES 96
+#define TK_AUTOINCR 97
+#define TK_ON 98
+#define TK_DELETE 99
+#define TK_UPDATE 100
+#define TK_INSERT 101
+#define TK_SET 102
+#define TK_DEFERRABLE 103
+#define TK_FOREIGN 104
+#define TK_DROP 105
+#define TK_UNION 106
+#define TK_ALL 107
+#define TK_EXCEPT 108
+#define TK_INTERSECT 109
+#define TK_SELECT 110
+#define TK_DISTINCT 111
+#define TK_DOT 112
+#define TK_FROM 113
+#define TK_JOIN 114
+#define TK_USING 115
+#define TK_ORDER 116
+#define TK_BY 117
+#define TK_GROUP 118
+#define TK_HAVING 119
+#define TK_LIMIT 120
+#define TK_WHERE 121
+#define TK_INTO 122
+#define TK_VALUES 123
+#define TK_INTEGER 124
+#define TK_FLOAT 125
+#define TK_BLOB 126
+#define TK_REGISTER 127
+#define TK_VARIABLE 128
+#define TK_CASE 129
+#define TK_WHEN 130
+#define TK_THEN 131
+#define TK_ELSE 132
+#define TK_INDEX 133
+#define TK_ALTER 134
+#define TK_TO 135
+#define TK_ADD 136
+#define TK_COLUMNKW 137
+#define TK_TO_TEXT 138
+#define TK_TO_BLOB 139
+#define TK_TO_NUMERIC 140
+#define TK_TO_INT 141
+#define TK_TO_REAL 142
+#define TK_END_OF_FILE 143
+#define TK_ILLEGAL 144
+#define TK_SPACE 145
+#define TK_UNCLOSED_STRING 146
+#define TK_COMMENT 147
+#define TK_FUNCTION 148
+#define TK_COLUMN 149
+#define TK_AGG_FUNCTION 150
+#define TK_AGG_COLUMN 151
+#define TK_CONST_FUNC 152
+
+/************** End of parse.h ***********************************************/
+/************** Continuing where we left off in sqliteInt.h ******************/
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include <assert.h>
+#include <stddef.h>
+
+/*
+** If compiling for a processor that lacks floating point support,
+** substitute integer for floating-point
+*/
+#ifdef SQLITE_OMIT_FLOATING_POINT
+# define double sqlite_int64
+# define LONGDOUBLE_TYPE sqlite_int64
+# ifndef SQLITE_BIG_DBL
+# define SQLITE_BIG_DBL (0x7fffffffffffffff)
+# endif
+# define SQLITE_OMIT_DATETIME_FUNCS 1
+# define SQLITE_OMIT_TRACE 1
+# undef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
+#endif
+#ifndef SQLITE_BIG_DBL
+# define SQLITE_BIG_DBL (1e99)
+#endif
+
+/*
+** OMIT_TEMPDB is set to 1 if SQLITE_OMIT_TEMPDB is defined, or 0
+** afterward. Having this macro allows us to cause the C compiler
+** to omit code used by TEMP tables without messy #ifndef statements.
+*/
+#ifdef SQLITE_OMIT_TEMPDB
+#define OMIT_TEMPDB 1
+#else
+#define OMIT_TEMPDB 0
+#endif
+
+/*
+** If the following macro is set to 1, then NULL values are considered
+** distinct when determining whether or not two entries are the same
+** in a UNIQUE index. This is the way PostgreSQL, Oracle, DB2, MySQL,
+** OCELOT, and Firebird all work. The SQL92 spec explicitly says this
+** is the way things are suppose to work.
+**
+** If the following macro is set to 0, the NULLs are indistinct for
+** a UNIQUE index. In this mode, you can only have a single NULL entry
+** for a column declared UNIQUE. This is the way Informix and SQL Server
+** work.
+*/
+#define NULL_DISTINCT_FOR_UNIQUE 1
+
+/*
+** The "file format" number is an integer that is incremented whenever
+** the VDBE-level file format changes. The following macros define the
+** the default file format for new databases and the maximum file format
+** that the library can read.
+*/
+#define SQLITE_MAX_FILE_FORMAT 4
+#ifndef SQLITE_DEFAULT_FILE_FORMAT
+# define SQLITE_DEFAULT_FILE_FORMAT 1
+#endif
+
+/*
+** Provide a default value for TEMP_STORE in case it is not specified
+** on the command-line
+*/
+#ifndef TEMP_STORE
+# define TEMP_STORE 1
+#endif
+
+/*
+** GCC does not define the offsetof() macro so we'll have to do it
+** ourselves.
+*/
+#ifndef offsetof
+#define offsetof(STRUCTURE,FIELD) ((int)((char*)&((STRUCTURE*)0)->FIELD))
+#endif
+
+/*
+** Check to see if this machine uses EBCDIC. (Yes, believe it or
+** not, there are still machines out there that use EBCDIC.)
+*/
+#if 'A' == '\301'
+# define SQLITE_EBCDIC 1
+#else
+# define SQLITE_ASCII 1
+#endif
+
+/*
+** Integers of known sizes. These typedefs might change for architectures
+** where the sizes very. Preprocessor macros are available so that the
+** types can be conveniently redefined at compile-type. Like this:
+**
+** cc '-DUINTPTR_TYPE=long long int' ...
+*/
+#ifndef UINT32_TYPE
+# ifdef HAVE_UINT32_T
+# define UINT32_TYPE uint32_t
+# else
+# define UINT32_TYPE unsigned int
+# endif
+#endif
+#ifndef UINT16_TYPE
+# ifdef HAVE_UINT16_T
+# define UINT16_TYPE uint16_t
+# else
+# define UINT16_TYPE unsigned short int
+# endif
+#endif
+#ifndef INT16_TYPE
+# ifdef HAVE_INT16_T
+# define INT16_TYPE int16_t
+# else
+# define INT16_TYPE short int
+# endif
+#endif
+#ifndef UINT8_TYPE
+# ifdef HAVE_UINT8_T
+# define UINT8_TYPE uint8_t
+# else
+# define UINT8_TYPE unsigned char
+# endif
+#endif
+#ifndef INT8_TYPE
+# ifdef HAVE_INT8_T
+# define INT8_TYPE int8_t
+# else
+# define INT8_TYPE signed char
+# endif
+#endif
+#ifndef LONGDOUBLE_TYPE
+# define LONGDOUBLE_TYPE long double
+#endif
+typedef sqlite_int64 i64; /* 8-byte signed integer */
+typedef sqlite_uint64 u64; /* 8-byte unsigned integer */
+typedef UINT32_TYPE u32; /* 4-byte unsigned integer */
+typedef UINT16_TYPE u16; /* 2-byte unsigned integer */
+typedef INT16_TYPE i16; /* 2-byte signed integer */
+typedef UINT8_TYPE u8; /* 1-byte unsigned integer */
+typedef UINT8_TYPE i8; /* 1-byte signed integer */
+
+/*
+** Macros to determine whether the machine is big or little endian,
+** evaluated at runtime.
+*/
+#ifdef SQLITE_AMALGAMATION
+SQLITE_PRIVATE const int sqlite3one;
+#else
+SQLITE_PRIVATE const int sqlite3one;
+#endif
+#if defined(i386) || defined(__i386__) || defined(_M_IX86)
+# define SQLITE_BIGENDIAN 0
+# define SQLITE_LITTLEENDIAN 1
+# define SQLITE_UTF16NATIVE SQLITE_UTF16LE
+#else
+# define SQLITE_BIGENDIAN (*(char *)(&sqlite3one)==0)
+# define SQLITE_LITTLEENDIAN (*(char *)(&sqlite3one)==1)
+# define SQLITE_UTF16NATIVE (SQLITE_BIGENDIAN?SQLITE_UTF16BE:SQLITE_UTF16LE)
+#endif
+
+/*
+** Constants for the largest and smallest possible 64-bit signed integers.
+** These macros are designed to work correctly on both 32-bit and 64-bit
+** compilers.
+*/
+#define LARGEST_INT64 (0xffffffff|(((i64)0x7fffffff)<<32))
+#define SMALLEST_INT64 (((i64)-1) - LARGEST_INT64)
+
+/*
+** An instance of the following structure is used to store the busy-handler
+** callback for a given sqlite handle.
+**
+** The sqlite.busyHandler member of the sqlite struct contains the busy
+** callback for the database handle. Each pager opened via the sqlite
+** handle is passed a pointer to sqlite.busyHandler. The busy-handler
+** callback is currently invoked only from within pager.c.
+*/
+typedef struct BusyHandler BusyHandler;
+struct BusyHandler {
+ int (*xFunc)(void *,int); /* The busy callback */
+ void *pArg; /* First arg to busy callback */
+ int nBusy; /* Incremented with each busy call */
+};
+
+/*
+** Name of the master database table. The master database table
+** is a special table that holds the names and attributes of all
+** user tables and indices.
+*/
+#define MASTER_NAME "sqlite_master"
+#define TEMP_MASTER_NAME "sqlite_temp_master"
+
+/*
+** The root-page of the master database table.
+*/
+#define MASTER_ROOT 1
+
+/*
+** The name of the schema table.
+*/
+#define SCHEMA_TABLE(x) ((!OMIT_TEMPDB)&&(x==1)?TEMP_MASTER_NAME:MASTER_NAME)
+
+/*
+** A convenience macro that returns the number of elements in
+** an array.
+*/
+#define ArraySize(X) (sizeof(X)/sizeof(X[0]))
+
+/*
+** Forward references to structures
+*/
+typedef struct AggInfo AggInfo;
+typedef struct AuthContext AuthContext;
+typedef struct Bitvec Bitvec;
+typedef struct CollSeq CollSeq;
+typedef struct Column Column;
+typedef struct Db Db;
+typedef struct Schema Schema;
+typedef struct Expr Expr;
+typedef struct ExprList ExprList;
+typedef struct FKey FKey;
+typedef struct FuncDef FuncDef;
+typedef struct IdList IdList;
+typedef struct Index Index;
+typedef struct KeyClass KeyClass;
+typedef struct KeyInfo KeyInfo;
+typedef struct Module Module;
+typedef struct NameContext NameContext;
+typedef struct Parse Parse;
+typedef struct Select Select;
+typedef struct SrcList SrcList;
+typedef struct StrAccum StrAccum;
+typedef struct Table Table;
+typedef struct TableLock TableLock;
+typedef struct Token Token;
+typedef struct TriggerStack TriggerStack;
+typedef struct TriggerStep TriggerStep;
+typedef struct Trigger Trigger;
+typedef struct WhereInfo WhereInfo;
+typedef struct WhereLevel WhereLevel;
+
+/*
+** Defer sourcing vdbe.h and btree.h until after the "u8" and
+** "BusyHandler" typedefs. vdbe.h also requires a few of the opaque
+** pointer types (i.e. FuncDef) defined above.
+*/
+/************** Include btree.h in the middle of sqliteInt.h *****************/
+/************** Begin file btree.h *******************************************/
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This header file defines the interface that the sqlite B-Tree file
+** subsystem. See comments in the source code for a detailed description
+** of what each interface routine does.
+**
+** @(#) $Id: btree.h,v 1.98 2008/04/26 13:39:47 drh Exp $
+*/
+#ifndef _BTREE_H_
+#define _BTREE_H_
+
+/* TODO: This definition is just included so other modules compile. It
+** needs to be revisited.
+*/
+#define SQLITE_N_BTREE_META 10
+
+/*
+** If defined as non-zero, auto-vacuum is enabled by default. Otherwise
+** it must be turned on for each database using "PRAGMA auto_vacuum = 1".
+*/
+#ifndef SQLITE_DEFAULT_AUTOVACUUM
+ #define SQLITE_DEFAULT_AUTOVACUUM 0
+#endif
+
+#define BTREE_AUTOVACUUM_NONE 0 /* Do not do auto-vacuum */
+#define BTREE_AUTOVACUUM_FULL 1 /* Do full auto-vacuum */
+#define BTREE_AUTOVACUUM_INCR 2 /* Incremental vacuum */
+
+/*
+** Forward declarations of structure
+*/
+typedef struct Btree Btree;
+typedef struct BtCursor BtCursor;
+typedef struct BtShared BtShared;
+typedef struct BtreeMutexArray BtreeMutexArray;
+
+/*
+** This structure records all of the Btrees that need to hold
+** a mutex before we enter sqlite3VdbeExec(). The Btrees are
+** are placed in aBtree[] in order of aBtree[]->pBt. That way,
+** we can always lock and unlock them all quickly.
+*/
+struct BtreeMutexArray {
+ int nMutex;
+ Btree *aBtree[SQLITE_MAX_ATTACHED+1];
+};
+
+
+SQLITE_PRIVATE int sqlite3BtreeOpen(
+ const char *zFilename, /* Name of database file to open */
+ sqlite3 *db, /* Associated database connection */
+ Btree **, /* Return open Btree* here */
+ int flags, /* Flags */
+ int vfsFlags /* Flags passed through to VFS open */
+);
+
+/* The flags parameter to sqlite3BtreeOpen can be the bitwise or of the
+** following values.
+**
+** NOTE: These values must match the corresponding PAGER_ values in
+** pager.h.
+*/
+#define BTREE_OMIT_JOURNAL 1 /* Do not use journal. No argument */
+#define BTREE_NO_READLOCK 2 /* Omit readlocks on readonly files */
+#define BTREE_MEMORY 4 /* In-memory DB. No argument */
+#define BTREE_READONLY 8 /* Open the database in read-only mode */
+#define BTREE_READWRITE 16 /* Open for both reading and writing */
+#define BTREE_CREATE 32 /* Create the database if it does not exist */
+
+/* Additional values for the 4th argument of sqlite3BtreeOpen that
+** are not associated with PAGER_ values.
+*/
+#define BTREE_PRIVATE 64 /* Never share with other connections */
+
+SQLITE_PRIVATE int sqlite3BtreeClose(Btree*);
+SQLITE_PRIVATE int sqlite3BtreeSetCacheSize(Btree*,int);
+SQLITE_PRIVATE int sqlite3BtreeSetSafetyLevel(Btree*,int,int);
+SQLITE_PRIVATE int sqlite3BtreeSyncDisabled(Btree*);
+SQLITE_PRIVATE int sqlite3BtreeSetPageSize(Btree*,int,int);
+SQLITE_PRIVATE int sqlite3BtreeGetPageSize(Btree*);
+SQLITE_PRIVATE int sqlite3BtreeMaxPageCount(Btree*,int);
+SQLITE_PRIVATE int sqlite3BtreeGetReserve(Btree*);
+SQLITE_PRIVATE int sqlite3BtreeSetAutoVacuum(Btree *, int);
+SQLITE_PRIVATE int sqlite3BtreeGetAutoVacuum(Btree *);
+SQLITE_PRIVATE int sqlite3BtreeBeginTrans(Btree*,int);
+SQLITE_PRIVATE int sqlite3BtreeCommitPhaseOne(Btree*, const char *zMaster);
+SQLITE_PRIVATE int sqlite3BtreeCommitPhaseTwo(Btree*);
+SQLITE_PRIVATE int sqlite3BtreeCommit(Btree*);
+SQLITE_PRIVATE int sqlite3BtreeRollback(Btree*);
+SQLITE_PRIVATE int sqlite3BtreeBeginStmt(Btree*);
+SQLITE_PRIVATE int sqlite3BtreeCommitStmt(Btree*);
+SQLITE_PRIVATE int sqlite3BtreeRollbackStmt(Btree*);
+SQLITE_PRIVATE int sqlite3BtreeCreateTable(Btree*, int*, int flags);
+SQLITE_PRIVATE int sqlite3BtreeIsInTrans(Btree*);
+SQLITE_PRIVATE int sqlite3BtreeIsInStmt(Btree*);
+SQLITE_PRIVATE int sqlite3BtreeIsInReadTrans(Btree*);
+SQLITE_PRIVATE void *sqlite3BtreeSchema(Btree *, int, void(*)(void *));
+SQLITE_PRIVATE int sqlite3BtreeSchemaLocked(Btree *);
+SQLITE_PRIVATE int sqlite3BtreeLockTable(Btree *, int, u8);
+
+SQLITE_PRIVATE const char *sqlite3BtreeGetFilename(Btree *);
+SQLITE_PRIVATE const char *sqlite3BtreeGetDirname(Btree *);
+SQLITE_PRIVATE const char *sqlite3BtreeGetJournalname(Btree *);
+SQLITE_PRIVATE int sqlite3BtreeCopyFile(Btree *, Btree *);
+
+SQLITE_PRIVATE int sqlite3BtreeIncrVacuum(Btree *);
+
+/* The flags parameter to sqlite3BtreeCreateTable can be the bitwise OR
+** of the following flags:
+*/
+#define BTREE_INTKEY 1 /* Table has only 64-bit signed integer keys */
+#define BTREE_ZERODATA 2 /* Table has keys only - no data */
+#define BTREE_LEAFDATA 4 /* Data stored in leaves only. Implies INTKEY */
+
+SQLITE_PRIVATE int sqlite3BtreeDropTable(Btree*, int, int*);
+SQLITE_PRIVATE int sqlite3BtreeClearTable(Btree*, int);
+SQLITE_PRIVATE int sqlite3BtreeGetMeta(Btree*, int idx, u32 *pValue);
+SQLITE_PRIVATE int sqlite3BtreeUpdateMeta(Btree*, int idx, u32 value);
+SQLITE_PRIVATE void sqlite3BtreeTripAllCursors(Btree*, int);
+
+struct UnpackedRecord; /* Forward declaration. Definition in vdbeaux.c. */
+
+SQLITE_PRIVATE int sqlite3BtreeCursor(
+ Btree*, /* BTree containing table to open */
+ int iTable, /* Index of root page */
+ int wrFlag, /* 1 for writing. 0 for read-only */
+ struct KeyInfo*, /* First argument to compare function */
+ BtCursor *pCursor /* Space to write cursor structure */
+);
+SQLITE_PRIVATE int sqlite3BtreeCursorSize(void);
+
+SQLITE_PRIVATE int sqlite3BtreeCloseCursor(BtCursor*);
+SQLITE_PRIVATE int sqlite3BtreeMoveto(
+ BtCursor*,
+ const void *pKey,
+ struct UnpackedRecord *pUnKey,
+ i64 nKey,
+ int bias,
+ int *pRes
+);
+SQLITE_PRIVATE int sqlite3BtreeDelete(BtCursor*);
+SQLITE_PRIVATE int sqlite3BtreeInsert(BtCursor*, const void *pKey, i64 nKey,
+ const void *pData, int nData,
+ int nZero, int bias);
+SQLITE_PRIVATE int sqlite3BtreeFirst(BtCursor*, int *pRes);
+SQLITE_PRIVATE int sqlite3BtreeLast(BtCursor*, int *pRes);
+SQLITE_PRIVATE int sqlite3BtreeNext(BtCursor*, int *pRes);
+SQLITE_PRIVATE int sqlite3BtreeEof(BtCursor*);
+SQLITE_PRIVATE int sqlite3BtreeFlags(BtCursor*);
+SQLITE_PRIVATE int sqlite3BtreePrevious(BtCursor*, int *pRes);
+SQLITE_PRIVATE int sqlite3BtreeKeySize(BtCursor*, i64 *pSize);
+SQLITE_PRIVATE int sqlite3BtreeKey(BtCursor*, u32 offset, u32 amt, void*);
+SQLITE_PRIVATE sqlite3 *sqlite3BtreeCursorDb(const BtCursor*);
+SQLITE_PRIVATE const void *sqlite3BtreeKeyFetch(BtCursor*, int *pAmt);
+SQLITE_PRIVATE const void *sqlite3BtreeDataFetch(BtCursor*, int *pAmt);
+SQLITE_PRIVATE int sqlite3BtreeDataSize(BtCursor*, u32 *pSize);
+SQLITE_PRIVATE int sqlite3BtreeData(BtCursor*, u32 offset, u32 amt, void*);
+
+SQLITE_PRIVATE char *sqlite3BtreeIntegrityCheck(Btree*, int *aRoot, int nRoot, int, int*);
+SQLITE_PRIVATE struct Pager *sqlite3BtreePager(Btree*);
+
+SQLITE_PRIVATE int sqlite3BtreePutData(BtCursor*, u32 offset, u32 amt, void*);
+SQLITE_PRIVATE void sqlite3BtreeCacheOverflow(BtCursor *);
+
+#ifdef SQLITE_TEST
+SQLITE_PRIVATE int sqlite3BtreeCursorInfo(BtCursor*, int*, int);
+SQLITE_PRIVATE void sqlite3BtreeCursorList(Btree*);
+SQLITE_PRIVATE int sqlite3BtreePageDump(Btree*, int, int recursive);
+#endif
+
+/*
+** If we are not using shared cache, then there is no need to
+** use mutexes to access the BtShared structures. So make the
+** Enter and Leave procedures no-ops.
+*/
+#if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE
+SQLITE_PRIVATE void sqlite3BtreeEnter(Btree*);
+SQLITE_PRIVATE void sqlite3BtreeLeave(Btree*);
+SQLITE_PRIVATE int sqlite3BtreeHoldsMutex(Btree*);
+SQLITE_PRIVATE void sqlite3BtreeEnterCursor(BtCursor*);
+SQLITE_PRIVATE void sqlite3BtreeLeaveCursor(BtCursor*);
+SQLITE_PRIVATE void sqlite3BtreeEnterAll(sqlite3*);
+SQLITE_PRIVATE void sqlite3BtreeLeaveAll(sqlite3*);
+SQLITE_PRIVATE int sqlite3BtreeHoldsAllMutexes(sqlite3*);
+SQLITE_PRIVATE void sqlite3BtreeMutexArrayEnter(BtreeMutexArray*);
+SQLITE_PRIVATE void sqlite3BtreeMutexArrayLeave(BtreeMutexArray*);
+SQLITE_PRIVATE void sqlite3BtreeMutexArrayInsert(BtreeMutexArray*, Btree*);
+#else
+# define sqlite3BtreeEnter(X)
+# define sqlite3BtreeLeave(X)
+# define sqlite3BtreeHoldsMutex(X) 1
+# define sqlite3BtreeEnterCursor(X)
+# define sqlite3BtreeLeaveCursor(X)
+# define sqlite3BtreeEnterAll(X)
+# define sqlite3BtreeLeaveAll(X)
+# define sqlite3BtreeHoldsAllMutexes(X) 1
+# define sqlite3BtreeMutexArrayEnter(X)
+# define sqlite3BtreeMutexArrayLeave(X)
+# define sqlite3BtreeMutexArrayInsert(X,Y)
+#endif
+
+
+#endif /* _BTREE_H_ */
+
+/************** End of btree.h ***********************************************/
+/************** Continuing where we left off in sqliteInt.h ******************/
+/************** Include vdbe.h in the middle of sqliteInt.h ******************/
+/************** Begin file vdbe.h ********************************************/
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** Header file for the Virtual DataBase Engine (VDBE)
+**
+** This header defines the interface to the virtual database engine
+** or VDBE. The VDBE implements an abstract machine that runs a
+** simple program to access and modify the underlying database.
+**
+** $Id: vdbe.h,v 1.131 2008/05/01 17:03:49 drh Exp $
+*/
+#ifndef _SQLITE_VDBE_H_
+#define _SQLITE_VDBE_H_
+
+/*
+** A single VDBE is an opaque structure named "Vdbe". Only routines
+** in the source file sqliteVdbe.c are allowed to see the insides
+** of this structure.
+*/
+typedef struct Vdbe Vdbe;
+
+/*
+** The names of the following types declared in vdbeInt.h are required
+** for the VdbeOp definition.
+*/
+typedef struct VdbeFunc VdbeFunc;
+typedef struct Mem Mem;
+typedef struct UnpackedRecord UnpackedRecord;
+
+/*
+** A single instruction of the virtual machine has an opcode
+** and as many as three operands. The instruction is recorded
+** as an instance of the following structure:
+*/
+struct VdbeOp {
+ u8 opcode; /* What operation to perform */
+ signed char p4type; /* One of the P4_xxx constants for p4 */
+ u8 opflags; /* Not currently used */
+ u8 p5; /* Fifth parameter is an unsigned character */
+ int p1; /* First operand */
+ int p2; /* Second parameter (often the jump destination) */
+ int p3; /* The third parameter */
+ union { /* forth parameter */
+ int i; /* Integer value if p4type==P4_INT32 */
+ void *p; /* Generic pointer */
+ char *z; /* Pointer to data for string (char array) types */
+ i64 *pI64; /* Used when p4type is P4_INT64 */
+ double *pReal; /* Used when p4type is P4_REAL */
+ FuncDef *pFunc; /* Used when p4type is P4_FUNCDEF */
+ VdbeFunc *pVdbeFunc; /* Used when p4type is P4_VDBEFUNC */
+ CollSeq *pColl; /* Used when p4type is P4_COLLSEQ */
+ Mem *pMem; /* Used when p4type is P4_MEM */
+ sqlite3_vtab *pVtab; /* Used when p4type is P4_VTAB */
+ KeyInfo *pKeyInfo; /* Used when p4type is P4_KEYINFO */
+ } p4;
+#ifdef SQLITE_DEBUG
+ char *zComment; /* Comment to improve readability */
+#endif
+#ifdef VDBE_PROFILE
+ int cnt; /* Number of times this instruction was executed */
+ long long cycles; /* Total time spend executing this instruction */
+#endif
+};
+typedef struct VdbeOp VdbeOp;
+
+/*
+** A smaller version of VdbeOp used for the VdbeAddOpList() function because
+** it takes up less space.
+*/
+struct VdbeOpList {
+ u8 opcode; /* What operation to perform */
+ signed char p1; /* First operand */
+ signed char p2; /* Second parameter (often the jump destination) */
+ signed char p3; /* Third parameter */
+};
+typedef struct VdbeOpList VdbeOpList;
+
+/*
+** Allowed values of VdbeOp.p3type
+*/
+#define P4_NOTUSED 0 /* The P4 parameter is not used */
+#define P4_DYNAMIC (-1) /* Pointer to a string obtained from sqliteMalloc() */
+#define P4_STATIC (-2) /* Pointer to a static string */
+#define P4_COLLSEQ (-4) /* P4 is a pointer to a CollSeq structure */
+#define P4_FUNCDEF (-5) /* P4 is a pointer to a FuncDef structure */
+#define P4_KEYINFO (-6) /* P4 is a pointer to a KeyInfo structure */
+#define P4_VDBEFUNC (-7) /* P4 is a pointer to a VdbeFunc structure */
+#define P4_MEM (-8) /* P4 is a pointer to a Mem* structure */
+#define P4_TRANSIENT (-9) /* P4 is a pointer to a transient string */
+#define P4_VTAB (-10) /* P4 is a pointer to an sqlite3_vtab structure */
+#define P4_MPRINTF (-11) /* P4 is a string obtained from sqlite3_mprintf() */
+#define P4_REAL (-12) /* P4 is a 64-bit floating point value */
+#define P4_INT64 (-13) /* P4 is a 64-bit signed integer */
+#define P4_INT32 (-14) /* P4 is a 32-bit signed integer */
+
+/* When adding a P4 argument using P4_KEYINFO, a copy of the KeyInfo structure
+** is made. That copy is freed when the Vdbe is finalized. But if the
+** argument is P4_KEYINFO_HANDOFF, the passed in pointer is used. It still
+** gets freed when the Vdbe is finalized so it still should be obtained
+** from a single sqliteMalloc(). But no copy is made and the calling
+** function should *not* try to free the KeyInfo.
+*/
+#define P4_KEYINFO_HANDOFF (-9)
+
+/*
+** The Vdbe.aColName array contains 5n Mem structures, where n is the
+** number of columns of data returned by the statement.
+*/
+#define COLNAME_NAME 0
+#define COLNAME_DECLTYPE 1
+#define COLNAME_DATABASE 2
+#define COLNAME_TABLE 3
+#define COLNAME_COLUMN 4
+#ifdef SQLITE_ENABLE_COLUMN_METADATA
+# define COLNAME_N 5 /* Number of COLNAME_xxx symbols */
+#else
+# ifdef SQLITE_OMIT_DECLTYPE
+# define COLNAME_N 1 /* Store only the name */
+# else
+# define COLNAME_N 2 /* Store the name and decltype */
+# endif
+#endif
+
+/*
+** The following macro converts a relative address in the p2 field
+** of a VdbeOp structure into a negative number so that
+** sqlite3VdbeAddOpList() knows that the address is relative. Calling
+** the macro again restores the address.
+*/
+#define ADDR(X) (-1-(X))
+
+/*
+** The makefile scans the vdbe.c source file and creates the "opcodes.h"
+** header file that defines a number for each opcode used by the VDBE.
+*/
+/************** Include opcodes.h in the middle of vdbe.h ********************/
+/************** Begin file opcodes.h *****************************************/
+/* Automatically generated. Do not edit */
+/* See the mkopcodeh.awk script for details */
+#define OP_VNext 1
+#define OP_Affinity 2
+#define OP_Column 3
+#define OP_SetCookie 4
+#define OP_Real 125 /* same as TK_FLOAT */
+#define OP_Sequence 5
+#define OP_MoveGt 6
+#define OP_Ge 72 /* same as TK_GE */
+#define OP_RowKey 7
+#define OP_SCopy 8
+#define OP_Eq 68 /* same as TK_EQ */
+#define OP_OpenWrite 9
+#define OP_NotNull 66 /* same as TK_NOTNULL */
+#define OP_If 10
+#define OP_ToInt 141 /* same as TK_TO_INT */
+#define OP_String8 88 /* same as TK_STRING */
+#define OP_VRowid 11
+#define OP_CollSeq 12
+#define OP_OpenRead 13
+#define OP_Expire 14
+#define OP_AutoCommit 15
+#define OP_Gt 69 /* same as TK_GT */
+#define OP_IntegrityCk 17
+#define OP_Sort 18
+#define OP_Copy 19
+#define OP_Trace 20
+#define OP_Function 21
+#define OP_IfNeg 22
+#define OP_And 61 /* same as TK_AND */
+#define OP_Subtract 79 /* same as TK_MINUS */
+#define OP_Noop 23
+#define OP_Return 24
+#define OP_Remainder 82 /* same as TK_REM */
+#define OP_NewRowid 25
+#define OP_Multiply 80 /* same as TK_STAR */
+#define OP_Variable 26
+#define OP_String 27
+#define OP_RealAffinity 28
+#define OP_VRename 29
+#define OP_ParseSchema 30
+#define OP_VOpen 31
+#define OP_Close 32
+#define OP_CreateIndex 33
+#define OP_IsUnique 34
+#define OP_NotFound 35
+#define OP_Int64 36
+#define OP_MustBeInt 37
+#define OP_Halt 38
+#define OP_Rowid 39
+#define OP_IdxLT 40
+#define OP_AddImm 41
+#define OP_Statement 42
+#define OP_RowData 43
+#define OP_MemMax 44
+#define OP_Or 60 /* same as TK_OR */
+#define OP_NotExists 45
+#define OP_Gosub 46
+#define OP_Divide 81 /* same as TK_SLASH */
+#define OP_Integer 47
+#define OP_ToNumeric 140 /* same as TK_TO_NUMERIC*/
+#define OP_Prev 48
+#define OP_Concat 83 /* same as TK_CONCAT */
+#define OP_BitAnd 74 /* same as TK_BITAND */
+#define OP_VColumn 49
+#define OP_CreateTable 50
+#define OP_Last 51
+#define OP_IsNull 65 /* same as TK_ISNULL */
+#define OP_IncrVacuum 52
+#define OP_IdxRowid 53
+#define OP_ShiftRight 77 /* same as TK_RSHIFT */
+#define OP_ResetCount 54
+#define OP_FifoWrite 55
+#define OP_ContextPush 56
+#define OP_DropTrigger 57
+#define OP_DropIndex 58
+#define OP_IdxGE 59
+#define OP_IdxDelete 62
+#define OP_Vacuum 63
+#define OP_MoveLe 64
+#define OP_IfNot 73
+#define OP_DropTable 84
+#define OP_MakeRecord 85
+#define OP_ToBlob 139 /* same as TK_TO_BLOB */
+#define OP_ResultRow 86
+#define OP_Delete 89
+#define OP_AggFinal 90
+#define OP_ShiftLeft 76 /* same as TK_LSHIFT */
+#define OP_Goto 91
+#define OP_TableLock 92
+#define OP_FifoRead 93
+#define OP_Clear 94
+#define OP_MoveLt 95
+#define OP_Le 70 /* same as TK_LE */
+#define OP_VerifyCookie 96
+#define OP_AggStep 97
+#define OP_ToText 138 /* same as TK_TO_TEXT */
+#define OP_Not 16 /* same as TK_NOT */
+#define OP_ToReal 142 /* same as TK_TO_REAL */
+#define OP_SetNumColumns 98
+#define OP_Transaction 99
+#define OP_VFilter 100
+#define OP_Ne 67 /* same as TK_NE */
+#define OP_VDestroy 101
+#define OP_ContextPop 102
+#define OP_BitOr 75 /* same as TK_BITOR */
+#define OP_Next 103
+#define OP_IdxInsert 104
+#define OP_Lt 71 /* same as TK_LT */
+#define OP_Insert 105
+#define OP_Destroy 106
+#define OP_ReadCookie 107
+#define OP_ForceInt 108
+#define OP_LoadAnalysis 109
+#define OP_Explain 110
+#define OP_OpenPseudo 111
+#define OP_OpenEphemeral 112
+#define OP_Null 113
+#define OP_Move 114
+#define OP_Blob 115
+#define OP_Add 78 /* same as TK_PLUS */
+#define OP_Rewind 116
+#define OP_MoveGe 117
+#define OP_VBegin 118
+#define OP_VUpdate 119
+#define OP_IfZero 120
+#define OP_BitNot 87 /* same as TK_BITNOT */
+#define OP_VCreate 121
+#define OP_Found 122
+#define OP_IfPos 123
+#define OP_NullRow 124
+
+/* The following opcode values are never used */
+#define OP_NotUsed_126 126
+#define OP_NotUsed_127 127
+#define OP_NotUsed_128 128
+#define OP_NotUsed_129 129
+#define OP_NotUsed_130 130
+#define OP_NotUsed_131 131
+#define OP_NotUsed_132 132
+#define OP_NotUsed_133 133
+#define OP_NotUsed_134 134
+#define OP_NotUsed_135 135
+#define OP_NotUsed_136 136
+#define OP_NotUsed_137 137
+
+
+/* Properties such as "out2" or "jump" that are specified in
+** comments following the "case" for each opcode in the vdbe.c
+** are encoded into bitvectors as follows:
+*/
+#define OPFLG_JUMP 0x0001 /* jump: P2 holds jmp target */
+#define OPFLG_OUT2_PRERELEASE 0x0002 /* out2-prerelease: */
+#define OPFLG_IN1 0x0004 /* in1: P1 is an input */
+#define OPFLG_IN2 0x0008 /* in2: P2 is an input */
+#define OPFLG_IN3 0x0010 /* in3: P3 is an input */
+#define OPFLG_OUT3 0x0020 /* out3: P3 is an output */
+#define OPFLG_INITIALIZER {\
+/* 0 */ 0x00, 0x01, 0x00, 0x00, 0x10, 0x02, 0x11, 0x00,\
+/* 8 */ 0x00, 0x00, 0x05, 0x02, 0x00, 0x00, 0x00, 0x00,\
+/* 16 */ 0x04, 0x00, 0x01, 0x00, 0x00, 0x00, 0x05, 0x00,\
+/* 24 */ 0x00, 0x02, 0x02, 0x02, 0x04, 0x00, 0x00, 0x00,\
+/* 32 */ 0x00, 0x02, 0x11, 0x11, 0x02, 0x05, 0x00, 0x02,\
+/* 40 */ 0x11, 0x04, 0x00, 0x00, 0x0c, 0x11, 0x01, 0x02,\
+/* 48 */ 0x01, 0x00, 0x02, 0x01, 0x01, 0x02, 0x00, 0x04,\
+/* 56 */ 0x00, 0x00, 0x00, 0x11, 0x2c, 0x2c, 0x00, 0x00,\
+/* 64 */ 0x11, 0x05, 0x05, 0x15, 0x15, 0x15, 0x15, 0x15,\
+/* 72 */ 0x15, 0x05, 0x2c, 0x2c, 0x2c, 0x2c, 0x2c, 0x2c,\
+/* 80 */ 0x2c, 0x2c, 0x2c, 0x2c, 0x00, 0x00, 0x00, 0x04,\
+/* 88 */ 0x02, 0x00, 0x00, 0x01, 0x00, 0x01, 0x00, 0x11,\
+/* 96 */ 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x01,\
+/* 104 */ 0x08, 0x00, 0x02, 0x02, 0x05, 0x00, 0x00, 0x00,\
+/* 112 */ 0x00, 0x02, 0x00, 0x02, 0x01, 0x11, 0x00, 0x00,\
+/* 120 */ 0x05, 0x00, 0x11, 0x05, 0x00, 0x02, 0x00, 0x00,\
+/* 128 */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\
+/* 136 */ 0x00, 0x00, 0x04, 0x04, 0x04, 0x04, 0x04,}
+
+/************** End of opcodes.h *********************************************/
+/************** Continuing where we left off in vdbe.h ***********************/
+
+/*
+** Prototypes for the VDBE interface. See comments on the implementation
+** for a description of what each of these routines does.
+*/
+SQLITE_PRIVATE Vdbe *sqlite3VdbeCreate(sqlite3*);
+SQLITE_PRIVATE int sqlite3VdbeAddOp0(Vdbe*,int);
+SQLITE_PRIVATE int sqlite3VdbeAddOp1(Vdbe*,int,int);
+SQLITE_PRIVATE int sqlite3VdbeAddOp2(Vdbe*,int,int,int);
+SQLITE_PRIVATE int sqlite3VdbeAddOp3(Vdbe*,int,int,int,int);
+SQLITE_PRIVATE int sqlite3VdbeAddOp4(Vdbe*,int,int,int,int,const char *zP4,int);
+SQLITE_PRIVATE int sqlite3VdbeAddOpList(Vdbe*, int nOp, VdbeOpList const *aOp);
+SQLITE_PRIVATE void sqlite3VdbeChangeP1(Vdbe*, int addr, int P1);
+SQLITE_PRIVATE void sqlite3VdbeChangeP2(Vdbe*, int addr, int P2);
+SQLITE_PRIVATE void sqlite3VdbeChangeP3(Vdbe*, int addr, int P3);
+SQLITE_PRIVATE void sqlite3VdbeChangeP5(Vdbe*, u8 P5);
+SQLITE_PRIVATE void sqlite3VdbeJumpHere(Vdbe*, int addr);
+SQLITE_PRIVATE void sqlite3VdbeChangeToNoop(Vdbe*, int addr, int N);
+SQLITE_PRIVATE void sqlite3VdbeChangeP4(Vdbe*, int addr, const char *zP4, int N);
+SQLITE_PRIVATE void sqlite3VdbeUsesBtree(Vdbe*, int);
+SQLITE_PRIVATE VdbeOp *sqlite3VdbeGetOp(Vdbe*, int);
+SQLITE_PRIVATE int sqlite3VdbeMakeLabel(Vdbe*);
+SQLITE_PRIVATE void sqlite3VdbeDelete(Vdbe*);
+SQLITE_PRIVATE void sqlite3VdbeMakeReady(Vdbe*,int,int,int,int);
+SQLITE_PRIVATE int sqlite3VdbeFinalize(Vdbe*);
+SQLITE_PRIVATE void sqlite3VdbeResolveLabel(Vdbe*, int);
+SQLITE_PRIVATE int sqlite3VdbeCurrentAddr(Vdbe*);
+#ifdef SQLITE_DEBUG
+SQLITE_PRIVATE void sqlite3VdbeTrace(Vdbe*,FILE*);
+#endif
+SQLITE_PRIVATE void sqlite3VdbeResetStepResult(Vdbe*);
+SQLITE_PRIVATE int sqlite3VdbeReset(Vdbe*, int);
+SQLITE_PRIVATE void sqlite3VdbeSetNumCols(Vdbe*,int);
+SQLITE_PRIVATE int sqlite3VdbeSetColName(Vdbe*, int, int, const char *, int);
+SQLITE_PRIVATE void sqlite3VdbeCountChanges(Vdbe*);
+SQLITE_PRIVATE sqlite3 *sqlite3VdbeDb(Vdbe*);
+SQLITE_PRIVATE void sqlite3VdbeSetSql(Vdbe*, const char *z, int n);
+SQLITE_PRIVATE void sqlite3VdbeSwap(Vdbe*,Vdbe*);
+
+#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
+SQLITE_PRIVATE int sqlite3VdbeReleaseMemory(int);
+#endif
+SQLITE_PRIVATE UnpackedRecord *sqlite3VdbeRecordUnpack(KeyInfo*,int,const void*,void*,int);
+SQLITE_PRIVATE void sqlite3VdbeDeleteUnpackedRecord(UnpackedRecord*);
+SQLITE_PRIVATE int sqlite3VdbeRecordCompare(int,const void*,UnpackedRecord*);
+
+
+#ifndef NDEBUG
+SQLITE_PRIVATE void sqlite3VdbeComment(Vdbe*, const char*, ...);
+# define VdbeComment(X) sqlite3VdbeComment X
+#else
+# define VdbeComment(X)
+#endif
+
+#endif
+
+/************** End of vdbe.h ************************************************/
+/************** Continuing where we left off in sqliteInt.h ******************/
+/************** Include pager.h in the middle of sqliteInt.h *****************/
+/************** Begin file pager.h *******************************************/
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This header file defines the interface that the sqlite page cache
+** subsystem. The page cache subsystem reads and writes a file a page
+** at a time and provides a journal for rollback.
+**
+** @(#) $Id: pager.h,v 1.72 2008/05/01 17:03:49 drh Exp $
+*/
+
+#ifndef _PAGER_H_
+#define _PAGER_H_
+
+/*
+** The type used to represent a page number. The first page in a file
+** is called page 1. 0 is used to represent "not a page".
+*/
+typedef unsigned int Pgno;
+
+/*
+** Each open file is managed by a separate instance of the "Pager" structure.
+*/
+typedef struct Pager Pager;
+
+/*
+** Handle type for pages.
+*/
+typedef struct PgHdr DbPage;
+
+/*
+** Allowed values for the flags parameter to sqlite3PagerOpen().
+**
+** NOTE: This values must match the corresponding BTREE_ values in btree.h.
+*/
+#define PAGER_OMIT_JOURNAL 0x0001 /* Do not use a rollback journal */
+#define PAGER_NO_READLOCK 0x0002 /* Omit readlocks on readonly files */
+
+/*
+** Valid values for the second argument to sqlite3PagerLockingMode().
+*/
+#define PAGER_LOCKINGMODE_QUERY -1
+#define PAGER_LOCKINGMODE_NORMAL 0
+#define PAGER_LOCKINGMODE_EXCLUSIVE 1
+
+/*
+** Valid values for the second argument to sqlite3PagerJournalMode().
+*/
+#define PAGER_JOURNALMODE_QUERY -1
+#define PAGER_JOURNALMODE_DELETE 0 /* Commit by deleting journal file */
+#define PAGER_JOURNALMODE_PERSIST 1 /* Commit by zeroing journal header */
+#define PAGER_JOURNALMODE_OFF 2 /* Journal omitted. */
+
+/*
+** See source code comments for a detailed description of the following
+** routines:
+*/
+SQLITE_PRIVATE int sqlite3PagerOpen(sqlite3_vfs *, Pager **ppPager, const char*, int,int,int);
+SQLITE_PRIVATE void sqlite3PagerSetBusyhandler(Pager*, BusyHandler *pBusyHandler);
+SQLITE_PRIVATE void sqlite3PagerSetDestructor(Pager*, void(*)(DbPage*,int));
+SQLITE_PRIVATE void sqlite3PagerSetReiniter(Pager*, void(*)(DbPage*,int));
+SQLITE_PRIVATE int sqlite3PagerSetPagesize(Pager*, u16*);
+SQLITE_PRIVATE int sqlite3PagerMaxPageCount(Pager*, int);
+SQLITE_PRIVATE int sqlite3PagerReadFileheader(Pager*, int, unsigned char*);
+SQLITE_PRIVATE void sqlite3PagerSetCachesize(Pager*, int);
+SQLITE_PRIVATE int sqlite3PagerClose(Pager *pPager);
+SQLITE_PRIVATE int sqlite3PagerAcquire(Pager *pPager, Pgno pgno, DbPage **ppPage, int clrFlag);
+#define sqlite3PagerGet(A,B,C) sqlite3PagerAcquire(A,B,C,0)
+SQLITE_PRIVATE DbPage *sqlite3PagerLookup(Pager *pPager, Pgno pgno);
+SQLITE_PRIVATE int sqlite3PagerRef(DbPage*);
+SQLITE_PRIVATE int sqlite3PagerUnref(DbPage*);
+SQLITE_PRIVATE int sqlite3PagerWrite(DbPage*);
+SQLITE_PRIVATE int sqlite3PagerPagecount(Pager*);
+SQLITE_PRIVATE int sqlite3PagerTruncate(Pager*,Pgno);
+SQLITE_PRIVATE int sqlite3PagerBegin(DbPage*, int exFlag);
+SQLITE_PRIVATE int sqlite3PagerCommitPhaseOne(Pager*,const char *zMaster, Pgno, int);
+SQLITE_PRIVATE int sqlite3PagerCommitPhaseTwo(Pager*);
+SQLITE_PRIVATE int sqlite3PagerRollback(Pager*);
+SQLITE_PRIVATE int sqlite3PagerIsreadonly(Pager*);
+SQLITE_PRIVATE int sqlite3PagerStmtBegin(Pager*);
+SQLITE_PRIVATE int sqlite3PagerStmtCommit(Pager*);
+SQLITE_PRIVATE int sqlite3PagerStmtRollback(Pager*);
+SQLITE_PRIVATE void sqlite3PagerDontRollback(DbPage*);
+SQLITE_PRIVATE void sqlite3PagerDontWrite(DbPage*);
+SQLITE_PRIVATE int sqlite3PagerRefcount(Pager*);
+SQLITE_PRIVATE void sqlite3PagerSetSafetyLevel(Pager*,int,int);
+SQLITE_PRIVATE const char *sqlite3PagerFilename(Pager*);
+SQLITE_PRIVATE const sqlite3_vfs *sqlite3PagerVfs(Pager*);
+SQLITE_PRIVATE sqlite3_file *sqlite3PagerFile(Pager*);
+SQLITE_PRIVATE const char *sqlite3PagerDirname(Pager*);
+SQLITE_PRIVATE const char *sqlite3PagerJournalname(Pager*);
+SQLITE_PRIVATE int sqlite3PagerNosync(Pager*);
+SQLITE_PRIVATE int sqlite3PagerMovepage(Pager*,DbPage*,Pgno);
+SQLITE_PRIVATE void *sqlite3PagerGetData(DbPage *);
+SQLITE_PRIVATE void *sqlite3PagerGetExtra(DbPage *);
+SQLITE_PRIVATE int sqlite3PagerLockingMode(Pager *, int);
+SQLITE_PRIVATE int sqlite3PagerJournalMode(Pager *, int);
+SQLITE_PRIVATE void *sqlite3PagerTempSpace(Pager*);
+SQLITE_PRIVATE int sqlite3PagerSync(Pager *pPager);
+
+#if defined(SQLITE_ENABLE_MEMORY_MANAGEMENT) && !defined(SQLITE_OMIT_DISKIO)
+SQLITE_PRIVATE int sqlite3PagerReleaseMemory(int);
+#endif
+
+#ifdef SQLITE_HAS_CODEC
+SQLITE_PRIVATE void sqlite3PagerSetCodec(Pager*,void*(*)(void*,void*,Pgno,int),void*);
+#endif
+
+#if !defined(NDEBUG) || defined(SQLITE_TEST)
+SQLITE_PRIVATE Pgno sqlite3PagerPagenumber(DbPage*);
+SQLITE_PRIVATE int sqlite3PagerIswriteable(DbPage*);
+#endif
+
+#ifdef SQLITE_TEST
+SQLITE_PRIVATE int *sqlite3PagerStats(Pager*);
+SQLITE_PRIVATE void sqlite3PagerRefdump(Pager*);
+#endif
+
+#ifdef SQLITE_TEST
+void disable_simulated_io_errors(void);
+void enable_simulated_io_errors(void);
+#else
+# define disable_simulated_io_errors()
+# define enable_simulated_io_errors()
+#endif
+
+#endif /* _PAGER_H_ */
+
+/************** End of pager.h ***********************************************/
+/************** Continuing where we left off in sqliteInt.h ******************/
+
+/************** Include os.h in the middle of sqliteInt.h ********************/
+/************** Begin file os.h **********************************************/
+/*
+** 2001 September 16
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+** This header file (together with is companion C source-code file
+** "os.c") attempt to abstract the underlying operating system so that
+** the SQLite library will work on both POSIX and windows systems.
+**
+** This header file is #include-ed by sqliteInt.h and thus ends up
+** being included by every source file.
+*/
+#ifndef _SQLITE_OS_H_
+#define _SQLITE_OS_H_
+
+/*
+** Figure out if we are dealing with Unix, Windows, or some other
+** operating system. After the following block of preprocess macros,
+** all of OS_UNIX, OS_WIN, OS_OS2, and OS_OTHER will defined to either
+** 1 or 0. One of the four will be 1. The other three will be 0.
+*/
+#if defined(OS_OTHER)
+# if OS_OTHER==1
+# undef OS_UNIX
+# define OS_UNIX 0
+# undef OS_WIN
+# define OS_WIN 0
+# undef OS_OS2
+# define OS_OS2 0
+# else
+# undef OS_OTHER
+# endif
+#endif
+#if !defined(OS_UNIX) && !defined(OS_OTHER)
+# define OS_OTHER 0
+# ifndef OS_WIN
+# if defined(_WIN32) || defined(WIN32) || defined(__CYGWIN__) || defined(__MINGW32__) || defined(__BORLANDC__)
+# define OS_WIN 1
+# define OS_UNIX 0
+# define OS_OS2 0
+# elif defined(__EMX__) || defined(_OS2) || defined(OS2) || defined(_OS2_) || defined(__OS2__)
+# define OS_WIN 0
+# define OS_UNIX 0
+# define OS_OS2 1
+# else
+# define OS_WIN 0
+# define OS_UNIX 1
+# define OS_OS2 0
+# endif
+# else
+# define OS_UNIX 0
+# define OS_OS2 0
+# endif
+#else
+# ifndef OS_WIN
+# define OS_WIN 0
+# endif
+#endif
+
+
+
+/*
+** Define the maximum size of a temporary filename
+*/
+#if OS_WIN
+# include <windows.h>
+# define SQLITE_TEMPNAME_SIZE (MAX_PATH+50)
+#elif OS_OS2
+# if (__GNUC__ > 3 || __GNUC__ == 3 && __GNUC_MINOR__ >= 3) && defined(OS2_HIGH_MEMORY)
+# include <os2safe.h> /* has to be included before os2.h for linking to work */
+# endif
+# define INCL_DOSDATETIME
+# define INCL_DOSFILEMGR
+# define INCL_DOSERRORS
+# define INCL_DOSMISC
+# define INCL_DOSPROCESS
+# define INCL_DOSMODULEMGR
+# define INCL_DOSSEMAPHORES
+# include <os2.h>
+# include <uconv.h>
+# define SQLITE_TEMPNAME_SIZE (CCHMAXPATHCOMP)
+#else
+# define SQLITE_TEMPNAME_SIZE 200
+#endif
+
+/* If the SET_FULLSYNC macro is not defined above, then make it
+** a no-op
+*/
+#ifndef SET_FULLSYNC
+# define SET_FULLSYNC(x,y)
+#endif
+
+/*
+** The default size of a disk sector
+*/
+#ifndef SQLITE_DEFAULT_SECTOR_SIZE
+# define SQLITE_DEFAULT_SECTOR_SIZE 512
+#endif
+
+/*
+** Temporary files are named starting with this prefix followed by 16 random
+** alphanumeric characters, and no file extension. They are stored in the
+** OS's standard temporary file directory, and are deleted prior to exit.
+** If sqlite is being embedded in another program, you may wish to change the
+** prefix to reflect your program's name, so that if your program exits
+** prematurely, old temporary files can be easily identified. This can be done
+** using -DSQLITE_TEMP_FILE_PREFIX=myprefix_ on the compiler command line.
+**
+** 2006-10-31: The default prefix used to be "sqlite_". But then
+** Mcafee started using SQLite in their anti-virus product and it
+** started putting files with the "sqlite" name in the c:/temp folder.
+** This annoyed many windows users. Those users would then do a
+** Google search for "sqlite", find the telephone numbers of the
+** developers and call to wake them up at night and complain.
+** For this reason, the default name prefix is changed to be "sqlite"
+** spelled backwards. So the temp files are still identified, but
+** anybody smart enough to figure out the code is also likely smart
+** enough to know that calling the developer will not help get rid
+** of the file.
+*/
+#ifndef SQLITE_TEMP_FILE_PREFIX
+# define SQLITE_TEMP_FILE_PREFIX "etilqs_"
+#endif
+
+/*
+** The following values may be passed as the second argument to
+** sqlite3OsLock(). The various locks exhibit the following semantics:
+**
+** SHARED: Any number of processes may hold a SHARED lock simultaneously.
+** RESERVED: A single process may hold a RESERVED lock on a file at
+** any time. Other processes may hold and obtain new SHARED locks.
+** PENDING: A single process may hold a PENDING lock on a file at
+** any one time. Existing SHARED locks may persist, but no new
+** SHARED locks may be obtained by other processes.
+** EXCLUSIVE: An EXCLUSIVE lock precludes all other locks.
+**
+** PENDING_LOCK may not be passed directly to sqlite3OsLock(). Instead, a
+** process that requests an EXCLUSIVE lock may actually obtain a PENDING
+** lock. This can be upgraded to an EXCLUSIVE lock by a subsequent call to
+** sqlite3OsLock().
+*/
+#define NO_LOCK 0
+#define SHARED_LOCK 1
+#define RESERVED_LOCK 2
+#define PENDING_LOCK 3
+#define EXCLUSIVE_LOCK 4
+
+/*
+** File Locking Notes: (Mostly about windows but also some info for Unix)
+**
+** We cannot use LockFileEx() or UnlockFileEx() on Win95/98/ME because
+** those functions are not available. So we use only LockFile() and
+** UnlockFile().
+**
+** LockFile() prevents not just writing but also reading by other processes.
+** A SHARED_LOCK is obtained by locking a single randomly-chosen
+** byte out of a specific range of bytes. The lock byte is obtained at
+** random so two separate readers can probably access the file at the
+** same time, unless they are unlucky and choose the same lock byte.
+** An EXCLUSIVE_LOCK is obtained by locking all bytes in the range.
+** There can only be one writer. A RESERVED_LOCK is obtained by locking
+** a single byte of the file that is designated as the reserved lock byte.
+** A PENDING_LOCK is obtained by locking a designated byte different from
+** the RESERVED_LOCK byte.
+**
+** On WinNT/2K/XP systems, LockFileEx() and UnlockFileEx() are available,
+** which means we can use reader/writer locks. When reader/writer locks
+** are used, the lock is placed on the same range of bytes that is used
+** for probabilistic locking in Win95/98/ME. Hence, the locking scheme
+** will support two or more Win95 readers or two or more WinNT readers.
+** But a single Win95 reader will lock out all WinNT readers and a single
+** WinNT reader will lock out all other Win95 readers.
+**
+** The following #defines specify the range of bytes used for locking.
+** SHARED_SIZE is the number of bytes available in the pool from which
+** a random byte is selected for a shared lock. The pool of bytes for
+** shared locks begins at SHARED_FIRST.
+**
+** These #defines are available in sqlite_aux.h so that adaptors for
+** connecting SQLite to other operating systems can use the same byte
+** ranges for locking. In particular, the same locking strategy and
+** byte ranges are used for Unix. This leaves open the possiblity of having
+** clients on win95, winNT, and unix all talking to the same shared file
+** and all locking correctly. To do so would require that samba (or whatever
+** tool is being used for file sharing) implements locks correctly between
+** windows and unix. I'm guessing that isn't likely to happen, but by
+** using the same locking range we are at least open to the possibility.
+**
+** Locking in windows is manditory. For this reason, we cannot store
+** actual data in the bytes used for locking. The pager never allocates
+** the pages involved in locking therefore. SHARED_SIZE is selected so
+** that all locks will fit on a single page even at the minimum page size.
+** PENDING_BYTE defines the beginning of the locks. By default PENDING_BYTE
+** is set high so that we don't have to allocate an unused page except
+** for very large databases. But one should test the page skipping logic
+** by setting PENDING_BYTE low and running the entire regression suite.
+**
+** Changing the value of PENDING_BYTE results in a subtly incompatible
+** file format. Depending on how it is changed, you might not notice
+** the incompatibility right away, even running a full regression test.
+** The default location of PENDING_BYTE is the first byte past the
+** 1GB boundary.
+**
+*/
+#ifndef SQLITE_TEST
+#define PENDING_BYTE 0x40000000 /* First byte past the 1GB boundary */
+#else
+SQLITE_API extern unsigned int sqlite3_pending_byte;
+#define PENDING_BYTE sqlite3_pending_byte
+#endif
+
+#define RESERVED_BYTE (PENDING_BYTE+1)
+#define SHARED_FIRST (PENDING_BYTE+2)
+#define SHARED_SIZE 510
+
+/*
+** Functions for accessing sqlite3_file methods
+*/
+SQLITE_PRIVATE int sqlite3OsClose(sqlite3_file*);
+SQLITE_PRIVATE int sqlite3OsRead(sqlite3_file*, void*, int amt, i64 offset);
+SQLITE_PRIVATE int sqlite3OsWrite(sqlite3_file*, const void*, int amt, i64 offset);
+SQLITE_PRIVATE int sqlite3OsTruncate(sqlite3_file*, i64 size);
+SQLITE_PRIVATE int sqlite3OsSync(sqlite3_file*, int);
+SQLITE_PRIVATE int sqlite3OsFileSize(sqlite3_file*, i64 *pSize);
+SQLITE_PRIVATE int sqlite3OsLock(sqlite3_file*, int);
+SQLITE_PRIVATE int sqlite3OsUnlock(sqlite3_file*, int);
+SQLITE_PRIVATE int sqlite3OsCheckReservedLock(sqlite3_file *id);
+SQLITE_PRIVATE int sqlite3OsFileControl(sqlite3_file*,int,void*);
+SQLITE_PRIVATE int sqlite3OsSectorSize(sqlite3_file *id);
+SQLITE_PRIVATE int sqlite3OsDeviceCharacteristics(sqlite3_file *id);
+
+/*
+** Functions for accessing sqlite3_vfs methods
+*/
+SQLITE_PRIVATE int sqlite3OsOpen(sqlite3_vfs *, const char *, sqlite3_file*, int, int *);
+SQLITE_PRIVATE int sqlite3OsDelete(sqlite3_vfs *, const char *, int);
+SQLITE_PRIVATE int sqlite3OsAccess(sqlite3_vfs *, const char *, int);
+SQLITE_PRIVATE int sqlite3OsGetTempname(sqlite3_vfs *, int, char *);
+SQLITE_PRIVATE int sqlite3OsFullPathname(sqlite3_vfs *, const char *, int, char *);
+SQLITE_PRIVATE void *sqlite3OsDlOpen(sqlite3_vfs *, const char *);
+SQLITE_PRIVATE void sqlite3OsDlError(sqlite3_vfs *, int, char *);
+SQLITE_PRIVATE void *sqlite3OsDlSym(sqlite3_vfs *, void *, const char *);
+SQLITE_PRIVATE void sqlite3OsDlClose(sqlite3_vfs *, void *);
+SQLITE_PRIVATE int sqlite3OsRandomness(sqlite3_vfs *, int, char *);
+SQLITE_PRIVATE int sqlite3OsSleep(sqlite3_vfs *, int);
+SQLITE_PRIVATE int sqlite3OsCurrentTime(sqlite3_vfs *, double*);
+
+/*
+** Convenience functions for opening and closing files using
+** sqlite3_malloc() to obtain space for the file-handle structure.
+*/
+SQLITE_PRIVATE int sqlite3OsOpenMalloc(sqlite3_vfs *, const char *, sqlite3_file **, int,int*);
+SQLITE_PRIVATE int sqlite3OsCloseFree(sqlite3_file *);
+
+/*
+** Each OS-specific backend defines an instance of the following
+** structure for returning a pointer to its sqlite3_vfs. If OS_OTHER
+** is defined (meaning that the application-defined OS interface layer
+** is used) then there is no default VFS. The application must
+** register one or more VFS structures using sqlite3_vfs_register()
+** before attempting to use SQLite.
+*/
+SQLITE_PRIVATE sqlite3_vfs *sqlite3OsDefaultVfs(void);
+
+#endif /* _SQLITE_OS_H_ */
+
+/************** End of os.h **************************************************/
+/************** Continuing where we left off in sqliteInt.h ******************/
+/************** Include mutex.h in the middle of sqliteInt.h *****************/
+/************** Begin file mutex.h *******************************************/
+/*
+** 2007 August 28
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+**
+** This file contains the common header for all mutex implementations.
+** The sqliteInt.h header #includes this file so that it is available
+** to all source files. We break it out in an effort to keep the code
+** better organized.
+**
+** NOTE: source files should *not* #include this header file directly.
+** Source files should #include the sqliteInt.h file and let that file
+** include this one indirectly.
+**
+** $Id: mutex.h,v 1.2 2007/08/30 14:10:30 drh Exp $
+*/
+
+
+#ifdef SQLITE_MUTEX_APPDEF
+/*
+** If SQLITE_MUTEX_APPDEF is defined, then this whole module is
+** omitted and equivalent functionality must be provided by the
+** application that links against the SQLite library.
+*/
+#else
+/*
+** Figure out what version of the code to use. The choices are
+**
+** SQLITE_MUTEX_NOOP For single-threaded applications that
+** do not desire error checking.
+**
+** SQLITE_MUTEX_NOOP_DEBUG For single-threaded applications with
+** error checking to help verify that mutexes
+** are being used correctly even though they
+** are not needed. Used when SQLITE_DEBUG is
+** defined on single-threaded builds.
+**
+** SQLITE_MUTEX_PTHREADS For multi-threaded applications on Unix.
+**
+** SQLITE_MUTEX_W32 For multi-threaded applications on Win32.
+**
+** SQLITE_MUTEX_OS2 For multi-threaded applications on OS/2.
+*/
+#define SQLITE_MUTEX_NOOP 1 /* The default */
+#if defined(SQLITE_DEBUG) && !SQLITE_THREADSAFE
+# undef SQLITE_MUTEX_NOOP
+# define SQLITE_MUTEX_NOOP_DEBUG
+#endif
+#if defined(SQLITE_MUTEX_NOOP) && SQLITE_THREADSAFE && OS_UNIX
+# undef SQLITE_MUTEX_NOOP
+# define SQLITE_MUTEX_PTHREADS
+#endif
+#if defined(SQLITE_MUTEX_NOOP) && SQLITE_THREADSAFE && OS_WIN
+# undef SQLITE_MUTEX_NOOP
+# define SQLITE_MUTEX_W32
+#endif
+#if defined(SQLITE_MUTEX_NOOP) && SQLITE_THREADSAFE && OS_OS2
+# undef SQLITE_MUTEX_NOOP
+# define SQLITE_MUTEX_OS2
+#endif
+
+#ifdef SQLITE_MUTEX_NOOP
+/*
+** If this is a no-op implementation, implement everything as macros.
+*/
+#define sqlite3_mutex_alloc(X) ((sqlite3_mutex*)8)
+#define sqlite3_mutex_free(X)
+#define sqlite3_mutex_enter(X)
+#define sqlite3_mutex_try(X) SQLITE_OK
+#define sqlite3_mutex_leave(X)
+#define sqlite3_mutex_held(X) 1
+#define sqlite3_mutex_notheld(X) 1
+#endif
+
+#endif /* SQLITE_MUTEX_APPDEF */
+
+/************** End of mutex.h ***********************************************/
+/************** Continuing where we left off in sqliteInt.h ******************/
+
+
+/*
+** Each database file to be accessed by the system is an instance
+** of the following structure. There are normally two of these structures
+** in the sqlite.aDb[] array. aDb[0] is the main database file and
+** aDb[1] is the database file used to hold temporary tables. Additional
+** databases may be attached.
+*/
+struct Db {
+ char *zName; /* Name of this database */
+ Btree *pBt; /* The B*Tree structure for this database file */
+ u8 inTrans; /* 0: not writable. 1: Transaction. 2: Checkpoint */
+ u8 safety_level; /* How aggressive at synching data to disk */
+ void *pAux; /* Auxiliary data. Usually NULL */
+ void (*xFreeAux)(void*); /* Routine to free pAux */
+ Schema *pSchema; /* Pointer to database schema (possibly shared) */
+};
+
+/*
+** An instance of the following structure stores a database schema.
+**
+** If there are no virtual tables configured in this schema, the
+** Schema.db variable is set to NULL. After the first virtual table
+** has been added, it is set to point to the database connection
+** used to create the connection. Once a virtual table has been
+** added to the Schema structure and the Schema.db variable populated,
+** only that database connection may use the Schema to prepare
+** statements.
+*/
+struct Schema {
+ int schema_cookie; /* Database schema version number for this file */
+ Hash tblHash; /* All tables indexed by name */
+ Hash idxHash; /* All (named) indices indexed by name */
+ Hash trigHash; /* All triggers indexed by name */
+ Hash aFKey; /* Foreign keys indexed by to-table */
+ Table *pSeqTab; /* The sqlite_sequence table used by AUTOINCREMENT */
+ u8 file_format; /* Schema format version for this file */
+ u8 enc; /* Text encoding used by this database */
+ u16 flags; /* Flags associated with this schema */
+ int cache_size; /* Number of pages to use in the cache */
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ sqlite3 *db; /* "Owner" connection. See comment above */
+#endif
+};
+
+/*
+** These macros can be used to test, set, or clear bits in the
+** Db.flags field.
+*/
+#define DbHasProperty(D,I,P) (((D)->aDb[I].pSchema->flags&(P))==(P))
+#define DbHasAnyProperty(D,I,P) (((D)->aDb[I].pSchema->flags&(P))!=0)
+#define DbSetProperty(D,I,P) (D)->aDb[I].pSchema->flags|=(P)
+#define DbClearProperty(D,I,P) (D)->aDb[I].pSchema->flags&=~(P)
+
+/*
+** Allowed values for the DB.flags field.
+**
+** The DB_SchemaLoaded flag is set after the database schema has been
+** read into internal hash tables.
+**
+** DB_UnresetViews means that one or more views have column names that
+** have been filled out. If the schema changes, these column names might
+** changes and so the view will need to be reset.
+*/
+#define DB_SchemaLoaded 0x0001 /* The schema has been loaded */
+#define DB_UnresetViews 0x0002 /* Some views have defined column names */
+#define DB_Empty 0x0004 /* The file is empty (length 0 bytes) */
+
+/*
+** The number of different kinds of things that can be limited
+** using the sqlite3_limit() interface.
+*/
+#define SQLITE_N_LIMIT (SQLITE_LIMIT_VARIABLE_NUMBER+1)
+
+/*
+** Each database is an instance of the following structure.
+**
+** The sqlite.lastRowid records the last insert rowid generated by an
+** insert statement. Inserts on views do not affect its value. Each
+** trigger has its own context, so that lastRowid can be updated inside
+** triggers as usual. The previous value will be restored once the trigger
+** exits. Upon entering a before or instead of trigger, lastRowid is no
+** longer (since after version 2.8.12) reset to -1.
+**
+** The sqlite.nChange does not count changes within triggers and keeps no
+** context. It is reset at start of sqlite3_exec.
+** The sqlite.lsChange represents the number of changes made by the last
+** insert, update, or delete statement. It remains constant throughout the
+** length of a statement and is then updated by OP_SetCounts. It keeps a
+** context stack just like lastRowid so that the count of changes
+** within a trigger is not seen outside the trigger. Changes to views do not
+** affect the value of lsChange.
+** The sqlite.csChange keeps track of the number of current changes (since
+** the last statement) and is used to update sqlite_lsChange.
+**
+** The member variables sqlite.errCode, sqlite.zErrMsg and sqlite.zErrMsg16
+** store the most recent error code and, if applicable, string. The
+** internal function sqlite3Error() is used to set these variables
+** consistently.
+*/
+struct sqlite3 {
+ sqlite3_vfs *pVfs; /* OS Interface */
+ int nDb; /* Number of backends currently in use */
+ Db *aDb; /* All backends */
+ int flags; /* Miscellanous flags. See below */
+ int openFlags; /* Flags passed to sqlite3_vfs.xOpen() */
+ int errCode; /* Most recent error code (SQLITE_*) */
+ int errMask; /* & result codes with this before returning */
+ u8 autoCommit; /* The auto-commit flag. */
+ u8 temp_store; /* 1: file 2: memory 0: default */
+ u8 mallocFailed; /* True if we have seen a malloc failure */
+ u8 dfltLockMode; /* Default locking-mode for attached dbs */
+ u8 dfltJournalMode; /* Default journal mode for attached dbs */
+ signed char nextAutovac; /* Autovac setting after VACUUM if >=0 */
+ int nextPagesize; /* Pagesize after VACUUM if >0 */
+ int nTable; /* Number of tables in the database */
+ CollSeq *pDfltColl; /* The default collating sequence (BINARY) */
+ i64 lastRowid; /* ROWID of most recent insert (see above) */
+ i64 priorNewRowid; /* Last randomly generated ROWID */
+ int magic; /* Magic number for detect library misuse */
+ int nChange; /* Value returned by sqlite3_changes() */
+ int nTotalChange; /* Value returned by sqlite3_total_changes() */
+ sqlite3_mutex *mutex; /* Connection mutex */
+ int aLimit[SQLITE_N_LIMIT]; /* Limits */
+ struct sqlite3InitInfo { /* Information used during initialization */
+ int iDb; /* When back is being initialized */
+ int newTnum; /* Rootpage of table being initialized */
+ u8 busy; /* TRUE if currently initializing */
+ } init;
+ int nExtension; /* Number of loaded extensions */
+ void **aExtension; /* Array of shared libraray handles */
+ struct Vdbe *pVdbe; /* List of active virtual machines */
+ int activeVdbeCnt; /* Number of vdbes currently executing */
+ void (*xTrace)(void*,const char*); /* Trace function */
+ void *pTraceArg; /* Argument to the trace function */
+ void (*xProfile)(void*,const char*,u64); /* Profiling function */
+ void *pProfileArg; /* Argument to profile function */
+ void *pCommitArg; /* Argument to xCommitCallback() */
+ int (*xCommitCallback)(void*); /* Invoked at every commit. */
+ void *pRollbackArg; /* Argument to xRollbackCallback() */
+ void (*xRollbackCallback)(void*); /* Invoked at every commit. */
+ void *pUpdateArg;
+ void (*xUpdateCallback)(void*,int, const char*,const char*,sqlite_int64);
+ void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*);
+ void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*);
+ void *pCollNeededArg;
+ sqlite3_value *pErr; /* Most recent error message */
+ char *zErrMsg; /* Most recent error message (UTF-8 encoded) */
+ char *zErrMsg16; /* Most recent error message (UTF-16 encoded) */
+ union {
+ int isInterrupted; /* True if sqlite3_interrupt has been called */
+ double notUsed1; /* Spacer */
+ } u1;
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ int (*xAuth)(void*,int,const char*,const char*,const char*,const char*);
+ /* Access authorization function */
+ void *pAuthArg; /* 1st argument to the access auth function */
+#endif
+#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
+ int (*xProgress)(void *); /* The progress callback */
+ void *pProgressArg; /* Argument to the progress callback */
+ int nProgressOps; /* Number of opcodes for progress callback */
+#endif
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ Hash aModule; /* populated by sqlite3_create_module() */
+ Table *pVTab; /* vtab with active Connect/Create method */
+ sqlite3_vtab **aVTrans; /* Virtual tables with open transactions */
+ int nVTrans; /* Allocated size of aVTrans */
+#endif
+ Hash aFunc; /* All functions that can be in SQL exprs */
+ Hash aCollSeq; /* All collating sequences */
+ BusyHandler busyHandler; /* Busy callback */
+ int busyTimeout; /* Busy handler timeout, in msec */
+ Db aDbStatic[2]; /* Static space for the 2 default backends */
+#ifdef SQLITE_SSE
+ sqlite3_stmt *pFetch; /* Used by SSE to fetch stored statements */
+#endif
+};
+
+/*
+** A macro to discover the encoding of a database.
+*/
+#define ENC(db) ((db)->aDb[0].pSchema->enc)
+
+/*
+** Possible values for the sqlite.flags and or Db.flags fields.
+**
+** On sqlite.flags, the SQLITE_InTrans value means that we have
+** executed a BEGIN. On Db.flags, SQLITE_InTrans means a statement
+** transaction is active on that particular database file.
+*/
+#define SQLITE_VdbeTrace 0x00000001 /* True to trace VDBE execution */
+#define SQLITE_InTrans 0x00000008 /* True if in a transaction */
+#define SQLITE_InternChanges 0x00000010 /* Uncommitted Hash table changes */
+#define SQLITE_FullColNames 0x00000020 /* Show full column names on SELECT */
+#define SQLITE_ShortColNames 0x00000040 /* Show short columns names */
+#define SQLITE_CountRows 0x00000080 /* Count rows changed by INSERT, */
+ /* DELETE, or UPDATE and return */
+ /* the count using a callback. */
+#define SQLITE_NullCallback 0x00000100 /* Invoke the callback once if the */
+ /* result set is empty */
+#define SQLITE_SqlTrace 0x00000200 /* Debug print SQL as it executes */
+#define SQLITE_VdbeListing 0x00000400 /* Debug listings of VDBE programs */
+#define SQLITE_WriteSchema 0x00000800 /* OK to update SQLITE_MASTER */
+#define SQLITE_NoReadlock 0x00001000 /* Readlocks are omitted when
+ ** accessing read-only databases */
+#define SQLITE_IgnoreChecks 0x00002000 /* Do not enforce check constraints */
+#define SQLITE_ReadUncommitted 0x00004000 /* For shared-cache mode */
+#define SQLITE_LegacyFileFmt 0x00008000 /* Create new databases in format 1 */
+#define SQLITE_FullFSync 0x00010000 /* Use full fsync on the backend */
+#define SQLITE_LoadExtension 0x00020000 /* Enable load_extension */
+
+#define SQLITE_RecoveryMode 0x00040000 /* Ignore schema errors */
+#define SQLITE_SharedCache 0x00080000 /* Cache sharing is enabled */
+#define SQLITE_Vtab 0x00100000 /* There exists a virtual table */
+
+/*
+** Possible values for the sqlite.magic field.
+** The numbers are obtained at random and have no special meaning, other
+** than being distinct from one another.
+*/
+#define SQLITE_MAGIC_OPEN 0xa029a697 /* Database is open */
+#define SQLITE_MAGIC_CLOSED 0x9f3c2d33 /* Database is closed */
+#define SQLITE_MAGIC_SICK 0x4b771290 /* Error and awaiting close */
+#define SQLITE_MAGIC_BUSY 0xf03b7906 /* Database currently in use */
+#define SQLITE_MAGIC_ERROR 0xb5357930 /* An SQLITE_MISUSE error occurred */
+
+/*
+** Each SQL function is defined by an instance of the following
+** structure. A pointer to this structure is stored in the sqlite.aFunc
+** hash table. When multiple functions have the same name, the hash table
+** points to a linked list of these structures.
+*/
+struct FuncDef {
+ i16 nArg; /* Number of arguments. -1 means unlimited */
+ u8 iPrefEnc; /* Preferred text encoding (SQLITE_UTF8, 16LE, 16BE) */
+ u8 needCollSeq; /* True if sqlite3GetFuncCollSeq() might be called */
+ u8 flags; /* Some combination of SQLITE_FUNC_* */
+ void *pUserData; /* User data parameter */
+ FuncDef *pNext; /* Next function with same name */
+ void (*xFunc)(sqlite3_context*,int,sqlite3_value**); /* Regular function */
+ void (*xStep)(sqlite3_context*,int,sqlite3_value**); /* Aggregate step */
+ void (*xFinalize)(sqlite3_context*); /* Aggregate finializer */
+ char zName[1]; /* SQL name of the function. MUST BE LAST */
+};
+
+/*
+** Each SQLite module (virtual table definition) is defined by an
+** instance of the following structure, stored in the sqlite3.aModule
+** hash table.
+*/
+struct Module {
+ const sqlite3_module *pModule; /* Callback pointers */
+ const char *zName; /* Name passed to create_module() */
+ void *pAux; /* pAux passed to create_module() */
+ void (*xDestroy)(void *); /* Module destructor function */
+};
+
+/*
+** Possible values for FuncDef.flags
+*/
+#define SQLITE_FUNC_LIKE 0x01 /* Candidate for the LIKE optimization */
+#define SQLITE_FUNC_CASE 0x02 /* Case-sensitive LIKE-type function */
+#define SQLITE_FUNC_EPHEM 0x04 /* Ephermeral. Delete with VDBE */
+
+/*
+** information about each column of an SQL table is held in an instance
+** of this structure.
+*/
+struct Column {
+ char *zName; /* Name of this column */
+ Expr *pDflt; /* Default value of this column */
+ char *zType; /* Data type for this column */
+ char *zColl; /* Collating sequence. If NULL, use the default */
+ u8 notNull; /* True if there is a NOT NULL constraint */
+ u8 isPrimKey; /* True if this column is part of the PRIMARY KEY */
+ char affinity; /* One of the SQLITE_AFF_... values */
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ u8 isHidden; /* True if this column is 'hidden' */
+#endif
+};
+
+/*
+** A "Collating Sequence" is defined by an instance of the following
+** structure. Conceptually, a collating sequence consists of a name and
+** a comparison routine that defines the order of that sequence.
+**
+** There may two seperate implementations of the collation function, one
+** that processes text in UTF-8 encoding (CollSeq.xCmp) and another that
+** processes text encoded in UTF-16 (CollSeq.xCmp16), using the machine
+** native byte order. When a collation sequence is invoked, SQLite selects
+** the version that will require the least expensive encoding
+** translations, if any.
+**
+** The CollSeq.pUser member variable is an extra parameter that passed in
+** as the first argument to the UTF-8 comparison function, xCmp.
+** CollSeq.pUser16 is the equivalent for the UTF-16 comparison function,
+** xCmp16.
+**
+** If both CollSeq.xCmp and CollSeq.xCmp16 are NULL, it means that the
+** collating sequence is undefined. Indices built on an undefined
+** collating sequence may not be read or written.
+*/
+struct CollSeq {
+ char *zName; /* Name of the collating sequence, UTF-8 encoded */
+ u8 enc; /* Text encoding handled by xCmp() */
+ u8 type; /* One of the SQLITE_COLL_... values below */
+ void *pUser; /* First argument to xCmp() */
+ int (*xCmp)(void*,int, const void*, int, const void*);
+ void (*xDel)(void*); /* Destructor for pUser */
+};
+
+/*
+** Allowed values of CollSeq flags:
+*/
+#define SQLITE_COLL_BINARY 1 /* The default memcmp() collating sequence */
+#define SQLITE_COLL_NOCASE 2 /* The built-in NOCASE collating sequence */
+#define SQLITE_COLL_REVERSE 3 /* The built-in REVERSE collating sequence */
+#define SQLITE_COLL_USER 0 /* Any other user-defined collating sequence */
+
+/*
+** A sort order can be either ASC or DESC.
+*/
+#define SQLITE_SO_ASC 0 /* Sort in ascending order */
+#define SQLITE_SO_DESC 1 /* Sort in ascending order */
+
+/*
+** Column affinity types.
+**
+** These used to have mnemonic name like 'i' for SQLITE_AFF_INTEGER and
+** 't' for SQLITE_AFF_TEXT. But we can save a little space and improve
+** the speed a little by number the values consecutively.
+**
+** But rather than start with 0 or 1, we begin with 'a'. That way,
+** when multiple affinity types are concatenated into a string and
+** used as the P4 operand, they will be more readable.
+**
+** Note also that the numeric types are grouped together so that testing
+** for a numeric type is a single comparison.
+*/
+#define SQLITE_AFF_TEXT 'a'
+#define SQLITE_AFF_NONE 'b'
+#define SQLITE_AFF_NUMERIC 'c'
+#define SQLITE_AFF_INTEGER 'd'
+#define SQLITE_AFF_REAL 'e'
+
+#define sqlite3IsNumericAffinity(X) ((X)>=SQLITE_AFF_NUMERIC)
+
+/*
+** The SQLITE_AFF_MASK values masks off the significant bits of an
+** affinity value.
+*/
+#define SQLITE_AFF_MASK 0x67
+
+/*
+** Additional bit values that can be ORed with an affinity without
+** changing the affinity.
+*/
+#define SQLITE_JUMPIFNULL 0x08 /* jumps if either operand is NULL */
+#define SQLITE_NULLEQUAL 0x10 /* compare NULLs equal */
+#define SQLITE_STOREP2 0x80 /* Store result in reg[P2] rather than jump */
+
+/*
+** Each SQL table is represented in memory by an instance of the
+** following structure.
+**
+** Table.zName is the name of the table. The case of the original
+** CREATE TABLE statement is stored, but case is not significant for
+** comparisons.
+**
+** Table.nCol is the number of columns in this table. Table.aCol is a
+** pointer to an array of Column structures, one for each column.
+**
+** If the table has an INTEGER PRIMARY KEY, then Table.iPKey is the index of
+** the column that is that key. Otherwise Table.iPKey is negative. Note
+** that the datatype of the PRIMARY KEY must be INTEGER for this field to
+** be set. An INTEGER PRIMARY KEY is used as the rowid for each row of
+** the table. If a table has no INTEGER PRIMARY KEY, then a random rowid
+** is generated for each row of the table. Table.hasPrimKey is true if
+** the table has any PRIMARY KEY, INTEGER or otherwise.
+**
+** Table.tnum is the page number for the root BTree page of the table in the
+** database file. If Table.iDb is the index of the database table backend
+** in sqlite.aDb[]. 0 is for the main database and 1 is for the file that
+** holds temporary tables and indices. If Table.isEphem
+** is true, then the table is stored in a file that is automatically deleted
+** when the VDBE cursor to the table is closed. In this case Table.tnum
+** refers VDBE cursor number that holds the table open, not to the root
+** page number. Transient tables are used to hold the results of a
+** sub-query that appears instead of a real table name in the FROM clause
+** of a SELECT statement.
+*/
+struct Table {
+ char *zName; /* Name of the table */
+ int nCol; /* Number of columns in this table */
+ Column *aCol; /* Information about each column */
+ int iPKey; /* If not less then 0, use aCol[iPKey] as the primary key */
+ Index *pIndex; /* List of SQL indexes on this table. */
+ int tnum; /* Root BTree node for this table (see note above) */
+ Select *pSelect; /* NULL for tables. Points to definition if a view. */
+ int nRef; /* Number of pointers to this Table */
+ Trigger *pTrigger; /* List of SQL triggers on this table */
+ FKey *pFKey; /* Linked list of all foreign keys in this table */
+ char *zColAff; /* String defining the affinity of each column */
+#ifndef SQLITE_OMIT_CHECK
+ Expr *pCheck; /* The AND of all CHECK constraints */
+#endif
+#ifndef SQLITE_OMIT_ALTERTABLE
+ int addColOffset; /* Offset in CREATE TABLE statement to add a new column */
+#endif
+ u8 readOnly; /* True if this table should not be written by the user */
+ u8 isEphem; /* True if created using OP_OpenEphermeral */
+ u8 hasPrimKey; /* True if there exists a primary key */
+ u8 keyConf; /* What to do in case of uniqueness conflict on iPKey */
+ u8 autoInc; /* True if the integer primary key is autoincrement */
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ u8 isVirtual; /* True if this is a virtual table */
+ u8 isCommit; /* True once the CREATE TABLE has been committed */
+ Module *pMod; /* Pointer to the implementation of the module */
+ sqlite3_vtab *pVtab; /* Pointer to the module instance */
+ int nModuleArg; /* Number of arguments to the module */
+ char **azModuleArg; /* Text of all module args. [0] is module name */
+#endif
+ Schema *pSchema; /* Schema that contains this table */
+};
+
+/*
+** Test to see whether or not a table is a virtual table. This is
+** done as a macro so that it will be optimized out when virtual
+** table support is omitted from the build.
+*/
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+# define IsVirtual(X) ((X)->isVirtual)
+# define IsHiddenColumn(X) ((X)->isHidden)
+#else
+# define IsVirtual(X) 0
+# define IsHiddenColumn(X) 0
+#endif
+
+/*
+** Each foreign key constraint is an instance of the following structure.
+**
+** A foreign key is associated with two tables. The "from" table is
+** the table that contains the REFERENCES clause that creates the foreign
+** key. The "to" table is the table that is named in the REFERENCES clause.
+** Consider this example:
+**
+** CREATE TABLE ex1(
+** a INTEGER PRIMARY KEY,
+** b INTEGER CONSTRAINT fk1 REFERENCES ex2(x)
+** );
+**
+** For foreign key "fk1", the from-table is "ex1" and the to-table is "ex2".
+**
+** Each REFERENCES clause generates an instance of the following structure
+** which is attached to the from-table. The to-table need not exist when
+** the from-table is created. The existance of the to-table is not checked
+** until an attempt is made to insert data into the from-table.
+**
+** The sqlite.aFKey hash table stores pointers to this structure
+** given the name of a to-table. For each to-table, all foreign keys
+** associated with that table are on a linked list using the FKey.pNextTo
+** field.
+*/
+struct FKey {
+ Table *pFrom; /* The table that constains the REFERENCES clause */
+ FKey *pNextFrom; /* Next foreign key in pFrom */
+ char *zTo; /* Name of table that the key points to */
+ FKey *pNextTo; /* Next foreign key that points to zTo */
+ int nCol; /* Number of columns in this key */
+ struct sColMap { /* Mapping of columns in pFrom to columns in zTo */
+ int iFrom; /* Index of column in pFrom */
+ char *zCol; /* Name of column in zTo. If 0 use PRIMARY KEY */
+ } *aCol; /* One entry for each of nCol column s */
+ u8 isDeferred; /* True if constraint checking is deferred till COMMIT */
+ u8 updateConf; /* How to resolve conflicts that occur on UPDATE */
+ u8 deleteConf; /* How to resolve conflicts that occur on DELETE */
+ u8 insertConf; /* How to resolve conflicts that occur on INSERT */
+};
+
+/*
+** SQLite supports many different ways to resolve a constraint
+** error. ROLLBACK processing means that a constraint violation
+** causes the operation in process to fail and for the current transaction
+** to be rolled back. ABORT processing means the operation in process
+** fails and any prior changes from that one operation are backed out,
+** but the transaction is not rolled back. FAIL processing means that
+** the operation in progress stops and returns an error code. But prior
+** changes due to the same operation are not backed out and no rollback
+** occurs. IGNORE means that the particular row that caused the constraint
+** error is not inserted or updated. Processing continues and no error
+** is returned. REPLACE means that preexisting database rows that caused
+** a UNIQUE constraint violation are removed so that the new insert or
+** update can proceed. Processing continues and no error is reported.
+**
+** RESTRICT, SETNULL, and CASCADE actions apply only to foreign keys.
+** RESTRICT is the same as ABORT for IMMEDIATE foreign keys and the
+** same as ROLLBACK for DEFERRED keys. SETNULL means that the foreign
+** key is set to NULL. CASCADE means that a DELETE or UPDATE of the
+** referenced table row is propagated into the row that holds the
+** foreign key.
+**
+** The following symbolic values are used to record which type
+** of action to take.
+*/
+#define OE_None 0 /* There is no constraint to check */
+#define OE_Rollback 1 /* Fail the operation and rollback the transaction */
+#define OE_Abort 2 /* Back out changes but do no rollback transaction */
+#define OE_Fail 3 /* Stop the operation but leave all prior changes */
+#define OE_Ignore 4 /* Ignore the error. Do not do the INSERT or UPDATE */
+#define OE_Replace 5 /* Delete existing record, then do INSERT or UPDATE */
+
+#define OE_Restrict 6 /* OE_Abort for IMMEDIATE, OE_Rollback for DEFERRED */
+#define OE_SetNull 7 /* Set the foreign key value to NULL */
+#define OE_SetDflt 8 /* Set the foreign key value to its default */
+#define OE_Cascade 9 /* Cascade the changes */
+
+#define OE_Default 99 /* Do whatever the default action is */
+
+
+/*
+** An instance of the following structure is passed as the first
+** argument to sqlite3VdbeKeyCompare and is used to control the
+** comparison of the two index keys.
+**
+** If the KeyInfo.incrKey value is true and the comparison would
+** otherwise be equal, then return a result as if the second key
+** were larger.
+*/
+struct KeyInfo {
+ sqlite3 *db; /* The database connection */
+ u8 enc; /* Text encoding - one of the TEXT_Utf* values */
+ u8 incrKey; /* Increase 2nd key by epsilon before comparison */
+ u8 prefixIsEqual; /* Treat a prefix as equal */
+ int nField; /* Number of entries in aColl[] */
+ u8 *aSortOrder; /* If defined an aSortOrder[i] is true, sort DESC */
+ CollSeq *aColl[1]; /* Collating sequence for each term of the key */
+};
+
+/*
+** Each SQL index is represented in memory by an
+** instance of the following structure.
+**
+** The columns of the table that are to be indexed are described
+** by the aiColumn[] field of this structure. For example, suppose
+** we have the following table and index:
+**
+** CREATE TABLE Ex1(c1 int, c2 int, c3 text);
+** CREATE INDEX Ex2 ON Ex1(c3,c1);
+**
+** In the Table structure describing Ex1, nCol==3 because there are
+** three columns in the table. In the Index structure describing
+** Ex2, nColumn==2 since 2 of the 3 columns of Ex1 are indexed.
+** The value of aiColumn is {2, 0}. aiColumn[0]==2 because the
+** first column to be indexed (c3) has an index of 2 in Ex1.aCol[].
+** The second column to be indexed (c1) has an index of 0 in
+** Ex1.aCol[], hence Ex2.aiColumn[1]==0.
+**
+** The Index.onError field determines whether or not the indexed columns
+** must be unique and what to do if they are not. When Index.onError=OE_None,
+** it means this is not a unique index. Otherwise it is a unique index
+** and the value of Index.onError indicate the which conflict resolution
+** algorithm to employ whenever an attempt is made to insert a non-unique
+** element.
+*/
+struct Index {
+ char *zName; /* Name of this index */
+ int nColumn; /* Number of columns in the table used by this index */
+ int *aiColumn; /* Which columns are used by this index. 1st is 0 */
+ unsigned *aiRowEst; /* Result of ANALYZE: Est. rows selected by each column */
+ Table *pTable; /* The SQL table being indexed */
+ int tnum; /* Page containing root of this index in database file */
+ u8 onError; /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
+ u8 autoIndex; /* True if is automatically created (ex: by UNIQUE) */
+ char *zColAff; /* String defining the affinity of each column */
+ Index *pNext; /* The next index associated with the same table */
+ Schema *pSchema; /* Schema containing this index */
+ u8 *aSortOrder; /* Array of size Index.nColumn. True==DESC, False==ASC */
+ char **azColl; /* Array of collation sequence names for index */
+};
+
+/*
+** Each token coming out of the lexer is an instance of
+** this structure. Tokens are also used as part of an expression.
+**
+** Note if Token.z==0 then Token.dyn and Token.n are undefined and
+** may contain random values. Do not make any assuptions about Token.dyn
+** and Token.n when Token.z==0.
+*/
+struct Token {
+ const unsigned char *z; /* Text of the token. Not NULL-terminated! */
+ unsigned dyn : 1; /* True for malloced memory, false for static */
+ unsigned n : 31; /* Number of characters in this token */
+};
+
+/*
+** An instance of this structure contains information needed to generate
+** code for a SELECT that contains aggregate functions.
+**
+** If Expr.op==TK_AGG_COLUMN or TK_AGG_FUNCTION then Expr.pAggInfo is a
+** pointer to this structure. The Expr.iColumn field is the index in
+** AggInfo.aCol[] or AggInfo.aFunc[] of information needed to generate
+** code for that node.
+**
+** AggInfo.pGroupBy and AggInfo.aFunc.pExpr point to fields within the
+** original Select structure that describes the SELECT statement. These
+** fields do not need to be freed when deallocating the AggInfo structure.
+*/
+struct AggInfo {
+ u8 directMode; /* Direct rendering mode means take data directly
+ ** from source tables rather than from accumulators */
+ u8 useSortingIdx; /* In direct mode, reference the sorting index rather
+ ** than the source table */
+ int sortingIdx; /* Cursor number of the sorting index */
+ ExprList *pGroupBy; /* The group by clause */
+ int nSortingColumn; /* Number of columns in the sorting index */
+ struct AggInfo_col { /* For each column used in source tables */
+ Table *pTab; /* Source table */
+ int iTable; /* Cursor number of the source table */
+ int iColumn; /* Column number within the source table */
+ int iSorterColumn; /* Column number in the sorting index */
+ int iMem; /* Memory location that acts as accumulator */
+ Expr *pExpr; /* The original expression */
+ } *aCol;
+ int nColumn; /* Number of used entries in aCol[] */
+ int nColumnAlloc; /* Number of slots allocated for aCol[] */
+ int nAccumulator; /* Number of columns that show through to the output.
+ ** Additional columns are used only as parameters to
+ ** aggregate functions */
+ struct AggInfo_func { /* For each aggregate function */
+ Expr *pExpr; /* Expression encoding the function */
+ FuncDef *pFunc; /* The aggregate function implementation */
+ int iMem; /* Memory location that acts as accumulator */
+ int iDistinct; /* Ephermeral table used to enforce DISTINCT */
+ } *aFunc;
+ int nFunc; /* Number of entries in aFunc[] */
+ int nFuncAlloc; /* Number of slots allocated for aFunc[] */
+};
+
+/*
+** Each node of an expression in the parse tree is an instance
+** of this structure.
+**
+** Expr.op is the opcode. The integer parser token codes are reused
+** as opcodes here. For example, the parser defines TK_GE to be an integer
+** code representing the ">=" operator. This same integer code is reused
+** to represent the greater-than-or-equal-to operator in the expression
+** tree.
+**
+** Expr.pRight and Expr.pLeft are subexpressions. Expr.pList is a list
+** of argument if the expression is a function.
+**
+** Expr.token is the operator token for this node. For some expressions
+** that have subexpressions, Expr.token can be the complete text that gave
+** rise to the Expr. In the latter case, the token is marked as being
+** a compound token.
+**
+** An expression of the form ID or ID.ID refers to a column in a table.
+** For such expressions, Expr.op is set to TK_COLUMN and Expr.iTable is
+** the integer cursor number of a VDBE cursor pointing to that table and
+** Expr.iColumn is the column number for the specific column. If the
+** expression is used as a result in an aggregate SELECT, then the
+** value is also stored in the Expr.iAgg column in the aggregate so that
+** it can be accessed after all aggregates are computed.
+**
+** If the expression is a function, the Expr.iTable is an integer code
+** representing which function. If the expression is an unbound variable
+** marker (a question mark character '?' in the original SQL) then the
+** Expr.iTable holds the index number for that variable.
+**
+** If the expression is a subquery then Expr.iColumn holds an integer
+** register number containing the result of the subquery. If the
+** subquery gives a constant result, then iTable is -1. If the subquery
+** gives a different answer at different times during statement processing
+** then iTable is the address of a subroutine that computes the subquery.
+**
+** The Expr.pSelect field points to a SELECT statement. The SELECT might
+** be the right operand of an IN operator. Or, if a scalar SELECT appears
+** in an expression the opcode is TK_SELECT and Expr.pSelect is the only
+** operand.
+**
+** If the Expr is of type OP_Column, and the table it is selecting from
+** is a disk table or the "old.*" pseudo-table, then pTab points to the
+** corresponding table definition.
+*/
+struct Expr {
+ u8 op; /* Operation performed by this node */
+ char affinity; /* The affinity of the column or 0 if not a column */
+ u16 flags; /* Various flags. See below */
+ CollSeq *pColl; /* The collation type of the column or 0 */
+ Expr *pLeft, *pRight; /* Left and right subnodes */
+ ExprList *pList; /* A list of expressions used as function arguments
+ ** or in "<expr> IN (<expr-list)" */
+ Token token; /* An operand token */
+ Token span; /* Complete text of the expression */
+ int iTable, iColumn; /* When op==TK_COLUMN, then this expr node means the
+ ** iColumn-th field of the iTable-th table. */
+ AggInfo *pAggInfo; /* Used by TK_AGG_COLUMN and TK_AGG_FUNCTION */
+ int iAgg; /* Which entry in pAggInfo->aCol[] or ->aFunc[] */
+ int iRightJoinTable; /* If EP_FromJoin, the right table of the join */
+ Select *pSelect; /* When the expression is a sub-select. Also the
+ ** right side of "<expr> IN (<select>)" */
+ Table *pTab; /* Table for OP_Column expressions. */
+/* Schema *pSchema; */
+#if defined(SQLITE_TEST) || SQLITE_MAX_EXPR_DEPTH>0
+ int nHeight; /* Height of the tree headed by this node */
+#endif
+};
+
+/*
+** The following are the meanings of bits in the Expr.flags field.
+*/
+#define EP_FromJoin 0x0001 /* Originated in ON or USING clause of a join */
+#define EP_Agg 0x0002 /* Contains one or more aggregate functions */
+#define EP_Resolved 0x0004 /* IDs have been resolved to COLUMNs */
+#define EP_Error 0x0008 /* Expression contains one or more errors */
+#define EP_Distinct 0x0010 /* Aggregate function with DISTINCT keyword */
+#define EP_VarSelect 0x0020 /* pSelect is correlated, not constant */
+#define EP_Dequoted 0x0040 /* True if the string has been dequoted */
+#define EP_InfixFunc 0x0080 /* True for an infix function: LIKE, GLOB, etc */
+#define EP_ExpCollate 0x0100 /* Collating sequence specified explicitly */
+#define EP_AnyAff 0x0200 /* Can take a cached column of any affinity */
+#define EP_FixedDest 0x0400 /* Result needed in a specific register */
+
+/*
+** These macros can be used to test, set, or clear bits in the
+** Expr.flags field.
+*/
+#define ExprHasProperty(E,P) (((E)->flags&(P))==(P))
+#define ExprHasAnyProperty(E,P) (((E)->flags&(P))!=0)
+#define ExprSetProperty(E,P) (E)->flags|=(P)
+#define ExprClearProperty(E,P) (E)->flags&=~(P)
+
+/*
+** A list of expressions. Each expression may optionally have a
+** name. An expr/name combination can be used in several ways, such
+** as the list of "expr AS ID" fields following a "SELECT" or in the
+** list of "ID = expr" items in an UPDATE. A list of expressions can
+** also be used as the argument to a function, in which case the a.zName
+** field is not used.
+*/
+struct ExprList {
+ int nExpr; /* Number of expressions on the list */
+ int nAlloc; /* Number of entries allocated below */
+ int iECursor; /* VDBE Cursor associated with this ExprList */
+ struct ExprList_item {
+ Expr *pExpr; /* The list of expressions */
+ char *zName; /* Token associated with this expression */
+ u8 sortOrder; /* 1 for DESC or 0 for ASC */
+ u8 isAgg; /* True if this is an aggregate like count(*) */
+ u8 done; /* A flag to indicate when processing is finished */
+ } *a; /* One entry for each expression */
+};
+
+/*
+** An instance of this structure can hold a simple list of identifiers,
+** such as the list "a,b,c" in the following statements:
+**
+** INSERT INTO t(a,b,c) VALUES ...;
+** CREATE INDEX idx ON t(a,b,c);
+** CREATE TRIGGER trig BEFORE UPDATE ON t(a,b,c) ...;
+**
+** The IdList.a.idx field is used when the IdList represents the list of
+** column names after a table name in an INSERT statement. In the statement
+**
+** INSERT INTO t(a,b,c) ...
+**
+** If "a" is the k-th column of table "t", then IdList.a[0].idx==k.
+*/
+struct IdList {
+ struct IdList_item {
+ char *zName; /* Name of the identifier */
+ int idx; /* Index in some Table.aCol[] of a column named zName */
+ } *a;
+ int nId; /* Number of identifiers on the list */
+ int nAlloc; /* Number of entries allocated for a[] below */
+};
+
+/*
+** The bitmask datatype defined below is used for various optimizations.
+**
+** Changing this from a 64-bit to a 32-bit type limits the number of
+** tables in a join to 32 instead of 64. But it also reduces the size
+** of the library by 738 bytes on ix86.
+*/
+typedef u64 Bitmask;
+
+/*
+** The following structure describes the FROM clause of a SELECT statement.
+** Each table or subquery in the FROM clause is a separate element of
+** the SrcList.a[] array.
+**
+** With the addition of multiple database support, the following structure
+** can also be used to describe a particular table such as the table that
+** is modified by an INSERT, DELETE, or UPDATE statement. In standard SQL,
+** such a table must be a simple name: ID. But in SQLite, the table can
+** now be identified by a database name, a dot, then the table name: ID.ID.
+**
+** The jointype starts out showing the join type between the current table
+** and the next table on the list. The parser builds the list this way.
+** But sqlite3SrcListShiftJoinType() later shifts the jointypes so that each
+** jointype expresses the join between the table and the previous table.
+*/
+struct SrcList {
+ i16 nSrc; /* Number of tables or subqueries in the FROM clause */
+ i16 nAlloc; /* Number of entries allocated in a[] below */
+ struct SrcList_item {
+ char *zDatabase; /* Name of database holding this table */
+ char *zName; /* Name of the table */
+ char *zAlias; /* The "B" part of a "A AS B" phrase. zName is the "A" */
+ Table *pTab; /* An SQL table corresponding to zName */
+ Select *pSelect; /* A SELECT statement used in place of a table name */
+ u8 isPopulated; /* Temporary table associated with SELECT is populated */
+ u8 jointype; /* Type of join between this able and the previous */
+ int iCursor; /* The VDBE cursor number used to access this table */
+ Expr *pOn; /* The ON clause of a join */
+ IdList *pUsing; /* The USING clause of a join */
+ Bitmask colUsed; /* Bit N (1<<N) set if column N or pTab is used */
+ } a[1]; /* One entry for each identifier on the list */
+};
+
+/*
+** Permitted values of the SrcList.a.jointype field
+*/
+#define JT_INNER 0x0001 /* Any kind of inner or cross join */
+#define JT_CROSS 0x0002 /* Explicit use of the CROSS keyword */
+#define JT_NATURAL 0x0004 /* True for a "natural" join */
+#define JT_LEFT 0x0008 /* Left outer join */
+#define JT_RIGHT 0x0010 /* Right outer join */
+#define JT_OUTER 0x0020 /* The "OUTER" keyword is present */
+#define JT_ERROR 0x0040 /* unknown or unsupported join type */
+
+/*
+** For each nested loop in a WHERE clause implementation, the WhereInfo
+** structure contains a single instance of this structure. This structure
+** is intended to be private the the where.c module and should not be
+** access or modified by other modules.
+**
+** The pIdxInfo and pBestIdx fields are used to help pick the best
+** index on a virtual table. The pIdxInfo pointer contains indexing
+** information for the i-th table in the FROM clause before reordering.
+** All the pIdxInfo pointers are freed by whereInfoFree() in where.c.
+** The pBestIdx pointer is a copy of pIdxInfo for the i-th table after
+** FROM clause ordering. This is a little confusing so I will repeat
+** it in different words. WhereInfo.a[i].pIdxInfo is index information
+** for WhereInfo.pTabList.a[i]. WhereInfo.a[i].pBestInfo is the
+** index information for the i-th loop of the join. pBestInfo is always
+** either NULL or a copy of some pIdxInfo. So for cleanup it is
+** sufficient to free all of the pIdxInfo pointers.
+**
+*/
+struct WhereLevel {
+ int iFrom; /* Which entry in the FROM clause */
+ int flags; /* Flags associated with this level */
+ int iMem; /* First memory cell used by this level */
+ int iLeftJoin; /* Memory cell used to implement LEFT OUTER JOIN */
+ Index *pIdx; /* Index used. NULL if no index */
+ int iTabCur; /* The VDBE cursor used to access the table */
+ int iIdxCur; /* The VDBE cursor used to acesss pIdx */
+ int brk; /* Jump here to break out of the loop */
+ int nxt; /* Jump here to start the next IN combination */
+ int cont; /* Jump here to continue with the next loop cycle */
+ int top; /* First instruction of interior of the loop */
+ int op, p1, p2; /* Opcode used to terminate the loop */
+ int nEq; /* Number of == or IN constraints on this loop */
+ int nIn; /* Number of IN operators constraining this loop */
+ struct InLoop {
+ int iCur; /* The VDBE cursor used by this IN operator */
+ int topAddr; /* Top of the IN loop */
+ } *aInLoop; /* Information about each nested IN operator */
+ sqlite3_index_info *pBestIdx; /* Index information for this level */
+
+ /* The following field is really not part of the current level. But
+ ** we need a place to cache index information for each table in the
+ ** FROM clause and the WhereLevel structure is a convenient place.
+ */
+ sqlite3_index_info *pIdxInfo; /* Index info for n-th source table */
+};
+
+/*
+** Flags appropriate for the wflags parameter of sqlite3WhereBegin().
+*/
+#define WHERE_ORDERBY_NORMAL 0 /* No-op */
+#define WHERE_ORDERBY_MIN 1 /* ORDER BY processing for min() func */
+#define WHERE_ORDERBY_MAX 2 /* ORDER BY processing for max() func */
+#define WHERE_ONEPASS_DESIRED 4 /* Want to do one-pass UPDATE/DELETE */
+
+/*
+** The WHERE clause processing routine has two halves. The
+** first part does the start of the WHERE loop and the second
+** half does the tail of the WHERE loop. An instance of
+** this structure is returned by the first half and passed
+** into the second half to give some continuity.
+*/
+struct WhereInfo {
+ Parse *pParse; /* Parsing and code generating context */
+ u8 okOnePass; /* Ok to use one-pass algorithm for UPDATE or DELETE */
+ SrcList *pTabList; /* List of tables in the join */
+ int iTop; /* The very beginning of the WHERE loop */
+ int iContinue; /* Jump here to continue with next record */
+ int iBreak; /* Jump here to break out of the loop */
+ int nLevel; /* Number of nested loop */
+ sqlite3_index_info **apInfo; /* Array of pointers to index info structures */
+ WhereLevel a[1]; /* Information about each nest loop in the WHERE */
+};
+
+/*
+** A NameContext defines a context in which to resolve table and column
+** names. The context consists of a list of tables (the pSrcList) field and
+** a list of named expression (pEList). The named expression list may
+** be NULL. The pSrc corresponds to the FROM clause of a SELECT or
+** to the table being operated on by INSERT, UPDATE, or DELETE. The
+** pEList corresponds to the result set of a SELECT and is NULL for
+** other statements.
+**
+** NameContexts can be nested. When resolving names, the inner-most
+** context is searched first. If no match is found, the next outer
+** context is checked. If there is still no match, the next context
+** is checked. This process continues until either a match is found
+** or all contexts are check. When a match is found, the nRef member of
+** the context containing the match is incremented.
+**
+** Each subquery gets a new NameContext. The pNext field points to the
+** NameContext in the parent query. Thus the process of scanning the
+** NameContext list corresponds to searching through successively outer
+** subqueries looking for a match.
+*/
+struct NameContext {
+ Parse *pParse; /* The parser */
+ SrcList *pSrcList; /* One or more tables used to resolve names */
+ ExprList *pEList; /* Optional list of named expressions */
+ int nRef; /* Number of names resolved by this context */
+ int nErr; /* Number of errors encountered while resolving names */
+ u8 allowAgg; /* Aggregate functions allowed here */
+ u8 hasAgg; /* True if aggregates are seen */
+ u8 isCheck; /* True if resolving names in a CHECK constraint */
+ int nDepth; /* Depth of subquery recursion. 1 for no recursion */
+ AggInfo *pAggInfo; /* Information about aggregates at this level */
+ NameContext *pNext; /* Next outer name context. NULL for outermost */
+};
+
+/*
+** An instance of the following structure contains all information
+** needed to generate code for a single SELECT statement.
+**
+** nLimit is set to -1 if there is no LIMIT clause. nOffset is set to 0.
+** If there is a LIMIT clause, the parser sets nLimit to the value of the
+** limit and nOffset to the value of the offset (or 0 if there is not
+** offset). But later on, nLimit and nOffset become the memory locations
+** in the VDBE that record the limit and offset counters.
+**
+** addrOpenEphm[] entries contain the address of OP_OpenEphemeral opcodes.
+** These addresses must be stored so that we can go back and fill in
+** the P4_KEYINFO and P2 parameters later. Neither the KeyInfo nor
+** the number of columns in P2 can be computed at the same time
+** as the OP_OpenEphm instruction is coded because not
+** enough information about the compound query is known at that point.
+** The KeyInfo for addrOpenTran[0] and [1] contains collating sequences
+** for the result set. The KeyInfo for addrOpenTran[2] contains collating
+** sequences for the ORDER BY clause.
+*/
+struct Select {
+ ExprList *pEList; /* The fields of the result */
+ u8 op; /* One of: TK_UNION TK_ALL TK_INTERSECT TK_EXCEPT */
+ u8 isDistinct; /* True if the DISTINCT keyword is present */
+ u8 isResolved; /* True once sqlite3SelectResolve() has run. */
+ u8 isAgg; /* True if this is an aggregate query */
+ u8 usesEphm; /* True if uses an OpenEphemeral opcode */
+ u8 disallowOrderBy; /* Do not allow an ORDER BY to be attached if TRUE */
+ char affinity; /* MakeRecord with this affinity for SRT_Set */
+ SrcList *pSrc; /* The FROM clause */
+ Expr *pWhere; /* The WHERE clause */
+ ExprList *pGroupBy; /* The GROUP BY clause */
+ Expr *pHaving; /* The HAVING clause */
+ ExprList *pOrderBy; /* The ORDER BY clause */
+ Select *pPrior; /* Prior select in a compound select statement */
+ Select *pNext; /* Next select to the left in a compound */
+ Select *pRightmost; /* Right-most select in a compound select statement */
+ Expr *pLimit; /* LIMIT expression. NULL means not used. */
+ Expr *pOffset; /* OFFSET expression. NULL means not used. */
+ int iLimit, iOffset; /* Memory registers holding LIMIT & OFFSET counters */
+ int addrOpenEphm[3]; /* OP_OpenEphem opcodes related to this select */
+};
+
+/*
+** The results of a select can be distributed in several ways.
+*/
+#define SRT_Union 1 /* Store result as keys in an index */
+#define SRT_Except 2 /* Remove result from a UNION index */
+#define SRT_Exists 3 /* Store 1 if the result is not empty */
+#define SRT_Discard 4 /* Do not save the results anywhere */
+
+/* The ORDER BY clause is ignored for all of the above */
+#define IgnorableOrderby(X) ((X->eDest)<=SRT_Discard)
+
+#define SRT_Callback 5 /* Invoke a callback with each row of result */
+#define SRT_Mem 6 /* Store result in a memory cell */
+#define SRT_Set 7 /* Store non-null results as keys in an index */
+#define SRT_Table 8 /* Store result as data with an automatic rowid */
+#define SRT_EphemTab 9 /* Create transient tab and store like SRT_Table */
+#define SRT_Subroutine 10 /* Call a subroutine to handle results */
+
+/*
+** A structure used to customize the behaviour of sqlite3Select(). See
+** comments above sqlite3Select() for details.
+*/
+typedef struct SelectDest SelectDest;
+struct SelectDest {
+ u8 eDest; /* How to dispose of the results */
+ u8 affinity; /* Affinity used when eDest==SRT_Set */
+ int iParm; /* A parameter used by the eDest disposal method */
+ int iMem; /* Base register where results are written */
+ int nMem; /* Number of registers allocated */
+};
+
+/*
+** An SQL parser context. A copy of this structure is passed through
+** the parser and down into all the parser action routine in order to
+** carry around information that is global to the entire parse.
+**
+** The structure is divided into two parts. When the parser and code
+** generate call themselves recursively, the first part of the structure
+** is constant but the second part is reset at the beginning and end of
+** each recursion.
+**
+** The nTableLock and aTableLock variables are only used if the shared-cache
+** feature is enabled (if sqlite3Tsd()->useSharedData is true). They are
+** used to store the set of table-locks required by the statement being
+** compiled. Function sqlite3TableLock() is used to add entries to the
+** list.
+*/
+struct Parse {
+ sqlite3 *db; /* The main database structure */
+ int rc; /* Return code from execution */
+ char *zErrMsg; /* An error message */
+ Vdbe *pVdbe; /* An engine for executing database bytecode */
+ u8 colNamesSet; /* TRUE after OP_ColumnName has been issued to pVdbe */
+ u8 nameClash; /* A permanent table name clashes with temp table name */
+ u8 checkSchema; /* Causes schema cookie check after an error */
+ u8 nested; /* Number of nested calls to the parser/code generator */
+ u8 parseError; /* True after a parsing error. Ticket #1794 */
+ u8 nTempReg; /* Number of temporary registers in aTempReg[] */
+ u8 nTempInUse; /* Number of aTempReg[] currently checked out */
+ int aTempReg[8]; /* Holding area for temporary registers */
+ int nRangeReg; /* Size of the temporary register block */
+ int iRangeReg; /* First register in temporary register block */
+ int nErr; /* Number of errors seen */
+ int nTab; /* Number of previously allocated VDBE cursors */
+ int nMem; /* Number of memory cells used so far */
+ int nSet; /* Number of sets used so far */
+ int ckBase; /* Base register of data during check constraints */
+ int disableColCache; /* True to disable adding to column cache */
+ int nColCache; /* Number of entries in the column cache */
+ int iColCache; /* Next entry of the cache to replace */
+ struct yColCache {
+ int iTable; /* Table cursor number */
+ int iColumn; /* Table column number */
+ char affChange; /* True if this register has had an affinity change */
+ int iReg; /* Register holding value of this column */
+ } aColCache[10]; /* One for each valid column cache entry */
+ u32 writeMask; /* Start a write transaction on these databases */
+ u32 cookieMask; /* Bitmask of schema verified databases */
+ int cookieGoto; /* Address of OP_Goto to cookie verifier subroutine */
+ int cookieValue[SQLITE_MAX_ATTACHED+2]; /* Values of cookies to verify */
+#ifndef SQLITE_OMIT_SHARED_CACHE
+ int nTableLock; /* Number of locks in aTableLock */
+ TableLock *aTableLock; /* Required table locks for shared-cache mode */
+#endif
+ int regRowid; /* Register holding rowid of CREATE TABLE entry */
+ int regRoot; /* Register holding root page number for new objects */
+
+ /* Above is constant between recursions. Below is reset before and after
+ ** each recursion */
+
+ int nVar; /* Number of '?' variables seen in the SQL so far */
+ int nVarExpr; /* Number of used slots in apVarExpr[] */
+ int nVarExprAlloc; /* Number of allocated slots in apVarExpr[] */
+ Expr **apVarExpr; /* Pointers to :aaa and $aaaa wildcard expressions */
+ u8 explain; /* True if the EXPLAIN flag is found on the query */
+ Token sErrToken; /* The token at which the error occurred */
+ Token sNameToken; /* Token with unqualified schema object name */
+ Token sLastToken; /* The last token parsed */
+ const char *zSql; /* All SQL text */
+ const char *zTail; /* All SQL text past the last semicolon parsed */
+ Table *pNewTable; /* A table being constructed by CREATE TABLE */
+ Trigger *pNewTrigger; /* Trigger under construct by a CREATE TRIGGER */
+ TriggerStack *trigStack; /* Trigger actions being coded */
+ const char *zAuthContext; /* The 6th parameter to db->xAuth callbacks */
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ Token sArg; /* Complete text of a module argument */
+ u8 declareVtab; /* True if inside sqlite3_declare_vtab() */
+ int nVtabLock; /* Number of virtual tables to lock */
+ Table **apVtabLock; /* Pointer to virtual tables needing locking */
+#endif
+#if defined(SQLITE_TEST) || SQLITE_MAX_EXPR_DEPTH>0
+ int nHeight; /* Expression tree height of current sub-select */
+#endif
+};
+
+#ifdef SQLITE_OMIT_VIRTUALTABLE
+ #define IN_DECLARE_VTAB 0
+#else
+ #define IN_DECLARE_VTAB (pParse->declareVtab)
+#endif
+
+/*
+** An instance of the following structure can be declared on a stack and used
+** to save the Parse.zAuthContext value so that it can be restored later.
+*/
+struct AuthContext {
+ const char *zAuthContext; /* Put saved Parse.zAuthContext here */
+ Parse *pParse; /* The Parse structure */
+};
+
+/*
+** Bitfield flags for P2 value in OP_Insert and OP_Delete
+*/
+#define OPFLAG_NCHANGE 1 /* Set to update db->nChange */
+#define OPFLAG_LASTROWID 2 /* Set to update db->lastRowid */
+#define OPFLAG_ISUPDATE 4 /* This OP_Insert is an sql UPDATE */
+#define OPFLAG_APPEND 8 /* This is likely to be an append */
+
+/*
+ * Each trigger present in the database schema is stored as an instance of
+ * struct Trigger.
+ *
+ * Pointers to instances of struct Trigger are stored in two ways.
+ * 1. In the "trigHash" hash table (part of the sqlite3* that represents the
+ * database). This allows Trigger structures to be retrieved by name.
+ * 2. All triggers associated with a single table form a linked list, using the
+ * pNext member of struct Trigger. A pointer to the first element of the
+ * linked list is stored as the "pTrigger" member of the associated
+ * struct Table.
+ *
+ * The "step_list" member points to the first element of a linked list
+ * containing the SQL statements specified as the trigger program.
+ */
+struct Trigger {
+ char *name; /* The name of the trigger */
+ char *table; /* The table or view to which the trigger applies */
+ u8 op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT */
+ u8 tr_tm; /* One of TRIGGER_BEFORE, TRIGGER_AFTER */
+ Expr *pWhen; /* The WHEN clause of the expresion (may be NULL) */
+ IdList *pColumns; /* If this is an UPDATE OF <column-list> trigger,
+ the <column-list> is stored here */
+ Token nameToken; /* Token containing zName. Use during parsing only */
+ Schema *pSchema; /* Schema containing the trigger */
+ Schema *pTabSchema; /* Schema containing the table */
+ TriggerStep *step_list; /* Link list of trigger program steps */
+ Trigger *pNext; /* Next trigger associated with the table */
+};
+
+/*
+** A trigger is either a BEFORE or an AFTER trigger. The following constants
+** determine which.
+**
+** If there are multiple triggers, you might of some BEFORE and some AFTER.
+** In that cases, the constants below can be ORed together.
+*/
+#define TRIGGER_BEFORE 1
+#define TRIGGER_AFTER 2
+
+/*
+ * An instance of struct TriggerStep is used to store a single SQL statement
+ * that is a part of a trigger-program.
+ *
+ * Instances of struct TriggerStep are stored in a singly linked list (linked
+ * using the "pNext" member) referenced by the "step_list" member of the
+ * associated struct Trigger instance. The first element of the linked list is
+ * the first step of the trigger-program.
+ *
+ * The "op" member indicates whether this is a "DELETE", "INSERT", "UPDATE" or
+ * "SELECT" statement. The meanings of the other members is determined by the
+ * value of "op" as follows:
+ *
+ * (op == TK_INSERT)
+ * orconf -> stores the ON CONFLICT algorithm
+ * pSelect -> If this is an INSERT INTO ... SELECT ... statement, then
+ * this stores a pointer to the SELECT statement. Otherwise NULL.
+ * target -> A token holding the name of the table to insert into.
+ * pExprList -> If this is an INSERT INTO ... VALUES ... statement, then
+ * this stores values to be inserted. Otherwise NULL.
+ * pIdList -> If this is an INSERT INTO ... (<column-names>) VALUES ...
+ * statement, then this stores the column-names to be
+ * inserted into.
+ *
+ * (op == TK_DELETE)
+ * target -> A token holding the name of the table to delete from.
+ * pWhere -> The WHERE clause of the DELETE statement if one is specified.
+ * Otherwise NULL.
+ *
+ * (op == TK_UPDATE)
+ * target -> A token holding the name of the table to update rows of.
+ * pWhere -> The WHERE clause of the UPDATE statement if one is specified.
+ * Otherwise NULL.
+ * pExprList -> A list of the columns to update and the expressions to update
+ * them to. See sqlite3Update() documentation of "pChanges"
+ * argument.
+ *
+ */
+struct TriggerStep {
+ int op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT, TK_SELECT */
+ int orconf; /* OE_Rollback etc. */
+ Trigger *pTrig; /* The trigger that this step is a part of */
+
+ Select *pSelect; /* Valid for SELECT and sometimes
+ INSERT steps (when pExprList == 0) */
+ Token target; /* Valid for DELETE, UPDATE, INSERT steps */
+ Expr *pWhere; /* Valid for DELETE, UPDATE steps */
+ ExprList *pExprList; /* Valid for UPDATE statements and sometimes
+ INSERT steps (when pSelect == 0) */
+ IdList *pIdList; /* Valid for INSERT statements only */
+ TriggerStep *pNext; /* Next in the link-list */
+ TriggerStep *pLast; /* Last element in link-list. Valid for 1st elem only */
+};
+
+/*
+ * An instance of struct TriggerStack stores information required during code
+ * generation of a single trigger program. While the trigger program is being
+ * coded, its associated TriggerStack instance is pointed to by the
+ * "pTriggerStack" member of the Parse structure.
+ *
+ * The pTab member points to the table that triggers are being coded on. The
+ * newIdx member contains the index of the vdbe cursor that points at the temp
+ * table that stores the new.* references. If new.* references are not valid
+ * for the trigger being coded (for example an ON DELETE trigger), then newIdx
+ * is set to -1. The oldIdx member is analogous to newIdx, for old.* references.
+ *
+ * The ON CONFLICT policy to be used for the trigger program steps is stored
+ * as the orconf member. If this is OE_Default, then the ON CONFLICT clause
+ * specified for individual triggers steps is used.
+ *
+ * struct TriggerStack has a "pNext" member, to allow linked lists to be
+ * constructed. When coding nested triggers (triggers fired by other triggers)
+ * each nested trigger stores its parent trigger's TriggerStack as the "pNext"
+ * pointer. Once the nested trigger has been coded, the pNext value is restored
+ * to the pTriggerStack member of the Parse stucture and coding of the parent
+ * trigger continues.
+ *
+ * Before a nested trigger is coded, the linked list pointed to by the
+ * pTriggerStack is scanned to ensure that the trigger is not about to be coded
+ * recursively. If this condition is detected, the nested trigger is not coded.
+ */
+struct TriggerStack {
+ Table *pTab; /* Table that triggers are currently being coded on */
+ int newIdx; /* Index of vdbe cursor to "new" temp table */
+ int oldIdx; /* Index of vdbe cursor to "old" temp table */
+ u32 newColMask;
+ u32 oldColMask;
+ int orconf; /* Current orconf policy */
+ int ignoreJump; /* where to jump to for a RAISE(IGNORE) */
+ Trigger *pTrigger; /* The trigger currently being coded */
+ TriggerStack *pNext; /* Next trigger down on the trigger stack */
+};
+
+/*
+** The following structure contains information used by the sqliteFix...
+** routines as they walk the parse tree to make database references
+** explicit.
+*/
+typedef struct DbFixer DbFixer;
+struct DbFixer {
+ Parse *pParse; /* The parsing context. Error messages written here */
+ const char *zDb; /* Make sure all objects are contained in this database */
+ const char *zType; /* Type of the container - used for error messages */
+ const Token *pName; /* Name of the container - used for error messages */
+};
+
+/*
+** An objected used to accumulate the text of a string where we
+** do not necessarily know how big the string will be in the end.
+*/
+struct StrAccum {
+ char *zBase; /* A base allocation. Not from malloc. */
+ char *zText; /* The string collected so far */
+ int nChar; /* Length of the string so far */
+ int nAlloc; /* Amount of space allocated in zText */
+ int mxAlloc; /* Maximum allowed string length */
+ u8 mallocFailed; /* Becomes true if any memory allocation fails */
+ u8 useMalloc; /* True if zText is enlargable using realloc */
+ u8 tooBig; /* Becomes true if string size exceeds limits */
+};
+
+/*
+** A pointer to this structure is used to communicate information
+** from sqlite3Init and OP_ParseSchema into the sqlite3InitCallback.
+*/
+typedef struct {
+ sqlite3 *db; /* The database being initialized */
+ int iDb; /* 0 for main database. 1 for TEMP, 2.. for ATTACHed */
+ char **pzErrMsg; /* Error message stored here */
+ int rc; /* Result code stored here */
+} InitData;
+
+/*
+** Assuming zIn points to the first byte of a UTF-8 character,
+** advance zIn to point to the first byte of the next UTF-8 character.
+*/
+#define SQLITE_SKIP_UTF8(zIn) { \
+ if( (*(zIn++))>=0xc0 ){ \
+ while( (*zIn & 0xc0)==0x80 ){ zIn++; } \
+ } \
+}
+
+/*
+** The SQLITE_CORRUPT_BKPT macro can be either a constant (for production
+** builds) or a function call (for debugging). If it is a function call,
+** it allows the operator to set a breakpoint at the spot where database
+** corruption is first detected.
+*/
+#ifdef SQLITE_DEBUG
+SQLITE_PRIVATE int sqlite3Corrupt(void);
+# define SQLITE_CORRUPT_BKPT sqlite3Corrupt()
+# define DEBUGONLY(X) X
+#else
+# define SQLITE_CORRUPT_BKPT SQLITE_CORRUPT
+# define DEBUGONLY(X)
+#endif
+
+/*
+** Internal function prototypes
+*/
+SQLITE_PRIVATE int sqlite3StrICmp(const char *, const char *);
+SQLITE_PRIVATE int sqlite3StrNICmp(const char *, const char *, int);
+SQLITE_PRIVATE int sqlite3IsNumber(const char*, int*, u8);
+
+SQLITE_PRIVATE void *sqlite3MallocZero(unsigned);
+SQLITE_PRIVATE void *sqlite3DbMallocZero(sqlite3*, unsigned);
+SQLITE_PRIVATE void *sqlite3DbMallocRaw(sqlite3*, unsigned);
+SQLITE_PRIVATE char *sqlite3StrDup(const char*);
+SQLITE_PRIVATE char *sqlite3StrNDup(const char*, int);
+SQLITE_PRIVATE char *sqlite3DbStrDup(sqlite3*,const char*);
+SQLITE_PRIVATE char *sqlite3DbStrNDup(sqlite3*,const char*, int);
+SQLITE_PRIVATE void *sqlite3DbReallocOrFree(sqlite3 *, void *, int);
+SQLITE_PRIVATE void *sqlite3DbRealloc(sqlite3 *, void *, int);
+SQLITE_PRIVATE int sqlite3MallocSize(void *);
+
+SQLITE_PRIVATE int sqlite3IsNaN(double);
+
+SQLITE_PRIVATE char *sqlite3MPrintf(sqlite3*,const char*, ...);
+SQLITE_PRIVATE char *sqlite3VMPrintf(sqlite3*,const char*, va_list);
+#if defined(SQLITE_TEST) || defined(SQLITE_DEBUG)
+SQLITE_PRIVATE void sqlite3DebugPrintf(const char*, ...);
+#endif
+#if defined(SQLITE_TEST)
+SQLITE_PRIVATE void *sqlite3TextToPtr(const char*);
+#endif
+SQLITE_PRIVATE void sqlite3SetString(char **, ...);
+SQLITE_PRIVATE void sqlite3ErrorMsg(Parse*, const char*, ...);
+SQLITE_PRIVATE void sqlite3ErrorClear(Parse*);
+SQLITE_PRIVATE void sqlite3Dequote(char*);
+SQLITE_PRIVATE void sqlite3DequoteExpr(sqlite3*, Expr*);
+SQLITE_PRIVATE int sqlite3KeywordCode(const unsigned char*, int);
+SQLITE_PRIVATE int sqlite3RunParser(Parse*, const char*, char **);
+SQLITE_PRIVATE void sqlite3FinishCoding(Parse*);
+SQLITE_PRIVATE int sqlite3GetTempReg(Parse*);
+SQLITE_PRIVATE void sqlite3ReleaseTempReg(Parse*,int);
+SQLITE_PRIVATE int sqlite3GetTempRange(Parse*,int);
+SQLITE_PRIVATE void sqlite3ReleaseTempRange(Parse*,int,int);
+SQLITE_PRIVATE Expr *sqlite3Expr(sqlite3*, int, Expr*, Expr*, const Token*);
+SQLITE_PRIVATE Expr *sqlite3PExpr(Parse*, int, Expr*, Expr*, const Token*);
+SQLITE_PRIVATE Expr *sqlite3RegisterExpr(Parse*,Token*);
+SQLITE_PRIVATE Expr *sqlite3ExprAnd(sqlite3*,Expr*, Expr*);
+SQLITE_PRIVATE void sqlite3ExprSpan(Expr*,Token*,Token*);
+SQLITE_PRIVATE Expr *sqlite3ExprFunction(Parse*,ExprList*, Token*);
+SQLITE_PRIVATE void sqlite3ExprAssignVarNumber(Parse*, Expr*);
+SQLITE_PRIVATE void sqlite3ExprDelete(Expr*);
+SQLITE_PRIVATE ExprList *sqlite3ExprListAppend(Parse*,ExprList*,Expr*,Token*);
+SQLITE_PRIVATE void sqlite3ExprListDelete(ExprList*);
+SQLITE_PRIVATE int sqlite3Init(sqlite3*, char**);
+SQLITE_PRIVATE int sqlite3InitCallback(void*, int, char**, char**);
+SQLITE_PRIVATE void sqlite3Pragma(Parse*,Token*,Token*,Token*,int);
+SQLITE_PRIVATE void sqlite3ResetInternalSchema(sqlite3*, int);
+SQLITE_PRIVATE void sqlite3BeginParse(Parse*,int);
+SQLITE_PRIVATE void sqlite3CommitInternalChanges(sqlite3*);
+SQLITE_PRIVATE Table *sqlite3ResultSetOfSelect(Parse*,char*,Select*);
+SQLITE_PRIVATE void sqlite3OpenMasterTable(Parse *, int);
+SQLITE_PRIVATE void sqlite3StartTable(Parse*,Token*,Token*,int,int,int,int);
+SQLITE_PRIVATE void sqlite3AddColumn(Parse*,Token*);
+SQLITE_PRIVATE void sqlite3AddNotNull(Parse*, int);
+SQLITE_PRIVATE void sqlite3AddPrimaryKey(Parse*, ExprList*, int, int, int);
+SQLITE_PRIVATE void sqlite3AddCheckConstraint(Parse*, Expr*);
+SQLITE_PRIVATE void sqlite3AddColumnType(Parse*,Token*);
+SQLITE_PRIVATE void sqlite3AddDefaultValue(Parse*,Expr*);
+SQLITE_PRIVATE void sqlite3AddCollateType(Parse*, Token*);
+SQLITE_PRIVATE void sqlite3EndTable(Parse*,Token*,Token*,Select*);
+
+SQLITE_PRIVATE Bitvec *sqlite3BitvecCreate(u32);
+SQLITE_PRIVATE int sqlite3BitvecTest(Bitvec*, u32);
+SQLITE_PRIVATE int sqlite3BitvecSet(Bitvec*, u32);
+SQLITE_PRIVATE void sqlite3BitvecClear(Bitvec*, u32);
+SQLITE_PRIVATE void sqlite3BitvecDestroy(Bitvec*);
+SQLITE_PRIVATE int sqlite3BitvecBuiltinTest(int,int*);
+
+SQLITE_PRIVATE void sqlite3CreateView(Parse*,Token*,Token*,Token*,Select*,int,int);
+
+#if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
+SQLITE_PRIVATE int sqlite3ViewGetColumnNames(Parse*,Table*);
+#else
+# define sqlite3ViewGetColumnNames(A,B) 0
+#endif
+
+SQLITE_PRIVATE void sqlite3DropTable(Parse*, SrcList*, int, int);
+SQLITE_PRIVATE void sqlite3DeleteTable(Table*);
+SQLITE_PRIVATE void sqlite3Insert(Parse*, SrcList*, ExprList*, Select*, IdList*, int);
+SQLITE_PRIVATE void *sqlite3ArrayAllocate(sqlite3*,void*,int,int,int*,int*,int*);
+SQLITE_PRIVATE IdList *sqlite3IdListAppend(sqlite3*, IdList*, Token*);
+SQLITE_PRIVATE int sqlite3IdListIndex(IdList*,const char*);
+SQLITE_PRIVATE SrcList *sqlite3SrcListAppend(sqlite3*, SrcList*, Token*, Token*);
+SQLITE_PRIVATE SrcList *sqlite3SrcListAppendFromTerm(Parse*, SrcList*, Token*, Token*, Token*,
+ Select*, Expr*, IdList*);
+SQLITE_PRIVATE void sqlite3SrcListShiftJoinType(SrcList*);
+SQLITE_PRIVATE void sqlite3SrcListAssignCursors(Parse*, SrcList*);
+SQLITE_PRIVATE void sqlite3IdListDelete(IdList*);
+SQLITE_PRIVATE void sqlite3SrcListDelete(SrcList*);
+SQLITE_PRIVATE void sqlite3CreateIndex(Parse*,Token*,Token*,SrcList*,ExprList*,int,Token*,
+ Token*, int, int);
+SQLITE_PRIVATE void sqlite3DropIndex(Parse*, SrcList*, int);
+SQLITE_PRIVATE int sqlite3Select(Parse*, Select*, SelectDest*, Select*, int, int*, char *aff);
+SQLITE_PRIVATE Select *sqlite3SelectNew(Parse*,ExprList*,SrcList*,Expr*,ExprList*,
+ Expr*,ExprList*,int,Expr*,Expr*);
+SQLITE_PRIVATE void sqlite3SelectDelete(Select*);
+SQLITE_PRIVATE Table *sqlite3SrcListLookup(Parse*, SrcList*);
+SQLITE_PRIVATE int sqlite3IsReadOnly(Parse*, Table*, int);
+SQLITE_PRIVATE void sqlite3OpenTable(Parse*, int iCur, int iDb, Table*, int);
+SQLITE_PRIVATE void sqlite3DeleteFrom(Parse*, SrcList*, Expr*);
+SQLITE_PRIVATE void sqlite3Update(Parse*, SrcList*, ExprList*, Expr*, int);
+SQLITE_PRIVATE WhereInfo *sqlite3WhereBegin(Parse*, SrcList*, Expr*, ExprList**, u8);
+SQLITE_PRIVATE void sqlite3WhereEnd(WhereInfo*);
+SQLITE_PRIVATE int sqlite3ExprCodeGetColumn(Parse*, Table*, int, int, int, int);
+SQLITE_PRIVATE void sqlite3ExprCodeMove(Parse*, int, int);
+SQLITE_PRIVATE void sqlite3ExprClearColumnCache(Parse*, int);
+SQLITE_PRIVATE void sqlite3ExprCacheAffinityChange(Parse*, int, int);
+SQLITE_PRIVATE int sqlite3ExprWritableRegister(Parse*,int,int);
+SQLITE_PRIVATE void sqlite3ExprHardCopy(Parse*,int,int);
+SQLITE_PRIVATE int sqlite3ExprCode(Parse*, Expr*, int);
+SQLITE_PRIVATE int sqlite3ExprCodeTemp(Parse*, Expr*, int*);
+SQLITE_PRIVATE int sqlite3ExprCodeTarget(Parse*, Expr*, int);
+SQLITE_PRIVATE int sqlite3ExprCodeAndCache(Parse*, Expr*, int);
+SQLITE_PRIVATE void sqlite3ExprCodeConstants(Parse*, Expr*);
+SQLITE_PRIVATE int sqlite3ExprCodeExprList(Parse*, ExprList*, int, int);
+SQLITE_PRIVATE void sqlite3ExprIfTrue(Parse*, Expr*, int, int);
+SQLITE_PRIVATE void sqlite3ExprIfFalse(Parse*, Expr*, int, int);
+SQLITE_PRIVATE Table *sqlite3FindTable(sqlite3*,const char*, const char*);
+SQLITE_PRIVATE Table *sqlite3LocateTable(Parse*,int isView,const char*, const char*);
+SQLITE_PRIVATE Index *sqlite3FindIndex(sqlite3*,const char*, const char*);
+SQLITE_PRIVATE void sqlite3UnlinkAndDeleteTable(sqlite3*,int,const char*);
+SQLITE_PRIVATE void sqlite3UnlinkAndDeleteIndex(sqlite3*,int,const char*);
+SQLITE_PRIVATE void sqlite3Vacuum(Parse*);
+SQLITE_PRIVATE int sqlite3RunVacuum(char**, sqlite3*);
+SQLITE_PRIVATE char *sqlite3NameFromToken(sqlite3*, Token*);
+SQLITE_PRIVATE int sqlite3ExprCompare(Expr*, Expr*);
+SQLITE_PRIVATE int sqlite3ExprResolveNames(NameContext *, Expr *);
+SQLITE_PRIVATE void sqlite3ExprAnalyzeAggregates(NameContext*, Expr*);
+SQLITE_PRIVATE void sqlite3ExprAnalyzeAggList(NameContext*,ExprList*);
+SQLITE_PRIVATE Vdbe *sqlite3GetVdbe(Parse*);
+SQLITE_PRIVATE Expr *sqlite3CreateIdExpr(Parse *, const char*);
+SQLITE_PRIVATE void sqlite3PrngSaveState(void);
+SQLITE_PRIVATE void sqlite3PrngRestoreState(void);
+SQLITE_PRIVATE void sqlite3PrngResetState(void);
+SQLITE_PRIVATE void sqlite3RollbackAll(sqlite3*);
+SQLITE_PRIVATE void sqlite3CodeVerifySchema(Parse*, int);
+SQLITE_PRIVATE void sqlite3BeginTransaction(Parse*, int);
+SQLITE_PRIVATE void sqlite3CommitTransaction(Parse*);
+SQLITE_PRIVATE void sqlite3RollbackTransaction(Parse*);
+SQLITE_PRIVATE int sqlite3ExprIsConstant(Expr*);
+SQLITE_PRIVATE int sqlite3ExprIsConstantNotJoin(Expr*);
+SQLITE_PRIVATE int sqlite3ExprIsConstantOrFunction(Expr*);
+SQLITE_PRIVATE int sqlite3ExprIsInteger(Expr*, int*);
+SQLITE_PRIVATE int sqlite3IsRowid(const char*);
+SQLITE_PRIVATE void sqlite3GenerateRowDelete(Parse*, Table*, int, int, int);
+SQLITE_PRIVATE void sqlite3GenerateRowIndexDelete(Parse*, Table*, int, int*);
+SQLITE_PRIVATE int sqlite3GenerateIndexKey(Parse*, Index*, int, int, int);
+SQLITE_PRIVATE void sqlite3GenerateConstraintChecks(Parse*,Table*,int,int,
+ int*,int,int,int,int);
+SQLITE_PRIVATE void sqlite3CompleteInsertion(Parse*, Table*, int, int, int*,int,int,int,int);
+SQLITE_PRIVATE int sqlite3OpenTableAndIndices(Parse*, Table*, int, int);
+SQLITE_PRIVATE void sqlite3BeginWriteOperation(Parse*, int, int);
+SQLITE_PRIVATE Expr *sqlite3ExprDup(sqlite3*,Expr*);
+SQLITE_PRIVATE void sqlite3TokenCopy(sqlite3*,Token*, Token*);
+SQLITE_PRIVATE ExprList *sqlite3ExprListDup(sqlite3*,ExprList*);
+SQLITE_PRIVATE SrcList *sqlite3SrcListDup(sqlite3*,SrcList*);
+SQLITE_PRIVATE IdList *sqlite3IdListDup(sqlite3*,IdList*);
+SQLITE_PRIVATE Select *sqlite3SelectDup(sqlite3*,Select*);
+SQLITE_PRIVATE FuncDef *sqlite3FindFunction(sqlite3*,const char*,int,int,u8,int);
+SQLITE_PRIVATE void sqlite3RegisterBuiltinFunctions(sqlite3*);
+SQLITE_PRIVATE void sqlite3RegisterDateTimeFunctions(sqlite3*);
+#ifdef SQLITE_DEBUG
+SQLITE_PRIVATE int sqlite3SafetyOn(sqlite3*);
+SQLITE_PRIVATE int sqlite3SafetyOff(sqlite3*);
+#else
+# define sqlite3SafetyOn(A) 0
+# define sqlite3SafetyOff(A) 0
+#endif
+SQLITE_PRIVATE int sqlite3SafetyCheckOk(sqlite3*);
+SQLITE_PRIVATE int sqlite3SafetyCheckSickOrOk(sqlite3*);
+SQLITE_PRIVATE void sqlite3ChangeCookie(Parse*, int);
+SQLITE_PRIVATE void sqlite3MaterializeView(Parse*, Select*, Expr*, int);
+
+#ifndef SQLITE_OMIT_TRIGGER
+SQLITE_PRIVATE void sqlite3BeginTrigger(Parse*, Token*,Token*,int,int,IdList*,SrcList*,
+ Expr*,int, int);
+SQLITE_PRIVATE void sqlite3FinishTrigger(Parse*, TriggerStep*, Token*);
+SQLITE_PRIVATE void sqlite3DropTrigger(Parse*, SrcList*, int);
+SQLITE_PRIVATE void sqlite3DropTriggerPtr(Parse*, Trigger*);
+SQLITE_PRIVATE int sqlite3TriggersExist(Parse*, Table*, int, ExprList*);
+SQLITE_PRIVATE int sqlite3CodeRowTrigger(Parse*, int, ExprList*, int, Table *, int, int,
+ int, int, u32*, u32*);
+ void sqliteViewTriggers(Parse*, Table*, Expr*, int, ExprList*);
+SQLITE_PRIVATE void sqlite3DeleteTriggerStep(TriggerStep*);
+SQLITE_PRIVATE TriggerStep *sqlite3TriggerSelectStep(sqlite3*,Select*);
+SQLITE_PRIVATE TriggerStep *sqlite3TriggerInsertStep(sqlite3*,Token*, IdList*,
+ ExprList*,Select*,int);
+SQLITE_PRIVATE TriggerStep *sqlite3TriggerUpdateStep(sqlite3*,Token*,ExprList*, Expr*, int);
+SQLITE_PRIVATE TriggerStep *sqlite3TriggerDeleteStep(sqlite3*,Token*, Expr*);
+SQLITE_PRIVATE void sqlite3DeleteTrigger(Trigger*);
+SQLITE_PRIVATE void sqlite3UnlinkAndDeleteTrigger(sqlite3*,int,const char*);
+#else
+# define sqlite3TriggersExist(A,B,C,D,E,F) 0
+# define sqlite3DeleteTrigger(A)
+# define sqlite3DropTriggerPtr(A,B)
+# define sqlite3UnlinkAndDeleteTrigger(A,B,C)
+# define sqlite3CodeRowTrigger(A,B,C,D,E,F,G,H,I,J,K) 0
+#endif
+
+SQLITE_PRIVATE int sqlite3JoinType(Parse*, Token*, Token*, Token*);
+SQLITE_PRIVATE void sqlite3CreateForeignKey(Parse*, ExprList*, Token*, ExprList*, int);
+SQLITE_PRIVATE void sqlite3DeferForeignKey(Parse*, int);
+#ifndef SQLITE_OMIT_AUTHORIZATION
+SQLITE_PRIVATE void sqlite3AuthRead(Parse*,Expr*,Schema*,SrcList*);
+SQLITE_PRIVATE int sqlite3AuthCheck(Parse*,int, const char*, const char*, const char*);
+SQLITE_PRIVATE void sqlite3AuthContextPush(Parse*, AuthContext*, const char*);
+SQLITE_PRIVATE void sqlite3AuthContextPop(AuthContext*);
+#else
+# define sqlite3AuthRead(a,b,c,d)
+# define sqlite3AuthCheck(a,b,c,d,e) SQLITE_OK
+# define sqlite3AuthContextPush(a,b,c)
+# define sqlite3AuthContextPop(a) ((void)(a))
+#endif
+SQLITE_PRIVATE void sqlite3Attach(Parse*, Expr*, Expr*, Expr*);
+SQLITE_PRIVATE void sqlite3Detach(Parse*, Expr*);
+SQLITE_PRIVATE int sqlite3BtreeFactory(const sqlite3 *db, const char *zFilename,
+ int omitJournal, int nCache, int flags, Btree **ppBtree);
+SQLITE_PRIVATE int sqlite3FixInit(DbFixer*, Parse*, int, const char*, const Token*);
+SQLITE_PRIVATE int sqlite3FixSrcList(DbFixer*, SrcList*);
+SQLITE_PRIVATE int sqlite3FixSelect(DbFixer*, Select*);
+SQLITE_PRIVATE int sqlite3FixExpr(DbFixer*, Expr*);
+SQLITE_PRIVATE int sqlite3FixExprList(DbFixer*, ExprList*);
+SQLITE_PRIVATE int sqlite3FixTriggerStep(DbFixer*, TriggerStep*);
+SQLITE_PRIVATE int sqlite3AtoF(const char *z, double*);
+SQLITE_API char *sqlite3_snprintf(int,char*,const char*,...);
+SQLITE_PRIVATE int sqlite3GetInt32(const char *, int*);
+SQLITE_PRIVATE int sqlite3FitsIn64Bits(const char *, int);
+SQLITE_PRIVATE int sqlite3Utf16ByteLen(const void *pData, int nChar);
+SQLITE_PRIVATE int sqlite3Utf8CharLen(const char *pData, int nByte);
+SQLITE_PRIVATE int sqlite3Utf8Read(const u8*, const u8*, const u8**);
+
+/*
+** Routines to read and write variable-length integers. These used to
+** be defined locally, but now we use the varint routines in the util.c
+** file. Code should use the MACRO forms below, as the Varint32 versions
+** are coded to assume the single byte case is already handled (which
+** the MACRO form does).
+*/
+SQLITE_PRIVATE int sqlite3PutVarint(unsigned char*, u64);
+SQLITE_PRIVATE int sqlite3PutVarint32(unsigned char*, u32);
+SQLITE_PRIVATE int sqlite3GetVarint(const unsigned char *, u64 *);
+SQLITE_PRIVATE int sqlite3GetVarint32(const unsigned char *, u32 *);
+SQLITE_PRIVATE int sqlite3VarintLen(u64 v);
+
+/*
+** The header of a record consists of a sequence variable-length integers.
+** These integers are almost always small and are encoded as a single byte.
+** The following macros take advantage this fact to provide a fast encode
+** and decode of the integers in a record header. It is faster for the common
+** case where the integer is a single byte. It is a little slower when the
+** integer is two or more bytes. But overall it is faster.
+**
+** The following expressions are equivalent:
+**
+** x = sqlite3GetVarint32( A, &B );
+** x = sqlite3PutVarint32( A, B );
+**
+** x = getVarint32( A, B );
+** x = putVarint32( A, B );
+**
+*/
+#define getVarint32(A,B) ((*(A)<(unsigned char)0x80) ? ((B) = (u32)*(A)),1 : sqlite3GetVarint32((A), &(B)))
+#define putVarint32(A,B) (((B)<(u32)0x80) ? (*(A) = (unsigned char)(B)),1 : sqlite3PutVarint32((A), (B)))
+#define getVarint sqlite3GetVarint
+#define putVarint sqlite3PutVarint
+
+
+SQLITE_PRIVATE void sqlite3IndexAffinityStr(Vdbe *, Index *);
+SQLITE_PRIVATE void sqlite3TableAffinityStr(Vdbe *, Table *);
+SQLITE_PRIVATE char sqlite3CompareAffinity(Expr *pExpr, char aff2);
+SQLITE_PRIVATE int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity);
+SQLITE_PRIVATE char sqlite3ExprAffinity(Expr *pExpr);
+SQLITE_PRIVATE int sqlite3Atoi64(const char*, i64*);
+SQLITE_PRIVATE void sqlite3Error(sqlite3*, int, const char*,...);
+SQLITE_PRIVATE void *sqlite3HexToBlob(sqlite3*, const char *z, int n);
+SQLITE_PRIVATE int sqlite3TwoPartName(Parse *, Token *, Token *, Token **);
+SQLITE_PRIVATE const char *sqlite3ErrStr(int);
+SQLITE_PRIVATE int sqlite3ReadSchema(Parse *pParse);
+SQLITE_PRIVATE CollSeq *sqlite3FindCollSeq(sqlite3*,u8 enc, const char *,int,int);
+SQLITE_PRIVATE CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName, int nName);
+SQLITE_PRIVATE CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr);
+SQLITE_PRIVATE Expr *sqlite3ExprSetColl(Parse *pParse, Expr *, Token *);
+SQLITE_PRIVATE int sqlite3CheckCollSeq(Parse *, CollSeq *);
+SQLITE_PRIVATE int sqlite3CheckObjectName(Parse *, const char *);
+SQLITE_PRIVATE void sqlite3VdbeSetChanges(sqlite3 *, int);
+
+SQLITE_PRIVATE const void *sqlite3ValueText(sqlite3_value*, u8);
+SQLITE_PRIVATE int sqlite3ValueBytes(sqlite3_value*, u8);
+SQLITE_PRIVATE void sqlite3ValueSetStr(sqlite3_value*, int, const void *,u8,
+ void(*)(void*));
+SQLITE_PRIVATE void sqlite3ValueFree(sqlite3_value*);
+SQLITE_PRIVATE sqlite3_value *sqlite3ValueNew(sqlite3 *);
+SQLITE_PRIVATE char *sqlite3Utf16to8(sqlite3 *, const void*, int);
+SQLITE_PRIVATE int sqlite3ValueFromExpr(sqlite3 *, Expr *, u8, u8, sqlite3_value **);
+SQLITE_PRIVATE void sqlite3ValueApplyAffinity(sqlite3_value *, u8, u8);
+#ifndef SQLITE_AMALGAMATION
+SQLITE_PRIVATE const unsigned char sqlite3UpperToLower[];
+#endif
+SQLITE_PRIVATE void sqlite3RootPageMoved(Db*, int, int);
+SQLITE_PRIVATE void sqlite3Reindex(Parse*, Token*, Token*);
+SQLITE_PRIVATE void sqlite3AlterFunctions(sqlite3*);
+SQLITE_PRIVATE void sqlite3AlterRenameTable(Parse*, SrcList*, Token*);
+SQLITE_PRIVATE int sqlite3GetToken(const unsigned char *, int *);
+SQLITE_PRIVATE void sqlite3NestedParse(Parse*, const char*, ...);
+SQLITE_PRIVATE void sqlite3ExpirePreparedStatements(sqlite3*);
+SQLITE_PRIVATE void sqlite3CodeSubselect(Parse *, Expr *);
+SQLITE_PRIVATE int sqlite3SelectResolve(Parse *, Select *, NameContext *);
+SQLITE_PRIVATE void sqlite3ColumnDefault(Vdbe *, Table *, int);
+SQLITE_PRIVATE void sqlite3AlterFinishAddColumn(Parse *, Token *);
+SQLITE_PRIVATE void sqlite3AlterBeginAddColumn(Parse *, SrcList *);
+SQLITE_PRIVATE CollSeq *sqlite3GetCollSeq(sqlite3*, CollSeq *, const char *, int);
+SQLITE_PRIVATE char sqlite3AffinityType(const Token*);
+SQLITE_PRIVATE void sqlite3Analyze(Parse*, Token*, Token*);
+SQLITE_PRIVATE int sqlite3InvokeBusyHandler(BusyHandler*);
+SQLITE_PRIVATE int sqlite3FindDb(sqlite3*, Token*);
+SQLITE_PRIVATE int sqlite3AnalysisLoad(sqlite3*,int iDB);
+SQLITE_PRIVATE void sqlite3DefaultRowEst(Index*);
+SQLITE_PRIVATE void sqlite3RegisterLikeFunctions(sqlite3*, int);
+SQLITE_PRIVATE int sqlite3IsLikeFunction(sqlite3*,Expr*,int*,char*);
+SQLITE_PRIVATE void sqlite3AttachFunctions(sqlite3 *);
+SQLITE_PRIVATE void sqlite3MinimumFileFormat(Parse*, int, int);
+SQLITE_PRIVATE void sqlite3SchemaFree(void *);
+SQLITE_PRIVATE Schema *sqlite3SchemaGet(sqlite3 *, Btree *);
+SQLITE_PRIVATE int sqlite3SchemaToIndex(sqlite3 *db, Schema *);
+SQLITE_PRIVATE KeyInfo *sqlite3IndexKeyinfo(Parse *, Index *);
+SQLITE_PRIVATE int sqlite3CreateFunc(sqlite3 *, const char *, int, int, void *,
+ void (*)(sqlite3_context*,int,sqlite3_value **),
+ void (*)(sqlite3_context*,int,sqlite3_value **), void (*)(sqlite3_context*));
+SQLITE_PRIVATE int sqlite3ApiExit(sqlite3 *db, int);
+SQLITE_PRIVATE int sqlite3OpenTempDatabase(Parse *);
+
+SQLITE_PRIVATE void sqlite3StrAccumAppend(StrAccum*,const char*,int);
+SQLITE_PRIVATE char *sqlite3StrAccumFinish(StrAccum*);
+SQLITE_PRIVATE void sqlite3StrAccumReset(StrAccum*);
+SQLITE_PRIVATE void sqlite3SelectDestInit(SelectDest*,int,int);
+
+/*
+** The interface to the LEMON-generated parser
+*/
+SQLITE_PRIVATE void *sqlite3ParserAlloc(void*(*)(size_t));
+SQLITE_PRIVATE void sqlite3ParserFree(void*, void(*)(void*));
+SQLITE_PRIVATE void sqlite3Parser(void*, int, Token, Parse*);
+
+SQLITE_PRIVATE int sqlite3AutoLoadExtensions(sqlite3*);
+#ifndef SQLITE_OMIT_LOAD_EXTENSION
+SQLITE_PRIVATE void sqlite3CloseExtensions(sqlite3*);
+#else
+# define sqlite3CloseExtensions(X)
+#endif
+
+#ifndef SQLITE_OMIT_SHARED_CACHE
+SQLITE_PRIVATE void sqlite3TableLock(Parse *, int, int, u8, const char *);
+#else
+ #define sqlite3TableLock(v,w,x,y,z)
+#endif
+
+#ifdef SQLITE_TEST
+SQLITE_PRIVATE int sqlite3Utf8To8(unsigned char*);
+#endif
+
+#ifdef SQLITE_OMIT_VIRTUALTABLE
+# define sqlite3VtabClear(X)
+# define sqlite3VtabSync(X,Y) (Y)
+# define sqlite3VtabRollback(X)
+# define sqlite3VtabCommit(X)
+#else
+SQLITE_PRIVATE void sqlite3VtabClear(Table*);
+SQLITE_PRIVATE int sqlite3VtabSync(sqlite3 *db, int rc);
+SQLITE_PRIVATE int sqlite3VtabRollback(sqlite3 *db);
+SQLITE_PRIVATE int sqlite3VtabCommit(sqlite3 *db);
+#endif
+SQLITE_PRIVATE void sqlite3VtabMakeWritable(Parse*,Table*);
+SQLITE_PRIVATE void sqlite3VtabLock(sqlite3_vtab*);
+SQLITE_PRIVATE void sqlite3VtabUnlock(sqlite3*, sqlite3_vtab*);
+SQLITE_PRIVATE void sqlite3VtabBeginParse(Parse*, Token*, Token*, Token*);
+SQLITE_PRIVATE void sqlite3VtabFinishParse(Parse*, Token*);
+SQLITE_PRIVATE void sqlite3VtabArgInit(Parse*);
+SQLITE_PRIVATE void sqlite3VtabArgExtend(Parse*, Token*);
+SQLITE_PRIVATE int sqlite3VtabCallCreate(sqlite3*, int, const char *, char **);
+SQLITE_PRIVATE int sqlite3VtabCallConnect(Parse*, Table*);
+SQLITE_PRIVATE int sqlite3VtabCallDestroy(sqlite3*, int, const char *);
+SQLITE_PRIVATE int sqlite3VtabBegin(sqlite3 *, sqlite3_vtab *);
+SQLITE_PRIVATE FuncDef *sqlite3VtabOverloadFunction(sqlite3 *,FuncDef*, int nArg, Expr*);
+SQLITE_PRIVATE void sqlite3InvalidFunction(sqlite3_context*,int,sqlite3_value**);
+SQLITE_PRIVATE int sqlite3Reprepare(Vdbe*);
+SQLITE_PRIVATE void sqlite3ExprListCheckLength(Parse*, ExprList*, const char*);
+SQLITE_PRIVATE CollSeq *sqlite3BinaryCompareCollSeq(Parse *, Expr *, Expr *);
+
+
+/*
+** Available fault injectors. Should be numbered beginning with 0.
+*/
+#define SQLITE_FAULTINJECTOR_MALLOC 0
+#define SQLITE_FAULTINJECTOR_COUNT 1
+
+/*
+** The interface to the fault injector subsystem. If the fault injector
+** mechanism is disabled at compile-time then set up macros so that no
+** unnecessary code is generated.
+*/
+#ifndef SQLITE_OMIT_BUILTIN_TEST
+SQLITE_PRIVATE void sqlite3FaultConfig(int,int,int);
+SQLITE_PRIVATE int sqlite3FaultFailures(int);
+SQLITE_PRIVATE int sqlite3FaultBenignFailures(int);
+SQLITE_PRIVATE int sqlite3FaultPending(int);
+SQLITE_PRIVATE void sqlite3FaultBeginBenign(int);
+SQLITE_PRIVATE void sqlite3FaultEndBenign(int);
+SQLITE_PRIVATE int sqlite3FaultStep(int);
+#else
+# define sqlite3FaultConfig(A,B,C)
+# define sqlite3FaultFailures(A) 0
+# define sqlite3FaultBenignFailures(A) 0
+# define sqlite3FaultPending(A) (-1)
+# define sqlite3FaultBeginBenign(A)
+# define sqlite3FaultEndBenign(A)
+# define sqlite3FaultStep(A) 0
+#endif
+
+
+
+#define IN_INDEX_ROWID 1
+#define IN_INDEX_EPH 2
+#define IN_INDEX_INDEX 3
+SQLITE_PRIVATE int sqlite3FindInIndex(Parse *, Expr *, int);
+
+#ifdef SQLITE_ENABLE_ATOMIC_WRITE
+SQLITE_PRIVATE int sqlite3JournalOpen(sqlite3_vfs *, const char *, sqlite3_file *, int, int);
+SQLITE_PRIVATE int sqlite3JournalSize(sqlite3_vfs *);
+SQLITE_PRIVATE int sqlite3JournalCreate(sqlite3_file *);
+#else
+ #define sqlite3JournalSize(pVfs) ((pVfs)->szOsFile)
+#endif
+
+#if defined(SQLITE_TEST) || SQLITE_MAX_EXPR_DEPTH>0
+SQLITE_PRIVATE void sqlite3ExprSetHeight(Expr *);
+SQLITE_PRIVATE int sqlite3SelectExprHeight(Select *);
+#else
+ #define sqlite3ExprSetHeight(x)
+#endif
+
+SQLITE_PRIVATE u32 sqlite3Get4byte(const u8*);
+SQLITE_PRIVATE void sqlite3Put4byte(u8*, u32);
+
+#ifdef SQLITE_SSE
+#include "sseInt.h"
+#endif
+
+#ifdef SQLITE_DEBUG
+SQLITE_PRIVATE void sqlite3ParserTrace(FILE*, char *);
+#endif
+
+/*
+** If the SQLITE_ENABLE IOTRACE exists then the global variable
+** sqlite3IoTrace is a pointer to a printf-like routine used to
+** print I/O tracing messages.
+*/
+#ifdef SQLITE_ENABLE_IOTRACE
+# define IOTRACE(A) if( sqlite3IoTrace ){ sqlite3IoTrace A; }
+SQLITE_PRIVATE void sqlite3VdbeIOTraceSql(Vdbe*);
+SQLITE_PRIVATE void (*sqlite3IoTrace)(const char*,...);
+#else
+# define IOTRACE(A)
+# define sqlite3VdbeIOTraceSql(X)
+#endif
+
+#endif
+
+/************** End of sqliteInt.h *******************************************/
+/************** Begin file date.c ********************************************/
+/*
+** 2003 October 31
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains the C functions that implement date and time
+** functions for SQLite.
+**
+** There is only one exported symbol in this file - the function
+** sqlite3RegisterDateTimeFunctions() found at the bottom of the file.
+** All other code has file scope.
+**
+** $Id: date.c,v 1.79 2008/03/20 14:03:29 drh Exp $
+**
+** SQLite processes all times and dates as Julian Day numbers. The
+** dates and times are stored as the number of days since noon
+** in Greenwich on November 24, 4714 B.C. according to the Gregorian
+** calendar system.
+**
+** 1970-01-01 00:00:00 is JD 2440587.5
+** 2000-01-01 00:00:00 is JD 2451544.5
+**
+** This implemention requires years to be expressed as a 4-digit number
+** which means that only dates between 0000-01-01 and 9999-12-31 can
+** be represented, even though julian day numbers allow a much wider
+** range of dates.
+**
+** The Gregorian calendar system is used for all dates and times,
+** even those that predate the Gregorian calendar. Historians usually
+** use the Julian calendar for dates prior to 1582-10-15 and for some
+** dates afterwards, depending on locale. Beware of this difference.
+**
+** The conversion algorithms are implemented based on descriptions
+** in the following text:
+**
+** Jean Meeus
+** Astronomical Algorithms, 2nd Edition, 1998
+** ISBM 0-943396-61-1
+** Willmann-Bell, Inc
+** Richmond, Virginia (USA)
+*/
+#include <ctype.h>
+#include <time.h>
+
+#ifndef SQLITE_OMIT_DATETIME_FUNCS
+
+/*
+** A structure for holding a single date and time.
+*/
+typedef struct DateTime DateTime;
+struct DateTime {
+ double rJD; /* The julian day number */
+ int Y, M, D; /* Year, month, and day */
+ int h, m; /* Hour and minutes */
+ int tz; /* Timezone offset in minutes */
+ double s; /* Seconds */
+ char validYMD; /* True if Y,M,D are valid */
+ char validHMS; /* True if h,m,s are valid */
+ char validJD; /* True if rJD is valid */
+ char validTZ; /* True if tz is valid */
+};
+
+
+/*
+** Convert zDate into one or more integers. Additional arguments
+** come in groups of 5 as follows:
+**
+** N number of digits in the integer
+** min minimum allowed value of the integer
+** max maximum allowed value of the integer
+** nextC first character after the integer
+** pVal where to write the integers value.
+**
+** Conversions continue until one with nextC==0 is encountered.
+** The function returns the number of successful conversions.
+*/
+static int getDigits(const char *zDate, ...){
+ va_list ap;
+ int val;
+ int N;
+ int min;
+ int max;
+ int nextC;
+ int *pVal;
+ int cnt = 0;
+ va_start(ap, zDate);
+ do{
+ N = va_arg(ap, int);
+ min = va_arg(ap, int);
+ max = va_arg(ap, int);
+ nextC = va_arg(ap, int);
+ pVal = va_arg(ap, int*);
+ val = 0;
+ while( N-- ){
+ if( !isdigit(*(u8*)zDate) ){
+ goto end_getDigits;
+ }
+ val = val*10 + *zDate - '0';
+ zDate++;
+ }
+ if( val<min || val>max || (nextC!=0 && nextC!=*zDate) ){
+ goto end_getDigits;
+ }
+ *pVal = val;
+ zDate++;
+ cnt++;
+ }while( nextC );
+end_getDigits:
+ va_end(ap);
+ return cnt;
+}
+
+/*
+** Read text from z[] and convert into a floating point number. Return
+** the number of digits converted.
+*/
+#define getValue sqlite3AtoF
+
+/*
+** Parse a timezone extension on the end of a date-time.
+** The extension is of the form:
+**
+** (+/-)HH:MM
+**
+** Or the "zulu" notation:
+**
+** Z
+**
+** If the parse is successful, write the number of minutes
+** of change in p->tz and return 0. If a parser error occurs,
+** return non-zero.
+**
+** A missing specifier is not considered an error.
+*/
+static int parseTimezone(const char *zDate, DateTime *p){
+ int sgn = 0;
+ int nHr, nMn;
+ int c;
+ while( isspace(*(u8*)zDate) ){ zDate++; }
+ p->tz = 0;
+ c = *zDate;
+ if( c=='-' ){
+ sgn = -1;
+ }else if( c=='+' ){
+ sgn = +1;
+ }else if( c=='Z' || c=='z' ){
+ zDate++;
+ goto zulu_time;
+ }else{
+ return c!=0;
+ }
+ zDate++;
+ if( getDigits(zDate, 2, 0, 14, ':', &nHr, 2, 0, 59, 0, &nMn)!=2 ){
+ return 1;
+ }
+ zDate += 5;
+ p->tz = sgn*(nMn + nHr*60);
+zulu_time:
+ while( isspace(*(u8*)zDate) ){ zDate++; }
+ return *zDate!=0;
+}
+
+/*
+** Parse times of the form HH:MM or HH:MM:SS or HH:MM:SS.FFFF.
+** The HH, MM, and SS must each be exactly 2 digits. The
+** fractional seconds FFFF can be one or more digits.
+**
+** Return 1 if there is a parsing error and 0 on success.
+*/
+static int parseHhMmSs(const char *zDate, DateTime *p){
+ int h, m, s;
+ double ms = 0.0;
+ if( getDigits(zDate, 2, 0, 24, ':', &h, 2, 0, 59, 0, &m)!=2 ){
+ return 1;
+ }
+ zDate += 5;
+ if( *zDate==':' ){
+ zDate++;
+ if( getDigits(zDate, 2, 0, 59, 0, &s)!=1 ){
+ return 1;
+ }
+ zDate += 2;
+ if( *zDate=='.' && isdigit((u8)zDate[1]) ){
+ double rScale = 1.0;
+ zDate++;
+ while( isdigit(*(u8*)zDate) ){
+ ms = ms*10.0 + *zDate - '0';
+ rScale *= 10.0;
+ zDate++;
+ }
+ ms /= rScale;
+ }
+ }else{
+ s = 0;
+ }
+ p->validJD = 0;
+ p->validHMS = 1;
+ p->h = h;
+ p->m = m;
+ p->s = s + ms;
+ if( parseTimezone(zDate, p) ) return 1;
+ p->validTZ = p->tz!=0;
+ return 0;
+}
+
+/*
+** Convert from YYYY-MM-DD HH:MM:SS to julian day. We always assume
+** that the YYYY-MM-DD is according to the Gregorian calendar.
+**
+** Reference: Meeus page 61
+*/
+static void computeJD(DateTime *p){
+ int Y, M, D, A, B, X1, X2;
+
+ if( p->validJD ) return;
+ if( p->validYMD ){
+ Y = p->Y;
+ M = p->M;
+ D = p->D;
+ }else{
+ Y = 2000; /* If no YMD specified, assume 2000-Jan-01 */
+ M = 1;
+ D = 1;
+ }
+ if( M<=2 ){
+ Y--;
+ M += 12;
+ }
+ A = Y/100;
+ B = 2 - A + (A/4);
+ X1 = 365.25*(Y+4716);
+ X2 = 30.6001*(M+1);
+ p->rJD = X1 + X2 + D + B - 1524.5;
+ p->validJD = 1;
+ if( p->validHMS ){
+ p->rJD += (p->h*3600.0 + p->m*60.0 + p->s)/86400.0;
+ if( p->validTZ ){
+ p->rJD -= p->tz*60/86400.0;
+ p->validYMD = 0;
+ p->validHMS = 0;
+ p->validTZ = 0;
+ }
+ }
+}
+
+/*
+** Parse dates of the form
+**
+** YYYY-MM-DD HH:MM:SS.FFF
+** YYYY-MM-DD HH:MM:SS
+** YYYY-MM-DD HH:MM
+** YYYY-MM-DD
+**
+** Write the result into the DateTime structure and return 0
+** on success and 1 if the input string is not a well-formed
+** date.
+*/
+static int parseYyyyMmDd(const char *zDate, DateTime *p){
+ int Y, M, D, neg;
+
+ if( zDate[0]=='-' ){
+ zDate++;
+ neg = 1;
+ }else{
+ neg = 0;
+ }
+ if( getDigits(zDate,4,0,9999,'-',&Y,2,1,12,'-',&M,2,1,31,0,&D)!=3 ){
+ return 1;
+ }
+ zDate += 10;
+ while( isspace(*(u8*)zDate) || 'T'==*(u8*)zDate ){ zDate++; }
+ if( parseHhMmSs(zDate, p)==0 ){
+ /* We got the time */
+ }else if( *zDate==0 ){
+ p->validHMS = 0;
+ }else{
+ return 1;
+ }
+ p->validJD = 0;
+ p->validYMD = 1;
+ p->Y = neg ? -Y : Y;
+ p->M = M;
+ p->D = D;
+ if( p->validTZ ){
+ computeJD(p);
+ }
+ return 0;
+}
+
+/*
+** Attempt to parse the given string into a Julian Day Number. Return
+** the number of errors.
+**
+** The following are acceptable forms for the input string:
+**
+** YYYY-MM-DD HH:MM:SS.FFF +/-HH:MM
+** DDDD.DD
+** now
+**
+** In the first form, the +/-HH:MM is always optional. The fractional
+** seconds extension (the ".FFF") is optional. The seconds portion
+** (":SS.FFF") is option. The year and date can be omitted as long
+** as there is a time string. The time string can be omitted as long
+** as there is a year and date.
+*/
+static int parseDateOrTime(
+ sqlite3_context *context,
+ const char *zDate,
+ DateTime *p
+){
+ memset(p, 0, sizeof(*p));
+ if( parseYyyyMmDd(zDate,p)==0 ){
+ return 0;
+ }else if( parseHhMmSs(zDate, p)==0 ){
+ return 0;
+ }else if( sqlite3StrICmp(zDate,"now")==0){
+ double r;
+ sqlite3 *db = sqlite3_context_db_handle(context);
+ sqlite3OsCurrentTime(db->pVfs, &r);
+ p->rJD = r;
+ p->validJD = 1;
+ return 0;
+ }else if( sqlite3IsNumber(zDate, 0, SQLITE_UTF8) ){
+ getValue(zDate, &p->rJD);
+ p->validJD = 1;
+ return 0;
+ }
+ return 1;
+}
+
+/*
+** Compute the Year, Month, and Day from the julian day number.
+*/
+static void computeYMD(DateTime *p){
+ int Z, A, B, C, D, E, X1;
+ if( p->validYMD ) return;
+ if( !p->validJD ){
+ p->Y = 2000;
+ p->M = 1;
+ p->D = 1;
+ }else{
+ Z = p->rJD + 0.5;
+ A = (Z - 1867216.25)/36524.25;
+ A = Z + 1 + A - (A/4);
+ B = A + 1524;
+ C = (B - 122.1)/365.25;
+ D = 365.25*C;
+ E = (B-D)/30.6001;
+ X1 = 30.6001*E;
+ p->D = B - D - X1;
+ p->M = E<14 ? E-1 : E-13;
+ p->Y = p->M>2 ? C - 4716 : C - 4715;
+ }
+ p->validYMD = 1;
+}
+
+/*
+** Compute the Hour, Minute, and Seconds from the julian day number.
+*/
+static void computeHMS(DateTime *p){
+ int Z, s;
+ if( p->validHMS ) return;
+ computeJD(p);
+ Z = p->rJD + 0.5;
+ s = (p->rJD + 0.5 - Z)*86400000.0 + 0.5;
+ p->s = 0.001*s;
+ s = p->s;
+ p->s -= s;
+ p->h = s/3600;
+ s -= p->h*3600;
+ p->m = s/60;
+ p->s += s - p->m*60;
+ p->validHMS = 1;
+}
+
+/*
+** Compute both YMD and HMS
+*/
+static void computeYMD_HMS(DateTime *p){
+ computeYMD(p);
+ computeHMS(p);
+}
+
+/*
+** Clear the YMD and HMS and the TZ
+*/
+static void clearYMD_HMS_TZ(DateTime *p){
+ p->validYMD = 0;
+ p->validHMS = 0;
+ p->validTZ = 0;
+}
+
+/*
+** Compute the difference (in days) between localtime and UTC (a.k.a. GMT)
+** for the time value p where p is in UTC.
+*/
+static double localtimeOffset(DateTime *p){
+ DateTime x, y;
+ time_t t;
+ x = *p;
+ computeYMD_HMS(&x);
+ if( x.Y<1971 || x.Y>=2038 ){
+ x.Y = 2000;
+ x.M = 1;
+ x.D = 1;
+ x.h = 0;
+ x.m = 0;
+ x.s = 0.0;
+ } else {
+ int s = x.s + 0.5;
+ x.s = s;
+ }
+ x.tz = 0;
+ x.validJD = 0;
+ computeJD(&x);
+ t = (x.rJD-2440587.5)*86400.0 + 0.5;
+#ifdef HAVE_LOCALTIME_R
+ {
+ struct tm sLocal;
+ localtime_r(&t, &sLocal);
+ y.Y = sLocal.tm_year + 1900;
+ y.M = sLocal.tm_mon + 1;
+ y.D = sLocal.tm_mday;
+ y.h = sLocal.tm_hour;
+ y.m = sLocal.tm_min;
+ y.s = sLocal.tm_sec;
+ }
+#else
+ {
+ struct tm *pTm;
+ sqlite3_mutex_enter(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER));
+ pTm = localtime(&t);
+ y.Y = pTm->tm_year + 1900;
+ y.M = pTm->tm_mon + 1;
+ y.D = pTm->tm_mday;
+ y.h = pTm->tm_hour;
+ y.m = pTm->tm_min;
+ y.s = pTm->tm_sec;
+ sqlite3_mutex_leave(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER));
+ }
+#endif
+ y.validYMD = 1;
+ y.validHMS = 1;
+ y.validJD = 0;
+ y.validTZ = 0;
+ computeJD(&y);
+ return y.rJD - x.rJD;
+}
+
+/*
+** Process a modifier to a date-time stamp. The modifiers are
+** as follows:
+**
+** NNN days
+** NNN hours
+** NNN minutes
+** NNN.NNNN seconds
+** NNN months
+** NNN years
+** start of month
+** start of year
+** start of week
+** start of day
+** weekday N
+** unixepoch
+** localtime
+** utc
+**
+** Return 0 on success and 1 if there is any kind of error.
+*/
+static int parseModifier(const char *zMod, DateTime *p){
+ int rc = 1;
+ int n;
+ double r;
+ char *z, zBuf[30];
+ z = zBuf;
+ for(n=0; n<sizeof(zBuf)-1 && zMod[n]; n++){
+ z[n] = tolower(zMod[n]);
+ }
+ z[n] = 0;
+ switch( z[0] ){
+ case 'l': {
+ /* localtime
+ **
+ ** Assuming the current time value is UTC (a.k.a. GMT), shift it to
+ ** show local time.
+ */
+ if( strcmp(z, "localtime")==0 ){
+ computeJD(p);
+ p->rJD += localtimeOffset(p);
+ clearYMD_HMS_TZ(p);
+ rc = 0;
+ }
+ break;
+ }
+ case 'u': {
+ /*
+ ** unixepoch
+ **
+ ** Treat the current value of p->rJD as the number of
+ ** seconds since 1970. Convert to a real julian day number.
+ */
+ if( strcmp(z, "unixepoch")==0 && p->validJD ){
+ p->rJD = p->rJD/86400.0 + 2440587.5;
+ clearYMD_HMS_TZ(p);
+ rc = 0;
+ }else if( strcmp(z, "utc")==0 ){
+ double c1;
+ computeJD(p);
+ c1 = localtimeOffset(p);
+ p->rJD -= c1;
+ clearYMD_HMS_TZ(p);
+ p->rJD += c1 - localtimeOffset(p);
+ rc = 0;
+ }
+ break;
+ }
+ case 'w': {
+ /*
+ ** weekday N
+ **
+ ** Move the date to the same time on the next occurrence of
+ ** weekday N where 0==Sunday, 1==Monday, and so forth. If the
+ ** date is already on the appropriate weekday, this is a no-op.
+ */
+ if( strncmp(z, "weekday ", 8)==0 && getValue(&z[8],&r)>0
+ && (n=r)==r && n>=0 && r<7 ){
+ int Z;
+ computeYMD_HMS(p);
+ p->validTZ = 0;
+ p->validJD = 0;
+ computeJD(p);
+ Z = p->rJD + 1.5;
+ Z %= 7;
+ if( Z>n ) Z -= 7;
+ p->rJD += n - Z;
+ clearYMD_HMS_TZ(p);
+ rc = 0;
+ }
+ break;
+ }
+ case 's': {
+ /*
+ ** start of TTTTT
+ **
+ ** Move the date backwards to the beginning of the current day,
+ ** or month or year.
+ */
+ if( strncmp(z, "start of ", 9)!=0 ) break;
+ z += 9;
+ computeYMD(p);
+ p->validHMS = 1;
+ p->h = p->m = 0;
+ p->s = 0.0;
+ p->validTZ = 0;
+ p->validJD = 0;
+ if( strcmp(z,"month")==0 ){
+ p->D = 1;
+ rc = 0;
+ }else if( strcmp(z,"year")==0 ){
+ computeYMD(p);
+ p->M = 1;
+ p->D = 1;
+ rc = 0;
+ }else if( strcmp(z,"day")==0 ){
+ rc = 0;
+ }
+ break;
+ }
+ case '+':
+ case '-':
+ case '0':
+ case '1':
+ case '2':
+ case '3':
+ case '4':
+ case '5':
+ case '6':
+ case '7':
+ case '8':
+ case '9': {
+ n = getValue(z, &r);
+ assert( n>=1 );
+ if( z[n]==':' ){
+ /* A modifier of the form (+|-)HH:MM:SS.FFF adds (or subtracts) the
+ ** specified number of hours, minutes, seconds, and fractional seconds
+ ** to the time. The ".FFF" may be omitted. The ":SS.FFF" may be
+ ** omitted.
+ */
+ const char *z2 = z;
+ DateTime tx;
+ int day;
+ if( !isdigit(*(u8*)z2) ) z2++;
+ memset(&tx, 0, sizeof(tx));
+ if( parseHhMmSs(z2, &tx) ) break;
+ computeJD(&tx);
+ tx.rJD -= 0.5;
+ day = (int)tx.rJD;
+ tx.rJD -= day;
+ if( z[0]=='-' ) tx.rJD = -tx.rJD;
+ computeJD(p);
+ clearYMD_HMS_TZ(p);
+ p->rJD += tx.rJD;
+ rc = 0;
+ break;
+ }
+ z += n;
+ while( isspace(*(u8*)z) ) z++;
+ n = strlen(z);
+ if( n>10 || n<3 ) break;
+ if( z[n-1]=='s' ){ z[n-1] = 0; n--; }
+ computeJD(p);
+ rc = 0;
+ if( n==3 && strcmp(z,"day")==0 ){
+ p->rJD += r;
+ }else if( n==4 && strcmp(z,"hour")==0 ){
+ p->rJD += r/24.0;
+ }else if( n==6 && strcmp(z,"minute")==0 ){
+ p->rJD += r/(24.0*60.0);
+ }else if( n==6 && strcmp(z,"second")==0 ){
+ p->rJD += r/(24.0*60.0*60.0);
+ }else if( n==5 && strcmp(z,"month")==0 ){
+ int x, y;
+ computeYMD_HMS(p);
+ p->M += r;
+ x = p->M>0 ? (p->M-1)/12 : (p->M-12)/12;
+ p->Y += x;
+ p->M -= x*12;
+ p->validJD = 0;
+ computeJD(p);
+ y = r;
+ if( y!=r ){
+ p->rJD += (r - y)*30.0;
+ }
+ }else if( n==4 && strcmp(z,"year")==0 ){
+ computeYMD_HMS(p);
+ p->Y += r;
+ p->validJD = 0;
+ computeJD(p);
+ }else{
+ rc = 1;
+ }
+ clearYMD_HMS_TZ(p);
+ break;
+ }
+ default: {
+ break;
+ }
+ }
+ return rc;
+}
+
+/*
+** Process time function arguments. argv[0] is a date-time stamp.
+** argv[1] and following are modifiers. Parse them all and write
+** the resulting time into the DateTime structure p. Return 0
+** on success and 1 if there are any errors.
+**
+** If there are zero parameters (if even argv[0] is undefined)
+** then assume a default value of "now" for argv[0].
+*/
+static int isDate(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv,
+ DateTime *p
+){
+ int i;
+ const unsigned char *z;
+ static const unsigned char zDflt[] = "now";
+ if( argc==0 ){
+ z = zDflt;
+ }else{
+ z = sqlite3_value_text(argv[0]);
+ }
+ if( !z || parseDateOrTime(context, (char*)z, p) ){
+ return 1;
+ }
+ for(i=1; i<argc; i++){
+ if( (z = sqlite3_value_text(argv[i]))==0 || parseModifier((char*)z, p) ){
+ return 1;
+ }
+ }
+ return 0;
+}
+
+
+/*
+** The following routines implement the various date and time functions
+** of SQLite.
+*/
+
+/*
+** julianday( TIMESTRING, MOD, MOD, ...)
+**
+** Return the julian day number of the date specified in the arguments
+*/
+static void juliandayFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ DateTime x;
+ if( isDate(context, argc, argv, &x)==0 ){
+ computeJD(&x);
+ sqlite3_result_double(context, x.rJD);
+ }
+}
+
+/*
+** datetime( TIMESTRING, MOD, MOD, ...)
+**
+** Return YYYY-MM-DD HH:MM:SS
+*/
+static void datetimeFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ DateTime x;
+ if( isDate(context, argc, argv, &x)==0 ){
+ char zBuf[100];
+ computeYMD_HMS(&x);
+ sqlite3_snprintf(sizeof(zBuf), zBuf, "%04d-%02d-%02d %02d:%02d:%02d",
+ x.Y, x.M, x.D, x.h, x.m, (int)(x.s));
+ sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
+ }
+}
+
+/*
+** time( TIMESTRING, MOD, MOD, ...)
+**
+** Return HH:MM:SS
+*/
+static void timeFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ DateTime x;
+ if( isDate(context, argc, argv, &x)==0 ){
+ char zBuf[100];
+ computeHMS(&x);
+ sqlite3_snprintf(sizeof(zBuf), zBuf, "%02d:%02d:%02d", x.h, x.m, (int)x.s);
+ sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
+ }
+}
+
+/*
+** date( TIMESTRING, MOD, MOD, ...)
+**
+** Return YYYY-MM-DD
+*/
+static void dateFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ DateTime x;
+ if( isDate(context, argc, argv, &x)==0 ){
+ char zBuf[100];
+ computeYMD(&x);
+ sqlite3_snprintf(sizeof(zBuf), zBuf, "%04d-%02d-%02d", x.Y, x.M, x.D);
+ sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
+ }
+}
+
+/*
+** strftime( FORMAT, TIMESTRING, MOD, MOD, ...)
+**
+** Return a string described by FORMAT. Conversions as follows:
+**
+** %d day of month
+** %f ** fractional seconds SS.SSS
+** %H hour 00-24
+** %j day of year 000-366
+** %J ** Julian day number
+** %m month 01-12
+** %M minute 00-59
+** %s seconds since 1970-01-01
+** %S seconds 00-59
+** %w day of week 0-6 sunday==0
+** %W week of year 00-53
+** %Y year 0000-9999
+** %% %
+*/
+static void strftimeFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ DateTime x;
+ u64 n;
+ int i, j;
+ char *z;
+ const char *zFmt = (const char*)sqlite3_value_text(argv[0]);
+ char zBuf[100];
+ if( zFmt==0 || isDate(context, argc-1, argv+1, &x) ) return;
+ for(i=0, n=1; zFmt[i]; i++, n++){
+ if( zFmt[i]=='%' ){
+ switch( zFmt[i+1] ){
+ case 'd':
+ case 'H':
+ case 'm':
+ case 'M':
+ case 'S':
+ case 'W':
+ n++;
+ /* fall thru */
+ case 'w':
+ case '%':
+ break;
+ case 'f':
+ n += 8;
+ break;
+ case 'j':
+ n += 3;
+ break;
+ case 'Y':
+ n += 8;
+ break;
+ case 's':
+ case 'J':
+ n += 50;
+ break;
+ default:
+ return; /* ERROR. return a NULL */
+ }
+ i++;
+ }
+ }
+ if( n<sizeof(zBuf) ){
+ z = zBuf;
+ }else if( n>sqlite3_context_db_handle(context)->aLimit[SQLITE_LIMIT_LENGTH] ){
+ sqlite3_result_error_toobig(context);
+ return;
+ }else{
+ z = sqlite3_malloc( n );
+ if( z==0 ){
+ sqlite3_result_error_nomem(context);
+ return;
+ }
+ }
+ computeJD(&x);
+ computeYMD_HMS(&x);
+ for(i=j=0; zFmt[i]; i++){
+ if( zFmt[i]!='%' ){
+ z[j++] = zFmt[i];
+ }else{
+ i++;
+ switch( zFmt[i] ){
+ case 'd': sqlite3_snprintf(3, &z[j],"%02d",x.D); j+=2; break;
+ case 'f': {
+ double s = x.s;
+ if( s>59.999 ) s = 59.999;
+ sqlite3_snprintf(7, &z[j],"%06.3f", s);
+ j += strlen(&z[j]);
+ break;
+ }
+ case 'H': sqlite3_snprintf(3, &z[j],"%02d",x.h); j+=2; break;
+ case 'W': /* Fall thru */
+ case 'j': {
+ int nDay; /* Number of days since 1st day of year */
+ DateTime y = x;
+ y.validJD = 0;
+ y.M = 1;
+ y.D = 1;
+ computeJD(&y);
+ nDay = x.rJD - y.rJD + 0.5;
+ if( zFmt[i]=='W' ){
+ int wd; /* 0=Monday, 1=Tuesday, ... 6=Sunday */
+ wd = ((int)(x.rJD+0.5)) % 7;
+ sqlite3_snprintf(3, &z[j],"%02d",(nDay+7-wd)/7);
+ j += 2;
+ }else{
+ sqlite3_snprintf(4, &z[j],"%03d",nDay+1);
+ j += 3;
+ }
+ break;
+ }
+ case 'J': {
+ sqlite3_snprintf(20, &z[j],"%.16g",x.rJD);
+ j+=strlen(&z[j]);
+ break;
+ }
+ case 'm': sqlite3_snprintf(3, &z[j],"%02d",x.M); j+=2; break;
+ case 'M': sqlite3_snprintf(3, &z[j],"%02d",x.m); j+=2; break;
+ case 's': {
+ sqlite3_snprintf(30,&z[j],"%d",
+ (int)((x.rJD-2440587.5)*86400.0 + 0.5));
+ j += strlen(&z[j]);
+ break;
+ }
+ case 'S': sqlite3_snprintf(3,&z[j],"%02d",(int)x.s); j+=2; break;
+ case 'w': z[j++] = (((int)(x.rJD+1.5)) % 7) + '0'; break;
+ case 'Y': sqlite3_snprintf(5,&z[j],"%04d",x.Y); j+=strlen(&z[j]);break;
+ default: z[j++] = '%'; break;
+ }
+ }
+ }
+ z[j] = 0;
+ sqlite3_result_text(context, z, -1,
+ z==zBuf ? SQLITE_TRANSIENT : sqlite3_free);
+}
+
+/*
+** current_time()
+**
+** This function returns the same value as time('now').
+*/
+static void ctimeFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ timeFunc(context, 0, 0);
+}
+
+/*
+** current_date()
+**
+** This function returns the same value as date('now').
+*/
+static void cdateFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ dateFunc(context, 0, 0);
+}
+
+/*
+** current_timestamp()
+**
+** This function returns the same value as datetime('now').
+*/
+static void ctimestampFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ datetimeFunc(context, 0, 0);
+}
+#endif /* !defined(SQLITE_OMIT_DATETIME_FUNCS) */
+
+#ifdef SQLITE_OMIT_DATETIME_FUNCS
+/*
+** If the library is compiled to omit the full-scale date and time
+** handling (to get a smaller binary), the following minimal version
+** of the functions current_time(), current_date() and current_timestamp()
+** are included instead. This is to support column declarations that
+** include "DEFAULT CURRENT_TIME" etc.
+**
+** This function uses the C-library functions time(), gmtime()
+** and strftime(). The format string to pass to strftime() is supplied
+** as the user-data for the function.
+*/
+static void currentTimeFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ time_t t;
+ char *zFormat = (char *)sqlite3_user_data(context);
+ sqlite3 *db;
+ double rT;
+ char zBuf[20];
+
+ db = sqlite3_context_db_handle(context);
+ sqlite3OsCurrentTime(db->pVfs, &rT);
+ t = 86400.0*(rT - 2440587.5) + 0.5;
+#ifdef HAVE_GMTIME_R
+ {
+ struct tm sNow;
+ gmtime_r(&t, &sNow);
+ strftime(zBuf, 20, zFormat, &sNow);
+ }
+#else
+ {
+ struct tm *pTm;
+ sqlite3_mutex_enter(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER));
+ pTm = gmtime(&t);
+ strftime(zBuf, 20, zFormat, pTm);
+ sqlite3_mutex_leave(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER));
+ }
+#endif
+
+ sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
+}
+#endif
+
+/*
+** This function registered all of the above C functions as SQL
+** functions. This should be the only routine in this file with
+** external linkage.
+*/
+SQLITE_PRIVATE void sqlite3RegisterDateTimeFunctions(sqlite3 *db){
+#ifndef SQLITE_OMIT_DATETIME_FUNCS
+ static const struct {
+ char *zName;
+ int nArg;
+ void (*xFunc)(sqlite3_context*,int,sqlite3_value**);
+ } aFuncs[] = {
+ { "julianday", -1, juliandayFunc },
+ { "date", -1, dateFunc },
+ { "time", -1, timeFunc },
+ { "datetime", -1, datetimeFunc },
+ { "strftime", -1, strftimeFunc },
+ { "current_time", 0, ctimeFunc },
+ { "current_timestamp", 0, ctimestampFunc },
+ { "current_date", 0, cdateFunc },
+ };
+ int i;
+
+ for(i=0; i<sizeof(aFuncs)/sizeof(aFuncs[0]); i++){
+ sqlite3CreateFunc(db, aFuncs[i].zName, aFuncs[i].nArg,
+ SQLITE_UTF8, 0, aFuncs[i].xFunc, 0, 0);
+ }
+#else
+ static const struct {
+ char *zName;
+ char *zFormat;
+ } aFuncs[] = {
+ { "current_time", "%H:%M:%S" },
+ { "current_date", "%Y-%m-%d" },
+ { "current_timestamp", "%Y-%m-%d %H:%M:%S" }
+ };
+ int i;
+
+ for(i=0; i<sizeof(aFuncs)/sizeof(aFuncs[0]); i++){
+ sqlite3CreateFunc(db, aFuncs[i].zName, 0, SQLITE_UTF8,
+ aFuncs[i].zFormat, currentTimeFunc, 0, 0);
+ }
+#endif
+}
+
+/************** End of date.c ************************************************/
+/************** Begin file os.c **********************************************/
+/*
+** 2005 November 29
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+** This file contains OS interface code that is common to all
+** architectures.
+*/
+#define _SQLITE_OS_C_ 1
+#undef _SQLITE_OS_C_
+
+/*
+** The default SQLite sqlite3_vfs implementations do not allocate
+** memory (actually, os_unix.c allocates a small amount of memory
+** from within OsOpen()), but some third-party implementations may.
+** So we test the effects of a malloc() failing and the sqlite3OsXXX()
+** function returning SQLITE_IOERR_NOMEM using the DO_OS_MALLOC_TEST macro.
+**
+** The following functions are instrumented for malloc() failure
+** testing:
+**
+** sqlite3OsOpen()
+** sqlite3OsRead()
+** sqlite3OsWrite()
+** sqlite3OsSync()
+** sqlite3OsLock()
+**
+*/
+#if defined(SQLITE_TEST) && (OS_WIN==0)
+ #define DO_OS_MALLOC_TEST if (1) { \
+ void *pTstAlloc = sqlite3_malloc(10); \
+ if (!pTstAlloc) return SQLITE_IOERR_NOMEM; \
+ sqlite3_free(pTstAlloc); \
+ }
+#else
+ #define DO_OS_MALLOC_TEST
+#endif
+
+/*
+** The following routines are convenience wrappers around methods
+** of the sqlite3_file object. This is mostly just syntactic sugar. All
+** of this would be completely automatic if SQLite were coded using
+** C++ instead of plain old C.
+*/
+SQLITE_PRIVATE int sqlite3OsClose(sqlite3_file *pId){
+ int rc = SQLITE_OK;
+ if( pId->pMethods ){
+ rc = pId->pMethods->xClose(pId);
+ pId->pMethods = 0;
+ }
+ return rc;
+}
+SQLITE_PRIVATE int sqlite3OsRead(sqlite3_file *id, void *pBuf, int amt, i64 offset){
+ DO_OS_MALLOC_TEST;
+ return id->pMethods->xRead(id, pBuf, amt, offset);
+}
+SQLITE_PRIVATE int sqlite3OsWrite(sqlite3_file *id, const void *pBuf, int amt, i64 offset){
+ DO_OS_MALLOC_TEST;
+ return id->pMethods->xWrite(id, pBuf, amt, offset);
+}
+SQLITE_PRIVATE int sqlite3OsTruncate(sqlite3_file *id, i64 size){
+ return id->pMethods->xTruncate(id, size);
+}
+SQLITE_PRIVATE int sqlite3OsSync(sqlite3_file *id, int flags){
+ DO_OS_MALLOC_TEST;
+ return id->pMethods->xSync(id, flags);
+}
+SQLITE_PRIVATE int sqlite3OsFileSize(sqlite3_file *id, i64 *pSize){
+ return id->pMethods->xFileSize(id, pSize);
+}
+SQLITE_PRIVATE int sqlite3OsLock(sqlite3_file *id, int lockType){
+ DO_OS_MALLOC_TEST;
+ return id->pMethods->xLock(id, lockType);
+}
+SQLITE_PRIVATE int sqlite3OsUnlock(sqlite3_file *id, int lockType){
+ return id->pMethods->xUnlock(id, lockType);
+}
+SQLITE_PRIVATE int sqlite3OsCheckReservedLock(sqlite3_file *id){
+ return id->pMethods->xCheckReservedLock(id);
+}
+SQLITE_PRIVATE int sqlite3OsFileControl(sqlite3_file *id, int op, void *pArg){
+ return id->pMethods->xFileControl(id,op,pArg);
+}
+SQLITE_PRIVATE int sqlite3OsSectorSize(sqlite3_file *id){
+ int (*xSectorSize)(sqlite3_file*) = id->pMethods->xSectorSize;
+ return (xSectorSize ? xSectorSize(id) : SQLITE_DEFAULT_SECTOR_SIZE);
+}
+SQLITE_PRIVATE int sqlite3OsDeviceCharacteristics(sqlite3_file *id){
+ return id->pMethods->xDeviceCharacteristics(id);
+}
+
+/*
+** The next group of routines are convenience wrappers around the
+** VFS methods.
+*/
+SQLITE_PRIVATE int sqlite3OsOpen(
+ sqlite3_vfs *pVfs,
+ const char *zPath,
+ sqlite3_file *pFile,
+ int flags,
+ int *pFlagsOut
+){
+ DO_OS_MALLOC_TEST;
+ return pVfs->xOpen(pVfs, zPath, pFile, flags, pFlagsOut);
+}
+SQLITE_PRIVATE int sqlite3OsDelete(sqlite3_vfs *pVfs, const char *zPath, int dirSync){
+ return pVfs->xDelete(pVfs, zPath, dirSync);
+}
+SQLITE_PRIVATE int sqlite3OsAccess(sqlite3_vfs *pVfs, const char *zPath, int flags){
+ int rc;
+#ifdef SQLITE_TEST
+ void *pTstAlloc = sqlite3_malloc(10);
+ if (!pTstAlloc) return -1;
+ sqlite3_free(pTstAlloc);
+#endif
+ rc = pVfs->xAccess(pVfs, zPath, flags);
+ return rc;
+}
+SQLITE_PRIVATE int sqlite3OsGetTempname(sqlite3_vfs *pVfs, int nBufOut, char *zBufOut){
+ return pVfs->xGetTempname(pVfs, nBufOut, zBufOut);
+}
+SQLITE_PRIVATE int sqlite3OsFullPathname(
+ sqlite3_vfs *pVfs,
+ const char *zPath,
+ int nPathOut,
+ char *zPathOut
+){
+ return pVfs->xFullPathname(pVfs, zPath, nPathOut, zPathOut);
+}
+SQLITE_PRIVATE void *sqlite3OsDlOpen(sqlite3_vfs *pVfs, const char *zPath){
+ return pVfs->xDlOpen(pVfs, zPath);
+}
+SQLITE_PRIVATE void sqlite3OsDlError(sqlite3_vfs *pVfs, int nByte, char *zBufOut){
+ pVfs->xDlError(pVfs, nByte, zBufOut);
+}
+SQLITE_PRIVATE void *sqlite3OsDlSym(sqlite3_vfs *pVfs, void *pHandle, const char *zSymbol){
+ return pVfs->xDlSym(pVfs, pHandle, zSymbol);
+}
+SQLITE_PRIVATE void sqlite3OsDlClose(sqlite3_vfs *pVfs, void *pHandle){
+ pVfs->xDlClose(pVfs, pHandle);
+}
+SQLITE_PRIVATE int sqlite3OsRandomness(sqlite3_vfs *pVfs, int nByte, char *zBufOut){
+ return pVfs->xRandomness(pVfs, nByte, zBufOut);
+}
+SQLITE_PRIVATE int sqlite3OsSleep(sqlite3_vfs *pVfs, int nMicro){
+ return pVfs->xSleep(pVfs, nMicro);
+}
+SQLITE_PRIVATE int sqlite3OsCurrentTime(sqlite3_vfs *pVfs, double *pTimeOut){
+ return pVfs->xCurrentTime(pVfs, pTimeOut);
+}
+
+SQLITE_PRIVATE int sqlite3OsOpenMalloc(
+ sqlite3_vfs *pVfs,
+ const char *zFile,
+ sqlite3_file **ppFile,
+ int flags,
+ int *pOutFlags
+){
+ int rc = SQLITE_NOMEM;
+ sqlite3_file *pFile;
+ pFile = (sqlite3_file *)sqlite3_malloc(pVfs->szOsFile);
+ if( pFile ){
+ rc = sqlite3OsOpen(pVfs, zFile, pFile, flags, pOutFlags);
+ if( rc!=SQLITE_OK ){
+ sqlite3_free(pFile);
+ }else{
+ *ppFile = pFile;
+ }
+ }
+ return rc;
+}
+SQLITE_PRIVATE int sqlite3OsCloseFree(sqlite3_file *pFile){
+ int rc = SQLITE_OK;
+ assert( pFile );
+ rc = sqlite3OsClose(pFile);
+ sqlite3_free(pFile);
+ return rc;
+}
+
+/*
+** The list of all registered VFS implementations. This list is
+** initialized to the single VFS returned by sqlite3OsDefaultVfs()
+** upon the first call to sqlite3_vfs_find().
+*/
+static sqlite3_vfs *vfsList = 0;
+
+/*
+** Locate a VFS by name. If no name is given, simply return the
+** first VFS on the list.
+*/
+SQLITE_API sqlite3_vfs *sqlite3_vfs_find(const char *zVfs){
+#ifndef SQLITE_MUTEX_NOOP
+ sqlite3_mutex *mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER);
+#endif
+ sqlite3_vfs *pVfs = 0;
+ static int isInit = 0;
+ sqlite3_mutex_enter(mutex);
+ if( !isInit ){
+ vfsList = sqlite3OsDefaultVfs();
+ isInit = 1;
+ }
+ for(pVfs = vfsList; pVfs; pVfs=pVfs->pNext){
+ if( zVfs==0 ) break;
+ if( strcmp(zVfs, pVfs->zName)==0 ) break;
+ }
+ sqlite3_mutex_leave(mutex);
+ return pVfs;
+}
+
+/*
+** Unlink a VFS from the linked list
+*/
+static void vfsUnlink(sqlite3_vfs *pVfs){
+ assert( sqlite3_mutex_held(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER)) );
+ if( pVfs==0 ){
+ /* No-op */
+ }else if( vfsList==pVfs ){
+ vfsList = pVfs->pNext;
+ }else if( vfsList ){
+ sqlite3_vfs *p = vfsList;
+ while( p->pNext && p->pNext!=pVfs ){
+ p = p->pNext;
+ }
+ if( p->pNext==pVfs ){
+ p->pNext = pVfs->pNext;
+ }
+ }
+}
+
+/*
+** Register a VFS with the system. It is harmless to register the same
+** VFS multiple times. The new VFS becomes the default if makeDflt is
+** true.
+*/
+SQLITE_API int sqlite3_vfs_register(sqlite3_vfs *pVfs, int makeDflt){
+#ifndef SQLITE_MUTEX_NOOP
+ sqlite3_mutex *mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER);
+#endif
+ sqlite3_vfs_find(0); /* Make sure we are initialized */
+ sqlite3_mutex_enter(mutex);
+ vfsUnlink(pVfs);
+ if( makeDflt || vfsList==0 ){
+ pVfs->pNext = vfsList;
+ vfsList = pVfs;
+ }else{
+ pVfs->pNext = vfsList->pNext;
+ vfsList->pNext = pVfs;
+ }
+ assert(vfsList);
+ sqlite3_mutex_leave(mutex);
+ return SQLITE_OK;
+}
+
+/*
+** Unregister a VFS so that it is no longer accessible.
+*/
+SQLITE_API int sqlite3_vfs_unregister(sqlite3_vfs *pVfs){
+#ifndef SQLITE_MUTEX_NOOP
+ sqlite3_mutex *mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER);
+#endif
+ sqlite3_mutex_enter(mutex);
+ vfsUnlink(pVfs);
+ sqlite3_mutex_leave(mutex);
+ return SQLITE_OK;
+}
+
+/*
+** Provide a default sqlite3OsDefaultVfs() implementation in the
+** cases where none of the standard backends are used.
+*/
+#if !OS_UNIX && !OS_WIN && !OS_OS2
+SQLITE_PRIVATE sqlite3_vfs *sqlite3OsDefaultVfs(void){ return 0; }
+#endif
+
+/************** End of os.c **************************************************/
+/************** Begin file fault.c *******************************************/
+/*
+** 2008 Jan 22
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains code to implement a fault-injector used for
+** testing and verification of SQLite.
+**
+** Subsystems within SQLite can call sqlite3FaultStep() to see if
+** they should simulate a fault. sqlite3FaultStep() normally returns
+** zero but will return non-zero if a fault should be simulated.
+** Fault injectors can be used, for example, to simulate memory
+** allocation failures or I/O errors.
+**
+** The fault injector is omitted from the code if SQLite is
+** compiled with -DSQLITE_OMIT_BUILTIN_TEST=1. There is a very
+** small performance hit for leaving the fault injector in the code.
+** Commerical products will probably want to omit the fault injector
+** from production builds. But safety-critical systems who work
+** under the motto "fly what you test and test what you fly" may
+** choose to leave the fault injector enabled even in production.
+*/
+
+#ifndef SQLITE_OMIT_BUILTIN_TEST
+
+/*
+** There can be various kinds of faults. For example, there can be
+** a memory allocation failure. Or an I/O failure. For each different
+** fault type, there is a separate FaultInjector structure to keep track
+** of the status of that fault.
+*/
+static struct FaultInjector {
+ int iCountdown; /* Number of pending successes before we hit a failure */
+ int nRepeat; /* Number of times to repeat the failure */
+ int nBenign; /* Number of benign failures seen since last config */
+ int nFail; /* Number of failures seen since last config */
+ u8 enable; /* True if enabled */
+ i16 benign; /* Positive if next failure will be benign */
+} aFault[SQLITE_FAULTINJECTOR_COUNT];
+
+/*
+** This routine configures and enables a fault injector. After
+** calling this routine, aFaultStep() will return false (zero)
+** nDelay times, then it will return true nRepeat times,
+** then it will again begin returning false.
+*/
+SQLITE_PRIVATE void sqlite3FaultConfig(int id, int nDelay, int nRepeat){
+ assert( id>=0 && id<SQLITE_FAULTINJECTOR_COUNT );
+ aFault[id].iCountdown = nDelay;
+ aFault[id].nRepeat = nRepeat;
+ aFault[id].nBenign = 0;
+ aFault[id].nFail = 0;
+ aFault[id].enable = nDelay>=0;
+ aFault[id].benign = 0;
+}
+
+/*
+** Return the number of faults (both hard and benign faults) that have
+** occurred since the injector was last configured.
+*/
+SQLITE_PRIVATE int sqlite3FaultFailures(int id){
+ assert( id>=0 && id<SQLITE_FAULTINJECTOR_COUNT );
+ return aFault[id].nFail;
+}
+
+/*
+** Return the number of benign faults that have occurred since the
+** injector was last configured.
+*/
+SQLITE_PRIVATE int sqlite3FaultBenignFailures(int id){
+ assert( id>=0 && id<SQLITE_FAULTINJECTOR_COUNT );
+ return aFault[id].nBenign;
+}
+
+/*
+** Return the number of successes that will occur before the next failure.
+** If no failures are scheduled, return -1.
+*/
+SQLITE_PRIVATE int sqlite3FaultPending(int id){
+ assert( id>=0 && id<SQLITE_FAULTINJECTOR_COUNT );
+ if( aFault[id].enable ){
+ return aFault[id].iCountdown;
+ }else{
+ return -1;
+ }
+}
+
+/*
+** After this routine causes subsequent faults to be either benign
+** or hard (not benign), according to the "enable" parameter.
+**
+** Most faults are hard. In other words, most faults cause
+** an error to be propagated back up to the application interface.
+** However, sometimes a fault is easily recoverable. For example,
+** if a malloc fails while resizing a hash table, this is completely
+** recoverable simply by not carrying out the resize. The hash table
+** will continue to function normally. So a malloc failure during
+** a hash table resize is a benign fault.
+*/
+SQLITE_PRIVATE void sqlite3FaultBeginBenign(int id){
+ if( id<0 ){
+ for(id=0; id<SQLITE_FAULTINJECTOR_COUNT; id++){
+ aFault[id].benign++;
+ }
+ }else{
+ assert( id>=0 && id<SQLITE_FAULTINJECTOR_COUNT );
+ aFault[id].benign++;
+ }
+}
+SQLITE_PRIVATE void sqlite3FaultEndBenign(int id){
+ if( id<0 ){
+ for(id=0; id<SQLITE_FAULTINJECTOR_COUNT; id++){
+ assert( aFault[id].benign>0 );
+ aFault[id].benign--;
+ }
+ }else{
+ assert( id>=0 && id<SQLITE_FAULTINJECTOR_COUNT );
+ assert( aFault[id].benign>0 );
+ aFault[id].benign--;
+ }
+}
+
+/*
+** This routine exists as a place to set a breakpoint that will
+** fire on any simulated fault.
+*/
+static void sqlite3Fault(void){
+ static int cnt = 0;
+ cnt++;
+}
+
+
+/*
+** Check to see if a fault should be simulated. Return true to simulate
+** the fault. Return false if the fault should not be simulated.
+*/
+SQLITE_PRIVATE int sqlite3FaultStep(int id){
+ assert( id>=0 && id<SQLITE_FAULTINJECTOR_COUNT );
+ if( likely(!aFault[id].enable) ){
+ return 0;
+ }
+ if( aFault[id].iCountdown>0 ){
+ aFault[id].iCountdown--;
+ return 0;
+ }
+ sqlite3Fault();
+ aFault[id].nFail++;
+ if( aFault[id].benign>0 ){
+ aFault[id].nBenign++;
+ }
+ aFault[id].nRepeat--;
+ if( aFault[id].nRepeat<=0 ){
+ aFault[id].enable = 0;
+ }
+ return 1;
+}
+
+#endif /* SQLITE_OMIT_BUILTIN_TEST */
+
+/************** End of fault.c ***********************************************/
+/************** Begin file mem1.c ********************************************/
+/*
+** 2007 August 14
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains the C functions that implement a memory
+** allocation subsystem for use by SQLite.
+**
+** $Id: mem1.c,v 1.17 2008/03/18 00:07:11 drh Exp $
+*/
+
+/*
+** This version of the memory allocator is the default. It is
+** used when no other memory allocator is specified using compile-time
+** macros.
+*/
+#ifdef SQLITE_SYSTEM_MALLOC
+
+/*
+** All of the static variables used by this module are collected
+** into a single structure named "mem". This is to keep the
+** static variables organized and to reduce namespace pollution
+** when this module is combined with other in the amalgamation.
+*/
+static struct {
+ /*
+ ** The alarm callback and its arguments. The mem.mutex lock will
+ ** be held while the callback is running. Recursive calls into
+ ** the memory subsystem are allowed, but no new callbacks will be
+ ** issued. The alarmBusy variable is set to prevent recursive
+ ** callbacks.
+ */
+ sqlite3_int64 alarmThreshold;
+ void (*alarmCallback)(void*, sqlite3_int64,int);
+ void *alarmArg;
+ int alarmBusy;
+
+ /*
+ ** Mutex to control access to the memory allocation subsystem.
+ */
+ sqlite3_mutex *mutex;
+
+ /*
+ ** Current allocation and high-water mark.
+ */
+ sqlite3_int64 nowUsed;
+ sqlite3_int64 mxUsed;
+
+
+} mem;
+
+/*
+** Enter the mutex mem.mutex. Allocate it if it is not already allocated.
+*/
+static void enterMem(void){
+ if( mem.mutex==0 ){
+ mem.mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MEM);
+ }
+ sqlite3_mutex_enter(mem.mutex);
+}
+
+/*
+** Return the amount of memory currently checked out.
+*/
+SQLITE_API sqlite3_int64 sqlite3_memory_used(void){
+ sqlite3_int64 n;
+ enterMem();
+ n = mem.nowUsed;
+ sqlite3_mutex_leave(mem.mutex);
+ return n;
+}
+
+/*
+** Return the maximum amount of memory that has ever been
+** checked out since either the beginning of this process
+** or since the most recent reset.
+*/
+SQLITE_API sqlite3_int64 sqlite3_memory_highwater(int resetFlag){
+ sqlite3_int64 n;
+ enterMem();
+ n = mem.mxUsed;
+ if( resetFlag ){
+ mem.mxUsed = mem.nowUsed;
+ }
+ sqlite3_mutex_leave(mem.mutex);
+ return n;
+}
+
+/*
+** Change the alarm callback
+*/
+SQLITE_API int sqlite3_memory_alarm(
+ void(*xCallback)(void *pArg, sqlite3_int64 used,int N),
+ void *pArg,
+ sqlite3_int64 iThreshold
+){
+ enterMem();
+ mem.alarmCallback = xCallback;
+ mem.alarmArg = pArg;
+ mem.alarmThreshold = iThreshold;
+ sqlite3_mutex_leave(mem.mutex);
+ return SQLITE_OK;
+}
+
+/*
+** Trigger the alarm
+*/
+static void sqlite3MemsysAlarm(int nByte){
+ void (*xCallback)(void*,sqlite3_int64,int);
+ sqlite3_int64 nowUsed;
+ void *pArg;
+ if( mem.alarmCallback==0 || mem.alarmBusy ) return;
+ mem.alarmBusy = 1;
+ xCallback = mem.alarmCallback;
+ nowUsed = mem.nowUsed;
+ pArg = mem.alarmArg;
+ sqlite3_mutex_leave(mem.mutex);
+ xCallback(pArg, nowUsed, nByte);
+ sqlite3_mutex_enter(mem.mutex);
+ mem.alarmBusy = 0;
+}
+
+/*
+** Allocate nBytes of memory
+*/
+SQLITE_API void *sqlite3_malloc(int nBytes){
+ sqlite3_int64 *p = 0;
+ if( nBytes>0 ){
+ enterMem();
+ if( mem.alarmCallback!=0 && mem.nowUsed+nBytes>=mem.alarmThreshold ){
+ sqlite3MemsysAlarm(nBytes);
+ }
+ if( sqlite3FaultStep(SQLITE_FAULTINJECTOR_MALLOC) ){
+ p = 0;
+ }else{
+ p = malloc(nBytes+8);
+ if( p==0 ){
+ sqlite3MemsysAlarm(nBytes);
+ p = malloc(nBytes+8);
+ }
+ }
+ if( p ){
+ p[0] = nBytes;
+ p++;
+ mem.nowUsed += nBytes;
+ if( mem.nowUsed>mem.mxUsed ){
+ mem.mxUsed = mem.nowUsed;
+ }
+ }
+ sqlite3_mutex_leave(mem.mutex);
+ }
+ return (void*)p;
+}
+
+/*
+** Free memory.
+*/
+SQLITE_API void sqlite3_free(void *pPrior){
+ sqlite3_int64 *p;
+ int nByte;
+ if( pPrior==0 ){
+ return;
+ }
+ assert( mem.mutex!=0 );
+ p = pPrior;
+ p--;
+ nByte = (int)*p;
+ sqlite3_mutex_enter(mem.mutex);
+ mem.nowUsed -= nByte;
+ free(p);
+ sqlite3_mutex_leave(mem.mutex);
+}
+
+/*
+** Return the number of bytes allocated at p.
+*/
+SQLITE_PRIVATE int sqlite3MallocSize(void *p){
+ sqlite3_int64 *pInt;
+ if( !p ) return 0;
+ pInt = p;
+ return pInt[-1];
+}
+
+/*
+** Change the size of an existing memory allocation
+*/
+SQLITE_API void *sqlite3_realloc(void *pPrior, int nBytes){
+ int nOld;
+ sqlite3_int64 *p;
+ if( pPrior==0 ){
+ return sqlite3_malloc(nBytes);
+ }
+ if( nBytes<=0 ){
+ sqlite3_free(pPrior);
+ return 0;
+ }
+ p = pPrior;
+ p--;
+ nOld = (int)p[0];
+ assert( mem.mutex!=0 );
+ sqlite3_mutex_enter(mem.mutex);
+ if( mem.nowUsed+nBytes-nOld>=mem.alarmThreshold ){
+ sqlite3MemsysAlarm(nBytes-nOld);
+ }
+ if( sqlite3FaultStep(SQLITE_FAULTINJECTOR_MALLOC) ){
+ p = 0;
+ }else{
+ p = realloc(p, nBytes+8);
+ if( p==0 ){
+ sqlite3MemsysAlarm(nBytes);
+ p = pPrior;
+ p--;
+ p = realloc(p, nBytes+8);
+ }
+ }
+ if( p ){
+ p[0] = nBytes;
+ p++;
+ mem.nowUsed += nBytes-nOld;
+ if( mem.nowUsed>mem.mxUsed ){
+ mem.mxUsed = mem.nowUsed;
+ }
+ }
+ sqlite3_mutex_leave(mem.mutex);
+ return (void*)p;
+}
+
+#endif /* SQLITE_SYSTEM_MALLOC */
+
+/************** End of mem1.c ************************************************/
+/************** Begin file mem2.c ********************************************/
+/*
+** 2007 August 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains the C functions that implement a memory
+** allocation subsystem for use by SQLite.
+**
+** $Id: mem2.c,v 1.26 2008/04/10 14:57:25 drh Exp $
+*/
+
+/*
+** This version of the memory allocator is used only if the
+** SQLITE_MEMDEBUG macro is defined
+*/
+#ifdef SQLITE_MEMDEBUG
+
+/*
+** The backtrace functionality is only available with GLIBC
+*/
+#ifdef __GLIBC__
+ extern int backtrace(void**,int);
+ extern void backtrace_symbols_fd(void*const*,int,int);
+#else
+# define backtrace(A,B) 0
+# define backtrace_symbols_fd(A,B,C)
+#endif
+
+/*
+** Each memory allocation looks like this:
+**
+** ------------------------------------------------------------------------
+** | Title | backtrace pointers | MemBlockHdr | allocation | EndGuard |
+** ------------------------------------------------------------------------
+**
+** The application code sees only a pointer to the allocation. We have
+** to back up from the allocation pointer to find the MemBlockHdr. The
+** MemBlockHdr tells us the size of the allocation and the number of
+** backtrace pointers. There is also a guard word at the end of the
+** MemBlockHdr.
+*/
+struct MemBlockHdr {
+ i64 iSize; /* Size of this allocation */
+ struct MemBlockHdr *pNext, *pPrev; /* Linked list of all unfreed memory */
+ char nBacktrace; /* Number of backtraces on this alloc */
+ char nBacktraceSlots; /* Available backtrace slots */
+ short nTitle; /* Bytes of title; includes '\0' */
+ int iForeGuard; /* Guard word for sanity */
+};
+
+/*
+** Guard words
+*/
+#define FOREGUARD 0x80F5E153
+#define REARGUARD 0xE4676B53
+
+/*
+** Number of malloc size increments to track.
+*/
+#define NCSIZE 1000
+
+/*
+** All of the static variables used by this module are collected
+** into a single structure named "mem". This is to keep the
+** static variables organized and to reduce namespace pollution
+** when this module is combined with other in the amalgamation.
+*/
+static struct {
+ /*
+ ** The alarm callback and its arguments. The mem.mutex lock will
+ ** be held while the callback is running. Recursive calls into
+ ** the memory subsystem are allowed, but no new callbacks will be
+ ** issued. The alarmBusy variable is set to prevent recursive
+ ** callbacks.
+ */
+ sqlite3_int64 alarmThreshold;
+ void (*alarmCallback)(void*, sqlite3_int64, int);
+ void *alarmArg;
+ int alarmBusy;
+
+ /*
+ ** Mutex to control access to the memory allocation subsystem.
+ */
+ sqlite3_mutex *mutex;
+
+ /*
+ ** Current allocation and high-water mark.
+ */
+ sqlite3_int64 nowUsed;
+ sqlite3_int64 mxUsed;
+
+ /*
+ ** Head and tail of a linked list of all outstanding allocations
+ */
+ struct MemBlockHdr *pFirst;
+ struct MemBlockHdr *pLast;
+
+ /*
+ ** The number of levels of backtrace to save in new allocations.
+ */
+ int nBacktrace;
+ void (*xBacktrace)(int, int, void **);
+
+ /*
+ ** Title text to insert in front of each block
+ */
+ int nTitle; /* Bytes of zTitle to save. Includes '\0' and padding */
+ char zTitle[100]; /* The title text */
+
+ /*
+ ** sqlite3MallocDisallow() increments the following counter.
+ ** sqlite3MallocAllow() decrements it.
+ */
+ int disallow; /* Do not allow memory allocation */
+
+ /*
+ ** Gather statistics on the sizes of memory allocations.
+ ** sizeCnt[i] is the number of allocation attempts of i*8
+ ** bytes. i==NCSIZE is the number of allocation attempts for
+ ** sizes more than NCSIZE*8 bytes.
+ */
+ int sizeCnt[NCSIZE];
+
+} mem;
+
+
+/*
+** Enter the mutex mem.mutex. Allocate it if it is not already allocated.
+*/
+static void enterMem(void){
+ if( mem.mutex==0 ){
+ mem.mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MEM);
+ }
+ sqlite3_mutex_enter(mem.mutex);
+}
+
+/*
+** Return the amount of memory currently checked out.
+*/
+SQLITE_API sqlite3_int64 sqlite3_memory_used(void){
+ sqlite3_int64 n;
+ enterMem();
+ n = mem.nowUsed;
+ sqlite3_mutex_leave(mem.mutex);
+ return n;
+}
+
+/*
+** Return the maximum amount of memory that has ever been
+** checked out since either the beginning of this process
+** or since the most recent reset.
+*/
+SQLITE_API sqlite3_int64 sqlite3_memory_highwater(int resetFlag){
+ sqlite3_int64 n;
+ enterMem();
+ n = mem.mxUsed;
+ if( resetFlag ){
+ mem.mxUsed = mem.nowUsed;
+ }
+ sqlite3_mutex_leave(mem.mutex);
+ return n;
+}
+
+/*
+** Change the alarm callback
+*/
+SQLITE_API int sqlite3_memory_alarm(
+ void(*xCallback)(void *pArg, sqlite3_int64 used, int N),
+ void *pArg,
+ sqlite3_int64 iThreshold
+){
+ enterMem();
+ mem.alarmCallback = xCallback;
+ mem.alarmArg = pArg;
+ mem.alarmThreshold = iThreshold;
+ sqlite3_mutex_leave(mem.mutex);
+ return SQLITE_OK;
+}
+
+/*
+** Trigger the alarm
+*/
+static void sqlite3MemsysAlarm(int nByte){
+ void (*xCallback)(void*,sqlite3_int64,int);
+ sqlite3_int64 nowUsed;
+ void *pArg;
+ if( mem.alarmCallback==0 || mem.alarmBusy ) return;
+ mem.alarmBusy = 1;
+ xCallback = mem.alarmCallback;
+ nowUsed = mem.nowUsed;
+ pArg = mem.alarmArg;
+ sqlite3_mutex_leave(mem.mutex);
+ xCallback(pArg, nowUsed, nByte);
+ sqlite3_mutex_enter(mem.mutex);
+ mem.alarmBusy = 0;
+}
+
+/*
+** Given an allocation, find the MemBlockHdr for that allocation.
+**
+** This routine checks the guards at either end of the allocation and
+** if they are incorrect it asserts.
+*/
+static struct MemBlockHdr *sqlite3MemsysGetHeader(void *pAllocation){
+ struct MemBlockHdr *p;
+ int *pInt;
+ u8 *pU8;
+ int nReserve;
+
+ p = (struct MemBlockHdr*)pAllocation;
+ p--;
+ assert( p->iForeGuard==FOREGUARD );
+ nReserve = (p->iSize+7)&~7;
+ pInt = (int*)pAllocation;
+ pU8 = (u8*)pAllocation;
+ assert( pInt[nReserve/sizeof(int)]==REARGUARD );
+ assert( (nReserve-0)<=p->iSize || pU8[nReserve-1]==0x65 );
+ assert( (nReserve-1)<=p->iSize || pU8[nReserve-2]==0x65 );
+ assert( (nReserve-2)<=p->iSize || pU8[nReserve-3]==0x65 );
+ return p;
+}
+
+/*
+** Return the number of bytes currently allocated at address p.
+*/
+SQLITE_PRIVATE int sqlite3MallocSize(void *p){
+ struct MemBlockHdr *pHdr;
+ if( !p ){
+ return 0;
+ }
+ pHdr = sqlite3MemsysGetHeader(p);
+ return pHdr->iSize;
+}
+
+/*
+** Allocate nByte bytes of memory.
+*/
+SQLITE_API void *sqlite3_malloc(int nByte){
+ struct MemBlockHdr *pHdr;
+ void **pBt;
+ char *z;
+ int *pInt;
+ void *p = 0;
+ int totalSize;
+
+ if( nByte>0 ){
+ int nReserve;
+ enterMem();
+ assert( mem.disallow==0 );
+ if( mem.alarmCallback!=0 && mem.nowUsed+nByte>=mem.alarmThreshold ){
+ sqlite3MemsysAlarm(nByte);
+ }
+ nReserve = (nByte+7)&~7;
+ if( nReserve/8>NCSIZE-1 ){
+ mem.sizeCnt[NCSIZE-1]++;
+ }else{
+ mem.sizeCnt[nReserve/8]++;
+ }
+ totalSize = nReserve + sizeof(*pHdr) + sizeof(int) +
+ mem.nBacktrace*sizeof(void*) + mem.nTitle;
+ if( sqlite3FaultStep(SQLITE_FAULTINJECTOR_MALLOC) ){
+ p = 0;
+ }else{
+ p = malloc(totalSize);
+ if( p==0 ){
+ sqlite3MemsysAlarm(nByte);
+ p = malloc(totalSize);
+ }
+ }
+ if( p ){
+ z = p;
+ pBt = (void**)&z[mem.nTitle];
+ pHdr = (struct MemBlockHdr*)&pBt[mem.nBacktrace];
+ pHdr->pNext = 0;
+ pHdr->pPrev = mem.pLast;
+ if( mem.pLast ){
+ mem.pLast->pNext = pHdr;
+ }else{
+ mem.pFirst = pHdr;
+ }
+ mem.pLast = pHdr;
+ pHdr->iForeGuard = FOREGUARD;
+ pHdr->nBacktraceSlots = mem.nBacktrace;
+ pHdr->nTitle = mem.nTitle;
+ if( mem.nBacktrace ){
+ void *aAddr[40];
+ pHdr->nBacktrace = backtrace(aAddr, mem.nBacktrace+1)-1;
+ memcpy(pBt, &aAddr[1], pHdr->nBacktrace*sizeof(void*));
+ if( mem.xBacktrace ){
+ mem.xBacktrace(nByte, pHdr->nBacktrace-1, &aAddr[1]);
+ }
+ }else{
+ pHdr->nBacktrace = 0;
+ }
+ if( mem.nTitle ){
+ memcpy(z, mem.zTitle, mem.nTitle);
+ }
+ pHdr->iSize = nByte;
+ pInt = (int*)&pHdr[1];
+ pInt[nReserve/sizeof(int)] = REARGUARD;
+ memset(pInt, 0x65, nReserve);
+ mem.nowUsed += nByte;
+ if( mem.nowUsed>mem.mxUsed ){
+ mem.mxUsed = mem.nowUsed;
+ }
+ p = (void*)pInt;
+ }
+ sqlite3_mutex_leave(mem.mutex);
+ }
+ return p;
+}
+
+/*
+** Free memory.
+*/
+SQLITE_API void sqlite3_free(void *pPrior){
+ struct MemBlockHdr *pHdr;
+ void **pBt;
+ char *z;
+ if( pPrior==0 ){
+ return;
+ }
+ assert( mem.mutex!=0 );
+ pHdr = sqlite3MemsysGetHeader(pPrior);
+ pBt = (void**)pHdr;
+ pBt -= pHdr->nBacktraceSlots;
+ sqlite3_mutex_enter(mem.mutex);
+ mem.nowUsed -= pHdr->iSize;
+ if( pHdr->pPrev ){
+ assert( pHdr->pPrev->pNext==pHdr );
+ pHdr->pPrev->pNext = pHdr->pNext;
+ }else{
+ assert( mem.pFirst==pHdr );
+ mem.pFirst = pHdr->pNext;
+ }
+ if( pHdr->pNext ){
+ assert( pHdr->pNext->pPrev==pHdr );
+ pHdr->pNext->pPrev = pHdr->pPrev;
+ }else{
+ assert( mem.pLast==pHdr );
+ mem.pLast = pHdr->pPrev;
+ }
+ z = (char*)pBt;
+ z -= pHdr->nTitle;
+ memset(z, 0x2b, sizeof(void*)*pHdr->nBacktraceSlots + sizeof(*pHdr) +
+ pHdr->iSize + sizeof(int) + pHdr->nTitle);
+ free(z);
+ sqlite3_mutex_leave(mem.mutex);
+}
+
+/*
+** Change the size of an existing memory allocation.
+**
+** For this debugging implementation, we *always* make a copy of the
+** allocation into a new place in memory. In this way, if the
+** higher level code is using pointer to the old allocation, it is
+** much more likely to break and we are much more liking to find
+** the error.
+*/
+SQLITE_API void *sqlite3_realloc(void *pPrior, int nByte){
+ struct MemBlockHdr *pOldHdr;
+ void *pNew;
+ if( pPrior==0 ){
+ return sqlite3_malloc(nByte);
+ }
+ if( nByte<=0 ){
+ sqlite3_free(pPrior);
+ return 0;
+ }
+ assert( mem.disallow==0 );
+ pOldHdr = sqlite3MemsysGetHeader(pPrior);
+ pNew = sqlite3_malloc(nByte);
+ if( pNew ){
+ memcpy(pNew, pPrior, nByte<pOldHdr->iSize ? nByte : pOldHdr->iSize);
+ if( nByte>pOldHdr->iSize ){
+ memset(&((char*)pNew)[pOldHdr->iSize], 0x2b, nByte - pOldHdr->iSize);
+ }
+ sqlite3_free(pPrior);
+ }
+ return pNew;
+}
+
+/*
+** Set the number of backtrace levels kept for each allocation.
+** A value of zero turns of backtracing. The number is always rounded
+** up to a multiple of 2.
+*/
+SQLITE_PRIVATE void sqlite3MemdebugBacktrace(int depth){
+ if( depth<0 ){ depth = 0; }
+ if( depth>20 ){ depth = 20; }
+ depth = (depth+1)&0xfe;
+ mem.nBacktrace = depth;
+}
+
+SQLITE_PRIVATE void sqlite3MemdebugBacktraceCallback(void (*xBacktrace)(int, int, void **)){
+ mem.xBacktrace = xBacktrace;
+}
+
+/*
+** Set the title string for subsequent allocations.
+*/
+SQLITE_PRIVATE void sqlite3MemdebugSettitle(const char *zTitle){
+ int n = strlen(zTitle) + 1;
+ enterMem();
+ if( n>=sizeof(mem.zTitle) ) n = sizeof(mem.zTitle)-1;
+ memcpy(mem.zTitle, zTitle, n);
+ mem.zTitle[n] = 0;
+ mem.nTitle = (n+7)&~7;
+ sqlite3_mutex_leave(mem.mutex);
+}
+
+SQLITE_PRIVATE void sqlite3MemdebugSync(){
+ struct MemBlockHdr *pHdr;
+ for(pHdr=mem.pFirst; pHdr; pHdr=pHdr->pNext){
+ void **pBt = (void**)pHdr;
+ pBt -= pHdr->nBacktraceSlots;
+ mem.xBacktrace(pHdr->iSize, pHdr->nBacktrace-1, &pBt[1]);
+ }
+}
+
+/*
+** Open the file indicated and write a log of all unfreed memory
+** allocations into that log.
+*/
+SQLITE_PRIVATE void sqlite3MemdebugDump(const char *zFilename){
+ FILE *out;
+ struct MemBlockHdr *pHdr;
+ void **pBt;
+ int i;
+ out = fopen(zFilename, "w");
+ if( out==0 ){
+ fprintf(stderr, "** Unable to output memory debug output log: %s **\n",
+ zFilename);
+ return;
+ }
+ for(pHdr=mem.pFirst; pHdr; pHdr=pHdr->pNext){
+ char *z = (char*)pHdr;
+ z -= pHdr->nBacktraceSlots*sizeof(void*) + pHdr->nTitle;
+ fprintf(out, "**** %lld bytes at %p from %s ****\n",
+ pHdr->iSize, &pHdr[1], pHdr->nTitle ? z : "???");
+ if( pHdr->nBacktrace ){
+ fflush(out);
+ pBt = (void**)pHdr;
+ pBt -= pHdr->nBacktraceSlots;
+ backtrace_symbols_fd(pBt, pHdr->nBacktrace, fileno(out));
+ fprintf(out, "\n");
+ }
+ }
+ fprintf(out, "COUNTS:\n");
+ for(i=0; i<NCSIZE-1; i++){
+ if( mem.sizeCnt[i] ){
+ fprintf(out, " %3d: %d\n", i*8+8, mem.sizeCnt[i]);
+ }
+ }
+ if( mem.sizeCnt[NCSIZE-1] ){
+ fprintf(out, " >%3d: %d\n", NCSIZE*8, mem.sizeCnt[NCSIZE-1]);
+ }
+ fclose(out);
+}
+
+/*
+** Return the number of times sqlite3_malloc() has been called.
+*/
+SQLITE_PRIVATE int sqlite3MemdebugMallocCount(){
+ int i;
+ int nTotal = 0;
+ for(i=0; i<NCSIZE; i++){
+ nTotal += mem.sizeCnt[i];
+ }
+ return nTotal;
+}
+
+
+#endif /* SQLITE_MEMDEBUG */
+
+/************** End of mem2.c ************************************************/
+/************** Begin file mem3.c ********************************************/
+/*
+** 2007 October 14
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains the C functions that implement a memory
+** allocation subsystem for use by SQLite.
+**
+** This version of the memory allocation subsystem omits all
+** use of malloc(). All dynamically allocatable memory is
+** contained in a static array, mem.aPool[]. The size of this
+** fixed memory pool is SQLITE_MEMORY_SIZE bytes.
+**
+** This version of the memory allocation subsystem is used if
+** and only if SQLITE_MEMORY_SIZE is defined.
+**
+** $Id: mem3.c,v 1.12 2008/02/19 15:15:16 drh Exp $
+*/
+
+/*
+** This version of the memory allocator is used only when
+** SQLITE_MEMORY_SIZE is defined.
+*/
+#ifdef SQLITE_MEMORY_SIZE
+
+/*
+** Maximum size (in Mem3Blocks) of a "small" chunk.
+*/
+#define MX_SMALL 10
+
+
+/*
+** Number of freelist hash slots
+*/
+#define N_HASH 61
+
+/*
+** A memory allocation (also called a "chunk") consists of two or
+** more blocks where each block is 8 bytes. The first 8 bytes are
+** a header that is not returned to the user.
+**
+** A chunk is two or more blocks that is either checked out or
+** free. The first block has format u.hdr. u.hdr.size4x is 4 times the
+** size of the allocation in blocks if the allocation is free.
+** The u.hdr.size4x&1 bit is true if the chunk is checked out and
+** false if the chunk is on the freelist. The u.hdr.size4x&2 bit
+** is true if the previous chunk is checked out and false if the
+** previous chunk is free. The u.hdr.prevSize field is the size of
+** the previous chunk in blocks if the previous chunk is on the
+** freelist. If the previous chunk is checked out, then
+** u.hdr.prevSize can be part of the data for that chunk and should
+** not be read or written.
+**
+** We often identify a chunk by its index in mem.aPool[]. When
+** this is done, the chunk index refers to the second block of
+** the chunk. In this way, the first chunk has an index of 1.
+** A chunk index of 0 means "no such chunk" and is the equivalent
+** of a NULL pointer.
+**
+** The second block of free chunks is of the form u.list. The
+** two fields form a double-linked list of chunks of related sizes.
+** Pointers to the head of the list are stored in mem.aiSmall[]
+** for smaller chunks and mem.aiHash[] for larger chunks.
+**
+** The second block of a chunk is user data if the chunk is checked
+** out. If a chunk is checked out, the user data may extend into
+** the u.hdr.prevSize value of the following chunk.
+*/
+typedef struct Mem3Block Mem3Block;
+struct Mem3Block {
+ union {
+ struct {
+ u32 prevSize; /* Size of previous chunk in Mem3Block elements */
+ u32 size4x; /* 4x the size of current chunk in Mem3Block elements */
+ } hdr;
+ struct {
+ u32 next; /* Index in mem.aPool[] of next free chunk */
+ u32 prev; /* Index in mem.aPool[] of previous free chunk */
+ } list;
+ } u;
+};
+
+/*
+** All of the static variables used by this module are collected
+** into a single structure named "mem". This is to keep the
+** static variables organized and to reduce namespace pollution
+** when this module is combined with other in the amalgamation.
+*/
+static struct {
+ /*
+ ** True if we are evaluating an out-of-memory callback.
+ */
+ int alarmBusy;
+
+ /*
+ ** Mutex to control access to the memory allocation subsystem.
+ */
+ sqlite3_mutex *mutex;
+
+ /*
+ ** The minimum amount of free space that we have seen.
+ */
+ u32 mnMaster;
+
+ /*
+ ** iMaster is the index of the master chunk. Most new allocations
+ ** occur off of this chunk. szMaster is the size (in Mem3Blocks)
+ ** of the current master. iMaster is 0 if there is not master chunk.
+ ** The master chunk is not in either the aiHash[] or aiSmall[].
+ */
+ u32 iMaster;
+ u32 szMaster;
+
+ /*
+ ** Array of lists of free blocks according to the block size
+ ** for smaller chunks, or a hash on the block size for larger
+ ** chunks.
+ */
+ u32 aiSmall[MX_SMALL-1]; /* For sizes 2 through MX_SMALL, inclusive */
+ u32 aiHash[N_HASH]; /* For sizes MX_SMALL+1 and larger */
+
+ /*
+ ** Memory available for allocation
+ */
+ Mem3Block aPool[SQLITE_MEMORY_SIZE/sizeof(Mem3Block)+2];
+} mem;
+
+/*
+** Unlink the chunk at mem.aPool[i] from list it is currently
+** on. *pRoot is the list that i is a member of.
+*/
+static void memsys3UnlinkFromList(u32 i, u32 *pRoot){
+ u32 next = mem.aPool[i].u.list.next;
+ u32 prev = mem.aPool[i].u.list.prev;
+ assert( sqlite3_mutex_held(mem.mutex) );
+ if( prev==0 ){
+ *pRoot = next;
+ }else{
+ mem.aPool[prev].u.list.next = next;
+ }
+ if( next ){
+ mem.aPool[next].u.list.prev = prev;
+ }
+ mem.aPool[i].u.list.next = 0;
+ mem.aPool[i].u.list.prev = 0;
+}
+
+/*
+** Unlink the chunk at index i from
+** whatever list is currently a member of.
+*/
+static void memsys3Unlink(u32 i){
+ u32 size, hash;
+ assert( sqlite3_mutex_held(mem.mutex) );
+ assert( (mem.aPool[i-1].u.hdr.size4x & 1)==0 );
+ assert( i>=1 );
+ size = mem.aPool[i-1].u.hdr.size4x/4;
+ assert( size==mem.aPool[i+size-1].u.hdr.prevSize );
+ assert( size>=2 );
+ if( size <= MX_SMALL ){
+ memsys3UnlinkFromList(i, &mem.aiSmall[size-2]);
+ }else{
+ hash = size % N_HASH;
+ memsys3UnlinkFromList(i, &mem.aiHash[hash]);
+ }
+}
+
+/*
+** Link the chunk at mem.aPool[i] so that is on the list rooted
+** at *pRoot.
+*/
+static void memsys3LinkIntoList(u32 i, u32 *pRoot){
+ assert( sqlite3_mutex_held(mem.mutex) );
+ mem.aPool[i].u.list.next = *pRoot;
+ mem.aPool[i].u.list.prev = 0;
+ if( *pRoot ){
+ mem.aPool[*pRoot].u.list.prev = i;
+ }
+ *pRoot = i;
+}
+
+/*
+** Link the chunk at index i into either the appropriate
+** small chunk list, or into the large chunk hash table.
+*/
+static void memsys3Link(u32 i){
+ u32 size, hash;
+ assert( sqlite3_mutex_held(mem.mutex) );
+ assert( i>=1 );
+ assert( (mem.aPool[i-1].u.hdr.size4x & 1)==0 );
+ size = mem.aPool[i-1].u.hdr.size4x/4;
+ assert( size==mem.aPool[i+size-1].u.hdr.prevSize );
+ assert( size>=2 );
+ if( size <= MX_SMALL ){
+ memsys3LinkIntoList(i, &mem.aiSmall[size-2]);
+ }else{
+ hash = size % N_HASH;
+ memsys3LinkIntoList(i, &mem.aiHash[hash]);
+ }
+}
+
+/*
+** Enter the mutex mem.mutex. Allocate it if it is not already allocated.
+**
+** Also: Initialize the memory allocation subsystem the first time
+** this routine is called.
+*/
+static void memsys3Enter(void){
+ if( mem.mutex==0 ){
+ mem.mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MEM);
+ mem.aPool[0].u.hdr.size4x = SQLITE_MEMORY_SIZE/2 + 2;
+ mem.aPool[SQLITE_MEMORY_SIZE/8].u.hdr.prevSize = SQLITE_MEMORY_SIZE/8;
+ mem.aPool[SQLITE_MEMORY_SIZE/8].u.hdr.size4x = 1;
+ mem.iMaster = 1;
+ mem.szMaster = SQLITE_MEMORY_SIZE/8;
+ mem.mnMaster = mem.szMaster;
+ }
+ sqlite3_mutex_enter(mem.mutex);
+}
+
+/*
+** Return the amount of memory currently checked out.
+*/
+SQLITE_API sqlite3_int64 sqlite3_memory_used(void){
+ sqlite3_int64 n;
+ memsys3Enter();
+ n = SQLITE_MEMORY_SIZE - mem.szMaster*8;
+ sqlite3_mutex_leave(mem.mutex);
+ return n;
+}
+
+/*
+** Return the maximum amount of memory that has ever been
+** checked out since either the beginning of this process
+** or since the most recent reset.
+*/
+SQLITE_API sqlite3_int64 sqlite3_memory_highwater(int resetFlag){
+ sqlite3_int64 n;
+ memsys3Enter();
+ n = SQLITE_MEMORY_SIZE - mem.mnMaster*8;
+ if( resetFlag ){
+ mem.mnMaster = mem.szMaster;
+ }
+ sqlite3_mutex_leave(mem.mutex);
+ return n;
+}
+
+/*
+** Change the alarm callback.
+**
+** This is a no-op for the static memory allocator. The purpose
+** of the memory alarm is to support sqlite3_soft_heap_limit().
+** But with this memory allocator, the soft_heap_limit is really
+** a hard limit that is fixed at SQLITE_MEMORY_SIZE.
+*/
+SQLITE_API int sqlite3_memory_alarm(
+ void(*xCallback)(void *pArg, sqlite3_int64 used,int N),
+ void *pArg,
+ sqlite3_int64 iThreshold
+){
+ return SQLITE_OK;
+}
+
+/*
+** Called when we are unable to satisfy an allocation of nBytes.
+*/
+static void memsys3OutOfMemory(int nByte){
+ if( !mem.alarmBusy ){
+ mem.alarmBusy = 1;
+ assert( sqlite3_mutex_held(mem.mutex) );
+ sqlite3_mutex_leave(mem.mutex);
+ sqlite3_release_memory(nByte);
+ sqlite3_mutex_enter(mem.mutex);
+ mem.alarmBusy = 0;
+ }
+}
+
+/*
+** Return the size of an outstanding allocation, in bytes. The
+** size returned omits the 8-byte header overhead. This only
+** works for chunks that are currently checked out.
+*/
+SQLITE_PRIVATE int sqlite3MallocSize(void *p){
+ int iSize = 0;
+ if( p ){
+ Mem3Block *pBlock = (Mem3Block*)p;
+ assert( (pBlock[-1].u.hdr.size4x&1)!=0 );
+ iSize = (pBlock[-1].u.hdr.size4x&~3)*2 - 4;
+ }
+ return iSize;
+}
+
+/*
+** Chunk i is a free chunk that has been unlinked. Adjust its
+** size parameters for check-out and return a pointer to the
+** user portion of the chunk.
+*/
+static void *memsys3Checkout(u32 i, int nBlock){
+ u32 x;
+ assert( sqlite3_mutex_held(mem.mutex) );
+ assert( i>=1 );
+ assert( mem.aPool[i-1].u.hdr.size4x/4==nBlock );
+ assert( mem.aPool[i+nBlock-1].u.hdr.prevSize==nBlock );
+ x = mem.aPool[i-1].u.hdr.size4x;
+ mem.aPool[i-1].u.hdr.size4x = nBlock*4 | 1 | (x&2);
+ mem.aPool[i+nBlock-1].u.hdr.prevSize = nBlock;
+ mem.aPool[i+nBlock-1].u.hdr.size4x |= 2;
+ return &mem.aPool[i];
+}
+
+/*
+** Carve a piece off of the end of the mem.iMaster free chunk.
+** Return a pointer to the new allocation. Or, if the master chunk
+** is not large enough, return 0.
+*/
+static void *memsys3FromMaster(int nBlock){
+ assert( sqlite3_mutex_held(mem.mutex) );
+ assert( mem.szMaster>=nBlock );
+ if( nBlock>=mem.szMaster-1 ){
+ /* Use the entire master */
+ void *p = memsys3Checkout(mem.iMaster, mem.szMaster);
+ mem.iMaster = 0;
+ mem.szMaster = 0;
+ mem.mnMaster = 0;
+ return p;
+ }else{
+ /* Split the master block. Return the tail. */
+ u32 newi, x;
+ newi = mem.iMaster + mem.szMaster - nBlock;
+ assert( newi > mem.iMaster+1 );
+ mem.aPool[mem.iMaster+mem.szMaster-1].u.hdr.prevSize = nBlock;
+ mem.aPool[mem.iMaster+mem.szMaster-1].u.hdr.size4x |= 2;
+ mem.aPool[newi-1].u.hdr.size4x = nBlock*4 + 1;
+ mem.szMaster -= nBlock;
+ mem.aPool[newi-1].u.hdr.prevSize = mem.szMaster;
+ x = mem.aPool[mem.iMaster-1].u.hdr.size4x & 2;
+ mem.aPool[mem.iMaster-1].u.hdr.size4x = mem.szMaster*4 | x;
+ if( mem.szMaster < mem.mnMaster ){
+ mem.mnMaster = mem.szMaster;
+ }
+ return (void*)&mem.aPool[newi];
+ }
+}
+
+/*
+** *pRoot is the head of a list of free chunks of the same size
+** or same size hash. In other words, *pRoot is an entry in either
+** mem.aiSmall[] or mem.aiHash[].
+**
+** This routine examines all entries on the given list and tries
+** to coalesce each entries with adjacent free chunks.
+**
+** If it sees a chunk that is larger than mem.iMaster, it replaces
+** the current mem.iMaster with the new larger chunk. In order for
+** this mem.iMaster replacement to work, the master chunk must be
+** linked into the hash tables. That is not the normal state of
+** affairs, of course. The calling routine must link the master
+** chunk before invoking this routine, then must unlink the (possibly
+** changed) master chunk once this routine has finished.
+*/
+static void memsys3Merge(u32 *pRoot){
+ u32 iNext, prev, size, i, x;
+
+ assert( sqlite3_mutex_held(mem.mutex) );
+ for(i=*pRoot; i>0; i=iNext){
+ iNext = mem.aPool[i].u.list.next;
+ size = mem.aPool[i-1].u.hdr.size4x;
+ assert( (size&1)==0 );
+ if( (size&2)==0 ){
+ memsys3UnlinkFromList(i, pRoot);
+ assert( i > mem.aPool[i-1].u.hdr.prevSize );
+ prev = i - mem.aPool[i-1].u.hdr.prevSize;
+ if( prev==iNext ){
+ iNext = mem.aPool[prev].u.list.next;
+ }
+ memsys3Unlink(prev);
+ size = i + size/4 - prev;
+ x = mem.aPool[prev-1].u.hdr.size4x & 2;
+ mem.aPool[prev-1].u.hdr.size4x = size*4 | x;
+ mem.aPool[prev+size-1].u.hdr.prevSize = size;
+ memsys3Link(prev);
+ i = prev;
+ }else{
+ size /= 4;
+ }
+ if( size>mem.szMaster ){
+ mem.iMaster = i;
+ mem.szMaster = size;
+ }
+ }
+}
+
+/*
+** Return a block of memory of at least nBytes in size.
+** Return NULL if unable.
+*/
+static void *memsys3Malloc(int nByte){
+ u32 i;
+ int nBlock;
+ int toFree;
+
+ assert( sqlite3_mutex_held(mem.mutex) );
+ assert( sizeof(Mem3Block)==8 );
+ if( nByte<=12 ){
+ nBlock = 2;
+ }else{
+ nBlock = (nByte + 11)/8;
+ }
+ assert( nBlock >= 2 );
+
+ /* STEP 1:
+ ** Look for an entry of the correct size in either the small
+ ** chunk table or in the large chunk hash table. This is
+ ** successful most of the time (about 9 times out of 10).
+ */
+ if( nBlock <= MX_SMALL ){
+ i = mem.aiSmall[nBlock-2];
+ if( i>0 ){
+ memsys3UnlinkFromList(i, &mem.aiSmall[nBlock-2]);
+ return memsys3Checkout(i, nBlock);
+ }
+ }else{
+ int hash = nBlock % N_HASH;
+ for(i=mem.aiHash[hash]; i>0; i=mem.aPool[i].u.list.next){
+ if( mem.aPool[i-1].u.hdr.size4x/4==nBlock ){
+ memsys3UnlinkFromList(i, &mem.aiHash[hash]);
+ return memsys3Checkout(i, nBlock);
+ }
+ }
+ }
+
+ /* STEP 2:
+ ** Try to satisfy the allocation by carving a piece off of the end
+ ** of the master chunk. This step usually works if step 1 fails.
+ */
+ if( mem.szMaster>=nBlock ){
+ return memsys3FromMaster(nBlock);
+ }
+
+
+ /* STEP 3:
+ ** Loop through the entire memory pool. Coalesce adjacent free
+ ** chunks. Recompute the master chunk as the largest free chunk.
+ ** Then try again to satisfy the allocation by carving a piece off
+ ** of the end of the master chunk. This step happens very
+ ** rarely (we hope!)
+ */
+ for(toFree=nBlock*16; toFree<SQLITE_MEMORY_SIZE*2; toFree *= 2){
+ memsys3OutOfMemory(toFree);
+ if( mem.iMaster ){
+ memsys3Link(mem.iMaster);
+ mem.iMaster = 0;
+ mem.szMaster = 0;
+ }
+ for(i=0; i<N_HASH; i++){
+ memsys3Merge(&mem.aiHash[i]);
+ }
+ for(i=0; i<MX_SMALL-1; i++){
+ memsys3Merge(&mem.aiSmall[i]);
+ }
+ if( mem.szMaster ){
+ memsys3Unlink(mem.iMaster);
+ if( mem.szMaster>=nBlock ){
+ return memsys3FromMaster(nBlock);
+ }
+ }
+ }
+
+ /* If none of the above worked, then we fail. */
+ return 0;
+}
+
+/*
+** Free an outstanding memory allocation.
+*/
+void memsys3Free(void *pOld){
+ Mem3Block *p = (Mem3Block*)pOld;
+ int i;
+ u32 size, x;
+ assert( sqlite3_mutex_held(mem.mutex) );
+ assert( p>mem.aPool && p<&mem.aPool[SQLITE_MEMORY_SIZE/8] );
+ i = p - mem.aPool;
+ assert( (mem.aPool[i-1].u.hdr.size4x&1)==1 );
+ size = mem.aPool[i-1].u.hdr.size4x/4;
+ assert( i+size<=SQLITE_MEMORY_SIZE/8+1 );
+ mem.aPool[i-1].u.hdr.size4x &= ~1;
+ mem.aPool[i+size-1].u.hdr.prevSize = size;
+ mem.aPool[i+size-1].u.hdr.size4x &= ~2;
+ memsys3Link(i);
+
+ /* Try to expand the master using the newly freed chunk */
+ if( mem.iMaster ){
+ while( (mem.aPool[mem.iMaster-1].u.hdr.size4x&2)==0 ){
+ size = mem.aPool[mem.iMaster-1].u.hdr.prevSize;
+ mem.iMaster -= size;
+ mem.szMaster += size;
+ memsys3Unlink(mem.iMaster);
+ x = mem.aPool[mem.iMaster-1].u.hdr.size4x & 2;
+ mem.aPool[mem.iMaster-1].u.hdr.size4x = mem.szMaster*4 | x;
+ mem.aPool[mem.iMaster+mem.szMaster-1].u.hdr.prevSize = mem.szMaster;
+ }
+ x = mem.aPool[mem.iMaster-1].u.hdr.size4x & 2;
+ while( (mem.aPool[mem.iMaster+mem.szMaster-1].u.hdr.size4x&1)==0 ){
+ memsys3Unlink(mem.iMaster+mem.szMaster);
+ mem.szMaster += mem.aPool[mem.iMaster+mem.szMaster-1].u.hdr.size4x/4;
+ mem.aPool[mem.iMaster-1].u.hdr.size4x = mem.szMaster*4 | x;
+ mem.aPool[mem.iMaster+mem.szMaster-1].u.hdr.prevSize = mem.szMaster;
+ }
+ }
+}
+
+/*
+** Allocate nBytes of memory
+*/
+SQLITE_API void *sqlite3_malloc(int nBytes){
+ sqlite3_int64 *p = 0;
+ if( nBytes>0 ){
+ memsys3Enter();
+ p = memsys3Malloc(nBytes);
+ sqlite3_mutex_leave(mem.mutex);
+ }
+ return (void*)p;
+}
+
+/*
+** Free memory.
+*/
+SQLITE_API void sqlite3_free(void *pPrior){
+ if( pPrior==0 ){
+ return;
+ }
+ assert( mem.mutex!=0 );
+ sqlite3_mutex_enter(mem.mutex);
+ memsys3Free(pPrior);
+ sqlite3_mutex_leave(mem.mutex);
+}
+
+/*
+** Change the size of an existing memory allocation
+*/
+SQLITE_API void *sqlite3_realloc(void *pPrior, int nBytes){
+ int nOld;
+ void *p;
+ if( pPrior==0 ){
+ return sqlite3_malloc(nBytes);
+ }
+ if( nBytes<=0 ){
+ sqlite3_free(pPrior);
+ return 0;
+ }
+ assert( mem.mutex!=0 );
+ nOld = sqlite3MallocSize(pPrior);
+ if( nBytes<=nOld && nBytes>=nOld-128 ){
+ return pPrior;
+ }
+ sqlite3_mutex_enter(mem.mutex);
+ p = memsys3Malloc(nBytes);
+ if( p ){
+ if( nOld<nBytes ){
+ memcpy(p, pPrior, nOld);
+ }else{
+ memcpy(p, pPrior, nBytes);
+ }
+ memsys3Free(pPrior);
+ }
+ sqlite3_mutex_leave(mem.mutex);
+ return p;
+}
+
+/*
+** Open the file indicated and write a log of all unfreed memory
+** allocations into that log.
+*/
+SQLITE_PRIVATE void sqlite3MemdebugDump(const char *zFilename){
+#ifdef SQLITE_DEBUG
+ FILE *out;
+ int i, j;
+ u32 size;
+ if( zFilename==0 || zFilename[0]==0 ){
+ out = stdout;
+ }else{
+ out = fopen(zFilename, "w");
+ if( out==0 ){
+ fprintf(stderr, "** Unable to output memory debug output log: %s **\n",
+ zFilename);
+ return;
+ }
+ }
+ memsys3Enter();
+ fprintf(out, "CHUNKS:\n");
+ for(i=1; i<=SQLITE_MEMORY_SIZE/8; i+=size/4){
+ size = mem.aPool[i-1].u.hdr.size4x;
+ if( size/4<=1 ){
+ fprintf(out, "%p size error\n", &mem.aPool[i]);
+ assert( 0 );
+ break;
+ }
+ if( (size&1)==0 && mem.aPool[i+size/4-1].u.hdr.prevSize!=size/4 ){
+ fprintf(out, "%p tail size does not match\n", &mem.aPool[i]);
+ assert( 0 );
+ break;
+ }
+ if( ((mem.aPool[i+size/4-1].u.hdr.size4x&2)>>1)!=(size&1) ){
+ fprintf(out, "%p tail checkout bit is incorrect\n", &mem.aPool[i]);
+ assert( 0 );
+ break;
+ }
+ if( size&1 ){
+ fprintf(out, "%p %6d bytes checked out\n", &mem.aPool[i], (size/4)*8-8);
+ }else{
+ fprintf(out, "%p %6d bytes free%s\n", &mem.aPool[i], (size/4)*8-8,
+ i==mem.iMaster ? " **master**" : "");
+ }
+ }
+ for(i=0; i<MX_SMALL-1; i++){
+ if( mem.aiSmall[i]==0 ) continue;
+ fprintf(out, "small(%2d):", i);
+ for(j = mem.aiSmall[i]; j>0; j=mem.aPool[j].u.list.next){
+ fprintf(out, " %p(%d)", &mem.aPool[j],
+ (mem.aPool[j-1].u.hdr.size4x/4)*8-8);
+ }
+ fprintf(out, "\n");
+ }
+ for(i=0; i<N_HASH; i++){
+ if( mem.aiHash[i]==0 ) continue;
+ fprintf(out, "hash(%2d):", i);
+ for(j = mem.aiHash[i]; j>0; j=mem.aPool[j].u.list.next){
+ fprintf(out, " %p(%d)", &mem.aPool[j],
+ (mem.aPool[j-1].u.hdr.size4x/4)*8-8);
+ }
+ fprintf(out, "\n");
+ }
+ fprintf(out, "master=%d\n", mem.iMaster);
+ fprintf(out, "nowUsed=%d\n", SQLITE_MEMORY_SIZE - mem.szMaster*8);
+ fprintf(out, "mxUsed=%d\n", SQLITE_MEMORY_SIZE - mem.mnMaster*8);
+ sqlite3_mutex_leave(mem.mutex);
+ if( out==stdout ){
+ fflush(stdout);
+ }else{
+ fclose(out);
+ }
+#endif
+}
+
+
+#endif /* !SQLITE_MEMORY_SIZE */
+
+/************** End of mem3.c ************************************************/
+/************** Begin file mem5.c ********************************************/
+/*
+** 2007 October 14
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains the C functions that implement a memory
+** allocation subsystem for use by SQLite.
+**
+** This version of the memory allocation subsystem omits all
+** use of malloc(). All dynamically allocatable memory is
+** contained in a static array, mem.aPool[]. The size of this
+** fixed memory pool is SQLITE_POW2_MEMORY_SIZE bytes.
+**
+** This version of the memory allocation subsystem is used if
+** and only if SQLITE_POW2_MEMORY_SIZE is defined.
+**
+** $Id: mem5.c,v 1.4 2008/02/19 15:15:16 drh Exp $
+*/
+
+/*
+** This version of the memory allocator is used only when
+** SQLITE_POW2_MEMORY_SIZE is defined.
+*/
+#ifdef SQLITE_POW2_MEMORY_SIZE
+
+/*
+** Log2 of the minimum size of an allocation. For example, if
+** 4 then all allocations will be rounded up to at least 16 bytes.
+** If 5 then all allocations will be rounded up to at least 32 bytes.
+*/
+#ifndef SQLITE_POW2_LOGMIN
+# define SQLITE_POW2_LOGMIN 6
+#endif
+#define POW2_MIN (1<<SQLITE_POW2_LOGMIN)
+
+/*
+** Log2 of the maximum size of an allocation.
+*/
+#ifndef SQLITE_POW2_LOGMAX
+# define SQLITE_POW2_LOGMAX 18
+#endif
+#define POW2_MAX (((unsigned int)1)<<SQLITE_POW2_LOGMAX)
+
+/*
+** Number of distinct allocation sizes.
+*/
+#define NSIZE (SQLITE_POW2_LOGMAX - SQLITE_POW2_LOGMIN + 1)
+
+/*
+** A minimum allocation is an instance of the following structure.
+** Larger allocations are an array of these structures where the
+** size of the array is a power of 2.
+*/
+typedef struct Mem5Block Mem5Block;
+struct Mem5Block {
+ union {
+ char aData[POW2_MIN];
+ struct {
+ int next; /* Index in mem.aPool[] of next free chunk */
+ int prev; /* Index in mem.aPool[] of previous free chunk */
+ } list;
+ } u;
+};
+
+/*
+** Number of blocks of memory available for allocation.
+*/
+#define NBLOCK (SQLITE_POW2_MEMORY_SIZE/POW2_MIN)
+
+/*
+** The size in blocks of an POW2_MAX allocation
+*/
+#define SZ_MAX (1<<(NSIZE-1))
+
+/*
+** Masks used for mem.aCtrl[] elements.
+*/
+#define CTRL_LOGSIZE 0x1f /* Log2 Size of this block relative to POW2_MIN */
+#define CTRL_FREE 0x20 /* True if not checked out */
+
+/*
+** All of the static variables used by this module are collected
+** into a single structure named "mem". This is to keep the
+** static variables organized and to reduce namespace pollution
+** when this module is combined with other in the amalgamation.
+*/
+static struct {
+ /*
+ ** The alarm callback and its arguments. The mem.mutex lock will
+ ** be held while the callback is running. Recursive calls into
+ ** the memory subsystem are allowed, but no new callbacks will be
+ ** issued. The alarmBusy variable is set to prevent recursive
+ ** callbacks.
+ */
+ sqlite3_int64 alarmThreshold;
+ void (*alarmCallback)(void*, sqlite3_int64,int);
+ void *alarmArg;
+ int alarmBusy;
+
+ /*
+ ** Mutex to control access to the memory allocation subsystem.
+ */
+ sqlite3_mutex *mutex;
+
+ /*
+ ** Performance statistics
+ */
+ u64 nAlloc; /* Total number of calls to malloc */
+ u64 totalAlloc; /* Total of all malloc calls - includes internal frag */
+ u64 totalExcess; /* Total internal fragmentation */
+ u32 currentOut; /* Current checkout, including internal fragmentation */
+ u32 currentCount; /* Current number of distinct checkouts */
+ u32 maxOut; /* Maximum instantaneous currentOut */
+ u32 maxCount; /* Maximum instantaneous currentCount */
+ u32 maxRequest; /* Largest allocation (exclusive of internal frag) */
+
+ /*
+ ** Lists of free blocks of various sizes.
+ */
+ int aiFreelist[NSIZE];
+
+ /*
+ ** Space for tracking which blocks are checked out and the size
+ ** of each block. One byte per block.
+ */
+ u8 aCtrl[NBLOCK];
+
+ /*
+ ** Memory available for allocation
+ */
+ Mem5Block aPool[NBLOCK];
+} mem;
+
+/*
+** Unlink the chunk at mem.aPool[i] from list it is currently
+** on. It should be found on mem.aiFreelist[iLogsize].
+*/
+static void memsys5Unlink(int i, int iLogsize){
+ int next, prev;
+ assert( i>=0 && i<NBLOCK );
+ assert( iLogsize>=0 && iLogsize<NSIZE );
+ assert( (mem.aCtrl[i] & CTRL_LOGSIZE)==iLogsize );
+ assert( sqlite3_mutex_held(mem.mutex) );
+
+ next = mem.aPool[i].u.list.next;
+ prev = mem.aPool[i].u.list.prev;
+ if( prev<0 ){
+ mem.aiFreelist[iLogsize] = next;
+ }else{
+ mem.aPool[prev].u.list.next = next;
+ }
+ if( next>=0 ){
+ mem.aPool[next].u.list.prev = prev;
+ }
+}
+
+/*
+** Link the chunk at mem.aPool[i] so that is on the iLogsize
+** free list.
+*/
+static void memsys5Link(int i, int iLogsize){
+ int x;
+ assert( sqlite3_mutex_held(mem.mutex) );
+ assert( i>=0 && i<NBLOCK );
+ assert( iLogsize>=0 && iLogsize<NSIZE );
+ assert( (mem.aCtrl[i] & CTRL_LOGSIZE)==iLogsize );
+
+ mem.aPool[i].u.list.next = x = mem.aiFreelist[iLogsize];
+ mem.aPool[i].u.list.prev = -1;
+ if( x>=0 ){
+ assert( x<NBLOCK );
+ mem.aPool[x].u.list.prev = i;
+ }
+ mem.aiFreelist[iLogsize] = i;
+}
+
+/*
+** Enter the mutex mem.mutex. Allocate it if it is not already allocated.
+**
+** Also: Initialize the memory allocation subsystem the first time
+** this routine is called.
+*/
+static void memsys5Enter(void){
+ if( mem.mutex==0 ){
+ int i;
+ assert( sizeof(Mem5Block)==POW2_MIN );
+ assert( (SQLITE_POW2_MEMORY_SIZE % POW2_MAX)==0 );
+ assert( SQLITE_POW2_MEMORY_SIZE>=POW2_MAX );
+ mem.mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MEM);
+ sqlite3_mutex_enter(mem.mutex);
+ for(i=0; i<NSIZE; i++) mem.aiFreelist[i] = -1;
+ for(i=0; i<=NBLOCK-SZ_MAX; i += SZ_MAX){
+ mem.aCtrl[i] = (NSIZE-1) | CTRL_FREE;
+ memsys5Link(i, NSIZE-1);
+ }
+ }else{
+ sqlite3_mutex_enter(mem.mutex);
+ }
+}
+
+/*
+** Return the amount of memory currently checked out.
+*/
+SQLITE_API sqlite3_int64 sqlite3_memory_used(void){
+ return mem.currentOut;
+}
+
+/*
+** Return the maximum amount of memory that has ever been
+** checked out since either the beginning of this process
+** or since the most recent reset.
+*/
+SQLITE_API sqlite3_int64 sqlite3_memory_highwater(int resetFlag){
+ sqlite3_int64 n;
+ memsys5Enter();
+ n = mem.maxOut;
+ if( resetFlag ){
+ mem.maxOut = mem.currentOut;
+ }
+ sqlite3_mutex_leave(mem.mutex);
+ return n;
+}
+
+
+/*
+** Trigger the alarm
+*/
+static void memsys5Alarm(int nByte){
+ void (*xCallback)(void*,sqlite3_int64,int);
+ sqlite3_int64 nowUsed;
+ void *pArg;
+ if( mem.alarmCallback==0 || mem.alarmBusy ) return;
+ mem.alarmBusy = 1;
+ xCallback = mem.alarmCallback;
+ nowUsed = mem.currentOut;
+ pArg = mem.alarmArg;
+ sqlite3_mutex_leave(mem.mutex);
+ xCallback(pArg, nowUsed, nByte);
+ sqlite3_mutex_enter(mem.mutex);
+ mem.alarmBusy = 0;
+}
+
+/*
+** Change the alarm callback.
+**
+** This is a no-op for the static memory allocator. The purpose
+** of the memory alarm is to support sqlite3_soft_heap_limit().
+** But with this memory allocator, the soft_heap_limit is really
+** a hard limit that is fixed at SQLITE_POW2_MEMORY_SIZE.
+*/
+SQLITE_API int sqlite3_memory_alarm(
+ void(*xCallback)(void *pArg, sqlite3_int64 used,int N),
+ void *pArg,
+ sqlite3_int64 iThreshold
+){
+ memsys5Enter();
+ mem.alarmCallback = xCallback;
+ mem.alarmArg = pArg;
+ mem.alarmThreshold = iThreshold;
+ sqlite3_mutex_leave(mem.mutex);
+ return SQLITE_OK;
+}
+
+/*
+** Return the size of an outstanding allocation, in bytes. The
+** size returned omits the 8-byte header overhead. This only
+** works for chunks that are currently checked out.
+*/
+SQLITE_PRIVATE int sqlite3MallocSize(void *p){
+ int iSize = 0;
+ if( p ){
+ int i = ((Mem5Block*)p) - mem.aPool;
+ assert( i>=0 && i<NBLOCK );
+ iSize = 1 << ((mem.aCtrl[i]&CTRL_LOGSIZE) + SQLITE_POW2_LOGMIN);
+ }
+ return iSize;
+}
+
+/*
+** Find the first entry on the freelist iLogsize. Unlink that
+** entry and return its index.
+*/
+static int memsys5UnlinkFirst(int iLogsize){
+ int i;
+ int iFirst;
+
+ assert( iLogsize>=0 && iLogsize<NSIZE );
+ i = iFirst = mem.aiFreelist[iLogsize];
+ assert( iFirst>=0 );
+ while( i>0 ){
+ if( i<iFirst ) iFirst = i;
+ i = mem.aPool[i].u.list.next;
+ }
+ memsys5Unlink(iFirst, iLogsize);
+ return iFirst;
+}
+
+/*
+** Return a block of memory of at least nBytes in size.
+** Return NULL if unable.
+*/
+static void *memsys5Malloc(int nByte){
+ int i; /* Index of a mem.aPool[] slot */
+ int iBin; /* Index into mem.aiFreelist[] */
+ int iFullSz; /* Size of allocation rounded up to power of 2 */
+ int iLogsize; /* Log2 of iFullSz/POW2_MIN */
+
+ assert( sqlite3_mutex_held(mem.mutex) );
+
+ /* Keep track of the maximum allocation request. Even unfulfilled
+ ** requests are counted */
+ if( nByte>mem.maxRequest ){
+ mem.maxRequest = nByte;
+ }
+
+ /* Simulate a memory allocation fault */
+ if( sqlite3FaultStep(SQLITE_FAULTINJECTOR_MALLOC) ) return 0;
+
+ /* Round nByte up to the next valid power of two */
+ if( nByte>POW2_MAX ) return 0;
+ for(iFullSz=POW2_MIN, iLogsize=0; iFullSz<nByte; iFullSz *= 2, iLogsize++){}
+
+ /* If we will be over the memory alarm threshold after this allocation,
+ ** then trigger the memory overflow alarm */
+ if( mem.alarmCallback!=0 && mem.currentOut+iFullSz>=mem.alarmThreshold ){
+ memsys5Alarm(iFullSz);
+ }
+
+ /* Make sure mem.aiFreelist[iLogsize] contains at least one free
+ ** block. If not, then split a block of the next larger power of
+ ** two in order to create a new free block of size iLogsize.
+ */
+ for(iBin=iLogsize; mem.aiFreelist[iBin]<0 && iBin<NSIZE; iBin++){}
+ if( iBin>=NSIZE ) return 0;
+ i = memsys5UnlinkFirst(iBin);
+ while( iBin>iLogsize ){
+ int newSize;
+
+ iBin--;
+ newSize = 1 << iBin;
+ mem.aCtrl[i+newSize] = CTRL_FREE | iBin;
+ memsys5Link(i+newSize, iBin);
+ }
+ mem.aCtrl[i] = iLogsize;
+
+ /* Update allocator performance statistics. */
+ mem.nAlloc++;
+ mem.totalAlloc += iFullSz;
+ mem.totalExcess += iFullSz - nByte;
+ mem.currentCount++;
+ mem.currentOut += iFullSz;
+ if( mem.maxCount<mem.currentCount ) mem.maxCount = mem.currentCount;
+ if( mem.maxOut<mem.currentOut ) mem.maxOut = mem.currentOut;
+
+ /* Return a pointer to the allocated memory. */
+ return (void*)&mem.aPool[i];
+}
+
+/*
+** Free an outstanding memory allocation.
+*/
+void memsys5Free(void *pOld){
+ u32 size, iLogsize;
+ int i;
+
+ i = ((Mem5Block*)pOld) - mem.aPool;
+ assert( sqlite3_mutex_held(mem.mutex) );
+ assert( i>=0 && i<NBLOCK );
+ assert( (mem.aCtrl[i] & CTRL_FREE)==0 );
+ iLogsize = mem.aCtrl[i] & CTRL_LOGSIZE;
+ size = 1<<iLogsize;
+ assert( i+size-1<NBLOCK );
+ mem.aCtrl[i] |= CTRL_FREE;
+ mem.aCtrl[i+size-1] |= CTRL_FREE;
+ assert( mem.currentCount>0 );
+ assert( mem.currentOut>=0 );
+ mem.currentCount--;
+ mem.currentOut -= size*POW2_MIN;
+ assert( mem.currentOut>0 || mem.currentCount==0 );
+ assert( mem.currentCount>0 || mem.currentOut==0 );
+
+ mem.aCtrl[i] = CTRL_FREE | iLogsize;
+ while( iLogsize<NSIZE-1 ){
+ int iBuddy;
+
+ if( (i>>iLogsize) & 1 ){
+ iBuddy = i - size;
+ }else{
+ iBuddy = i + size;
+ }
+ assert( iBuddy>=0 && iBuddy<NBLOCK );
+ if( mem.aCtrl[iBuddy]!=(CTRL_FREE | iLogsize) ) break;
+ memsys5Unlink(iBuddy, iLogsize);
+ iLogsize++;
+ if( iBuddy<i ){
+ mem.aCtrl[iBuddy] = CTRL_FREE | iLogsize;
+ mem.aCtrl[i] = 0;
+ i = iBuddy;
+ }else{
+ mem.aCtrl[i] = CTRL_FREE | iLogsize;
+ mem.aCtrl[iBuddy] = 0;
+ }
+ size *= 2;
+ }
+ memsys5Link(i, iLogsize);
+}
+
+/*
+** Allocate nBytes of memory
+*/
+SQLITE_API void *sqlite3_malloc(int nBytes){
+ sqlite3_int64 *p = 0;
+ if( nBytes>0 ){
+ memsys5Enter();
+ p = memsys5Malloc(nBytes);
+ sqlite3_mutex_leave(mem.mutex);
+ }
+ return (void*)p;
+}
+
+/*
+** Free memory.
+*/
+SQLITE_API void sqlite3_free(void *pPrior){
+ if( pPrior==0 ){
+ return;
+ }
+ assert( mem.mutex!=0 );
+ sqlite3_mutex_enter(mem.mutex);
+ memsys5Free(pPrior);
+ sqlite3_mutex_leave(mem.mutex);
+}
+
+/*
+** Change the size of an existing memory allocation
+*/
+SQLITE_API void *sqlite3_realloc(void *pPrior, int nBytes){
+ int nOld;
+ void *p;
+ if( pPrior==0 ){
+ return sqlite3_malloc(nBytes);
+ }
+ if( nBytes<=0 ){
+ sqlite3_free(pPrior);
+ return 0;
+ }
+ assert( mem.mutex!=0 );
+ nOld = sqlite3MallocSize(pPrior);
+ if( nBytes<=nOld ){
+ return pPrior;
+ }
+ sqlite3_mutex_enter(mem.mutex);
+ p = memsys5Malloc(nBytes);
+ if( p ){
+ memcpy(p, pPrior, nOld);
+ memsys5Free(pPrior);
+ }
+ sqlite3_mutex_leave(mem.mutex);
+ return p;
+}
+
+/*
+** Open the file indicated and write a log of all unfreed memory
+** allocations into that log.
+*/
+SQLITE_PRIVATE void sqlite3MemdebugDump(const char *zFilename){
+#ifdef SQLITE_DEBUG
+ FILE *out;
+ int i, j, n;
+
+ if( zFilename==0 || zFilename[0]==0 ){
+ out = stdout;
+ }else{
+ out = fopen(zFilename, "w");
+ if( out==0 ){
+ fprintf(stderr, "** Unable to output memory debug output log: %s **\n",
+ zFilename);
+ return;
+ }
+ }
+ memsys5Enter();
+ for(i=0; i<NSIZE; i++){
+ for(n=0, j=mem.aiFreelist[i]; j>=0; j = mem.aPool[j].u.list.next, n++){}
+ fprintf(out, "freelist items of size %d: %d\n", POW2_MIN << i, n);
+ }
+ fprintf(out, "mem.nAlloc = %llu\n", mem.nAlloc);
+ fprintf(out, "mem.totalAlloc = %llu\n", mem.totalAlloc);
+ fprintf(out, "mem.totalExcess = %llu\n", mem.totalExcess);
+ fprintf(out, "mem.currentOut = %u\n", mem.currentOut);
+ fprintf(out, "mem.currentCount = %u\n", mem.currentCount);
+ fprintf(out, "mem.maxOut = %u\n", mem.maxOut);
+ fprintf(out, "mem.maxCount = %u\n", mem.maxCount);
+ fprintf(out, "mem.maxRequest = %u\n", mem.maxRequest);
+ sqlite3_mutex_leave(mem.mutex);
+ if( out==stdout ){
+ fflush(stdout);
+ }else{
+ fclose(out);
+ }
+#endif
+}
+
+
+#endif /* !SQLITE_POW2_MEMORY_SIZE */
+
+/************** End of mem5.c ************************************************/
+/************** Begin file mutex.c *******************************************/
+/*
+** 2007 August 14
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains the C functions that implement mutexes.
+**
+** The implementation in this file does not provide any mutual
+** exclusion and is thus suitable for use only in applications
+** that use SQLite in a single thread. But this implementation
+** does do a lot of error checking on mutexes to make sure they
+** are called correctly and at appropriate times. Hence, this
+** implementation is suitable for testing.
+** debugging purposes
+**
+** $Id: mutex.c,v 1.17 2008/03/26 18:34:43 danielk1977 Exp $
+*/
+
+#ifdef SQLITE_MUTEX_NOOP_DEBUG
+/*
+** In this implementation, mutexes do not provide any mutual exclusion.
+** But the error checking is provided. This implementation is useful
+** for test purposes.
+*/
+
+/*
+** The mutex object
+*/
+struct sqlite3_mutex {
+ int id; /* The mutex type */
+ int cnt; /* Number of entries without a matching leave */
+};
+
+/*
+** The sqlite3_mutex_alloc() routine allocates a new
+** mutex and returns a pointer to it. If it returns NULL
+** that means that a mutex could not be allocated.
+*/
+SQLITE_API sqlite3_mutex *sqlite3_mutex_alloc(int id){
+ static sqlite3_mutex aStatic[6];
+ sqlite3_mutex *pNew = 0;
+ switch( id ){
+ case SQLITE_MUTEX_FAST:
+ case SQLITE_MUTEX_RECURSIVE: {
+ pNew = sqlite3_malloc(sizeof(*pNew));
+ if( pNew ){
+ pNew->id = id;
+ pNew->cnt = 0;
+ }
+ break;
+ }
+ default: {
+ assert( id-2 >= 0 );
+ assert( id-2 < sizeof(aStatic)/sizeof(aStatic[0]) );
+ pNew = &aStatic[id-2];
+ pNew->id = id;
+ break;
+ }
+ }
+ return pNew;
+}
+
+/*
+** This routine deallocates a previously allocated mutex.
+*/
+SQLITE_API void sqlite3_mutex_free(sqlite3_mutex *p){
+ assert( p );
+ assert( p->cnt==0 );
+ assert( p->id==SQLITE_MUTEX_FAST || p->id==SQLITE_MUTEX_RECURSIVE );
+ sqlite3_free(p);
+}
+
+/*
+** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt
+** to enter a mutex. If another thread is already within the mutex,
+** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return
+** SQLITE_BUSY. The sqlite3_mutex_try() interface returns SQLITE_OK
+** upon successful entry. Mutexes created using SQLITE_MUTEX_RECURSIVE can
+** be entered multiple times by the same thread. In such cases the,
+** mutex must be exited an equal number of times before another thread
+** can enter. If the same thread tries to enter any other kind of mutex
+** more than once, the behavior is undefined.
+*/
+SQLITE_API void sqlite3_mutex_enter(sqlite3_mutex *p){
+ assert( p );
+ assert( p->id==SQLITE_MUTEX_RECURSIVE || sqlite3_mutex_notheld(p) );
+ p->cnt++;
+}
+SQLITE_API int sqlite3_mutex_try(sqlite3_mutex *p){
+ assert( p );
+ assert( p->id==SQLITE_MUTEX_RECURSIVE || sqlite3_mutex_notheld(p) );
+ p->cnt++;
+ return SQLITE_OK;
+}
+
+/*
+** The sqlite3_mutex_leave() routine exits a mutex that was
+** previously entered by the same thread. The behavior
+** is undefined if the mutex is not currently entered or
+** is not currently allocated. SQLite will never do either.
+*/
+SQLITE_API void sqlite3_mutex_leave(sqlite3_mutex *p){
+ assert( p );
+ assert( sqlite3_mutex_held(p) );
+ p->cnt--;
+ assert( p->id==SQLITE_MUTEX_RECURSIVE || sqlite3_mutex_notheld(p) );
+}
+
+/*
+** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routine are
+** intended for use inside assert() statements.
+*/
+SQLITE_API int sqlite3_mutex_held(sqlite3_mutex *p){
+ return p==0 || p->cnt>0;
+}
+SQLITE_API int sqlite3_mutex_notheld(sqlite3_mutex *p){
+ return p==0 || p->cnt==0;
+}
+#endif /* SQLITE_MUTEX_NOOP_DEBUG */
+
+/************** End of mutex.c ***********************************************/
+/************** Begin file mutex_os2.c ***************************************/
+/*
+** 2007 August 28
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains the C functions that implement mutexes for OS/2
+**
+** $Id: mutex_os2.c,v 1.6 2008/03/26 18:34:43 danielk1977 Exp $
+*/
+
+/*
+** The code in this file is only used if SQLITE_MUTEX_OS2 is defined.
+** See the mutex.h file for details.
+*/
+#ifdef SQLITE_MUTEX_OS2
+
+/********************** OS/2 Mutex Implementation **********************
+**
+** This implementation of mutexes is built using the OS/2 API.
+*/
+
+/*
+** The mutex object
+** Each recursive mutex is an instance of the following structure.
+*/
+struct sqlite3_mutex {
+ HMTX mutex; /* Mutex controlling the lock */
+ int id; /* Mutex type */
+ int nRef; /* Number of references */
+ TID owner; /* Thread holding this mutex */
+};
+
+#define OS2_MUTEX_INITIALIZER 0,0,0,0
+
+/*
+** The sqlite3_mutex_alloc() routine allocates a new
+** mutex and returns a pointer to it. If it returns NULL
+** that means that a mutex could not be allocated.
+** SQLite will unwind its stack and return an error. The argument
+** to sqlite3_mutex_alloc() is one of these integer constants:
+**
+** <ul>
+** <li> SQLITE_MUTEX_FAST 0
+** <li> SQLITE_MUTEX_RECURSIVE 1
+** <li> SQLITE_MUTEX_STATIC_MASTER 2
+** <li> SQLITE_MUTEX_STATIC_MEM 3
+** <li> SQLITE_MUTEX_STATIC_PRNG 4
+** </ul>
+**
+** The first two constants cause sqlite3_mutex_alloc() to create
+** a new mutex. The new mutex is recursive when SQLITE_MUTEX_RECURSIVE
+** is used but not necessarily so when SQLITE_MUTEX_FAST is used.
+** The mutex implementation does not need to make a distinction
+** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does
+** not want to. But SQLite will only request a recursive mutex in
+** cases where it really needs one. If a faster non-recursive mutex
+** implementation is available on the host platform, the mutex subsystem
+** might return such a mutex in response to SQLITE_MUTEX_FAST.
+**
+** The other allowed parameters to sqlite3_mutex_alloc() each return
+** a pointer to a static preexisting mutex. Three static mutexes are
+** used by the current version of SQLite. Future versions of SQLite
+** may add additional static mutexes. Static mutexes are for internal
+** use by SQLite only. Applications that use SQLite mutexes should
+** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or
+** SQLITE_MUTEX_RECURSIVE.
+**
+** Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST
+** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc()
+** returns a different mutex on every call. But for the static
+** mutex types, the same mutex is returned on every call that has
+** the same type number.
+*/
+SQLITE_API sqlite3_mutex *sqlite3_mutex_alloc(int iType){
+ sqlite3_mutex *p = NULL;
+ switch( iType ){
+ case SQLITE_MUTEX_FAST:
+ case SQLITE_MUTEX_RECURSIVE: {
+ p = sqlite3MallocZero( sizeof(*p) );
+ if( p ){
+ p->id = iType;
+ if( DosCreateMutexSem( 0, &p->mutex, 0, FALSE ) != NO_ERROR ){
+ sqlite3_free( p );
+ p = NULL;
+ }
+ }
+ break;
+ }
+ default: {
+ static volatile int isInit = 0;
+ static sqlite3_mutex staticMutexes[] = {
+ { OS2_MUTEX_INITIALIZER, },
+ { OS2_MUTEX_INITIALIZER, },
+ { OS2_MUTEX_INITIALIZER, },
+ { OS2_MUTEX_INITIALIZER, },
+ { OS2_MUTEX_INITIALIZER, },
+ { OS2_MUTEX_INITIALIZER, },
+ };
+ if ( !isInit ){
+ APIRET rc;
+ PTIB ptib;
+ PPIB ppib;
+ HMTX mutex;
+ char name[32];
+ DosGetInfoBlocks( &ptib, &ppib );
+ sqlite3_snprintf( sizeof(name), name, "\\SEM32\\SQLITE%04x",
+ ppib->pib_ulpid );
+ while( !isInit ){
+ mutex = 0;
+ rc = DosCreateMutexSem( name, &mutex, 0, FALSE);
+ if( rc == NO_ERROR ){
+ int i;
+ if( !isInit ){
+ for( i = 0; i < sizeof(staticMutexes)/sizeof(staticMutexes[0]); i++ ){
+ DosCreateMutexSem( 0, &staticMutexes[i].mutex, 0, FALSE );
+ }
+ isInit = 1;
+ }
+ DosCloseMutexSem( mutex );
+ }else if( rc == ERROR_DUPLICATE_NAME ){
+ DosSleep( 1 );
+ }else{
+ return p;
+ }
+ }
+ }
+ assert( iType-2 >= 0 );
+ assert( iType-2 < sizeof(staticMutexes)/sizeof(staticMutexes[0]) );
+ p = &staticMutexes[iType-2];
+ p->id = iType;
+ break;
+ }
+ }
+ return p;
+}
+
+
+/*
+** This routine deallocates a previously allocated mutex.
+** SQLite is careful to deallocate every mutex that it allocates.
+*/
+SQLITE_API void sqlite3_mutex_free(sqlite3_mutex *p){
+ assert( p );
+ assert( p->nRef==0 );
+ assert( p->id==SQLITE_MUTEX_FAST || p->id==SQLITE_MUTEX_RECURSIVE );
+ DosCloseMutexSem( p->mutex );
+ sqlite3_free( p );
+}
+
+/*
+** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt
+** to enter a mutex. If another thread is already within the mutex,
+** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return
+** SQLITE_BUSY. The sqlite3_mutex_try() interface returns SQLITE_OK
+** upon successful entry. Mutexes created using SQLITE_MUTEX_RECURSIVE can
+** be entered multiple times by the same thread. In such cases the,
+** mutex must be exited an equal number of times before another thread
+** can enter. If the same thread tries to enter any other kind of mutex
+** more than once, the behavior is undefined.
+*/
+SQLITE_API void sqlite3_mutex_enter(sqlite3_mutex *p){
+ TID tid;
+ PID holder1;
+ ULONG holder2;
+ assert( p );
+ assert( p->id==SQLITE_MUTEX_RECURSIVE || sqlite3_mutex_notheld(p) );
+ DosRequestMutexSem(p->mutex, SEM_INDEFINITE_WAIT);
+ DosQueryMutexSem(p->mutex, &holder1, &tid, &holder2);
+ p->owner = tid;
+ p->nRef++;
+}
+SQLITE_API int sqlite3_mutex_try(sqlite3_mutex *p){
+ int rc;
+ TID tid;
+ PID holder1;
+ ULONG holder2;
+ assert( p );
+ assert( p->id==SQLITE_MUTEX_RECURSIVE || sqlite3_mutex_notheld(p) );
+ if( DosRequestMutexSem(p->mutex, SEM_IMMEDIATE_RETURN) == NO_ERROR) {
+ DosQueryMutexSem(p->mutex, &holder1, &tid, &holder2);
+ p->owner = tid;
+ p->nRef++;
+ rc = SQLITE_OK;
+ } else {
+ rc = SQLITE_BUSY;
+ }
+
+ return rc;
+}
+
+/*
+** The sqlite3_mutex_leave() routine exits a mutex that was
+** previously entered by the same thread. The behavior
+** is undefined if the mutex is not currently entered or
+** is not currently allocated. SQLite will never do either.
+*/
+SQLITE_API void sqlite3_mutex_leave(sqlite3_mutex *p){
+ TID tid;
+ PID holder1;
+ ULONG holder2;
+ assert( p->nRef>0 );
+ DosQueryMutexSem(p->mutex, &holder1, &tid, &holder2);
+ assert( p->owner==tid );
+ p->nRef--;
+ assert( p->nRef==0 || p->id==SQLITE_MUTEX_RECURSIVE );
+ DosReleaseMutexSem(p->mutex);
+}
+
+/*
+** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routine are
+** intended for use inside assert() statements.
+*/
+SQLITE_API int sqlite3_mutex_held(sqlite3_mutex *p){
+ TID tid;
+ PID pid;
+ ULONG ulCount;
+ PTIB ptib;
+ if( p!=0 ) {
+ DosQueryMutexSem(p->mutex, &pid, &tid, &ulCount);
+ } else {
+ DosGetInfoBlocks(&ptib, NULL);
+ tid = ptib->tib_ptib2->tib2_ultid;
+ }
+ return p==0 || (p->nRef!=0 && p->owner==tid);
+}
+SQLITE_API int sqlite3_mutex_notheld(sqlite3_mutex *p){
+ TID tid;
+ PID pid;
+ ULONG ulCount;
+ PTIB ptib;
+ if( p!= 0 ) {
+ DosQueryMutexSem(p->mutex, &pid, &tid, &ulCount);
+ } else {
+ DosGetInfoBlocks(&ptib, NULL);
+ tid = ptib->tib_ptib2->tib2_ultid;
+ }
+ return p==0 || p->nRef==0 || p->owner!=tid;
+}
+#endif /* SQLITE_MUTEX_OS2 */
+
+/************** End of mutex_os2.c *******************************************/
+/************** Begin file mutex_unix.c **************************************/
+/*
+** 2007 August 28
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains the C functions that implement mutexes for pthreads
+**
+** $Id: mutex_unix.c,v 1.7 2008/03/29 12:47:27 rse Exp $
+*/
+
+/*
+** The code in this file is only used if we are compiling threadsafe
+** under unix with pthreads.
+**
+** Note that this implementation requires a version of pthreads that
+** supports recursive mutexes.
+*/
+#ifdef SQLITE_MUTEX_PTHREADS
+
+#include <pthread.h>
+
+
+/*
+** Each recursive mutex is an instance of the following structure.
+*/
+struct sqlite3_mutex {
+ pthread_mutex_t mutex; /* Mutex controlling the lock */
+ int id; /* Mutex type */
+ int nRef; /* Number of entrances */
+ pthread_t owner; /* Thread that is within this mutex */
+#ifdef SQLITE_DEBUG
+ int trace; /* True to trace changes */
+#endif
+};
+#ifdef SQLITE_DEBUG
+#define SQLITE3_MUTEX_INITIALIZER { PTHREAD_MUTEX_INITIALIZER, 0, 0, (pthread_t)0, 0 }
+#else
+#define SQLITE3_MUTEX_INITIALIZER { PTHREAD_MUTEX_INITIALIZER, 0, 0, (pthread_t)0 }
+#endif
+
+/*
+** The sqlite3_mutex_alloc() routine allocates a new
+** mutex and returns a pointer to it. If it returns NULL
+** that means that a mutex could not be allocated. SQLite
+** will unwind its stack and return an error. The argument
+** to sqlite3_mutex_alloc() is one of these integer constants:
+**
+** <ul>
+** <li> SQLITE_MUTEX_FAST
+** <li> SQLITE_MUTEX_RECURSIVE
+** <li> SQLITE_MUTEX_STATIC_MASTER
+** <li> SQLITE_MUTEX_STATIC_MEM
+** <li> SQLITE_MUTEX_STATIC_MEM2
+** <li> SQLITE_MUTEX_STATIC_PRNG
+** <li> SQLITE_MUTEX_STATIC_LRU
+** </ul>
+**
+** The first two constants cause sqlite3_mutex_alloc() to create
+** a new mutex. The new mutex is recursive when SQLITE_MUTEX_RECURSIVE
+** is used but not necessarily so when SQLITE_MUTEX_FAST is used.
+** The mutex implementation does not need to make a distinction
+** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does
+** not want to. But SQLite will only request a recursive mutex in
+** cases where it really needs one. If a faster non-recursive mutex
+** implementation is available on the host platform, the mutex subsystem
+** might return such a mutex in response to SQLITE_MUTEX_FAST.
+**
+** The other allowed parameters to sqlite3_mutex_alloc() each return
+** a pointer to a static preexisting mutex. Three static mutexes are
+** used by the current version of SQLite. Future versions of SQLite
+** may add additional static mutexes. Static mutexes are for internal
+** use by SQLite only. Applications that use SQLite mutexes should
+** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or
+** SQLITE_MUTEX_RECURSIVE.
+**
+** Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST
+** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc()
+** returns a different mutex on every call. But for the static
+** mutex types, the same mutex is returned on every call that has
+** the same type number.
+*/
+SQLITE_API sqlite3_mutex *sqlite3_mutex_alloc(int iType){
+ static sqlite3_mutex staticMutexes[] = {
+ SQLITE3_MUTEX_INITIALIZER,
+ SQLITE3_MUTEX_INITIALIZER,
+ SQLITE3_MUTEX_INITIALIZER,
+ SQLITE3_MUTEX_INITIALIZER,
+ SQLITE3_MUTEX_INITIALIZER,
+ SQLITE3_MUTEX_INITIALIZER
+ };
+ sqlite3_mutex *p;
+ switch( iType ){
+ case SQLITE_MUTEX_RECURSIVE: {
+ p = sqlite3MallocZero( sizeof(*p) );
+ if( p ){
+#ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX
+ /* If recursive mutexes are not available, we will have to
+ ** build our own. See below. */
+ pthread_mutex_init(&p->mutex, 0);
+#else
+ /* Use a recursive mutex if it is available */
+ pthread_mutexattr_t recursiveAttr;
+ pthread_mutexattr_init(&recursiveAttr);
+ pthread_mutexattr_settype(&recursiveAttr, PTHREAD_MUTEX_RECURSIVE);
+ pthread_mutex_init(&p->mutex, &recursiveAttr);
+ pthread_mutexattr_destroy(&recursiveAttr);
+#endif
+ p->id = iType;
+ }
+ break;
+ }
+ case SQLITE_MUTEX_FAST: {
+ p = sqlite3MallocZero( sizeof(*p) );
+ if( p ){
+ p->id = iType;
+ pthread_mutex_init(&p->mutex, 0);
+ }
+ break;
+ }
+ default: {
+ assert( iType-2 >= 0 );
+ assert( iType-2 < sizeof(staticMutexes)/sizeof(staticMutexes[0]) );
+ p = &staticMutexes[iType-2];
+ p->id = iType;
+ break;
+ }
+ }
+ return p;
+}
+
+
+/*
+** This routine deallocates a previously
+** allocated mutex. SQLite is careful to deallocate every
+** mutex that it allocates.
+*/
+SQLITE_API void sqlite3_mutex_free(sqlite3_mutex *p){
+ assert( p );
+ assert( p->nRef==0 );
+ assert( p->id==SQLITE_MUTEX_FAST || p->id==SQLITE_MUTEX_RECURSIVE );
+ pthread_mutex_destroy(&p->mutex);
+ sqlite3_free(p);
+}
+
+/*
+** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt
+** to enter a mutex. If another thread is already within the mutex,
+** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return
+** SQLITE_BUSY. The sqlite3_mutex_try() interface returns SQLITE_OK
+** upon successful entry. Mutexes created using SQLITE_MUTEX_RECURSIVE can
+** be entered multiple times by the same thread. In such cases the,
+** mutex must be exited an equal number of times before another thread
+** can enter. If the same thread tries to enter any other kind of mutex
+** more than once, the behavior is undefined.
+*/
+SQLITE_API void sqlite3_mutex_enter(sqlite3_mutex *p){
+ assert( p );
+ assert( p->id==SQLITE_MUTEX_RECURSIVE || sqlite3_mutex_notheld(p) );
+
+#ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX
+ /* If recursive mutexes are not available, then we have to grow
+ ** our own. This implementation assumes that pthread_equal()
+ ** is atomic - that it cannot be deceived into thinking self
+ ** and p->owner are equal if p->owner changes between two values
+ ** that are not equal to self while the comparison is taking place.
+ ** This implementation also assumes a coherent cache - that
+ ** separate processes cannot read different values from the same
+ ** address at the same time. If either of these two conditions
+ ** are not met, then the mutexes will fail and problems will result.
+ */
+ {
+ pthread_t self = pthread_self();
+ if( p->nRef>0 && pthread_equal(p->owner, self) ){
+ p->nRef++;
+ }else{
+ pthread_mutex_lock(&p->mutex);
+ assert( p->nRef==0 );
+ p->owner = self;
+ p->nRef = 1;
+ }
+ }
+#else
+ /* Use the built-in recursive mutexes if they are available.
+ */
+ pthread_mutex_lock(&p->mutex);
+ p->owner = pthread_self();
+ p->nRef++;
+#endif
+
+#ifdef SQLITE_DEBUG
+ if( p->trace ){
+ printf("enter mutex %p (%d) with nRef=%d\n", p, p->trace, p->nRef);
+ }
+#endif
+}
+SQLITE_API int sqlite3_mutex_try(sqlite3_mutex *p){
+ int rc;
+ assert( p );
+ assert( p->id==SQLITE_MUTEX_RECURSIVE || sqlite3_mutex_notheld(p) );
+
+#ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX
+ /* If recursive mutexes are not available, then we have to grow
+ ** our own. This implementation assumes that pthread_equal()
+ ** is atomic - that it cannot be deceived into thinking self
+ ** and p->owner are equal if p->owner changes between two values
+ ** that are not equal to self while the comparison is taking place.
+ ** This implementation also assumes a coherent cache - that
+ ** separate processes cannot read different values from the same
+ ** address at the same time. If either of these two conditions
+ ** are not met, then the mutexes will fail and problems will result.
+ */
+ {
+ pthread_t self = pthread_self();
+ if( p->nRef>0 && pthread_equal(p->owner, self) ){
+ p->nRef++;
+ rc = SQLITE_OK;
+ }else if( pthread_mutex_lock(&p->mutex)==0 ){
+ assert( p->nRef==0 );
+ p->owner = self;
+ p->nRef = 1;
+ rc = SQLITE_OK;
+ }else{
+ rc = SQLITE_BUSY;
+ }
+ }
+#else
+ /* Use the built-in recursive mutexes if they are available.
+ */
+ if( pthread_mutex_trylock(&p->mutex)==0 ){
+ p->owner = pthread_self();
+ p->nRef++;
+ rc = SQLITE_OK;
+ }else{
+ rc = SQLITE_BUSY;
+ }
+#endif
+
+#ifdef SQLITE_DEBUG
+ if( rc==SQLITE_OK && p->trace ){
+ printf("enter mutex %p (%d) with nRef=%d\n", p, p->trace, p->nRef);
+ }
+#endif
+ return rc;
+}
+
+/*
+** The sqlite3_mutex_leave() routine exits a mutex that was
+** previously entered by the same thread. The behavior
+** is undefined if the mutex is not currently entered or
+** is not currently allocated. SQLite will never do either.
+*/
+SQLITE_API void sqlite3_mutex_leave(sqlite3_mutex *p){
+ assert( p );
+ assert( sqlite3_mutex_held(p) );
+ p->nRef--;
+ assert( p->nRef==0 || p->id==SQLITE_MUTEX_RECURSIVE );
+
+#ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX
+ if( p->nRef==0 ){
+ pthread_mutex_unlock(&p->mutex);
+ }
+#else
+ pthread_mutex_unlock(&p->mutex);
+#endif
+
+#ifdef SQLITE_DEBUG
+ if( p->trace ){
+ printf("leave mutex %p (%d) with nRef=%d\n", p, p->trace, p->nRef);
+ }
+#endif
+}
+
+/*
+** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routine are
+** intended for use only inside assert() statements. On some platforms,
+** there might be race conditions that can cause these routines to
+** deliver incorrect results. In particular, if pthread_equal() is
+** not an atomic operation, then these routines might delivery
+** incorrect results. On most platforms, pthread_equal() is a
+** comparison of two integers and is therefore atomic. But we are
+** told that HPUX is not such a platform. If so, then these routines
+** will not always work correctly on HPUX.
+**
+** On those platforms where pthread_equal() is not atomic, SQLite
+** should be compiled without -DSQLITE_DEBUG and with -DNDEBUG to
+** make sure no assert() statements are evaluated and hence these
+** routines are never called.
+*/
+#ifndef NDEBUG
+SQLITE_API int sqlite3_mutex_held(sqlite3_mutex *p){
+ return p==0 || (p->nRef!=0 && pthread_equal(p->owner, pthread_self()));
+}
+SQLITE_API int sqlite3_mutex_notheld(sqlite3_mutex *p){
+ return p==0 || p->nRef==0 || pthread_equal(p->owner, pthread_self())==0;
+}
+#endif
+#endif /* SQLITE_MUTEX_PTHREAD */
+
+/************** End of mutex_unix.c ******************************************/
+/************** Begin file mutex_w32.c ***************************************/
+/*
+** 2007 August 14
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains the C functions that implement mutexes for win32
+**
+** $Id: mutex_w32.c,v 1.6 2008/03/26 18:34:43 danielk1977 Exp $
+*/
+
+/*
+** The code in this file is only used if we are compiling multithreaded
+** on a win32 system.
+*/
+#ifdef SQLITE_MUTEX_W32
+
+/*
+** Each recursive mutex is an instance of the following structure.
+*/
+struct sqlite3_mutex {
+ CRITICAL_SECTION mutex; /* Mutex controlling the lock */
+ int id; /* Mutex type */
+ int nRef; /* Number of enterances */
+ DWORD owner; /* Thread holding this mutex */
+};
+
+/*
+** Return true (non-zero) if we are running under WinNT, Win2K, WinXP,
+** or WinCE. Return false (zero) for Win95, Win98, or WinME.
+**
+** Here is an interesting observation: Win95, Win98, and WinME lack
+** the LockFileEx() API. But we can still statically link against that
+** API as long as we don't call it win running Win95/98/ME. A call to
+** this routine is used to determine if the host is Win95/98/ME or
+** WinNT/2K/XP so that we will know whether or not we can safely call
+** the LockFileEx() API.
+*/
+#if OS_WINCE
+# define mutexIsNT() (1)
+#else
+ static int mutexIsNT(void){
+ static int osType = 0;
+ if( osType==0 ){
+ OSVERSIONINFO sInfo;
+ sInfo.dwOSVersionInfoSize = sizeof(sInfo);
+ GetVersionEx(&sInfo);
+ osType = sInfo.dwPlatformId==VER_PLATFORM_WIN32_NT ? 2 : 1;
+ }
+ return osType==2;
+ }
+#endif /* OS_WINCE */
+
+
+/*
+** The sqlite3_mutex_alloc() routine allocates a new
+** mutex and returns a pointer to it. If it returns NULL
+** that means that a mutex could not be allocated. SQLite
+** will unwind its stack and return an error. The argument
+** to sqlite3_mutex_alloc() is one of these integer constants:
+**
+** <ul>
+** <li> SQLITE_MUTEX_FAST 0
+** <li> SQLITE_MUTEX_RECURSIVE 1
+** <li> SQLITE_MUTEX_STATIC_MASTER 2
+** <li> SQLITE_MUTEX_STATIC_MEM 3
+** <li> SQLITE_MUTEX_STATIC_PRNG 4
+** </ul>
+**
+** The first two constants cause sqlite3_mutex_alloc() to create
+** a new mutex. The new mutex is recursive when SQLITE_MUTEX_RECURSIVE
+** is used but not necessarily so when SQLITE_MUTEX_FAST is used.
+** The mutex implementation does not need to make a distinction
+** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does
+** not want to. But SQLite will only request a recursive mutex in
+** cases where it really needs one. If a faster non-recursive mutex
+** implementation is available on the host platform, the mutex subsystem
+** might return such a mutex in response to SQLITE_MUTEX_FAST.
+**
+** The other allowed parameters to sqlite3_mutex_alloc() each return
+** a pointer to a static preexisting mutex. Three static mutexes are
+** used by the current version of SQLite. Future versions of SQLite
+** may add additional static mutexes. Static mutexes are for internal
+** use by SQLite only. Applications that use SQLite mutexes should
+** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or
+** SQLITE_MUTEX_RECURSIVE.
+**
+** Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST
+** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc()
+** returns a different mutex on every call. But for the static
+** mutex types, the same mutex is returned on every call that has
+** the same type number.
+*/
+SQLITE_API sqlite3_mutex *sqlite3_mutex_alloc(int iType){
+ sqlite3_mutex *p;
+
+ switch( iType ){
+ case SQLITE_MUTEX_FAST:
+ case SQLITE_MUTEX_RECURSIVE: {
+ p = sqlite3MallocZero( sizeof(*p) );
+ if( p ){
+ p->id = iType;
+ InitializeCriticalSection(&p->mutex);
+ }
+ break;
+ }
+ default: {
+ static sqlite3_mutex staticMutexes[6];
+ static int isInit = 0;
+ while( !isInit ){
+ static long lock = 0;
+ if( InterlockedIncrement(&lock)==1 ){
+ int i;
+ for(i=0; i<sizeof(staticMutexes)/sizeof(staticMutexes[0]); i++){
+ InitializeCriticalSection(&staticMutexes[i].mutex);
+ }
+ isInit = 1;
+ }else{
+ Sleep(1);
+ }
+ }
+ assert( iType-2 >= 0 );
+ assert( iType-2 < sizeof(staticMutexes)/sizeof(staticMutexes[0]) );
+ p = &staticMutexes[iType-2];
+ p->id = iType;
+ break;
+ }
+ }
+ return p;
+}
+
+
+/*
+** This routine deallocates a previously
+** allocated mutex. SQLite is careful to deallocate every
+** mutex that it allocates.
+*/
+SQLITE_API void sqlite3_mutex_free(sqlite3_mutex *p){
+ assert( p );
+ assert( p->nRef==0 );
+ assert( p->id==SQLITE_MUTEX_FAST || p->id==SQLITE_MUTEX_RECURSIVE );
+ DeleteCriticalSection(&p->mutex);
+ sqlite3_free(p);
+}
+
+/*
+** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt
+** to enter a mutex. If another thread is already within the mutex,
+** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return
+** SQLITE_BUSY. The sqlite3_mutex_try() interface returns SQLITE_OK
+** upon successful entry. Mutexes created using SQLITE_MUTEX_RECURSIVE can
+** be entered multiple times by the same thread. In such cases the,
+** mutex must be exited an equal number of times before another thread
+** can enter. If the same thread tries to enter any other kind of mutex
+** more than once, the behavior is undefined.
+*/
+SQLITE_API void sqlite3_mutex_enter(sqlite3_mutex *p){
+ assert( p );
+ assert( p->id==SQLITE_MUTEX_RECURSIVE || sqlite3_mutex_notheld(p) );
+ EnterCriticalSection(&p->mutex);
+ p->owner = GetCurrentThreadId();
+ p->nRef++;
+}
+SQLITE_API int sqlite3_mutex_try(sqlite3_mutex *p){
+ int rc = SQLITE_BUSY;
+ assert( p );
+ assert( p->id==SQLITE_MUTEX_RECURSIVE || sqlite3_mutex_notheld(p) );
+ /*
+ ** The sqlite3_mutex_try() routine is very rarely used, and when it
+ ** is used it is merely an optimization. So it is OK for it to always
+ ** fail.
+ **
+ ** The TryEnterCriticalSection() interface is only available on WinNT.
+ ** And some windows compilers complain if you try to use it without
+ ** first doing some #defines that prevent SQLite from building on Win98.
+ ** For that reason, we will omit this optimization for now. See
+ ** ticket #2685.
+ */
+#if 0
+ if( mutexIsNT() && TryEnterCriticalSection(&p->mutex) ){
+ p->owner = GetCurrentThreadId();
+ p->nRef++;
+ rc = SQLITE_OK;
+ }
+#endif
+ return rc;
+}
+
+/*
+** The sqlite3_mutex_leave() routine exits a mutex that was
+** previously entered by the same thread. The behavior
+** is undefined if the mutex is not currently entered or
+** is not currently allocated. SQLite will never do either.
+*/
+SQLITE_API void sqlite3_mutex_leave(sqlite3_mutex *p){
+ assert( p->nRef>0 );
+ assert( p->owner==GetCurrentThreadId() );
+ p->nRef--;
+ assert( p->nRef==0 || p->id==SQLITE_MUTEX_RECURSIVE );
+ LeaveCriticalSection(&p->mutex);
+}
+
+/*
+** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routine are
+** intended for use only inside assert() statements.
+*/
+SQLITE_API int sqlite3_mutex_held(sqlite3_mutex *p){
+ return p==0 || (p->nRef!=0 && p->owner==GetCurrentThreadId());
+}
+SQLITE_API int sqlite3_mutex_notheld(sqlite3_mutex *p){
+ return p==0 || p->nRef==0 || p->owner!=GetCurrentThreadId();
+}
+#endif /* SQLITE_MUTEX_W32 */
+
+/************** End of mutex_w32.c *******************************************/
+/************** Begin file malloc.c ******************************************/
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** Memory allocation functions used throughout sqlite.
+**
+**
+** $Id: malloc.c,v 1.15 2008/03/26 18:34:43 danielk1977 Exp $
+*/
+
+/*
+** This routine runs when the memory allocator sees that the
+** total memory allocation is about to exceed the soft heap
+** limit.
+*/
+static void softHeapLimitEnforcer(
+ void *NotUsed,
+ sqlite3_int64 inUse,
+ int allocSize
+){
+ sqlite3_release_memory(allocSize);
+}
+
+/*
+** Set the soft heap-size limit for the current thread. Passing a
+** zero or negative value indicates no limit.
+*/
+SQLITE_API void sqlite3_soft_heap_limit(int n){
+ sqlite3_uint64 iLimit;
+ int overage;
+ if( n<0 ){
+ iLimit = 0;
+ }else{
+ iLimit = n;
+ }
+ if( iLimit>0 ){
+ sqlite3_memory_alarm(softHeapLimitEnforcer, 0, iLimit);
+ }else{
+ sqlite3_memory_alarm(0, 0, 0);
+ }
+ overage = sqlite3_memory_used() - n;
+ if( overage>0 ){
+ sqlite3_release_memory(overage);
+ }
+}
+
+/*
+** Release memory held by SQLite instances created by the current thread.
+*/
+SQLITE_API int sqlite3_release_memory(int n){
+#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
+ int nRet = sqlite3VdbeReleaseMemory(n);
+ nRet += sqlite3PagerReleaseMemory(n-nRet);
+ return nRet;
+#else
+ return SQLITE_OK;
+#endif
+}
+
+
+/*
+** Allocate and zero memory.
+*/
+SQLITE_PRIVATE void *sqlite3MallocZero(unsigned n){
+ void *p = sqlite3_malloc(n);
+ if( p ){
+ memset(p, 0, n);
+ }
+ return p;
+}
+
+/*
+** Allocate and zero memory. If the allocation fails, make
+** the mallocFailed flag in the connection pointer.
+*/
+SQLITE_PRIVATE void *sqlite3DbMallocZero(sqlite3 *db, unsigned n){
+ void *p = sqlite3DbMallocRaw(db, n);
+ if( p ){
+ memset(p, 0, n);
+ }
+ return p;
+}
+
+/*
+** Allocate and zero memory. If the allocation fails, make
+** the mallocFailed flag in the connection pointer.
+*/
+SQLITE_PRIVATE void *sqlite3DbMallocRaw(sqlite3 *db, unsigned n){
+ void *p = 0;
+ if( !db || db->mallocFailed==0 ){
+ p = sqlite3_malloc(n);
+ if( !p && db ){
+ db->mallocFailed = 1;
+ }
+ }
+ return p;
+}
+
+/*
+** Resize the block of memory pointed to by p to n bytes. If the
+** resize fails, set the mallocFailed flag inthe connection object.
+*/
+SQLITE_PRIVATE void *sqlite3DbRealloc(sqlite3 *db, void *p, int n){
+ void *pNew = 0;
+ if( db->mallocFailed==0 ){
+ pNew = sqlite3_realloc(p, n);
+ if( !pNew ){
+ db->mallocFailed = 1;
+ }
+ }
+ return pNew;
+}
+
+/*
+** Attempt to reallocate p. If the reallocation fails, then free p
+** and set the mallocFailed flag in the database connection.
+*/
+SQLITE_PRIVATE void *sqlite3DbReallocOrFree(sqlite3 *db, void *p, int n){
+ void *pNew;
+ pNew = sqlite3DbRealloc(db, p, n);
+ if( !pNew ){
+ sqlite3_free(p);
+ }
+ return pNew;
+}
+
+/*
+** Make a copy of a string in memory obtained from sqliteMalloc(). These
+** functions call sqlite3MallocRaw() directly instead of sqliteMalloc(). This
+** is because when memory debugging is turned on, these two functions are
+** called via macros that record the current file and line number in the
+** ThreadData structure.
+*/
+SQLITE_PRIVATE char *sqlite3StrDup(const char *z){
+ char *zNew;
+ int n;
+ if( z==0 ) return 0;
+ n = strlen(z)+1;
+ zNew = sqlite3_malloc(n);
+ if( zNew ) memcpy(zNew, z, n);
+ return zNew;
+}
+SQLITE_PRIVATE char *sqlite3StrNDup(const char *z, int n){
+ char *zNew;
+ if( z==0 ) return 0;
+ zNew = sqlite3_malloc(n+1);
+ if( zNew ){
+ memcpy(zNew, z, n);
+ zNew[n] = 0;
+ }
+ return zNew;
+}
+
+SQLITE_PRIVATE char *sqlite3DbStrDup(sqlite3 *db, const char *z){
+ char *zNew = sqlite3StrDup(z);
+ if( z && !zNew ){
+ db->mallocFailed = 1;
+ }
+ return zNew;
+}
+SQLITE_PRIVATE char *sqlite3DbStrNDup(sqlite3 *db, const char *z, int n){
+ char *zNew = sqlite3StrNDup(z, n);
+ if( z && !zNew ){
+ db->mallocFailed = 1;
+ }
+ return zNew;
+}
+
+/*
+** Create a string from the 2nd and subsequent arguments (up to the
+** first NULL argument), store the string in memory obtained from
+** sqliteMalloc() and make the pointer indicated by the 1st argument
+** point to that string. The 1st argument must either be NULL or
+** point to memory obtained from sqliteMalloc().
+*/
+SQLITE_PRIVATE void sqlite3SetString(char **pz, ...){
+ va_list ap;
+ int nByte;
+ const char *z;
+ char *zResult;
+
+ assert( pz!=0 );
+ nByte = 1;
+ va_start(ap, pz);
+ while( (z = va_arg(ap, const char*))!=0 ){
+ nByte += strlen(z);
+ }
+ va_end(ap);
+ sqlite3_free(*pz);
+ *pz = zResult = sqlite3_malloc(nByte);
+ if( zResult==0 ){
+ return;
+ }
+ *zResult = 0;
+ va_start(ap, pz);
+ while( (z = va_arg(ap, const char*))!=0 ){
+ int n = strlen(z);
+ memcpy(zResult, z, n);
+ zResult += n;
+ }
+ zResult[0] = 0;
+ va_end(ap);
+}
+
+
+/*
+** This function must be called before exiting any API function (i.e.
+** returning control to the user) that has called sqlite3_malloc or
+** sqlite3_realloc.
+**
+** The returned value is normally a copy of the second argument to this
+** function. However, if a malloc() failure has occured since the previous
+** invocation SQLITE_NOMEM is returned instead.
+**
+** If the first argument, db, is not NULL and a malloc() error has occured,
+** then the connection error-code (the value returned by sqlite3_errcode())
+** is set to SQLITE_NOMEM.
+*/
+SQLITE_PRIVATE int sqlite3ApiExit(sqlite3* db, int rc){
+ /* If the db handle is not NULL, then we must hold the connection handle
+ ** mutex here. Otherwise the read (and possible write) of db->mallocFailed
+ ** is unsafe, as is the call to sqlite3Error().
+ */
+ assert( !db || sqlite3_mutex_held(db->mutex) );
+ if( db && db->mallocFailed ){
+ sqlite3Error(db, SQLITE_NOMEM, 0);
+ db->mallocFailed = 0;
+ rc = SQLITE_NOMEM;
+ }
+ return rc & (db ? db->errMask : 0xff);
+}
+
+/************** End of malloc.c **********************************************/
+/************** Begin file printf.c ******************************************/
+/*
+** The "printf" code that follows dates from the 1980's. It is in
+** the public domain. The original comments are included here for
+** completeness. They are very out-of-date but might be useful as
+** an historical reference. Most of the "enhancements" have been backed
+** out so that the functionality is now the same as standard printf().
+**
+**************************************************************************
+**
+** The following modules is an enhanced replacement for the "printf" subroutines
+** found in the standard C library. The following enhancements are
+** supported:
+**
+** + Additional functions. The standard set of "printf" functions
+** includes printf, fprintf, sprintf, vprintf, vfprintf, and
+** vsprintf. This module adds the following:
+**
+** * snprintf -- Works like sprintf, but has an extra argument
+** which is the size of the buffer written to.
+**
+** * mprintf -- Similar to sprintf. Writes output to memory
+** obtained from malloc.
+**
+** * xprintf -- Calls a function to dispose of output.
+**
+** * nprintf -- No output, but returns the number of characters
+** that would have been output by printf.
+**
+** * A v- version (ex: vsnprintf) of every function is also
+** supplied.
+**
+** + A few extensions to the formatting notation are supported:
+**
+** * The "=" flag (similar to "-") causes the output to be
+** be centered in the appropriately sized field.
+**
+** * The %b field outputs an integer in binary notation.
+**
+** * The %c field now accepts a precision. The character output
+** is repeated by the number of times the precision specifies.
+**
+** * The %' field works like %c, but takes as its character the
+** next character of the format string, instead of the next
+** argument. For example, printf("%.78'-") prints 78 minus
+** signs, the same as printf("%.78c",'-').
+**
+** + When compiled using GCC on a SPARC, this version of printf is
+** faster than the library printf for SUN OS 4.1.
+**
+** + All functions are fully reentrant.
+**
+*/
+
+/*
+** Conversion types fall into various categories as defined by the
+** following enumeration.
+*/
+#define etRADIX 1 /* Integer types. %d, %x, %o, and so forth */
+#define etFLOAT 2 /* Floating point. %f */
+#define etEXP 3 /* Exponentional notation. %e and %E */
+#define etGENERIC 4 /* Floating or exponential, depending on exponent. %g */
+#define etSIZE 5 /* Return number of characters processed so far. %n */
+#define etSTRING 6 /* Strings. %s */
+#define etDYNSTRING 7 /* Dynamically allocated strings. %z */
+#define etPERCENT 8 /* Percent symbol. %% */
+#define etCHARX 9 /* Characters. %c */
+/* The rest are extensions, not normally found in printf() */
+#define etCHARLIT 10 /* Literal characters. %' */
+#define etSQLESCAPE 11 /* Strings with '\'' doubled. %q */
+#define etSQLESCAPE2 12 /* Strings with '\'' doubled and enclosed in '',
+ NULL pointers replaced by SQL NULL. %Q */
+#define etTOKEN 13 /* a pointer to a Token structure */
+#define etSRCLIST 14 /* a pointer to a SrcList */
+#define etPOINTER 15 /* The %p conversion */
+#define etSQLESCAPE3 16 /* %w -> Strings with '\"' doubled */
+#define etORDINAL 17 /* %r -> 1st, 2nd, 3rd, 4th, etc. English only */
+
+
+/*
+** An "etByte" is an 8-bit unsigned value.
+*/
+typedef unsigned char etByte;
+
+/*
+** Each builtin conversion character (ex: the 'd' in "%d") is described
+** by an instance of the following structure
+*/
+typedef struct et_info { /* Information about each format field */
+ char fmttype; /* The format field code letter */
+ etByte base; /* The base for radix conversion */
+ etByte flags; /* One or more of FLAG_ constants below */
+ etByte type; /* Conversion paradigm */
+ etByte charset; /* Offset into aDigits[] of the digits string */
+ etByte prefix; /* Offset into aPrefix[] of the prefix string */
+} et_info;
+
+/*
+** Allowed values for et_info.flags
+*/
+#define FLAG_SIGNED 1 /* True if the value to convert is signed */
+#define FLAG_INTERN 2 /* True if for internal use only */
+#define FLAG_STRING 4 /* Allow infinity precision */
+
+
+/*
+** The following table is searched linearly, so it is good to put the
+** most frequently used conversion types first.
+*/
+static const char aDigits[] = "0123456789ABCDEF0123456789abcdef";
+static const char aPrefix[] = "-x0\000X0";
+static const et_info fmtinfo[] = {
+ { 'd', 10, 1, etRADIX, 0, 0 },
+ { 's', 0, 4, etSTRING, 0, 0 },
+ { 'g', 0, 1, etGENERIC, 30, 0 },
+ { 'z', 0, 4, etDYNSTRING, 0, 0 },
+ { 'q', 0, 4, etSQLESCAPE, 0, 0 },
+ { 'Q', 0, 4, etSQLESCAPE2, 0, 0 },
+ { 'w', 0, 4, etSQLESCAPE3, 0, 0 },
+ { 'c', 0, 0, etCHARX, 0, 0 },
+ { 'o', 8, 0, etRADIX, 0, 2 },
+ { 'u', 10, 0, etRADIX, 0, 0 },
+ { 'x', 16, 0, etRADIX, 16, 1 },
+ { 'X', 16, 0, etRADIX, 0, 4 },
+#ifndef SQLITE_OMIT_FLOATING_POINT
+ { 'f', 0, 1, etFLOAT, 0, 0 },
+ { 'e', 0, 1, etEXP, 30, 0 },
+ { 'E', 0, 1, etEXP, 14, 0 },
+ { 'G', 0, 1, etGENERIC, 14, 0 },
+#endif
+ { 'i', 10, 1, etRADIX, 0, 0 },
+ { 'n', 0, 0, etSIZE, 0, 0 },
+ { '%', 0, 0, etPERCENT, 0, 0 },
+ { 'p', 16, 0, etPOINTER, 0, 1 },
+ { 'T', 0, 2, etTOKEN, 0, 0 },
+ { 'S', 0, 2, etSRCLIST, 0, 0 },
+ { 'r', 10, 3, etORDINAL, 0, 0 },
+};
+#define etNINFO (sizeof(fmtinfo)/sizeof(fmtinfo[0]))
+
+/*
+** If SQLITE_OMIT_FLOATING_POINT is defined, then none of the floating point
+** conversions will work.
+*/
+#ifndef SQLITE_OMIT_FLOATING_POINT
+/*
+** "*val" is a double such that 0.1 <= *val < 10.0
+** Return the ascii code for the leading digit of *val, then
+** multiply "*val" by 10.0 to renormalize.
+**
+** Example:
+** input: *val = 3.14159
+** output: *val = 1.4159 function return = '3'
+**
+** The counter *cnt is incremented each time. After counter exceeds
+** 16 (the number of significant digits in a 64-bit float) '0' is
+** always returned.
+*/
+static int et_getdigit(LONGDOUBLE_TYPE *val, int *cnt){
+ int digit;
+ LONGDOUBLE_TYPE d;
+ if( (*cnt)++ >= 16 ) return '0';
+ digit = (int)*val;
+ d = digit;
+ digit += '0';
+ *val = (*val - d)*10.0;
+ return digit;
+}
+#endif /* SQLITE_OMIT_FLOATING_POINT */
+
+/*
+** Append N space characters to the given string buffer.
+*/
+static void appendSpace(StrAccum *pAccum, int N){
+ static const char zSpaces[] = " ";
+ while( N>=sizeof(zSpaces)-1 ){
+ sqlite3StrAccumAppend(pAccum, zSpaces, sizeof(zSpaces)-1);
+ N -= sizeof(zSpaces)-1;
+ }
+ if( N>0 ){
+ sqlite3StrAccumAppend(pAccum, zSpaces, N);
+ }
+}
+
+/*
+** On machines with a small stack size, you can redefine the
+** SQLITE_PRINT_BUF_SIZE to be less than 350. But beware - for
+** smaller values some %f conversions may go into an infinite loop.
+*/
+#ifndef SQLITE_PRINT_BUF_SIZE
+# define SQLITE_PRINT_BUF_SIZE 350
+#endif
+#define etBUFSIZE SQLITE_PRINT_BUF_SIZE /* Size of the output buffer */
+
+/*
+** The root program. All variations call this core.
+**
+** INPUTS:
+** func This is a pointer to a function taking three arguments
+** 1. A pointer to anything. Same as the "arg" parameter.
+** 2. A pointer to the list of characters to be output
+** (Note, this list is NOT null terminated.)
+** 3. An integer number of characters to be output.
+** (Note: This number might be zero.)
+**
+** arg This is the pointer to anything which will be passed as the
+** first argument to "func". Use it for whatever you like.
+**
+** fmt This is the format string, as in the usual print.
+**
+** ap This is a pointer to a list of arguments. Same as in
+** vfprint.
+**
+** OUTPUTS:
+** The return value is the total number of characters sent to
+** the function "func". Returns -1 on a error.
+**
+** Note that the order in which automatic variables are declared below
+** seems to make a big difference in determining how fast this beast
+** will run.
+*/
+static void vxprintf(
+ StrAccum *pAccum, /* Accumulate results here */
+ int useExtended, /* Allow extended %-conversions */
+ const char *fmt, /* Format string */
+ va_list ap /* arguments */
+){
+ int c; /* Next character in the format string */
+ char *bufpt; /* Pointer to the conversion buffer */
+ int precision; /* Precision of the current field */
+ int length; /* Length of the field */
+ int idx; /* A general purpose loop counter */
+ int width; /* Width of the current field */
+ etByte flag_leftjustify; /* True if "-" flag is present */
+ etByte flag_plussign; /* True if "+" flag is present */
+ etByte flag_blanksign; /* True if " " flag is present */
+ etByte flag_alternateform; /* True if "#" flag is present */
+ etByte flag_altform2; /* True if "!" flag is present */
+ etByte flag_zeropad; /* True if field width constant starts with zero */
+ etByte flag_long; /* True if "l" flag is present */
+ etByte flag_longlong; /* True if the "ll" flag is present */
+ etByte done; /* Loop termination flag */
+ sqlite_uint64 longvalue; /* Value for integer types */
+ LONGDOUBLE_TYPE realvalue; /* Value for real types */
+ const et_info *infop; /* Pointer to the appropriate info structure */
+ char buf[etBUFSIZE]; /* Conversion buffer */
+ char prefix; /* Prefix character. "+" or "-" or " " or '\0'. */
+ etByte errorflag = 0; /* True if an error is encountered */
+ etByte xtype; /* Conversion paradigm */
+ char *zExtra; /* Extra memory used for etTCLESCAPE conversions */
+#ifndef SQLITE_OMIT_FLOATING_POINT
+ int exp, e2; /* exponent of real numbers */
+ double rounder; /* Used for rounding floating point values */
+ etByte flag_dp; /* True if decimal point should be shown */
+ etByte flag_rtz; /* True if trailing zeros should be removed */
+ etByte flag_exp; /* True to force display of the exponent */
+ int nsd; /* Number of significant digits returned */
+#endif
+
+ length = 0;
+ bufpt = 0;
+ for(; (c=(*fmt))!=0; ++fmt){
+ if( c!='%' ){
+ int amt;
+ bufpt = (char *)fmt;
+ amt = 1;
+ while( (c=(*++fmt))!='%' && c!=0 ) amt++;
+ sqlite3StrAccumAppend(pAccum, bufpt, amt);
+ if( c==0 ) break;
+ }
+ if( (c=(*++fmt))==0 ){
+ errorflag = 1;
+ sqlite3StrAccumAppend(pAccum, "%", 1);
+ break;
+ }
+ /* Find out what flags are present */
+ flag_leftjustify = flag_plussign = flag_blanksign =
+ flag_alternateform = flag_altform2 = flag_zeropad = 0;
+ done = 0;
+ do{
+ switch( c ){
+ case '-': flag_leftjustify = 1; break;
+ case '+': flag_plussign = 1; break;
+ case ' ': flag_blanksign = 1; break;
+ case '#': flag_alternateform = 1; break;
+ case '!': flag_altform2 = 1; break;
+ case '0': flag_zeropad = 1; break;
+ default: done = 1; break;
+ }
+ }while( !done && (c=(*++fmt))!=0 );
+ /* Get the field width */
+ width = 0;
+ if( c=='*' ){
+ width = va_arg(ap,int);
+ if( width<0 ){
+ flag_leftjustify = 1;
+ width = -width;
+ }
+ c = *++fmt;
+ }else{
+ while( c>='0' && c<='9' ){
+ width = width*10 + c - '0';
+ c = *++fmt;
+ }
+ }
+ if( width > etBUFSIZE-10 ){
+ width = etBUFSIZE-10;
+ }
+ /* Get the precision */
+ if( c=='.' ){
+ precision = 0;
+ c = *++fmt;
+ if( c=='*' ){
+ precision = va_arg(ap,int);
+ if( precision<0 ) precision = -precision;
+ c = *++fmt;
+ }else{
+ while( c>='0' && c<='9' ){
+ precision = precision*10 + c - '0';
+ c = *++fmt;
+ }
+ }
+ }else{
+ precision = -1;
+ }
+ /* Get the conversion type modifier */
+ if( c=='l' ){
+ flag_long = 1;
+ c = *++fmt;
+ if( c=='l' ){
+ flag_longlong = 1;
+ c = *++fmt;
+ }else{
+ flag_longlong = 0;
+ }
+ }else{
+ flag_long = flag_longlong = 0;
+ }
+ /* Fetch the info entry for the field */
+ infop = 0;
+ for(idx=0; idx<etNINFO; idx++){
+ if( c==fmtinfo[idx].fmttype ){
+ infop = &fmtinfo[idx];
+ if( useExtended || (infop->flags & FLAG_INTERN)==0 ){
+ xtype = infop->type;
+ }else{
+ return;
+ }
+ break;
+ }
+ }
+ zExtra = 0;
+ if( infop==0 ){
+ return;
+ }
+
+
+ /* Limit the precision to prevent overflowing buf[] during conversion */
+ if( precision>etBUFSIZE-40 && (infop->flags & FLAG_STRING)==0 ){
+ precision = etBUFSIZE-40;
+ }
+
+ /*
+ ** At this point, variables are initialized as follows:
+ **
+ ** flag_alternateform TRUE if a '#' is present.
+ ** flag_altform2 TRUE if a '!' is present.
+ ** flag_plussign TRUE if a '+' is present.
+ ** flag_leftjustify TRUE if a '-' is present or if the
+ ** field width was negative.
+ ** flag_zeropad TRUE if the width began with 0.
+ ** flag_long TRUE if the letter 'l' (ell) prefixed
+ ** the conversion character.
+ ** flag_longlong TRUE if the letter 'll' (ell ell) prefixed
+ ** the conversion character.
+ ** flag_blanksign TRUE if a ' ' is present.
+ ** width The specified field width. This is
+ ** always non-negative. Zero is the default.
+ ** precision The specified precision. The default
+ ** is -1.
+ ** xtype The class of the conversion.
+ ** infop Pointer to the appropriate info struct.
+ */
+ switch( xtype ){
+ case etPOINTER:
+ flag_longlong = sizeof(char*)==sizeof(i64);
+ flag_long = sizeof(char*)==sizeof(long int);
+ /* Fall through into the next case */
+ case etORDINAL:
+ case etRADIX:
+ if( infop->flags & FLAG_SIGNED ){
+ i64 v;
+ if( flag_longlong ) v = va_arg(ap,i64);
+ else if( flag_long ) v = va_arg(ap,long int);
+ else v = va_arg(ap,int);
+ if( v<0 ){
+ longvalue = -v;
+ prefix = '-';
+ }else{
+ longvalue = v;
+ if( flag_plussign ) prefix = '+';
+ else if( flag_blanksign ) prefix = ' ';
+ else prefix = 0;
+ }
+ }else{
+ if( flag_longlong ) longvalue = va_arg(ap,u64);
+ else if( flag_long ) longvalue = va_arg(ap,unsigned long int);
+ else longvalue = va_arg(ap,unsigned int);
+ prefix = 0;
+ }
+ if( longvalue==0 ) flag_alternateform = 0;
+ if( flag_zeropad && precision<width-(prefix!=0) ){
+ precision = width-(prefix!=0);
+ }
+ bufpt = &buf[etBUFSIZE-1];
+ if( xtype==etORDINAL ){
+ static const char zOrd[] = "thstndrd";
+ int x = longvalue % 10;
+ if( x>=4 || (longvalue/10)%10==1 ){
+ x = 0;
+ }
+ buf[etBUFSIZE-3] = zOrd[x*2];
+ buf[etBUFSIZE-2] = zOrd[x*2+1];
+ bufpt -= 2;
+ }
+ {
+ register const char *cset; /* Use registers for speed */
+ register int base;
+ cset = &aDigits[infop->charset];
+ base = infop->base;
+ do{ /* Convert to ascii */
+ *(--bufpt) = cset[longvalue%base];
+ longvalue = longvalue/base;
+ }while( longvalue>0 );
+ }
+ length = &buf[etBUFSIZE-1]-bufpt;
+ for(idx=precision-length; idx>0; idx--){
+ *(--bufpt) = '0'; /* Zero pad */
+ }
+ if( prefix ) *(--bufpt) = prefix; /* Add sign */
+ if( flag_alternateform && infop->prefix ){ /* Add "0" or "0x" */
+ const char *pre;
+ char x;
+ pre = &aPrefix[infop->prefix];
+ if( *bufpt!=pre[0] ){
+ for(; (x=(*pre))!=0; pre++) *(--bufpt) = x;
+ }
+ }
+ length = &buf[etBUFSIZE-1]-bufpt;
+ break;
+ case etFLOAT:
+ case etEXP:
+ case etGENERIC:
+ realvalue = va_arg(ap,double);
+#ifndef SQLITE_OMIT_FLOATING_POINT
+ if( precision<0 ) precision = 6; /* Set default precision */
+ if( precision>etBUFSIZE/2-10 ) precision = etBUFSIZE/2-10;
+ if( realvalue<0.0 ){
+ realvalue = -realvalue;
+ prefix = '-';
+ }else{
+ if( flag_plussign ) prefix = '+';
+ else if( flag_blanksign ) prefix = ' ';
+ else prefix = 0;
+ }
+ if( xtype==etGENERIC && precision>0 ) precision--;
+#if 0
+ /* Rounding works like BSD when the constant 0.4999 is used. Wierd! */
+ for(idx=precision, rounder=0.4999; idx>0; idx--, rounder*=0.1);
+#else
+ /* It makes more sense to use 0.5 */
+ for(idx=precision, rounder=0.5; idx>0; idx--, rounder*=0.1){}
+#endif
+ if( xtype==etFLOAT ) realvalue += rounder;
+ /* Normalize realvalue to within 10.0 > realvalue >= 1.0 */
+ exp = 0;
+ if( sqlite3IsNaN(realvalue) ){
+ bufpt = "NaN";
+ length = 3;
+ break;
+ }
+ if( realvalue>0.0 ){
+ while( realvalue>=1e32 && exp<=350 ){ realvalue *= 1e-32; exp+=32; }
+ while( realvalue>=1e8 && exp<=350 ){ realvalue *= 1e-8; exp+=8; }
+ while( realvalue>=10.0 && exp<=350 ){ realvalue *= 0.1; exp++; }
+ while( realvalue<1e-8 && exp>=-350 ){ realvalue *= 1e8; exp-=8; }
+ while( realvalue<1.0 && exp>=-350 ){ realvalue *= 10.0; exp--; }
+ if( exp>350 || exp<-350 ){
+ if( prefix=='-' ){
+ bufpt = "-Inf";
+ }else if( prefix=='+' ){
+ bufpt = "+Inf";
+ }else{
+ bufpt = "Inf";
+ }
+ length = strlen(bufpt);
+ break;
+ }
+ }
+ bufpt = buf;
+ /*
+ ** If the field type is etGENERIC, then convert to either etEXP
+ ** or etFLOAT, as appropriate.
+ */
+ flag_exp = xtype==etEXP;
+ if( xtype!=etFLOAT ){
+ realvalue += rounder;
+ if( realvalue>=10.0 ){ realvalue *= 0.1; exp++; }
+ }
+ if( xtype==etGENERIC ){
+ flag_rtz = !flag_alternateform;
+ if( exp<-4 || exp>precision ){
+ xtype = etEXP;
+ }else{
+ precision = precision - exp;
+ xtype = etFLOAT;
+ }
+ }else{
+ flag_rtz = 0;
+ }
+ if( xtype==etEXP ){
+ e2 = 0;
+ }else{
+ e2 = exp;
+ }
+ nsd = 0;
+ flag_dp = (precision>0) | flag_alternateform | flag_altform2;
+ /* The sign in front of the number */
+ if( prefix ){
+ *(bufpt++) = prefix;
+ }
+ /* Digits prior to the decimal point */
+ if( e2<0 ){
+ *(bufpt++) = '0';
+ }else{
+ for(; e2>=0; e2--){
+ *(bufpt++) = et_getdigit(&realvalue,&nsd);
+ }
+ }
+ /* The decimal point */
+ if( flag_dp ){
+ *(bufpt++) = '.';
+ }
+ /* "0" digits after the decimal point but before the first
+ ** significant digit of the number */
+ for(e2++; e2<0 && precision>0; precision--, e2++){
+ *(bufpt++) = '0';
+ }
+ /* Significant digits after the decimal point */
+ while( (precision--)>0 ){
+ *(bufpt++) = et_getdigit(&realvalue,&nsd);
+ }
+ /* Remove trailing zeros and the "." if no digits follow the "." */
+ if( flag_rtz && flag_dp ){
+ while( bufpt[-1]=='0' ) *(--bufpt) = 0;
+ assert( bufpt>buf );
+ if( bufpt[-1]=='.' ){
+ if( flag_altform2 ){
+ *(bufpt++) = '0';
+ }else{
+ *(--bufpt) = 0;
+ }
+ }
+ }
+ /* Add the "eNNN" suffix */
+ if( flag_exp || (xtype==etEXP && exp) ){
+ *(bufpt++) = aDigits[infop->charset];
+ if( exp<0 ){
+ *(bufpt++) = '-'; exp = -exp;
+ }else{
+ *(bufpt++) = '+';
+ }
+ if( exp>=100 ){
+ *(bufpt++) = (exp/100)+'0'; /* 100's digit */
+ exp %= 100;
+ }
+ *(bufpt++) = exp/10+'0'; /* 10's digit */
+ *(bufpt++) = exp%10+'0'; /* 1's digit */
+ }
+ *bufpt = 0;
+
+ /* The converted number is in buf[] and zero terminated. Output it.
+ ** Note that the number is in the usual order, not reversed as with
+ ** integer conversions. */
+ length = bufpt-buf;
+ bufpt = buf;
+
+ /* Special case: Add leading zeros if the flag_zeropad flag is
+ ** set and we are not left justified */
+ if( flag_zeropad && !flag_leftjustify && length < width){
+ int i;
+ int nPad = width - length;
+ for(i=width; i>=nPad; i--){
+ bufpt[i] = bufpt[i-nPad];
+ }
+ i = prefix!=0;
+ while( nPad-- ) bufpt[i++] = '0';
+ length = width;
+ }
+#endif
+ break;
+ case etSIZE:
+ *(va_arg(ap,int*)) = pAccum->nChar;
+ length = width = 0;
+ break;
+ case etPERCENT:
+ buf[0] = '%';
+ bufpt = buf;
+ length = 1;
+ break;
+ case etCHARLIT:
+ case etCHARX:
+ c = buf[0] = (xtype==etCHARX ? va_arg(ap,int) : *++fmt);
+ if( precision>=0 ){
+ for(idx=1; idx<precision; idx++) buf[idx] = c;
+ length = precision;
+ }else{
+ length =1;
+ }
+ bufpt = buf;
+ break;
+ case etSTRING:
+ case etDYNSTRING:
+ bufpt = va_arg(ap,char*);
+ if( bufpt==0 ){
+ bufpt = "";
+ }else if( xtype==etDYNSTRING ){
+ zExtra = bufpt;
+ }
+ if( precision>=0 ){
+ for(length=0; length<precision && bufpt[length]; length++){}
+ }else{
+ length = strlen(bufpt);
+ }
+ break;
+ case etSQLESCAPE:
+ case etSQLESCAPE2:
+ case etSQLESCAPE3: {
+ int i, j, n, ch, isnull;
+ int needQuote;
+ char q = ((xtype==etSQLESCAPE3)?'"':'\''); /* Quote character */
+ char *escarg = va_arg(ap,char*);
+ isnull = escarg==0;
+ if( isnull ) escarg = (xtype==etSQLESCAPE2 ? "NULL" : "(NULL)");
+ for(i=n=0; (ch=escarg[i])!=0; i++){
+ if( ch==q ) n++;
+ }
+ needQuote = !isnull && xtype==etSQLESCAPE2;
+ n += i + 1 + needQuote*2;
+ if( n>etBUFSIZE ){
+ bufpt = zExtra = sqlite3_malloc( n );
+ if( bufpt==0 ) return;
+ }else{
+ bufpt = buf;
+ }
+ j = 0;
+ if( needQuote ) bufpt[j++] = q;
+ for(i=0; (ch=escarg[i])!=0; i++){
+ bufpt[j++] = ch;
+ if( ch==q ) bufpt[j++] = ch;
+ }
+ if( needQuote ) bufpt[j++] = q;
+ bufpt[j] = 0;
+ length = j;
+ /* The precision is ignored on %q and %Q */
+ /* if( precision>=0 && precision<length ) length = precision; */
+ break;
+ }
+ case etTOKEN: {
+ Token *pToken = va_arg(ap, Token*);
+ if( pToken && pToken->z ){
+ sqlite3StrAccumAppend(pAccum, (const char*)pToken->z, pToken->n);
+ }
+ length = width = 0;
+ break;
+ }
+ case etSRCLIST: {
+ SrcList *pSrc = va_arg(ap, SrcList*);
+ int k = va_arg(ap, int);
+ struct SrcList_item *pItem = &pSrc->a[k];
+ assert( k>=0 && k<pSrc->nSrc );
+ if( pItem->zDatabase && pItem->zDatabase[0] ){
+ sqlite3StrAccumAppend(pAccum, pItem->zDatabase, -1);
+ sqlite3StrAccumAppend(pAccum, ".", 1);
+ }
+ sqlite3StrAccumAppend(pAccum, pItem->zName, -1);
+ length = width = 0;
+ break;
+ }
+ }/* End switch over the format type */
+ /*
+ ** The text of the conversion is pointed to by "bufpt" and is
+ ** "length" characters long. The field width is "width". Do
+ ** the output.
+ */
+ if( !flag_leftjustify ){
+ register int nspace;
+ nspace = width-length;
+ if( nspace>0 ){
+ appendSpace(pAccum, nspace);
+ }
+ }
+ if( length>0 ){
+ sqlite3StrAccumAppend(pAccum, bufpt, length);
+ }
+ if( flag_leftjustify ){
+ register int nspace;
+ nspace = width-length;
+ if( nspace>0 ){
+ appendSpace(pAccum, nspace);
+ }
+ }
+ if( zExtra ){
+ sqlite3_free(zExtra);
+ }
+ }/* End for loop over the format string */
+} /* End of function */
+
+/*
+** Append N bytes of text from z to the StrAccum object.
+*/
+SQLITE_PRIVATE void sqlite3StrAccumAppend(StrAccum *p, const char *z, int N){
+ if( p->tooBig | p->mallocFailed ){
+ return;
+ }
+ if( N<0 ){
+ N = strlen(z);
+ }
+ if( N==0 ){
+ return;
+ }
+ if( p->nChar+N >= p->nAlloc ){
+ char *zNew;
+ if( !p->useMalloc ){
+ p->tooBig = 1;
+ N = p->nAlloc - p->nChar - 1;
+ if( N<=0 ){
+ return;
+ }
+ }else{
+ i64 szNew = p->nAlloc;
+ szNew += N + 1;
+ if( szNew > p->mxAlloc ){
+ p->nAlloc = p->mxAlloc;
+ if( ((i64)p->nChar)+((i64)N) >= p->nAlloc ){
+ sqlite3StrAccumReset(p);
+ p->tooBig = 1;
+ return;
+ }
+ }else{
+ p->nAlloc = szNew;
+ }
+ zNew = sqlite3_malloc( p->nAlloc );
+ if( zNew ){
+ memcpy(zNew, p->zText, p->nChar);
+ sqlite3StrAccumReset(p);
+ p->zText = zNew;
+ }else{
+ p->mallocFailed = 1;
+ sqlite3StrAccumReset(p);
+ return;
+ }
+ }
+ }
+ memcpy(&p->zText[p->nChar], z, N);
+ p->nChar += N;
+}
+
+/*
+** Finish off a string by making sure it is zero-terminated.
+** Return a pointer to the resulting string. Return a NULL
+** pointer if any kind of error was encountered.
+*/
+SQLITE_PRIVATE char *sqlite3StrAccumFinish(StrAccum *p){
+ if( p->zText ){
+ p->zText[p->nChar] = 0;
+ if( p->useMalloc && p->zText==p->zBase ){
+ p->zText = sqlite3_malloc( p->nChar+1 );
+ if( p->zText ){
+ memcpy(p->zText, p->zBase, p->nChar+1);
+ }else{
+ p->mallocFailed = 1;
+ }
+ }
+ }
+ return p->zText;
+}
+
+/*
+** Reset an StrAccum string. Reclaim all malloced memory.
+*/
+SQLITE_PRIVATE void sqlite3StrAccumReset(StrAccum *p){
+ if( p->zText!=p->zBase ){
+ sqlite3_free(p->zText);
+ p->zText = 0;
+ }
+}
+
+/*
+** Initialize a string accumulator
+*/
+static void sqlite3StrAccumInit(StrAccum *p, char *zBase, int n, int mx){
+ p->zText = p->zBase = zBase;
+ p->nChar = 0;
+ p->nAlloc = n;
+ p->mxAlloc = mx;
+ p->useMalloc = 1;
+ p->tooBig = 0;
+ p->mallocFailed = 0;
+}
+
+/*
+** Print into memory obtained from sqliteMalloc(). Use the internal
+** %-conversion extensions.
+*/
+SQLITE_PRIVATE char *sqlite3VMPrintf(sqlite3 *db, const char *zFormat, va_list ap){
+ char *z;
+ char zBase[SQLITE_PRINT_BUF_SIZE];
+ StrAccum acc;
+ sqlite3StrAccumInit(&acc, zBase, sizeof(zBase),
+ db ? db->aLimit[SQLITE_LIMIT_LENGTH] : SQLITE_MAX_LENGTH);
+ vxprintf(&acc, 1, zFormat, ap);
+ z = sqlite3StrAccumFinish(&acc);
+ if( acc.mallocFailed && db ){
+ db->mallocFailed = 1;
+ }
+ return z;
+}
+
+/*
+** Print into memory obtained from sqliteMalloc(). Use the internal
+** %-conversion extensions.
+*/
+SQLITE_PRIVATE char *sqlite3MPrintf(sqlite3 *db, const char *zFormat, ...){
+ va_list ap;
+ char *z;
+ va_start(ap, zFormat);
+ z = sqlite3VMPrintf(db, zFormat, ap);
+ va_end(ap);
+ return z;
+}
+
+/*
+** Print into memory obtained from sqlite3_malloc(). Omit the internal
+** %-conversion extensions.
+*/
+SQLITE_API char *sqlite3_vmprintf(const char *zFormat, va_list ap){
+ char *z;
+ char zBase[SQLITE_PRINT_BUF_SIZE];
+ StrAccum acc;
+ sqlite3StrAccumInit(&acc, zBase, sizeof(zBase), SQLITE_MAX_LENGTH);
+ vxprintf(&acc, 0, zFormat, ap);
+ z = sqlite3StrAccumFinish(&acc);
+ return z;
+}
+
+/*
+** Print into memory obtained from sqlite3_malloc()(). Omit the internal
+** %-conversion extensions.
+*/
+SQLITE_API char *sqlite3_mprintf(const char *zFormat, ...){
+ va_list ap;
+ char *z;
+ va_start(ap, zFormat);
+ z = sqlite3_vmprintf(zFormat, ap);
+ va_end(ap);
+ return z;
+}
+
+/*
+** sqlite3_snprintf() works like snprintf() except that it ignores the
+** current locale settings. This is important for SQLite because we
+** are not able to use a "," as the decimal point in place of "." as
+** specified by some locales.
+*/
+SQLITE_API char *sqlite3_snprintf(int n, char *zBuf, const char *zFormat, ...){
+ char *z;
+ va_list ap;
+ StrAccum acc;
+
+ if( n<=0 ){
+ return zBuf;
+ }
+ sqlite3StrAccumInit(&acc, zBuf, n, 0);
+ acc.useMalloc = 0;
+ va_start(ap,zFormat);
+ vxprintf(&acc, 0, zFormat, ap);
+ va_end(ap);
+ z = sqlite3StrAccumFinish(&acc);
+ return z;
+}
+
+#if defined(SQLITE_TEST) || defined(SQLITE_DEBUG) || defined(SQLITE_MEMDEBUG)
+/*
+** A version of printf() that understands %lld. Used for debugging.
+** The printf() built into some versions of windows does not understand %lld
+** and segfaults if you give it a long long int.
+*/
+SQLITE_PRIVATE void sqlite3DebugPrintf(const char *zFormat, ...){
+ va_list ap;
+ StrAccum acc;
+ char zBuf[500];
+ sqlite3StrAccumInit(&acc, zBuf, sizeof(zBuf), 0);
+ acc.useMalloc = 0;
+ va_start(ap,zFormat);
+ vxprintf(&acc, 0, zFormat, ap);
+ va_end(ap);
+ sqlite3StrAccumFinish(&acc);
+ fprintf(stdout,"%s", zBuf);
+ fflush(stdout);
+}
+#endif
+
+/************** End of printf.c **********************************************/
+/************** Begin file random.c ******************************************/
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains code to implement a pseudo-random number
+** generator (PRNG) for SQLite.
+**
+** Random numbers are used by some of the database backends in order
+** to generate random integer keys for tables or random filenames.
+**
+** $Id: random.c,v 1.23 2008/03/21 16:45:47 drh Exp $
+*/
+
+
+/* All threads share a single random number generator.
+** This structure is the current state of the generator.
+*/
+static struct sqlite3PrngType {
+ unsigned char isInit; /* True if initialized */
+ unsigned char i, j; /* State variables */
+ unsigned char s[256]; /* State variables */
+} sqlite3Prng;
+
+/*
+** Get a single 8-bit random value from the RC4 PRNG. The Mutex
+** must be held while executing this routine.
+**
+** Why not just use a library random generator like lrand48() for this?
+** Because the OP_NewRowid opcode in the VDBE depends on having a very
+** good source of random numbers. The lrand48() library function may
+** well be good enough. But maybe not. Or maybe lrand48() has some
+** subtle problems on some systems that could cause problems. It is hard
+** to know. To minimize the risk of problems due to bad lrand48()
+** implementations, SQLite uses this random number generator based
+** on RC4, which we know works very well.
+**
+** (Later): Actually, OP_NewRowid does not depend on a good source of
+** randomness any more. But we will leave this code in all the same.
+*/
+static int randomByte(void){
+ unsigned char t;
+
+
+ /* Initialize the state of the random number generator once,
+ ** the first time this routine is called. The seed value does
+ ** not need to contain a lot of randomness since we are not
+ ** trying to do secure encryption or anything like that...
+ **
+ ** Nothing in this file or anywhere else in SQLite does any kind of
+ ** encryption. The RC4 algorithm is being used as a PRNG (pseudo-random
+ ** number generator) not as an encryption device.
+ */
+ if( !sqlite3Prng.isInit ){
+ int i;
+ char k[256];
+ sqlite3Prng.j = 0;
+ sqlite3Prng.i = 0;
+ sqlite3OsRandomness(sqlite3_vfs_find(0), 256, k);
+ for(i=0; i<256; i++){
+ sqlite3Prng.s[i] = i;
+ }
+ for(i=0; i<256; i++){
+ sqlite3Prng.j += sqlite3Prng.s[i] + k[i];
+ t = sqlite3Prng.s[sqlite3Prng.j];
+ sqlite3Prng.s[sqlite3Prng.j] = sqlite3Prng.s[i];
+ sqlite3Prng.s[i] = t;
+ }
+ sqlite3Prng.isInit = 1;
+ }
+
+ /* Generate and return single random byte
+ */
+ sqlite3Prng.i++;
+ t = sqlite3Prng.s[sqlite3Prng.i];
+ sqlite3Prng.j += t;
+ sqlite3Prng.s[sqlite3Prng.i] = sqlite3Prng.s[sqlite3Prng.j];
+ sqlite3Prng.s[sqlite3Prng.j] = t;
+ t += sqlite3Prng.s[sqlite3Prng.i];
+ return sqlite3Prng.s[t];
+}
+
+/*
+** Return N random bytes.
+*/
+SQLITE_API void sqlite3_randomness(int N, void *pBuf){
+ unsigned char *zBuf = pBuf;
+ static sqlite3_mutex *mutex = 0;
+ if( mutex==0 ){
+ mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_PRNG);
+ }
+ sqlite3_mutex_enter(mutex);
+ while( N-- ){
+ *(zBuf++) = randomByte();
+ }
+ sqlite3_mutex_leave(mutex);
+}
+
+#ifndef SQLITE_OMIT_BUILTIN_TEST
+/*
+** For testing purposes, we sometimes want to preserve the state of
+** PRNG and restore the PRNG to its saved state at a later time.
+** The sqlite3_test_control() interface calls these routines to
+** control the PRNG.
+*/
+static struct sqlite3PrngType sqlite3SavedPrng;
+SQLITE_PRIVATE void sqlite3PrngSaveState(void){
+ memcpy(&sqlite3SavedPrng, &sqlite3Prng, sizeof(sqlite3Prng));
+}
+SQLITE_PRIVATE void sqlite3PrngRestoreState(void){
+ memcpy(&sqlite3Prng, &sqlite3SavedPrng, sizeof(sqlite3Prng));
+}
+SQLITE_PRIVATE void sqlite3PrngResetState(void){
+ sqlite3Prng.isInit = 0;
+}
+#endif /* SQLITE_OMIT_BUILTIN_TEST */
+
+/************** End of random.c **********************************************/
+/************** Begin file utf.c *********************************************/
+/*
+** 2004 April 13
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains routines used to translate between UTF-8,
+** UTF-16, UTF-16BE, and UTF-16LE.
+**
+** $Id: utf.c,v 1.61 2008/03/28 15:44:10 danielk1977 Exp $
+**
+** Notes on UTF-8:
+**
+** Byte-0 Byte-1 Byte-2 Byte-3 Value
+** 0xxxxxxx 00000000 00000000 0xxxxxxx
+** 110yyyyy 10xxxxxx 00000000 00000yyy yyxxxxxx
+** 1110zzzz 10yyyyyy 10xxxxxx 00000000 zzzzyyyy yyxxxxxx
+** 11110uuu 10uuzzzz 10yyyyyy 10xxxxxx 000uuuuu zzzzyyyy yyxxxxxx
+**
+**
+** Notes on UTF-16: (with wwww+1==uuuuu)
+**
+** Word-0 Word-1 Value
+** 110110ww wwzzzzyy 110111yy yyxxxxxx 000uuuuu zzzzyyyy yyxxxxxx
+** zzzzyyyy yyxxxxxx 00000000 zzzzyyyy yyxxxxxx
+**
+**
+** BOM or Byte Order Mark:
+** 0xff 0xfe little-endian utf-16 follows
+** 0xfe 0xff big-endian utf-16 follows
+**
+*/
+/************** Include vdbeInt.h in the middle of utf.c *********************/
+/************** Begin file vdbeInt.h *****************************************/
+/*
+** 2003 September 6
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This is the header file for information that is private to the
+** VDBE. This information used to all be at the top of the single
+** source code file "vdbe.c". When that file became too big (over
+** 6000 lines long) it was split up into several smaller files and
+** this header information was factored out.
+*/
+#ifndef _VDBEINT_H_
+#define _VDBEINT_H_
+
+/*
+** intToKey() and keyToInt() used to transform the rowid. But with
+** the latest versions of the design they are no-ops.
+*/
+#define keyToInt(X) (X)
+#define intToKey(X) (X)
+
+
+/*
+** SQL is translated into a sequence of instructions to be
+** executed by a virtual machine. Each instruction is an instance
+** of the following structure.
+*/
+typedef struct VdbeOp Op;
+
+/*
+** Boolean values
+*/
+typedef unsigned char Bool;
+
+/*
+** A cursor is a pointer into a single BTree within a database file.
+** The cursor can seek to a BTree entry with a particular key, or
+** loop over all entries of the Btree. You can also insert new BTree
+** entries or retrieve the key or data from the entry that the cursor
+** is currently pointing to.
+**
+** Every cursor that the virtual machine has open is represented by an
+** instance of the following structure.
+**
+** If the Cursor.isTriggerRow flag is set it means that this cursor is
+** really a single row that represents the NEW or OLD pseudo-table of
+** a row trigger. The data for the row is stored in Cursor.pData and
+** the rowid is in Cursor.iKey.
+*/
+struct Cursor {
+ BtCursor *pCursor; /* The cursor structure of the backend */
+ int iDb; /* Index of cursor database in db->aDb[] (or -1) */
+ i64 lastRowid; /* Last rowid from a Next or NextIdx operation */
+ i64 nextRowid; /* Next rowid returned by OP_NewRowid */
+ Bool zeroed; /* True if zeroed out and ready for reuse */
+ Bool rowidIsValid; /* True if lastRowid is valid */
+ Bool atFirst; /* True if pointing to first entry */
+ Bool useRandomRowid; /* Generate new record numbers semi-randomly */
+ Bool nullRow; /* True if pointing to a row with no data */
+ Bool nextRowidValid; /* True if the nextRowid field is valid */
+ Bool pseudoTable; /* This is a NEW or OLD pseudo-tables of a trigger */
+ Bool ephemPseudoTable;
+ Bool deferredMoveto; /* A call to sqlite3BtreeMoveto() is needed */
+ Bool isTable; /* True if a table requiring integer keys */
+ Bool isIndex; /* True if an index containing keys only - no data */
+ u8 bogusIncrKey; /* Something for pIncrKey to point to if pKeyInfo==0 */
+ i64 movetoTarget; /* Argument to the deferred sqlite3BtreeMoveto() */
+ Btree *pBt; /* Separate file holding temporary table */
+ int nData; /* Number of bytes in pData */
+ char *pData; /* Data for a NEW or OLD pseudo-table */
+ i64 iKey; /* Key for the NEW or OLD pseudo-table row */
+ u8 *pIncrKey; /* Pointer to pKeyInfo->incrKey */
+ KeyInfo *pKeyInfo; /* Info about index keys needed by index cursors */
+ int nField; /* Number of fields in the header */
+ i64 seqCount; /* Sequence counter */
+ sqlite3_vtab_cursor *pVtabCursor; /* The cursor for a virtual table */
+ const sqlite3_module *pModule; /* Module for cursor pVtabCursor */
+
+ /* Cached information about the header for the data record that the
+ ** cursor is currently pointing to. Only valid if cacheValid is true.
+ ** aRow might point to (ephemeral) data for the current row, or it might
+ ** be NULL.
+ */
+ int cacheStatus; /* Cache is valid if this matches Vdbe.cacheCtr */
+ int payloadSize; /* Total number of bytes in the record */
+ u32 *aType; /* Type values for all entries in the record */
+ u32 *aOffset; /* Cached offsets to the start of each columns data */
+ u8 *aRow; /* Data for the current row, if all on one page */
+};
+typedef struct Cursor Cursor;
+
+/*
+** A value for Cursor.cacheValid that means the cache is always invalid.
+*/
+#define CACHE_STALE 0
+
+/*
+** Internally, the vdbe manipulates nearly all SQL values as Mem
+** structures. Each Mem struct may cache multiple representations (string,
+** integer etc.) of the same value. A value (and therefore Mem structure)
+** has the following properties:
+**
+** Each value has a manifest type. The manifest type of the value stored
+** in a Mem struct is returned by the MemType(Mem*) macro. The type is
+** one of SQLITE_NULL, SQLITE_INTEGER, SQLITE_REAL, SQLITE_TEXT or
+** SQLITE_BLOB.
+*/
+struct Mem {
+ union {
+ i64 i; /* Integer value. Or FuncDef* when flags==MEM_Agg */
+ FuncDef *pDef; /* Used only when flags==MEM_Agg */
+ } u;
+ double r; /* Real value */
+ sqlite3 *db; /* The associated database connection */
+ char *z; /* String or BLOB value */
+ int n; /* Number of characters in string value, excluding '\0' */
+ u16 flags; /* Some combination of MEM_Null, MEM_Str, MEM_Dyn, etc. */
+ u8 type; /* One of SQLITE_NULL, SQLITE_TEXT, SQLITE_INTEGER, etc */
+ u8 enc; /* SQLITE_UTF8, SQLITE_UTF16BE, SQLITE_UTF16LE */
+ void (*xDel)(void *); /* If not null, call this function to delete Mem.z */
+ char *zMalloc; /* Dynamic buffer allocated by sqlite3_malloc() */
+};
+
+/* One or more of the following flags are set to indicate the validOK
+** representations of the value stored in the Mem struct.
+**
+** If the MEM_Null flag is set, then the value is an SQL NULL value.
+** No other flags may be set in this case.
+**
+** If the MEM_Str flag is set then Mem.z points at a string representation.
+** Usually this is encoded in the same unicode encoding as the main
+** database (see below for exceptions). If the MEM_Term flag is also
+** set, then the string is nul terminated. The MEM_Int and MEM_Real
+** flags may coexist with the MEM_Str flag.
+**
+** Multiple of these values can appear in Mem.flags. But only one
+** at a time can appear in Mem.type.
+*/
+#define MEM_Null 0x0001 /* Value is NULL */
+#define MEM_Str 0x0002 /* Value is a string */
+#define MEM_Int 0x0004 /* Value is an integer */
+#define MEM_Real 0x0008 /* Value is a real number */
+#define MEM_Blob 0x0010 /* Value is a BLOB */
+
+#define MemSetTypeFlag(p, f) \
+ ((p)->flags = ((p)->flags&~(MEM_Int|MEM_Real|MEM_Null|MEM_Blob|MEM_Str))|f)
+
+/* Whenever Mem contains a valid string or blob representation, one of
+** the following flags must be set to determine the memory management
+** policy for Mem.z. The MEM_Term flag tells us whether or not the
+** string is \000 or \u0000 terminated
+*/
+#define MEM_Term 0x0020 /* String rep is nul terminated */
+#define MEM_Dyn 0x0040 /* Need to call sqliteFree() on Mem.z */
+#define MEM_Static 0x0080 /* Mem.z points to a static string */
+#define MEM_Ephem 0x0100 /* Mem.z points to an ephemeral string */
+#define MEM_Agg 0x0400 /* Mem.z points to an agg function context */
+#define MEM_Zero 0x0800 /* Mem.i contains count of 0s appended to blob */
+
+#ifdef SQLITE_OMIT_INCRBLOB
+ #undef MEM_Zero
+ #define MEM_Zero 0x0000
+#endif
+
+
+/* A VdbeFunc is just a FuncDef (defined in sqliteInt.h) that contains
+** additional information about auxiliary information bound to arguments
+** of the function. This is used to implement the sqlite3_get_auxdata()
+** and sqlite3_set_auxdata() APIs. The "auxdata" is some auxiliary data
+** that can be associated with a constant argument to a function. This
+** allows functions such as "regexp" to compile their constant regular
+** expression argument once and reused the compiled code for multiple
+** invocations.
+*/
+struct VdbeFunc {
+ FuncDef *pFunc; /* The definition of the function */
+ int nAux; /* Number of entries allocated for apAux[] */
+ struct AuxData {
+ void *pAux; /* Aux data for the i-th argument */
+ void (*xDelete)(void *); /* Destructor for the aux data */
+ } apAux[1]; /* One slot for each function argument */
+};
+
+/*
+** The "context" argument for a installable function. A pointer to an
+** instance of this structure is the first argument to the routines used
+** implement the SQL functions.
+**
+** There is a typedef for this structure in sqlite.h. So all routines,
+** even the public interface to SQLite, can use a pointer to this structure.
+** But this file is the only place where the internal details of this
+** structure are known.
+**
+** This structure is defined inside of vdbeInt.h because it uses substructures
+** (Mem) which are only defined there.
+*/
+struct sqlite3_context {
+ FuncDef *pFunc; /* Pointer to function information. MUST BE FIRST */
+ VdbeFunc *pVdbeFunc; /* Auxilary data, if created. */
+ Mem s; /* The return value is stored here */
+ Mem *pMem; /* Memory cell used to store aggregate context */
+ int isError; /* Error code returned by the function. */
+ CollSeq *pColl; /* Collating sequence */
+};
+
+/*
+** A Set structure is used for quick testing to see if a value
+** is part of a small set. Sets are used to implement code like
+** this:
+** x.y IN ('hi','hoo','hum')
+*/
+typedef struct Set Set;
+struct Set {
+ Hash hash; /* A set is just a hash table */
+ HashElem *prev; /* Previously accessed hash elemen */
+};
+
+/*
+** A FifoPage structure holds a single page of valves. Pages are arranged
+** in a list.
+*/
+typedef struct FifoPage FifoPage;
+struct FifoPage {
+ int nSlot; /* Number of entries aSlot[] */
+ int iWrite; /* Push the next value into this entry in aSlot[] */
+ int iRead; /* Read the next value from this entry in aSlot[] */
+ FifoPage *pNext; /* Next page in the fifo */
+ i64 aSlot[1]; /* One or more slots for rowid values */
+};
+
+/*
+** The Fifo structure is typedef-ed in vdbeInt.h. But the implementation
+** of that structure is private to this file.
+**
+** The Fifo structure describes the entire fifo.
+*/
+typedef struct Fifo Fifo;
+struct Fifo {
+ int nEntry; /* Total number of entries */
+ FifoPage *pFirst; /* First page on the list */
+ FifoPage *pLast; /* Last page on the list */
+};
+
+/*
+** A Context stores the last insert rowid, the last statement change count,
+** and the current statement change count (i.e. changes since last statement).
+** The current keylist is also stored in the context.
+** Elements of Context structure type make up the ContextStack, which is
+** updated by the ContextPush and ContextPop opcodes (used by triggers).
+** The context is pushed before executing a trigger a popped when the
+** trigger finishes.
+*/
+typedef struct Context Context;
+struct Context {
+ i64 lastRowid; /* Last insert rowid (sqlite3.lastRowid) */
+ int nChange; /* Statement changes (Vdbe.nChanges) */
+ Fifo sFifo; /* Records that will participate in a DELETE or UPDATE */
+};
+
+/*
+** An instance of the virtual machine. This structure contains the complete
+** state of the virtual machine.
+**
+** The "sqlite3_stmt" structure pointer that is returned by sqlite3_compile()
+** is really a pointer to an instance of this structure.
+**
+** The Vdbe.inVtabMethod variable is set to non-zero for the duration of
+** any virtual table method invocations made by the vdbe program. It is
+** set to 2 for xDestroy method calls and 1 for all other methods. This
+** variable is used for two purposes: to allow xDestroy methods to execute
+** "DROP TABLE" statements and to prevent some nasty side effects of
+** malloc failure when SQLite is invoked recursively by a virtual table
+** method function.
+*/
+struct Vdbe {
+ sqlite3 *db; /* The whole database */
+ Vdbe *pPrev,*pNext; /* Linked list of VDBEs with the same Vdbe.db */
+ int nOp; /* Number of instructions in the program */
+ int nOpAlloc; /* Number of slots allocated for aOp[] */
+ Op *aOp; /* Space to hold the virtual machine's program */
+ int nLabel; /* Number of labels used */
+ int nLabelAlloc; /* Number of slots allocated in aLabel[] */
+ int *aLabel; /* Space to hold the labels */
+ Mem **apArg; /* Arguments to currently executing user function */
+ Mem *aColName; /* Column names to return */
+ int nCursor; /* Number of slots in apCsr[] */
+ Cursor **apCsr; /* One element of this array for each open cursor */
+ int nVar; /* Number of entries in aVar[] */
+ Mem *aVar; /* Values for the OP_Variable opcode. */
+ char **azVar; /* Name of variables */
+ int okVar; /* True if azVar[] has been initialized */
+ int magic; /* Magic number for sanity checking */
+ int nMem; /* Number of memory locations currently allocated */
+ Mem *aMem; /* The memory locations */
+ int nCallback; /* Number of callbacks invoked so far */
+ int cacheCtr; /* Cursor row cache generation counter */
+ Fifo sFifo; /* A list of ROWIDs */
+ int contextStackTop; /* Index of top element in the context stack */
+ int contextStackDepth; /* The size of the "context" stack */
+ Context *contextStack; /* Stack used by opcodes ContextPush & ContextPop*/
+ int pc; /* The program counter */
+ int rc; /* Value to return */
+ unsigned uniqueCnt; /* Used by OP_MakeRecord when P2!=0 */
+ int errorAction; /* Recovery action to do in case of an error */
+ int inTempTrans; /* True if temp database is transactioned */
+ int returnStack[25]; /* Return address stack for OP_Gosub & OP_Return */
+ int returnDepth; /* Next unused element in returnStack[] */
+ int nResColumn; /* Number of columns in one row of the result set */
+ char **azResColumn; /* Values for one row of result */
+ char *zErrMsg; /* Error message written here */
+ Mem *pResultSet; /* Pointer to an array of results */
+ u8 explain; /* True if EXPLAIN present on SQL command */
+ u8 changeCntOn; /* True to update the change-counter */
+ u8 aborted; /* True if ROLLBACK in another VM causes an abort */
+ u8 expired; /* True if the VM needs to be recompiled */
+ u8 minWriteFileFormat; /* Minimum file format for writable database files */
+ u8 inVtabMethod; /* See comments above */
+ int nChange; /* Number of db changes made since last reset */
+ i64 startTime; /* Time when query started - used for profiling */
+ int btreeMask; /* Bitmask of db->aDb[] entries referenced */
+ BtreeMutexArray aMutex; /* An array of Btree used here and needing locks */
+ int nSql; /* Number of bytes in zSql */
+ char *zSql; /* Text of the SQL statement that generated this */
+#ifdef SQLITE_DEBUG
+ FILE *trace; /* Write an execution trace here, if not NULL */
+#endif
+ int openedStatement; /* True if this VM has opened a statement journal */
+#ifdef SQLITE_SSE
+ int fetchId; /* Statement number used by sqlite3_fetch_statement */
+ int lru; /* Counter used for LRU cache replacement */
+#endif
+#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
+ Vdbe *pLruPrev;
+ Vdbe *pLruNext;
+#endif
+};
+
+/*
+** An instance of the following structure holds information about a
+** single index record that has already been parsed out into individual
+** values.
+**
+** A record is an object that contains one or more fields of data.
+** Records are used to store the content of a table row and to store
+** the key of an index. A blob encoding of a record is created by
+** the OP_MakeRecord opcode of the VDBE and is disassemblied by the
+** OP_Column opcode.
+**
+** This structure holds a record that has already been disassembled
+** into its constitutent fields.
+*/
+struct UnpackedRecord {
+ KeyInfo *pKeyInfo; /* Collation and sort-order information */
+ u16 nField; /* Number of entries in apMem[] */
+ u8 needFree; /* True if memory obtained from sqlite3_malloc() */
+ u8 needDestroy; /* True if apMem[]s should be destroyed on close */
+ Mem *aMem; /* Values */
+};
+
+/*
+** The following are allowed values for Vdbe.magic
+*/
+#define VDBE_MAGIC_INIT 0x26bceaa5 /* Building a VDBE program */
+#define VDBE_MAGIC_RUN 0xbdf20da3 /* VDBE is ready to execute */
+#define VDBE_MAGIC_HALT 0x519c2973 /* VDBE has completed execution */
+#define VDBE_MAGIC_DEAD 0xb606c3c8 /* The VDBE has been deallocated */
+
+/*
+** Function prototypes
+*/
+SQLITE_PRIVATE void sqlite3VdbeFreeCursor(Vdbe *, Cursor*);
+void sqliteVdbePopStack(Vdbe*,int);
+SQLITE_PRIVATE int sqlite3VdbeCursorMoveto(Cursor*);
+#if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
+SQLITE_PRIVATE void sqlite3VdbePrintOp(FILE*, int, Op*);
+#endif
+SQLITE_PRIVATE int sqlite3VdbeSerialTypeLen(u32);
+SQLITE_PRIVATE u32 sqlite3VdbeSerialType(Mem*, int);
+SQLITE_PRIVATE int sqlite3VdbeSerialPut(unsigned char*, int, Mem*, int);
+SQLITE_PRIVATE int sqlite3VdbeSerialGet(const unsigned char*, u32, Mem*);
+SQLITE_PRIVATE void sqlite3VdbeDeleteAuxData(VdbeFunc*, int);
+
+int sqlite2BtreeKeyCompare(BtCursor *, const void *, int, int, int *);
+SQLITE_PRIVATE int sqlite3VdbeIdxKeyCompare(Cursor*,UnpackedRecord *,int,const unsigned char*,int*);
+SQLITE_PRIVATE int sqlite3VdbeIdxRowid(BtCursor *, i64 *);
+SQLITE_PRIVATE int sqlite3MemCompare(const Mem*, const Mem*, const CollSeq*);
+SQLITE_PRIVATE int sqlite3VdbeIdxRowidLen(const u8*);
+SQLITE_PRIVATE int sqlite3VdbeExec(Vdbe*);
+SQLITE_PRIVATE int sqlite3VdbeList(Vdbe*);
+SQLITE_PRIVATE int sqlite3VdbeHalt(Vdbe*);
+SQLITE_PRIVATE int sqlite3VdbeChangeEncoding(Mem *, int);
+SQLITE_PRIVATE int sqlite3VdbeMemTooBig(Mem*);
+SQLITE_PRIVATE int sqlite3VdbeMemCopy(Mem*, const Mem*);
+SQLITE_PRIVATE void sqlite3VdbeMemShallowCopy(Mem*, const Mem*, int);
+SQLITE_PRIVATE void sqlite3VdbeMemMove(Mem*, Mem*);
+SQLITE_PRIVATE int sqlite3VdbeMemNulTerminate(Mem*);
+SQLITE_PRIVATE int sqlite3VdbeMemSetStr(Mem*, const char*, int, u8, void(*)(void*));
+SQLITE_PRIVATE void sqlite3VdbeMemSetInt64(Mem*, i64);
+SQLITE_PRIVATE void sqlite3VdbeMemSetDouble(Mem*, double);
+SQLITE_PRIVATE void sqlite3VdbeMemSetNull(Mem*);
+SQLITE_PRIVATE void sqlite3VdbeMemSetZeroBlob(Mem*,int);
+SQLITE_PRIVATE int sqlite3VdbeMemMakeWriteable(Mem*);
+SQLITE_PRIVATE int sqlite3VdbeMemDynamicify(Mem*);
+SQLITE_PRIVATE int sqlite3VdbeMemStringify(Mem*, int);
+SQLITE_PRIVATE i64 sqlite3VdbeIntValue(Mem*);
+SQLITE_PRIVATE int sqlite3VdbeMemIntegerify(Mem*);
+SQLITE_PRIVATE double sqlite3VdbeRealValue(Mem*);
+SQLITE_PRIVATE void sqlite3VdbeIntegerAffinity(Mem*);
+SQLITE_PRIVATE int sqlite3VdbeMemRealify(Mem*);
+SQLITE_PRIVATE int sqlite3VdbeMemNumerify(Mem*);
+SQLITE_PRIVATE int sqlite3VdbeMemFromBtree(BtCursor*,int,int,int,Mem*);
+SQLITE_PRIVATE void sqlite3VdbeMemRelease(Mem *p);
+SQLITE_PRIVATE void sqlite3VdbeMemReleaseExternal(Mem *p);
+SQLITE_PRIVATE int sqlite3VdbeMemFinalize(Mem*, FuncDef*);
+SQLITE_PRIVATE const char *sqlite3OpcodeName(int);
+SQLITE_PRIVATE int sqlite3VdbeOpcodeHasProperty(int, int);
+SQLITE_PRIVATE int sqlite3VdbeMemGrow(Mem *pMem, int n, int preserve);
+#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
+SQLITE_PRIVATE int sqlite3VdbeReleaseBuffers(Vdbe *p);
+#endif
+
+#ifndef NDEBUG
+SQLITE_PRIVATE void sqlite3VdbeMemSanity(Mem*);
+#endif
+SQLITE_PRIVATE int sqlite3VdbeMemTranslate(Mem*, u8);
+#ifdef SQLITE_DEBUG
+SQLITE_PRIVATE void sqlite3VdbePrintSql(Vdbe*);
+SQLITE_PRIVATE void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf);
+#endif
+SQLITE_PRIVATE int sqlite3VdbeMemHandleBom(Mem *pMem);
+SQLITE_PRIVATE void sqlite3VdbeFifoInit(Fifo*);
+SQLITE_PRIVATE int sqlite3VdbeFifoPush(Fifo*, i64);
+SQLITE_PRIVATE int sqlite3VdbeFifoPop(Fifo*, i64*);
+SQLITE_PRIVATE void sqlite3VdbeFifoClear(Fifo*);
+
+#ifndef SQLITE_OMIT_INCRBLOB
+SQLITE_PRIVATE int sqlite3VdbeMemExpandBlob(Mem *);
+#else
+ #define sqlite3VdbeMemExpandBlob(x) SQLITE_OK
+#endif
+
+#endif /* !defined(_VDBEINT_H_) */
+
+/************** End of vdbeInt.h *********************************************/
+/************** Continuing where we left off in utf.c ************************/
+
+/*
+** The following constant value is used by the SQLITE_BIGENDIAN and
+** SQLITE_LITTLEENDIAN macros.
+*/
+SQLITE_PRIVATE const int sqlite3one = 1;
+
+/*
+** This lookup table is used to help decode the first byte of
+** a multi-byte UTF8 character.
+*/
+static const unsigned char sqlite3UtfTrans1[] = {
+ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
+ 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
+ 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
+ 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
+ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
+ 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
+ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
+ 0x00, 0x01, 0x02, 0x03, 0x00, 0x01, 0x00, 0x00,
+};
+
+
+#define WRITE_UTF8(zOut, c) { \
+ if( c<0x00080 ){ \
+ *zOut++ = (c&0xFF); \
+ } \
+ else if( c<0x00800 ){ \
+ *zOut++ = 0xC0 + ((c>>6)&0x1F); \
+ *zOut++ = 0x80 + (c & 0x3F); \
+ } \
+ else if( c<0x10000 ){ \
+ *zOut++ = 0xE0 + ((c>>12)&0x0F); \
+ *zOut++ = 0x80 + ((c>>6) & 0x3F); \
+ *zOut++ = 0x80 + (c & 0x3F); \
+ }else{ \
+ *zOut++ = 0xF0 + ((c>>18) & 0x07); \
+ *zOut++ = 0x80 + ((c>>12) & 0x3F); \
+ *zOut++ = 0x80 + ((c>>6) & 0x3F); \
+ *zOut++ = 0x80 + (c & 0x3F); \
+ } \
+}
+
+#define WRITE_UTF16LE(zOut, c) { \
+ if( c<=0xFFFF ){ \
+ *zOut++ = (c&0x00FF); \
+ *zOut++ = ((c>>8)&0x00FF); \
+ }else{ \
+ *zOut++ = (((c>>10)&0x003F) + (((c-0x10000)>>10)&0x00C0)); \
+ *zOut++ = (0x00D8 + (((c-0x10000)>>18)&0x03)); \
+ *zOut++ = (c&0x00FF); \
+ *zOut++ = (0x00DC + ((c>>8)&0x03)); \
+ } \
+}
+
+#define WRITE_UTF16BE(zOut, c) { \
+ if( c<=0xFFFF ){ \
+ *zOut++ = ((c>>8)&0x00FF); \
+ *zOut++ = (c&0x00FF); \
+ }else{ \
+ *zOut++ = (0x00D8 + (((c-0x10000)>>18)&0x03)); \
+ *zOut++ = (((c>>10)&0x003F) + (((c-0x10000)>>10)&0x00C0)); \
+ *zOut++ = (0x00DC + ((c>>8)&0x03)); \
+ *zOut++ = (c&0x00FF); \
+ } \
+}
+
+#define READ_UTF16LE(zIn, c){ \
+ c = (*zIn++); \
+ c += ((*zIn++)<<8); \
+ if( c>=0xD800 && c<0xE000 ){ \
+ int c2 = (*zIn++); \
+ c2 += ((*zIn++)<<8); \
+ c = (c2&0x03FF) + ((c&0x003F)<<10) + (((c&0x03C0)+0x0040)<<10); \
+ if( (c & 0xFFFF0000)==0 ) c = 0xFFFD; \
+ } \
+}
+
+#define READ_UTF16BE(zIn, c){ \
+ c = ((*zIn++)<<8); \
+ c += (*zIn++); \
+ if( c>=0xD800 && c<0xE000 ){ \
+ int c2 = ((*zIn++)<<8); \
+ c2 += (*zIn++); \
+ c = (c2&0x03FF) + ((c&0x003F)<<10) + (((c&0x03C0)+0x0040)<<10); \
+ if( (c & 0xFFFF0000)==0 ) c = 0xFFFD; \
+ } \
+}
+
+/*
+** Translate a single UTF-8 character. Return the unicode value.
+**
+** During translation, assume that the byte that zTerm points
+** is a 0x00.
+**
+** Write a pointer to the next unread byte back into *pzNext.
+**
+** Notes On Invalid UTF-8:
+**
+** * This routine never allows a 7-bit character (0x00 through 0x7f) to
+** be encoded as a multi-byte character. Any multi-byte character that
+** attempts to encode a value between 0x00 and 0x7f is rendered as 0xfffd.
+**
+** * This routine never allows a UTF16 surrogate value to be encoded.
+** If a multi-byte character attempts to encode a value between
+** 0xd800 and 0xe000 then it is rendered as 0xfffd.
+**
+** * Bytes in the range of 0x80 through 0xbf which occur as the first
+** byte of a character are interpreted as single-byte characters
+** and rendered as themselves even though they are technically
+** invalid characters.
+**
+** * This routine accepts an infinite number of different UTF8 encodings
+** for unicode values 0x80 and greater. It do not change over-length
+** encodings to 0xfffd as some systems recommend.
+*/
+SQLITE_PRIVATE int sqlite3Utf8Read(
+ const unsigned char *z, /* First byte of UTF-8 character */
+ const unsigned char *zTerm, /* Pretend this byte is 0x00 */
+ const unsigned char **pzNext /* Write first byte past UTF-8 char here */
+){
+ int c = *(z++);
+ if( c>=0xc0 ){
+ c = sqlite3UtfTrans1[c-0xc0];
+ while( z!=zTerm && (*z & 0xc0)==0x80 ){
+ c = (c<<6) + (0x3f & *(z++));
+ }
+ if( c<0x80
+ || (c&0xFFFFF800)==0xD800
+ || (c&0xFFFFFFFE)==0xFFFE ){ c = 0xFFFD; }
+ }
+ *pzNext = z;
+ return c;
+}
+
+
+
+/*
+** If the TRANSLATE_TRACE macro is defined, the value of each Mem is
+** printed on stderr on the way into and out of sqlite3VdbeMemTranslate().
+*/
+/* #define TRANSLATE_TRACE 1 */
+
+#ifndef SQLITE_OMIT_UTF16
+/*
+** This routine transforms the internal text encoding used by pMem to
+** desiredEnc. It is an error if the string is already of the desired
+** encoding, or if *pMem does not contain a string value.
+*/
+SQLITE_PRIVATE int sqlite3VdbeMemTranslate(Mem *pMem, u8 desiredEnc){
+ int len; /* Maximum length of output string in bytes */
+ unsigned char *zOut; /* Output buffer */
+ unsigned char *zIn; /* Input iterator */
+ unsigned char *zTerm; /* End of input */
+ unsigned char *z; /* Output iterator */
+ unsigned int c;
+
+ assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
+ assert( pMem->flags&MEM_Str );
+ assert( pMem->enc!=desiredEnc );
+ assert( pMem->enc!=0 );
+ assert( pMem->n>=0 );
+
+#if defined(TRANSLATE_TRACE) && defined(SQLITE_DEBUG)
+ {
+ char zBuf[100];
+ sqlite3VdbeMemPrettyPrint(pMem, zBuf);
+ fprintf(stderr, "INPUT: %s\n", zBuf);
+ }
+#endif
+
+ /* If the translation is between UTF-16 little and big endian, then
+ ** all that is required is to swap the byte order. This case is handled
+ ** differently from the others.
+ */
+ if( pMem->enc!=SQLITE_UTF8 && desiredEnc!=SQLITE_UTF8 ){
+ u8 temp;
+ int rc;
+ rc = sqlite3VdbeMemMakeWriteable(pMem);
+ if( rc!=SQLITE_OK ){
+ assert( rc==SQLITE_NOMEM );
+ return SQLITE_NOMEM;
+ }
+ zIn = (u8*)pMem->z;
+ zTerm = &zIn[pMem->n];
+ while( zIn<zTerm ){
+ temp = *zIn;
+ *zIn = *(zIn+1);
+ zIn++;
+ *zIn++ = temp;
+ }
+ pMem->enc = desiredEnc;
+ goto translate_out;
+ }
+
+ /* Set len to the maximum number of bytes required in the output buffer. */
+ if( desiredEnc==SQLITE_UTF8 ){
+ /* When converting from UTF-16, the maximum growth results from
+ ** translating a 2-byte character to a 4-byte UTF-8 character.
+ ** A single byte is required for the output string
+ ** nul-terminator.
+ */
+ len = pMem->n * 2 + 1;
+ }else{
+ /* When converting from UTF-8 to UTF-16 the maximum growth is caused
+ ** when a 1-byte UTF-8 character is translated into a 2-byte UTF-16
+ ** character. Two bytes are required in the output buffer for the
+ ** nul-terminator.
+ */
+ len = pMem->n * 2 + 2;
+ }
+
+ /* Set zIn to point at the start of the input buffer and zTerm to point 1
+ ** byte past the end.
+ **
+ ** Variable zOut is set to point at the output buffer, space obtained
+ ** from sqlite3_malloc().
+ */
+ zIn = (u8*)pMem->z;
+ zTerm = &zIn[pMem->n];
+ zOut = sqlite3DbMallocRaw(pMem->db, len);
+ if( !zOut ){
+ return SQLITE_NOMEM;
+ }
+ z = zOut;
+
+ if( pMem->enc==SQLITE_UTF8 ){
+ if( desiredEnc==SQLITE_UTF16LE ){
+ /* UTF-8 -> UTF-16 Little-endian */
+ while( zIn<zTerm ){
+ c = sqlite3Utf8Read(zIn, zTerm, (const u8**)&zIn);
+ WRITE_UTF16LE(z, c);
+ }
+ }else{
+ assert( desiredEnc==SQLITE_UTF16BE );
+ /* UTF-8 -> UTF-16 Big-endian */
+ while( zIn<zTerm ){
+ c = sqlite3Utf8Read(zIn, zTerm, (const u8**)&zIn);
+ WRITE_UTF16BE(z, c);
+ }
+ }
+ pMem->n = z - zOut;
+ *z++ = 0;
+ }else{
+ assert( desiredEnc==SQLITE_UTF8 );
+ if( pMem->enc==SQLITE_UTF16LE ){
+ /* UTF-16 Little-endian -> UTF-8 */
+ while( zIn<zTerm ){
+ READ_UTF16LE(zIn, c);
+ WRITE_UTF8(z, c);
+ }
+ }else{
+ /* UTF-16 Little-endian -> UTF-8 */
+ while( zIn<zTerm ){
+ READ_UTF16BE(zIn, c);
+ WRITE_UTF8(z, c);
+ }
+ }
+ pMem->n = z - zOut;
+ }
+ *z = 0;
+ assert( (pMem->n+(desiredEnc==SQLITE_UTF8?1:2))<=len );
+
+ sqlite3VdbeMemRelease(pMem);
+ pMem->flags &= ~(MEM_Static|MEM_Dyn|MEM_Ephem);
+ pMem->enc = desiredEnc;
+ pMem->flags |= (MEM_Term|MEM_Dyn);
+ pMem->z = (char*)zOut;
+ pMem->zMalloc = pMem->z;
+
+translate_out:
+#if defined(TRANSLATE_TRACE) && defined(SQLITE_DEBUG)
+ {
+ char zBuf[100];
+ sqlite3VdbeMemPrettyPrint(pMem, zBuf);
+ fprintf(stderr, "OUTPUT: %s\n", zBuf);
+ }
+#endif
+ return SQLITE_OK;
+}
+
+/*
+** This routine checks for a byte-order mark at the beginning of the
+** UTF-16 string stored in *pMem. If one is present, it is removed and
+** the encoding of the Mem adjusted. This routine does not do any
+** byte-swapping, it just sets Mem.enc appropriately.
+**
+** The allocation (static, dynamic etc.) and encoding of the Mem may be
+** changed by this function.
+*/
+SQLITE_PRIVATE int sqlite3VdbeMemHandleBom(Mem *pMem){
+ int rc = SQLITE_OK;
+ u8 bom = 0;
+
+ if( pMem->n<0 || pMem->n>1 ){
+ u8 b1 = *(u8 *)pMem->z;
+ u8 b2 = *(((u8 *)pMem->z) + 1);
+ if( b1==0xFE && b2==0xFF ){
+ bom = SQLITE_UTF16BE;
+ }
+ if( b1==0xFF && b2==0xFE ){
+ bom = SQLITE_UTF16LE;
+ }
+ }
+
+ if( bom ){
+ rc = sqlite3VdbeMemMakeWriteable(pMem);
+ if( rc==SQLITE_OK ){
+ pMem->n -= 2;
+ memmove(pMem->z, &pMem->z[2], pMem->n);
+ pMem->z[pMem->n] = '\0';
+ pMem->z[pMem->n+1] = '\0';
+ pMem->flags |= MEM_Term;
+ pMem->enc = bom;
+ }
+ }
+ return rc;
+}
+#endif /* SQLITE_OMIT_UTF16 */
+
+/*
+** pZ is a UTF-8 encoded unicode string. If nByte is less than zero,
+** return the number of unicode characters in pZ up to (but not including)
+** the first 0x00 byte. If nByte is not less than zero, return the
+** number of unicode characters in the first nByte of pZ (or up to
+** the first 0x00, whichever comes first).
+*/
+SQLITE_PRIVATE int sqlite3Utf8CharLen(const char *zIn, int nByte){
+ int r = 0;
+ const u8 *z = (const u8*)zIn;
+ const u8 *zTerm;
+ if( nByte>=0 ){
+ zTerm = &z[nByte];
+ }else{
+ zTerm = (const u8*)(-1);
+ }
+ assert( z<=zTerm );
+ while( *z!=0 && z<zTerm ){
+ SQLITE_SKIP_UTF8(z);
+ r++;
+ }
+ return r;
+}
+
+/* This test function is not currently used by the automated test-suite.
+** Hence it is only available in debug builds.
+*/
+#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
+/*
+** Translate UTF-8 to UTF-8.
+**
+** This has the effect of making sure that the string is well-formed
+** UTF-8. Miscoded characters are removed.
+**
+** The translation is done in-place (since it is impossible for the
+** correct UTF-8 encoding to be longer than a malformed encoding).
+*/
+SQLITE_PRIVATE int sqlite3Utf8To8(unsigned char *zIn){
+ unsigned char *zOut = zIn;
+ unsigned char *zStart = zIn;
+ unsigned char *zTerm;
+ u32 c;
+
+ while( zIn[0] ){
+ c = sqlite3Utf8Read(zIn, zTerm, (const u8**)&zIn);
+ if( c!=0xfffd ){
+ WRITE_UTF8(zOut, c);
+ }
+ }
+ *zOut = 0;
+ return zOut - zStart;
+}
+#endif
+
+#ifndef SQLITE_OMIT_UTF16
+/*
+** Convert a UTF-16 string in the native encoding into a UTF-8 string.
+** Memory to hold the UTF-8 string is obtained from sqlite3_malloc and must
+** be freed by the calling function.
+**
+** NULL is returned if there is an allocation error.
+*/
+SQLITE_PRIVATE char *sqlite3Utf16to8(sqlite3 *db, const void *z, int nByte){
+ Mem m;
+ memset(&m, 0, sizeof(m));
+ m.db = db;
+ sqlite3VdbeMemSetStr(&m, z, nByte, SQLITE_UTF16NATIVE, SQLITE_STATIC);
+ sqlite3VdbeChangeEncoding(&m, SQLITE_UTF8);
+ if( db->mallocFailed ){
+ sqlite3VdbeMemRelease(&m);
+ m.z = 0;
+ }
+ assert( (m.flags & MEM_Term)!=0 || db->mallocFailed );
+ assert( (m.flags & MEM_Str)!=0 || db->mallocFailed );
+ return (m.flags & MEM_Dyn)!=0 ? m.z : sqlite3DbStrDup(db, m.z);
+}
+
+/*
+** pZ is a UTF-16 encoded unicode string. If nChar is less than zero,
+** return the number of bytes up to (but not including), the first pair
+** of consecutive 0x00 bytes in pZ. If nChar is not less than zero,
+** then return the number of bytes in the first nChar unicode characters
+** in pZ (or up until the first pair of 0x00 bytes, whichever comes first).
+*/
+SQLITE_PRIVATE int sqlite3Utf16ByteLen(const void *zIn, int nChar){
+ unsigned int c = 1;
+ char const *z = zIn;
+ int n = 0;
+ if( SQLITE_UTF16NATIVE==SQLITE_UTF16BE ){
+ /* Using an "if (SQLITE_UTF16NATIVE==SQLITE_UTF16BE)" construct here
+ ** and in other parts of this file means that at one branch will
+ ** not be covered by coverage testing on any single host. But coverage
+ ** will be complete if the tests are run on both a little-endian and
+ ** big-endian host. Because both the UTF16NATIVE and SQLITE_UTF16BE
+ ** macros are constant at compile time the compiler can determine
+ ** which branch will be followed. It is therefore assumed that no runtime
+ ** penalty is paid for this "if" statement.
+ */
+ while( c && ((nChar<0) || n<nChar) ){
+ READ_UTF16BE(z, c);
+ n++;
+ }
+ }else{
+ while( c && ((nChar<0) || n<nChar) ){
+ READ_UTF16LE(z, c);
+ n++;
+ }
+ }
+ return (z-(char const *)zIn)-((c==0)?2:0);
+}
+
+#if defined(SQLITE_TEST)
+/*
+** This routine is called from the TCL test function "translate_selftest".
+** It checks that the primitives for serializing and deserializing
+** characters in each encoding are inverses of each other.
+*/
+SQLITE_PRIVATE void sqlite3UtfSelfTest(){
+ unsigned int i, t;
+ unsigned char zBuf[20];
+ unsigned char *z;
+ unsigned char *zTerm;
+ int n;
+ unsigned int c;
+
+ for(i=0; i<0x00110000; i++){
+ z = zBuf;
+ WRITE_UTF8(z, i);
+ n = z-zBuf;
+ z[0] = 0;
+ zTerm = z;
+ z = zBuf;
+ c = sqlite3Utf8Read(z, zTerm, (const u8**)&z);
+ t = i;
+ if( i>=0xD800 && i<=0xDFFF ) t = 0xFFFD;
+ if( (i&0xFFFFFFFE)==0xFFFE ) t = 0xFFFD;
+ assert( c==t );
+ assert( (z-zBuf)==n );
+ }
+ for(i=0; i<0x00110000; i++){
+ if( i>=0xD800 && i<0xE000 ) continue;
+ z = zBuf;
+ WRITE_UTF16LE(z, i);
+ n = z-zBuf;
+ z[0] = 0;
+ z = zBuf;
+ READ_UTF16LE(z, c);
+ assert( c==i );
+ assert( (z-zBuf)==n );
+ }
+ for(i=0; i<0x00110000; i++){
+ if( i>=0xD800 && i<0xE000 ) continue;
+ z = zBuf;
+ WRITE_UTF16BE(z, i);
+ n = z-zBuf;
+ z[0] = 0;
+ z = zBuf;
+ READ_UTF16BE(z, c);
+ assert( c==i );
+ assert( (z-zBuf)==n );
+ }
+}
+#endif /* SQLITE_TEST */
+#endif /* SQLITE_OMIT_UTF16 */
+
+/************** End of utf.c *************************************************/
+/************** Begin file util.c ********************************************/
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** Utility functions used throughout sqlite.
+**
+** This file contains functions for allocating memory, comparing
+** strings, and stuff like that.
+**
+** $Id: util.c,v 1.229 2008/05/13 16:41:50 drh Exp $
+*/
+
+
+/*
+** Return true if the floating point value is Not a Number.
+*/
+SQLITE_PRIVATE int sqlite3IsNaN(double x){
+ /* This NaN test sometimes fails if compiled on GCC with -ffast-math.
+ ** On the other hand, the use of -ffast-math comes with the following
+ ** warning:
+ **
+ ** This option [-ffast-math] should never be turned on by any
+ ** -O option since it can result in incorrect output for programs
+ ** which depend on an exact implementation of IEEE or ISO
+ ** rules/specifications for math functions.
+ */
+ volatile double y = x;
+ return x!=y;
+}
+
+/*
+** Set the most recent error code and error string for the sqlite
+** handle "db". The error code is set to "err_code".
+**
+** If it is not NULL, string zFormat specifies the format of the
+** error string in the style of the printf functions: The following
+** format characters are allowed:
+**
+** %s Insert a string
+** %z A string that should be freed after use
+** %d Insert an integer
+** %T Insert a token
+** %S Insert the first element of a SrcList
+**
+** zFormat and any string tokens that follow it are assumed to be
+** encoded in UTF-8.
+**
+** To clear the most recent error for sqlite handle "db", sqlite3Error
+** should be called with err_code set to SQLITE_OK and zFormat set
+** to NULL.
+*/
+SQLITE_PRIVATE void sqlite3Error(sqlite3 *db, int err_code, const char *zFormat, ...){
+ if( db && (db->pErr || (db->pErr = sqlite3ValueNew(db))!=0) ){
+ db->errCode = err_code;
+ if( zFormat ){
+ char *z;
+ va_list ap;
+ va_start(ap, zFormat);
+ z = sqlite3VMPrintf(db, zFormat, ap);
+ va_end(ap);
+ sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, sqlite3_free);
+ }else{
+ sqlite3ValueSetStr(db->pErr, 0, 0, SQLITE_UTF8, SQLITE_STATIC);
+ }
+ }
+}
+
+/*
+** Add an error message to pParse->zErrMsg and increment pParse->nErr.
+** The following formatting characters are allowed:
+**
+** %s Insert a string
+** %z A string that should be freed after use
+** %d Insert an integer
+** %T Insert a token
+** %S Insert the first element of a SrcList
+**
+** This function should be used to report any error that occurs whilst
+** compiling an SQL statement (i.e. within sqlite3_prepare()). The
+** last thing the sqlite3_prepare() function does is copy the error
+** stored by this function into the database handle using sqlite3Error().
+** Function sqlite3Error() should be used during statement execution
+** (sqlite3_step() etc.).
+*/
+SQLITE_PRIVATE void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){
+ va_list ap;
+ pParse->nErr++;
+ sqlite3_free(pParse->zErrMsg);
+ va_start(ap, zFormat);
+ pParse->zErrMsg = sqlite3VMPrintf(pParse->db, zFormat, ap);
+ va_end(ap);
+ if( pParse->rc==SQLITE_OK ){
+ pParse->rc = SQLITE_ERROR;
+ }
+}
+
+/*
+** Clear the error message in pParse, if any
+*/
+SQLITE_PRIVATE void sqlite3ErrorClear(Parse *pParse){
+ sqlite3_free(pParse->zErrMsg);
+ pParse->zErrMsg = 0;
+ pParse->nErr = 0;
+}
+
+/*
+** Convert an SQL-style quoted string into a normal string by removing
+** the quote characters. The conversion is done in-place. If the
+** input does not begin with a quote character, then this routine
+** is a no-op.
+**
+** 2002-Feb-14: This routine is extended to remove MS-Access style
+** brackets from around identifers. For example: "[a-b-c]" becomes
+** "a-b-c".
+*/
+SQLITE_PRIVATE void sqlite3Dequote(char *z){
+ int quote;
+ int i, j;
+ if( z==0 ) return;
+ quote = z[0];
+ switch( quote ){
+ case '\'': break;
+ case '"': break;
+ case '`': break; /* For MySQL compatibility */
+ case '[': quote = ']'; break; /* For MS SqlServer compatibility */
+ default: return;
+ }
+ for(i=1, j=0; z[i]; i++){
+ if( z[i]==quote ){
+ if( z[i+1]==quote ){
+ z[j++] = quote;
+ i++;
+ }else{
+ z[j++] = 0;
+ break;
+ }
+ }else{
+ z[j++] = z[i];
+ }
+ }
+}
+
+/* An array to map all upper-case characters into their corresponding
+** lower-case character.
+*/
+SQLITE_PRIVATE const unsigned char sqlite3UpperToLower[] = {
+#ifdef SQLITE_ASCII
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
+ 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,
+ 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53,
+ 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 97, 98, 99,100,101,102,103,
+ 104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,
+ 122, 91, 92, 93, 94, 95, 96, 97, 98, 99,100,101,102,103,104,105,106,107,
+ 108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,
+ 126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,
+ 144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,
+ 162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,
+ 180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,
+ 198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,
+ 216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,
+ 234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,
+ 252,253,254,255
+#endif
+#ifdef SQLITE_EBCDIC
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, /* 0x */
+ 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, /* 1x */
+ 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, /* 2x */
+ 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, /* 3x */
+ 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, /* 4x */
+ 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, /* 5x */
+ 96, 97, 66, 67, 68, 69, 70, 71, 72, 73,106,107,108,109,110,111, /* 6x */
+ 112, 81, 82, 83, 84, 85, 86, 87, 88, 89,122,123,124,125,126,127, /* 7x */
+ 128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143, /* 8x */
+ 144,145,146,147,148,149,150,151,152,153,154,155,156,157,156,159, /* 9x */
+ 160,161,162,163,164,165,166,167,168,169,170,171,140,141,142,175, /* Ax */
+ 176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191, /* Bx */
+ 192,129,130,131,132,133,134,135,136,137,202,203,204,205,206,207, /* Cx */
+ 208,145,146,147,148,149,150,151,152,153,218,219,220,221,222,223, /* Dx */
+ 224,225,162,163,164,165,166,167,168,169,232,203,204,205,206,207, /* Ex */
+ 239,240,241,242,243,244,245,246,247,248,249,219,220,221,222,255, /* Fx */
+#endif
+};
+#define UpperToLower sqlite3UpperToLower
+
+/*
+** Some systems have stricmp(). Others have strcasecmp(). Because
+** there is no consistency, we will define our own.
+*/
+SQLITE_PRIVATE int sqlite3StrICmp(const char *zLeft, const char *zRight){
+ register unsigned char *a, *b;
+ a = (unsigned char *)zLeft;
+ b = (unsigned char *)zRight;
+ while( *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }
+ return UpperToLower[*a] - UpperToLower[*b];
+}
+SQLITE_PRIVATE int sqlite3StrNICmp(const char *zLeft, const char *zRight, int N){
+ register unsigned char *a, *b;
+ a = (unsigned char *)zLeft;
+ b = (unsigned char *)zRight;
+ while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }
+ return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b];
+}
+
+/*
+** Return TRUE if z is a pure numeric string. Return FALSE if the
+** string contains any character which is not part of a number. If
+** the string is numeric and contains the '.' character, set *realnum
+** to TRUE (otherwise FALSE).
+**
+** An empty string is considered non-numeric.
+*/
+SQLITE_PRIVATE int sqlite3IsNumber(const char *z, int *realnum, u8 enc){
+ int incr = (enc==SQLITE_UTF8?1:2);
+ if( enc==SQLITE_UTF16BE ) z++;
+ if( *z=='-' || *z=='+' ) z += incr;
+ if( !isdigit(*(u8*)z) ){
+ return 0;
+ }
+ z += incr;
+ if( realnum ) *realnum = 0;
+ while( isdigit(*(u8*)z) ){ z += incr; }
+ if( *z=='.' ){
+ z += incr;
+ if( !isdigit(*(u8*)z) ) return 0;
+ while( isdigit(*(u8*)z) ){ z += incr; }
+ if( realnum ) *realnum = 1;
+ }
+ if( *z=='e' || *z=='E' ){
+ z += incr;
+ if( *z=='+' || *z=='-' ) z += incr;
+ if( !isdigit(*(u8*)z) ) return 0;
+ while( isdigit(*(u8*)z) ){ z += incr; }
+ if( realnum ) *realnum = 1;
+ }
+ return *z==0;
+}
+
+/*
+** The string z[] is an ascii representation of a real number.
+** Convert this string to a double.
+**
+** This routine assumes that z[] really is a valid number. If it
+** is not, the result is undefined.
+**
+** This routine is used instead of the library atof() function because
+** the library atof() might want to use "," as the decimal point instead
+** of "." depending on how locale is set. But that would cause problems
+** for SQL. So this routine always uses "." regardless of locale.
+*/
+SQLITE_PRIVATE int sqlite3AtoF(const char *z, double *pResult){
+#ifndef SQLITE_OMIT_FLOATING_POINT
+ int sign = 1;
+ const char *zBegin = z;
+ LONGDOUBLE_TYPE v1 = 0.0;
+ int nSignificant = 0;
+ while( isspace(*(u8*)z) ) z++;
+ if( *z=='-' ){
+ sign = -1;
+ z++;
+ }else if( *z=='+' ){
+ z++;
+ }
+ while( z[0]=='0' ){
+ z++;
+ }
+ while( isdigit(*(u8*)z) ){
+ v1 = v1*10.0 + (*z - '0');
+ z++;
+ nSignificant++;
+ }
+ if( *z=='.' ){
+ LONGDOUBLE_TYPE divisor = 1.0;
+ z++;
+ if( nSignificant==0 ){
+ while( z[0]=='0' ){
+ divisor *= 10.0;
+ z++;
+ }
+ }
+ while( isdigit(*(u8*)z) ){
+ if( nSignificant<18 ){
+ v1 = v1*10.0 + (*z - '0');
+ divisor *= 10.0;
+ nSignificant++;
+ }
+ z++;
+ }
+ v1 /= divisor;
+ }
+ if( *z=='e' || *z=='E' ){
+ int esign = 1;
+ int eval = 0;
+ LONGDOUBLE_TYPE scale = 1.0;
+ z++;
+ if( *z=='-' ){
+ esign = -1;
+ z++;
+ }else if( *z=='+' ){
+ z++;
+ }
+ while( isdigit(*(u8*)z) ){
+ eval = eval*10 + *z - '0';
+ z++;
+ }
+ while( eval>=64 ){ scale *= 1.0e+64; eval -= 64; }
+ while( eval>=16 ){ scale *= 1.0e+16; eval -= 16; }
+ while( eval>=4 ){ scale *= 1.0e+4; eval -= 4; }
+ while( eval>=1 ){ scale *= 1.0e+1; eval -= 1; }
+ if( esign<0 ){
+ v1 /= scale;
+ }else{
+ v1 *= scale;
+ }
+ }
+ *pResult = sign<0 ? -v1 : v1;
+ return z - zBegin;
+#else
+ return sqlite3Atoi64(z, pResult);
+#endif /* SQLITE_OMIT_FLOATING_POINT */
+}
+
+/*
+** Compare the 19-character string zNum against the text representation
+** value 2^63: 9223372036854775808. Return negative, zero, or positive
+** if zNum is less than, equal to, or greater than the string.
+**
+** Unlike memcmp() this routine is guaranteed to return the difference
+** in the values of the last digit if the only difference is in the
+** last digit. So, for example,
+**
+** compare2pow63("9223372036854775800")
+**
+** will return -8.
+*/
+static int compare2pow63(const char *zNum){
+ int c;
+ c = memcmp(zNum,"922337203685477580",18);
+ if( c==0 ){
+ c = zNum[18] - '8';
+ }
+ return c;
+}
+
+
+/*
+** Return TRUE if zNum is a 64-bit signed integer and write
+** the value of the integer into *pNum. If zNum is not an integer
+** or is an integer that is too large to be expressed with 64 bits,
+** then return false.
+**
+** When this routine was originally written it dealt with only
+** 32-bit numbers. At that time, it was much faster than the
+** atoi() library routine in RedHat 7.2.
+*/
+SQLITE_PRIVATE int sqlite3Atoi64(const char *zNum, i64 *pNum){
+ i64 v = 0;
+ int neg;
+ int i, c;
+ while( isspace(*(u8*)zNum) ) zNum++;
+ if( *zNum=='-' ){
+ neg = 1;
+ zNum++;
+ }else if( *zNum=='+' ){
+ neg = 0;
+ zNum++;
+ }else{
+ neg = 0;
+ }
+ while( zNum[0]=='0' ){ zNum++; } /* Skip over leading zeros. Ticket #2454 */
+ for(i=0; (c=zNum[i])>='0' && c<='9'; i++){
+ v = v*10 + c - '0';
+ }
+ *pNum = neg ? -v : v;
+ if( c!=0 || i==0 || i>19 ){
+ /* zNum is empty or contains non-numeric text or is longer
+ ** than 19 digits (thus guaranting that it is too large) */
+ return 0;
+ }else if( i<19 ){
+ /* Less than 19 digits, so we know that it fits in 64 bits */
+ return 1;
+ }else{
+ /* 19-digit numbers must be no larger than 9223372036854775807 if positive
+ ** or 9223372036854775808 if negative. Note that 9223372036854665808
+ ** is 2^63. */
+ return compare2pow63(zNum)<neg;
+ }
+}
+
+/*
+** The string zNum represents an integer. There might be some other
+** information following the integer too, but that part is ignored.
+** If the integer that the prefix of zNum represents will fit in a
+** 64-bit signed integer, return TRUE. Otherwise return FALSE.
+**
+** This routine returns FALSE for the string -9223372036854775808 even that
+** that number will, in theory fit in a 64-bit integer. Positive
+** 9223373036854775808 will not fit in 64 bits. So it seems safer to return
+** false.
+*/
+SQLITE_PRIVATE int sqlite3FitsIn64Bits(const char *zNum, int negFlag){
+ int i, c;
+ int neg = 0;
+ if( *zNum=='-' ){
+ neg = 1;
+ zNum++;
+ }else if( *zNum=='+' ){
+ zNum++;
+ }
+ if( negFlag ) neg = 1-neg;
+ while( *zNum=='0' ){
+ zNum++; /* Skip leading zeros. Ticket #2454 */
+ }
+ for(i=0; (c=zNum[i])>='0' && c<='9'; i++){}
+ if( i<19 ){
+ /* Guaranteed to fit if less than 19 digits */
+ return 1;
+ }else if( i>19 ){
+ /* Guaranteed to be too big if greater than 19 digits */
+ return 0;
+ }else{
+ /* Compare against 2^63. */
+ return compare2pow63(zNum)<neg;
+ }
+}
+
+/*
+** If zNum represents an integer that will fit in 32-bits, then set
+** *pValue to that integer and return true. Otherwise return false.
+**
+** Any non-numeric characters that following zNum are ignored.
+** This is different from sqlite3Atoi64() which requires the
+** input number to be zero-terminated.
+*/
+SQLITE_PRIVATE int sqlite3GetInt32(const char *zNum, int *pValue){
+ sqlite_int64 v = 0;
+ int i, c;
+ int neg = 0;
+ if( zNum[0]=='-' ){
+ neg = 1;
+ zNum++;
+ }else if( zNum[0]=='+' ){
+ zNum++;
+ }
+ while( zNum[0]=='0' ) zNum++;
+ for(i=0; i<11 && (c = zNum[i] - '0')>=0 && c<=9; i++){
+ v = v*10 + c;
+ }
+
+ /* The longest decimal representation of a 32 bit integer is 10 digits:
+ **
+ ** 1234567890
+ ** 2^31 -> 2147483648
+ */
+ if( i>10 ){
+ return 0;
+ }
+ if( v-neg>2147483647 ){
+ return 0;
+ }
+ if( neg ){
+ v = -v;
+ }
+ *pValue = (int)v;
+ return 1;
+}
+
+/*
+** The variable-length integer encoding is as follows:
+**
+** KEY:
+** A = 0xxxxxxx 7 bits of data and one flag bit
+** B = 1xxxxxxx 7 bits of data and one flag bit
+** C = xxxxxxxx 8 bits of data
+**
+** 7 bits - A
+** 14 bits - BA
+** 21 bits - BBA
+** 28 bits - BBBA
+** 35 bits - BBBBA
+** 42 bits - BBBBBA
+** 49 bits - BBBBBBA
+** 56 bits - BBBBBBBA
+** 64 bits - BBBBBBBBC
+*/
+
+/*
+** Write a 64-bit variable-length integer to memory starting at p[0].
+** The length of data write will be between 1 and 9 bytes. The number
+** of bytes written is returned.
+**
+** A variable-length integer consists of the lower 7 bits of each byte
+** for all bytes that have the 8th bit set and one byte with the 8th
+** bit clear. Except, if we get to the 9th byte, it stores the full
+** 8 bits and is the last byte.
+*/
+SQLITE_PRIVATE int sqlite3PutVarint(unsigned char *p, u64 v){
+ int i, j, n;
+ u8 buf[10];
+ if( v & (((u64)0xff000000)<<32) ){
+ p[8] = v;
+ v >>= 8;
+ for(i=7; i>=0; i--){
+ p[i] = (v & 0x7f) | 0x80;
+ v >>= 7;
+ }
+ return 9;
+ }
+ n = 0;
+ do{
+ buf[n++] = (v & 0x7f) | 0x80;
+ v >>= 7;
+ }while( v!=0 );
+ buf[0] &= 0x7f;
+ assert( n<=9 );
+ for(i=0, j=n-1; j>=0; j--, i++){
+ p[i] = buf[j];
+ }
+ return n;
+}
+
+/*
+** This routine is a faster version of sqlite3PutVarint() that only
+** works for 32-bit positive integers and which is optimized for
+** the common case of small integers. A MACRO version, putVarint32,
+** is provided which inlines the single-byte case. All code should use
+** the MACRO version as this function assumes the single-byte case has
+** already been handled.
+*/
+SQLITE_PRIVATE int sqlite3PutVarint32(unsigned char *p, u32 v){
+#ifndef putVarint32
+ if( (v & ~0x7f)==0 ){
+ p[0] = v;
+ return 1;
+ }
+#endif
+ if( (v & ~0x3fff)==0 ){
+ p[0] = (v>>7) | 0x80;
+ p[1] = v & 0x7f;
+ return 2;
+ }
+ return sqlite3PutVarint(p, v);
+}
+
+/*
+** Read a 64-bit variable-length integer from memory starting at p[0].
+** Return the number of bytes read. The value is stored in *v.
+*/
+SQLITE_PRIVATE int sqlite3GetVarint(const unsigned char *p, u64 *v){
+ u32 a,b,s;
+
+ a = *p;
+ /* a: p0 (unmasked)*/
+ if (!(a&0x80))
+ {
+ *v = a;
+ return 1;
+ }
+
+ p++;
+ b = *p;
+ /* b: p1 (unmasked)*/
+ if (!(b&0x80))
+ {
+ a &= 0x7f;
+ a = a<<7;
+ a |= b;
+ *v = a;
+ return 2;
+ }
+
+ p++;
+ a = a<<14;
+ a |= *p;
+ /* a: p0<<14 | p2 (unmasked)*/
+ if (!(a&0x80))
+ {
+ a &= (0x7f<<14)|(0x7f);
+ b &= 0x7f;
+ b = b<<7;
+ a |= b;
+ *v = a;
+ return 3;
+ }
+
+ /* CSE1 from below*/
+ a &= (0x7f<<14)|(0x7f);
+ p++;
+ b = b<<14;
+ b |= *p;
+ /* b: p1<<14 | p3 (unmasked)*/
+ if (!(b&0x80))
+ {
+ b &= (0x7f<<14)|(0x7f);
+ /* moved CSE1 up
+ a &= (0x7f<<14)|(0x7f);*/
+ a = a<<7;
+ a |= b;
+ *v = a;
+ return 4;
+ }
+
+ /* a: p0<<14 | p2 (masked)
+ b: p1<<14 | p3 (unmasked)
+ 1:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked)
+ moved CSE1 up
+ a &= (0x7f<<14)|(0x7f);*/
+ b &= (0x7f<<14)|(0x7f);
+ s = a;
+ /* s: p0<<14 | p2 (masked)*/
+
+ p++;
+ a = a<<14;
+ a |= *p;
+ /* a: p0<<28 | p2<<14 | p4 (unmasked)*/
+ if (!(a&0x80))
+ {
+ /* we can skip these cause they were (effectively) done above in calc'ing s
+ a &= (0x7f<<28)|(0x7f<<14)|(0x7f);
+ b &= (0x7f<<14)|(0x7f);*/
+ b = b<<7;
+ a |= b;
+ s = s>>18;
+ *v = ((u64)s)<<32 | a;
+ return 5;
+ }
+
+ /* 2:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked)*/
+ s = s<<7;
+ s |= b;
+ /* s: p0<<21 | p1<<14 | p2<<7 | p3 (masked)*/
+
+ p++;
+ b = b<<14;
+ b |= *p;
+ /* b: p1<<28 | p3<<14 | p5 (unmasked)*/
+ if (!(b&0x80))
+ {
+ /* we can skip this cause it was (effectively) done above in calc'ing s
+ b &= (0x7f<<28)|(0x7f<<14)|(0x7f);*/
+ a &= (0x7f<<14)|(0x7f);
+ a = a<<7;
+ a |= b;
+ s = s>>18;
+ *v = ((u64)s)<<32 | a;
+ return 6;
+ }
+
+ p++;
+ a = a<<14;
+ a |= *p;
+ /* a: p2<<28 | p4<<14 | p6 (unmasked)*/
+ if (!(a&0x80))
+ {
+ a &= (0x7f<<28)|(0x7f<<14)|(0x7f);
+ b &= (0x7f<<14)|(0x7f);
+ b = b<<7;
+ a |= b;
+ s = s>>11;
+ *v = ((u64)s)<<32 | a;
+ return 7;
+ }
+
+ /* CSE2 from below*/
+ a &= (0x7f<<14)|(0x7f);
+ p++;
+ b = b<<14;
+ b |= *p;
+ /* b: p3<<28 | p5<<14 | p7 (unmasked)*/
+ if (!(b&0x80))
+ {
+ b &= (0x7f<<28)|(0x7f<<14)|(0x7f);
+ /* moved CSE2 up
+ a &= (0x7f<<14)|(0x7f);*/
+ a = a<<7;
+ a |= b;
+ s = s>>4;
+ *v = ((u64)s)<<32 | a;
+ return 8;
+ }
+
+ p++;
+ a = a<<15;
+ a |= *p;
+ /* a: p4<<29 | p6<<15 | p8 (unmasked)*/
+
+ /* moved CSE2 up
+ a &= (0x7f<<29)|(0x7f<<15)|(0xff);*/
+ b &= (0x7f<<14)|(0x7f);
+ b = b<<8;
+ a |= b;
+
+ s = s<<4;
+ b = p[-4];
+ b &= 0x7f;
+ b = b>>3;
+ s |= b;
+
+ *v = ((u64)s)<<32 | a;
+
+ return 9;
+}
+
+/*
+** Read a 32-bit variable-length integer from memory starting at p[0].
+** Return the number of bytes read. The value is stored in *v.
+** A MACRO version, getVarint32, is provided which inlines the
+** single-byte case. All code should use the MACRO version as
+** this function assumes the single-byte case has already been handled.
+*/
+SQLITE_PRIVATE int sqlite3GetVarint32(const unsigned char *p, u32 *v){
+ u32 a,b;
+
+ a = *p;
+ /* a: p0 (unmasked)*/
+#ifndef getVarint32
+ if (!(a&0x80))
+ {
+ *v = a;
+ return 1;
+ }
+#endif
+
+ p++;
+ b = *p;
+ /* b: p1 (unmasked)*/
+ if (!(b&0x80))
+ {
+ a &= 0x7f;
+ a = a<<7;
+ *v = a | b;
+ return 2;
+ }
+
+ p++;
+ a = a<<14;
+ a |= *p;
+ /* a: p0<<14 | p2 (unmasked)*/
+ if (!(a&0x80))
+ {
+ a &= (0x7f<<14)|(0x7f);
+ b &= 0x7f;
+ b = b<<7;
+ *v = a | b;
+ return 3;
+ }
+
+ p++;
+ b = b<<14;
+ b |= *p;
+ /* b: p1<<14 | p3 (unmasked)*/
+ if (!(b&0x80))
+ {
+ b &= (0x7f<<14)|(0x7f);
+ a &= (0x7f<<14)|(0x7f);
+ a = a<<7;
+ *v = a | b;
+ return 4;
+ }
+
+ p++;
+ a = a<<14;
+ a |= *p;
+ /* a: p0<<28 | p2<<14 | p4 (unmasked)*/
+ if (!(a&0x80))
+ {
+ a &= (0x7f<<28)|(0x7f<<14)|(0x7f);
+ b &= (0x7f<<28)|(0x7f<<14)|(0x7f);
+ b = b<<7;
+ *v = a | b;
+ return 5;
+ }
+
+ /* We can only reach this point when reading a corrupt database
+ ** file. In that case we are not in any hurry. Use the (relatively
+ ** slow) general-purpose sqlite3GetVarint() routine to extract the
+ ** value. */
+ {
+ u64 v64;
+ int n;
+
+ p -= 4;
+ n = sqlite3GetVarint(p, &v64);
+ assert( n>5 && n<=9 );
+ *v = (u32)v64;
+ return n;
+ }
+}
+
+/*
+** Return the number of bytes that will be needed to store the given
+** 64-bit integer.
+*/
+SQLITE_PRIVATE int sqlite3VarintLen(u64 v){
+ int i = 0;
+ do{
+ i++;
+ v >>= 7;
+ }while( v!=0 && i<9 );
+ return i;
+}
+
+
+/*
+** Read or write a four-byte big-endian integer value.
+*/
+SQLITE_PRIVATE u32 sqlite3Get4byte(const u8 *p){
+ return (p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3];
+}
+SQLITE_PRIVATE void sqlite3Put4byte(unsigned char *p, u32 v){
+ p[0] = v>>24;
+ p[1] = v>>16;
+ p[2] = v>>8;
+ p[3] = v;
+}
+
+
+
+#if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC)
+/*
+** Translate a single byte of Hex into an integer.
+** This routinen only works if h really is a valid hexadecimal
+** character: 0..9a..fA..F
+*/
+static int hexToInt(int h){
+ assert( (h>='0' && h<='9') || (h>='a' && h<='f') || (h>='A' && h<='F') );
+#ifdef SQLITE_ASCII
+ h += 9*(1&(h>>6));
+#endif
+#ifdef SQLITE_EBCDIC
+ h += 9*(1&~(h>>4));
+#endif
+ return h & 0xf;
+}
+#endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */
+
+#if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC)
+/*
+** Convert a BLOB literal of the form "x'hhhhhh'" into its binary
+** value. Return a pointer to its binary value. Space to hold the
+** binary value has been obtained from malloc and must be freed by
+** the calling routine.
+*/
+SQLITE_PRIVATE void *sqlite3HexToBlob(sqlite3 *db, const char *z, int n){
+ char *zBlob;
+ int i;
+
+ zBlob = (char *)sqlite3DbMallocRaw(db, n/2 + 1);
+ n--;
+ if( zBlob ){
+ for(i=0; i<n; i+=2){
+ zBlob[i/2] = (hexToInt(z[i])<<4) | hexToInt(z[i+1]);
+ }
+ zBlob[i/2] = 0;
+ }
+ return zBlob;
+}
+#endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */
+
+
+/*
+** Change the sqlite.magic from SQLITE_MAGIC_OPEN to SQLITE_MAGIC_BUSY.
+** Return an error (non-zero) if the magic was not SQLITE_MAGIC_OPEN
+** when this routine is called.
+**
+** This routine is called when entering an SQLite API. The SQLITE_MAGIC_OPEN
+** value indicates that the database connection passed into the API is
+** open and is not being used by another thread. By changing the value
+** to SQLITE_MAGIC_BUSY we indicate that the connection is in use.
+** sqlite3SafetyOff() below will change the value back to SQLITE_MAGIC_OPEN
+** when the API exits.
+**
+** This routine is a attempt to detect if two threads use the
+** same sqlite* pointer at the same time. There is a race
+** condition so it is possible that the error is not detected.
+** But usually the problem will be seen. The result will be an
+** error which can be used to debug the application that is
+** using SQLite incorrectly.
+**
+** Ticket #202: If db->magic is not a valid open value, take care not
+** to modify the db structure at all. It could be that db is a stale
+** pointer. In other words, it could be that there has been a prior
+** call to sqlite3_close(db) and db has been deallocated. And we do
+** not want to write into deallocated memory.
+*/
+#ifdef SQLITE_DEBUG
+SQLITE_PRIVATE int sqlite3SafetyOn(sqlite3 *db){
+ if( db->magic==SQLITE_MAGIC_OPEN ){
+ db->magic = SQLITE_MAGIC_BUSY;
+ assert( sqlite3_mutex_held(db->mutex) );
+ return 0;
+ }else if( db->magic==SQLITE_MAGIC_BUSY ){
+ db->magic = SQLITE_MAGIC_ERROR;
+ db->u1.isInterrupted = 1;
+ }
+ return 1;
+}
+#endif
+
+/*
+** Change the magic from SQLITE_MAGIC_BUSY to SQLITE_MAGIC_OPEN.
+** Return an error (non-zero) if the magic was not SQLITE_MAGIC_BUSY
+** when this routine is called.
+*/
+#ifdef SQLITE_DEBUG
+SQLITE_PRIVATE int sqlite3SafetyOff(sqlite3 *db){
+ if( db->magic==SQLITE_MAGIC_BUSY ){
+ db->magic = SQLITE_MAGIC_OPEN;
+ assert( sqlite3_mutex_held(db->mutex) );
+ return 0;
+ }else{
+ db->magic = SQLITE_MAGIC_ERROR;
+ db->u1.isInterrupted = 1;
+ return 1;
+ }
+}
+#endif
+
+/*
+** Check to make sure we have a valid db pointer. This test is not
+** foolproof but it does provide some measure of protection against
+** misuse of the interface such as passing in db pointers that are
+** NULL or which have been previously closed. If this routine returns
+** 1 it means that the db pointer is valid and 0 if it should not be
+** dereferenced for any reason. The calling function should invoke
+** SQLITE_MISUSE immediately.
+**
+** sqlite3SafetyCheckOk() requires that the db pointer be valid for
+** use. sqlite3SafetyCheckSickOrOk() allows a db pointer that failed to
+** open properly and is not fit for general use but which can be
+** used as an argument to sqlite3_errmsg() or sqlite3_close().
+*/
+SQLITE_PRIVATE int sqlite3SafetyCheckOk(sqlite3 *db){
+ int magic;
+ if( db==0 ) return 0;
+ magic = db->magic;
+ if( magic!=SQLITE_MAGIC_OPEN &&
+ magic!=SQLITE_MAGIC_BUSY ) return 0;
+ return 1;
+}
+SQLITE_PRIVATE int sqlite3SafetyCheckSickOrOk(sqlite3 *db){
+ int magic;
+ if( db==0 ) return 0;
+ magic = db->magic;
+ if( magic!=SQLITE_MAGIC_SICK &&
+ magic!=SQLITE_MAGIC_OPEN &&
+ magic!=SQLITE_MAGIC_BUSY ) return 0;
+ return 1;
+}
+
+/************** End of util.c ************************************************/
+/************** Begin file hash.c ********************************************/
+/*
+** 2001 September 22
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This is the implementation of generic hash-tables
+** used in SQLite.
+**
+** $Id: hash.c,v 1.28 2008/05/13 13:27:34 drh Exp $
+*/
+
+/* Turn bulk memory into a hash table object by initializing the
+** fields of the Hash structure.
+**
+** "pNew" is a pointer to the hash table that is to be initialized.
+** keyClass is one of the constants SQLITE_HASH_INT, SQLITE_HASH_POINTER,
+** SQLITE_HASH_BINARY, or SQLITE_HASH_STRING. The value of keyClass
+** determines what kind of key the hash table will use. "copyKey" is
+** true if the hash table should make its own private copy of keys and
+** false if it should just use the supplied pointer. CopyKey only makes
+** sense for SQLITE_HASH_STRING and SQLITE_HASH_BINARY and is ignored
+** for other key classes.
+*/
+SQLITE_PRIVATE void sqlite3HashInit(Hash *pNew, int keyClass, int copyKey){
+ assert( pNew!=0 );
+ assert( keyClass>=SQLITE_HASH_STRING && keyClass<=SQLITE_HASH_BINARY );
+ pNew->keyClass = keyClass;
+#if 0
+ if( keyClass==SQLITE_HASH_POINTER || keyClass==SQLITE_HASH_INT ) copyKey = 0;
+#endif
+ pNew->copyKey = copyKey;
+ pNew->first = 0;
+ pNew->count = 0;
+ pNew->htsize = 0;
+ pNew->ht = 0;
+}
+
+/* Remove all entries from a hash table. Reclaim all memory.
+** Call this routine to delete a hash table or to reset a hash table
+** to the empty state.
+*/
+SQLITE_PRIVATE void sqlite3HashClear(Hash *pH){
+ HashElem *elem; /* For looping over all elements of the table */
+
+ assert( pH!=0 );
+ elem = pH->first;
+ pH->first = 0;
+ sqlite3_free(pH->ht);
+ pH->ht = 0;
+ pH->htsize = 0;
+ while( elem ){
+ HashElem *next_elem = elem->next;
+ if( pH->copyKey && elem->pKey ){
+ sqlite3_free(elem->pKey);
+ }
+ sqlite3_free(elem);
+ elem = next_elem;
+ }
+ pH->count = 0;
+}
+
+#if 0 /* NOT USED */
+/*
+** Hash and comparison functions when the mode is SQLITE_HASH_INT
+*/
+static int intHash(const void *pKey, int nKey){
+ return nKey ^ (nKey<<8) ^ (nKey>>8);
+}
+static int intCompare(const void *pKey1, int n1, const void *pKey2, int n2){
+ return n2 - n1;
+}
+#endif
+
+#if 0 /* NOT USED */
+/*
+** Hash and comparison functions when the mode is SQLITE_HASH_POINTER
+*/
+static int ptrHash(const void *pKey, int nKey){
+ uptr x = Addr(pKey);
+ return x ^ (x<<8) ^ (x>>8);
+}
+static int ptrCompare(const void *pKey1, int n1, const void *pKey2, int n2){
+ if( pKey1==pKey2 ) return 0;
+ if( pKey1<pKey2 ) return -1;
+ return 1;
+}
+#endif
+
+/*
+** Hash and comparison functions when the mode is SQLITE_HASH_STRING
+*/
+static int strHash(const void *pKey, int nKey){
+ const char *z = (const char *)pKey;
+ int h = 0;
+ if( nKey<=0 ) nKey = strlen(z);
+ while( nKey > 0 ){
+ h = (h<<3) ^ h ^ sqlite3UpperToLower[(unsigned char)*z++];
+ nKey--;
+ }
+ return h & 0x7fffffff;
+}
+static int strCompare(const void *pKey1, int n1, const void *pKey2, int n2){
+ if( n1!=n2 ) return 1;
+ return sqlite3StrNICmp((const char*)pKey1,(const char*)pKey2,n1);
+}
+
+/*
+** Hash and comparison functions when the mode is SQLITE_HASH_BINARY
+*/
+static int binHash(const void *pKey, int nKey){
+ int h = 0;
+ const char *z = (const char *)pKey;
+ while( nKey-- > 0 ){
+ h = (h<<3) ^ h ^ *(z++);
+ }
+ return h & 0x7fffffff;
+}
+static int binCompare(const void *pKey1, int n1, const void *pKey2, int n2){
+ if( n1!=n2 ) return 1;
+ return memcmp(pKey1,pKey2,n1);
+}
+
+/*
+** Return a pointer to the appropriate hash function given the key class.
+**
+** The C syntax in this function definition may be unfamilar to some
+** programmers, so we provide the following additional explanation:
+**
+** The name of the function is "hashFunction". The function takes a
+** single parameter "keyClass". The return value of hashFunction()
+** is a pointer to another function. Specifically, the return value
+** of hashFunction() is a pointer to a function that takes two parameters
+** with types "const void*" and "int" and returns an "int".
+*/
+static int (*hashFunction(int keyClass))(const void*,int){
+#if 0 /* HASH_INT and HASH_POINTER are never used */
+ switch( keyClass ){
+ case SQLITE_HASH_INT: return &intHash;
+ case SQLITE_HASH_POINTER: return &ptrHash;
+ case SQLITE_HASH_STRING: return &strHash;
+ case SQLITE_HASH_BINARY: return &binHash;;
+ default: break;
+ }
+ return 0;
+#else
+ if( keyClass==SQLITE_HASH_STRING ){
+ return &strHash;
+ }else{
+ assert( keyClass==SQLITE_HASH_BINARY );
+ return &binHash;
+ }
+#endif
+}
+
+/*
+** Return a pointer to the appropriate hash function given the key class.
+**
+** For help in interpreted the obscure C code in the function definition,
+** see the header comment on the previous function.
+*/
+static int (*compareFunction(int keyClass))(const void*,int,const void*,int){
+#if 0 /* HASH_INT and HASH_POINTER are never used */
+ switch( keyClass ){
+ case SQLITE_HASH_INT: return &intCompare;
+ case SQLITE_HASH_POINTER: return &ptrCompare;
+ case SQLITE_HASH_STRING: return &strCompare;
+ case SQLITE_HASH_BINARY: return &binCompare;
+ default: break;
+ }
+ return 0;
+#else
+ if( keyClass==SQLITE_HASH_STRING ){
+ return &strCompare;
+ }else{
+ assert( keyClass==SQLITE_HASH_BINARY );
+ return &binCompare;
+ }
+#endif
+}
+
+/* Link an element into the hash table
+*/
+static void insertElement(
+ Hash *pH, /* The complete hash table */
+ struct _ht *pEntry, /* The entry into which pNew is inserted */
+ HashElem *pNew /* The element to be inserted */
+){
+ HashElem *pHead; /* First element already in pEntry */
+ pHead = pEntry->chain;
+ if( pHead ){
+ pNew->next = pHead;
+ pNew->prev = pHead->prev;
+ if( pHead->prev ){ pHead->prev->next = pNew; }
+ else { pH->first = pNew; }
+ pHead->prev = pNew;
+ }else{
+ pNew->next = pH->first;
+ if( pH->first ){ pH->first->prev = pNew; }
+ pNew->prev = 0;
+ pH->first = pNew;
+ }
+ pEntry->count++;
+ pEntry->chain = pNew;
+}
+
+
+/* Resize the hash table so that it cantains "new_size" buckets.
+** "new_size" must be a power of 2. The hash table might fail
+** to resize if sqlite3_malloc() fails.
+*/
+static void rehash(Hash *pH, int new_size){
+ struct _ht *new_ht; /* The new hash table */
+ HashElem *elem, *next_elem; /* For looping over existing elements */
+ int (*xHash)(const void*,int); /* The hash function */
+
+#ifdef SQLITE_MALLOC_SOFT_LIMIT
+ if( new_size*sizeof(struct _ht)>SQLITE_MALLOC_SOFT_LIMIT ){
+ new_size = SQLITE_MALLOC_SOFT_LIMIT/sizeof(struct _ht);
+ }
+ if( new_size==pH->htsize ) return;
+#endif
+
+ /* There is a call to sqlite3_malloc() inside rehash(). If there is
+ ** already an allocation at pH->ht, then if this malloc() fails it
+ ** is benign (since failing to resize a hash table is a performance
+ ** hit only, not a fatal error).
+ */
+ if( pH->htsize>0 ) sqlite3FaultBeginBenign(SQLITE_FAULTINJECTOR_MALLOC);
+ new_ht = (struct _ht *)sqlite3MallocZero( new_size*sizeof(struct _ht) );
+ if( pH->htsize>0 ) sqlite3FaultEndBenign(SQLITE_FAULTINJECTOR_MALLOC);
+
+ if( new_ht==0 ) return;
+ sqlite3_free(pH->ht);
+ pH->ht = new_ht;
+ pH->htsize = new_size;
+ xHash = hashFunction(pH->keyClass);
+ for(elem=pH->first, pH->first=0; elem; elem = next_elem){
+ int h = (*xHash)(elem->pKey, elem->nKey) & (new_size-1);
+ next_elem = elem->next;
+ insertElement(pH, &new_ht[h], elem);
+ }
+}
+
+/* This function (for internal use only) locates an element in an
+** hash table that matches the given key. The hash for this key has
+** already been computed and is passed as the 4th parameter.
+*/
+static HashElem *findElementGivenHash(
+ const Hash *pH, /* The pH to be searched */
+ const void *pKey, /* The key we are searching for */
+ int nKey,
+ int h /* The hash for this key. */
+){
+ HashElem *elem; /* Used to loop thru the element list */
+ int count; /* Number of elements left to test */
+ int (*xCompare)(const void*,int,const void*,int); /* comparison function */
+
+ if( pH->ht ){
+ struct _ht *pEntry = &pH->ht[h];
+ elem = pEntry->chain;
+ count = pEntry->count;
+ xCompare = compareFunction(pH->keyClass);
+ while( count-- && elem ){
+ if( (*xCompare)(elem->pKey,elem->nKey,pKey,nKey)==0 ){
+ return elem;
+ }
+ elem = elem->next;
+ }
+ }
+ return 0;
+}
+
+/* Remove a single entry from the hash table given a pointer to that
+** element and a hash on the element's key.
+*/
+static void removeElementGivenHash(
+ Hash *pH, /* The pH containing "elem" */
+ HashElem* elem, /* The element to be removed from the pH */
+ int h /* Hash value for the element */
+){
+ struct _ht *pEntry;
+ if( elem->prev ){
+ elem->prev->next = elem->next;
+ }else{
+ pH->first = elem->next;
+ }
+ if( elem->next ){
+ elem->next->prev = elem->prev;
+ }
+ pEntry = &pH->ht[h];
+ if( pEntry->chain==elem ){
+ pEntry->chain = elem->next;
+ }
+ pEntry->count--;
+ if( pEntry->count<=0 ){
+ pEntry->chain = 0;
+ }
+ if( pH->copyKey ){
+ sqlite3_free(elem->pKey);
+ }
+ sqlite3_free( elem );
+ pH->count--;
+ if( pH->count<=0 ){
+ assert( pH->first==0 );
+ assert( pH->count==0 );
+ sqlite3HashClear(pH);
+ }
+}
+
+/* Attempt to locate an element of the hash table pH with a key
+** that matches pKey,nKey. Return a pointer to the corresponding
+** HashElem structure for this element if it is found, or NULL
+** otherwise.
+*/
+SQLITE_PRIVATE HashElem *sqlite3HashFindElem(const Hash *pH, const void *pKey, int nKey){
+ int h; /* A hash on key */
+ HashElem *elem; /* The element that matches key */
+ int (*xHash)(const void*,int); /* The hash function */
+
+ if( pH==0 || pH->ht==0 ) return 0;
+ xHash = hashFunction(pH->keyClass);
+ assert( xHash!=0 );
+ h = (*xHash)(pKey,nKey);
+ elem = findElementGivenHash(pH,pKey,nKey, h % pH->htsize);
+ return elem;
+}
+
+/* Attempt to locate an element of the hash table pH with a key
+** that matches pKey,nKey. Return the data for this element if it is
+** found, or NULL if there is no match.
+*/
+SQLITE_PRIVATE void *sqlite3HashFind(const Hash *pH, const void *pKey, int nKey){
+ HashElem *elem; /* The element that matches key */
+ elem = sqlite3HashFindElem(pH, pKey, nKey);
+ return elem ? elem->data : 0;
+}
+
+/* Insert an element into the hash table pH. The key is pKey,nKey
+** and the data is "data".
+**
+** If no element exists with a matching key, then a new
+** element is created. A copy of the key is made if the copyKey
+** flag is set. NULL is returned.
+**
+** If another element already exists with the same key, then the
+** new data replaces the old data and the old data is returned.
+** The key is not copied in this instance. If a malloc fails, then
+** the new data is returned and the hash table is unchanged.
+**
+** If the "data" parameter to this function is NULL, then the
+** element corresponding to "key" is removed from the hash table.
+*/
+SQLITE_PRIVATE void *sqlite3HashInsert(Hash *pH, const void *pKey, int nKey, void *data){
+ int hraw; /* Raw hash value of the key */
+ int h; /* the hash of the key modulo hash table size */
+ HashElem *elem; /* Used to loop thru the element list */
+ HashElem *new_elem; /* New element added to the pH */
+ int (*xHash)(const void*,int); /* The hash function */
+
+ assert( pH!=0 );
+ xHash = hashFunction(pH->keyClass);
+ assert( xHash!=0 );
+ hraw = (*xHash)(pKey, nKey);
+ if( pH->htsize ){
+ h = hraw % pH->htsize;
+ elem = findElementGivenHash(pH,pKey,nKey,h);
+ if( elem ){
+ void *old_data = elem->data;
+ if( data==0 ){
+ removeElementGivenHash(pH,elem,h);
+ }else{
+ elem->data = data;
+ if( !pH->copyKey ){
+ elem->pKey = (void *)pKey;
+ }
+ assert(nKey==elem->nKey);
+ }
+ return old_data;
+ }
+ }
+ if( data==0 ) return 0;
+ new_elem = (HashElem*)sqlite3_malloc( sizeof(HashElem) );
+ if( new_elem==0 ) return data;
+ if( pH->copyKey && pKey!=0 ){
+ new_elem->pKey = sqlite3_malloc( nKey );
+ if( new_elem->pKey==0 ){
+ sqlite3_free(new_elem);
+ return data;
+ }
+ memcpy((void*)new_elem->pKey, pKey, nKey);
+ }else{
+ new_elem->pKey = (void*)pKey;
+ }
+ new_elem->nKey = nKey;
+ pH->count++;
+ if( pH->htsize==0 ){
+ rehash(pH, 128/sizeof(pH->ht[0]));
+ if( pH->htsize==0 ){
+ pH->count = 0;
+ if( pH->copyKey ){
+ sqlite3_free(new_elem->pKey);
+ }
+ sqlite3_free(new_elem);
+ return data;
+ }
+ }
+ if( pH->count > pH->htsize ){
+ rehash(pH,pH->htsize*2);
+ }
+ assert( pH->htsize>0 );
+ h = hraw % pH->htsize;
+ insertElement(pH, &pH->ht[h], new_elem);
+ new_elem->data = data;
+ return 0;
+}
+
+/************** End of hash.c ************************************************/
+/************** Begin file opcodes.c *****************************************/
+/* Automatically generated. Do not edit */
+/* See the mkopcodec.awk script for details. */
+#if !defined(SQLITE_OMIT_EXPLAIN) || !defined(NDEBUG) || defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
+SQLITE_PRIVATE const char *sqlite3OpcodeName(int i){
+ static const char *const azName[] = { "?",
+ /* 1 */ "VNext",
+ /* 2 */ "Affinity",
+ /* 3 */ "Column",
+ /* 4 */ "SetCookie",
+ /* 5 */ "Sequence",
+ /* 6 */ "MoveGt",
+ /* 7 */ "RowKey",
+ /* 8 */ "SCopy",
+ /* 9 */ "OpenWrite",
+ /* 10 */ "If",
+ /* 11 */ "VRowid",
+ /* 12 */ "CollSeq",
+ /* 13 */ "OpenRead",
+ /* 14 */ "Expire",
+ /* 15 */ "AutoCommit",
+ /* 16 */ "Not",
+ /* 17 */ "IntegrityCk",
+ /* 18 */ "Sort",
+ /* 19 */ "Copy",
+ /* 20 */ "Trace",
+ /* 21 */ "Function",
+ /* 22 */ "IfNeg",
+ /* 23 */ "Noop",
+ /* 24 */ "Return",
+ /* 25 */ "NewRowid",
+ /* 26 */ "Variable",
+ /* 27 */ "String",
+ /* 28 */ "RealAffinity",
+ /* 29 */ "VRename",
+ /* 30 */ "ParseSchema",
+ /* 31 */ "VOpen",
+ /* 32 */ "Close",
+ /* 33 */ "CreateIndex",
+ /* 34 */ "IsUnique",
+ /* 35 */ "NotFound",
+ /* 36 */ "Int64",
+ /* 37 */ "MustBeInt",
+ /* 38 */ "Halt",
+ /* 39 */ "Rowid",
+ /* 40 */ "IdxLT",
+ /* 41 */ "AddImm",
+ /* 42 */ "Statement",
+ /* 43 */ "RowData",
+ /* 44 */ "MemMax",
+ /* 45 */ "NotExists",
+ /* 46 */ "Gosub",
+ /* 47 */ "Integer",
+ /* 48 */ "Prev",
+ /* 49 */ "VColumn",
+ /* 50 */ "CreateTable",
+ /* 51 */ "Last",
+ /* 52 */ "IncrVacuum",
+ /* 53 */ "IdxRowid",
+ /* 54 */ "ResetCount",
+ /* 55 */ "FifoWrite",
+ /* 56 */ "ContextPush",
+ /* 57 */ "DropTrigger",
+ /* 58 */ "DropIndex",
+ /* 59 */ "IdxGE",
+ /* 60 */ "Or",
+ /* 61 */ "And",
+ /* 62 */ "IdxDelete",
+ /* 63 */ "Vacuum",
+ /* 64 */ "MoveLe",
+ /* 65 */ "IsNull",
+ /* 66 */ "NotNull",
+ /* 67 */ "Ne",
+ /* 68 */ "Eq",
+ /* 69 */ "Gt",
+ /* 70 */ "Le",
+ /* 71 */ "Lt",
+ /* 72 */ "Ge",
+ /* 73 */ "IfNot",
+ /* 74 */ "BitAnd",
+ /* 75 */ "BitOr",
+ /* 76 */ "ShiftLeft",
+ /* 77 */ "ShiftRight",
+ /* 78 */ "Add",
+ /* 79 */ "Subtract",
+ /* 80 */ "Multiply",
+ /* 81 */ "Divide",
+ /* 82 */ "Remainder",
+ /* 83 */ "Concat",
+ /* 84 */ "DropTable",
+ /* 85 */ "MakeRecord",
+ /* 86 */ "ResultRow",
+ /* 87 */ "BitNot",
+ /* 88 */ "String8",
+ /* 89 */ "Delete",
+ /* 90 */ "AggFinal",
+ /* 91 */ "Goto",
+ /* 92 */ "TableLock",
+ /* 93 */ "FifoRead",
+ /* 94 */ "Clear",
+ /* 95 */ "MoveLt",
+ /* 96 */ "VerifyCookie",
+ /* 97 */ "AggStep",
+ /* 98 */ "SetNumColumns",
+ /* 99 */ "Transaction",
+ /* 100 */ "VFilter",
+ /* 101 */ "VDestroy",
+ /* 102 */ "ContextPop",
+ /* 103 */ "Next",
+ /* 104 */ "IdxInsert",
+ /* 105 */ "Insert",
+ /* 106 */ "Destroy",
+ /* 107 */ "ReadCookie",
+ /* 108 */ "ForceInt",
+ /* 109 */ "LoadAnalysis",
+ /* 110 */ "Explain",
+ /* 111 */ "OpenPseudo",
+ /* 112 */ "OpenEphemeral",
+ /* 113 */ "Null",
+ /* 114 */ "Move",
+ /* 115 */ "Blob",
+ /* 116 */ "Rewind",
+ /* 117 */ "MoveGe",
+ /* 118 */ "VBegin",
+ /* 119 */ "VUpdate",
+ /* 120 */ "IfZero",
+ /* 121 */ "VCreate",
+ /* 122 */ "Found",
+ /* 123 */ "IfPos",
+ /* 124 */ "NullRow",
+ /* 125 */ "Real",
+ /* 126 */ "NotUsed_126",
+ /* 127 */ "NotUsed_127",
+ /* 128 */ "NotUsed_128",
+ /* 129 */ "NotUsed_129",
+ /* 130 */ "NotUsed_130",
+ /* 131 */ "NotUsed_131",
+ /* 132 */ "NotUsed_132",
+ /* 133 */ "NotUsed_133",
+ /* 134 */ "NotUsed_134",
+ /* 135 */ "NotUsed_135",
+ /* 136 */ "NotUsed_136",
+ /* 137 */ "NotUsed_137",
+ /* 138 */ "ToText",
+ /* 139 */ "ToBlob",
+ /* 140 */ "ToNumeric",
+ /* 141 */ "ToInt",
+ /* 142 */ "ToReal",
+ };
+ return azName[i];
+}
+#endif
+
+/************** End of opcodes.c *********************************************/
+/************** Begin file os_os2.c ******************************************/
+/*
+** 2006 Feb 14
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+** This file contains code that is specific to OS/2.
+*/
+
+
+#if OS_OS2
+
+/*
+** A Note About Memory Allocation:
+**
+** This driver uses malloc()/free() directly rather than going through
+** the SQLite-wrappers sqlite3_malloc()/sqlite3_free(). Those wrappers
+** are designed for use on embedded systems where memory is scarce and
+** malloc failures happen frequently. OS/2 does not typically run on
+** embedded systems, and when it does the developers normally have bigger
+** problems to worry about than running out of memory. So there is not
+** a compelling need to use the wrappers.
+**
+** But there is a good reason to not use the wrappers. If we use the
+** wrappers then we will get simulated malloc() failures within this
+** driver. And that causes all kinds of problems for our tests. We
+** could enhance SQLite to deal with simulated malloc failures within
+** the OS driver, but the code to deal with those failure would not
+** be exercised on Linux (which does not need to malloc() in the driver)
+** and so we would have difficulty writing coverage tests for that
+** code. Better to leave the code out, we think.
+**
+** The point of this discussion is as follows: When creating a new
+** OS layer for an embedded system, if you use this file as an example,
+** avoid the use of malloc()/free(). Those routines work ok on OS/2
+** desktops but not so well in embedded systems.
+*/
+
+/*
+** Macros used to determine whether or not to use threads.
+*/
+#if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE
+# define SQLITE_OS2_THREADS 1
+#endif
+
+/*
+** Include code that is common to all os_*.c files
+*/
+/************** Include os_common.h in the middle of os_os2.c ****************/
+/************** Begin file os_common.h ***************************************/
+/*
+** 2004 May 22
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+** This file contains macros and a little bit of code that is common to
+** all of the platform-specific files (os_*.c) and is #included into those
+** files.
+**
+** This file should be #included by the os_*.c files only. It is not a
+** general purpose header file.
+*/
+
+/*
+** At least two bugs have slipped in because we changed the MEMORY_DEBUG
+** macro to SQLITE_DEBUG and some older makefiles have not yet made the
+** switch. The following code should catch this problem at compile-time.
+*/
+#ifdef MEMORY_DEBUG
+# error "The MEMORY_DEBUG macro is obsolete. Use SQLITE_DEBUG instead."
+#endif
+
+
+/*
+ * When testing, this global variable stores the location of the
+ * pending-byte in the database file.
+ */
+#ifdef SQLITE_TEST
+SQLITE_API unsigned int sqlite3_pending_byte = 0x40000000;
+#endif
+
+#ifdef SQLITE_DEBUG
+SQLITE_PRIVATE int sqlite3OSTrace = 0;
+#define OSTRACE1(X) if( sqlite3OSTrace ) sqlite3DebugPrintf(X)
+#define OSTRACE2(X,Y) if( sqlite3OSTrace ) sqlite3DebugPrintf(X,Y)
+#define OSTRACE3(X,Y,Z) if( sqlite3OSTrace ) sqlite3DebugPrintf(X,Y,Z)
+#define OSTRACE4(X,Y,Z,A) if( sqlite3OSTrace ) sqlite3DebugPrintf(X,Y,Z,A)
+#define OSTRACE5(X,Y,Z,A,B) if( sqlite3OSTrace ) sqlite3DebugPrintf(X,Y,Z,A,B)
+#define OSTRACE6(X,Y,Z,A,B,C) \
+ if(sqlite3OSTrace) sqlite3DebugPrintf(X,Y,Z,A,B,C)
+#define OSTRACE7(X,Y,Z,A,B,C,D) \
+ if(sqlite3OSTrace) sqlite3DebugPrintf(X,Y,Z,A,B,C,D)
+#else
+#define OSTRACE1(X)
+#define OSTRACE2(X,Y)
+#define OSTRACE3(X,Y,Z)
+#define OSTRACE4(X,Y,Z,A)
+#define OSTRACE5(X,Y,Z,A,B)
+#define OSTRACE6(X,Y,Z,A,B,C)
+#define OSTRACE7(X,Y,Z,A,B,C,D)
+#endif
+
+/*
+** Macros for performance tracing. Normally turned off. Only works
+** on i486 hardware.
+*/
+#ifdef SQLITE_PERFORMANCE_TRACE
+__inline__ unsigned long long int hwtime(void){
+ unsigned long long int x;
+ __asm__("rdtsc\n\t"
+ "mov %%edx, %%ecx\n\t"
+ :"=A" (x));
+ return x;
+}
+static unsigned long long int g_start;
+static unsigned int elapse;
+#define TIMER_START g_start=hwtime()
+#define TIMER_END elapse=hwtime()-g_start
+#define TIMER_ELAPSED elapse
+#else
+#define TIMER_START
+#define TIMER_END
+#define TIMER_ELAPSED 0
+#endif
+
+/*
+** If we compile with the SQLITE_TEST macro set, then the following block
+** of code will give us the ability to simulate a disk I/O error. This
+** is used for testing the I/O recovery logic.
+*/
+#ifdef SQLITE_TEST
+SQLITE_API int sqlite3_io_error_hit = 0; /* Total number of I/O Errors */
+SQLITE_API int sqlite3_io_error_hardhit = 0; /* Number of non-benign errors */
+SQLITE_API int sqlite3_io_error_pending = 0; /* Count down to first I/O error */
+SQLITE_API int sqlite3_io_error_persist = 0; /* True if I/O errors persist */
+SQLITE_API int sqlite3_io_error_benign = 0; /* True if errors are benign */
+SQLITE_API int sqlite3_diskfull_pending = 0;
+SQLITE_API int sqlite3_diskfull = 0;
+#define SimulateIOErrorBenign(X) sqlite3_io_error_benign=(X)
+#define SimulateIOError(CODE) \
+ if( (sqlite3_io_error_persist && sqlite3_io_error_hit) \
+ || sqlite3_io_error_pending-- == 1 ) \
+ { local_ioerr(); CODE; }
+static void local_ioerr(){
+ IOTRACE(("IOERR\n"));
+ sqlite3_io_error_hit++;
+ if( !sqlite3_io_error_benign ) sqlite3_io_error_hardhit++;
+}
+#define SimulateDiskfullError(CODE) \
+ if( sqlite3_diskfull_pending ){ \
+ if( sqlite3_diskfull_pending == 1 ){ \
+ local_ioerr(); \
+ sqlite3_diskfull = 1; \
+ sqlite3_io_error_hit = 1; \
+ CODE; \
+ }else{ \
+ sqlite3_diskfull_pending--; \
+ } \
+ }
+#else
+#define SimulateIOErrorBenign(X)
+#define SimulateIOError(A)
+#define SimulateDiskfullError(A)
+#endif
+
+/*
+** When testing, keep a count of the number of open files.
+*/
+#ifdef SQLITE_TEST
+SQLITE_API int sqlite3_open_file_count = 0;
+#define OpenCounter(X) sqlite3_open_file_count+=(X)
+#else
+#define OpenCounter(X)
+#endif
+
+/************** End of os_common.h *******************************************/
+/************** Continuing where we left off in os_os2.c *********************/
+
+/*
+** The os2File structure is subclass of sqlite3_file specific for the OS/2
+** protability layer.
+*/
+typedef struct os2File os2File;
+struct os2File {
+ const sqlite3_io_methods *pMethod; /* Always the first entry */
+ HFILE h; /* Handle for accessing the file */
+ char* pathToDel; /* Name of file to delete on close, NULL if not */
+ unsigned char locktype; /* Type of lock currently held on this file */
+};
+
+#define LOCK_TIMEOUT 10L /* the default locking timeout */
+
+/*****************************************************************************
+** The next group of routines implement the I/O methods specified
+** by the sqlite3_io_methods object.
+******************************************************************************/
+
+/*
+** Close a file.
+*/
+int os2Close( sqlite3_file *id ){
+ APIRET rc = NO_ERROR;
+ os2File *pFile;
+ if( id && (pFile = (os2File*)id) != 0 ){
+ OSTRACE2( "CLOSE %d\n", pFile->h );
+ rc = DosClose( pFile->h );
+ pFile->locktype = NO_LOCK;
+ if( pFile->pathToDel != NULL ){
+ rc = DosForceDelete( (PSZ)pFile->pathToDel );
+ free( pFile->pathToDel );
+ pFile->pathToDel = NULL;
+ }
+ id = 0;
+ OpenCounter( -1 );
+ }
+
+ return rc == NO_ERROR ? SQLITE_OK : SQLITE_IOERR;
+}
+
+/*
+** Read data from a file into a buffer. Return SQLITE_OK if all
+** bytes were read successfully and SQLITE_IOERR if anything goes
+** wrong.
+*/
+int os2Read(
+ sqlite3_file *id, /* File to read from */
+ void *pBuf, /* Write content into this buffer */
+ int amt, /* Number of bytes to read */
+ sqlite3_int64 offset /* Begin reading at this offset */
+){
+ ULONG fileLocation = 0L;
+ ULONG got;
+ os2File *pFile = (os2File*)id;
+ assert( id!=0 );
+ SimulateIOError( return SQLITE_IOERR_READ );
+ OSTRACE3( "READ %d lock=%d\n", pFile->h, pFile->locktype );
+ if( DosSetFilePtr(pFile->h, offset, FILE_BEGIN, &fileLocation) != NO_ERROR ){
+ return SQLITE_IOERR;
+ }
+ if( DosRead( pFile->h, pBuf, amt, &got ) != NO_ERROR ){
+ return SQLITE_IOERR_READ;
+ }
+ if( got == (ULONG)amt )
+ return SQLITE_OK;
+ else {
+ memset(&((char*)pBuf)[got], 0, amt-got);
+ return SQLITE_IOERR_SHORT_READ;
+ }
+}
+
+/*
+** Write data from a buffer into a file. Return SQLITE_OK on success
+** or some other error code on failure.
+*/
+int os2Write(
+ sqlite3_file *id, /* File to write into */
+ const void *pBuf, /* The bytes to be written */
+ int amt, /* Number of bytes to write */
+ sqlite3_int64 offset /* Offset into the file to begin writing at */
+){
+ ULONG fileLocation = 0L;
+ APIRET rc = NO_ERROR;
+ ULONG wrote;
+ os2File *pFile = (os2File*)id;
+ assert( id!=0 );
+ SimulateIOError( return SQLITE_IOERR_WRITE );
+ SimulateDiskfullError( return SQLITE_FULL );
+ OSTRACE3( "WRITE %d lock=%d\n", pFile->h, pFile->locktype );
+ if( DosSetFilePtr(pFile->h, offset, FILE_BEGIN, &fileLocation) != NO_ERROR ){
+ return SQLITE_IOERR;
+ }
+ assert( amt>0 );
+ while( amt > 0 &&
+ ( rc = DosWrite( pFile->h, (PVOID)pBuf, amt, &wrote ) ) == NO_ERROR &&
+ wrote > 0
+ ){
+ amt -= wrote;
+ pBuf = &((char*)pBuf)[wrote];
+ }
+
+ return ( rc != NO_ERROR || amt > (int)wrote ) ? SQLITE_FULL : SQLITE_OK;
+}
+
+/*
+** Truncate an open file to a specified size
+*/
+int os2Truncate( sqlite3_file *id, i64 nByte ){
+ APIRET rc = NO_ERROR;
+ os2File *pFile = (os2File*)id;
+ OSTRACE3( "TRUNCATE %d %lld\n", pFile->h, nByte );
+ SimulateIOError( return SQLITE_IOERR_TRUNCATE );
+ rc = DosSetFileSize( pFile->h, nByte );
+ return rc == NO_ERROR ? SQLITE_OK : SQLITE_IOERR;
+}
+
+#ifdef SQLITE_TEST
+/*
+** Count the number of fullsyncs and normal syncs. This is used to test
+** that syncs and fullsyncs are occuring at the right times.
+*/
+SQLITE_API int sqlite3_sync_count = 0;
+SQLITE_API int sqlite3_fullsync_count = 0;
+#endif
+
+/*
+** Make sure all writes to a particular file are committed to disk.
+*/
+int os2Sync( sqlite3_file *id, int flags ){
+ os2File *pFile = (os2File*)id;
+ OSTRACE3( "SYNC %d lock=%d\n", pFile->h, pFile->locktype );
+#ifdef SQLITE_TEST
+ if( flags & SQLITE_SYNC_FULL){
+ sqlite3_fullsync_count++;
+ }
+ sqlite3_sync_count++;
+#endif
+ return DosResetBuffer( pFile->h ) == NO_ERROR ? SQLITE_OK : SQLITE_IOERR;
+}
+
+/*
+** Determine the current size of a file in bytes
+*/
+int os2FileSize( sqlite3_file *id, sqlite3_int64 *pSize ){
+ APIRET rc = NO_ERROR;
+ FILESTATUS3 fsts3FileInfo;
+ memset(&fsts3FileInfo, 0, sizeof(fsts3FileInfo));
+ assert( id!=0 );
+ SimulateIOError( return SQLITE_IOERR );
+ rc = DosQueryFileInfo( ((os2File*)id)->h, FIL_STANDARD, &fsts3FileInfo, sizeof(FILESTATUS3) );
+ if( rc == NO_ERROR ){
+ *pSize = fsts3FileInfo.cbFile;
+ return SQLITE_OK;
+ }else{
+ return SQLITE_IOERR;
+ }
+}
+
+/*
+** Acquire a reader lock.
+*/
+static int getReadLock( os2File *pFile ){
+ FILELOCK LockArea,
+ UnlockArea;
+ APIRET res;
+ memset(&LockArea, 0, sizeof(LockArea));
+ memset(&UnlockArea, 0, sizeof(UnlockArea));
+ LockArea.lOffset = SHARED_FIRST;
+ LockArea.lRange = SHARED_SIZE;
+ UnlockArea.lOffset = 0L;
+ UnlockArea.lRange = 0L;
+ res = DosSetFileLocks( pFile->h, &UnlockArea, &LockArea, LOCK_TIMEOUT, 1L );
+ OSTRACE3( "GETREADLOCK %d res=%d\n", pFile->h, res );
+ return res;
+}
+
+/*
+** Undo a readlock
+*/
+static int unlockReadLock( os2File *id ){
+ FILELOCK LockArea,
+ UnlockArea;
+ APIRET res;
+ memset(&LockArea, 0, sizeof(LockArea));
+ memset(&UnlockArea, 0, sizeof(UnlockArea));
+ LockArea.lOffset = 0L;
+ LockArea.lRange = 0L;
+ UnlockArea.lOffset = SHARED_FIRST;
+ UnlockArea.lRange = SHARED_SIZE;
+ res = DosSetFileLocks( id->h, &UnlockArea, &LockArea, LOCK_TIMEOUT, 1L );
+ OSTRACE3( "UNLOCK-READLOCK file handle=%d res=%d?\n", id->h, res );
+ return res;
+}
+
+/*
+** Lock the file with the lock specified by parameter locktype - one
+** of the following:
+**
+** (1) SHARED_LOCK
+** (2) RESERVED_LOCK
+** (3) PENDING_LOCK
+** (4) EXCLUSIVE_LOCK
+**
+** Sometimes when requesting one lock state, additional lock states
+** are inserted in between. The locking might fail on one of the later
+** transitions leaving the lock state different from what it started but
+** still short of its goal. The following chart shows the allowed
+** transitions and the inserted intermediate states:
+**
+** UNLOCKED -> SHARED
+** SHARED -> RESERVED
+** SHARED -> (PENDING) -> EXCLUSIVE
+** RESERVED -> (PENDING) -> EXCLUSIVE
+** PENDING -> EXCLUSIVE
+**
+** This routine will only increase a lock. The os2Unlock() routine
+** erases all locks at once and returns us immediately to locking level 0.
+** It is not possible to lower the locking level one step at a time. You
+** must go straight to locking level 0.
+*/
+int os2Lock( sqlite3_file *id, int locktype ){
+ int rc = SQLITE_OK; /* Return code from subroutines */
+ APIRET res = NO_ERROR; /* Result of an OS/2 lock call */
+ int newLocktype; /* Set pFile->locktype to this value before exiting */
+ int gotPendingLock = 0;/* True if we acquired a PENDING lock this time */
+ FILELOCK LockArea,
+ UnlockArea;
+ os2File *pFile = (os2File*)id;
+ memset(&LockArea, 0, sizeof(LockArea));
+ memset(&UnlockArea, 0, sizeof(UnlockArea));
+ assert( pFile!=0 );
+ OSTRACE4( "LOCK %d %d was %d\n", pFile->h, locktype, pFile->locktype );
+
+ /* If there is already a lock of this type or more restrictive on the
+ ** os2File, do nothing. Don't use the end_lock: exit path, as
+ ** sqlite3_mutex_enter() hasn't been called yet.
+ */
+ if( pFile->locktype>=locktype ){
+ OSTRACE3( "LOCK %d %d ok (already held)\n", pFile->h, locktype );
+ return SQLITE_OK;
+ }
+
+ /* Make sure the locking sequence is correct
+ */
+ assert( pFile->locktype!=NO_LOCK || locktype==SHARED_LOCK );
+ assert( locktype!=PENDING_LOCK );
+ assert( locktype!=RESERVED_LOCK || pFile->locktype==SHARED_LOCK );
+
+ /* Lock the PENDING_LOCK byte if we need to acquire a PENDING lock or
+ ** a SHARED lock. If we are acquiring a SHARED lock, the acquisition of
+ ** the PENDING_LOCK byte is temporary.
+ */
+ newLocktype = pFile->locktype;
+ if( pFile->locktype==NO_LOCK
+ || (locktype==EXCLUSIVE_LOCK && pFile->locktype==RESERVED_LOCK)
+ ){
+ LockArea.lOffset = PENDING_BYTE;
+ LockArea.lRange = 1L;
+ UnlockArea.lOffset = 0L;
+ UnlockArea.lRange = 0L;
+
+ /* wait longer than LOCK_TIMEOUT here not to have to try multiple times */
+ res = DosSetFileLocks( pFile->h, &UnlockArea, &LockArea, 100L, 0L );
+ if( res == NO_ERROR ){
+ gotPendingLock = 1;
+ OSTRACE3( "LOCK %d pending lock boolean set. res=%d\n", pFile->h, res );
+ }
+ }
+
+ /* Acquire a shared lock
+ */
+ if( locktype==SHARED_LOCK && res == NO_ERROR ){
+ assert( pFile->locktype==NO_LOCK );
+ res = getReadLock(pFile);
+ if( res == NO_ERROR ){
+ newLocktype = SHARED_LOCK;
+ }
+ OSTRACE3( "LOCK %d acquire shared lock. res=%d\n", pFile->h, res );
+ }
+
+ /* Acquire a RESERVED lock
+ */
+ if( locktype==RESERVED_LOCK && res == NO_ERROR ){
+ assert( pFile->locktype==SHARED_LOCK );
+ LockArea.lOffset = RESERVED_BYTE;
+ LockArea.lRange = 1L;
+ UnlockArea.lOffset = 0L;
+ UnlockArea.lRange = 0L;
+ res = DosSetFileLocks( pFile->h, &UnlockArea, &LockArea, LOCK_TIMEOUT, 0L );
+ if( res == NO_ERROR ){
+ newLocktype = RESERVED_LOCK;
+ }
+ OSTRACE3( "LOCK %d acquire reserved lock. res=%d\n", pFile->h, res );
+ }
+
+ /* Acquire a PENDING lock
+ */
+ if( locktype==EXCLUSIVE_LOCK && res == NO_ERROR ){
+ newLocktype = PENDING_LOCK;
+ gotPendingLock = 0;
+ OSTRACE2( "LOCK %d acquire pending lock. pending lock boolean unset.\n", pFile->h );
+ }
+
+ /* Acquire an EXCLUSIVE lock
+ */
+ if( locktype==EXCLUSIVE_LOCK && res == NO_ERROR ){
+ assert( pFile->locktype>=SHARED_LOCK );
+ res = unlockReadLock(pFile);
+ OSTRACE2( "unreadlock = %d\n", res );
+ LockArea.lOffset = SHARED_FIRST;
+ LockArea.lRange = SHARED_SIZE;
+ UnlockArea.lOffset = 0L;
+ UnlockArea.lRange = 0L;
+ res = DosSetFileLocks( pFile->h, &UnlockArea, &LockArea, LOCK_TIMEOUT, 0L );
+ if( res == NO_ERROR ){
+ newLocktype = EXCLUSIVE_LOCK;
+ }else{
+ OSTRACE2( "OS/2 error-code = %d\n", res );
+ getReadLock(pFile);
+ }
+ OSTRACE3( "LOCK %d acquire exclusive lock. res=%d\n", pFile->h, res );
+ }
+
+ /* If we are holding a PENDING lock that ought to be released, then
+ ** release it now.
+ */
+ if( gotPendingLock && locktype==SHARED_LOCK ){
+ int r;
+ LockArea.lOffset = 0L;
+ LockArea.lRange = 0L;
+ UnlockArea.lOffset = PENDING_BYTE;
+ UnlockArea.lRange = 1L;
+ r = DosSetFileLocks( pFile->h, &UnlockArea, &LockArea, LOCK_TIMEOUT, 0L );
+ OSTRACE3( "LOCK %d unlocking pending/is shared. r=%d\n", pFile->h, r );
+ }
+
+ /* Update the state of the lock has held in the file descriptor then
+ ** return the appropriate result code.
+ */
+ if( res == NO_ERROR ){
+ rc = SQLITE_OK;
+ }else{
+ OSTRACE4( "LOCK FAILED %d trying for %d but got %d\n", pFile->h,
+ locktype, newLocktype );
+ rc = SQLITE_BUSY;
+ }
+ pFile->locktype = newLocktype;
+ OSTRACE3( "LOCK %d now %d\n", pFile->h, pFile->locktype );
+ return rc;
+}
+
+/*
+** This routine checks if there is a RESERVED lock held on the specified
+** file by this or any other process. If such a lock is held, return
+** non-zero, otherwise zero.
+*/
+int os2CheckReservedLock( sqlite3_file *id ){
+ int r = 0;
+ os2File *pFile = (os2File*)id;
+ assert( pFile!=0 );
+ if( pFile->locktype>=RESERVED_LOCK ){
+ r = 1;
+ OSTRACE3( "TEST WR-LOCK %d %d (local)\n", pFile->h, r );
+ }else{
+ FILELOCK LockArea,
+ UnlockArea;
+ APIRET rc = NO_ERROR;
+ memset(&LockArea, 0, sizeof(LockArea));
+ memset(&UnlockArea, 0, sizeof(UnlockArea));
+ LockArea.lOffset = RESERVED_BYTE;
+ LockArea.lRange = 1L;
+ UnlockArea.lOffset = 0L;
+ UnlockArea.lRange = 0L;
+ rc = DosSetFileLocks( pFile->h, &UnlockArea, &LockArea, LOCK_TIMEOUT, 0L );
+ OSTRACE3( "TEST WR-LOCK %d lock reserved byte rc=%d\n", pFile->h, rc );
+ if( rc == NO_ERROR ){
+ APIRET rcu = NO_ERROR; /* return code for unlocking */
+ LockArea.lOffset = 0L;
+ LockArea.lRange = 0L;
+ UnlockArea.lOffset = RESERVED_BYTE;
+ UnlockArea.lRange = 1L;
+ rcu = DosSetFileLocks( pFile->h, &UnlockArea, &LockArea, LOCK_TIMEOUT, 0L );
+ OSTRACE3( "TEST WR-LOCK %d unlock reserved byte r=%d\n", pFile->h, rcu );
+ }
+ r = !(rc == NO_ERROR);
+ OSTRACE3( "TEST WR-LOCK %d %d (remote)\n", pFile->h, r );
+ }
+ return r;
+}
+
+/*
+** Lower the locking level on file descriptor id to locktype. locktype
+** must be either NO_LOCK or SHARED_LOCK.
+**
+** If the locking level of the file descriptor is already at or below
+** the requested locking level, this routine is a no-op.
+**
+** It is not possible for this routine to fail if the second argument
+** is NO_LOCK. If the second argument is SHARED_LOCK then this routine
+** might return SQLITE_IOERR;
+*/
+int os2Unlock( sqlite3_file *id, int locktype ){
+ int type;
+ os2File *pFile = (os2File*)id;
+ APIRET rc = SQLITE_OK;
+ APIRET res = NO_ERROR;
+ FILELOCK LockArea,
+ UnlockArea;
+ memset(&LockArea, 0, sizeof(LockArea));
+ memset(&UnlockArea, 0, sizeof(UnlockArea));
+ assert( pFile!=0 );
+ assert( locktype<=SHARED_LOCK );
+ OSTRACE4( "UNLOCK %d to %d was %d\n", pFile->h, locktype, pFile->locktype );
+ type = pFile->locktype;
+ if( type>=EXCLUSIVE_LOCK ){
+ LockArea.lOffset = 0L;
+ LockArea.lRange = 0L;
+ UnlockArea.lOffset = SHARED_FIRST;
+ UnlockArea.lRange = SHARED_SIZE;
+ res = DosSetFileLocks( pFile->h, &UnlockArea, &LockArea, LOCK_TIMEOUT, 0L );
+ OSTRACE3( "UNLOCK %d exclusive lock res=%d\n", pFile->h, res );
+ if( locktype==SHARED_LOCK && getReadLock(pFile) != NO_ERROR ){
+ /* This should never happen. We should always be able to
+ ** reacquire the read lock */
+ OSTRACE3( "UNLOCK %d to %d getReadLock() failed\n", pFile->h, locktype );
+ rc = SQLITE_IOERR_UNLOCK;
+ }
+ }
+ if( type>=RESERVED_LOCK ){
+ LockArea.lOffset = 0L;
+ LockArea.lRange = 0L;
+ UnlockArea.lOffset = RESERVED_BYTE;
+ UnlockArea.lRange = 1L;
+ res = DosSetFileLocks( pFile->h, &UnlockArea, &LockArea, LOCK_TIMEOUT, 0L );
+ OSTRACE3( "UNLOCK %d reserved res=%d\n", pFile->h, res );
+ }
+ if( locktype==NO_LOCK && type>=SHARED_LOCK ){
+ res = unlockReadLock(pFile);
+ OSTRACE5( "UNLOCK %d is %d want %d res=%d\n", pFile->h, type, locktype, res );
+ }
+ if( type>=PENDING_LOCK ){
+ LockArea.lOffset = 0L;
+ LockArea.lRange = 0L;
+ UnlockArea.lOffset = PENDING_BYTE;
+ UnlockArea.lRange = 1L;
+ res = DosSetFileLocks( pFile->h, &UnlockArea, &LockArea, LOCK_TIMEOUT, 0L );
+ OSTRACE3( "UNLOCK %d pending res=%d\n", pFile->h, res );
+ }
+ pFile->locktype = locktype;
+ OSTRACE3( "UNLOCK %d now %d\n", pFile->h, pFile->locktype );
+ return rc;
+}
+
+/*
+** Control and query of the open file handle.
+*/
+static int os2FileControl(sqlite3_file *id, int op, void *pArg){
+ switch( op ){
+ case SQLITE_FCNTL_LOCKSTATE: {
+ *(int*)pArg = ((os2File*)id)->locktype;
+ OSTRACE3( "FCNTL_LOCKSTATE %d lock=%d\n", ((os2File*)id)->h, ((os2File*)id)->locktype );
+ return SQLITE_OK;
+ }
+ }
+ return SQLITE_ERROR;
+}
+
+/*
+** Return the sector size in bytes of the underlying block device for
+** the specified file. This is almost always 512 bytes, but may be
+** larger for some devices.
+**
+** SQLite code assumes this function cannot fail. It also assumes that
+** if two files are created in the same file-system directory (i.e.
+** a database and its journal file) that the sector size will be the
+** same for both.
+*/
+static int os2SectorSize(sqlite3_file *id){
+ return SQLITE_DEFAULT_SECTOR_SIZE;
+}
+
+/*
+** Return a vector of device characteristics.
+*/
+static int os2DeviceCharacteristics(sqlite3_file *id){
+ return 0;
+}
+
+/*
+** Helper function to convert UTF-8 filenames to local OS/2 codepage.
+** The two-step process: first convert the incoming UTF-8 string
+** into UCS-2 and then from UCS-2 to the current codepage.
+** The returned char pointer has to be freed.
+*/
+char *convertUtf8PathToCp(const char *in)
+{
+ UconvObject uconv;
+ UniChar ucsUtf8Cp[12],
+ tempPath[CCHMAXPATH];
+ char *out;
+ int rc = 0;
+
+ out = (char *)calloc(CCHMAXPATH, 1);
+
+ /* determine string for the conversion of UTF-8 which is CP1208 */
+ rc = UniMapCpToUcsCp(1208, ucsUtf8Cp, 12);
+ rc = UniCreateUconvObject(ucsUtf8Cp, &uconv);
+ rc = UniStrToUcs(uconv, tempPath, (char *)in, CCHMAXPATH);
+ rc = UniFreeUconvObject(uconv);
+
+ /* conversion for current codepage which can be used for paths */
+ rc = UniCreateUconvObject((UniChar *)L"@path=yes", &uconv);
+ rc = UniStrFromUcs(uconv, out, tempPath, CCHMAXPATH);
+ rc = UniFreeUconvObject(uconv);
+
+ return out;
+}
+
+/*
+** Helper function to convert filenames from local codepage to UTF-8.
+** The two-step process: first convert the incoming codepage-specific
+** string into UCS-2 and then from UCS-2 to the codepage of UTF-8.
+** The returned char pointer has to be freed.
+*/
+char *convertCpPathToUtf8(const char *in)
+{
+ UconvObject uconv;
+ UniChar ucsUtf8Cp[12],
+ tempPath[CCHMAXPATH];
+ char *out;
+ int rc = 0;
+
+ out = (char *)calloc(CCHMAXPATH, 1);
+
+ /* conversion for current codepage which can be used for paths */
+ rc = UniCreateUconvObject((UniChar *)L"@path=yes", &uconv);
+ rc = UniStrToUcs(uconv, tempPath, (char *)in, CCHMAXPATH);
+ rc = UniFreeUconvObject(uconv);
+
+ /* determine string for the conversion of UTF-8 which is CP1208 */
+ rc = UniMapCpToUcsCp(1208, ucsUtf8Cp, 12);
+ rc = UniCreateUconvObject(ucsUtf8Cp, &uconv);
+ rc = UniStrFromUcs(uconv, out, tempPath, CCHMAXPATH);
+ rc = UniFreeUconvObject(uconv);
+
+ return out;
+}
+
+/*
+** This vector defines all the methods that can operate on an
+** sqlite3_file for os2.
+*/
+static const sqlite3_io_methods os2IoMethod = {
+ 1, /* iVersion */
+ os2Close,
+ os2Read,
+ os2Write,
+ os2Truncate,
+ os2Sync,
+ os2FileSize,
+ os2Lock,
+ os2Unlock,
+ os2CheckReservedLock,
+ os2FileControl,
+ os2SectorSize,
+ os2DeviceCharacteristics
+};
+
+/***************************************************************************
+** Here ends the I/O methods that form the sqlite3_io_methods object.
+**
+** The next block of code implements the VFS methods.
+****************************************************************************/
+
+/*
+** Open a file.
+*/
+static int os2Open(
+ sqlite3_vfs *pVfs, /* Not used */
+ const char *zName, /* Name of the file */
+ sqlite3_file *id, /* Write the SQLite file handle here */
+ int flags, /* Open mode flags */
+ int *pOutFlags /* Status return flags */
+){
+ HFILE h;
+ ULONG ulFileAttribute = 0;
+ ULONG ulOpenFlags = 0;
+ ULONG ulOpenMode = 0;
+ os2File *pFile = (os2File*)id;
+ APIRET rc = NO_ERROR;
+ ULONG ulAction;
+
+ memset( pFile, 0, sizeof(*pFile) );
+
+ OSTRACE2( "OPEN want %d\n", flags );
+
+ //ulOpenMode = flags & SQLITE_OPEN_READWRITE ? OPEN_ACCESS_READWRITE : OPEN_ACCESS_READONLY;
+ if( flags & SQLITE_OPEN_READWRITE ){
+ ulOpenMode |= OPEN_ACCESS_READWRITE;
+ OSTRACE1( "OPEN read/write\n" );
+ }else{
+ ulOpenMode |= OPEN_ACCESS_READONLY;
+ OSTRACE1( "OPEN read only\n" );
+ }
+
+ //ulOpenFlags = flags & SQLITE_OPEN_CREATE ? OPEN_ACTION_CREATE_IF_NEW : OPEN_ACTION_FAIL_IF_NEW;
+ if( flags & SQLITE_OPEN_CREATE ){
+ ulOpenFlags |= OPEN_ACTION_OPEN_IF_EXISTS | OPEN_ACTION_CREATE_IF_NEW;
+ OSTRACE1( "OPEN open new/create\n" );
+ }else{
+ ulOpenFlags |= OPEN_ACTION_OPEN_IF_EXISTS | OPEN_ACTION_FAIL_IF_NEW;
+ OSTRACE1( "OPEN open existing\n" );
+ }
+
+ //ulOpenMode |= flags & SQLITE_OPEN_MAIN_DB ? OPEN_SHARE_DENYNONE : OPEN_SHARE_DENYWRITE;
+ if( flags & SQLITE_OPEN_MAIN_DB ){
+ ulOpenMode |= OPEN_SHARE_DENYNONE;
+ OSTRACE1( "OPEN share read/write\n" );
+ }else{
+ ulOpenMode |= OPEN_SHARE_DENYWRITE;
+ OSTRACE1( "OPEN share read only\n" );
+ }
+
+ if( flags & (SQLITE_OPEN_TEMP_DB | SQLITE_OPEN_TEMP_JOURNAL
+ | SQLITE_OPEN_SUBJOURNAL) ){
+ char pathUtf8[CCHMAXPATH];
+ //ulFileAttribute = FILE_HIDDEN; //for debugging, we want to make sure it is deleted
+ ulFileAttribute = FILE_NORMAL;
+ sqlite3OsFullPathname( pVfs, zName, CCHMAXPATH, pathUtf8 );
+ pFile->pathToDel = convertUtf8PathToCp( pathUtf8 );
+ OSTRACE1( "OPEN hidden/delete on close file attributes\n" );
+ }else{
+ ulFileAttribute = FILE_ARCHIVED | FILE_NORMAL;
+ pFile->pathToDel = NULL;
+ OSTRACE1( "OPEN normal file attribute\n" );
+ }
+
+ /* always open in random access mode for possibly better speed */
+ ulOpenMode |= OPEN_FLAGS_RANDOM;
+ ulOpenMode |= OPEN_FLAGS_FAIL_ON_ERROR;
+ ulOpenMode |= OPEN_FLAGS_NOINHERIT;
+
+ char *zNameCp = convertUtf8PathToCp( zName );
+ rc = DosOpen( (PSZ)zNameCp,
+ &h,
+ &ulAction,
+ 0L,
+ ulFileAttribute,
+ ulOpenFlags,
+ ulOpenMode,
+ (PEAOP2)NULL );
+ free( zNameCp );
+ if( rc != NO_ERROR ){
+ OSTRACE7( "OPEN Invalid handle rc=%d: zName=%s, ulAction=%#lx, ulAttr=%#lx, ulFlags=%#lx, ulMode=%#lx\n",
+ rc, zName, ulAction, ulFileAttribute, ulOpenFlags, ulOpenMode );
+ free( pFile->pathToDel );
+ pFile->pathToDel = NULL;
+ if( flags & SQLITE_OPEN_READWRITE ){
+ OSTRACE2( "OPEN %d Invalid handle\n", ((flags | SQLITE_OPEN_READONLY) & ~SQLITE_OPEN_READWRITE) );
+ return os2Open( 0, zName, id,
+ ((flags | SQLITE_OPEN_READONLY) & ~SQLITE_OPEN_READWRITE),
+ pOutFlags );
+ }else{
+ return SQLITE_CANTOPEN;
+ }
+ }
+
+ if( pOutFlags ){
+ *pOutFlags = flags & SQLITE_OPEN_READWRITE ? SQLITE_OPEN_READWRITE : SQLITE_OPEN_READONLY;
+ }
+
+ pFile->pMethod = &os2IoMethod;
+ pFile->h = h;
+ OpenCounter(+1);
+ OSTRACE3( "OPEN %d pOutFlags=%d\n", pFile->h, pOutFlags );
+ return SQLITE_OK;
+}
+
+/*
+** Delete the named file.
+*/
+int os2Delete(
+ sqlite3_vfs *pVfs, /* Not used on os2 */
+ const char *zFilename, /* Name of file to delete */
+ int syncDir /* Not used on os2 */
+){
+ APIRET rc = NO_ERROR;
+ SimulateIOError(return SQLITE_IOERR_DELETE);
+ char *zFilenameCp = convertUtf8PathToCp( zFilename );
+ rc = DosDelete( (PSZ)zFilenameCp );
+ free( zFilenameCp );
+ OSTRACE2( "DELETE \"%s\"\n", zFilename );
+ return rc == NO_ERROR ? SQLITE_OK : SQLITE_IOERR;
+}
+
+/*
+** Check the existance and status of a file.
+*/
+static int os2Access(
+ sqlite3_vfs *pVfs, /* Not used on os2 */
+ const char *zFilename, /* Name of file to check */
+ int flags /* Type of test to make on this file */
+){
+ FILESTATUS3 fsts3ConfigInfo;
+ APIRET rc = NO_ERROR;
+
+ memset( &fsts3ConfigInfo, 0, sizeof(fsts3ConfigInfo) );
+ char *zFilenameCp = convertUtf8PathToCp( zFilename );
+ rc = DosQueryPathInfo( (PSZ)zFilenameCp, FIL_STANDARD,
+ &fsts3ConfigInfo, sizeof(FILESTATUS3) );
+ free( zFilenameCp );
+ OSTRACE4( "ACCESS fsts3ConfigInfo.attrFile=%d flags=%d rc=%d\n",
+ fsts3ConfigInfo.attrFile, flags, rc );
+ switch( flags ){
+ case SQLITE_ACCESS_READ:
+ case SQLITE_ACCESS_EXISTS:
+ rc = (rc == NO_ERROR);
+ OSTRACE3( "ACCESS %s access of read and exists rc=%d\n", zFilename, rc );
+ break;
+ case SQLITE_ACCESS_READWRITE:
+ rc = (fsts3ConfigInfo.attrFile & FILE_READONLY) == 0;
+ OSTRACE3( "ACCESS %s access of read/write rc=%d\n", zFilename, rc );
+ break;
+ default:
+ assert( !"Invalid flags argument" );
+ }
+ return rc;
+}
+
+
+/*
+** Create a temporary file name in zBuf. zBuf must be big enough to
+** hold at pVfs->mxPathname characters.
+*/
+static int os2GetTempname( sqlite3_vfs *pVfs, int nBuf, char *zBuf ){
+ static const unsigned char zChars[] =
+ "abcdefghijklmnopqrstuvwxyz"
+ "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
+ "0123456789";
+ int i, j;
+ char zTempPathBuf[3];
+ PSZ zTempPath = (PSZ)&zTempPathBuf;
+ char *zTempPathUTF;
+ if( DosScanEnv( (PSZ)"TEMP", &zTempPath ) ){
+ if( DosScanEnv( (PSZ)"TMP", &zTempPath ) ){
+ if( DosScanEnv( (PSZ)"TMPDIR", &zTempPath ) ){
+ ULONG ulDriveNum = 0, ulDriveMap = 0;
+ DosQueryCurrentDisk( &ulDriveNum, &ulDriveMap );
+ sprintf( (char*)zTempPath, "%c:", (char)( 'A' + ulDriveNum - 1 ) );
+ }
+ }
+ }
+ /* strip off a trailing slashes or backslashes, otherwise we would get *
+ * multiple (back)slashes which causes DosOpen() to fail */
+ j = strlen(zTempPath);
+ while( j > 0 && ( zTempPath[j-1] == '\\' || zTempPath[j-1] == '/' ) ){
+ j--;
+ }
+ zTempPath[j] = '\0';
+ zTempPathUTF = convertCpPathToUtf8( zTempPath );
+ sqlite3_snprintf( nBuf-30, zBuf,
+ "%s\\"SQLITE_TEMP_FILE_PREFIX, zTempPathUTF );
+ free( zTempPathUTF );
+ j = strlen( zBuf );
+ sqlite3_randomness( 20, &zBuf[j] );
+ for( i = 0; i < 20; i++, j++ ){
+ zBuf[j] = (char)zChars[ ((unsigned char)zBuf[j])%(sizeof(zChars)-1) ];
+ }
+ zBuf[j] = 0;
+ OSTRACE2( "TEMP FILENAME: %s\n", zBuf );
+ return SQLITE_OK;
+}
+
+
+/*
+** Turn a relative pathname into a full pathname. Write the full
+** pathname into zFull[]. zFull[] will be at least pVfs->mxPathname
+** bytes in size.
+*/
+static int os2FullPathname(
+ sqlite3_vfs *pVfs, /* Pointer to vfs object */
+ const char *zRelative, /* Possibly relative input path */
+ int nFull, /* Size of output buffer in bytes */
+ char *zFull /* Output buffer */
+){
+ char *zRelativeCp = convertUtf8PathToCp( zRelative );
+ char zFullCp[CCHMAXPATH];
+ char *zFullUTF;
+ APIRET rc = DosQueryPathInfo( zRelativeCp, FIL_QUERYFULLNAME, zFullCp,
+ CCHMAXPATH );
+ free( zRelativeCp );
+ zFullUTF = convertCpPathToUtf8( zFullCp );
+ sqlite3_snprintf( nFull, zFull, zFullUTF );
+ free( zFullUTF );
+ return rc == NO_ERROR ? SQLITE_OK : SQLITE_IOERR;
+}
+
+#ifndef SQLITE_OMIT_LOAD_EXTENSION
+/*
+** Interfaces for opening a shared library, finding entry points
+** within the shared library, and closing the shared library.
+*/
+/*
+** Interfaces for opening a shared library, finding entry points
+** within the shared library, and closing the shared library.
+*/
+static void *os2DlOpen(sqlite3_vfs *pVfs, const char *zFilename){
+ UCHAR loadErr[256];
+ HMODULE hmod;
+ APIRET rc;
+ char *zFilenameCp = convertUtf8PathToCp(zFilename);
+ rc = DosLoadModule((PSZ)loadErr, sizeof(loadErr), zFilenameCp, &hmod);
+ free(zFilenameCp);
+ return rc != NO_ERROR ? 0 : (void*)hmod;
+}
+/*
+** A no-op since the error code is returned on the DosLoadModule call.
+** os2Dlopen returns zero if DosLoadModule is not successful.
+*/
+static void os2DlError(sqlite3_vfs *pVfs, int nBuf, char *zBufOut){
+/* no-op */
+}
+void *os2DlSym(sqlite3_vfs *pVfs, void *pHandle, const char *zSymbol){
+ PFN pfn;
+ APIRET rc;
+ rc = DosQueryProcAddr((HMODULE)pHandle, 0L, zSymbol, &pfn);
+ if( rc != NO_ERROR ){
+ /* if the symbol itself was not found, search again for the same
+ * symbol with an extra underscore, that might be needed depending
+ * on the calling convention */
+ char _zSymbol[256] = "_";
+ strncat(_zSymbol, zSymbol, 255);
+ rc = DosQueryProcAddr((HMODULE)pHandle, 0L, _zSymbol, &pfn);
+ }
+ return rc != NO_ERROR ? 0 : (void*)pfn;
+}
+void os2DlClose(sqlite3_vfs *pVfs, void *pHandle){
+ DosFreeModule((HMODULE)pHandle);
+}
+#else /* if SQLITE_OMIT_LOAD_EXTENSION is defined: */
+ #define os2DlOpen 0
+ #define os2DlError 0
+ #define os2DlSym 0
+ #define os2DlClose 0
+#endif
+
+
+/*
+** Write up to nBuf bytes of randomness into zBuf.
+*/
+static int os2Randomness(sqlite3_vfs *pVfs, int nBuf, char *zBuf ){
+ ULONG sizeofULong = sizeof(ULONG);
+ int n = 0;
+ if( sizeof(DATETIME) <= nBuf - n ){
+ DATETIME x;
+ DosGetDateTime(&x);
+ memcpy(&zBuf[n], &x, sizeof(x));
+ n += sizeof(x);
+ }
+
+ if( sizeofULong <= nBuf - n ){
+ PPIB ppib;
+ DosGetInfoBlocks(NULL, &ppib);
+ memcpy(&zBuf[n], &ppib->pib_ulpid, sizeofULong);
+ n += sizeofULong;
+ }
+
+ if( sizeofULong <= nBuf - n ){
+ PTIB ptib;
+ DosGetInfoBlocks(&ptib, NULL);
+ memcpy(&zBuf[n], &ptib->tib_ptib2->tib2_ultid, sizeofULong);
+ n += sizeofULong;
+ }
+
+ /* if we still haven't filled the buffer yet the following will */
+ /* grab everything once instead of making several calls for a single item */
+ if( sizeofULong <= nBuf - n ){
+ ULONG ulSysInfo[QSV_MAX];
+ DosQuerySysInfo(1L, QSV_MAX, ulSysInfo, sizeofULong * QSV_MAX);
+
+ memcpy(&zBuf[n], &ulSysInfo[QSV_MS_COUNT - 1], sizeofULong);
+ n += sizeofULong;
+
+ if( sizeofULong <= nBuf - n ){
+ memcpy(&zBuf[n], &ulSysInfo[QSV_TIMER_INTERVAL - 1], sizeofULong);
+ n += sizeofULong;
+ }
+ if( sizeofULong <= nBuf - n ){
+ memcpy(&zBuf[n], &ulSysInfo[QSV_TIME_LOW - 1], sizeofULong);
+ n += sizeofULong;
+ }
+ if( sizeofULong <= nBuf - n ){
+ memcpy(&zBuf[n], &ulSysInfo[QSV_TIME_HIGH - 1], sizeofULong);
+ n += sizeofULong;
+ }
+ if( sizeofULong <= nBuf - n ){
+ memcpy(&zBuf[n], &ulSysInfo[QSV_TOTAVAILMEM - 1], sizeofULong);
+ n += sizeofULong;
+ }
+ }
+
+ return n;
+}
+
+/*
+** Sleep for a little while. Return the amount of time slept.
+** The argument is the number of microseconds we want to sleep.
+** The return value is the number of microseconds of sleep actually
+** requested from the underlying operating system, a number which
+** might be greater than or equal to the argument, but not less
+** than the argument.
+*/
+static int os2Sleep( sqlite3_vfs *pVfs, int microsec ){
+ DosSleep( (microsec/1000) );
+ return microsec;
+}
+
+/*
+** The following variable, if set to a non-zero value, becomes the result
+** returned from sqlite3OsCurrentTime(). This is used for testing.
+*/
+#ifdef SQLITE_TEST
+SQLITE_API int sqlite3_current_time = 0;
+#endif
+
+/*
+** Find the current time (in Universal Coordinated Time). Write the
+** current time and date as a Julian Day number into *prNow and
+** return 0. Return 1 if the time and date cannot be found.
+*/
+int os2CurrentTime( sqlite3_vfs *pVfs, double *prNow ){
+ double now;
+ SHORT minute; /* needs to be able to cope with negative timezone offset */
+ USHORT second, hour,
+ day, month, year;
+ DATETIME dt;
+ DosGetDateTime( &dt );
+ second = (USHORT)dt.seconds;
+ minute = (SHORT)dt.minutes + dt.timezone;
+ hour = (USHORT)dt.hours;
+ day = (USHORT)dt.day;
+ month = (USHORT)dt.month;
+ year = (USHORT)dt.year;
+
+ /* Calculations from http://www.astro.keele.ac.uk/~rno/Astronomy/hjd.html
+ http://www.astro.keele.ac.uk/~rno/Astronomy/hjd-0.1.c */
+ /* Calculate the Julian days */
+ now = day - 32076 +
+ 1461*(year + 4800 + (month - 14)/12)/4 +
+ 367*(month - 2 - (month - 14)/12*12)/12 -
+ 3*((year + 4900 + (month - 14)/12)/100)/4;
+
+ /* Add the fractional hours, mins and seconds */
+ now += (hour + 12.0)/24.0;
+ now += minute/1440.0;
+ now += second/86400.0;
+ *prNow = now;
+#ifdef SQLITE_TEST
+ if( sqlite3_current_time ){
+ *prNow = sqlite3_current_time/86400.0 + 2440587.5;
+ }
+#endif
+ return 0;
+}
+
+/*
+** Return a pointer to the sqlite3DefaultVfs structure. We use
+** a function rather than give the structure global scope because
+** some compilers (MSVC) do not allow forward declarations of
+** initialized structures.
+*/
+SQLITE_PRIVATE sqlite3_vfs *sqlite3OsDefaultVfs(void){
+ static sqlite3_vfs os2Vfs = {
+ 1, /* iVersion */
+ sizeof(os2File), /* szOsFile */
+ CCHMAXPATH, /* mxPathname */
+ 0, /* pNext */
+ "os2", /* zName */
+ 0, /* pAppData */
+
+ os2Open, /* xOpen */
+ os2Delete, /* xDelete */
+ os2Access, /* xAccess */
+ os2GetTempname, /* xGetTempname */
+ os2FullPathname, /* xFullPathname */
+ os2DlOpen, /* xDlOpen */
+ os2DlError, /* xDlError */
+ os2DlSym, /* xDlSym */
+ os2DlClose, /* xDlClose */
+ os2Randomness, /* xRandomness */
+ os2Sleep, /* xSleep */
+ os2CurrentTime /* xCurrentTime */
+ };
+
+ return &os2Vfs;
+}
+
+#endif /* OS_OS2 */
+
+/************** End of os_os2.c **********************************************/
+/************** Begin file os_unix.c *****************************************/
+/*
+** 2004 May 22
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+** This file contains code that is specific to Unix systems.
+*/
+#if OS_UNIX /* This file is used on unix only */
+
+/* #define SQLITE_ENABLE_LOCKING_STYLE 0 */
+
+/*
+** These #defines should enable >2GB file support on Posix if the
+** underlying operating system supports it. If the OS lacks
+** large file support, these should be no-ops.
+**
+** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch
+** on the compiler command line. This is necessary if you are compiling
+** on a recent machine (ex: RedHat 7.2) but you want your code to work
+** on an older machine (ex: RedHat 6.0). If you compile on RedHat 7.2
+** without this option, LFS is enable. But LFS does not exist in the kernel
+** in RedHat 6.0, so the code won't work. Hence, for maximum binary
+** portability you should omit LFS.
+*/
+#ifndef SQLITE_DISABLE_LFS
+# define _LARGE_FILE 1
+# ifndef _FILE_OFFSET_BITS
+# define _FILE_OFFSET_BITS 64
+# endif
+# define _LARGEFILE_SOURCE 1
+#endif
+
+/*
+** standard include files.
+*/
+#include <sys/types.h>
+#include <sys/stat.h>
+#include <fcntl.h>
+#include <unistd.h>
+#include <sys/time.h>
+#include <errno.h>
+#ifdef SQLITE_ENABLE_LOCKING_STYLE
+#include <sys/ioctl.h>
+#include <sys/param.h>
+#include <sys/mount.h>
+#endif /* SQLITE_ENABLE_LOCKING_STYLE */
+
+/*
+** If we are to be thread-safe, include the pthreads header and define
+** the SQLITE_UNIX_THREADS macro.
+*/
+#if SQLITE_THREADSAFE
+# define SQLITE_UNIX_THREADS 1
+#endif
+
+/*
+** Default permissions when creating a new file
+*/
+#ifndef SQLITE_DEFAULT_FILE_PERMISSIONS
+# define SQLITE_DEFAULT_FILE_PERMISSIONS 0644
+#endif
+
+/*
+** Maximum supported path-length.
+*/
+#define MAX_PATHNAME 512
+
+
+/*
+** The unixFile structure is subclass of sqlite3_file specific for the unix
+** protability layer.
+*/
+typedef struct unixFile unixFile;
+struct unixFile {
+ sqlite3_io_methods const *pMethod; /* Always the first entry */
+#ifdef SQLITE_TEST
+ /* In test mode, increase the size of this structure a bit so that
+ ** it is larger than the struct CrashFile defined in test6.c.
+ */
+ char aPadding[32];
+#endif
+ struct openCnt *pOpen; /* Info about all open fd's on this inode */
+ struct lockInfo *pLock; /* Info about locks on this inode */
+#ifdef SQLITE_ENABLE_LOCKING_STYLE
+ void *lockingContext; /* Locking style specific state */
+#endif /* SQLITE_ENABLE_LOCKING_STYLE */
+ int h; /* The file descriptor */
+ unsigned char locktype; /* The type of lock held on this fd */
+ int dirfd; /* File descriptor for the directory */
+#if SQLITE_THREADSAFE
+ pthread_t tid; /* The thread that "owns" this unixFile */
+#endif
+};
+
+/*
+** Include code that is common to all os_*.c files
+*/
+/************** Include os_common.h in the middle of os_unix.c ***************/
+/************** Begin file os_common.h ***************************************/
+/*
+** 2004 May 22
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+** This file contains macros and a little bit of code that is common to
+** all of the platform-specific files (os_*.c) and is #included into those
+** files.
+**
+** This file should be #included by the os_*.c files only. It is not a
+** general purpose header file.
+*/
+
+/*
+** At least two bugs have slipped in because we changed the MEMORY_DEBUG
+** macro to SQLITE_DEBUG and some older makefiles have not yet made the
+** switch. The following code should catch this problem at compile-time.
+*/
+#ifdef MEMORY_DEBUG
+# error "The MEMORY_DEBUG macro is obsolete. Use SQLITE_DEBUG instead."
+#endif
+
+
+/*
+ * When testing, this global variable stores the location of the
+ * pending-byte in the database file.
+ */
+#ifdef SQLITE_TEST
+SQLITE_API unsigned int sqlite3_pending_byte = 0x40000000;
+#endif
+
+#ifdef SQLITE_DEBUG
+SQLITE_PRIVATE int sqlite3OSTrace = 0;
+#define OSTRACE1(X) if( sqlite3OSTrace ) sqlite3DebugPrintf(X)
+#define OSTRACE2(X,Y) if( sqlite3OSTrace ) sqlite3DebugPrintf(X,Y)
+#define OSTRACE3(X,Y,Z) if( sqlite3OSTrace ) sqlite3DebugPrintf(X,Y,Z)
+#define OSTRACE4(X,Y,Z,A) if( sqlite3OSTrace ) sqlite3DebugPrintf(X,Y,Z,A)
+#define OSTRACE5(X,Y,Z,A,B) if( sqlite3OSTrace ) sqlite3DebugPrintf(X,Y,Z,A,B)
+#define OSTRACE6(X,Y,Z,A,B,C) \
+ if(sqlite3OSTrace) sqlite3DebugPrintf(X,Y,Z,A,B,C)
+#define OSTRACE7(X,Y,Z,A,B,C,D) \
+ if(sqlite3OSTrace) sqlite3DebugPrintf(X,Y,Z,A,B,C,D)
+#else
+#define OSTRACE1(X)
+#define OSTRACE2(X,Y)
+#define OSTRACE3(X,Y,Z)
+#define OSTRACE4(X,Y,Z,A)
+#define OSTRACE5(X,Y,Z,A,B)
+#define OSTRACE6(X,Y,Z,A,B,C)
+#define OSTRACE7(X,Y,Z,A,B,C,D)
+#endif
+
+/*
+** Macros for performance tracing. Normally turned off. Only works
+** on i486 hardware.
+*/
+#ifdef SQLITE_PERFORMANCE_TRACE
+__inline__ unsigned long long int hwtime(void){
+ unsigned long long int x;
+ __asm__("rdtsc\n\t"
+ "mov %%edx, %%ecx\n\t"
+ :"=A" (x));
+ return x;
+}
+static unsigned long long int g_start;
+static unsigned int elapse;
+#define TIMER_START g_start=hwtime()
+#define TIMER_END elapse=hwtime()-g_start
+#define TIMER_ELAPSED elapse
+#else
+#define TIMER_START
+#define TIMER_END
+#define TIMER_ELAPSED 0
+#endif
+
+/*
+** If we compile with the SQLITE_TEST macro set, then the following block
+** of code will give us the ability to simulate a disk I/O error. This
+** is used for testing the I/O recovery logic.
+*/
+#ifdef SQLITE_TEST
+SQLITE_API int sqlite3_io_error_hit = 0; /* Total number of I/O Errors */
+SQLITE_API int sqlite3_io_error_hardhit = 0; /* Number of non-benign errors */
+SQLITE_API int sqlite3_io_error_pending = 0; /* Count down to first I/O error */
+SQLITE_API int sqlite3_io_error_persist = 0; /* True if I/O errors persist */
+SQLITE_API int sqlite3_io_error_benign = 0; /* True if errors are benign */
+SQLITE_API int sqlite3_diskfull_pending = 0;
+SQLITE_API int sqlite3_diskfull = 0;
+#define SimulateIOErrorBenign(X) sqlite3_io_error_benign=(X)
+#define SimulateIOError(CODE) \
+ if( (sqlite3_io_error_persist && sqlite3_io_error_hit) \
+ || sqlite3_io_error_pending-- == 1 ) \
+ { local_ioerr(); CODE; }
+static void local_ioerr(){
+ IOTRACE(("IOERR\n"));
+ sqlite3_io_error_hit++;
+ if( !sqlite3_io_error_benign ) sqlite3_io_error_hardhit++;
+}
+#define SimulateDiskfullError(CODE) \
+ if( sqlite3_diskfull_pending ){ \
+ if( sqlite3_diskfull_pending == 1 ){ \
+ local_ioerr(); \
+ sqlite3_diskfull = 1; \
+ sqlite3_io_error_hit = 1; \
+ CODE; \
+ }else{ \
+ sqlite3_diskfull_pending--; \
+ } \
+ }
+#else
+#define SimulateIOErrorBenign(X)
+#define SimulateIOError(A)
+#define SimulateDiskfullError(A)
+#endif
+
+/*
+** When testing, keep a count of the number of open files.
+*/
+#ifdef SQLITE_TEST
+SQLITE_API int sqlite3_open_file_count = 0;
+#define OpenCounter(X) sqlite3_open_file_count+=(X)
+#else
+#define OpenCounter(X)
+#endif
+
+/************** End of os_common.h *******************************************/
+/************** Continuing where we left off in os_unix.c ********************/
+
+/*
+** Define various macros that are missing from some systems.
+*/
+#ifndef O_LARGEFILE
+# define O_LARGEFILE 0
+#endif
+#ifdef SQLITE_DISABLE_LFS
+# undef O_LARGEFILE
+# define O_LARGEFILE 0
+#endif
+#ifndef O_NOFOLLOW
+# define O_NOFOLLOW 0
+#endif
+#ifndef O_BINARY
+# define O_BINARY 0
+#endif
+
+/*
+** The DJGPP compiler environment looks mostly like Unix, but it
+** lacks the fcntl() system call. So redefine fcntl() to be something
+** that always succeeds. This means that locking does not occur under
+** DJGPP. But it is DOS - what did you expect?
+*/
+#ifdef __DJGPP__
+# define fcntl(A,B,C) 0
+#endif
+
+/*
+** The threadid macro resolves to the thread-id or to 0. Used for
+** testing and debugging only.
+*/
+#if SQLITE_THREADSAFE
+#define threadid pthread_self()
+#else
+#define threadid 0
+#endif
+
+/*
+** Set or check the unixFile.tid field. This field is set when an unixFile
+** is first opened. All subsequent uses of the unixFile verify that the
+** same thread is operating on the unixFile. Some operating systems do
+** not allow locks to be overridden by other threads and that restriction
+** means that sqlite3* database handles cannot be moved from one thread
+** to another. This logic makes sure a user does not try to do that
+** by mistake.
+**
+** Version 3.3.1 (2006-01-15): unixFile can be moved from one thread to
+** another as long as we are running on a system that supports threads
+** overriding each others locks (which now the most common behavior)
+** or if no locks are held. But the unixFile.pLock field needs to be
+** recomputed because its key includes the thread-id. See the
+** transferOwnership() function below for additional information
+*/
+#if SQLITE_THREADSAFE
+# define SET_THREADID(X) (X)->tid = pthread_self()
+# define CHECK_THREADID(X) (threadsOverrideEachOthersLocks==0 && \
+ !pthread_equal((X)->tid, pthread_self()))
+#else
+# define SET_THREADID(X)
+# define CHECK_THREADID(X) 0
+#endif
+
+/*
+** Here is the dirt on POSIX advisory locks: ANSI STD 1003.1 (1996)
+** section 6.5.2.2 lines 483 through 490 specify that when a process
+** sets or clears a lock, that operation overrides any prior locks set
+** by the same process. It does not explicitly say so, but this implies
+** that it overrides locks set by the same process using a different
+** file descriptor. Consider this test case:
+**
+** int fd1 = open("./file1", O_RDWR|O_CREAT, 0644);
+** int fd2 = open("./file2", O_RDWR|O_CREAT, 0644);
+**
+** Suppose ./file1 and ./file2 are really the same file (because
+** one is a hard or symbolic link to the other) then if you set
+** an exclusive lock on fd1, then try to get an exclusive lock
+** on fd2, it works. I would have expected the second lock to
+** fail since there was already a lock on the file due to fd1.
+** But not so. Since both locks came from the same process, the
+** second overrides the first, even though they were on different
+** file descriptors opened on different file names.
+**
+** Bummer. If you ask me, this is broken. Badly broken. It means
+** that we cannot use POSIX locks to synchronize file access among
+** competing threads of the same process. POSIX locks will work fine
+** to synchronize access for threads in separate processes, but not
+** threads within the same process.
+**
+** To work around the problem, SQLite has to manage file locks internally
+** on its own. Whenever a new database is opened, we have to find the
+** specific inode of the database file (the inode is determined by the
+** st_dev and st_ino fields of the stat structure that fstat() fills in)
+** and check for locks already existing on that inode. When locks are
+** created or removed, we have to look at our own internal record of the
+** locks to see if another thread has previously set a lock on that same
+** inode.
+**
+** The sqlite3_file structure for POSIX is no longer just an integer file
+** descriptor. It is now a structure that holds the integer file
+** descriptor and a pointer to a structure that describes the internal
+** locks on the corresponding inode. There is one locking structure
+** per inode, so if the same inode is opened twice, both unixFile structures
+** point to the same locking structure. The locking structure keeps
+** a reference count (so we will know when to delete it) and a "cnt"
+** field that tells us its internal lock status. cnt==0 means the
+** file is unlocked. cnt==-1 means the file has an exclusive lock.
+** cnt>0 means there are cnt shared locks on the file.
+**
+** Any attempt to lock or unlock a file first checks the locking
+** structure. The fcntl() system call is only invoked to set a
+** POSIX lock if the internal lock structure transitions between
+** a locked and an unlocked state.
+**
+** 2004-Jan-11:
+** More recent discoveries about POSIX advisory locks. (The more
+** I discover, the more I realize the a POSIX advisory locks are
+** an abomination.)
+**
+** If you close a file descriptor that points to a file that has locks,
+** all locks on that file that are owned by the current process are
+** released. To work around this problem, each unixFile structure contains
+** a pointer to an openCnt structure. There is one openCnt structure
+** per open inode, which means that multiple unixFile can point to a single
+** openCnt. When an attempt is made to close an unixFile, if there are
+** other unixFile open on the same inode that are holding locks, the call
+** to close() the file descriptor is deferred until all of the locks clear.
+** The openCnt structure keeps a list of file descriptors that need to
+** be closed and that list is walked (and cleared) when the last lock
+** clears.
+**
+** First, under Linux threads, because each thread has a separate
+** process ID, lock operations in one thread do not override locks
+** to the same file in other threads. Linux threads behave like
+** separate processes in this respect. But, if you close a file
+** descriptor in linux threads, all locks are cleared, even locks
+** on other threads and even though the other threads have different
+** process IDs. Linux threads is inconsistent in this respect.
+** (I'm beginning to think that linux threads is an abomination too.)
+** The consequence of this all is that the hash table for the lockInfo
+** structure has to include the process id as part of its key because
+** locks in different threads are treated as distinct. But the
+** openCnt structure should not include the process id in its
+** key because close() clears lock on all threads, not just the current
+** thread. Were it not for this goofiness in linux threads, we could
+** combine the lockInfo and openCnt structures into a single structure.
+**
+** 2004-Jun-28:
+** On some versions of linux, threads can override each others locks.
+** On others not. Sometimes you can change the behavior on the same
+** system by setting the LD_ASSUME_KERNEL environment variable. The
+** POSIX standard is silent as to which behavior is correct, as far
+** as I can tell, so other versions of unix might show the same
+** inconsistency. There is no little doubt in my mind that posix
+** advisory locks and linux threads are profoundly broken.
+**
+** To work around the inconsistencies, we have to test at runtime
+** whether or not threads can override each others locks. This test
+** is run once, the first time any lock is attempted. A static
+** variable is set to record the results of this test for future
+** use.
+*/
+
+/*
+** An instance of the following structure serves as the key used
+** to locate a particular lockInfo structure given its inode.
+**
+** If threads cannot override each others locks, then we set the
+** lockKey.tid field to the thread ID. If threads can override
+** each others locks then tid is always set to zero. tid is omitted
+** if we compile without threading support.
+*/
+struct lockKey {
+ dev_t dev; /* Device number */
+ ino_t ino; /* Inode number */
+#if SQLITE_THREADSAFE
+ pthread_t tid; /* Thread ID or zero if threads can override each other */
+#endif
+};
+
+/*
+** An instance of the following structure is allocated for each open
+** inode on each thread with a different process ID. (Threads have
+** different process IDs on linux, but not on most other unixes.)
+**
+** A single inode can have multiple file descriptors, so each unixFile
+** structure contains a pointer to an instance of this object and this
+** object keeps a count of the number of unixFile pointing to it.
+*/
+struct lockInfo {
+ struct lockKey key; /* The lookup key */
+ int cnt; /* Number of SHARED locks held */
+ int locktype; /* One of SHARED_LOCK, RESERVED_LOCK etc. */
+ int nRef; /* Number of pointers to this structure */
+};
+
+/*
+** An instance of the following structure serves as the key used
+** to locate a particular openCnt structure given its inode. This
+** is the same as the lockKey except that the thread ID is omitted.
+*/
+struct openKey {
+ dev_t dev; /* Device number */
+ ino_t ino; /* Inode number */
+};
+
+/*
+** An instance of the following structure is allocated for each open
+** inode. This structure keeps track of the number of locks on that
+** inode. If a close is attempted against an inode that is holding
+** locks, the close is deferred until all locks clear by adding the
+** file descriptor to be closed to the pending list.
+*/
+struct openCnt {
+ struct openKey key; /* The lookup key */
+ int nRef; /* Number of pointers to this structure */
+ int nLock; /* Number of outstanding locks */
+ int nPending; /* Number of pending close() operations */
+ int *aPending; /* Malloced space holding fd's awaiting a close() */
+};
+
+/*
+** These hash tables map inodes and file descriptors (really, lockKey and
+** openKey structures) into lockInfo and openCnt structures. Access to
+** these hash tables must be protected by a mutex.
+*/
+static Hash lockHash = {SQLITE_HASH_BINARY, 0, 0, 0, 0, 0};
+static Hash openHash = {SQLITE_HASH_BINARY, 0, 0, 0, 0, 0};
+
+#ifdef SQLITE_ENABLE_LOCKING_STYLE
+/*
+** The locking styles are associated with the different file locking
+** capabilities supported by different file systems.
+**
+** POSIX locking style fully supports shared and exclusive byte-range locks
+** ADP locking only supports exclusive byte-range locks
+** FLOCK only supports a single file-global exclusive lock
+** DOTLOCK isn't a true locking style, it refers to the use of a special
+** file named the same as the database file with a '.lock' extension, this
+** can be used on file systems that do not offer any reliable file locking
+** NO locking means that no locking will be attempted, this is only used for
+** read-only file systems currently
+** UNSUPPORTED means that no locking will be attempted, this is only used for
+** file systems that are known to be unsupported
+*/
+typedef enum {
+ posixLockingStyle = 0, /* standard posix-advisory locks */
+ afpLockingStyle, /* use afp locks */
+ flockLockingStyle, /* use flock() */
+ dotlockLockingStyle, /* use <file>.lock files */
+ noLockingStyle, /* useful for read-only file system */
+ unsupportedLockingStyle /* indicates unsupported file system */
+} sqlite3LockingStyle;
+#endif /* SQLITE_ENABLE_LOCKING_STYLE */
+
+/*
+** Helper functions to obtain and relinquish the global mutex.
+*/
+static void enterMutex(){
+ sqlite3_mutex_enter(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER));
+}
+static void leaveMutex(){
+ sqlite3_mutex_leave(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER));
+}
+
+#if SQLITE_THREADSAFE
+/*
+** This variable records whether or not threads can override each others
+** locks.
+**
+** 0: No. Threads cannot override each others locks.
+** 1: Yes. Threads can override each others locks.
+** -1: We don't know yet.
+**
+** On some systems, we know at compile-time if threads can override each
+** others locks. On those systems, the SQLITE_THREAD_OVERRIDE_LOCK macro
+** will be set appropriately. On other systems, we have to check at
+** runtime. On these latter systems, SQLTIE_THREAD_OVERRIDE_LOCK is
+** undefined.
+**
+** This variable normally has file scope only. But during testing, we make
+** it a global so that the test code can change its value in order to verify
+** that the right stuff happens in either case.
+*/
+#ifndef SQLITE_THREAD_OVERRIDE_LOCK
+# define SQLITE_THREAD_OVERRIDE_LOCK -1
+#endif
+#ifdef SQLITE_TEST
+int threadsOverrideEachOthersLocks = SQLITE_THREAD_OVERRIDE_LOCK;
+#else
+static int threadsOverrideEachOthersLocks = SQLITE_THREAD_OVERRIDE_LOCK;
+#endif
+
+/*
+** This structure holds information passed into individual test
+** threads by the testThreadLockingBehavior() routine.
+*/
+struct threadTestData {
+ int fd; /* File to be locked */
+ struct flock lock; /* The locking operation */
+ int result; /* Result of the locking operation */
+};
+
+#ifdef SQLITE_LOCK_TRACE
+/*
+** Print out information about all locking operations.
+**
+** This routine is used for troubleshooting locks on multithreaded
+** platforms. Enable by compiling with the -DSQLITE_LOCK_TRACE
+** command-line option on the compiler. This code is normally
+** turned off.
+*/
+static int lockTrace(int fd, int op, struct flock *p){
+ char *zOpName, *zType;
+ int s;
+ int savedErrno;
+ if( op==F_GETLK ){
+ zOpName = "GETLK";
+ }else if( op==F_SETLK ){
+ zOpName = "SETLK";
+ }else{
+ s = fcntl(fd, op, p);
+ sqlite3DebugPrintf("fcntl unknown %d %d %d\n", fd, op, s);
+ return s;
+ }
+ if( p->l_type==F_RDLCK ){
+ zType = "RDLCK";
+ }else if( p->l_type==F_WRLCK ){
+ zType = "WRLCK";
+ }else if( p->l_type==F_UNLCK ){
+ zType = "UNLCK";
+ }else{
+ assert( 0 );
+ }
+ assert( p->l_whence==SEEK_SET );
+ s = fcntl(fd, op, p);
+ savedErrno = errno;
+ sqlite3DebugPrintf("fcntl %d %d %s %s %d %d %d %d\n",
+ threadid, fd, zOpName, zType, (int)p->l_start, (int)p->l_len,
+ (int)p->l_pid, s);
+ if( s==(-1) && op==F_SETLK && (p->l_type==F_RDLCK || p->l_type==F_WRLCK) ){
+ struct flock l2;
+ l2 = *p;
+ fcntl(fd, F_GETLK, &l2);
+ if( l2.l_type==F_RDLCK ){
+ zType = "RDLCK";
+ }else if( l2.l_type==F_WRLCK ){
+ zType = "WRLCK";
+ }else if( l2.l_type==F_UNLCK ){
+ zType = "UNLCK";
+ }else{
+ assert( 0 );
+ }
+ sqlite3DebugPrintf("fcntl-failure-reason: %s %d %d %d\n",
+ zType, (int)l2.l_start, (int)l2.l_len, (int)l2.l_pid);
+ }
+ errno = savedErrno;
+ return s;
+}
+#define fcntl lockTrace
+#endif /* SQLITE_LOCK_TRACE */
+
+/*
+** The testThreadLockingBehavior() routine launches two separate
+** threads on this routine. This routine attempts to lock a file
+** descriptor then returns. The success or failure of that attempt
+** allows the testThreadLockingBehavior() procedure to determine
+** whether or not threads can override each others locks.
+*/
+static void *threadLockingTest(void *pArg){
+ struct threadTestData *pData = (struct threadTestData*)pArg;
+ pData->result = fcntl(pData->fd, F_SETLK, &pData->lock);
+ return pArg;
+}
+
+/*
+** This procedure attempts to determine whether or not threads
+** can override each others locks then sets the
+** threadsOverrideEachOthersLocks variable appropriately.
+*/
+static void testThreadLockingBehavior(int fd_orig){
+ int fd;
+ struct threadTestData d[2];
+ pthread_t t[2];
+
+ fd = dup(fd_orig);
+ if( fd<0 ) return;
+ memset(d, 0, sizeof(d));
+ d[0].fd = fd;
+ d[0].lock.l_type = F_RDLCK;
+ d[0].lock.l_len = 1;
+ d[0].lock.l_start = 0;
+ d[0].lock.l_whence = SEEK_SET;
+ d[1] = d[0];
+ d[1].lock.l_type = F_WRLCK;
+ pthread_create(&t[0], 0, threadLockingTest, &d[0]);
+ pthread_create(&t[1], 0, threadLockingTest, &d[1]);
+ pthread_join(t[0], 0);
+ pthread_join(t[1], 0);
+ close(fd);
+ threadsOverrideEachOthersLocks = d[0].result==0 && d[1].result==0;
+}
+#endif /* SQLITE_THREADSAFE */
+
+/*
+** Release a lockInfo structure previously allocated by findLockInfo().
+*/
+static void releaseLockInfo(struct lockInfo *pLock){
+ if (pLock == NULL)
+ return;
+ pLock->nRef--;
+ if( pLock->nRef==0 ){
+ sqlite3HashInsert(&lockHash, &pLock->key, sizeof(pLock->key), 0);
+ sqlite3_free(pLock);
+ }
+}
+
+/*
+** Release a openCnt structure previously allocated by findLockInfo().
+*/
+static void releaseOpenCnt(struct openCnt *pOpen){
+ if (pOpen == NULL)
+ return;
+ pOpen->nRef--;
+ if( pOpen->nRef==0 ){
+ sqlite3HashInsert(&openHash, &pOpen->key, sizeof(pOpen->key), 0);
+ free(pOpen->aPending);
+ sqlite3_free(pOpen);
+ }
+}
+
+#ifdef SQLITE_ENABLE_LOCKING_STYLE
+/*
+** Tests a byte-range locking query to see if byte range locks are
+** supported, if not we fall back to dotlockLockingStyle.
+*/
+static sqlite3LockingStyle sqlite3TestLockingStyle(
+ const char *filePath,
+ int fd
+){
+ /* test byte-range lock using fcntl */
+ struct flock lockInfo;
+
+ lockInfo.l_len = 1;
+ lockInfo.l_start = 0;
+ lockInfo.l_whence = SEEK_SET;
+ lockInfo.l_type = F_RDLCK;
+
+ if( fcntl(fd, F_GETLK, &lockInfo)!=-1 ) {
+ return posixLockingStyle;
+ }
+
+ /* testing for flock can give false positives. So if if the above test
+ ** fails, then we fall back to using dot-lock style locking.
+ */
+ return dotlockLockingStyle;
+}
+
+/*
+** Examines the f_fstypename entry in the statfs structure as returned by
+** stat() for the file system hosting the database file, assigns the
+** appropriate locking style based on its value. These values and
+** assignments are based on Darwin/OSX behavior and have not been tested on
+** other systems.
+*/
+static sqlite3LockingStyle sqlite3DetectLockingStyle(
+ const char *filePath,
+ int fd
+){
+
+#ifdef SQLITE_FIXED_LOCKING_STYLE
+ return (sqlite3LockingStyle)SQLITE_FIXED_LOCKING_STYLE;
+#else
+ struct statfs fsInfo;
+
+ if( statfs(filePath, &fsInfo) == -1 ){
+ return sqlite3TestLockingStyle(filePath, fd);
+ }
+ if( fsInfo.f_flags & MNT_RDONLY ){
+ return noLockingStyle;
+ }
+ if( strcmp(fsInfo.f_fstypename, "hfs")==0 ||
+ strcmp(fsInfo.f_fstypename, "ufs")==0 ){
+ return posixLockingStyle;
+ }
+ if( strcmp(fsInfo.f_fstypename, "afpfs")==0 ){
+ return afpLockingStyle;
+ }
+ if( strcmp(fsInfo.f_fstypename, "nfs")==0 ){
+ return sqlite3TestLockingStyle(filePath, fd);
+ }
+ if( strcmp(fsInfo.f_fstypename, "smbfs")==0 ){
+ return flockLockingStyle;
+ }
+ if( strcmp(fsInfo.f_fstypename, "msdos")==0 ){
+ return dotlockLockingStyle;
+ }
+ if( strcmp(fsInfo.f_fstypename, "webdav")==0 ){
+ return unsupportedLockingStyle;
+ }
+ return sqlite3TestLockingStyle(filePath, fd);
+#endif /* SQLITE_FIXED_LOCKING_STYLE */
+}
+
+#endif /* SQLITE_ENABLE_LOCKING_STYLE */
+
+/*
+** Given a file descriptor, locate lockInfo and openCnt structures that
+** describes that file descriptor. Create new ones if necessary. The
+** return values might be uninitialized if an error occurs.
+**
+** Return an appropriate error code.
+*/
+static int findLockInfo(
+ int fd, /* The file descriptor used in the key */
+ struct lockInfo **ppLock, /* Return the lockInfo structure here */
+ struct openCnt **ppOpen /* Return the openCnt structure here */
+){
+ int rc;
+ struct lockKey key1;
+ struct openKey key2;
+ struct stat statbuf;
+ struct lockInfo *pLock;
+ struct openCnt *pOpen;
+ rc = fstat(fd, &statbuf);
+ if( rc!=0 ){
+#ifdef EOVERFLOW
+ if( errno==EOVERFLOW ) return SQLITE_NOLFS;
+#endif
+ return SQLITE_IOERR;
+ }
+
+ memset(&key1, 0, sizeof(key1));
+ key1.dev = statbuf.st_dev;
+ key1.ino = statbuf.st_ino;
+#if SQLITE_THREADSAFE
+ if( threadsOverrideEachOthersLocks<0 ){
+ testThreadLockingBehavior(fd);
+ }
+ key1.tid = threadsOverrideEachOthersLocks ? 0 : pthread_self();
+#endif
+ memset(&key2, 0, sizeof(key2));
+ key2.dev = statbuf.st_dev;
+ key2.ino = statbuf.st_ino;
+ pLock = (struct lockInfo*)sqlite3HashFind(&lockHash, &key1, sizeof(key1));
+ if( pLock==0 ){
+ struct lockInfo *pOld;
+ pLock = sqlite3_malloc( sizeof(*pLock) );
+ if( pLock==0 ){
+ rc = SQLITE_NOMEM;
+ goto exit_findlockinfo;
+ }
+ pLock->key = key1;
+ pLock->nRef = 1;
+ pLock->cnt = 0;
+ pLock->locktype = 0;
+ pOld = sqlite3HashInsert(&lockHash, &pLock->key, sizeof(key1), pLock);
+ if( pOld!=0 ){
+ assert( pOld==pLock );
+ sqlite3_free(pLock);
+ rc = SQLITE_NOMEM;
+ goto exit_findlockinfo;
+ }
+ }else{
+ pLock->nRef++;
+ }
+ *ppLock = pLock;
+ if( ppOpen!=0 ){
+ pOpen = (struct openCnt*)sqlite3HashFind(&openHash, &key2, sizeof(key2));
+ if( pOpen==0 ){
+ struct openCnt *pOld;
+ pOpen = sqlite3_malloc( sizeof(*pOpen) );
+ if( pOpen==0 ){
+ releaseLockInfo(pLock);
+ rc = SQLITE_NOMEM;
+ goto exit_findlockinfo;
+ }
+ pOpen->key = key2;
+ pOpen->nRef = 1;
+ pOpen->nLock = 0;
+ pOpen->nPending = 0;
+ pOpen->aPending = 0;
+ pOld = sqlite3HashInsert(&openHash, &pOpen->key, sizeof(key2), pOpen);
+ if( pOld!=0 ){
+ assert( pOld==pOpen );
+ sqlite3_free(pOpen);
+ releaseLockInfo(pLock);
+ rc = SQLITE_NOMEM;
+ goto exit_findlockinfo;
+ }
+ }else{
+ pOpen->nRef++;
+ }
+ *ppOpen = pOpen;
+ }
+
+exit_findlockinfo:
+ return rc;
+}
+
+#ifdef SQLITE_DEBUG
+/*
+** Helper function for printing out trace information from debugging
+** binaries. This returns the string represetation of the supplied
+** integer lock-type.
+*/
+static const char *locktypeName(int locktype){
+ switch( locktype ){
+ case NO_LOCK: return "NONE";
+ case SHARED_LOCK: return "SHARED";
+ case RESERVED_LOCK: return "RESERVED";
+ case PENDING_LOCK: return "PENDING";
+ case EXCLUSIVE_LOCK: return "EXCLUSIVE";
+ }
+ return "ERROR";
+}
+#endif
+
+/*
+** If we are currently in a different thread than the thread that the
+** unixFile argument belongs to, then transfer ownership of the unixFile
+** over to the current thread.
+**
+** A unixFile is only owned by a thread on systems where one thread is
+** unable to override locks created by a different thread. RedHat9 is
+** an example of such a system.
+**
+** Ownership transfer is only allowed if the unixFile is currently unlocked.
+** If the unixFile is locked and an ownership is wrong, then return
+** SQLITE_MISUSE. SQLITE_OK is returned if everything works.
+*/
+#if SQLITE_THREADSAFE
+static int transferOwnership(unixFile *pFile){
+ int rc;
+ pthread_t hSelf;
+ if( threadsOverrideEachOthersLocks ){
+ /* Ownership transfers not needed on this system */
+ return SQLITE_OK;
+ }
+ hSelf = pthread_self();
+ if( pthread_equal(pFile->tid, hSelf) ){
+ /* We are still in the same thread */
+ OSTRACE1("No-transfer, same thread\n");
+ return SQLITE_OK;
+ }
+ if( pFile->locktype!=NO_LOCK ){
+ /* We cannot change ownership while we are holding a lock! */
+ return SQLITE_MISUSE;
+ }
+ OSTRACE4("Transfer ownership of %d from %d to %d\n",
+ pFile->h, pFile->tid, hSelf);
+ pFile->tid = hSelf;
+ if (pFile->pLock != NULL) {
+ releaseLockInfo(pFile->pLock);
+ rc = findLockInfo(pFile->h, &pFile->pLock, 0);
+ OSTRACE5("LOCK %d is now %s(%s,%d)\n", pFile->h,
+ locktypeName(pFile->locktype),
+ locktypeName(pFile->pLock->locktype), pFile->pLock->cnt);
+ return rc;
+ } else {
+ return SQLITE_OK;
+ }
+}
+#else
+ /* On single-threaded builds, ownership transfer is a no-op */
+# define transferOwnership(X) SQLITE_OK
+#endif
+
+/*
+** Seek to the offset passed as the second argument, then read cnt
+** bytes into pBuf. Return the number of bytes actually read.
+**
+** NB: If you define USE_PREAD or USE_PREAD64, then it might also
+** be necessary to define _XOPEN_SOURCE to be 500. This varies from
+** one system to another. Since SQLite does not define USE_PREAD
+** any any form by default, we will not attempt to define _XOPEN_SOURCE.
+** See tickets #2741 and #2681.
+*/
+static int seekAndRead(unixFile *id, sqlite3_int64 offset, void *pBuf, int cnt){
+ int got;
+ i64 newOffset;
+ TIMER_START;
+#if defined(USE_PREAD)
+ got = pread(id->h, pBuf, cnt, offset);
+ SimulateIOError( got = -1 );
+#elif defined(USE_PREAD64)
+ got = pread64(id->h, pBuf, cnt, offset);
+ SimulateIOError( got = -1 );
+#else
+ newOffset = lseek(id->h, offset, SEEK_SET);
+ SimulateIOError( newOffset-- );
+ if( newOffset!=offset ){
+ return -1;
+ }
+ got = read(id->h, pBuf, cnt);
+#endif
+ TIMER_END;
+ OSTRACE5("READ %-3d %5d %7lld %d\n", id->h, got, offset, TIMER_ELAPSED);
+ return got;
+}
+
+/*
+** Read data from a file into a buffer. Return SQLITE_OK if all
+** bytes were read successfully and SQLITE_IOERR if anything goes
+** wrong.
+*/
+static int unixRead(
+ sqlite3_file *id,
+ void *pBuf,
+ int amt,
+ sqlite3_int64 offset
+){
+ int got;
+ assert( id );
+ got = seekAndRead((unixFile*)id, offset, pBuf, amt);
+ if( got==amt ){
+ return SQLITE_OK;
+ }else if( got<0 ){
+ return SQLITE_IOERR_READ;
+ }else{
+ memset(&((char*)pBuf)[got], 0, amt-got);
+ return SQLITE_IOERR_SHORT_READ;
+ }
+}
+
+/*
+** Seek to the offset in id->offset then read cnt bytes into pBuf.
+** Return the number of bytes actually read. Update the offset.
+*/
+static int seekAndWrite(unixFile *id, i64 offset, const void *pBuf, int cnt){
+ int got;
+ i64 newOffset;
+ TIMER_START;
+#if defined(USE_PREAD)
+ got = pwrite(id->h, pBuf, cnt, offset);
+#elif defined(USE_PREAD64)
+ got = pwrite64(id->h, pBuf, cnt, offset);
+#else
+ newOffset = lseek(id->h, offset, SEEK_SET);
+ if( newOffset!=offset ){
+ return -1;
+ }
+ got = write(id->h, pBuf, cnt);
+#endif
+ TIMER_END;
+ OSTRACE5("WRITE %-3d %5d %7lld %d\n", id->h, got, offset, TIMER_ELAPSED);
+ return got;
+}
+
+
+/*
+** Write data from a buffer into a file. Return SQLITE_OK on success
+** or some other error code on failure.
+*/
+static int unixWrite(
+ sqlite3_file *id,
+ const void *pBuf,
+ int amt,
+ sqlite3_int64 offset
+){
+ int wrote = 0;
+ assert( id );
+ assert( amt>0 );
+ while( amt>0 && (wrote = seekAndWrite((unixFile*)id, offset, pBuf, amt))>0 ){
+ amt -= wrote;
+ offset += wrote;
+ pBuf = &((char*)pBuf)[wrote];
+ }
+ SimulateIOError(( wrote=(-1), amt=1 ));
+ SimulateDiskfullError(( wrote=0, amt=1 ));
+ if( amt>0 ){
+ if( wrote<0 ){
+ return SQLITE_IOERR_WRITE;
+ }else{
+ return SQLITE_FULL;
+ }
+ }
+ return SQLITE_OK;
+}
+
+#ifdef SQLITE_TEST
+/*
+** Count the number of fullsyncs and normal syncs. This is used to test
+** that syncs and fullsyncs are occuring at the right times.
+*/
+SQLITE_API int sqlite3_sync_count = 0;
+SQLITE_API int sqlite3_fullsync_count = 0;
+#endif
+
+/*
+** Use the fdatasync() API only if the HAVE_FDATASYNC macro is defined.
+** Otherwise use fsync() in its place.
+*/
+#ifndef HAVE_FDATASYNC
+# define fdatasync fsync
+#endif
+
+/*
+** Define HAVE_FULLFSYNC to 0 or 1 depending on whether or not
+** the F_FULLFSYNC macro is defined. F_FULLFSYNC is currently
+** only available on Mac OS X. But that could change.
+*/
+#ifdef F_FULLFSYNC
+# define HAVE_FULLFSYNC 1
+#else
+# define HAVE_FULLFSYNC 0
+#endif
+
+
+/*
+** The fsync() system call does not work as advertised on many
+** unix systems. The following procedure is an attempt to make
+** it work better.
+**
+** The SQLITE_NO_SYNC macro disables all fsync()s. This is useful
+** for testing when we want to run through the test suite quickly.
+** You are strongly advised *not* to deploy with SQLITE_NO_SYNC
+** enabled, however, since with SQLITE_NO_SYNC enabled, an OS crash
+** or power failure will likely corrupt the database file.
+*/
+static int full_fsync(int fd, int fullSync, int dataOnly){
+ int rc;
+
+ /* Record the number of times that we do a normal fsync() and
+ ** FULLSYNC. This is used during testing to verify that this procedure
+ ** gets called with the correct arguments.
+ */
+#ifdef SQLITE_TEST
+ if( fullSync ) sqlite3_fullsync_count++;
+ sqlite3_sync_count++;
+#endif
+
+ /* If we compiled with the SQLITE_NO_SYNC flag, then syncing is a
+ ** no-op
+ */
+#ifdef SQLITE_NO_SYNC
+ rc = SQLITE_OK;
+#else
+
+#if HAVE_FULLFSYNC
+ if( fullSync ){
+ rc = fcntl(fd, F_FULLFSYNC, 0);
+ }else{
+ rc = 1;
+ }
+ /* If the FULLFSYNC failed, fall back to attempting an fsync().
+ * It shouldn't be possible for fullfsync to fail on the local
+ * file system (on OSX), so failure indicates that FULLFSYNC
+ * isn't supported for this file system. So, attempt an fsync
+ * and (for now) ignore the overhead of a superfluous fcntl call.
+ * It'd be better to detect fullfsync support once and avoid
+ * the fcntl call every time sync is called.
+ */
+ if( rc ) rc = fsync(fd);
+
+#else
+ if( dataOnly ){
+ rc = fdatasync(fd);
+ }else{
+ rc = fsync(fd);
+ }
+#endif /* HAVE_FULLFSYNC */
+#endif /* defined(SQLITE_NO_SYNC) */
+
+ return rc;
+}
+
+/*
+** Make sure all writes to a particular file are committed to disk.
+**
+** If dataOnly==0 then both the file itself and its metadata (file
+** size, access time, etc) are synced. If dataOnly!=0 then only the
+** file data is synced.
+**
+** Under Unix, also make sure that the directory entry for the file
+** has been created by fsync-ing the directory that contains the file.
+** If we do not do this and we encounter a power failure, the directory
+** entry for the journal might not exist after we reboot. The next
+** SQLite to access the file will not know that the journal exists (because
+** the directory entry for the journal was never created) and the transaction
+** will not roll back - possibly leading to database corruption.
+*/
+static int unixSync(sqlite3_file *id, int flags){
+ int rc;
+ unixFile *pFile = (unixFile*)id;
+
+ int isDataOnly = (flags&SQLITE_SYNC_DATAONLY);
+ int isFullsync = (flags&0x0F)==SQLITE_SYNC_FULL;
+
+ /* Check that one of SQLITE_SYNC_NORMAL or FULL was passed */
+ assert((flags&0x0F)==SQLITE_SYNC_NORMAL
+ || (flags&0x0F)==SQLITE_SYNC_FULL
+ );
+
+ assert( pFile );
+ OSTRACE2("SYNC %-3d\n", pFile->h);
+ rc = full_fsync(pFile->h, isFullsync, isDataOnly);
+ SimulateIOError( rc=1 );
+ if( rc ){
+ return SQLITE_IOERR_FSYNC;
+ }
+ if( pFile->dirfd>=0 ){
+ OSTRACE4("DIRSYNC %-3d (have_fullfsync=%d fullsync=%d)\n", pFile->dirfd,
+ HAVE_FULLFSYNC, isFullsync);
+#ifndef SQLITE_DISABLE_DIRSYNC
+ /* The directory sync is only attempted if full_fsync is
+ ** turned off or unavailable. If a full_fsync occurred above,
+ ** then the directory sync is superfluous.
+ */
+ if( (!HAVE_FULLFSYNC || !isFullsync) && full_fsync(pFile->dirfd,0,0) ){
+ /*
+ ** We have received multiple reports of fsync() returning
+ ** errors when applied to directories on certain file systems.
+ ** A failed directory sync is not a big deal. So it seems
+ ** better to ignore the error. Ticket #1657
+ */
+ /* return SQLITE_IOERR; */
+ }
+#endif
+ close(pFile->dirfd); /* Only need to sync once, so close the directory */
+ pFile->dirfd = -1; /* when we are done. */
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Truncate an open file to a specified size
+*/
+static int unixTruncate(sqlite3_file *id, i64 nByte){
+ int rc;
+ assert( id );
+ SimulateIOError( return SQLITE_IOERR_TRUNCATE );
+ rc = ftruncate(((unixFile*)id)->h, (off_t)nByte);
+ if( rc ){
+ return SQLITE_IOERR_TRUNCATE;
+ }else{
+ return SQLITE_OK;
+ }
+}
+
+/*
+** Determine the current size of a file in bytes
+*/
+static int unixFileSize(sqlite3_file *id, i64 *pSize){
+ int rc;
+ struct stat buf;
+ assert( id );
+ rc = fstat(((unixFile*)id)->h, &buf);
+ SimulateIOError( rc=1 );
+ if( rc!=0 ){
+ return SQLITE_IOERR_FSTAT;
+ }
+ *pSize = buf.st_size;
+ return SQLITE_OK;
+}
+
+/*
+** This routine checks if there is a RESERVED lock held on the specified
+** file by this or any other process. If such a lock is held, return
+** non-zero. If the file is unlocked or holds only SHARED locks, then
+** return zero.
+*/
+static int unixCheckReservedLock(sqlite3_file *id){
+ int r = 0;
+ unixFile *pFile = (unixFile*)id;
+
+ assert( pFile );
+ enterMutex(); /* Because pFile->pLock is shared across threads */
+
+ /* Check if a thread in this process holds such a lock */
+ if( pFile->pLock->locktype>SHARED_LOCK ){
+ r = 1;
+ }
+
+ /* Otherwise see if some other process holds it.
+ */
+ if( !r ){
+ struct flock lock;
+ lock.l_whence = SEEK_SET;
+ lock.l_start = RESERVED_BYTE;
+ lock.l_len = 1;
+ lock.l_type = F_WRLCK;
+ fcntl(pFile->h, F_GETLK, &lock);
+ if( lock.l_type!=F_UNLCK ){
+ r = 1;
+ }
+ }
+
+ leaveMutex();
+ OSTRACE3("TEST WR-LOCK %d %d\n", pFile->h, r);
+
+ return r;
+}
+
+/*
+** Lock the file with the lock specified by parameter locktype - one
+** of the following:
+**
+** (1) SHARED_LOCK
+** (2) RESERVED_LOCK
+** (3) PENDING_LOCK
+** (4) EXCLUSIVE_LOCK
+**
+** Sometimes when requesting one lock state, additional lock states
+** are inserted in between. The locking might fail on one of the later
+** transitions leaving the lock state different from what it started but
+** still short of its goal. The following chart shows the allowed
+** transitions and the inserted intermediate states:
+**
+** UNLOCKED -> SHARED
+** SHARED -> RESERVED
+** SHARED -> (PENDING) -> EXCLUSIVE
+** RESERVED -> (PENDING) -> EXCLUSIVE
+** PENDING -> EXCLUSIVE
+**
+** This routine will only increase a lock. Use the sqlite3OsUnlock()
+** routine to lower a locking level.
+*/
+static int unixLock(sqlite3_file *id, int locktype){
+ /* The following describes the implementation of the various locks and
+ ** lock transitions in terms of the POSIX advisory shared and exclusive
+ ** lock primitives (called read-locks and write-locks below, to avoid
+ ** confusion with SQLite lock names). The algorithms are complicated
+ ** slightly in order to be compatible with windows systems simultaneously
+ ** accessing the same database file, in case that is ever required.
+ **
+ ** Symbols defined in os.h indentify the 'pending byte' and the 'reserved
+ ** byte', each single bytes at well known offsets, and the 'shared byte
+ ** range', a range of 510 bytes at a well known offset.
+ **
+ ** To obtain a SHARED lock, a read-lock is obtained on the 'pending
+ ** byte'. If this is successful, a random byte from the 'shared byte
+ ** range' is read-locked and the lock on the 'pending byte' released.
+ **
+ ** A process may only obtain a RESERVED lock after it has a SHARED lock.
+ ** A RESERVED lock is implemented by grabbing a write-lock on the
+ ** 'reserved byte'.
+ **
+ ** A process may only obtain a PENDING lock after it has obtained a
+ ** SHARED lock. A PENDING lock is implemented by obtaining a write-lock
+ ** on the 'pending byte'. This ensures that no new SHARED locks can be
+ ** obtained, but existing SHARED locks are allowed to persist. A process
+ ** does not have to obtain a RESERVED lock on the way to a PENDING lock.
+ ** This property is used by the algorithm for rolling back a journal file
+ ** after a crash.
+ **
+ ** An EXCLUSIVE lock, obtained after a PENDING lock is held, is
+ ** implemented by obtaining a write-lock on the entire 'shared byte
+ ** range'. Since all other locks require a read-lock on one of the bytes
+ ** within this range, this ensures that no other locks are held on the
+ ** database.
+ **
+ ** The reason a single byte cannot be used instead of the 'shared byte
+ ** range' is that some versions of windows do not support read-locks. By
+ ** locking a random byte from a range, concurrent SHARED locks may exist
+ ** even if the locking primitive used is always a write-lock.
+ */
+ int rc = SQLITE_OK;
+ unixFile *pFile = (unixFile*)id;
+ struct lockInfo *pLock = pFile->pLock;
+ struct flock lock;
+ int s;
+
+ assert( pFile );
+ OSTRACE7("LOCK %d %s was %s(%s,%d) pid=%d\n", pFile->h,
+ locktypeName(locktype), locktypeName(pFile->locktype),
+ locktypeName(pLock->locktype), pLock->cnt , getpid());
+
+ /* If there is already a lock of this type or more restrictive on the
+ ** unixFile, do nothing. Don't use the end_lock: exit path, as
+ ** enterMutex() hasn't been called yet.
+ */
+ if( pFile->locktype>=locktype ){
+ OSTRACE3("LOCK %d %s ok (already held)\n", pFile->h,
+ locktypeName(locktype));
+ return SQLITE_OK;
+ }
+
+ /* Make sure the locking sequence is correct
+ */
+ assert( pFile->locktype!=NO_LOCK || locktype==SHARED_LOCK );
+ assert( locktype!=PENDING_LOCK );
+ assert( locktype!=RESERVED_LOCK || pFile->locktype==SHARED_LOCK );
+
+ /* This mutex is needed because pFile->pLock is shared across threads
+ */
+ enterMutex();
+
+ /* Make sure the current thread owns the pFile.
+ */
+ rc = transferOwnership(pFile);
+ if( rc!=SQLITE_OK ){
+ leaveMutex();
+ return rc;
+ }
+ pLock = pFile->pLock;
+
+ /* If some thread using this PID has a lock via a different unixFile*
+ ** handle that precludes the requested lock, return BUSY.
+ */
+ if( (pFile->locktype!=pLock->locktype &&
+ (pLock->locktype>=PENDING_LOCK || locktype>SHARED_LOCK))
+ ){
+ rc = SQLITE_BUSY;
+ goto end_lock;
+ }
+
+ /* If a SHARED lock is requested, and some thread using this PID already
+ ** has a SHARED or RESERVED lock, then increment reference counts and
+ ** return SQLITE_OK.
+ */
+ if( locktype==SHARED_LOCK &&
+ (pLock->locktype==SHARED_LOCK || pLock->locktype==RESERVED_LOCK) ){
+ assert( locktype==SHARED_LOCK );
+ assert( pFile->locktype==0 );
+ assert( pLock->cnt>0 );
+ pFile->locktype = SHARED_LOCK;
+ pLock->cnt++;
+ pFile->pOpen->nLock++;
+ goto end_lock;
+ }
+
+ lock.l_len = 1L;
+
+ lock.l_whence = SEEK_SET;
+
+ /* A PENDING lock is needed before acquiring a SHARED lock and before
+ ** acquiring an EXCLUSIVE lock. For the SHARED lock, the PENDING will
+ ** be released.
+ */
+ if( locktype==SHARED_LOCK
+ || (locktype==EXCLUSIVE_LOCK && pFile->locktype<PENDING_LOCK)
+ ){
+ lock.l_type = (locktype==SHARED_LOCK?F_RDLCK:F_WRLCK);
+ lock.l_start = PENDING_BYTE;
+ s = fcntl(pFile->h, F_SETLK, &lock);
+ if( s==(-1) ){
+ rc = (errno==EINVAL) ? SQLITE_NOLFS : SQLITE_BUSY;
+ goto end_lock;
+ }
+ }
+
+
+ /* If control gets to this point, then actually go ahead and make
+ ** operating system calls for the specified lock.
+ */
+ if( locktype==SHARED_LOCK ){
+ assert( pLock->cnt==0 );
+ assert( pLock->locktype==0 );
+
+ /* Now get the read-lock */
+ lock.l_start = SHARED_FIRST;
+ lock.l_len = SHARED_SIZE;
+ s = fcntl(pFile->h, F_SETLK, &lock);
+
+ /* Drop the temporary PENDING lock */
+ lock.l_start = PENDING_BYTE;
+ lock.l_len = 1L;
+ lock.l_type = F_UNLCK;
+ if( fcntl(pFile->h, F_SETLK, &lock)!=0 ){
+ rc = SQLITE_IOERR_UNLOCK; /* This should never happen */
+ goto end_lock;
+ }
+ if( s==(-1) ){
+ rc = (errno==EINVAL) ? SQLITE_NOLFS : SQLITE_BUSY;
+ }else{
+ pFile->locktype = SHARED_LOCK;
+ pFile->pOpen->nLock++;
+ pLock->cnt = 1;
+ }
+ }else if( locktype==EXCLUSIVE_LOCK && pLock->cnt>1 ){
+ /* We are trying for an exclusive lock but another thread in this
+ ** same process is still holding a shared lock. */
+ rc = SQLITE_BUSY;
+ }else{
+ /* The request was for a RESERVED or EXCLUSIVE lock. It is
+ ** assumed that there is a SHARED or greater lock on the file
+ ** already.
+ */
+ assert( 0!=pFile->locktype );
+ lock.l_type = F_WRLCK;
+ switch( locktype ){
+ case RESERVED_LOCK:
+ lock.l_start = RESERVED_BYTE;
+ break;
+ case EXCLUSIVE_LOCK:
+ lock.l_start = SHARED_FIRST;
+ lock.l_len = SHARED_SIZE;
+ break;
+ default:
+ assert(0);
+ }
+ s = fcntl(pFile->h, F_SETLK, &lock);
+ if( s==(-1) ){
+ rc = (errno==EINVAL) ? SQLITE_NOLFS : SQLITE_BUSY;
+ }
+ }
+
+ if( rc==SQLITE_OK ){
+ pFile->locktype = locktype;
+ pLock->locktype = locktype;
+ }else if( locktype==EXCLUSIVE_LOCK ){
+ pFile->locktype = PENDING_LOCK;
+ pLock->locktype = PENDING_LOCK;
+ }
+
+end_lock:
+ leaveMutex();
+ OSTRACE4("LOCK %d %s %s\n", pFile->h, locktypeName(locktype),
+ rc==SQLITE_OK ? "ok" : "failed");
+ return rc;
+}
+
+/*
+** Lower the locking level on file descriptor pFile to locktype. locktype
+** must be either NO_LOCK or SHARED_LOCK.
+**
+** If the locking level of the file descriptor is already at or below
+** the requested locking level, this routine is a no-op.
+*/
+static int unixUnlock(sqlite3_file *id, int locktype){
+ struct lockInfo *pLock;
+ struct flock lock;
+ int rc = SQLITE_OK;
+ unixFile *pFile = (unixFile*)id;
+ int h;
+
+ assert( pFile );
+ OSTRACE7("UNLOCK %d %d was %d(%d,%d) pid=%d\n", pFile->h, locktype,
+ pFile->locktype, pFile->pLock->locktype, pFile->pLock->cnt, getpid());
+
+ assert( locktype<=SHARED_LOCK );
+ if( pFile->locktype<=locktype ){
+ return SQLITE_OK;
+ }
+ if( CHECK_THREADID(pFile) ){
+ return SQLITE_MISUSE;
+ }
+ enterMutex();
+ h = pFile->h;
+ pLock = pFile->pLock;
+ assert( pLock->cnt!=0 );
+ if( pFile->locktype>SHARED_LOCK ){
+ assert( pLock->locktype==pFile->locktype );
+ SimulateIOErrorBenign(1);
+ SimulateIOError( h=(-1) )
+ SimulateIOErrorBenign(0);
+ if( locktype==SHARED_LOCK ){
+ lock.l_type = F_RDLCK;
+ lock.l_whence = SEEK_SET;
+ lock.l_start = SHARED_FIRST;
+ lock.l_len = SHARED_SIZE;
+ if( fcntl(h, F_SETLK, &lock)==(-1) ){
+ rc = SQLITE_IOERR_RDLOCK;
+ }
+ }
+ lock.l_type = F_UNLCK;
+ lock.l_whence = SEEK_SET;
+ lock.l_start = PENDING_BYTE;
+ lock.l_len = 2L; assert( PENDING_BYTE+1==RESERVED_BYTE );
+ if( fcntl(h, F_SETLK, &lock)!=(-1) ){
+ pLock->locktype = SHARED_LOCK;
+ }else{
+ rc = SQLITE_IOERR_UNLOCK;
+ }
+ }
+ if( locktype==NO_LOCK ){
+ struct openCnt *pOpen;
+
+ /* Decrement the shared lock counter. Release the lock using an
+ ** OS call only when all threads in this same process have released
+ ** the lock.
+ */
+ pLock->cnt--;
+ if( pLock->cnt==0 ){
+ lock.l_type = F_UNLCK;
+ lock.l_whence = SEEK_SET;
+ lock.l_start = lock.l_len = 0L;
+ SimulateIOErrorBenign(1);
+ SimulateIOError( h=(-1) )
+ SimulateIOErrorBenign(0);
+ if( fcntl(h, F_SETLK, &lock)!=(-1) ){
+ pLock->locktype = NO_LOCK;
+ }else{
+ rc = SQLITE_IOERR_UNLOCK;
+ pLock->cnt = 1;
+ }
+ }
+
+ /* Decrement the count of locks against this same file. When the
+ ** count reaches zero, close any other file descriptors whose close
+ ** was deferred because of outstanding locks.
+ */
+ if( rc==SQLITE_OK ){
+ pOpen = pFile->pOpen;
+ pOpen->nLock--;
+ assert( pOpen->nLock>=0 );
+ if( pOpen->nLock==0 && pOpen->nPending>0 ){
+ int i;
+ for(i=0; i<pOpen->nPending; i++){
+ close(pOpen->aPending[i]);
+ }
+ free(pOpen->aPending);
+ pOpen->nPending = 0;
+ pOpen->aPending = 0;
+ }
+ }
+ }
+ leaveMutex();
+ if( rc==SQLITE_OK ) pFile->locktype = locktype;
+ return rc;
+}
+
+/*
+** Close a file.
+*/
+static int unixClose(sqlite3_file *id){
+ unixFile *pFile = (unixFile *)id;
+ if( !pFile ) return SQLITE_OK;
+ unixUnlock(id, NO_LOCK);
+ if( pFile->dirfd>=0 ) close(pFile->dirfd);
+ pFile->dirfd = -1;
+ enterMutex();
+
+ if( pFile->pOpen->nLock ){
+ /* If there are outstanding locks, do not actually close the file just
+ ** yet because that would clear those locks. Instead, add the file
+ ** descriptor to pOpen->aPending. It will be automatically closed when
+ ** the last lock is cleared.
+ */
+ int *aNew;
+ struct openCnt *pOpen = pFile->pOpen;
+ aNew = realloc( pOpen->aPending, (pOpen->nPending+1)*sizeof(int) );
+ if( aNew==0 ){
+ /* If a malloc fails, just leak the file descriptor */
+ }else{
+ pOpen->aPending = aNew;
+ pOpen->aPending[pOpen->nPending] = pFile->h;
+ pOpen->nPending++;
+ }
+ }else{
+ /* There are no outstanding locks so we can close the file immediately */
+ close(pFile->h);
+ }
+ releaseLockInfo(pFile->pLock);
+ releaseOpenCnt(pFile->pOpen);
+
+ leaveMutex();
+ OSTRACE2("CLOSE %-3d\n", pFile->h);
+ OpenCounter(-1);
+ memset(pFile, 0, sizeof(unixFile));
+ return SQLITE_OK;
+}
+
+
+#ifdef SQLITE_ENABLE_LOCKING_STYLE
+#pragma mark AFP Support
+
+/*
+ ** The afpLockingContext structure contains all afp lock specific state
+ */
+typedef struct afpLockingContext afpLockingContext;
+struct afpLockingContext {
+ unsigned long long sharedLockByte;
+ const char *filePath;
+};
+
+struct ByteRangeLockPB2
+{
+ unsigned long long offset; /* offset to first byte to lock */
+ unsigned long long length; /* nbr of bytes to lock */
+ unsigned long long retRangeStart; /* nbr of 1st byte locked if successful */
+ unsigned char unLockFlag; /* 1 = unlock, 0 = lock */
+ unsigned char startEndFlag; /* 1=rel to end of fork, 0=rel to start */
+ int fd; /* file desc to assoc this lock with */
+};
+
+#define afpfsByteRangeLock2FSCTL _IOWR('z', 23, struct ByteRangeLockPB2)
+
+/*
+** Return 0 on success, 1 on failure. To match the behavior of the
+** normal posix file locking (used in unixLock for example), we should
+** provide 'richer' return codes - specifically to differentiate between
+** 'file busy' and 'file system error' results.
+*/
+static int _AFPFSSetLock(
+ const char *path,
+ int fd,
+ unsigned long long offset,
+ unsigned long long length,
+ int setLockFlag
+){
+ struct ByteRangeLockPB2 pb;
+ int err;
+
+ pb.unLockFlag = setLockFlag ? 0 : 1;
+ pb.startEndFlag = 0;
+ pb.offset = offset;
+ pb.length = length;
+ pb.fd = fd;
+ OSTRACE5("AFPLOCK setting lock %s for %d in range %llx:%llx\n",
+ (setLockFlag?"ON":"OFF"), fd, offset, length);
+ err = fsctl(path, afpfsByteRangeLock2FSCTL, &pb, 0);
+ if ( err==-1 ) {
+ OSTRACE4("AFPLOCK failed to fsctl() '%s' %d %s\n", path, errno,
+ strerror(errno));
+ return 1; /* error */
+ } else {
+ return 0;
+ }
+}
+
+/*
+ ** This routine checks if there is a RESERVED lock held on the specified
+ ** file by this or any other process. If such a lock is held, return
+ ** non-zero. If the file is unlocked or holds only SHARED locks, then
+ ** return zero.
+ */
+static int afpUnixCheckReservedLock(sqlite3_file *id){
+ int r = 0;
+ unixFile *pFile = (unixFile*)id;
+
+ assert( pFile );
+ afpLockingContext *context = (afpLockingContext *) pFile->lockingContext;
+
+ /* Check if a thread in this process holds such a lock */
+ if( pFile->locktype>SHARED_LOCK ){
+ r = 1;
+ }
+
+ /* Otherwise see if some other process holds it.
+ */
+ if ( !r ) {
+ /* lock the byte */
+ int failed = _AFPFSSetLock(context->filePath, pFile->h, RESERVED_BYTE, 1,1);
+ if (failed) {
+ /* if we failed to get the lock then someone else must have it */
+ r = 1;
+ } else {
+ /* if we succeeded in taking the reserved lock, unlock it to restore
+ ** the original state */
+ _AFPFSSetLock(context->filePath, pFile->h, RESERVED_BYTE, 1, 0);
+ }
+ }
+ OSTRACE3("TEST WR-LOCK %d %d\n", pFile->h, r);
+
+ return r;
+}
+
+/* AFP-style locking following the behavior of unixLock, see the unixLock
+** function comments for details of lock management. */
+static int afpUnixLock(sqlite3_file *id, int locktype){
+ int rc = SQLITE_OK;
+ unixFile *pFile = (unixFile*)id;
+ afpLockingContext *context = (afpLockingContext *) pFile->lockingContext;
+ int gotPendingLock = 0;
+
+ assert( pFile );
+ OSTRACE5("LOCK %d %s was %s pid=%d\n", pFile->h,
+ locktypeName(locktype), locktypeName(pFile->locktype), getpid());
+
+ /* If there is already a lock of this type or more restrictive on the
+ ** unixFile, do nothing. Don't use the afp_end_lock: exit path, as
+ ** enterMutex() hasn't been called yet.
+ */
+ if( pFile->locktype>=locktype ){
+ OSTRACE3("LOCK %d %s ok (already held)\n", pFile->h,
+ locktypeName(locktype));
+ return SQLITE_OK;
+ }
+
+ /* Make sure the locking sequence is correct
+ */
+ assert( pFile->locktype!=NO_LOCK || locktype==SHARED_LOCK );
+ assert( locktype!=PENDING_LOCK );
+ assert( locktype!=RESERVED_LOCK || pFile->locktype==SHARED_LOCK );
+
+ /* This mutex is needed because pFile->pLock is shared across threads
+ */
+ enterMutex();
+
+ /* Make sure the current thread owns the pFile.
+ */
+ rc = transferOwnership(pFile);
+ if( rc!=SQLITE_OK ){
+ leaveMutex();
+ return rc;
+ }
+
+ /* A PENDING lock is needed before acquiring a SHARED lock and before
+ ** acquiring an EXCLUSIVE lock. For the SHARED lock, the PENDING will
+ ** be released.
+ */
+ if( locktype==SHARED_LOCK
+ || (locktype==EXCLUSIVE_LOCK && pFile->locktype<PENDING_LOCK)
+ ){
+ int failed;
+ failed = _AFPFSSetLock(context->filePath, pFile->h, PENDING_BYTE, 1, 1);
+ if (failed) {
+ rc = SQLITE_BUSY;
+ goto afp_end_lock;
+ }
+ }
+
+ /* If control gets to this point, then actually go ahead and make
+ ** operating system calls for the specified lock.
+ */
+ if( locktype==SHARED_LOCK ){
+ int lk, failed;
+ int tries = 0;
+
+ /* Now get the read-lock */
+ /* note that the quality of the randomness doesn't matter that much */
+ lk = random();
+ context->sharedLockByte = (lk & 0x7fffffff)%(SHARED_SIZE - 1);
+ failed = _AFPFSSetLock(context->filePath, pFile->h,
+ SHARED_FIRST+context->sharedLockByte, 1, 1);
+
+ /* Drop the temporary PENDING lock */
+ if (_AFPFSSetLock(context->filePath, pFile->h, PENDING_BYTE, 1, 0)) {
+ rc = SQLITE_IOERR_UNLOCK; /* This should never happen */
+ goto afp_end_lock;
+ }
+
+ if( failed ){
+ rc = SQLITE_BUSY;
+ } else {
+ pFile->locktype = SHARED_LOCK;
+ }
+ }else{
+ /* The request was for a RESERVED or EXCLUSIVE lock. It is
+ ** assumed that there is a SHARED or greater lock on the file
+ ** already.
+ */
+ int failed = 0;
+ assert( 0!=pFile->locktype );
+ if (locktype >= RESERVED_LOCK && pFile->locktype < RESERVED_LOCK) {
+ /* Acquire a RESERVED lock */
+ failed = _AFPFSSetLock(context->filePath, pFile->h, RESERVED_BYTE, 1,1);
+ }
+ if (!failed && locktype == EXCLUSIVE_LOCK) {
+ /* Acquire an EXCLUSIVE lock */
+
+ /* Remove the shared lock before trying the range. we'll need to
+ ** reestablish the shared lock if we can't get the afpUnixUnlock
+ */
+ if (!_AFPFSSetLock(context->filePath, pFile->h, SHARED_FIRST +
+ context->sharedLockByte, 1, 0)) {
+ /* now attemmpt to get the exclusive lock range */
+ failed = _AFPFSSetLock(context->filePath, pFile->h, SHARED_FIRST,
+ SHARED_SIZE, 1);
+ if (failed && _AFPFSSetLock(context->filePath, pFile->h, SHARED_FIRST +
+ context->sharedLockByte, 1, 1)) {
+ rc = SQLITE_IOERR_RDLOCK; /* this should never happen */
+ }
+ } else {
+ /* */
+ rc = SQLITE_IOERR_UNLOCK; /* this should never happen */
+ }
+ }
+ if( failed && rc == SQLITE_OK){
+ rc = SQLITE_BUSY;
+ }
+ }
+
+ if( rc==SQLITE_OK ){
+ pFile->locktype = locktype;
+ }else if( locktype==EXCLUSIVE_LOCK ){
+ pFile->locktype = PENDING_LOCK;
+ }
+
+afp_end_lock:
+ leaveMutex();
+ OSTRACE4("LOCK %d %s %s\n", pFile->h, locktypeName(locktype),
+ rc==SQLITE_OK ? "ok" : "failed");
+ return rc;
+}
+
+/*
+** Lower the locking level on file descriptor pFile to locktype. locktype
+** must be either NO_LOCK or SHARED_LOCK.
+**
+** If the locking level of the file descriptor is already at or below
+** the requested locking level, this routine is a no-op.
+*/
+static int afpUnixUnlock(sqlite3_file *id, int locktype) {
+ struct flock lock;
+ int rc = SQLITE_OK;
+ unixFile *pFile = (unixFile*)id;
+ afpLockingContext *context = (afpLockingContext *) pFile->lockingContext;
+
+ assert( pFile );
+ OSTRACE5("UNLOCK %d %d was %d pid=%d\n", pFile->h, locktype,
+ pFile->locktype, getpid());
+
+ assert( locktype<=SHARED_LOCK );
+ if( pFile->locktype<=locktype ){
+ return SQLITE_OK;
+ }
+ if( CHECK_THREADID(pFile) ){
+ return SQLITE_MISUSE;
+ }
+ enterMutex();
+ if( pFile->locktype>SHARED_LOCK ){
+ if( locktype==SHARED_LOCK ){
+ int failed = 0;
+
+ /* unlock the exclusive range - then re-establish the shared lock */
+ if (pFile->locktype==EXCLUSIVE_LOCK) {
+ failed = _AFPFSSetLock(context->filePath, pFile->h, SHARED_FIRST,
+ SHARED_SIZE, 0);
+ if (!failed) {
+ /* successfully removed the exclusive lock */
+ if (_AFPFSSetLock(context->filePath, pFile->h, SHARED_FIRST+
+ context->sharedLockByte, 1, 1)) {
+ /* failed to re-establish our shared lock */
+ rc = SQLITE_IOERR_RDLOCK; /* This should never happen */
+ }
+ } else {
+ /* This should never happen - failed to unlock the exclusive range */
+ rc = SQLITE_IOERR_UNLOCK;
+ }
+ }
+ }
+ if (rc == SQLITE_OK && pFile->locktype>=PENDING_LOCK) {
+ if (_AFPFSSetLock(context->filePath, pFile->h, PENDING_BYTE, 1, 0)){
+ /* failed to release the pending lock */
+ rc = SQLITE_IOERR_UNLOCK; /* This should never happen */
+ }
+ }
+ if (rc == SQLITE_OK && pFile->locktype>=RESERVED_LOCK) {
+ if (_AFPFSSetLock(context->filePath, pFile->h, RESERVED_BYTE, 1, 0)) {
+ /* failed to release the reserved lock */
+ rc = SQLITE_IOERR_UNLOCK; /* This should never happen */
+ }
+ }
+ }
+ if( locktype==NO_LOCK ){
+ int failed = _AFPFSSetLock(context->filePath, pFile->h,
+ SHARED_FIRST + context->sharedLockByte, 1, 0);
+ if (failed) {
+ rc = SQLITE_IOERR_UNLOCK; /* This should never happen */
+ }
+ }
+ if (rc == SQLITE_OK)
+ pFile->locktype = locktype;
+ leaveMutex();
+ return rc;
+}
+
+/*
+** Close a file & cleanup AFP specific locking context
+*/
+static int afpUnixClose(sqlite3_file *id) {
+ unixFile *pFile = (unixFile*)id;
+
+ if( !pFile ) return SQLITE_OK;
+ afpUnixUnlock(id, NO_LOCK);
+ sqlite3_free(pFile->lockingContext);
+ if( pFile->dirfd>=0 ) close(pFile->dirfd);
+ pFile->dirfd = -1;
+ enterMutex();
+ close(pFile->h);
+ leaveMutex();
+ OSTRACE2("CLOSE %-3d\n", pFile->h);
+ OpenCounter(-1);
+ memset(pFile, 0, sizeof(unixFile));
+ return SQLITE_OK;
+}
+
+
+#pragma mark flock() style locking
+
+/*
+** The flockLockingContext is not used
+*/
+typedef void flockLockingContext;
+
+static int flockUnixCheckReservedLock(sqlite3_file *id){
+ unixFile *pFile = (unixFile*)id;
+
+ if (pFile->locktype == RESERVED_LOCK) {
+ return 1; /* already have a reserved lock */
+ } else {
+ /* attempt to get the lock */
+ int rc = flock(pFile->h, LOCK_EX | LOCK_NB);
+ if (!rc) {
+ /* got the lock, unlock it */
+ flock(pFile->h, LOCK_UN);
+ return 0; /* no one has it reserved */
+ }
+ return 1; /* someone else might have it reserved */
+ }
+}
+
+static int flockUnixLock(sqlite3_file *id, int locktype) {
+ unixFile *pFile = (unixFile*)id;
+
+ /* if we already have a lock, it is exclusive.
+ ** Just adjust level and punt on outta here. */
+ if (pFile->locktype > NO_LOCK) {
+ pFile->locktype = locktype;
+ return SQLITE_OK;
+ }
+
+ /* grab an exclusive lock */
+ int rc = flock(pFile->h, LOCK_EX | LOCK_NB);
+ if (rc) {
+ /* didn't get, must be busy */
+ return SQLITE_BUSY;
+ } else {
+ /* got it, set the type and return ok */
+ pFile->locktype = locktype;
+ return SQLITE_OK;
+ }
+}
+
+static int flockUnixUnlock(sqlite3_file *id, int locktype) {
+ unixFile *pFile = (unixFile*)id;
+
+ assert( locktype<=SHARED_LOCK );
+
+ /* no-op if possible */
+ if( pFile->locktype==locktype ){
+ return SQLITE_OK;
+ }
+
+ /* shared can just be set because we always have an exclusive */
+ if (locktype==SHARED_LOCK) {
+ pFile->locktype = locktype;
+ return SQLITE_OK;
+ }
+
+ /* no, really, unlock. */
+ int rc = flock(pFile->h, LOCK_UN);
+ if (rc)
+ return SQLITE_IOERR_UNLOCK;
+ else {
+ pFile->locktype = NO_LOCK;
+ return SQLITE_OK;
+ }
+}
+
+/*
+** Close a file.
+*/
+static int flockUnixClose(sqlite3_file *id) {
+ unixFile *pFile = (unixFile*)id;
+
+ if( !pFile ) return SQLITE_OK;
+ flockUnixUnlock(id, NO_LOCK);
+
+ if( pFile->dirfd>=0 ) close(pFile->dirfd);
+ pFile->dirfd = -1;
+
+ enterMutex();
+ close(pFile->h);
+ leaveMutex();
+ OSTRACE2("CLOSE %-3d\n", pFile->h);
+ OpenCounter(-1);
+ memset(pFile, 0, sizeof(unixFile));
+ return SQLITE_OK;
+}
+
+#pragma mark Old-School .lock file based locking
+
+/*
+** The dotlockLockingContext structure contains all dotlock (.lock) lock
+** specific state
+*/
+typedef struct dotlockLockingContext dotlockLockingContext;
+struct dotlockLockingContext {
+ char *lockPath;
+};
+
+
+static int dotlockUnixCheckReservedLock(sqlite3_file *id) {
+ unixFile *pFile = (unixFile*)id;
+ dotlockLockingContext *context;
+
+ context = (dotlockLockingContext*)pFile->lockingContext;
+ if (pFile->locktype == RESERVED_LOCK) {
+ return 1; /* already have a reserved lock */
+ } else {
+ struct stat statBuf;
+ if (lstat(context->lockPath,&statBuf) == 0){
+ /* file exists, someone else has the lock */
+ return 1;
+ }else{
+ /* file does not exist, we could have it if we want it */
+ return 0;
+ }
+ }
+}
+
+static int dotlockUnixLock(sqlite3_file *id, int locktype) {
+ unixFile *pFile = (unixFile*)id;
+ dotlockLockingContext *context;
+ int fd;
+
+ context = (dotlockLockingContext*)pFile->lockingContext;
+
+ /* if we already have a lock, it is exclusive.
+ ** Just adjust level and punt on outta here. */
+ if (pFile->locktype > NO_LOCK) {
+ pFile->locktype = locktype;
+
+ /* Always update the timestamp on the old file */
+ utimes(context->lockPath,NULL);
+ return SQLITE_OK;
+ }
+
+ /* check to see if lock file already exists */
+ struct stat statBuf;
+ if (lstat(context->lockPath,&statBuf) == 0){
+ return SQLITE_BUSY; /* it does, busy */
+ }
+
+ /* grab an exclusive lock */
+ fd = open(context->lockPath,O_RDONLY|O_CREAT|O_EXCL,0600);
+ if( fd<0 ){
+ /* failed to open/create the file, someone else may have stolen the lock */
+ return SQLITE_BUSY;
+ }
+ close(fd);
+
+ /* got it, set the type and return ok */
+ pFile->locktype = locktype;
+ return SQLITE_OK;
+}
+
+static int dotlockUnixUnlock(sqlite3_file *id, int locktype) {
+ unixFile *pFile = (unixFile*)id;
+ dotlockLockingContext *context;
+
+ context = (dotlockLockingContext*)pFile->lockingContext;
+
+ assert( locktype<=SHARED_LOCK );
+
+ /* no-op if possible */
+ if( pFile->locktype==locktype ){
+ return SQLITE_OK;
+ }
+
+ /* shared can just be set because we always have an exclusive */
+ if (locktype==SHARED_LOCK) {
+ pFile->locktype = locktype;
+ return SQLITE_OK;
+ }
+
+ /* no, really, unlock. */
+ unlink(context->lockPath);
+ pFile->locktype = NO_LOCK;
+ return SQLITE_OK;
+}
+
+/*
+ ** Close a file.
+ */
+static int dotlockUnixClose(sqlite3_file *id) {
+ unixFile *pFile = (unixFile*)id;
+
+ if( !pFile ) return SQLITE_OK;
+ dotlockUnixUnlock(id, NO_LOCK);
+ sqlite3_free(pFile->lockingContext);
+ if( pFile->dirfd>=0 ) close(pFile->dirfd);
+ pFile->dirfd = -1;
+ enterMutex();
+ close(pFile->h);
+ leaveMutex();
+ OSTRACE2("CLOSE %-3d\n", pFile->h);
+ OpenCounter(-1);
+ memset(pFile, 0, sizeof(unixFile));
+ return SQLITE_OK;
+}
+
+
+#pragma mark No locking
+
+/*
+** The nolockLockingContext is void
+*/
+typedef void nolockLockingContext;
+
+static int nolockUnixCheckReservedLock(sqlite3_file *id) {
+ return 0;
+}
+
+static int nolockUnixLock(sqlite3_file *id, int locktype) {
+ return SQLITE_OK;
+}
+
+static int nolockUnixUnlock(sqlite3_file *id, int locktype) {
+ return SQLITE_OK;
+}
+
+/*
+** Close a file.
+*/
+static int nolockUnixClose(sqlite3_file *id) {
+ unixFile *pFile = (unixFile*)id;
+
+ if( !pFile ) return SQLITE_OK;
+ if( pFile->dirfd>=0 ) close(pFile->dirfd);
+ pFile->dirfd = -1;
+ enterMutex();
+ close(pFile->h);
+ leaveMutex();
+ OSTRACE2("CLOSE %-3d\n", pFile->h);
+ OpenCounter(-1);
+ memset(pFile, 0, sizeof(unixFile));
+ return SQLITE_OK;
+}
+
+#endif /* SQLITE_ENABLE_LOCKING_STYLE */
+
+
+/*
+** Information and control of an open file handle.
+*/
+static int unixFileControl(sqlite3_file *id, int op, void *pArg){
+ switch( op ){
+ case SQLITE_FCNTL_LOCKSTATE: {
+ *(int*)pArg = ((unixFile*)id)->locktype;
+ return SQLITE_OK;
+ }
+ }
+ return SQLITE_ERROR;
+}
+
+/*
+** Return the sector size in bytes of the underlying block device for
+** the specified file. This is almost always 512 bytes, but may be
+** larger for some devices.
+**
+** SQLite code assumes this function cannot fail. It also assumes that
+** if two files are created in the same file-system directory (i.e.
+** a database and its journal file) that the sector size will be the
+** same for both.
+*/
+static int unixSectorSize(sqlite3_file *id){
+ return SQLITE_DEFAULT_SECTOR_SIZE;
+}
+
+/*
+** Return the device characteristics for the file. This is always 0.
+*/
+static int unixDeviceCharacteristics(sqlite3_file *id){
+ return 0;
+}
+
+/*
+** This vector defines all the methods that can operate on an sqlite3_file
+** for unix.
+*/
+static const sqlite3_io_methods sqlite3UnixIoMethod = {
+ 1, /* iVersion */
+ unixClose,
+ unixRead,
+ unixWrite,
+ unixTruncate,
+ unixSync,
+ unixFileSize,
+ unixLock,
+ unixUnlock,
+ unixCheckReservedLock,
+ unixFileControl,
+ unixSectorSize,
+ unixDeviceCharacteristics
+};
+
+#ifdef SQLITE_ENABLE_LOCKING_STYLE
+/*
+** This vector defines all the methods that can operate on an sqlite3_file
+** for unix with AFP style file locking.
+*/
+static const sqlite3_io_methods sqlite3AFPLockingUnixIoMethod = {
+ 1, /* iVersion */
+ afpUnixClose,
+ unixRead,
+ unixWrite,
+ unixTruncate,
+ unixSync,
+ unixFileSize,
+ afpUnixLock,
+ afpUnixUnlock,
+ afpUnixCheckReservedLock,
+ unixFileControl,
+ unixSectorSize,
+ unixDeviceCharacteristics
+};
+
+/*
+** This vector defines all the methods that can operate on an sqlite3_file
+** for unix with flock() style file locking.
+*/
+static const sqlite3_io_methods sqlite3FlockLockingUnixIoMethod = {
+ 1, /* iVersion */
+ flockUnixClose,
+ unixRead,
+ unixWrite,
+ unixTruncate,
+ unixSync,
+ unixFileSize,
+ flockUnixLock,
+ flockUnixUnlock,
+ flockUnixCheckReservedLock,
+ unixFileControl,
+ unixSectorSize,
+ unixDeviceCharacteristics
+};
+
+/*
+** This vector defines all the methods that can operate on an sqlite3_file
+** for unix with dotlock style file locking.
+*/
+static const sqlite3_io_methods sqlite3DotlockLockingUnixIoMethod = {
+ 1, /* iVersion */
+ dotlockUnixClose,
+ unixRead,
+ unixWrite,
+ unixTruncate,
+ unixSync,
+ unixFileSize,
+ dotlockUnixLock,
+ dotlockUnixUnlock,
+ dotlockUnixCheckReservedLock,
+ unixFileControl,
+ unixSectorSize,
+ unixDeviceCharacteristics
+};
+
+/*
+** This vector defines all the methods that can operate on an sqlite3_file
+** for unix with nolock style file locking.
+*/
+static const sqlite3_io_methods sqlite3NolockLockingUnixIoMethod = {
+ 1, /* iVersion */
+ nolockUnixClose,
+ unixRead,
+ unixWrite,
+ unixTruncate,
+ unixSync,
+ unixFileSize,
+ nolockUnixLock,
+ nolockUnixUnlock,
+ nolockUnixCheckReservedLock,
+ unixFileControl,
+ unixSectorSize,
+ unixDeviceCharacteristics
+};
+
+#endif /* SQLITE_ENABLE_LOCKING_STYLE */
+
+/*
+** Allocate memory for a new unixFile and initialize that unixFile.
+** Write a pointer to the new unixFile into *pId.
+** If we run out of memory, close the file and return an error.
+*/
+#ifdef SQLITE_ENABLE_LOCKING_STYLE
+/*
+** When locking extensions are enabled, the filepath and locking style
+** are needed to determine the unixFile pMethod to use for locking operations.
+** The locking-style specific lockingContext data structure is created
+** and assigned here also.
+*/
+static int fillInUnixFile(
+ int h, /* Open file descriptor of file being opened */
+ int dirfd, /* Directory file descriptor */
+ sqlite3_file *pId, /* Write to the unixFile structure here */
+ const char *zFilename /* Name of the file being opened */
+){
+ sqlite3LockingStyle lockingStyle;
+ unixFile *pNew = (unixFile *)pId;
+ int rc;
+
+#ifdef FD_CLOEXEC
+ fcntl(h, F_SETFD, fcntl(h, F_GETFD, 0) | FD_CLOEXEC);
+#endif
+
+ lockingStyle = sqlite3DetectLockingStyle(zFilename, h);
+ if ( lockingStyle==posixLockingStyle ){
+ enterMutex();
+ rc = findLockInfo(h, &pNew->pLock, &pNew->pOpen);
+ leaveMutex();
+ if( rc ){
+ if( dirfd>=0 ) close(dirfd);
+ close(h);
+ return rc;
+ }
+ } else {
+ /* pLock and pOpen are only used for posix advisory locking */
+ pNew->pLock = NULL;
+ pNew->pOpen = NULL;
+ }
+
+ OSTRACE3("OPEN %-3d %s\n", h, zFilename);
+ pNew->dirfd = -1;
+ pNew->h = h;
+ pNew->dirfd = dirfd;
+ SET_THREADID(pNew);
+
+ switch(lockingStyle) {
+ case afpLockingStyle: {
+ /* afp locking uses the file path so it needs to be included in
+ ** the afpLockingContext */
+ afpLockingContext *context;
+ pNew->pMethod = &sqlite3AFPLockingUnixIoMethod;
+ pNew->lockingContext = context = sqlite3_malloc( sizeof(*context) );
+ if( context==0 ){
+ close(h);
+ if( dirfd>=0 ) close(dirfd);
+ return SQLITE_NOMEM;
+ }
+
+ /* NB: zFilename exists and remains valid until the file is closed
+ ** according to requirement F11141. So we do not need to make a
+ ** copy of the filename. */
+ context->filePath = zFilename;
+ srandomdev();
+ break;
+ }
+ case flockLockingStyle:
+ /* flock locking doesn't need additional lockingContext information */
+ pNew->pMethod = &sqlite3FlockLockingUnixIoMethod;
+ break;
+ case dotlockLockingStyle: {
+ /* dotlock locking uses the file path so it needs to be included in
+ ** the dotlockLockingContext */
+ dotlockLockingContext *context;
+ int nFilename;
+ nFilename = strlen(zFilename);
+ pNew->pMethod = &sqlite3DotlockLockingUnixIoMethod;
+ pNew->lockingContext = context =
+ sqlite3_malloc( sizeof(*context) + nFilename + 6 );
+ if( context==0 ){
+ close(h);
+ if( dirfd>=0 ) close(dirfd);
+ return SQLITE_NOMEM;
+ }
+ context->lockPath = (char*)&context[1];
+ sqlite3_snprintf(nFilename, context->lockPath,
+ "%s.lock", zFilename);
+ break;
+ }
+ case posixLockingStyle:
+ /* posix locking doesn't need additional lockingContext information */
+ pNew->pMethod = &sqlite3UnixIoMethod;
+ break;
+ case noLockingStyle:
+ case unsupportedLockingStyle:
+ default:
+ pNew->pMethod = &sqlite3NolockLockingUnixIoMethod;
+ }
+ OpenCounter(+1);
+ return SQLITE_OK;
+}
+#else /* SQLITE_ENABLE_LOCKING_STYLE */
+static int fillInUnixFile(
+ int h, /* Open file descriptor on file being opened */
+ int dirfd,
+ sqlite3_file *pId, /* Write to the unixFile structure here */
+ const char *zFilename /* Name of the file being opened */
+){
+ unixFile *pNew = (unixFile *)pId;
+ int rc;
+
+#ifdef FD_CLOEXEC
+ fcntl(h, F_SETFD, fcntl(h, F_GETFD, 0) | FD_CLOEXEC);
+#endif
+
+ enterMutex();
+ rc = findLockInfo(h, &pNew->pLock, &pNew->pOpen);
+ leaveMutex();
+ if( rc ){
+ if( dirfd>=0 ) close(dirfd);
+ close(h);
+ return rc;
+ }
+
+ OSTRACE3("OPEN %-3d %s\n", h, zFilename);
+ pNew->dirfd = -1;
+ pNew->h = h;
+ pNew->dirfd = dirfd;
+ SET_THREADID(pNew);
+
+ pNew->pMethod = &sqlite3UnixIoMethod;
+ OpenCounter(+1);
+ return SQLITE_OK;
+}
+#endif /* SQLITE_ENABLE_LOCKING_STYLE */
+
+/*
+** Open a file descriptor to the directory containing file zFilename.
+** If successful, *pFd is set to the opened file descriptor and
+** SQLITE_OK is returned. If an error occurs, either SQLITE_NOMEM
+** or SQLITE_CANTOPEN is returned and *pFd is set to an undefined
+** value.
+**
+** If SQLITE_OK is returned, the caller is responsible for closing
+** the file descriptor *pFd using close().
+*/
+static int openDirectory(const char *zFilename, int *pFd){
+ int ii;
+ int fd = -1;
+ char zDirname[MAX_PATHNAME+1];
+
+ sqlite3_snprintf(MAX_PATHNAME, zDirname, "%s", zFilename);
+ for(ii=strlen(zDirname); ii>=0 && zDirname[ii]!='/'; ii--);
+ if( ii>0 ){
+ zDirname[ii] = '\0';
+ fd = open(zDirname, O_RDONLY|O_BINARY, 0);
+ if( fd>=0 ){
+#ifdef FD_CLOEXEC
+ fcntl(fd, F_SETFD, fcntl(fd, F_GETFD, 0) | FD_CLOEXEC);
+#endif
+ OSTRACE3("OPENDIR %-3d %s\n", fd, zDirname);
+ }
+ }
+ *pFd = fd;
+ return (fd>=0?SQLITE_OK:SQLITE_CANTOPEN);
+}
+
+/*
+** Open the file zPath.
+**
+** Previously, the SQLite OS layer used three functions in place of this
+** one:
+**
+** sqlite3OsOpenReadWrite();
+** sqlite3OsOpenReadOnly();
+** sqlite3OsOpenExclusive();
+**
+** These calls correspond to the following combinations of flags:
+**
+** ReadWrite() -> (READWRITE | CREATE)
+** ReadOnly() -> (READONLY)
+** OpenExclusive() -> (READWRITE | CREATE | EXCLUSIVE)
+**
+** The old OpenExclusive() accepted a boolean argument - "delFlag". If
+** true, the file was configured to be automatically deleted when the
+** file handle closed. To achieve the same effect using this new
+** interface, add the DELETEONCLOSE flag to those specified above for
+** OpenExclusive().
+*/
+static int unixOpen(
+ sqlite3_vfs *pVfs,
+ const char *zPath,
+ sqlite3_file *pFile,
+ int flags,
+ int *pOutFlags
+){
+ int fd = 0; /* File descriptor returned by open() */
+ int dirfd = -1; /* Directory file descriptor */
+ int oflags = 0; /* Flags to pass to open() */
+ int eType = flags&0xFFFFFF00; /* Type of file to open */
+
+ int isExclusive = (flags & SQLITE_OPEN_EXCLUSIVE);
+ int isDelete = (flags & SQLITE_OPEN_DELETEONCLOSE);
+ int isCreate = (flags & SQLITE_OPEN_CREATE);
+ int isReadonly = (flags & SQLITE_OPEN_READONLY);
+ int isReadWrite = (flags & SQLITE_OPEN_READWRITE);
+
+ /* If creating a master or main-file journal, this function will open
+ ** a file-descriptor on the directory too. The first time unixSync()
+ ** is called the directory file descriptor will be fsync()ed and close()d.
+ */
+ int isOpenDirectory = (isCreate &&
+ (eType==SQLITE_OPEN_MASTER_JOURNAL || eType==SQLITE_OPEN_MAIN_JOURNAL)
+ );
+
+ /* Check the following statements are true:
+ **
+ ** (a) Exactly one of the READWRITE and READONLY flags must be set, and
+ ** (b) if CREATE is set, then READWRITE must also be set, and
+ ** (c) if EXCLUSIVE is set, then CREATE must also be set.
+ ** (d) if DELETEONCLOSE is set, then CREATE must also be set.
+ */
+ assert((isReadonly==0 || isReadWrite==0) && (isReadWrite || isReadonly));
+ assert(isCreate==0 || isReadWrite);
+ assert(isExclusive==0 || isCreate);
+ assert(isDelete==0 || isCreate);
+
+
+ /* The main DB, main journal, and master journal are never automatically
+ ** deleted
+ */
+ assert( eType!=SQLITE_OPEN_MAIN_DB || !isDelete );
+ assert( eType!=SQLITE_OPEN_MAIN_JOURNAL || !isDelete );
+ assert( eType!=SQLITE_OPEN_MASTER_JOURNAL || !isDelete );
+
+ /* Assert that the upper layer has set one of the "file-type" flags. */
+ assert( eType==SQLITE_OPEN_MAIN_DB || eType==SQLITE_OPEN_TEMP_DB
+ || eType==SQLITE_OPEN_MAIN_JOURNAL || eType==SQLITE_OPEN_TEMP_JOURNAL
+ || eType==SQLITE_OPEN_SUBJOURNAL || eType==SQLITE_OPEN_MASTER_JOURNAL
+ || eType==SQLITE_OPEN_TRANSIENT_DB
+ );
+
+ if( isReadonly ) oflags |= O_RDONLY;
+ if( isReadWrite ) oflags |= O_RDWR;
+ if( isCreate ) oflags |= O_CREAT;
+ if( isExclusive ) oflags |= (O_EXCL|O_NOFOLLOW);
+ oflags |= (O_LARGEFILE|O_BINARY);
+
+ memset(pFile, 0, sizeof(unixFile));
+ fd = open(zPath, oflags, isDelete?0600:SQLITE_DEFAULT_FILE_PERMISSIONS);
+ if( fd<0 && errno!=EISDIR && isReadWrite && !isExclusive ){
+ /* Failed to open the file for read/write access. Try read-only. */
+ flags &= ~(SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE);
+ flags |= SQLITE_OPEN_READONLY;
+ return unixOpen(pVfs, zPath, pFile, flags, pOutFlags);
+ }
+ if( fd<0 ){
+ return SQLITE_CANTOPEN;
+ }
+ if( isDelete ){
+ unlink(zPath);
+ }
+ if( pOutFlags ){
+ *pOutFlags = flags;
+ }
+
+ assert(fd!=0);
+ if( isOpenDirectory ){
+ int rc = openDirectory(zPath, &dirfd);
+ if( rc!=SQLITE_OK ){
+ close(fd);
+ return rc;
+ }
+ }
+ return fillInUnixFile(fd, dirfd, pFile, zPath);
+}
+
+/*
+** Delete the file at zPath. If the dirSync argument is true, fsync()
+** the directory after deleting the file.
+*/
+static int unixDelete(sqlite3_vfs *pVfs, const char *zPath, int dirSync){
+ int rc = SQLITE_OK;
+ SimulateIOError(return SQLITE_IOERR_DELETE);
+ unlink(zPath);
+ if( dirSync ){
+ int fd;
+ rc = openDirectory(zPath, &fd);
+ if( rc==SQLITE_OK ){
+ if( fsync(fd) ){
+ rc = SQLITE_IOERR_DIR_FSYNC;
+ }
+ close(fd);
+ }
+ }
+ return rc;
+}
+
+/*
+** Test the existance of or access permissions of file zPath. The
+** test performed depends on the value of flags:
+**
+** SQLITE_ACCESS_EXISTS: Return 1 if the file exists
+** SQLITE_ACCESS_READWRITE: Return 1 if the file is read and writable.
+** SQLITE_ACCESS_READONLY: Return 1 if the file is readable.
+**
+** Otherwise return 0.
+*/
+static int unixAccess(sqlite3_vfs *pVfs, const char *zPath, int flags){
+ int amode = 0;
+ switch( flags ){
+ case SQLITE_ACCESS_EXISTS:
+ amode = F_OK;
+ break;
+ case SQLITE_ACCESS_READWRITE:
+ amode = W_OK|R_OK;
+ break;
+ case SQLITE_ACCESS_READ:
+ amode = R_OK;
+ break;
+
+ default:
+ assert(!"Invalid flags argument");
+ }
+ return (access(zPath, amode)==0);
+}
+
+/*
+** Create a temporary file name in zBuf. zBuf must be allocated
+** by the calling process and must be big enough to hold at least
+** pVfs->mxPathname bytes.
+*/
+static int unixGetTempname(sqlite3_vfs *pVfs, int nBuf, char *zBuf){
+ static const char *azDirs[] = {
+ 0,
+ "/var/tmp",
+ "/usr/tmp",
+ "/tmp",
+ ".",
+ };
+ static const unsigned char zChars[] =
+ "abcdefghijklmnopqrstuvwxyz"
+ "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
+ "0123456789";
+ int i, j;
+ struct stat buf;
+ const char *zDir = ".";
+
+ /* It's odd to simulate an io-error here, but really this is just
+ ** using the io-error infrastructure to test that SQLite handles this
+ ** function failing.
+ */
+ SimulateIOError( return SQLITE_ERROR );
+
+ azDirs[0] = sqlite3_temp_directory;
+ for(i=0; i<sizeof(azDirs)/sizeof(azDirs[0]); i++){
+ if( azDirs[i]==0 ) continue;
+ if( stat(azDirs[i], &buf) ) continue;
+ if( !S_ISDIR(buf.st_mode) ) continue;
+ if( access(azDirs[i], 07) ) continue;
+ zDir = azDirs[i];
+ break;
+ }
+
+ /* Check that the output buffer is large enough for the temporary file
+ ** name. If it is not, return SQLITE_ERROR.
+ */
+ if( (strlen(zDir) + strlen(SQLITE_TEMP_FILE_PREFIX) + 17) >= nBuf ){
+ return SQLITE_ERROR;
+ }
+
+ do{
+ assert( pVfs->mxPathname==MAX_PATHNAME );
+ sqlite3_snprintf(nBuf-17, zBuf, "%s/"SQLITE_TEMP_FILE_PREFIX, zDir);
+ j = strlen(zBuf);
+ sqlite3_randomness(15, &zBuf[j]);
+ for(i=0; i<15; i++, j++){
+ zBuf[j] = (char)zChars[ ((unsigned char)zBuf[j])%(sizeof(zChars)-1) ];
+ }
+ zBuf[j] = 0;
+ }while( access(zBuf,0)==0 );
+ return SQLITE_OK;
+}
+
+
+/*
+** Turn a relative pathname into a full pathname. The relative path
+** is stored as a nul-terminated string in the buffer pointed to by
+** zPath.
+**
+** zOut points to a buffer of at least sqlite3_vfs.mxPathname bytes
+** (in this case, MAX_PATHNAME bytes). The full-path is written to
+** this buffer before returning.
+*/
+static int unixFullPathname(
+ sqlite3_vfs *pVfs, /* Pointer to vfs object */
+ const char *zPath, /* Possibly relative input path */
+ int nOut, /* Size of output buffer in bytes */
+ char *zOut /* Output buffer */
+){
+
+ /* It's odd to simulate an io-error here, but really this is just
+ ** using the io-error infrastructure to test that SQLite handles this
+ ** function failing. This function could fail if, for example, the
+ ** current working directly has been unlinked.
+ */
+ SimulateIOError( return SQLITE_ERROR );
+
+ assert( pVfs->mxPathname==MAX_PATHNAME );
+ zOut[nOut-1] = '\0';
+ if( zPath[0]=='/' ){
+ sqlite3_snprintf(nOut, zOut, "%s", zPath);
+ }else{
+ int nCwd;
+ if( getcwd(zOut, nOut-1)==0 ){
+ return SQLITE_CANTOPEN;
+ }
+ nCwd = strlen(zOut);
+ sqlite3_snprintf(nOut-nCwd, &zOut[nCwd], "/%s", zPath);
+ }
+ return SQLITE_OK;
+
+#if 0
+ /*
+ ** Remove "/./" path elements and convert "/A/./" path elements
+ ** to just "/".
+ */
+ if( zFull ){
+ int i, j;
+ for(i=j=0; zFull[i]; i++){
+ if( zFull[i]=='/' ){
+ if( zFull[i+1]=='/' ) continue;
+ if( zFull[i+1]=='.' && zFull[i+2]=='/' ){
+ i += 1;
+ continue;
+ }
+ if( zFull[i+1]=='.' && zFull[i+2]=='.' && zFull[i+3]=='/' ){
+ while( j>0 && zFull[j-1]!='/' ){ j--; }
+ i += 3;
+ continue;
+ }
+ }
+ zFull[j++] = zFull[i];
+ }
+ zFull[j] = 0;
+ }
+#endif
+}
+
+
+#ifndef SQLITE_OMIT_LOAD_EXTENSION
+/*
+** Interfaces for opening a shared library, finding entry points
+** within the shared library, and closing the shared library.
+*/
+#include <dlfcn.h>
+static void *unixDlOpen(sqlite3_vfs *pVfs, const char *zFilename){
+ return dlopen(zFilename, RTLD_NOW | RTLD_GLOBAL);
+}
+
+/*
+** SQLite calls this function immediately after a call to unixDlSym() or
+** unixDlOpen() fails (returns a null pointer). If a more detailed error
+** message is available, it is written to zBufOut. If no error message
+** is available, zBufOut is left unmodified and SQLite uses a default
+** error message.
+*/
+static void unixDlError(sqlite3_vfs *pVfs, int nBuf, char *zBufOut){
+ char *zErr;
+ enterMutex();
+ zErr = dlerror();
+ if( zErr ){
+ sqlite3_snprintf(nBuf, zBufOut, "%s", zErr);
+ }
+ leaveMutex();
+}
+static void *unixDlSym(sqlite3_vfs *pVfs, void *pHandle, const char *zSymbol){
+ return dlsym(pHandle, zSymbol);
+}
+static void unixDlClose(sqlite3_vfs *pVfs, void *pHandle){
+ dlclose(pHandle);
+}
+#else /* if SQLITE_OMIT_LOAD_EXTENSION is defined: */
+ #define unixDlOpen 0
+ #define unixDlError 0
+ #define unixDlSym 0
+ #define unixDlClose 0
+#endif
+
+/*
+** Write nBuf bytes of random data to the supplied buffer zBuf.
+*/
+static int unixRandomness(sqlite3_vfs *pVfs, int nBuf, char *zBuf){
+
+ assert(nBuf>=(sizeof(time_t)+sizeof(int)));
+
+ /* We have to initialize zBuf to prevent valgrind from reporting
+ ** errors. The reports issued by valgrind are incorrect - we would
+ ** prefer that the randomness be increased by making use of the
+ ** uninitialized space in zBuf - but valgrind errors tend to worry
+ ** some users. Rather than argue, it seems easier just to initialize
+ ** the whole array and silence valgrind, even if that means less randomness
+ ** in the random seed.
+ **
+ ** When testing, initializing zBuf[] to zero is all we do. That means
+ ** that we always use the same random number sequence. This makes the
+ ** tests repeatable.
+ */
+ memset(zBuf, 0, nBuf);
+#if !defined(SQLITE_TEST)
+ {
+ int pid, fd;
+ fd = open("/dev/urandom", O_RDONLY);
+ if( fd<0 ){
+ time_t t;
+ time(&t);
+ memcpy(zBuf, &t, sizeof(t));
+ pid = getpid();
+ memcpy(&zBuf[sizeof(t)], &pid, sizeof(pid));
+ }else{
+ read(fd, zBuf, nBuf);
+ close(fd);
+ }
+ }
+#endif
+ return SQLITE_OK;
+}
+
+
+/*
+** Sleep for a little while. Return the amount of time slept.
+** The argument is the number of microseconds we want to sleep.
+** The return value is the number of microseconds of sleep actually
+** requested from the underlying operating system, a number which
+** might be greater than or equal to the argument, but not less
+** than the argument.
+*/
+static int unixSleep(sqlite3_vfs *pVfs, int microseconds){
+#if defined(HAVE_USLEEP) && HAVE_USLEEP
+ usleep(microseconds);
+ return microseconds;
+#else
+ int seconds = (microseconds+999999)/1000000;
+ sleep(seconds);
+ return seconds*1000000;
+#endif
+}
+
+/*
+** The following variable, if set to a non-zero value, becomes the result
+** returned from sqlite3OsCurrentTime(). This is used for testing.
+*/
+#ifdef SQLITE_TEST
+SQLITE_API int sqlite3_current_time = 0;
+#endif
+
+/*
+** Find the current time (in Universal Coordinated Time). Write the
+** current time and date as a Julian Day number into *prNow and
+** return 0. Return 1 if the time and date cannot be found.
+*/
+static int unixCurrentTime(sqlite3_vfs *pVfs, double *prNow){
+#ifdef NO_GETTOD
+ time_t t;
+ time(&t);
+ *prNow = t/86400.0 + 2440587.5;
+#else
+ struct timeval sNow;
+ gettimeofday(&sNow, 0);
+ *prNow = 2440587.5 + sNow.tv_sec/86400.0 + sNow.tv_usec/86400000000.0;
+#endif
+#ifdef SQLITE_TEST
+ if( sqlite3_current_time ){
+ *prNow = sqlite3_current_time/86400.0 + 2440587.5;
+ }
+#endif
+ return 0;
+}
+
+/*
+** Return a pointer to the sqlite3DefaultVfs structure. We use
+** a function rather than give the structure global scope because
+** some compilers (MSVC) do not allow forward declarations of
+** initialized structures.
+*/
+SQLITE_PRIVATE sqlite3_vfs *sqlite3OsDefaultVfs(void){
+ static sqlite3_vfs unixVfs = {
+ 1, /* iVersion */
+ sizeof(unixFile), /* szOsFile */
+ MAX_PATHNAME, /* mxPathname */
+ 0, /* pNext */
+ "unix", /* zName */
+ 0, /* pAppData */
+
+ unixOpen, /* xOpen */
+ unixDelete, /* xDelete */
+ unixAccess, /* xAccess */
+ unixGetTempname, /* xGetTempName */
+ unixFullPathname, /* xFullPathname */
+ unixDlOpen, /* xDlOpen */
+ unixDlError, /* xDlError */
+ unixDlSym, /* xDlSym */
+ unixDlClose, /* xDlClose */
+ unixRandomness, /* xRandomness */
+ unixSleep, /* xSleep */
+ unixCurrentTime /* xCurrentTime */
+ };
+
+ return &unixVfs;
+}
+
+#endif /* OS_UNIX */
+
+/************** End of os_unix.c *********************************************/
+/************** Begin file os_win.c ******************************************/
+/*
+** 2004 May 22
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+** This file contains code that is specific to windows.
+*/
+#if OS_WIN /* This file is used for windows only */
+
+
+/*
+** A Note About Memory Allocation:
+**
+** This driver uses malloc()/free() directly rather than going through
+** the SQLite-wrappers sqlite3_malloc()/sqlite3_free(). Those wrappers
+** are designed for use on embedded systems where memory is scarce and
+** malloc failures happen frequently. Win32 does not typically run on
+** embedded systems, and when it does the developers normally have bigger
+** problems to worry about than running out of memory. So there is not
+** a compelling need to use the wrappers.
+**
+** But there is a good reason to not use the wrappers. If we use the
+** wrappers then we will get simulated malloc() failures within this
+** driver. And that causes all kinds of problems for our tests. We
+** could enhance SQLite to deal with simulated malloc failures within
+** the OS driver, but the code to deal with those failure would not
+** be exercised on Linux (which does not need to malloc() in the driver)
+** and so we would have difficulty writing coverage tests for that
+** code. Better to leave the code out, we think.
+**
+** The point of this discussion is as follows: When creating a new
+** OS layer for an embedded system, if you use this file as an example,
+** avoid the use of malloc()/free(). Those routines work ok on windows
+** desktops but not so well in embedded systems.
+*/
+
+#include <winbase.h>
+
+#ifdef __CYGWIN__
+# include <sys/cygwin.h>
+#endif
+
+/*
+** Macros used to determine whether or not to use threads.
+*/
+#if defined(THREADSAFE) && THREADSAFE
+# define SQLITE_W32_THREADS 1
+#endif
+
+/*
+** Include code that is common to all os_*.c files
+*/
+/************** Include os_common.h in the middle of os_win.c ****************/
+/************** Begin file os_common.h ***************************************/
+/*
+** 2004 May 22
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+** This file contains macros and a little bit of code that is common to
+** all of the platform-specific files (os_*.c) and is #included into those
+** files.
+**
+** This file should be #included by the os_*.c files only. It is not a
+** general purpose header file.
+*/
+
+/*
+** At least two bugs have slipped in because we changed the MEMORY_DEBUG
+** macro to SQLITE_DEBUG and some older makefiles have not yet made the
+** switch. The following code should catch this problem at compile-time.
+*/
+#ifdef MEMORY_DEBUG
+# error "The MEMORY_DEBUG macro is obsolete. Use SQLITE_DEBUG instead."
+#endif
+
+
+/*
+ * When testing, this global variable stores the location of the
+ * pending-byte in the database file.
+ */
+#ifdef SQLITE_TEST
+SQLITE_API unsigned int sqlite3_pending_byte = 0x40000000;
+#endif
+
+#ifdef SQLITE_DEBUG
+SQLITE_PRIVATE int sqlite3OSTrace = 0;
+#define OSTRACE1(X) if( sqlite3OSTrace ) sqlite3DebugPrintf(X)
+#define OSTRACE2(X,Y) if( sqlite3OSTrace ) sqlite3DebugPrintf(X,Y)
+#define OSTRACE3(X,Y,Z) if( sqlite3OSTrace ) sqlite3DebugPrintf(X,Y,Z)
+#define OSTRACE4(X,Y,Z,A) if( sqlite3OSTrace ) sqlite3DebugPrintf(X,Y,Z,A)
+#define OSTRACE5(X,Y,Z,A,B) if( sqlite3OSTrace ) sqlite3DebugPrintf(X,Y,Z,A,B)
+#define OSTRACE6(X,Y,Z,A,B,C) \
+ if(sqlite3OSTrace) sqlite3DebugPrintf(X,Y,Z,A,B,C)
+#define OSTRACE7(X,Y,Z,A,B,C,D) \
+ if(sqlite3OSTrace) sqlite3DebugPrintf(X,Y,Z,A,B,C,D)
+#else
+#define OSTRACE1(X)
+#define OSTRACE2(X,Y)
+#define OSTRACE3(X,Y,Z)
+#define OSTRACE4(X,Y,Z,A)
+#define OSTRACE5(X,Y,Z,A,B)
+#define OSTRACE6(X,Y,Z,A,B,C)
+#define OSTRACE7(X,Y,Z,A,B,C,D)
+#endif
+
+/*
+** Macros for performance tracing. Normally turned off. Only works
+** on i486 hardware.
+*/
+#ifdef SQLITE_PERFORMANCE_TRACE
+__inline__ unsigned long long int hwtime(void){
+ unsigned long long int x;
+ __asm__("rdtsc\n\t"
+ "mov %%edx, %%ecx\n\t"
+ :"=A" (x));
+ return x;
+}
+static unsigned long long int g_start;
+static unsigned int elapse;
+#define TIMER_START g_start=hwtime()
+#define TIMER_END elapse=hwtime()-g_start
+#define TIMER_ELAPSED elapse
+#else
+#define TIMER_START
+#define TIMER_END
+#define TIMER_ELAPSED 0
+#endif
+
+/*
+** If we compile with the SQLITE_TEST macro set, then the following block
+** of code will give us the ability to simulate a disk I/O error. This
+** is used for testing the I/O recovery logic.
+*/
+#ifdef SQLITE_TEST
+SQLITE_API int sqlite3_io_error_hit = 0; /* Total number of I/O Errors */
+SQLITE_API int sqlite3_io_error_hardhit = 0; /* Number of non-benign errors */
+SQLITE_API int sqlite3_io_error_pending = 0; /* Count down to first I/O error */
+SQLITE_API int sqlite3_io_error_persist = 0; /* True if I/O errors persist */
+SQLITE_API int sqlite3_io_error_benign = 0; /* True if errors are benign */
+SQLITE_API int sqlite3_diskfull_pending = 0;
+SQLITE_API int sqlite3_diskfull = 0;
+#define SimulateIOErrorBenign(X) sqlite3_io_error_benign=(X)
+#define SimulateIOError(CODE) \
+ if( (sqlite3_io_error_persist && sqlite3_io_error_hit) \
+ || sqlite3_io_error_pending-- == 1 ) \
+ { local_ioerr(); CODE; }
+static void local_ioerr(){
+ IOTRACE(("IOERR\n"));
+ sqlite3_io_error_hit++;
+ if( !sqlite3_io_error_benign ) sqlite3_io_error_hardhit++;
+}
+#define SimulateDiskfullError(CODE) \
+ if( sqlite3_diskfull_pending ){ \
+ if( sqlite3_diskfull_pending == 1 ){ \
+ local_ioerr(); \
+ sqlite3_diskfull = 1; \
+ sqlite3_io_error_hit = 1; \
+ CODE; \
+ }else{ \
+ sqlite3_diskfull_pending--; \
+ } \
+ }
+#else
+#define SimulateIOErrorBenign(X)
+#define SimulateIOError(A)
+#define SimulateDiskfullError(A)
+#endif
+
+/*
+** When testing, keep a count of the number of open files.
+*/
+#ifdef SQLITE_TEST
+SQLITE_API int sqlite3_open_file_count = 0;
+#define OpenCounter(X) sqlite3_open_file_count+=(X)
+#else
+#define OpenCounter(X)
+#endif
+
+/************** End of os_common.h *******************************************/
+/************** Continuing where we left off in os_win.c *********************/
+
+/*
+** Determine if we are dealing with WindowsCE - which has a much
+** reduced API.
+*/
+#if defined(_WIN32_WCE)
+# define OS_WINCE 1
+# define AreFileApisANSI() 1
+#else
+# define OS_WINCE 0
+#endif
+
+/*
+** WinCE lacks native support for file locking so we have to fake it
+** with some code of our own.
+*/
+#if OS_WINCE
+typedef struct winceLock {
+ int nReaders; /* Number of reader locks obtained */
+ BOOL bPending; /* Indicates a pending lock has been obtained */
+ BOOL bReserved; /* Indicates a reserved lock has been obtained */
+ BOOL bExclusive; /* Indicates an exclusive lock has been obtained */
+} winceLock;
+#endif
+
+/*
+** The winFile structure is a subclass of sqlite3_file* specific to the win32
+** portability layer.
+*/
+typedef struct winFile winFile;
+struct winFile {
+ const sqlite3_io_methods *pMethod;/* Must be first */
+ HANDLE h; /* Handle for accessing the file */
+ unsigned char locktype; /* Type of lock currently held on this file */
+ short sharedLockByte; /* Randomly chosen byte used as a shared lock */
+#if OS_WINCE
+ WCHAR *zDeleteOnClose; /* Name of file to delete when closing */
+ HANDLE hMutex; /* Mutex used to control access to shared lock */
+ HANDLE hShared; /* Shared memory segment used for locking */
+ winceLock local; /* Locks obtained by this instance of winFile */
+ winceLock *shared; /* Global shared lock memory for the file */
+#endif
+};
+
+
+/*
+** The following variable is (normally) set once and never changes
+** thereafter. It records whether the operating system is Win95
+** or WinNT.
+**
+** 0: Operating system unknown.
+** 1: Operating system is Win95.
+** 2: Operating system is WinNT.
+**
+** In order to facilitate testing on a WinNT system, the test fixture
+** can manually set this value to 1 to emulate Win98 behavior.
+*/
+#ifdef SQLITE_TEST
+SQLITE_API int sqlite3_os_type = 0;
+#else
+static int sqlite3_os_type = 0;
+#endif
+
+/*
+** Return true (non-zero) if we are running under WinNT, Win2K, WinXP,
+** or WinCE. Return false (zero) for Win95, Win98, or WinME.
+**
+** Here is an interesting observation: Win95, Win98, and WinME lack
+** the LockFileEx() API. But we can still statically link against that
+** API as long as we don't call it win running Win95/98/ME. A call to
+** this routine is used to determine if the host is Win95/98/ME or
+** WinNT/2K/XP so that we will know whether or not we can safely call
+** the LockFileEx() API.
+*/
+#if OS_WINCE
+# define isNT() (1)
+#else
+ static int isNT(void){
+ if( sqlite3_os_type==0 ){
+ OSVERSIONINFO sInfo;
+ sInfo.dwOSVersionInfoSize = sizeof(sInfo);
+ GetVersionEx(&sInfo);
+ sqlite3_os_type = sInfo.dwPlatformId==VER_PLATFORM_WIN32_NT ? 2 : 1;
+ }
+ return sqlite3_os_type==2;
+ }
+#endif /* OS_WINCE */
+
+/*
+** Convert a UTF-8 string to microsoft unicode (UTF-16?).
+**
+** Space to hold the returned string is obtained from malloc.
+*/
+static WCHAR *utf8ToUnicode(const char *zFilename){
+ int nChar;
+ WCHAR *zWideFilename;
+
+ nChar = MultiByteToWideChar(CP_UTF8, 0, zFilename, -1, NULL, 0);
+ zWideFilename = malloc( nChar*sizeof(zWideFilename[0]) );
+ if( zWideFilename==0 ){
+ return 0;
+ }
+ nChar = MultiByteToWideChar(CP_UTF8, 0, zFilename, -1, zWideFilename, nChar);
+ if( nChar==0 ){
+ free(zWideFilename);
+ zWideFilename = 0;
+ }
+ return zWideFilename;
+}
+
+/*
+** Convert microsoft unicode to UTF-8. Space to hold the returned string is
+** obtained from malloc().
+*/
+static char *unicodeToUtf8(const WCHAR *zWideFilename){
+ int nByte;
+ char *zFilename;
+
+ nByte = WideCharToMultiByte(CP_UTF8, 0, zWideFilename, -1, 0, 0, 0, 0);
+ zFilename = malloc( nByte );
+ if( zFilename==0 ){
+ return 0;
+ }
+ nByte = WideCharToMultiByte(CP_UTF8, 0, zWideFilename, -1, zFilename, nByte,
+ 0, 0);
+ if( nByte == 0 ){
+ free(zFilename);
+ zFilename = 0;
+ }
+ return zFilename;
+}
+
+/*
+** Convert an ansi string to microsoft unicode, based on the
+** current codepage settings for file apis.
+**
+** Space to hold the returned string is obtained
+** from malloc.
+*/
+static WCHAR *mbcsToUnicode(const char *zFilename){
+ int nByte;
+ WCHAR *zMbcsFilename;
+ int codepage = AreFileApisANSI() ? CP_ACP : CP_OEMCP;
+
+ nByte = MultiByteToWideChar(codepage, 0, zFilename, -1, NULL,0)*sizeof(WCHAR);
+ zMbcsFilename = malloc( nByte*sizeof(zMbcsFilename[0]) );
+ if( zMbcsFilename==0 ){
+ return 0;
+ }
+ nByte = MultiByteToWideChar(codepage, 0, zFilename, -1, zMbcsFilename, nByte);
+ if( nByte==0 ){
+ free(zMbcsFilename);
+ zMbcsFilename = 0;
+ }
+ return zMbcsFilename;
+}
+
+/*
+** Convert microsoft unicode to multibyte character string, based on the
+** user's Ansi codepage.
+**
+** Space to hold the returned string is obtained from
+** malloc().
+*/
+static char *unicodeToMbcs(const WCHAR *zWideFilename){
+ int nByte;
+ char *zFilename;
+ int codepage = AreFileApisANSI() ? CP_ACP : CP_OEMCP;
+
+ nByte = WideCharToMultiByte(codepage, 0, zWideFilename, -1, 0, 0, 0, 0);
+ zFilename = malloc( nByte );
+ if( zFilename==0 ){
+ return 0;
+ }
+ nByte = WideCharToMultiByte(codepage, 0, zWideFilename, -1, zFilename, nByte,
+ 0, 0);
+ if( nByte == 0 ){
+ free(zFilename);
+ zFilename = 0;
+ }
+ return zFilename;
+}
+
+/*
+** Convert multibyte character string to UTF-8. Space to hold the
+** returned string is obtained from malloc().
+*/
+static char *mbcsToUtf8(const char *zFilename){
+ char *zFilenameUtf8;
+ WCHAR *zTmpWide;
+
+ zTmpWide = mbcsToUnicode(zFilename);
+ if( zTmpWide==0 ){
+ return 0;
+ }
+ zFilenameUtf8 = unicodeToUtf8(zTmpWide);
+ free(zTmpWide);
+ return zFilenameUtf8;
+}
+
+/*
+** Convert UTF-8 to multibyte character string. Space to hold the
+** returned string is obtained from malloc().
+*/
+static char *utf8ToMbcs(const char *zFilename){
+ char *zFilenameMbcs;
+ WCHAR *zTmpWide;
+
+ zTmpWide = utf8ToUnicode(zFilename);
+ if( zTmpWide==0 ){
+ return 0;
+ }
+ zFilenameMbcs = unicodeToMbcs(zTmpWide);
+ free(zTmpWide);
+ return zFilenameMbcs;
+}
+
+#if OS_WINCE
+/*************************************************************************
+** This section contains code for WinCE only.
+*/
+/*
+** WindowsCE does not have a localtime() function. So create a
+** substitute.
+*/
+struct tm *__cdecl localtime(const time_t *t)
+{
+ static struct tm y;
+ FILETIME uTm, lTm;
+ SYSTEMTIME pTm;
+ sqlite3_int64 t64;
+ t64 = *t;
+ t64 = (t64 + 11644473600)*10000000;
+ uTm.dwLowDateTime = t64 & 0xFFFFFFFF;
+ uTm.dwHighDateTime= t64 >> 32;
+ FileTimeToLocalFileTime(&uTm,&lTm);
+ FileTimeToSystemTime(&lTm,&pTm);
+ y.tm_year = pTm.wYear - 1900;
+ y.tm_mon = pTm.wMonth - 1;
+ y.tm_wday = pTm.wDayOfWeek;
+ y.tm_mday = pTm.wDay;
+ y.tm_hour = pTm.wHour;
+ y.tm_min = pTm.wMinute;
+ y.tm_sec = pTm.wSecond;
+ return &y;
+}
+
+/* This will never be called, but defined to make the code compile */
+#define GetTempPathA(a,b)
+
+#define LockFile(a,b,c,d,e) winceLockFile(&a, b, c, d, e)
+#define UnlockFile(a,b,c,d,e) winceUnlockFile(&a, b, c, d, e)
+#define LockFileEx(a,b,c,d,e,f) winceLockFileEx(&a, b, c, d, e, f)
+
+#define HANDLE_TO_WINFILE(a) (winFile*)&((char*)a)[-offsetof(winFile,h)]
+
+/*
+** Acquire a lock on the handle h
+*/
+static void winceMutexAcquire(HANDLE h){
+ DWORD dwErr;
+ do {
+ dwErr = WaitForSingleObject(h, INFINITE);
+ } while (dwErr != WAIT_OBJECT_0 && dwErr != WAIT_ABANDONED);
+}
+/*
+** Release a lock acquired by winceMutexAcquire()
+*/
+#define winceMutexRelease(h) ReleaseMutex(h)
+
+/*
+** Create the mutex and shared memory used for locking in the file
+** descriptor pFile
+*/
+static BOOL winceCreateLock(const char *zFilename, winFile *pFile){
+ WCHAR *zTok;
+ WCHAR *zName = utf8ToUnicode(zFilename);
+ BOOL bInit = TRUE;
+
+ /* Initialize the local lockdata */
+ ZeroMemory(&pFile->local, sizeof(pFile->local));
+
+ /* Replace the backslashes from the filename and lowercase it
+ ** to derive a mutex name. */
+ zTok = CharLowerW(zName);
+ for (;*zTok;zTok++){
+ if (*zTok == '\\') *zTok = '_';
+ }
+
+ /* Create/open the named mutex */
+ pFile->hMutex = CreateMutexW(NULL, FALSE, zName);
+ if (!pFile->hMutex){
+ free(zName);
+ return FALSE;
+ }
+
+ /* Acquire the mutex before continuing */
+ winceMutexAcquire(pFile->hMutex);
+
+ /* Since the names of named mutexes, semaphores, file mappings etc are
+ ** case-sensitive, take advantage of that by uppercasing the mutex name
+ ** and using that as the shared filemapping name.
+ */
+ CharUpperW(zName);
+ pFile->hShared = CreateFileMappingW(INVALID_HANDLE_VALUE, NULL,
+ PAGE_READWRITE, 0, sizeof(winceLock),
+ zName);
+
+ /* Set a flag that indicates we're the first to create the memory so it
+ ** must be zero-initialized */
+ if (GetLastError() == ERROR_ALREADY_EXISTS){
+ bInit = FALSE;
+ }
+
+ free(zName);
+
+ /* If we succeeded in making the shared memory handle, map it. */
+ if (pFile->hShared){
+ pFile->shared = (winceLock*)MapViewOfFile(pFile->hShared,
+ FILE_MAP_READ|FILE_MAP_WRITE, 0, 0, sizeof(winceLock));
+ /* If mapping failed, close the shared memory handle and erase it */
+ if (!pFile->shared){
+ CloseHandle(pFile->hShared);
+ pFile->hShared = NULL;
+ }
+ }
+
+ /* If shared memory could not be created, then close the mutex and fail */
+ if (pFile->hShared == NULL){
+ winceMutexRelease(pFile->hMutex);
+ CloseHandle(pFile->hMutex);
+ pFile->hMutex = NULL;
+ return FALSE;
+ }
+
+ /* Initialize the shared memory if we're supposed to */
+ if (bInit) {
+ ZeroMemory(pFile->shared, sizeof(winceLock));
+ }
+
+ winceMutexRelease(pFile->hMutex);
+ return TRUE;
+}
+
+/*
+** Destroy the part of winFile that deals with wince locks
+*/
+static void winceDestroyLock(winFile *pFile){
+ if (pFile->hMutex){
+ /* Acquire the mutex */
+ winceMutexAcquire(pFile->hMutex);
+
+ /* The following blocks should probably assert in debug mode, but they
+ are to cleanup in case any locks remained open */
+ if (pFile->local.nReaders){
+ pFile->shared->nReaders --;
+ }
+ if (pFile->local.bReserved){
+ pFile->shared->bReserved = FALSE;
+ }
+ if (pFile->local.bPending){
+ pFile->shared->bPending = FALSE;
+ }
+ if (pFile->local.bExclusive){
+ pFile->shared->bExclusive = FALSE;
+ }
+
+ /* De-reference and close our copy of the shared memory handle */
+ UnmapViewOfFile(pFile->shared);
+ CloseHandle(pFile->hShared);
+
+ /* Done with the mutex */
+ winceMutexRelease(pFile->hMutex);
+ CloseHandle(pFile->hMutex);
+ pFile->hMutex = NULL;
+ }
+}
+
+/*
+** An implementation of the LockFile() API of windows for wince
+*/
+static BOOL winceLockFile(
+ HANDLE *phFile,
+ DWORD dwFileOffsetLow,
+ DWORD dwFileOffsetHigh,
+ DWORD nNumberOfBytesToLockLow,
+ DWORD nNumberOfBytesToLockHigh
+){
+ winFile *pFile = HANDLE_TO_WINFILE(phFile);
+ BOOL bReturn = FALSE;
+
+ if (!pFile->hMutex) return TRUE;
+ winceMutexAcquire(pFile->hMutex);
+
+ /* Wanting an exclusive lock? */
+ if (dwFileOffsetLow == SHARED_FIRST
+ && nNumberOfBytesToLockLow == SHARED_SIZE){
+ if (pFile->shared->nReaders == 0 && pFile->shared->bExclusive == 0){
+ pFile->shared->bExclusive = TRUE;
+ pFile->local.bExclusive = TRUE;
+ bReturn = TRUE;
+ }
+ }
+
+ /* Want a read-only lock? */
+ else if ((dwFileOffsetLow >= SHARED_FIRST &&
+ dwFileOffsetLow < SHARED_FIRST + SHARED_SIZE) &&
+ nNumberOfBytesToLockLow == 1){
+ if (pFile->shared->bExclusive == 0){
+ pFile->local.nReaders ++;
+ if (pFile->local.nReaders == 1){
+ pFile->shared->nReaders ++;
+ }
+ bReturn = TRUE;
+ }
+ }
+
+ /* Want a pending lock? */
+ else if (dwFileOffsetLow == PENDING_BYTE && nNumberOfBytesToLockLow == 1){
+ /* If no pending lock has been acquired, then acquire it */
+ if (pFile->shared->bPending == 0) {
+ pFile->shared->bPending = TRUE;
+ pFile->local.bPending = TRUE;
+ bReturn = TRUE;
+ }
+ }
+ /* Want a reserved lock? */
+ else if (dwFileOffsetLow == RESERVED_BYTE && nNumberOfBytesToLockLow == 1){
+ if (pFile->shared->bReserved == 0) {
+ pFile->shared->bReserved = TRUE;
+ pFile->local.bReserved = TRUE;
+ bReturn = TRUE;
+ }
+ }
+
+ winceMutexRelease(pFile->hMutex);
+ return bReturn;
+}
+
+/*
+** An implementation of the UnlockFile API of windows for wince
+*/
+static BOOL winceUnlockFile(
+ HANDLE *phFile,
+ DWORD dwFileOffsetLow,
+ DWORD dwFileOffsetHigh,
+ DWORD nNumberOfBytesToUnlockLow,
+ DWORD nNumberOfBytesToUnlockHigh
+){
+ winFile *pFile = HANDLE_TO_WINFILE(phFile);
+ BOOL bReturn = FALSE;
+
+ if (!pFile->hMutex) return TRUE;
+ winceMutexAcquire(pFile->hMutex);
+
+ /* Releasing a reader lock or an exclusive lock */
+ if (dwFileOffsetLow >= SHARED_FIRST &&
+ dwFileOffsetLow < SHARED_FIRST + SHARED_SIZE){
+ /* Did we have an exclusive lock? */
+ if (pFile->local.bExclusive){
+ pFile->local.bExclusive = FALSE;
+ pFile->shared->bExclusive = FALSE;
+ bReturn = TRUE;
+ }
+
+ /* Did we just have a reader lock? */
+ else if (pFile->local.nReaders){
+ pFile->local.nReaders --;
+ if (pFile->local.nReaders == 0)
+ {
+ pFile->shared->nReaders --;
+ }
+ bReturn = TRUE;
+ }
+ }
+
+ /* Releasing a pending lock */
+ else if (dwFileOffsetLow == PENDING_BYTE && nNumberOfBytesToUnlockLow == 1){
+ if (pFile->local.bPending){
+ pFile->local.bPending = FALSE;
+ pFile->shared->bPending = FALSE;
+ bReturn = TRUE;
+ }
+ }
+ /* Releasing a reserved lock */
+ else if (dwFileOffsetLow == RESERVED_BYTE && nNumberOfBytesToUnlockLow == 1){
+ if (pFile->local.bReserved) {
+ pFile->local.bReserved = FALSE;
+ pFile->shared->bReserved = FALSE;
+ bReturn = TRUE;
+ }
+ }
+
+ winceMutexRelease(pFile->hMutex);
+ return bReturn;
+}
+
+/*
+** An implementation of the LockFileEx() API of windows for wince
+*/
+static BOOL winceLockFileEx(
+ HANDLE *phFile,
+ DWORD dwFlags,
+ DWORD dwReserved,
+ DWORD nNumberOfBytesToLockLow,
+ DWORD nNumberOfBytesToLockHigh,
+ LPOVERLAPPED lpOverlapped
+){
+ /* If the caller wants a shared read lock, forward this call
+ ** to winceLockFile */
+ if (lpOverlapped->Offset == SHARED_FIRST &&
+ dwFlags == 1 &&
+ nNumberOfBytesToLockLow == SHARED_SIZE){
+ return winceLockFile(phFile, SHARED_FIRST, 0, 1, 0);
+ }
+ return FALSE;
+}
+/*
+** End of the special code for wince
+*****************************************************************************/
+#endif /* OS_WINCE */
+
+/*****************************************************************************
+** The next group of routines implement the I/O methods specified
+** by the sqlite3_io_methods object.
+******************************************************************************/
+
+/*
+** Close a file.
+**
+** It is reported that an attempt to close a handle might sometimes
+** fail. This is a very unreasonable result, but windows is notorious
+** for being unreasonable so I do not doubt that it might happen. If
+** the close fails, we pause for 100 milliseconds and try again. As
+** many as MX_CLOSE_ATTEMPT attempts to close the handle are made before
+** giving up and returning an error.
+*/
+#define MX_CLOSE_ATTEMPT 3
+static int winClose(sqlite3_file *id){
+ int rc, cnt = 0;
+ winFile *pFile = (winFile*)id;
+ OSTRACE2("CLOSE %d\n", pFile->h);
+ do{
+ rc = CloseHandle(pFile->h);
+ }while( rc==0 && cnt++ < MX_CLOSE_ATTEMPT && (Sleep(100), 1) );
+#if OS_WINCE
+#define WINCE_DELETION_ATTEMPTS 3
+ winceDestroyLock(pFile);
+ if( pFile->zDeleteOnClose ){
+ int cnt = 0;
+ while(
+ DeleteFileW(pFile->zDeleteOnClose)==0
+ && GetFileAttributesW(pFile->zDeleteOnClose)!=0xffffffff
+ && cnt++ < WINCE_DELETION_ATTEMPTS
+ ){
+ Sleep(100); /* Wait a little before trying again */
+ }
+ free(pFile->zDeleteOnClose);
+ }
+#endif
+ OpenCounter(-1);
+ return rc ? SQLITE_OK : SQLITE_IOERR;
+}
+
+/*
+** Some microsoft compilers lack this definition.
+*/
+#ifndef INVALID_SET_FILE_POINTER
+# define INVALID_SET_FILE_POINTER ((DWORD)-1)
+#endif
+
+/*
+** Read data from a file into a buffer. Return SQLITE_OK if all
+** bytes were read successfully and SQLITE_IOERR if anything goes
+** wrong.
+*/
+static int winRead(
+ sqlite3_file *id, /* File to read from */
+ void *pBuf, /* Write content into this buffer */
+ int amt, /* Number of bytes to read */
+ sqlite3_int64 offset /* Begin reading at this offset */
+){
+ LONG upperBits = (offset>>32) & 0x7fffffff;
+ LONG lowerBits = offset & 0xffffffff;
+ DWORD rc;
+ DWORD got;
+ winFile *pFile = (winFile*)id;
+ assert( id!=0 );
+ SimulateIOError(return SQLITE_IOERR_READ);
+ OSTRACE3("READ %d lock=%d\n", pFile->h, pFile->locktype);
+ rc = SetFilePointer(pFile->h, lowerBits, &upperBits, FILE_BEGIN);
+ if( rc==INVALID_SET_FILE_POINTER && GetLastError()!=NO_ERROR ){
+ return SQLITE_FULL;
+ }
+ if( !ReadFile(pFile->h, pBuf, amt, &got, 0) ){
+ return SQLITE_IOERR_READ;
+ }
+ if( got==(DWORD)amt ){
+ return SQLITE_OK;
+ }else{
+ memset(&((char*)pBuf)[got], 0, amt-got);
+ return SQLITE_IOERR_SHORT_READ;
+ }
+}
+
+/*
+** Write data from a buffer into a file. Return SQLITE_OK on success
+** or some other error code on failure.
+*/
+static int winWrite(
+ sqlite3_file *id, /* File to write into */
+ const void *pBuf, /* The bytes to be written */
+ int amt, /* Number of bytes to write */
+ sqlite3_int64 offset /* Offset into the file to begin writing at */
+){
+ LONG upperBits = (offset>>32) & 0x7fffffff;
+ LONG lowerBits = offset & 0xffffffff;
+ DWORD rc;
+ DWORD wrote;
+ winFile *pFile = (winFile*)id;
+ assert( id!=0 );
+ SimulateIOError(return SQLITE_IOERR_WRITE);
+ SimulateDiskfullError(return SQLITE_FULL);
+ OSTRACE3("WRITE %d lock=%d\n", pFile->h, pFile->locktype);
+ rc = SetFilePointer(pFile->h, lowerBits, &upperBits, FILE_BEGIN);
+ if( rc==INVALID_SET_FILE_POINTER && GetLastError()!=NO_ERROR ){
+ return SQLITE_FULL;
+ }
+ assert( amt>0 );
+ while(
+ amt>0
+ && (rc = WriteFile(pFile->h, pBuf, amt, &wrote, 0))!=0
+ && wrote>0
+ ){
+ amt -= wrote;
+ pBuf = &((char*)pBuf)[wrote];
+ }
+ if( !rc || amt>(int)wrote ){
+ return SQLITE_FULL;
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Truncate an open file to a specified size
+*/
+static int winTruncate(sqlite3_file *id, sqlite3_int64 nByte){
+ LONG upperBits = (nByte>>32) & 0x7fffffff;
+ LONG lowerBits = nByte & 0xffffffff;
+ winFile *pFile = (winFile*)id;
+ OSTRACE3("TRUNCATE %d %lld\n", pFile->h, nByte);
+ SimulateIOError(return SQLITE_IOERR_TRUNCATE);
+ SetFilePointer(pFile->h, lowerBits, &upperBits, FILE_BEGIN);
+ SetEndOfFile(pFile->h);
+ return SQLITE_OK;
+}
+
+#ifdef SQLITE_TEST
+/*
+** Count the number of fullsyncs and normal syncs. This is used to test
+** that syncs and fullsyncs are occuring at the right times.
+*/
+SQLITE_API int sqlite3_sync_count = 0;
+SQLITE_API int sqlite3_fullsync_count = 0;
+#endif
+
+/*
+** Make sure all writes to a particular file are committed to disk.
+*/
+static int winSync(sqlite3_file *id, int flags){
+ winFile *pFile = (winFile*)id;
+ OSTRACE3("SYNC %d lock=%d\n", pFile->h, pFile->locktype);
+#ifdef SQLITE_TEST
+ if( flags & SQLITE_SYNC_FULL ){
+ sqlite3_fullsync_count++;
+ }
+ sqlite3_sync_count++;
+#endif
+ if( FlushFileBuffers(pFile->h) ){
+ return SQLITE_OK;
+ }else{
+ return SQLITE_IOERR;
+ }
+}
+
+/*
+** Determine the current size of a file in bytes
+*/
+static int winFileSize(sqlite3_file *id, sqlite3_int64 *pSize){
+ winFile *pFile = (winFile*)id;
+ DWORD upperBits, lowerBits;
+ SimulateIOError(return SQLITE_IOERR_FSTAT);
+ lowerBits = GetFileSize(pFile->h, &upperBits);
+ *pSize = (((sqlite3_int64)upperBits)<<32) + lowerBits;
+ return SQLITE_OK;
+}
+
+/*
+** LOCKFILE_FAIL_IMMEDIATELY is undefined on some Windows systems.
+*/
+#ifndef LOCKFILE_FAIL_IMMEDIATELY
+# define LOCKFILE_FAIL_IMMEDIATELY 1
+#endif
+
+/*
+** Acquire a reader lock.
+** Different API routines are called depending on whether or not this
+** is Win95 or WinNT.
+*/
+static int getReadLock(winFile *pFile){
+ int res;
+ if( isNT() ){
+ OVERLAPPED ovlp;
+ ovlp.Offset = SHARED_FIRST;
+ ovlp.OffsetHigh = 0;
+ ovlp.hEvent = 0;
+ res = LockFileEx(pFile->h, LOCKFILE_FAIL_IMMEDIATELY,
+ 0, SHARED_SIZE, 0, &ovlp);
+ }else{
+ int lk;
+ sqlite3_randomness(sizeof(lk), &lk);
+ pFile->sharedLockByte = (lk & 0x7fffffff)%(SHARED_SIZE - 1);
+ res = LockFile(pFile->h, SHARED_FIRST+pFile->sharedLockByte, 0, 1, 0);
+ }
+ return res;
+}
+
+/*
+** Undo a readlock
+*/
+static int unlockReadLock(winFile *pFile){
+ int res;
+ if( isNT() ){
+ res = UnlockFile(pFile->h, SHARED_FIRST, 0, SHARED_SIZE, 0);
+ }else{
+ res = UnlockFile(pFile->h, SHARED_FIRST + pFile->sharedLockByte, 0, 1, 0);
+ }
+ return res;
+}
+
+/*
+** Lock the file with the lock specified by parameter locktype - one
+** of the following:
+**
+** (1) SHARED_LOCK
+** (2) RESERVED_LOCK
+** (3) PENDING_LOCK
+** (4) EXCLUSIVE_LOCK
+**
+** Sometimes when requesting one lock state, additional lock states
+** are inserted in between. The locking might fail on one of the later
+** transitions leaving the lock state different from what it started but
+** still short of its goal. The following chart shows the allowed
+** transitions and the inserted intermediate states:
+**
+** UNLOCKED -> SHARED
+** SHARED -> RESERVED
+** SHARED -> (PENDING) -> EXCLUSIVE
+** RESERVED -> (PENDING) -> EXCLUSIVE
+** PENDING -> EXCLUSIVE
+**
+** This routine will only increase a lock. The winUnlock() routine
+** erases all locks at once and returns us immediately to locking level 0.
+** It is not possible to lower the locking level one step at a time. You
+** must go straight to locking level 0.
+*/
+static int winLock(sqlite3_file *id, int locktype){
+ int rc = SQLITE_OK; /* Return code from subroutines */
+ int res = 1; /* Result of a windows lock call */
+ int newLocktype; /* Set pFile->locktype to this value before exiting */
+ int gotPendingLock = 0;/* True if we acquired a PENDING lock this time */
+ winFile *pFile = (winFile*)id;
+
+ assert( pFile!=0 );
+ OSTRACE5("LOCK %d %d was %d(%d)\n",
+ pFile->h, locktype, pFile->locktype, pFile->sharedLockByte);
+
+ /* If there is already a lock of this type or more restrictive on the
+ ** OsFile, do nothing. Don't use the end_lock: exit path, as
+ ** sqlite3OsEnterMutex() hasn't been called yet.
+ */
+ if( pFile->locktype>=locktype ){
+ return SQLITE_OK;
+ }
+
+ /* Make sure the locking sequence is correct
+ */
+ assert( pFile->locktype!=NO_LOCK || locktype==SHARED_LOCK );
+ assert( locktype!=PENDING_LOCK );
+ assert( locktype!=RESERVED_LOCK || pFile->locktype==SHARED_LOCK );
+
+ /* Lock the PENDING_LOCK byte if we need to acquire a PENDING lock or
+ ** a SHARED lock. If we are acquiring a SHARED lock, the acquisition of
+ ** the PENDING_LOCK byte is temporary.
+ */
+ newLocktype = pFile->locktype;
+ if( pFile->locktype==NO_LOCK
+ || (locktype==EXCLUSIVE_LOCK && pFile->locktype==RESERVED_LOCK)
+ ){
+ int cnt = 3;
+ while( cnt-->0 && (res = LockFile(pFile->h, PENDING_BYTE, 0, 1, 0))==0 ){
+ /* Try 3 times to get the pending lock. The pending lock might be
+ ** held by another reader process who will release it momentarily.
+ */
+ OSTRACE2("could not get a PENDING lock. cnt=%d\n", cnt);
+ Sleep(1);
+ }
+ gotPendingLock = res;
+ }
+
+ /* Acquire a shared lock
+ */
+ if( locktype==SHARED_LOCK && res ){
+ assert( pFile->locktype==NO_LOCK );
+ res = getReadLock(pFile);
+ if( res ){
+ newLocktype = SHARED_LOCK;
+ }
+ }
+
+ /* Acquire a RESERVED lock
+ */
+ if( locktype==RESERVED_LOCK && res ){
+ assert( pFile->locktype==SHARED_LOCK );
+ res = LockFile(pFile->h, RESERVED_BYTE, 0, 1, 0);
+ if( res ){
+ newLocktype = RESERVED_LOCK;
+ }
+ }
+
+ /* Acquire a PENDING lock
+ */
+ if( locktype==EXCLUSIVE_LOCK && res ){
+ newLocktype = PENDING_LOCK;
+ gotPendingLock = 0;
+ }
+
+ /* Acquire an EXCLUSIVE lock
+ */
+ if( locktype==EXCLUSIVE_LOCK && res ){
+ assert( pFile->locktype>=SHARED_LOCK );
+ res = unlockReadLock(pFile);
+ OSTRACE2("unreadlock = %d\n", res);
+ res = LockFile(pFile->h, SHARED_FIRST, 0, SHARED_SIZE, 0);
+ if( res ){
+ newLocktype = EXCLUSIVE_LOCK;
+ }else{
+ OSTRACE2("error-code = %d\n", GetLastError());
+ getReadLock(pFile);
+ }
+ }
+
+ /* If we are holding a PENDING lock that ought to be released, then
+ ** release it now.
+ */
+ if( gotPendingLock && locktype==SHARED_LOCK ){
+ UnlockFile(pFile->h, PENDING_BYTE, 0, 1, 0);
+ }
+
+ /* Update the state of the lock has held in the file descriptor then
+ ** return the appropriate result code.
+ */
+ if( res ){
+ rc = SQLITE_OK;
+ }else{
+ OSTRACE4("LOCK FAILED %d trying for %d but got %d\n", pFile->h,
+ locktype, newLocktype);
+ rc = SQLITE_BUSY;
+ }
+ pFile->locktype = newLocktype;
+ return rc;
+}
+
+/*
+** This routine checks if there is a RESERVED lock held on the specified
+** file by this or any other process. If such a lock is held, return
+** non-zero, otherwise zero.
+*/
+static int winCheckReservedLock(sqlite3_file *id){
+ int rc;
+ winFile *pFile = (winFile*)id;
+ assert( pFile!=0 );
+ if( pFile->locktype>=RESERVED_LOCK ){
+ rc = 1;
+ OSTRACE3("TEST WR-LOCK %d %d (local)\n", pFile->h, rc);
+ }else{
+ rc = LockFile(pFile->h, RESERVED_BYTE, 0, 1, 0);
+ if( rc ){
+ UnlockFile(pFile->h, RESERVED_BYTE, 0, 1, 0);
+ }
+ rc = !rc;
+ OSTRACE3("TEST WR-LOCK %d %d (remote)\n", pFile->h, rc);
+ }
+ return rc;
+}
+
+/*
+** Lower the locking level on file descriptor id to locktype. locktype
+** must be either NO_LOCK or SHARED_LOCK.
+**
+** If the locking level of the file descriptor is already at or below
+** the requested locking level, this routine is a no-op.
+**
+** It is not possible for this routine to fail if the second argument
+** is NO_LOCK. If the second argument is SHARED_LOCK then this routine
+** might return SQLITE_IOERR;
+*/
+static int winUnlock(sqlite3_file *id, int locktype){
+ int type;
+ winFile *pFile = (winFile*)id;
+ int rc = SQLITE_OK;
+ assert( pFile!=0 );
+ assert( locktype<=SHARED_LOCK );
+ OSTRACE5("UNLOCK %d to %d was %d(%d)\n", pFile->h, locktype,
+ pFile->locktype, pFile->sharedLockByte);
+ type = pFile->locktype;
+ if( type>=EXCLUSIVE_LOCK ){
+ UnlockFile(pFile->h, SHARED_FIRST, 0, SHARED_SIZE, 0);
+ if( locktype==SHARED_LOCK && !getReadLock(pFile) ){
+ /* This should never happen. We should always be able to
+ ** reacquire the read lock */
+ rc = SQLITE_IOERR_UNLOCK;
+ }
+ }
+ if( type>=RESERVED_LOCK ){
+ UnlockFile(pFile->h, RESERVED_BYTE, 0, 1, 0);
+ }
+ if( locktype==NO_LOCK && type>=SHARED_LOCK ){
+ unlockReadLock(pFile);
+ }
+ if( type>=PENDING_LOCK ){
+ UnlockFile(pFile->h, PENDING_BYTE, 0, 1, 0);
+ }
+ pFile->locktype = locktype;
+ return rc;
+}
+
+/*
+** Control and query of the open file handle.
+*/
+static int winFileControl(sqlite3_file *id, int op, void *pArg){
+ switch( op ){
+ case SQLITE_FCNTL_LOCKSTATE: {
+ *(int*)pArg = ((winFile*)id)->locktype;
+ return SQLITE_OK;
+ }
+ }
+ return SQLITE_ERROR;
+}
+
+/*
+** Return the sector size in bytes of the underlying block device for
+** the specified file. This is almost always 512 bytes, but may be
+** larger for some devices.
+**
+** SQLite code assumes this function cannot fail. It also assumes that
+** if two files are created in the same file-system directory (i.e.
+** a database and its journal file) that the sector size will be the
+** same for both.
+*/
+static int winSectorSize(sqlite3_file *id){
+ return SQLITE_DEFAULT_SECTOR_SIZE;
+}
+
+/*
+** Return a vector of device characteristics.
+*/
+static int winDeviceCharacteristics(sqlite3_file *id){
+ return 0;
+}
+
+/*
+** This vector defines all the methods that can operate on an
+** sqlite3_file for win32.
+*/
+static const sqlite3_io_methods winIoMethod = {
+ 1, /* iVersion */
+ winClose,
+ winRead,
+ winWrite,
+ winTruncate,
+ winSync,
+ winFileSize,
+ winLock,
+ winUnlock,
+ winCheckReservedLock,
+ winFileControl,
+ winSectorSize,
+ winDeviceCharacteristics
+};
+
+/***************************************************************************
+** Here ends the I/O methods that form the sqlite3_io_methods object.
+**
+** The next block of code implements the VFS methods.
+****************************************************************************/
+
+/*
+** Convert a UTF-8 filename into whatever form the underlying
+** operating system wants filenames in. Space to hold the result
+** is obtained from malloc and must be freed by the calling
+** function.
+*/
+static void *convertUtf8Filename(const char *zFilename){
+ void *zConverted = 0;
+ if( isNT() ){
+ zConverted = utf8ToUnicode(zFilename);
+ }else{
+ zConverted = utf8ToMbcs(zFilename);
+ }
+ /* caller will handle out of memory */
+ return zConverted;
+}
+
+/*
+** Open a file.
+*/
+static int winOpen(
+ sqlite3_vfs *pVfs, /* Not used */
+ const char *zName, /* Name of the file (UTF-8) */
+ sqlite3_file *id, /* Write the SQLite file handle here */
+ int flags, /* Open mode flags */
+ int *pOutFlags /* Status return flags */
+){
+ HANDLE h;
+ DWORD dwDesiredAccess;
+ DWORD dwShareMode;
+ DWORD dwCreationDisposition;
+ DWORD dwFlagsAndAttributes = 0;
+ int isTemp;
+ winFile *pFile = (winFile*)id;
+ void *zConverted = convertUtf8Filename(zName);
+ if( zConverted==0 ){
+ return SQLITE_NOMEM;
+ }
+
+ if( flags & SQLITE_OPEN_READWRITE ){
+ dwDesiredAccess = GENERIC_READ | GENERIC_WRITE;
+ }else{
+ dwDesiredAccess = GENERIC_READ;
+ }
+ if( flags & SQLITE_OPEN_CREATE ){
+ dwCreationDisposition = OPEN_ALWAYS;
+ }else{
+ dwCreationDisposition = OPEN_EXISTING;
+ }
+ if( flags & SQLITE_OPEN_MAIN_DB ){
+ dwShareMode = FILE_SHARE_READ | FILE_SHARE_WRITE;
+ }else{
+ dwShareMode = 0;
+ }
+ if( flags & SQLITE_OPEN_DELETEONCLOSE ){
+#if OS_WINCE
+ dwFlagsAndAttributes = FILE_ATTRIBUTE_HIDDEN;
+#else
+ dwFlagsAndAttributes = FILE_ATTRIBUTE_TEMPORARY
+ | FILE_ATTRIBUTE_HIDDEN
+ | FILE_FLAG_DELETE_ON_CLOSE;
+#endif
+ isTemp = 1;
+ }else{
+ dwFlagsAndAttributes = FILE_ATTRIBUTE_NORMAL;
+ isTemp = 0;
+ }
+ /* Reports from the internet are that performance is always
+ ** better if FILE_FLAG_RANDOM_ACCESS is used. Ticket #2699. */
+ dwFlagsAndAttributes |= FILE_FLAG_RANDOM_ACCESS;
+ if( isNT() ){
+ h = CreateFileW((WCHAR*)zConverted,
+ dwDesiredAccess,
+ dwShareMode,
+ NULL,
+ dwCreationDisposition,
+ dwFlagsAndAttributes,
+ NULL
+ );
+ }else{
+#if OS_WINCE
+ return SQLITE_NOMEM;
+#else
+ h = CreateFileA((char*)zConverted,
+ dwDesiredAccess,
+ dwShareMode,
+ NULL,
+ dwCreationDisposition,
+ dwFlagsAndAttributes,
+ NULL
+ );
+#endif
+ }
+ if( h==INVALID_HANDLE_VALUE ){
+ free(zConverted);
+ if( flags & SQLITE_OPEN_READWRITE ){
+ return winOpen(0, zName, id,
+ ((flags|SQLITE_OPEN_READONLY)&~SQLITE_OPEN_READWRITE), pOutFlags);
+ }else{
+ return SQLITE_CANTOPEN;
+ }
+ }
+ if( pOutFlags ){
+ if( flags & SQLITE_OPEN_READWRITE ){
+ *pOutFlags = SQLITE_OPEN_READWRITE;
+ }else{
+ *pOutFlags = SQLITE_OPEN_READONLY;
+ }
+ }
+ memset(pFile, 0, sizeof(*pFile));
+ pFile->pMethod = &winIoMethod;
+ pFile->h = h;
+#if OS_WINCE
+ if( (flags & (SQLITE_OPEN_READWRITE|SQLITE_OPEN_MAIN_DB)) ==
+ (SQLITE_OPEN_READWRITE|SQLITE_OPEN_MAIN_DB)
+ && !winceCreateLock(zName, pFile)
+ ){
+ CloseHandle(h);
+ free(zConverted);
+ return SQLITE_CANTOPEN;
+ }
+ if( isTemp ){
+ pFile->zDeleteOnClose = zConverted;
+ }else
+#endif
+ {
+ free(zConverted);
+ }
+ OpenCounter(+1);
+ return SQLITE_OK;
+}
+
+/*
+** Delete the named file.
+**
+** Note that windows does not allow a file to be deleted if some other
+** process has it open. Sometimes a virus scanner or indexing program
+** will open a journal file shortly after it is created in order to do
+** whatever does. While this other process is holding the
+** file open, we will be unable to delete it. To work around this
+** problem, we delay 100 milliseconds and try to delete again. Up
+** to MX_DELETION_ATTEMPTs deletion attempts are run before giving
+** up and returning an error.
+*/
+#define MX_DELETION_ATTEMPTS 5
+static int winDelete(
+ sqlite3_vfs *pVfs, /* Not used on win32 */
+ const char *zFilename, /* Name of file to delete */
+ int syncDir /* Not used on win32 */
+){
+ int cnt = 0;
+ int rc;
+ void *zConverted = convertUtf8Filename(zFilename);
+ if( zConverted==0 ){
+ return SQLITE_NOMEM;
+ }
+ SimulateIOError(return SQLITE_IOERR_DELETE);
+ if( isNT() ){
+ do{
+ DeleteFileW(zConverted);
+ }while( (rc = GetFileAttributesW(zConverted))!=0xffffffff
+ && cnt++ < MX_DELETION_ATTEMPTS && (Sleep(100), 1) );
+ }else{
+#if OS_WINCE
+ return SQLITE_NOMEM;
+#else
+ do{
+ DeleteFileA(zConverted);
+ }while( (rc = GetFileAttributesA(zConverted))!=0xffffffff
+ && cnt++ < MX_DELETION_ATTEMPTS && (Sleep(100), 1) );
+#endif
+ }
+ free(zConverted);
+ OSTRACE2("DELETE \"%s\"\n", zFilename);
+ return rc==0xffffffff ? SQLITE_OK : SQLITE_IOERR_DELETE;
+}
+
+/*
+** Check the existance and status of a file.
+*/
+static int winAccess(
+ sqlite3_vfs *pVfs, /* Not used on win32 */
+ const char *zFilename, /* Name of file to check */
+ int flags /* Type of test to make on this file */
+){
+ DWORD attr;
+ int rc;
+ void *zConverted = convertUtf8Filename(zFilename);
+ if( zConverted==0 ){
+ return SQLITE_NOMEM;
+ }
+ if( isNT() ){
+ attr = GetFileAttributesW((WCHAR*)zConverted);
+ }else{
+#if OS_WINCE
+ return SQLITE_NOMEM;
+#else
+ attr = GetFileAttributesA((char*)zConverted);
+#endif
+ }
+ free(zConverted);
+ switch( flags ){
+ case SQLITE_ACCESS_READ:
+ case SQLITE_ACCESS_EXISTS:
+ rc = attr!=0xffffffff;
+ break;
+ case SQLITE_ACCESS_READWRITE:
+ rc = (attr & FILE_ATTRIBUTE_READONLY)==0;
+ break;
+ default:
+ assert(!"Invalid flags argument");
+ }
+ return rc;
+}
+
+
+/*
+** Create a temporary file name in zBuf. zBuf must be big enough to
+** hold at pVfs->mxPathname characters.
+*/
+static int winGetTempname(sqlite3_vfs *pVfs, int nBuf, char *zBuf){
+ static char zChars[] =
+ "abcdefghijklmnopqrstuvwxyz"
+ "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
+ "0123456789";
+ int i, j;
+ char zTempPath[MAX_PATH+1];
+ if( sqlite3_temp_directory ){
+ sqlite3_snprintf(MAX_PATH-30, zTempPath, "%s", sqlite3_temp_directory);
+ }else if( isNT() ){
+ char *zMulti;
+ WCHAR zWidePath[MAX_PATH];
+ GetTempPathW(MAX_PATH-30, zWidePath);
+ zMulti = unicodeToUtf8(zWidePath);
+ if( zMulti ){
+ sqlite3_snprintf(MAX_PATH-30, zTempPath, "%s", zMulti);
+ free(zMulti);
+ }else{
+ return SQLITE_NOMEM;
+ }
+ }else{
+ char *zUtf8;
+ char zMbcsPath[MAX_PATH];
+ GetTempPathA(MAX_PATH-30, zMbcsPath);
+ zUtf8 = mbcsToUtf8(zMbcsPath);
+ if( zUtf8 ){
+ sqlite3_snprintf(MAX_PATH-30, zTempPath, "%s", zUtf8);
+ free(zUtf8);
+ }else{
+ return SQLITE_NOMEM;
+ }
+ }
+ for(i=strlen(zTempPath); i>0 && zTempPath[i-1]=='\\'; i--){}
+ zTempPath[i] = 0;
+ sqlite3_snprintf(nBuf-30, zBuf,
+ "%s\\"SQLITE_TEMP_FILE_PREFIX, zTempPath);
+ j = strlen(zBuf);
+ sqlite3_randomness(20, &zBuf[j]);
+ for(i=0; i<20; i++, j++){
+ zBuf[j] = (char)zChars[ ((unsigned char)zBuf[j])%(sizeof(zChars)-1) ];
+ }
+ zBuf[j] = 0;
+ OSTRACE2("TEMP FILENAME: %s\n", zBuf);
+ return SQLITE_OK;
+}
+
+/*
+** Turn a relative pathname into a full pathname. Write the full
+** pathname into zOut[]. zOut[] will be at least pVfs->mxPathname
+** bytes in size.
+*/
+static int winFullPathname(
+ sqlite3_vfs *pVfs, /* Pointer to vfs object */
+ const char *zRelative, /* Possibly relative input path */
+ int nFull, /* Size of output buffer in bytes */
+ char *zFull /* Output buffer */
+){
+
+#if defined(__CYGWIN__)
+ cygwin_conv_to_full_win32_path(zRelative, zFull);
+ return SQLITE_OK;
+#endif
+
+#if OS_WINCE
+ /* WinCE has no concept of a relative pathname, or so I am told. */
+ sqlite3_snprintf(pVfs->mxPathname, zFull, "%s", zRelative);
+ return SQLITE_OK;
+#endif
+
+#if !OS_WINCE && !defined(__CYGWIN__)
+ int nByte;
+ void *zConverted;
+ char *zOut;
+ zConverted = convertUtf8Filename(zRelative);
+ if( isNT() ){
+ WCHAR *zTemp;
+ nByte = GetFullPathNameW((WCHAR*)zConverted, 0, 0, 0) + 3;
+ zTemp = malloc( nByte*sizeof(zTemp[0]) );
+ if( zTemp==0 ){
+ free(zConverted);
+ return SQLITE_NOMEM;
+ }
+ GetFullPathNameW((WCHAR*)zConverted, nByte, zTemp, 0);
+ free(zConverted);
+ zOut = unicodeToUtf8(zTemp);
+ free(zTemp);
+ }else{
+ char *zTemp;
+ nByte = GetFullPathNameA((char*)zConverted, 0, 0, 0) + 3;
+ zTemp = malloc( nByte*sizeof(zTemp[0]) );
+ if( zTemp==0 ){
+ free(zConverted);
+ return SQLITE_NOMEM;
+ }
+ GetFullPathNameA((char*)zConverted, nByte, zTemp, 0);
+ free(zConverted);
+ zOut = mbcsToUtf8(zTemp);
+ free(zTemp);
+ }
+ if( zOut ){
+ sqlite3_snprintf(pVfs->mxPathname, zFull, "%s", zOut);
+ free(zOut);
+ return SQLITE_OK;
+ }else{
+ return SQLITE_NOMEM;
+ }
+#endif
+}
+
+#ifndef SQLITE_OMIT_LOAD_EXTENSION
+/*
+** Interfaces for opening a shared library, finding entry points
+** within the shared library, and closing the shared library.
+*/
+/*
+** Interfaces for opening a shared library, finding entry points
+** within the shared library, and closing the shared library.
+*/
+static void *winDlOpen(sqlite3_vfs *pVfs, const char *zFilename){
+ HANDLE h;
+ void *zConverted = convertUtf8Filename(zFilename);
+ if( zConverted==0 ){
+ return 0;
+ }
+ if( isNT() ){
+ h = LoadLibraryW((WCHAR*)zConverted);
+ }else{
+#if OS_WINCE
+ return 0;
+#else
+ h = LoadLibraryA((char*)zConverted);
+#endif
+ }
+ free(zConverted);
+ return (void*)h;
+}
+static void winDlError(sqlite3_vfs *pVfs, int nBuf, char *zBufOut){
+#if OS_WINCE
+ int error = GetLastError();
+ if( error>0x7FFFFFF ){
+ sqlite3_snprintf(nBuf, zBufOut, "OsError 0x%x", error);
+ }else{
+ sqlite3_snprintf(nBuf, zBufOut, "OsError %d", error);
+ }
+#else
+ FormatMessageA(
+ FORMAT_MESSAGE_FROM_SYSTEM,
+ NULL,
+ GetLastError(),
+ 0,
+ zBufOut,
+ nBuf-1,
+ 0
+ );
+#endif
+}
+void *winDlSym(sqlite3_vfs *pVfs, void *pHandle, const char *zSymbol){
+#if OS_WINCE
+ /* The GetProcAddressA() routine is only available on wince. */
+ return GetProcAddressA((HANDLE)pHandle, zSymbol);
+#else
+ /* All other windows platforms expect GetProcAddress() to take
+ ** an Ansi string regardless of the _UNICODE setting */
+ return GetProcAddress((HANDLE)pHandle, zSymbol);
+#endif
+}
+void winDlClose(sqlite3_vfs *pVfs, void *pHandle){
+ FreeLibrary((HANDLE)pHandle);
+}
+#else /* if SQLITE_OMIT_LOAD_EXTENSION is defined: */
+ #define winDlOpen 0
+ #define winDlError 0
+ #define winDlSym 0
+ #define winDlClose 0
+#endif
+
+
+/*
+** Write up to nBuf bytes of randomness into zBuf.
+*/
+static int winRandomness(sqlite3_vfs *pVfs, int nBuf, char *zBuf){
+ int n = 0;
+ if( sizeof(SYSTEMTIME)<=nBuf-n ){
+ SYSTEMTIME x;
+ GetSystemTime(&x);
+ memcpy(&zBuf[n], &x, sizeof(x));
+ n += sizeof(x);
+ }
+ if( sizeof(DWORD)<=nBuf-n ){
+ DWORD pid = GetCurrentProcessId();
+ memcpy(&zBuf[n], &pid, sizeof(pid));
+ n += sizeof(pid);
+ }
+ if( sizeof(DWORD)<=nBuf-n ){
+ DWORD cnt = GetTickCount();
+ memcpy(&zBuf[n], &cnt, sizeof(cnt));
+ n += sizeof(cnt);
+ }
+ if( sizeof(LARGE_INTEGER)<=nBuf-n ){
+ LARGE_INTEGER i;
+ QueryPerformanceCounter(&i);
+ memcpy(&zBuf[n], &i, sizeof(i));
+ n += sizeof(i);
+ }
+ return n;
+}
+
+
+/*
+** Sleep for a little while. Return the amount of time slept.
+*/
+static int winSleep(sqlite3_vfs *pVfs, int microsec){
+ Sleep((microsec+999)/1000);
+ return ((microsec+999)/1000)*1000;
+}
+
+/*
+** The following variable, if set to a non-zero value, becomes the result
+** returned from sqlite3OsCurrentTime(). This is used for testing.
+*/
+#ifdef SQLITE_TEST
+SQLITE_API int sqlite3_current_time = 0;
+#endif
+
+/*
+** Find the current time (in Universal Coordinated Time). Write the
+** current time and date as a Julian Day number into *prNow and
+** return 0. Return 1 if the time and date cannot be found.
+*/
+int winCurrentTime(sqlite3_vfs *pVfs, double *prNow){
+ FILETIME ft;
+ /* FILETIME structure is a 64-bit value representing the number of
+ 100-nanosecond intervals since January 1, 1601 (= JD 2305813.5).
+ */
+ double now;
+#if OS_WINCE
+ SYSTEMTIME time;
+ GetSystemTime(&time);
+ SystemTimeToFileTime(&time,&ft);
+#else
+ GetSystemTimeAsFileTime( &ft );
+#endif
+ now = ((double)ft.dwHighDateTime) * 4294967296.0;
+ *prNow = (now + ft.dwLowDateTime)/864000000000.0 + 2305813.5;
+#ifdef SQLITE_TEST
+ if( sqlite3_current_time ){
+ *prNow = sqlite3_current_time/86400.0 + 2440587.5;
+ }
+#endif
+ return 0;
+}
+
+
+/*
+** Return a pointer to the sqlite3DefaultVfs structure. We use
+** a function rather than give the structure global scope because
+** some compilers (MSVC) do not allow forward declarations of
+** initialized structures.
+*/
+SQLITE_PRIVATE sqlite3_vfs *sqlite3OsDefaultVfs(void){
+ static sqlite3_vfs winVfs = {
+ 1, /* iVersion */
+ sizeof(winFile), /* szOsFile */
+ MAX_PATH, /* mxPathname */
+ 0, /* pNext */
+ "win32", /* zName */
+ 0, /* pAppData */
+
+ winOpen, /* xOpen */
+ winDelete, /* xDelete */
+ winAccess, /* xAccess */
+ winGetTempname, /* xGetTempName */
+ winFullPathname, /* xFullPathname */
+ winDlOpen, /* xDlOpen */
+ winDlError, /* xDlError */
+ winDlSym, /* xDlSym */
+ winDlClose, /* xDlClose */
+ winRandomness, /* xRandomness */
+ winSleep, /* xSleep */
+ winCurrentTime /* xCurrentTime */
+ };
+
+ return &winVfs;
+}
+
+#endif /* OS_WIN */
+
+/************** End of os_win.c **********************************************/
+/************** Begin file bitvec.c ******************************************/
+/*
+** 2008 February 16
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file implements an object that represents a fixed-length
+** bitmap. Bits are numbered starting with 1.
+**
+** A bitmap is used to record what pages a database file have been
+** journalled during a transaction. Usually only a few pages are
+** journalled. So the bitmap is usually sparse and has low cardinality.
+** But sometimes (for example when during a DROP of a large table) most
+** or all of the pages get journalled. In those cases, the bitmap becomes
+** dense. The algorithm needs to handle both cases well.
+**
+** The size of the bitmap is fixed when the object is created.
+**
+** All bits are clear when the bitmap is created. Individual bits
+** may be set or cleared one at a time.
+**
+** Test operations are about 100 times more common that set operations.
+** Clear operations are exceedingly rare. There are usually between
+** 5 and 500 set operations per Bitvec object, though the number of sets can
+** sometimes grow into tens of thousands or larger. The size of the
+** Bitvec object is the number of pages in the database file at the
+** start of a transaction, and is thus usually less than a few thousand,
+** but can be as large as 2 billion for a really big database.
+**
+** @(#) $Id: bitvec.c,v 1.5 2008/05/13 13:27:34 drh Exp $
+*/
+
+#define BITVEC_SZ 512
+/* Round the union size down to the nearest pointer boundary, since that's how
+** it will be aligned within the Bitvec struct. */
+#define BITVEC_USIZE (((BITVEC_SZ-12)/sizeof(Bitvec*))*sizeof(Bitvec*))
+#define BITVEC_NCHAR BITVEC_USIZE
+#define BITVEC_NBIT (BITVEC_NCHAR*8)
+#define BITVEC_NINT (BITVEC_USIZE/4)
+#define BITVEC_MXHASH (BITVEC_NINT/2)
+#define BITVEC_NPTR (BITVEC_USIZE/sizeof(Bitvec *))
+
+#define BITVEC_HASH(X) (((X)*37)%BITVEC_NINT)
+
+/*
+** A bitmap is an instance of the following structure.
+**
+** This bitmap records the existance of zero or more bits
+** with values between 1 and iSize, inclusive.
+**
+** There are three possible representations of the bitmap.
+** If iSize<=BITVEC_NBIT, then Bitvec.u.aBitmap[] is a straight
+** bitmap. The least significant bit is bit 1.
+**
+** If iSize>BITVEC_NBIT and iDivisor==0 then Bitvec.u.aHash[] is
+** a hash table that will hold up to BITVEC_MXHASH distinct values.
+**
+** Otherwise, the value i is redirected into one of BITVEC_NPTR
+** sub-bitmaps pointed to by Bitvec.u.apSub[]. Each subbitmap
+** handles up to iDivisor separate values of i. apSub[0] holds
+** values between 1 and iDivisor. apSub[1] holds values between
+** iDivisor+1 and 2*iDivisor. apSub[N] holds values between
+** N*iDivisor+1 and (N+1)*iDivisor. Each subbitmap is normalized
+** to hold deal with values between 1 and iDivisor.
+*/
+struct Bitvec {
+ u32 iSize; /* Maximum bit index */
+ u32 nSet; /* Number of bits that are set */
+ u32 iDivisor; /* Number of bits handled by each apSub[] entry */
+ union {
+ u8 aBitmap[BITVEC_NCHAR]; /* Bitmap representation */
+ u32 aHash[BITVEC_NINT]; /* Hash table representation */
+ Bitvec *apSub[BITVEC_NPTR]; /* Recursive representation */
+ } u;
+};
+
+/*
+** Create a new bitmap object able to handle bits between 0 and iSize,
+** inclusive. Return a pointer to the new object. Return NULL if
+** malloc fails.
+*/
+SQLITE_PRIVATE Bitvec *sqlite3BitvecCreate(u32 iSize){
+ Bitvec *p;
+ assert( sizeof(*p)==BITVEC_SZ );
+ p = sqlite3MallocZero( sizeof(*p) );
+ if( p ){
+ p->iSize = iSize;
+ }
+ return p;
+}
+
+/*
+** Check to see if the i-th bit is set. Return true or false.
+** If p is NULL (if the bitmap has not been created) or if
+** i is out of range, then return false.
+*/
+SQLITE_PRIVATE int sqlite3BitvecTest(Bitvec *p, u32 i){
+ if( p==0 ) return 0;
+ if( i>p->iSize || i==0 ) return 0;
+ if( p->iSize<=BITVEC_NBIT ){
+ i--;
+ return (p->u.aBitmap[i/8] & (1<<(i&7)))!=0;
+ }
+ if( p->iDivisor>0 ){
+ u32 bin = (i-1)/p->iDivisor;
+ i = (i-1)%p->iDivisor + 1;
+ return sqlite3BitvecTest(p->u.apSub[bin], i);
+ }else{
+ u32 h = BITVEC_HASH(i);
+ while( p->u.aHash[h] ){
+ if( p->u.aHash[h]==i ) return 1;
+ h++;
+ if( h>=BITVEC_NINT ) h = 0;
+ }
+ return 0;
+ }
+}
+
+/*
+** Set the i-th bit. Return 0 on success and an error code if
+** anything goes wrong.
+*/
+SQLITE_PRIVATE int sqlite3BitvecSet(Bitvec *p, u32 i){
+ u32 h;
+ assert( p!=0 );
+ assert( i>0 );
+ assert( i<=p->iSize );
+ if( p->iSize<=BITVEC_NBIT ){
+ i--;
+ p->u.aBitmap[i/8] |= 1 << (i&7);
+ return SQLITE_OK;
+ }
+ if( p->iDivisor ){
+ u32 bin = (i-1)/p->iDivisor;
+ i = (i-1)%p->iDivisor + 1;
+ if( p->u.apSub[bin]==0 ){
+ sqlite3FaultBeginBenign(SQLITE_FAULTINJECTOR_MALLOC);
+ p->u.apSub[bin] = sqlite3BitvecCreate( p->iDivisor );
+ sqlite3FaultEndBenign(SQLITE_FAULTINJECTOR_MALLOC);
+ if( p->u.apSub[bin]==0 ) return SQLITE_NOMEM;
+ }
+ return sqlite3BitvecSet(p->u.apSub[bin], i);
+ }
+ h = BITVEC_HASH(i);
+ while( p->u.aHash[h] ){
+ if( p->u.aHash[h]==i ) return SQLITE_OK;
+ h++;
+ if( h==BITVEC_NINT ) h = 0;
+ }
+ p->nSet++;
+ if( p->nSet>=BITVEC_MXHASH ){
+ int j, rc;
+ u32 aiValues[BITVEC_NINT];
+ memcpy(aiValues, p->u.aHash, sizeof(aiValues));
+ memset(p->u.apSub, 0, sizeof(p->u.apSub[0])*BITVEC_NPTR);
+ p->iDivisor = (p->iSize + BITVEC_NPTR - 1)/BITVEC_NPTR;
+ rc = sqlite3BitvecSet(p, i);
+ for(j=0; j<BITVEC_NINT; j++){
+ if( aiValues[j] ) rc |= sqlite3BitvecSet(p, aiValues[j]);
+ }
+ return rc;
+ }
+ p->u.aHash[h] = i;
+ return SQLITE_OK;
+}
+
+/*
+** Clear the i-th bit. Return 0 on success and an error code if
+** anything goes wrong.
+*/
+SQLITE_PRIVATE void sqlite3BitvecClear(Bitvec *p, u32 i){
+ assert( p!=0 );
+ assert( i>0 );
+ if( p->iSize<=BITVEC_NBIT ){
+ i--;
+ p->u.aBitmap[i/8] &= ~(1 << (i&7));
+ }else if( p->iDivisor ){
+ u32 bin = (i-1)/p->iDivisor;
+ i = (i-1)%p->iDivisor + 1;
+ if( p->u.apSub[bin] ){
+ sqlite3BitvecClear(p->u.apSub[bin], i);
+ }
+ }else{
+ int j;
+ u32 aiValues[BITVEC_NINT];
+ memcpy(aiValues, p->u.aHash, sizeof(aiValues));
+ memset(p->u.aHash, 0, sizeof(p->u.aHash[0])*BITVEC_NINT);
+ p->nSet = 0;
+ for(j=0; j<BITVEC_NINT; j++){
+ if( aiValues[j] && aiValues[j]!=i ){
+ sqlite3BitvecSet(p, aiValues[j]);
+ }
+ }
+ }
+}
+
+/*
+** Destroy a bitmap object. Reclaim all memory used.
+*/
+SQLITE_PRIVATE void sqlite3BitvecDestroy(Bitvec *p){
+ if( p==0 ) return;
+ if( p->iDivisor ){
+ int i;
+ for(i=0; i<BITVEC_NPTR; i++){
+ sqlite3BitvecDestroy(p->u.apSub[i]);
+ }
+ }
+ sqlite3_free(p);
+}
+
+#ifndef SQLITE_OMIT_BUILTIN_TEST
+/*
+** Let V[] be an array of unsigned characters sufficient to hold
+** up to N bits. Let I be an integer between 0 and N. 0<=I<N.
+** Then the following macros can be used to set, clear, or test
+** individual bits within V.
+*/
+#define SETBIT(V,I) V[I>>3] |= (1<<(I&7))
+#define CLEARBIT(V,I) V[I>>3] &= ~(1<<(I&7))
+#define TESTBIT(V,I) (V[I>>3]&(1<<(I&7)))!=0
+
+/*
+** This routine runs an extensive test of the Bitvec code.
+**
+** The input is an array of integers that acts as a program
+** to test the Bitvec. The integers are opcodes followed
+** by 0, 1, or 3 operands, depending on the opcode. Another
+** opcode follows immediately after the last operand.
+**
+** There are 6 opcodes numbered from 0 through 5. 0 is the
+** "halt" opcode and causes the test to end.
+**
+** 0 Halt and return the number of errors
+** 1 N S X Set N bits beginning with S and incrementing by X
+** 2 N S X Clear N bits beginning with S and incrementing by X
+** 3 N Set N randomly chosen bits
+** 4 N Clear N randomly chosen bits
+** 5 N S X Set N bits from S increment X in array only, not in bitvec
+**
+** The opcodes 1 through 4 perform set and clear operations are performed
+** on both a Bitvec object and on a linear array of bits obtained from malloc.
+** Opcode 5 works on the linear array only, not on the Bitvec.
+** Opcode 5 is used to deliberately induce a fault in order to
+** confirm that error detection works.
+**
+** At the conclusion of the test the linear array is compared
+** against the Bitvec object. If there are any differences,
+** an error is returned. If they are the same, zero is returned.
+**
+** If a memory allocation error occurs, return -1.
+*/
+SQLITE_PRIVATE int sqlite3BitvecBuiltinTest(int sz, int *aOp){
+ Bitvec *pBitvec = 0;
+ unsigned char *pV = 0;
+ int rc = -1;
+ int i, nx, pc, op;
+
+ /* Allocate the Bitvec to be tested and a linear array of
+ ** bits to act as the reference */
+ pBitvec = sqlite3BitvecCreate( sz );
+ pV = sqlite3_malloc( (sz+7)/8 + 1 );
+ if( pBitvec==0 || pV==0 ) goto bitvec_end;
+ memset(pV, 0, (sz+7)/8 + 1);
+
+ /* Run the program */
+ pc = 0;
+ while( (op = aOp[pc])!=0 ){
+ switch( op ){
+ case 1:
+ case 2:
+ case 5: {
+ nx = 4;
+ i = aOp[pc+2] - 1;
+ aOp[pc+2] += aOp[pc+3];
+ break;
+ }
+ case 3:
+ case 4:
+ default: {
+ nx = 2;
+ sqlite3_randomness(sizeof(i), &i);
+ break;
+ }
+ }
+ if( (--aOp[pc+1]) > 0 ) nx = 0;
+ pc += nx;
+ i = (i & 0x7fffffff)%sz;
+ if( (op & 1)!=0 ){
+ SETBIT(pV, (i+1));
+ if( op!=5 ){
+ if( sqlite3BitvecSet(pBitvec, i+1) ) goto bitvec_end;
+ }
+ }else{
+ CLEARBIT(pV, (i+1));
+ sqlite3BitvecClear(pBitvec, i+1);
+ }
+ }
+
+ /* Test to make sure the linear array exactly matches the
+ ** Bitvec object. Start with the assumption that they do
+ ** match (rc==0). Change rc to non-zero if a discrepancy
+ ** is found.
+ */
+ rc = sqlite3BitvecTest(0,0) + sqlite3BitvecTest(pBitvec, sz+1)
+ + sqlite3BitvecTest(pBitvec, 0);
+ for(i=1; i<=sz; i++){
+ if( (TESTBIT(pV,i))!=sqlite3BitvecTest(pBitvec,i) ){
+ rc = i;
+ break;
+ }
+ }
+
+ /* Free allocated structure */
+bitvec_end:
+ sqlite3_free(pV);
+ sqlite3BitvecDestroy(pBitvec);
+ return rc;
+}
+#endif /* SQLITE_OMIT_BUILTIN_TEST */
+
+/************** End of bitvec.c **********************************************/
+/************** Begin file pager.c *******************************************/
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This is the implementation of the page cache subsystem or "pager".
+**
+** The pager is used to access a database disk file. It implements
+** atomic commit and rollback through the use of a journal file that
+** is separate from the database file. The pager also implements file
+** locking to prevent two processes from writing the same database
+** file simultaneously, or one process from reading the database while
+** another is writing.
+**
+** @(#) $Id: pager.c,v 1.446 2008/05/13 13:27:34 drh Exp $
+*/
+#ifndef SQLITE_OMIT_DISKIO
+
+/*
+** Macros for troubleshooting. Normally turned off
+*/
+#if 0
+#define sqlite3DebugPrintf printf
+#define PAGERTRACE1(X) sqlite3DebugPrintf(X)
+#define PAGERTRACE2(X,Y) sqlite3DebugPrintf(X,Y)
+#define PAGERTRACE3(X,Y,Z) sqlite3DebugPrintf(X,Y,Z)
+#define PAGERTRACE4(X,Y,Z,W) sqlite3DebugPrintf(X,Y,Z,W)
+#define PAGERTRACE5(X,Y,Z,W,V) sqlite3DebugPrintf(X,Y,Z,W,V)
+#else
+#define PAGERTRACE1(X)
+#define PAGERTRACE2(X,Y)
+#define PAGERTRACE3(X,Y,Z)
+#define PAGERTRACE4(X,Y,Z,W)
+#define PAGERTRACE5(X,Y,Z,W,V)
+#endif
+
+/*
+** The following two macros are used within the PAGERTRACEX() macros above
+** to print out file-descriptors.
+**
+** PAGERID() takes a pointer to a Pager struct as its argument. The
+** associated file-descriptor is returned. FILEHANDLEID() takes an sqlite3_file
+** struct as its argument.
+*/
+#define PAGERID(p) ((int)(p->fd))
+#define FILEHANDLEID(fd) ((int)fd)
+
+/*
+** The page cache as a whole is always in one of the following
+** states:
+**
+** PAGER_UNLOCK The page cache is not currently reading or
+** writing the database file. There is no
+** data held in memory. This is the initial
+** state.
+**
+** PAGER_SHARED The page cache is reading the database.
+** Writing is not permitted. There can be
+** multiple readers accessing the same database
+** file at the same time.
+**
+** PAGER_RESERVED This process has reserved the database for writing
+** but has not yet made any changes. Only one process
+** at a time can reserve the database. The original
+** database file has not been modified so other
+** processes may still be reading the on-disk
+** database file.
+**
+** PAGER_EXCLUSIVE The page cache is writing the database.
+** Access is exclusive. No other processes or
+** threads can be reading or writing while one
+** process is writing.
+**
+** PAGER_SYNCED The pager moves to this state from PAGER_EXCLUSIVE
+** after all dirty pages have been written to the
+** database file and the file has been synced to
+** disk. All that remains to do is to remove or
+** truncate the journal file and the transaction
+** will be committed.
+**
+** The page cache comes up in PAGER_UNLOCK. The first time a
+** sqlite3PagerGet() occurs, the state transitions to PAGER_SHARED.
+** After all pages have been released using sqlite_page_unref(),
+** the state transitions back to PAGER_UNLOCK. The first time
+** that sqlite3PagerWrite() is called, the state transitions to
+** PAGER_RESERVED. (Note that sqlite3PagerWrite() can only be
+** called on an outstanding page which means that the pager must
+** be in PAGER_SHARED before it transitions to PAGER_RESERVED.)
+** PAGER_RESERVED means that there is an open rollback journal.
+** The transition to PAGER_EXCLUSIVE occurs before any changes
+** are made to the database file, though writes to the rollback
+** journal occurs with just PAGER_RESERVED. After an sqlite3PagerRollback()
+** or sqlite3PagerCommitPhaseTwo(), the state can go back to PAGER_SHARED,
+** or it can stay at PAGER_EXCLUSIVE if we are in exclusive access mode.
+*/
+#define PAGER_UNLOCK 0
+#define PAGER_SHARED 1 /* same as SHARED_LOCK */
+#define PAGER_RESERVED 2 /* same as RESERVED_LOCK */
+#define PAGER_EXCLUSIVE 4 /* same as EXCLUSIVE_LOCK */
+#define PAGER_SYNCED 5
+
+/*
+** If the SQLITE_BUSY_RESERVED_LOCK macro is set to true at compile-time,
+** then failed attempts to get a reserved lock will invoke the busy callback.
+** This is off by default. To see why, consider the following scenario:
+**
+** Suppose thread A already has a shared lock and wants a reserved lock.
+** Thread B already has a reserved lock and wants an exclusive lock. If
+** both threads are using their busy callbacks, it might be a long time
+** be for one of the threads give up and allows the other to proceed.
+** But if the thread trying to get the reserved lock gives up quickly
+** (if it never invokes its busy callback) then the contention will be
+** resolved quickly.
+*/
+#ifndef SQLITE_BUSY_RESERVED_LOCK
+# define SQLITE_BUSY_RESERVED_LOCK 0
+#endif
+
+/*
+** This macro rounds values up so that if the value is an address it
+** is guaranteed to be an address that is aligned to an 8-byte boundary.
+*/
+#define FORCE_ALIGNMENT(X) (((X)+7)&~7)
+
+typedef struct PgHdr PgHdr;
+
+/*
+** Each pager stores all currently unreferenced pages in a list sorted
+** in least-recently-used (LRU) order (i.e. the first item on the list has
+** not been referenced in a long time, the last item has been recently
+** used). An instance of this structure is included as part of each
+** pager structure for this purpose (variable Pager.lru).
+**
+** Additionally, if memory-management is enabled, all unreferenced pages
+** are stored in a global LRU list (global variable sqlite3LruPageList).
+**
+** In both cases, the PagerLruList.pFirstSynced variable points to
+** the first page in the corresponding list that does not require an
+** fsync() operation before its memory can be reclaimed. If no such
+** page exists, PagerLruList.pFirstSynced is set to NULL.
+*/
+typedef struct PagerLruList PagerLruList;
+struct PagerLruList {
+ PgHdr *pFirst; /* First page in LRU list */
+ PgHdr *pLast; /* Last page in LRU list (the most recently used) */
+ PgHdr *pFirstSynced; /* First page in list with PgHdr.needSync==0 */
+};
+
+/*
+** The following structure contains the next and previous pointers used
+** to link a PgHdr structure into a PagerLruList linked list.
+*/
+typedef struct PagerLruLink PagerLruLink;
+struct PagerLruLink {
+ PgHdr *pNext;
+ PgHdr *pPrev;
+};
+
+/*
+** Each in-memory image of a page begins with the following header.
+** This header is only visible to this pager module. The client
+** code that calls pager sees only the data that follows the header.
+**
+** Client code should call sqlite3PagerWrite() on a page prior to making
+** any modifications to that page. The first time sqlite3PagerWrite()
+** is called, the original page contents are written into the rollback
+** journal and PgHdr.inJournal and PgHdr.needSync are set. Later, once
+** the journal page has made it onto the disk surface, PgHdr.needSync
+** is cleared. The modified page cannot be written back into the original
+** database file until the journal pages has been synced to disk and the
+** PgHdr.needSync has been cleared.
+**
+** The PgHdr.dirty flag is set when sqlite3PagerWrite() is called and
+** is cleared again when the page content is written back to the original
+** database file.
+**
+** Details of important structure elements:
+**
+** needSync
+**
+** If this is true, this means that it is not safe to write the page
+** content to the database because the original content needed
+** for rollback has not by synced to the main rollback journal.
+** The original content may have been written to the rollback journal
+** but it has not yet been synced. So we cannot write to the database
+** file because power failure might cause the page in the journal file
+** to never reach the disk. It is as if the write to the journal file
+** does not occur until the journal file is synced.
+**
+** This flag is false if the page content exactly matches what
+** currently exists in the database file. The needSync flag is also
+** false if the original content has been written to the main rollback
+** journal and synced. If the page represents a new page that has
+** been added onto the end of the database during the current
+** transaction, the needSync flag is true until the original database
+** size in the journal header has been synced to disk.
+**
+** inJournal
+**
+** This is true if the original page has been written into the main
+** rollback journal. This is always false for new pages added to
+** the end of the database file during the current transaction.
+** And this flag says nothing about whether or not the journal
+** has been synced to disk. For pages that are in the original
+** database file, the following expression should always be true:
+**
+** inJournal = sqlite3BitvecTest(pPager->pInJournal, pgno)
+**
+** The pPager->pInJournal object is only valid for the original
+** pages of the database, not new pages that are added to the end
+** of the database, so obviously the above expression cannot be
+** valid for new pages. For new pages inJournal is always 0.
+**
+** dirty
+**
+** When true, this means that the content of the page has been
+** modified and needs to be written back to the database file.
+** If false, it means that either the content of the page is
+** unchanged or else the content is unimportant and we do not
+** care whether or not it is preserved.
+**
+** alwaysRollback
+**
+** This means that the sqlite3PagerDontRollback() API should be
+** ignored for this page. The DontRollback() API attempts to say
+** that the content of the page on disk is unimportant (it is an
+** unused page on the freelist) so that it is unnecessary to
+** rollback changes to this page because the content of the page
+** can change without changing the meaning of the database. This
+** flag overrides any DontRollback() attempt. This flag is set
+** when a page that originally contained valid data is added to
+** the freelist. Later in the same transaction, this page might
+** be pulled from the freelist and reused for something different
+** and at that point the DontRollback() API will be called because
+** pages taken from the freelist do not need to be protected by
+** the rollback journal. But this flag says that the page was
+** not originally part of the freelist so that it still needs to
+** be rolled back in spite of any subsequent DontRollback() calls.
+**
+** needRead
+**
+** This flag means (when true) that the content of the page has
+** not yet been loaded from disk. The in-memory content is just
+** garbage. (Actually, we zero the content, but you should not
+** make any assumptions about the content nevertheless.) If the
+** content is needed in the future, it should be read from the
+** original database file.
+*/
+struct PgHdr {
+ Pager *pPager; /* The pager to which this page belongs */
+ Pgno pgno; /* The page number for this page */
+ PgHdr *pNextHash, *pPrevHash; /* Hash collision chain for PgHdr.pgno */
+ PagerLruLink free; /* Next and previous free pages */
+ PgHdr *pNextAll; /* A list of all pages */
+ u8 inJournal; /* TRUE if has been written to journal */
+ u8 dirty; /* TRUE if we need to write back changes */
+ u8 needSync; /* Sync journal before writing this page */
+ u8 alwaysRollback; /* Disable DontRollback() for this page */
+ u8 needRead; /* Read content if PagerWrite() is called */
+ short int nRef; /* Number of users of this page */
+ PgHdr *pDirty, *pPrevDirty; /* Dirty pages */
+#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
+ PagerLruLink gfree; /* Global list of nRef==0 pages */
+#endif
+#ifdef SQLITE_CHECK_PAGES
+ u32 pageHash;
+#endif
+ void *pData; /* Page data */
+ /* Pager.nExtra bytes of local data appended to this header */
+};
+
+/*
+** For an in-memory only database, some extra information is recorded about
+** each page so that changes can be rolled back. (Journal files are not
+** used for in-memory databases.) The following information is added to
+** the end of every EXTRA block for in-memory databases.
+**
+** This information could have been added directly to the PgHdr structure.
+** But then it would take up an extra 8 bytes of storage on every PgHdr
+** even for disk-based databases. Splitting it out saves 8 bytes. This
+** is only a savings of 0.8% but those percentages add up.
+*/
+typedef struct PgHistory PgHistory;
+struct PgHistory {
+ u8 *pOrig; /* Original page text. Restore to this on a full rollback */
+ u8 *pStmt; /* Text as it was at the beginning of the current statement */
+ PgHdr *pNextStmt, *pPrevStmt; /* List of pages in the statement journal */
+ u8 inStmt; /* TRUE if in the statement subjournal */
+};
+
+/*
+** A macro used for invoking the codec if there is one
+*/
+#ifdef SQLITE_HAS_CODEC
+# define CODEC1(P,D,N,X) if( P->xCodec!=0 ){ P->xCodec(P->pCodecArg,D,N,X); }
+# define CODEC2(P,D,N,X) ((char*)(P->xCodec!=0?P->xCodec(P->pCodecArg,D,N,X):D))
+#else
+# define CODEC1(P,D,N,X) /* NO-OP */
+# define CODEC2(P,D,N,X) ((char*)D)
+#endif
+
+/*
+** Convert a pointer to a PgHdr into a pointer to its data
+** and back again.
+*/
+#define PGHDR_TO_DATA(P) ((P)->pData)
+#define PGHDR_TO_EXTRA(G,P) ((void*)&((G)[1]))
+#define PGHDR_TO_HIST(P,PGR) \
+ ((PgHistory*)&((char*)(&(P)[1]))[(PGR)->nExtra])
+
+/*
+** A open page cache is an instance of the following structure.
+**
+** Pager.errCode may be set to SQLITE_IOERR, SQLITE_CORRUPT, or
+** or SQLITE_FULL. Once one of the first three errors occurs, it persists
+** and is returned as the result of every major pager API call. The
+** SQLITE_FULL return code is slightly different. It persists only until the
+** next successful rollback is performed on the pager cache. Also,
+** SQLITE_FULL does not affect the sqlite3PagerGet() and sqlite3PagerLookup()
+** APIs, they may still be used successfully.
+*/
+struct Pager {
+ sqlite3_vfs *pVfs; /* OS functions to use for IO */
+ u8 journalOpen; /* True if journal file descriptors is valid */
+ u8 journalStarted; /* True if header of journal is synced */
+ u8 useJournal; /* Use a rollback journal on this file */
+ u8 noReadlock; /* Do not bother to obtain readlocks */
+ u8 stmtOpen; /* True if the statement subjournal is open */
+ u8 stmtInUse; /* True we are in a statement subtransaction */
+ u8 stmtAutoopen; /* Open stmt journal when main journal is opened*/
+ u8 noSync; /* Do not sync the journal if true */
+ u8 fullSync; /* Do extra syncs of the journal for robustness */
+ u8 sync_flags; /* One of SYNC_NORMAL or SYNC_FULL */
+ u8 state; /* PAGER_UNLOCK, _SHARED, _RESERVED, etc. */
+ u8 tempFile; /* zFilename is a temporary file */
+ u8 readOnly; /* True for a read-only database */
+ u8 needSync; /* True if an fsync() is needed on the journal */
+ u8 dirtyCache; /* True if cached pages have changed */
+ u8 alwaysRollback; /* Disable DontRollback() for all pages */
+ u8 memDb; /* True to inhibit all file I/O */
+ u8 setMaster; /* True if a m-j name has been written to jrnl */
+ u8 doNotSync; /* Boolean. While true, do not spill the cache */
+ u8 exclusiveMode; /* Boolean. True if locking_mode==EXCLUSIVE */
+ u8 journalMode; /* On of the PAGER_JOURNALMODE_* values */
+ u8 dbModified; /* True if there are any changes to the Db */
+ u8 changeCountDone; /* Set after incrementing the change-counter */
+ u32 vfsFlags; /* Flags for sqlite3_vfs.xOpen() */
+ int errCode; /* One of several kinds of errors */
+ int dbSize; /* Number of pages in the file */
+ int origDbSize; /* dbSize before the current change */
+ int stmtSize; /* Size of database (in pages) at stmt_begin() */
+ int nRec; /* Number of pages written to the journal */
+ u32 cksumInit; /* Quasi-random value added to every checksum */
+ int stmtNRec; /* Number of records in stmt subjournal */
+ int nExtra; /* Add this many bytes to each in-memory page */
+ int pageSize; /* Number of bytes in a page */
+ int nPage; /* Total number of in-memory pages */
+ int nRef; /* Number of in-memory pages with PgHdr.nRef>0 */
+ int mxPage; /* Maximum number of pages to hold in cache */
+ Pgno mxPgno; /* Maximum allowed size of the database */
+ Bitvec *pInJournal; /* One bit for each page in the database file */
+ Bitvec *pInStmt; /* One bit for each page in the database */
+ char *zFilename; /* Name of the database file */
+ char *zJournal; /* Name of the journal file */
+ char *zDirectory; /* Directory hold database and journal files */
+ char *zStmtJrnl; /* Name of the statement journal file */
+ sqlite3_file *fd, *jfd; /* File descriptors for database and journal */
+ sqlite3_file *stfd; /* File descriptor for the statement subjournal*/
+ BusyHandler *pBusyHandler; /* Pointer to sqlite.busyHandler */
+ PagerLruList lru; /* LRU list of free pages */
+ PgHdr *pAll; /* List of all pages */
+ PgHdr *pStmt; /* List of pages in the statement subjournal */
+ PgHdr *pDirty; /* List of all dirty pages */
+ i64 journalOff; /* Current byte offset in the journal file */
+ i64 journalHdr; /* Byte offset to previous journal header */
+ i64 stmtHdrOff; /* First journal header written this statement */
+ i64 stmtCksum; /* cksumInit when statement was started */
+ i64 stmtJSize; /* Size of journal at stmt_begin() */
+ int sectorSize; /* Assumed sector size during rollback */
+#ifdef SQLITE_TEST
+ int nHit, nMiss; /* Cache hits and missing */
+ int nRead, nWrite; /* Database pages read/written */
+#endif
+ void (*xDestructor)(DbPage*,int); /* Call this routine when freeing pages */
+ void (*xReiniter)(DbPage*,int); /* Call this routine when reloading pages */
+#ifdef SQLITE_HAS_CODEC
+ void *(*xCodec)(void*,void*,Pgno,int); /* Routine for en/decoding data */
+ void *pCodecArg; /* First argument to xCodec() */
+#endif
+ int nHash; /* Size of the pager hash table */
+ PgHdr **aHash; /* Hash table to map page number to PgHdr */
+#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
+ Pager *pNext; /* Doubly linked list of pagers on which */
+ Pager *pPrev; /* sqlite3_release_memory() will work */
+ int iInUseMM; /* Non-zero if unavailable to MM */
+ int iInUseDB; /* Non-zero if in sqlite3_release_memory() */
+#endif
+ char *pTmpSpace; /* Pager.pageSize bytes of space for tmp use */
+ char dbFileVers[16]; /* Changes whenever database file changes */
+};
+
+/*
+** The following global variables hold counters used for
+** testing purposes only. These variables do not exist in
+** a non-testing build. These variables are not thread-safe.
+*/
+#ifdef SQLITE_TEST
+SQLITE_API int sqlite3_pager_readdb_count = 0; /* Number of full pages read from DB */
+SQLITE_API int sqlite3_pager_writedb_count = 0; /* Number of full pages written to DB */
+SQLITE_API int sqlite3_pager_writej_count = 0; /* Number of pages written to journal */
+SQLITE_API int sqlite3_pager_pgfree_count = 0; /* Number of cache pages freed */
+# define PAGER_INCR(v) v++
+#else
+# define PAGER_INCR(v)
+#endif
+
+/*
+** The following variable points to the head of a double-linked list
+** of all pagers that are eligible for page stealing by the
+** sqlite3_release_memory() interface. Access to this list is
+** protected by the SQLITE_MUTEX_STATIC_MEM2 mutex.
+*/
+#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
+static Pager *sqlite3PagerList = 0;
+static PagerLruList sqlite3LruPageList = {0, 0, 0};
+#endif
+
+
+/*
+** Journal files begin with the following magic string. The data
+** was obtained from /dev/random. It is used only as a sanity check.
+**
+** Since version 2.8.0, the journal format contains additional sanity
+** checking information. If the power fails while the journal is begin
+** written, semi-random garbage data might appear in the journal
+** file after power is restored. If an attempt is then made
+** to roll the journal back, the database could be corrupted. The additional
+** sanity checking data is an attempt to discover the garbage in the
+** journal and ignore it.
+**
+** The sanity checking information for the new journal format consists
+** of a 32-bit checksum on each page of data. The checksum covers both
+** the page number and the pPager->pageSize bytes of data for the page.
+** This cksum is initialized to a 32-bit random value that appears in the
+** journal file right after the header. The random initializer is important,
+** because garbage data that appears at the end of a journal is likely
+** data that was once in other files that have now been deleted. If the
+** garbage data came from an obsolete journal file, the checksums might
+** be correct. But by initializing the checksum to random value which
+** is different for every journal, we minimize that risk.
+*/
+static const unsigned char aJournalMagic[] = {
+ 0xd9, 0xd5, 0x05, 0xf9, 0x20, 0xa1, 0x63, 0xd7,
+};
+
+/*
+** The size of the header and of each page in the journal is determined
+** by the following macros.
+*/
+#define JOURNAL_PG_SZ(pPager) ((pPager->pageSize) + 8)
+
+/*
+** The journal header size for this pager. In the future, this could be
+** set to some value read from the disk controller. The important
+** characteristic is that it is the same size as a disk sector.
+*/
+#define JOURNAL_HDR_SZ(pPager) (pPager->sectorSize)
+
+/*
+** The macro MEMDB is true if we are dealing with an in-memory database.
+** We do this as a macro so that if the SQLITE_OMIT_MEMORYDB macro is set,
+** the value of MEMDB will be a constant and the compiler will optimize
+** out code that would never execute.
+*/
+#ifdef SQLITE_OMIT_MEMORYDB
+# define MEMDB 0
+#else
+# define MEMDB pPager->memDb
+#endif
+
+/*
+** Page number PAGER_MJ_PGNO is never used in an SQLite database (it is
+** reserved for working around a windows/posix incompatibility). It is
+** used in the journal to signify that the remainder of the journal file
+** is devoted to storing a master journal name - there are no more pages to
+** roll back. See comments for function writeMasterJournal() for details.
+*/
+/* #define PAGER_MJ_PGNO(x) (PENDING_BYTE/((x)->pageSize)) */
+#define PAGER_MJ_PGNO(x) ((PENDING_BYTE/((x)->pageSize))+1)
+
+/*
+** The maximum legal page number is (2^31 - 1).
+*/
+#define PAGER_MAX_PGNO 2147483647
+
+/*
+** The pagerEnter() and pagerLeave() routines acquire and release
+** a mutex on each pager. The mutex is recursive.
+**
+** This is a special-purpose mutex. It only provides mutual exclusion
+** between the Btree and the Memory Management sqlite3_release_memory()
+** function. It does not prevent, for example, two Btrees from accessing
+** the same pager at the same time. Other general-purpose mutexes in
+** the btree layer handle that chore.
+*/
+#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
+ static void pagerEnter(Pager *p){
+ p->iInUseDB++;
+ if( p->iInUseMM && p->iInUseDB==1 ){
+#ifndef SQLITE_MUTEX_NOOP
+ sqlite3_mutex *mutex;
+ mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MEM2);
+#endif
+ p->iInUseDB = 0;
+ sqlite3_mutex_enter(mutex);
+ p->iInUseDB = 1;
+ sqlite3_mutex_leave(mutex);
+ }
+ assert( p->iInUseMM==0 );
+ }
+ static void pagerLeave(Pager *p){
+ p->iInUseDB--;
+ assert( p->iInUseDB>=0 );
+ }
+#else
+# define pagerEnter(X)
+# define pagerLeave(X)
+#endif
+
+/*
+** Add page pPg to the end of the linked list managed by structure
+** pList (pPg becomes the last entry in the list - the most recently
+** used). Argument pLink should point to either pPg->free or pPg->gfree,
+** depending on whether pPg is being added to the pager-specific or
+** global LRU list.
+*/
+static void listAdd(PagerLruList *pList, PagerLruLink *pLink, PgHdr *pPg){
+ pLink->pNext = 0;
+ pLink->pPrev = pList->pLast;
+
+#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
+ assert(pLink==&pPg->free || pLink==&pPg->gfree);
+ assert(pLink==&pPg->gfree || pList!=&sqlite3LruPageList);
+#endif
+
+ if( pList->pLast ){
+ int iOff = (char *)pLink - (char *)pPg;
+ PagerLruLink *pLastLink = (PagerLruLink *)(&((u8 *)pList->pLast)[iOff]);
+ pLastLink->pNext = pPg;
+ }else{
+ assert(!pList->pFirst);
+ pList->pFirst = pPg;
+ }
+
+ pList->pLast = pPg;
+ if( !pList->pFirstSynced && pPg->needSync==0 ){
+ pList->pFirstSynced = pPg;
+ }
+}
+
+/*
+** Remove pPg from the list managed by the structure pointed to by pList.
+**
+** Argument pLink should point to either pPg->free or pPg->gfree, depending
+** on whether pPg is being added to the pager-specific or global LRU list.
+*/
+static void listRemove(PagerLruList *pList, PagerLruLink *pLink, PgHdr *pPg){
+ int iOff = (char *)pLink - (char *)pPg;
+
+#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
+ assert(pLink==&pPg->free || pLink==&pPg->gfree);
+ assert(pLink==&pPg->gfree || pList!=&sqlite3LruPageList);
+#endif
+
+ if( pPg==pList->pFirst ){
+ pList->pFirst = pLink->pNext;
+ }
+ if( pPg==pList->pLast ){
+ pList->pLast = pLink->pPrev;
+ }
+ if( pLink->pPrev ){
+ PagerLruLink *pPrevLink = (PagerLruLink *)(&((u8 *)pLink->pPrev)[iOff]);
+ pPrevLink->pNext = pLink->pNext;
+ }
+ if( pLink->pNext ){
+ PagerLruLink *pNextLink = (PagerLruLink *)(&((u8 *)pLink->pNext)[iOff]);
+ pNextLink->pPrev = pLink->pPrev;
+ }
+ if( pPg==pList->pFirstSynced ){
+ PgHdr *p = pLink->pNext;
+ while( p && p->needSync ){
+ PagerLruLink *pL = (PagerLruLink *)(&((u8 *)p)[iOff]);
+ p = pL->pNext;
+ }
+ pList->pFirstSynced = p;
+ }
+
+ pLink->pNext = pLink->pPrev = 0;
+}
+
+/*
+** Add page pPg to the list of free pages for the pager. If
+** memory-management is enabled, also add the page to the global
+** list of free pages.
+*/
+static void lruListAdd(PgHdr *pPg){
+ listAdd(&pPg->pPager->lru, &pPg->free, pPg);
+#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
+ if( !pPg->pPager->memDb ){
+ sqlite3_mutex_enter(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU));
+ listAdd(&sqlite3LruPageList, &pPg->gfree, pPg);
+ sqlite3_mutex_leave(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU));
+ }
+#endif
+}
+
+/*
+** Remove page pPg from the list of free pages for the associated pager.
+** If memory-management is enabled, also remove pPg from the global list
+** of free pages.
+*/
+static void lruListRemove(PgHdr *pPg){
+ listRemove(&pPg->pPager->lru, &pPg->free, pPg);
+#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
+ if( !pPg->pPager->memDb ){
+ sqlite3_mutex_enter(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU));
+ listRemove(&sqlite3LruPageList, &pPg->gfree, pPg);
+ sqlite3_mutex_leave(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU));
+ }
+#endif
+}
+
+/*
+** This function is called just after the needSync flag has been cleared
+** from all pages managed by pPager (usually because the journal file
+** has just been synced). It updates the pPager->lru.pFirstSynced variable
+** and, if memory-management is enabled, the sqlite3LruPageList.pFirstSynced
+** variable also.
+*/
+static void lruListSetFirstSynced(Pager *pPager){
+ pPager->lru.pFirstSynced = pPager->lru.pFirst;
+#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
+ if( !pPager->memDb ){
+ PgHdr *p;
+ sqlite3_mutex_enter(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU));
+ for(p=sqlite3LruPageList.pFirst; p && p->needSync; p=p->gfree.pNext);
+ assert(p==pPager->lru.pFirstSynced || p==sqlite3LruPageList.pFirstSynced);
+ sqlite3LruPageList.pFirstSynced = p;
+ sqlite3_mutex_leave(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU));
+ }
+#endif
+}
+
+/*
+** Return true if page *pPg has already been written to the statement
+** journal (or statement snapshot has been created, if *pPg is part
+** of an in-memory database).
+*/
+static int pageInStatement(PgHdr *pPg){
+ Pager *pPager = pPg->pPager;
+ if( MEMDB ){
+ return PGHDR_TO_HIST(pPg, pPager)->inStmt;
+ }else{
+ return sqlite3BitvecTest(pPager->pInStmt, pPg->pgno);
+ }
+}
+
+/*
+** Change the size of the pager hash table to N. N must be a power
+** of two.
+*/
+static void pager_resize_hash_table(Pager *pPager, int N){
+ PgHdr **aHash, *pPg;
+ assert( N>0 && (N&(N-1))==0 );
+#ifdef SQLITE_MALLOC_SOFT_LIMIT
+ if( N*sizeof(aHash[0])>SQLITE_MALLOC_SOFT_LIMIT ){
+ N = SQLITE_MALLOC_SOFT_LIMIT/sizeof(aHash[0]);
+ }
+ if( N==pPager->nHash ) return;
+#endif
+ pagerLeave(pPager);
+ if( pPager->aHash!=0 ) sqlite3FaultBeginBenign(SQLITE_FAULTINJECTOR_MALLOC);
+ aHash = sqlite3MallocZero( sizeof(aHash[0])*N );
+ if( pPager->aHash!=0 ) sqlite3FaultEndBenign(SQLITE_FAULTINJECTOR_MALLOC);
+ pagerEnter(pPager);
+ if( aHash==0 ){
+ /* Failure to rehash is not an error. It is only a performance hit. */
+ return;
+ }
+ sqlite3_free(pPager->aHash);
+ pPager->nHash = N;
+ pPager->aHash = aHash;
+ for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){
+ int h;
+ if( pPg->pgno==0 ){
+ assert( pPg->pNextHash==0 && pPg->pPrevHash==0 );
+ continue;
+ }
+ h = pPg->pgno & (N-1);
+ pPg->pNextHash = aHash[h];
+ if( aHash[h] ){
+ aHash[h]->pPrevHash = pPg;
+ }
+ aHash[h] = pPg;
+ pPg->pPrevHash = 0;
+ }
+}
+
+/*
+** Read a 32-bit integer from the given file descriptor. Store the integer
+** that is read in *pRes. Return SQLITE_OK if everything worked, or an
+** error code is something goes wrong.
+**
+** All values are stored on disk as big-endian.
+*/
+static int read32bits(sqlite3_file *fd, i64 offset, u32 *pRes){
+ unsigned char ac[4];
+ int rc = sqlite3OsRead(fd, ac, sizeof(ac), offset);
+ if( rc==SQLITE_OK ){
+ *pRes = sqlite3Get4byte(ac);
+ }
+ return rc;
+}
+
+/*
+** Write a 32-bit integer into a string buffer in big-endian byte order.
+*/
+#define put32bits(A,B) sqlite3Put4byte((u8*)A,B)
+
+/*
+** Write a 32-bit integer into the given file descriptor. Return SQLITE_OK
+** on success or an error code is something goes wrong.
+*/
+static int write32bits(sqlite3_file *fd, i64 offset, u32 val){
+ char ac[4];
+ put32bits(ac, val);
+ return sqlite3OsWrite(fd, ac, 4, offset);
+}
+
+/*
+** If file pFd is open, call sqlite3OsUnlock() on it.
+*/
+static int osUnlock(sqlite3_file *pFd, int eLock){
+ if( !pFd->pMethods ){
+ return SQLITE_OK;
+ }
+ return sqlite3OsUnlock(pFd, eLock);
+}
+
+/*
+** This function determines whether or not the atomic-write optimization
+** can be used with this pager. The optimization can be used if:
+**
+** (a) the value returned by OsDeviceCharacteristics() indicates that
+** a database page may be written atomically, and
+** (b) the value returned by OsSectorSize() is less than or equal
+** to the page size.
+**
+** If the optimization cannot be used, 0 is returned. If it can be used,
+** then the value returned is the size of the journal file when it
+** contains rollback data for exactly one page.
+*/
+#ifdef SQLITE_ENABLE_ATOMIC_WRITE
+static int jrnlBufferSize(Pager *pPager){
+ int dc; /* Device characteristics */
+ int nSector; /* Sector size */
+ int nPage; /* Page size */
+ sqlite3_file *fd = pPager->fd;
+
+ if( fd->pMethods ){
+ dc = sqlite3OsDeviceCharacteristics(fd);
+ nSector = sqlite3OsSectorSize(fd);
+ nPage = pPager->pageSize;
+ }
+
+ assert(SQLITE_IOCAP_ATOMIC512==(512>>8));
+ assert(SQLITE_IOCAP_ATOMIC64K==(65536>>8));
+
+ if( !fd->pMethods || (dc&(SQLITE_IOCAP_ATOMIC|(nPage>>8))&&nSector<=nPage) ){
+ return JOURNAL_HDR_SZ(pPager) + JOURNAL_PG_SZ(pPager);
+ }
+ return 0;
+}
+#endif
+
+/*
+** This function should be called when an error occurs within the pager
+** code. The first argument is a pointer to the pager structure, the
+** second the error-code about to be returned by a pager API function.
+** The value returned is a copy of the second argument to this function.
+**
+** If the second argument is SQLITE_IOERR, SQLITE_CORRUPT, or SQLITE_FULL
+** the error becomes persistent. Until the persisten error is cleared,
+** subsequent API calls on this Pager will immediately return the same
+** error code.
+**
+** A persistent error indicates that the contents of the pager-cache
+** cannot be trusted. This state can be cleared by completely discarding
+** the contents of the pager-cache. If a transaction was active when
+** the persistent error occured, then the rollback journal may need
+** to be replayed.
+*/
+static void pager_unlock(Pager *pPager);
+static int pager_error(Pager *pPager, int rc){
+ int rc2 = rc & 0xff;
+ assert(
+ pPager->errCode==SQLITE_FULL ||
+ pPager->errCode==SQLITE_OK ||
+ (pPager->errCode & 0xff)==SQLITE_IOERR
+ );
+ if(
+ rc2==SQLITE_FULL ||
+ rc2==SQLITE_IOERR ||
+ rc2==SQLITE_CORRUPT
+ ){
+ pPager->errCode = rc;
+ if( pPager->state==PAGER_UNLOCK && pPager->nRef==0 ){
+ /* If the pager is already unlocked, call pager_unlock() now to
+ ** clear the error state and ensure that the pager-cache is
+ ** completely empty.
+ */
+ pager_unlock(pPager);
+ }
+ }
+ return rc;
+}
+
+/*
+** If SQLITE_CHECK_PAGES is defined then we do some sanity checking
+** on the cache using a hash function. This is used for testing
+** and debugging only.
+*/
+#ifdef SQLITE_CHECK_PAGES
+/*
+** Return a 32-bit hash of the page data for pPage.
+*/
+static u32 pager_datahash(int nByte, unsigned char *pData){
+ u32 hash = 0;
+ int i;
+ for(i=0; i<nByte; i++){
+ hash = (hash*1039) + pData[i];
+ }
+ return hash;
+}
+static u32 pager_pagehash(PgHdr *pPage){
+ return pager_datahash(pPage->pPager->pageSize,
+ (unsigned char *)PGHDR_TO_DATA(pPage));
+}
+
+/*
+** The CHECK_PAGE macro takes a PgHdr* as an argument. If SQLITE_CHECK_PAGES
+** is defined, and NDEBUG is not defined, an assert() statement checks
+** that the page is either dirty or still matches the calculated page-hash.
+*/
+#define CHECK_PAGE(x) checkPage(x)
+static void checkPage(PgHdr *pPg){
+ Pager *pPager = pPg->pPager;
+ assert( !pPg->pageHash || pPager->errCode || MEMDB || pPg->dirty ||
+ pPg->pageHash==pager_pagehash(pPg) );
+}
+
+#else
+#define pager_datahash(X,Y) 0
+#define pager_pagehash(X) 0
+#define CHECK_PAGE(x)
+#endif
+
+/*
+** When this is called the journal file for pager pPager must be open.
+** The master journal file name is read from the end of the file and
+** written into memory supplied by the caller.
+**
+** zMaster must point to a buffer of at least nMaster bytes allocated by
+** the caller. This should be sqlite3_vfs.mxPathname+1 (to ensure there is
+** enough space to write the master journal name). If the master journal
+** name in the journal is longer than nMaster bytes (including a
+** nul-terminator), then this is handled as if no master journal name
+** were present in the journal.
+**
+** If no master journal file name is present zMaster[0] is set to 0 and
+** SQLITE_OK returned.
+*/
+static int readMasterJournal(sqlite3_file *pJrnl, char *zMaster, int nMaster){
+ int rc;
+ u32 len;
+ i64 szJ;
+ u32 cksum;
+ int i;
+ unsigned char aMagic[8]; /* A buffer to hold the magic header */
+
+ zMaster[0] = '\0';
+
+ rc = sqlite3OsFileSize(pJrnl, &szJ);
+ if( rc!=SQLITE_OK || szJ<16 ) return rc;
+
+ rc = read32bits(pJrnl, szJ-16, &len);
+ if( rc!=SQLITE_OK ) return rc;
+
+ if( len>=nMaster ){
+ return SQLITE_OK;
+ }
+
+ rc = read32bits(pJrnl, szJ-12, &cksum);
+ if( rc!=SQLITE_OK ) return rc;
+
+ rc = sqlite3OsRead(pJrnl, aMagic, 8, szJ-8);
+ if( rc!=SQLITE_OK || memcmp(aMagic, aJournalMagic, 8) ) return rc;
+
+ rc = sqlite3OsRead(pJrnl, zMaster, len, szJ-16-len);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ zMaster[len] = '\0';
+
+ /* See if the checksum matches the master journal name */
+ for(i=0; i<len; i++){
+ cksum -= zMaster[i];
+ }
+ if( cksum ){
+ /* If the checksum doesn't add up, then one or more of the disk sectors
+ ** containing the master journal filename is corrupted. This means
+ ** definitely roll back, so just return SQLITE_OK and report a (nul)
+ ** master-journal filename.
+ */
+ zMaster[0] = '\0';
+ }
+
+ return SQLITE_OK;
+}
+
+/*
+** Seek the journal file descriptor to the next sector boundary where a
+** journal header may be read or written. Pager.journalOff is updated with
+** the new seek offset.
+**
+** i.e for a sector size of 512:
+**
+** Input Offset Output Offset
+** ---------------------------------------
+** 0 0
+** 512 512
+** 100 512
+** 2000 2048
+**
+*/
+static void seekJournalHdr(Pager *pPager){
+ i64 offset = 0;
+ i64 c = pPager->journalOff;
+ if( c ){
+ offset = ((c-1)/JOURNAL_HDR_SZ(pPager) + 1) * JOURNAL_HDR_SZ(pPager);
+ }
+ assert( offset%JOURNAL_HDR_SZ(pPager)==0 );
+ assert( offset>=c );
+ assert( (offset-c)<JOURNAL_HDR_SZ(pPager) );
+ pPager->journalOff = offset;
+}
+
+/*
+** Write zeros over the header of the journal file. This has the
+** effect of invalidating the journal file and committing the
+** transaction.
+*/
+static int zeroJournalHdr(Pager *pPager, int doTruncate){
+ int rc = SQLITE_OK;
+ static const char zeroHdr[28];
+
+ if( pPager->journalOff ){
+ IOTRACE(("JZEROHDR %p\n", pPager))
+ if( doTruncate ){
+ rc = sqlite3OsTruncate(pPager->jfd, 0);
+ }else{
+ rc = sqlite3OsWrite(pPager->jfd, zeroHdr, sizeof(zeroHdr), 0);
+ }
+ if( rc==SQLITE_OK ){
+ rc = sqlite3OsSync(pPager->jfd, SQLITE_SYNC_DATAONLY|pPager->sync_flags);
+ }
+ }
+ return rc;
+}
+
+/*
+** The journal file must be open when this routine is called. A journal
+** header (JOURNAL_HDR_SZ bytes) is written into the journal file at the
+** current location.
+**
+** The format for the journal header is as follows:
+** - 8 bytes: Magic identifying journal format.
+** - 4 bytes: Number of records in journal, or -1 no-sync mode is on.
+** - 4 bytes: Random number used for page hash.
+** - 4 bytes: Initial database page count.
+** - 4 bytes: Sector size used by the process that wrote this journal.
+** - 4 bytes: Database page size.
+**
+** Followed by (JOURNAL_HDR_SZ - 28) bytes of unused space.
+*/
+static int writeJournalHdr(Pager *pPager){
+ int rc = SQLITE_OK;
+ char *zHeader = pPager->pTmpSpace;
+ int nHeader = pPager->pageSize;
+ int nWrite;
+
+ if( nHeader>JOURNAL_HDR_SZ(pPager) ){
+ nHeader = JOURNAL_HDR_SZ(pPager);
+ }
+
+ if( pPager->stmtHdrOff==0 ){
+ pPager->stmtHdrOff = pPager->journalOff;
+ }
+
+ seekJournalHdr(pPager);
+ pPager->journalHdr = pPager->journalOff;
+
+ memcpy(zHeader, aJournalMagic, sizeof(aJournalMagic));
+
+ /*
+ ** Write the nRec Field - the number of page records that follow this
+ ** journal header. Normally, zero is written to this value at this time.
+ ** After the records are added to the journal (and the journal synced,
+ ** if in full-sync mode), the zero is overwritten with the true number
+ ** of records (see syncJournal()).
+ **
+ ** A faster alternative is to write 0xFFFFFFFF to the nRec field. When
+ ** reading the journal this value tells SQLite to assume that the
+ ** rest of the journal file contains valid page records. This assumption
+ ** is dangerous, as if a failure occured whilst writing to the journal
+ ** file it may contain some garbage data. There are two scenarios
+ ** where this risk can be ignored:
+ **
+ ** * When the pager is in no-sync mode. Corruption can follow a
+ ** power failure in this case anyway.
+ **
+ ** * When the SQLITE_IOCAP_SAFE_APPEND flag is set. This guarantees
+ ** that garbage data is never appended to the journal file.
+ */
+ assert(pPager->fd->pMethods||pPager->noSync);
+ if( (pPager->noSync)
+ || (sqlite3OsDeviceCharacteristics(pPager->fd)&SQLITE_IOCAP_SAFE_APPEND)
+ ){
+ put32bits(&zHeader[sizeof(aJournalMagic)], 0xffffffff);
+ }else{
+ put32bits(&zHeader[sizeof(aJournalMagic)], 0);
+ }
+
+ /* The random check-hash initialiser */
+ sqlite3_randomness(sizeof(pPager->cksumInit), &pPager->cksumInit);
+ put32bits(&zHeader[sizeof(aJournalMagic)+4], pPager->cksumInit);
+ /* The initial database size */
+ put32bits(&zHeader[sizeof(aJournalMagic)+8], pPager->dbSize);
+ /* The assumed sector size for this process */
+ put32bits(&zHeader[sizeof(aJournalMagic)+12], pPager->sectorSize);
+ if( pPager->journalHdr==0 ){
+ /* The page size */
+ put32bits(&zHeader[sizeof(aJournalMagic)+16], pPager->pageSize);
+ }
+
+ for(nWrite=0; rc==SQLITE_OK&&nWrite<JOURNAL_HDR_SZ(pPager); nWrite+=nHeader){
+ IOTRACE(("JHDR %p %lld %d\n", pPager, pPager->journalHdr, nHeader))
+ rc = sqlite3OsWrite(pPager->jfd, zHeader, nHeader, pPager->journalOff);
+ pPager->journalOff += nHeader;
+ }
+
+ return rc;
+}
+
+/*
+** The journal file must be open when this is called. A journal header file
+** (JOURNAL_HDR_SZ bytes) is read from the current location in the journal
+** file. See comments above function writeJournalHdr() for a description of
+** the journal header format.
+**
+** If the header is read successfully, *nRec is set to the number of
+** page records following this header and *dbSize is set to the size of the
+** database before the transaction began, in pages. Also, pPager->cksumInit
+** is set to the value read from the journal header. SQLITE_OK is returned
+** in this case.
+**
+** If the journal header file appears to be corrupted, SQLITE_DONE is
+** returned and *nRec and *dbSize are not set. If JOURNAL_HDR_SZ bytes
+** cannot be read from the journal file an error code is returned.
+*/
+static int readJournalHdr(
+ Pager *pPager,
+ i64 journalSize,
+ u32 *pNRec,
+ u32 *pDbSize
+){
+ int rc;
+ unsigned char aMagic[8]; /* A buffer to hold the magic header */
+ i64 jrnlOff;
+ int iPageSize;
+
+ seekJournalHdr(pPager);
+ if( pPager->journalOff+JOURNAL_HDR_SZ(pPager) > journalSize ){
+ return SQLITE_DONE;
+ }
+ jrnlOff = pPager->journalOff;
+
+ rc = sqlite3OsRead(pPager->jfd, aMagic, sizeof(aMagic), jrnlOff);
+ if( rc ) return rc;
+ jrnlOff += sizeof(aMagic);
+
+ if( memcmp(aMagic, aJournalMagic, sizeof(aMagic))!=0 ){
+ return SQLITE_DONE;
+ }
+
+ rc = read32bits(pPager->jfd, jrnlOff, pNRec);
+ if( rc ) return rc;
+
+ rc = read32bits(pPager->jfd, jrnlOff+4, &pPager->cksumInit);
+ if( rc ) return rc;
+
+ rc = read32bits(pPager->jfd, jrnlOff+8, pDbSize);
+ if( rc ) return rc;
+
+ rc = read32bits(pPager->jfd, jrnlOff+16, (u32 *)&iPageSize);
+ if( rc==SQLITE_OK
+ && iPageSize>=512
+ && iPageSize<=SQLITE_MAX_PAGE_SIZE
+ && ((iPageSize-1)&iPageSize)==0
+ ){
+ u16 pagesize = iPageSize;
+ rc = sqlite3PagerSetPagesize(pPager, &pagesize);
+ }
+ if( rc ) return rc;
+
+ /* Update the assumed sector-size to match the value used by
+ ** the process that created this journal. If this journal was
+ ** created by a process other than this one, then this routine
+ ** is being called from within pager_playback(). The local value
+ ** of Pager.sectorSize is restored at the end of that routine.
+ */
+ rc = read32bits(pPager->jfd, jrnlOff+12, (u32 *)&pPager->sectorSize);
+ if( rc ) return rc;
+
+ pPager->journalOff += JOURNAL_HDR_SZ(pPager);
+ return SQLITE_OK;
+}
+
+
+/*
+** Write the supplied master journal name into the journal file for pager
+** pPager at the current location. The master journal name must be the last
+** thing written to a journal file. If the pager is in full-sync mode, the
+** journal file descriptor is advanced to the next sector boundary before
+** anything is written. The format is:
+**
+** + 4 bytes: PAGER_MJ_PGNO.
+** + N bytes: length of master journal name.
+** + 4 bytes: N
+** + 4 bytes: Master journal name checksum.
+** + 8 bytes: aJournalMagic[].
+**
+** The master journal page checksum is the sum of the bytes in the master
+** journal name.
+**
+** If zMaster is a NULL pointer (occurs for a single database transaction),
+** this call is a no-op.
+*/
+static int writeMasterJournal(Pager *pPager, const char *zMaster){
+ int rc;
+ int len;
+ int i;
+ i64 jrnlOff;
+ i64 jrnlSize;
+ u32 cksum = 0;
+ char zBuf[sizeof(aJournalMagic)+2*4];
+
+ if( !zMaster || pPager->setMaster) return SQLITE_OK;
+ pPager->setMaster = 1;
+
+ len = strlen(zMaster);
+ for(i=0; i<len; i++){
+ cksum += zMaster[i];
+ }
+
+ /* If in full-sync mode, advance to the next disk sector before writing
+ ** the master journal name. This is in case the previous page written to
+ ** the journal has already been synced.
+ */
+ if( pPager->fullSync ){
+ seekJournalHdr(pPager);
+ }
+ jrnlOff = pPager->journalOff;
+ pPager->journalOff += (len+20);
+
+ rc = write32bits(pPager->jfd, jrnlOff, PAGER_MJ_PGNO(pPager));
+ if( rc!=SQLITE_OK ) return rc;
+ jrnlOff += 4;
+
+ rc = sqlite3OsWrite(pPager->jfd, zMaster, len, jrnlOff);
+ if( rc!=SQLITE_OK ) return rc;
+ jrnlOff += len;
+
+ put32bits(zBuf, len);
+ put32bits(&zBuf[4], cksum);
+ memcpy(&zBuf[8], aJournalMagic, sizeof(aJournalMagic));
+ rc = sqlite3OsWrite(pPager->jfd, zBuf, 8+sizeof(aJournalMagic), jrnlOff);
+ jrnlOff += 8+sizeof(aJournalMagic);
+ pPager->needSync = !pPager->noSync;
+
+ /* If the pager is in peristent-journal mode, then the physical
+ ** journal-file may extend past the end of the master-journal name
+ ** and 8 bytes of magic data just written to the file. This is
+ ** dangerous because the code to rollback a hot-journal file
+ ** will not be able to find the master-journal name to determine
+ ** whether or not the journal is hot.
+ **
+ ** Easiest thing to do in this scenario is to truncate the journal
+ ** file to the required size.
+ */
+ if( (rc==SQLITE_OK)
+ && (rc = sqlite3OsFileSize(pPager->jfd, &jrnlSize))==SQLITE_OK
+ && jrnlSize>jrnlOff
+ ){
+ rc = sqlite3OsTruncate(pPager->jfd, jrnlOff);
+ }
+ return rc;
+}
+
+/*
+** Add or remove a page from the list of all pages that are in the
+** statement journal.
+**
+** The Pager keeps a separate list of pages that are currently in
+** the statement journal. This helps the sqlite3PagerStmtCommit()
+** routine run MUCH faster for the common case where there are many
+** pages in memory but only a few are in the statement journal.
+*/
+static void page_add_to_stmt_list(PgHdr *pPg){
+ Pager *pPager = pPg->pPager;
+ PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager);
+ assert( MEMDB );
+ if( !pHist->inStmt ){
+ assert( pHist->pPrevStmt==0 && pHist->pNextStmt==0 );
+ if( pPager->pStmt ){
+ PGHDR_TO_HIST(pPager->pStmt, pPager)->pPrevStmt = pPg;
+ }
+ pHist->pNextStmt = pPager->pStmt;
+ pPager->pStmt = pPg;
+ pHist->inStmt = 1;
+ }
+}
+
+/*
+** Find a page in the hash table given its page number. Return
+** a pointer to the page or NULL if not found.
+*/
+static PgHdr *pager_lookup(Pager *pPager, Pgno pgno){
+ PgHdr *p;
+ if( pPager->aHash==0 ) return 0;
+ p = pPager->aHash[pgno & (pPager->nHash-1)];
+ while( p && p->pgno!=pgno ){
+ p = p->pNextHash;
+ }
+ return p;
+}
+
+/*
+** Clear the in-memory cache. This routine
+** sets the state of the pager back to what it was when it was first
+** opened. Any outstanding pages are invalidated and subsequent attempts
+** to access those pages will likely result in a coredump.
+*/
+static void pager_reset(Pager *pPager){
+ PgHdr *pPg, *pNext;
+ if( pPager->errCode ) return;
+ for(pPg=pPager->pAll; pPg; pPg=pNext){
+ IOTRACE(("PGFREE %p %d\n", pPager, pPg->pgno));
+ PAGER_INCR(sqlite3_pager_pgfree_count);
+ pNext = pPg->pNextAll;
+ lruListRemove(pPg);
+ sqlite3_free(pPg->pData);
+ sqlite3_free(pPg);
+ }
+ assert(pPager->lru.pFirst==0);
+ assert(pPager->lru.pFirstSynced==0);
+ assert(pPager->lru.pLast==0);
+ pPager->pStmt = 0;
+ pPager->pAll = 0;
+ pPager->pDirty = 0;
+ pPager->nHash = 0;
+ sqlite3_free(pPager->aHash);
+ pPager->nPage = 0;
+ pPager->aHash = 0;
+ pPager->nRef = 0;
+}
+
+/*
+** Unlock the database file.
+**
+** If the pager is currently in error state, discard the contents of
+** the cache and reset the Pager structure internal state. If there is
+** an open journal-file, then the next time a shared-lock is obtained
+** on the pager file (by this or any other process), it will be
+** treated as a hot-journal and rolled back.
+*/
+static void pager_unlock(Pager *pPager){
+ if( !pPager->exclusiveMode ){
+ if( !MEMDB ){
+ int rc = osUnlock(pPager->fd, NO_LOCK);
+ if( rc ) pPager->errCode = rc;
+ pPager->dbSize = -1;
+ IOTRACE(("UNLOCK %p\n", pPager))
+
+ /* Always close the journal file when dropping the database lock.
+ ** Otherwise, another connection with journal_mode=delete might
+ ** delete the file out from under us.
+ */
+ if( pPager->journalOpen ){
+ sqlite3OsClose(pPager->jfd);
+ pPager->journalOpen = 0;
+ sqlite3BitvecDestroy(pPager->pInJournal);
+ pPager->pInJournal = 0;
+ }
+
+ /* If Pager.errCode is set, the contents of the pager cache cannot be
+ ** trusted. Now that the pager file is unlocked, the contents of the
+ ** cache can be discarded and the error code safely cleared.
+ */
+ if( pPager->errCode ){
+ if( rc==SQLITE_OK ) pPager->errCode = SQLITE_OK;
+ pager_reset(pPager);
+ if( pPager->stmtOpen ){
+ sqlite3OsClose(pPager->stfd);
+ sqlite3BitvecDestroy(pPager->pInStmt);
+ pPager->pInStmt = 0;
+ }
+ pPager->stmtOpen = 0;
+ pPager->stmtInUse = 0;
+ pPager->journalOff = 0;
+ pPager->journalStarted = 0;
+ pPager->stmtAutoopen = 0;
+ pPager->origDbSize = 0;
+ }
+ }
+
+ if( !MEMDB || pPager->errCode==SQLITE_OK ){
+ pPager->state = PAGER_UNLOCK;
+ pPager->changeCountDone = 0;
+ }
+ }
+}
+
+/*
+** Execute a rollback if a transaction is active and unlock the
+** database file. If the pager has already entered the error state,
+** do not attempt the rollback.
+*/
+static void pagerUnlockAndRollback(Pager *p){
+ /* assert( p->state>=PAGER_RESERVED || p->journalOpen==0 ); */
+ if( p->errCode==SQLITE_OK && p->state>=PAGER_RESERVED ){
+ sqlite3FaultBeginBenign(-1);
+ sqlite3PagerRollback(p);
+ sqlite3FaultEndBenign(-1);
+ }
+ pager_unlock(p);
+#if 0
+ assert( p->errCode || !p->journalOpen || (p->exclusiveMode&&!p->journalOff) );
+ assert( p->errCode || !p->stmtOpen || p->exclusiveMode );
+#endif
+}
+
+/*
+** This routine ends a transaction. A transaction is ended by either
+** a COMMIT or a ROLLBACK.
+**
+** When this routine is called, the pager has the journal file open and
+** a RESERVED or EXCLUSIVE lock on the database. This routine will release
+** the database lock and acquires a SHARED lock in its place if that is
+** the appropriate thing to do. Release locks usually is appropriate,
+** unless we are in exclusive access mode or unless this is a
+** COMMIT AND BEGIN or ROLLBACK AND BEGIN operation.
+**
+** The journal file is either deleted or truncated.
+**
+** TODO: Consider keeping the journal file open for temporary databases.
+** This might give a performance improvement on windows where opening
+** a file is an expensive operation.
+*/
+static int pager_end_transaction(Pager *pPager, int hasMaster){
+ PgHdr *pPg;
+ int rc = SQLITE_OK;
+ int rc2 = SQLITE_OK;
+ assert( !MEMDB );
+ if( pPager->state<PAGER_RESERVED ){
+ return SQLITE_OK;
+ }
+ sqlite3PagerStmtCommit(pPager);
+ if( pPager->stmtOpen && !pPager->exclusiveMode ){
+ sqlite3OsClose(pPager->stfd);
+ pPager->stmtOpen = 0;
+ }
+ if( pPager->journalOpen ){
+ if( pPager->exclusiveMode
+ || pPager->journalMode==PAGER_JOURNALMODE_PERSIST
+ ){
+ rc = zeroJournalHdr(pPager, hasMaster);
+ pager_error(pPager, rc);
+ pPager->journalOff = 0;
+ pPager->journalStarted = 0;
+ }else{
+ sqlite3OsClose(pPager->jfd);
+ pPager->journalOpen = 0;
+ if( rc==SQLITE_OK ){
+ rc = sqlite3OsDelete(pPager->pVfs, pPager->zJournal, 0);
+ }
+ }
+ sqlite3BitvecDestroy(pPager->pInJournal);
+ pPager->pInJournal = 0;
+ for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){
+ pPg->inJournal = 0;
+ pPg->dirty = 0;
+ pPg->needSync = 0;
+ pPg->alwaysRollback = 0;
+#ifdef SQLITE_CHECK_PAGES
+ pPg->pageHash = pager_pagehash(pPg);
+#endif
+ }
+ pPager->pDirty = 0;
+ pPager->dirtyCache = 0;
+ pPager->nRec = 0;
+ }else{
+ assert( pPager->pInJournal==0 );
+ }
+
+ if( !pPager->exclusiveMode ){
+ rc2 = osUnlock(pPager->fd, SHARED_LOCK);
+ pPager->state = PAGER_SHARED;
+ }else if( pPager->state==PAGER_SYNCED ){
+ pPager->state = PAGER_EXCLUSIVE;
+ }
+ pPager->origDbSize = 0;
+ pPager->setMaster = 0;
+ pPager->needSync = 0;
+ lruListSetFirstSynced(pPager);
+ pPager->dbSize = -1;
+ pPager->dbModified = 0;
+
+ return (rc==SQLITE_OK?rc2:rc);
+}
+
+/*
+** Compute and return a checksum for the page of data.
+**
+** This is not a real checksum. It is really just the sum of the
+** random initial value and the page number. We experimented with
+** a checksum of the entire data, but that was found to be too slow.
+**
+** Note that the page number is stored at the beginning of data and
+** the checksum is stored at the end. This is important. If journal
+** corruption occurs due to a power failure, the most likely scenario
+** is that one end or the other of the record will be changed. It is
+** much less likely that the two ends of the journal record will be
+** correct and the middle be corrupt. Thus, this "checksum" scheme,
+** though fast and simple, catches the mostly likely kind of corruption.
+**
+** FIX ME: Consider adding every 200th (or so) byte of the data to the
+** checksum. That way if a single page spans 3 or more disk sectors and
+** only the middle sector is corrupt, we will still have a reasonable
+** chance of failing the checksum and thus detecting the problem.
+*/
+static u32 pager_cksum(Pager *pPager, const u8 *aData){
+ u32 cksum = pPager->cksumInit;
+ int i = pPager->pageSize-200;
+ while( i>0 ){
+ cksum += aData[i];
+ i -= 200;
+ }
+ return cksum;
+}
+
+/* Forward declaration */
+static void makeClean(PgHdr*);
+
+/*
+** Read a single page from the journal file opened on file descriptor
+** jfd. Playback this one page.
+**
+** If useCksum==0 it means this journal does not use checksums. Checksums
+** are not used in statement journals because statement journals do not
+** need to survive power failures.
+*/
+static int pager_playback_one_page(
+ Pager *pPager,
+ sqlite3_file *jfd,
+ i64 offset,
+ int useCksum
+){
+ int rc;
+ PgHdr *pPg; /* An existing page in the cache */
+ Pgno pgno; /* The page number of a page in journal */
+ u32 cksum; /* Checksum used for sanity checking */
+ u8 *aData = (u8 *)pPager->pTmpSpace; /* Temp storage for a page */
+
+ /* useCksum should be true for the main journal and false for
+ ** statement journals. Verify that this is always the case
+ */
+ assert( jfd == (useCksum ? pPager->jfd : pPager->stfd) );
+ assert( aData );
+
+ rc = read32bits(jfd, offset, &pgno);
+ if( rc!=SQLITE_OK ) return rc;
+ rc = sqlite3OsRead(jfd, aData, pPager->pageSize, offset+4);
+ if( rc!=SQLITE_OK ) return rc;
+ pPager->journalOff += pPager->pageSize + 4;
+
+ /* Sanity checking on the page. This is more important that I originally
+ ** thought. If a power failure occurs while the journal is being written,
+ ** it could cause invalid data to be written into the journal. We need to
+ ** detect this invalid data (with high probability) and ignore it.
+ */
+ if( pgno==0 || pgno==PAGER_MJ_PGNO(pPager) ){
+ return SQLITE_DONE;
+ }
+ if( pgno>(unsigned)pPager->dbSize ){
+ return SQLITE_OK;
+ }
+ if( useCksum ){
+ rc = read32bits(jfd, offset+pPager->pageSize+4, &cksum);
+ if( rc ) return rc;
+ pPager->journalOff += 4;
+ if( pager_cksum(pPager, aData)!=cksum ){
+ return SQLITE_DONE;
+ }
+ }
+
+ assert( pPager->state==PAGER_RESERVED || pPager->state>=PAGER_EXCLUSIVE );
+
+ /* If the pager is in RESERVED state, then there must be a copy of this
+ ** page in the pager cache. In this case just update the pager cache,
+ ** not the database file. The page is left marked dirty in this case.
+ **
+ ** An exception to the above rule: If the database is in no-sync mode
+ ** and a page is moved during an incremental vacuum then the page may
+ ** not be in the pager cache. Later: if a malloc() or IO error occurs
+ ** during a Movepage() call, then the page may not be in the cache
+ ** either. So the condition described in the above paragraph is not
+ ** assert()able.
+ **
+ ** If in EXCLUSIVE state, then we update the pager cache if it exists
+ ** and the main file. The page is then marked not dirty.
+ **
+ ** Ticket #1171: The statement journal might contain page content that is
+ ** different from the page content at the start of the transaction.
+ ** This occurs when a page is changed prior to the start of a statement
+ ** then changed again within the statement. When rolling back such a
+ ** statement we must not write to the original database unless we know
+ ** for certain that original page contents are synced into the main rollback
+ ** journal. Otherwise, a power loss might leave modified data in the
+ ** database file without an entry in the rollback journal that can
+ ** restore the database to its original form. Two conditions must be
+ ** met before writing to the database files. (1) the database must be
+ ** locked. (2) we know that the original page content is fully synced
+ ** in the main journal either because the page is not in cache or else
+ ** the page is marked as needSync==0.
+ **
+ ** 2008-04-14: When attempting to vacuum a corrupt database file, it
+ ** is possible to fail a statement on a database that does not yet exist.
+ ** Do not attempt to write if database file has never been opened.
+ */
+ pPg = pager_lookup(pPager, pgno);
+ PAGERTRACE4("PLAYBACK %d page %d hash(%08x)\n",
+ PAGERID(pPager), pgno, pager_datahash(pPager->pageSize, aData));
+ if( pPager->state>=PAGER_EXCLUSIVE && (pPg==0 || pPg->needSync==0)
+ && pPager->fd->pMethods ){
+ i64 offset = (pgno-1)*(i64)pPager->pageSize;
+ rc = sqlite3OsWrite(pPager->fd, aData, pPager->pageSize, offset);
+ if( pPg ){
+ makeClean(pPg);
+ }
+ }
+ if( pPg ){
+ /* No page should ever be explicitly rolled back that is in use, except
+ ** for page 1 which is held in use in order to keep the lock on the
+ ** database active. However such a page may be rolled back as a result
+ ** of an internal error resulting in an automatic call to
+ ** sqlite3PagerRollback().
+ */
+ void *pData;
+ /* assert( pPg->nRef==0 || pPg->pgno==1 ); */
+ pData = PGHDR_TO_DATA(pPg);
+ memcpy(pData, aData, pPager->pageSize);
+ if( pPager->xReiniter ){
+ pPager->xReiniter(pPg, pPager->pageSize);
+ }
+#ifdef SQLITE_CHECK_PAGES
+ pPg->pageHash = pager_pagehash(pPg);
+#endif
+ /* If this was page 1, then restore the value of Pager.dbFileVers.
+ ** Do this before any decoding. */
+ if( pgno==1 ){
+ memcpy(&pPager->dbFileVers, &((u8*)pData)[24],sizeof(pPager->dbFileVers));
+ }
+
+ /* Decode the page just read from disk */
+ CODEC1(pPager, pData, pPg->pgno, 3);
+ }
+ return rc;
+}
+
+/*
+** Parameter zMaster is the name of a master journal file. A single journal
+** file that referred to the master journal file has just been rolled back.
+** This routine checks if it is possible to delete the master journal file,
+** and does so if it is.
+**
+** Argument zMaster may point to Pager.pTmpSpace. So that buffer is not
+** available for use within this function.
+**
+**
+** The master journal file contains the names of all child journals.
+** To tell if a master journal can be deleted, check to each of the
+** children. If all children are either missing or do not refer to
+** a different master journal, then this master journal can be deleted.
+*/
+static int pager_delmaster(Pager *pPager, const char *zMaster){
+ sqlite3_vfs *pVfs = pPager->pVfs;
+ int rc;
+ int master_open = 0;
+ sqlite3_file *pMaster;
+ sqlite3_file *pJournal;
+ char *zMasterJournal = 0; /* Contents of master journal file */
+ i64 nMasterJournal; /* Size of master journal file */
+
+ /* Open the master journal file exclusively in case some other process
+ ** is running this routine also. Not that it makes too much difference.
+ */
+ pMaster = (sqlite3_file *)sqlite3_malloc(pVfs->szOsFile * 2);
+ pJournal = (sqlite3_file *)(((u8 *)pMaster) + pVfs->szOsFile);
+ if( !pMaster ){
+ rc = SQLITE_NOMEM;
+ }else{
+ int flags = (SQLITE_OPEN_READONLY|SQLITE_OPEN_MASTER_JOURNAL);
+ rc = sqlite3OsOpen(pVfs, zMaster, pMaster, flags, 0);
+ }
+ if( rc!=SQLITE_OK ) goto delmaster_out;
+ master_open = 1;
+
+ rc = sqlite3OsFileSize(pMaster, &nMasterJournal);
+ if( rc!=SQLITE_OK ) goto delmaster_out;
+
+ if( nMasterJournal>0 ){
+ char *zJournal;
+ char *zMasterPtr = 0;
+ int nMasterPtr = pPager->pVfs->mxPathname+1;
+
+ /* Load the entire master journal file into space obtained from
+ ** sqlite3_malloc() and pointed to by zMasterJournal.
+ */
+ zMasterJournal = (char *)sqlite3_malloc(nMasterJournal + nMasterPtr);
+ if( !zMasterJournal ){
+ rc = SQLITE_NOMEM;
+ goto delmaster_out;
+ }
+ zMasterPtr = &zMasterJournal[nMasterJournal];
+ rc = sqlite3OsRead(pMaster, zMasterJournal, nMasterJournal, 0);
+ if( rc!=SQLITE_OK ) goto delmaster_out;
+
+ zJournal = zMasterJournal;
+ while( (zJournal-zMasterJournal)<nMasterJournal ){
+ rc = sqlite3OsAccess(pVfs, zJournal, SQLITE_ACCESS_EXISTS);
+ if( rc!=0 && rc!=1 ){
+ rc = SQLITE_IOERR_NOMEM;
+ goto delmaster_out;
+ }
+ if( rc==1 ){
+ /* One of the journals pointed to by the master journal exists.
+ ** Open it and check if it points at the master journal. If
+ ** so, return without deleting the master journal file.
+ */
+ int c;
+ int flags = (SQLITE_OPEN_READONLY|SQLITE_OPEN_MAIN_JOURNAL);
+ rc = sqlite3OsOpen(pVfs, zJournal, pJournal, flags, 0);
+ if( rc!=SQLITE_OK ){
+ goto delmaster_out;
+ }
+
+ rc = readMasterJournal(pJournal, zMasterPtr, nMasterPtr);
+ sqlite3OsClose(pJournal);
+ if( rc!=SQLITE_OK ){
+ goto delmaster_out;
+ }
+
+ c = zMasterPtr[0]!=0 && strcmp(zMasterPtr, zMaster)==0;
+ if( c ){
+ /* We have a match. Do not delete the master journal file. */
+ goto delmaster_out;
+ }
+ }
+ zJournal += (strlen(zJournal)+1);
+ }
+ }
+
+ rc = sqlite3OsDelete(pVfs, zMaster, 0);
+
+delmaster_out:
+ if( zMasterJournal ){
+ sqlite3_free(zMasterJournal);
+ }
+ if( master_open ){
+ sqlite3OsClose(pMaster);
+ }
+ sqlite3_free(pMaster);
+ return rc;
+}
+
+
+static void pager_truncate_cache(Pager *pPager);
+
+/*
+** Truncate the main file of the given pager to the number of pages
+** indicated. Also truncate the cached representation of the file.
+**
+** Might might be the case that the file on disk is smaller than nPage.
+** This can happen, for example, if we are in the middle of a transaction
+** which has extended the file size and the new pages are still all held
+** in cache, then an INSERT or UPDATE does a statement rollback. Some
+** operating system implementations can get confused if you try to
+** truncate a file to some size that is larger than it currently is,
+** so detect this case and write a single zero byte to the end of the new
+** file instead.
+*/
+static int pager_truncate(Pager *pPager, int nPage){
+ int rc = SQLITE_OK;
+ if( pPager->state>=PAGER_EXCLUSIVE && pPager->fd->pMethods ){
+ i64 currentSize, newSize;
+ rc = sqlite3OsFileSize(pPager->fd, &currentSize);
+ newSize = pPager->pageSize*(i64)nPage;
+ if( rc==SQLITE_OK && currentSize!=newSize ){
+ if( currentSize>newSize ){
+ rc = sqlite3OsTruncate(pPager->fd, newSize);
+ }else{
+ rc = sqlite3OsWrite(pPager->fd, "", 1, newSize-1);
+ }
+ }
+ }
+ if( rc==SQLITE_OK ){
+ pPager->dbSize = nPage;
+ pager_truncate_cache(pPager);
+ }
+ return rc;
+}
+
+/*
+** Set the sectorSize for the given pager.
+**
+** The sector size is at least as big as the sector size reported
+** by sqlite3OsSectorSize(). The minimum sector size is 512.
+*/
+static void setSectorSize(Pager *pPager){
+ assert(pPager->fd->pMethods||pPager->tempFile);
+ if( !pPager->tempFile ){
+ /* Sector size doesn't matter for temporary files. Also, the file
+ ** may not have been opened yet, in whcih case the OsSectorSize()
+ ** call will segfault.
+ */
+ pPager->sectorSize = sqlite3OsSectorSize(pPager->fd);
+ }
+ if( pPager->sectorSize<512 ){
+ pPager->sectorSize = 512;
+ }
+}
+
+/*
+** Playback the journal and thus restore the database file to
+** the state it was in before we started making changes.
+**
+** The journal file format is as follows:
+**
+** (1) 8 byte prefix. A copy of aJournalMagic[].
+** (2) 4 byte big-endian integer which is the number of valid page records
+** in the journal. If this value is 0xffffffff, then compute the
+** number of page records from the journal size.
+** (3) 4 byte big-endian integer which is the initial value for the
+** sanity checksum.
+** (4) 4 byte integer which is the number of pages to truncate the
+** database to during a rollback.
+** (5) 4 byte big-endian integer which is the sector size. The header
+** is this many bytes in size.
+** (6) 4 byte big-endian integer which is the page case.
+** (7) 4 byte integer which is the number of bytes in the master journal
+** name. The value may be zero (indicate that there is no master
+** journal.)
+** (8) N bytes of the master journal name. The name will be nul-terminated
+** and might be shorter than the value read from (5). If the first byte
+** of the name is \000 then there is no master journal. The master
+** journal name is stored in UTF-8.
+** (9) Zero or more pages instances, each as follows:
+** + 4 byte page number.
+** + pPager->pageSize bytes of data.
+** + 4 byte checksum
+**
+** When we speak of the journal header, we mean the first 8 items above.
+** Each entry in the journal is an instance of the 9th item.
+**
+** Call the value from the second bullet "nRec". nRec is the number of
+** valid page entries in the journal. In most cases, you can compute the
+** value of nRec from the size of the journal file. But if a power
+** failure occurred while the journal was being written, it could be the
+** case that the size of the journal file had already been increased but
+** the extra entries had not yet made it safely to disk. In such a case,
+** the value of nRec computed from the file size would be too large. For
+** that reason, we always use the nRec value in the header.
+**
+** If the nRec value is 0xffffffff it means that nRec should be computed
+** from the file size. This value is used when the user selects the
+** no-sync option for the journal. A power failure could lead to corruption
+** in this case. But for things like temporary table (which will be
+** deleted when the power is restored) we don't care.
+**
+** If the file opened as the journal file is not a well-formed
+** journal file then all pages up to the first corrupted page are rolled
+** back (or no pages if the journal header is corrupted). The journal file
+** is then deleted and SQLITE_OK returned, just as if no corruption had
+** been encountered.
+**
+** If an I/O or malloc() error occurs, the journal-file is not deleted
+** and an error code is returned.
+*/
+static int pager_playback(Pager *pPager, int isHot){
+ sqlite3_vfs *pVfs = pPager->pVfs;
+ i64 szJ; /* Size of the journal file in bytes */
+ u32 nRec; /* Number of Records in the journal */
+ int i; /* Loop counter */
+ Pgno mxPg = 0; /* Size of the original file in pages */
+ int rc; /* Result code of a subroutine */
+ int res = 0; /* Value returned by sqlite3OsAccess() */
+ char *zMaster = 0; /* Name of master journal file if any */
+
+ /* Figure out how many records are in the journal. Abort early if
+ ** the journal is empty.
+ */
+ assert( pPager->journalOpen );
+ rc = sqlite3OsFileSize(pPager->jfd, &szJ);
+ if( rc!=SQLITE_OK || szJ==0 ){
+ goto end_playback;
+ }
+
+ /* Read the master journal name from the journal, if it is present.
+ ** If a master journal file name is specified, but the file is not
+ ** present on disk, then the journal is not hot and does not need to be
+ ** played back.
+ */
+ zMaster = pPager->pTmpSpace;
+ rc = readMasterJournal(pPager->jfd, zMaster, pPager->pVfs->mxPathname+1);
+ if( rc!=SQLITE_OK || (zMaster[0]
+ && (res=sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS))==0 )
+ ){
+ zMaster = 0;
+ goto end_playback;
+ }
+ zMaster = 0;
+ if( res<0 ){
+ rc = SQLITE_IOERR_NOMEM;
+ goto end_playback;
+ }
+ pPager->journalOff = 0;
+
+ /* This loop terminates either when the readJournalHdr() call returns
+ ** SQLITE_DONE or an IO error occurs. */
+ while( 1 ){
+
+ /* Read the next journal header from the journal file. If there are
+ ** not enough bytes left in the journal file for a complete header, or
+ ** it is corrupted, then a process must of failed while writing it.
+ ** This indicates nothing more needs to be rolled back.
+ */
+ rc = readJournalHdr(pPager, szJ, &nRec, &mxPg);
+ if( rc!=SQLITE_OK ){
+ if( rc==SQLITE_DONE ){
+ rc = SQLITE_OK;
+ }
+ goto end_playback;
+ }
+
+ /* If nRec is 0xffffffff, then this journal was created by a process
+ ** working in no-sync mode. This means that the rest of the journal
+ ** file consists of pages, there are no more journal headers. Compute
+ ** the value of nRec based on this assumption.
+ */
+ if( nRec==0xffffffff ){
+ assert( pPager->journalOff==JOURNAL_HDR_SZ(pPager) );
+ nRec = (szJ - JOURNAL_HDR_SZ(pPager))/JOURNAL_PG_SZ(pPager);
+ }
+
+ /* If nRec is 0 and this rollback is of a transaction created by this
+ ** process and if this is the final header in the journal, then it means
+ ** that this part of the journal was being filled but has not yet been
+ ** synced to disk. Compute the number of pages based on the remaining
+ ** size of the file.
+ **
+ ** The third term of the test was added to fix ticket #2565.
+ */
+ if( nRec==0 && !isHot &&
+ pPager->journalHdr+JOURNAL_HDR_SZ(pPager)==pPager->journalOff ){
+ nRec = (szJ - pPager->journalOff) / JOURNAL_PG_SZ(pPager);
+ }
+
+ /* If this is the first header read from the journal, truncate the
+ ** database file back to its original size.
+ */
+ if( pPager->journalOff==JOURNAL_HDR_SZ(pPager) ){
+ rc = pager_truncate(pPager, mxPg);
+ if( rc!=SQLITE_OK ){
+ goto end_playback;
+ }
+ }
+
+ /* Copy original pages out of the journal and back into the database file.
+ */
+ for(i=0; i<nRec; i++){
+ rc = pager_playback_one_page(pPager, pPager->jfd, pPager->journalOff, 1);
+ if( rc!=SQLITE_OK ){
+ if( rc==SQLITE_DONE ){
+ rc = SQLITE_OK;
+ pPager->journalOff = szJ;
+ break;
+ }else{
+ goto end_playback;
+ }
+ }
+ }
+ }
+ /*NOTREACHED*/
+ assert( 0 );
+
+end_playback:
+ if( rc==SQLITE_OK ){
+ zMaster = pPager->pTmpSpace;
+ rc = readMasterJournal(pPager->jfd, zMaster, pPager->pVfs->mxPathname+1);
+ }
+ if( rc==SQLITE_OK ){
+ rc = pager_end_transaction(pPager, zMaster[0]!='\0');
+ }
+ if( rc==SQLITE_OK && zMaster[0] ){
+ /* If there was a master journal and this routine will return success,
+ ** see if it is possible to delete the master journal.
+ */
+ rc = pager_delmaster(pPager, zMaster);
+ }
+
+ /* The Pager.sectorSize variable may have been updated while rolling
+ ** back a journal created by a process with a different sector size
+ ** value. Reset it to the correct value for this process.
+ */
+ setSectorSize(pPager);
+ return rc;
+}
+
+/*
+** Playback the statement journal.
+**
+** This is similar to playing back the transaction journal but with
+** a few extra twists.
+**
+** (1) The number of pages in the database file at the start of
+** the statement is stored in pPager->stmtSize, not in the
+** journal file itself.
+**
+** (2) In addition to playing back the statement journal, also
+** playback all pages of the transaction journal beginning
+** at offset pPager->stmtJSize.
+*/
+static int pager_stmt_playback(Pager *pPager){
+ i64 szJ; /* Size of the full journal */
+ i64 hdrOff;
+ int nRec; /* Number of Records */
+ int i; /* Loop counter */
+ int rc;
+
+ szJ = pPager->journalOff;
+
+ /* Set hdrOff to be the offset just after the end of the last journal
+ ** page written before the first journal-header for this statement
+ ** transaction was written, or the end of the file if no journal
+ ** header was written.
+ */
+ hdrOff = pPager->stmtHdrOff;
+ assert( pPager->fullSync || !hdrOff );
+ if( !hdrOff ){
+ hdrOff = szJ;
+ }
+
+ /* Truncate the database back to its original size.
+ */
+ rc = pager_truncate(pPager, pPager->stmtSize);
+ assert( pPager->state>=PAGER_SHARED );
+
+ /* Figure out how many records are in the statement journal.
+ */
+ assert( pPager->stmtInUse && pPager->journalOpen );
+ nRec = pPager->stmtNRec;
+
+ /* Copy original pages out of the statement journal and back into the
+ ** database file. Note that the statement journal omits checksums from
+ ** each record since power-failure recovery is not important to statement
+ ** journals.
+ */
+ for(i=0; i<nRec; i++){
+ i64 offset = i*(4+pPager->pageSize);
+ rc = pager_playback_one_page(pPager, pPager->stfd, offset, 0);
+ assert( rc!=SQLITE_DONE );
+ if( rc!=SQLITE_OK ) goto end_stmt_playback;
+ }
+
+ /* Now roll some pages back from the transaction journal. Pager.stmtJSize
+ ** was the size of the journal file when this statement was started, so
+ ** everything after that needs to be rolled back, either into the
+ ** database, the memory cache, or both.
+ **
+ ** If it is not zero, then Pager.stmtHdrOff is the offset to the start
+ ** of the first journal header written during this statement transaction.
+ */
+ pPager->journalOff = pPager->stmtJSize;
+ pPager->cksumInit = pPager->stmtCksum;
+ while( pPager->journalOff < hdrOff ){
+ rc = pager_playback_one_page(pPager, pPager->jfd, pPager->journalOff, 1);
+ assert( rc!=SQLITE_DONE );
+ if( rc!=SQLITE_OK ) goto end_stmt_playback;
+ }
+
+ while( pPager->journalOff < szJ ){
+ u32 nJRec; /* Number of Journal Records */
+ u32 dummy;
+ rc = readJournalHdr(pPager, szJ, &nJRec, &dummy);
+ if( rc!=SQLITE_OK ){
+ assert( rc!=SQLITE_DONE );
+ goto end_stmt_playback;
+ }
+ if( nJRec==0 ){
+ nJRec = (szJ - pPager->journalOff) / (pPager->pageSize+8);
+ }
+ for(i=nJRec-1; i>=0 && pPager->journalOff < szJ; i--){
+ rc = pager_playback_one_page(pPager, pPager->jfd, pPager->journalOff, 1);
+ assert( rc!=SQLITE_DONE );
+ if( rc!=SQLITE_OK ) goto end_stmt_playback;
+ }
+ }
+
+ pPager->journalOff = szJ;
+
+end_stmt_playback:
+ if( rc==SQLITE_OK) {
+ pPager->journalOff = szJ;
+ /* pager_reload_cache(pPager); */
+ }
+ return rc;
+}
+
+/*
+** Change the maximum number of in-memory pages that are allowed.
+*/
+SQLITE_PRIVATE void sqlite3PagerSetCachesize(Pager *pPager, int mxPage){
+ if( mxPage>10 ){
+ pPager->mxPage = mxPage;
+ }else{
+ pPager->mxPage = 10;
+ }
+}
+
+/*
+** Adjust the robustness of the database to damage due to OS crashes
+** or power failures by changing the number of syncs()s when writing
+** the rollback journal. There are three levels:
+**
+** OFF sqlite3OsSync() is never called. This is the default
+** for temporary and transient files.
+**
+** NORMAL The journal is synced once before writes begin on the
+** database. This is normally adequate protection, but
+** it is theoretically possible, though very unlikely,
+** that an inopertune power failure could leave the journal
+** in a state which would cause damage to the database
+** when it is rolled back.
+**
+** FULL The journal is synced twice before writes begin on the
+** database (with some additional information - the nRec field
+** of the journal header - being written in between the two
+** syncs). If we assume that writing a
+** single disk sector is atomic, then this mode provides
+** assurance that the journal will not be corrupted to the
+** point of causing damage to the database during rollback.
+**
+** Numeric values associated with these states are OFF==1, NORMAL=2,
+** and FULL=3.
+*/
+#ifndef SQLITE_OMIT_PAGER_PRAGMAS
+SQLITE_PRIVATE void sqlite3PagerSetSafetyLevel(Pager *pPager, int level, int full_fsync){
+ pPager->noSync = level==1 || pPager->tempFile;
+ pPager->fullSync = level==3 && !pPager->tempFile;
+ pPager->sync_flags = (full_fsync?SQLITE_SYNC_FULL:SQLITE_SYNC_NORMAL);
+ if( pPager->noSync ) pPager->needSync = 0;
+}
+#endif
+
+/*
+** The following global variable is incremented whenever the library
+** attempts to open a temporary file. This information is used for
+** testing and analysis only.
+*/
+#ifdef SQLITE_TEST
+SQLITE_API int sqlite3_opentemp_count = 0;
+#endif
+
+/*
+** Open a temporary file.
+**
+** Write the file descriptor into *fd. Return SQLITE_OK on success or some
+** other error code if we fail. The OS will automatically delete the temporary
+** file when it is closed.
+*/
+static int sqlite3PagerOpentemp(
+ sqlite3_vfs *pVfs, /* The virtual file system layer */
+ sqlite3_file *pFile, /* Write the file descriptor here */
+ char *zFilename, /* Name of the file. Might be NULL */
+ int vfsFlags /* Flags passed through to the VFS */
+){
+ int rc;
+ assert( zFilename!=0 );
+
+#ifdef SQLITE_TEST
+ sqlite3_opentemp_count++; /* Used for testing and analysis only */
+#endif
+
+ vfsFlags |= SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE |
+ SQLITE_OPEN_EXCLUSIVE | SQLITE_OPEN_DELETEONCLOSE;
+ rc = sqlite3OsOpen(pVfs, zFilename, pFile, vfsFlags, 0);
+ assert( rc!=SQLITE_OK || pFile->pMethods );
+ return rc;
+}
+
+/*
+** Create a new page cache and put a pointer to the page cache in *ppPager.
+** The file to be cached need not exist. The file is not locked until
+** the first call to sqlite3PagerGet() and is only held open until the
+** last page is released using sqlite3PagerUnref().
+**
+** If zFilename is NULL then a randomly-named temporary file is created
+** and used as the file to be cached. The file will be deleted
+** automatically when it is closed.
+**
+** If zFilename is ":memory:" then all information is held in cache.
+** It is never written to disk. This can be used to implement an
+** in-memory database.
+*/
+SQLITE_PRIVATE int sqlite3PagerOpen(
+ sqlite3_vfs *pVfs, /* The virtual file system to use */
+ Pager **ppPager, /* Return the Pager structure here */
+ const char *zFilename, /* Name of the database file to open */
+ int nExtra, /* Extra bytes append to each in-memory page */
+ int flags, /* flags controlling this file */
+ int vfsFlags /* flags passed through to sqlite3_vfs.xOpen() */
+){
+ u8 *pPtr;
+ Pager *pPager = 0;
+ int rc = SQLITE_OK;
+ int i;
+ int tempFile = 0;
+ int memDb = 0;
+ int readOnly = 0;
+ int useJournal = (flags & PAGER_OMIT_JOURNAL)==0;
+ int noReadlock = (flags & PAGER_NO_READLOCK)!=0;
+ int journalFileSize = sqlite3JournalSize(pVfs);
+ int nDefaultPage = SQLITE_DEFAULT_PAGE_SIZE;
+ char *zPathname;
+ int nPathname;
+ char *zStmtJrnl;
+ int nStmtJrnl;
+
+ /* The default return is a NULL pointer */
+ *ppPager = 0;
+
+ /* Compute the full pathname */
+ nPathname = pVfs->mxPathname+1;
+ zPathname = sqlite3_malloc(nPathname*2);
+ if( zPathname==0 ){
+ return SQLITE_NOMEM;
+ }
+ if( zFilename && zFilename[0] ){
+#ifndef SQLITE_OMIT_MEMORYDB
+ if( strcmp(zFilename,":memory:")==0 ){
+ memDb = 1;
+ zPathname[0] = 0;
+ }else
+#endif
+ {
+ rc = sqlite3OsFullPathname(pVfs, zFilename, nPathname, zPathname);
+ }
+ }else{
+ rc = sqlite3OsGetTempname(pVfs, nPathname, zPathname);
+ }
+ if( rc!=SQLITE_OK ){
+ sqlite3_free(zPathname);
+ return rc;
+ }
+ nPathname = strlen(zPathname);
+
+ /* Put the statement journal in temporary disk space since this is
+ ** sometimes RAM disk or other optimized storage. Unlikely the main
+ ** main journal file, the statement journal does not need to be
+ ** colocated with the database nor does it need to be persistent.
+ */
+ zStmtJrnl = &zPathname[nPathname+1];
+ rc = sqlite3OsGetTempname(pVfs, pVfs->mxPathname+1, zStmtJrnl);
+ if( rc!=SQLITE_OK ){
+ sqlite3_free(zPathname);
+ return rc;
+ }
+ nStmtJrnl = strlen(zStmtJrnl);
+
+ /* Allocate memory for the pager structure */
+ pPager = sqlite3MallocZero(
+ sizeof(*pPager) + /* Pager structure */
+ journalFileSize + /* The journal file structure */
+ pVfs->szOsFile * 3 + /* The main db and two journal files */
+ 3*nPathname + 40 + /* zFilename, zDirectory, zJournal */
+ nStmtJrnl /* zStmtJrnl */
+ );
+ if( !pPager ){
+ sqlite3_free(zPathname);
+ return SQLITE_NOMEM;
+ }
+ pPtr = (u8 *)&pPager[1];
+ pPager->vfsFlags = vfsFlags;
+ pPager->fd = (sqlite3_file*)&pPtr[pVfs->szOsFile*0];
+ pPager->stfd = (sqlite3_file*)&pPtr[pVfs->szOsFile*1];
+ pPager->jfd = (sqlite3_file*)&pPtr[pVfs->szOsFile*2];
+ pPager->zFilename = (char*)&pPtr[pVfs->szOsFile*2+journalFileSize];
+ pPager->zDirectory = &pPager->zFilename[nPathname+1];
+ pPager->zJournal = &pPager->zDirectory[nPathname+1];
+ pPager->zStmtJrnl = &pPager->zJournal[nPathname+10];
+ pPager->pVfs = pVfs;
+ memcpy(pPager->zFilename, zPathname, nPathname+1);
+ memcpy(pPager->zStmtJrnl, zStmtJrnl, nStmtJrnl+1);
+ sqlite3_free(zPathname);
+
+ /* Open the pager file.
+ */
+ if( zFilename && zFilename[0] && !memDb ){
+ if( nPathname>(pVfs->mxPathname - sizeof("-journal")) ){
+ rc = SQLITE_CANTOPEN;
+ }else{
+ int fout = 0;
+ rc = sqlite3OsOpen(pVfs, pPager->zFilename, pPager->fd,
+ pPager->vfsFlags, &fout);
+ readOnly = (fout&SQLITE_OPEN_READONLY);
+
+ /* If the file was successfully opened for read/write access,
+ ** choose a default page size in case we have to create the
+ ** database file. The default page size is the maximum of:
+ **
+ ** + SQLITE_DEFAULT_PAGE_SIZE,
+ ** + The value returned by sqlite3OsSectorSize()
+ ** + The largest page size that can be written atomically.
+ */
+ if( rc==SQLITE_OK && !readOnly ){
+ int iSectorSize = sqlite3OsSectorSize(pPager->fd);
+ if( nDefaultPage<iSectorSize ){
+ nDefaultPage = iSectorSize;
+ }
+#ifdef SQLITE_ENABLE_ATOMIC_WRITE
+ {
+ int iDc = sqlite3OsDeviceCharacteristics(pPager->fd);
+ int ii;
+ assert(SQLITE_IOCAP_ATOMIC512==(512>>8));
+ assert(SQLITE_IOCAP_ATOMIC64K==(65536>>8));
+ assert(SQLITE_MAX_DEFAULT_PAGE_SIZE<=65536);
+ for(ii=nDefaultPage; ii<=SQLITE_MAX_DEFAULT_PAGE_SIZE; ii=ii*2){
+ if( iDc&(SQLITE_IOCAP_ATOMIC|(ii>>8)) ) nDefaultPage = ii;
+ }
+ }
+#endif
+ if( nDefaultPage>SQLITE_MAX_DEFAULT_PAGE_SIZE ){
+ nDefaultPage = SQLITE_MAX_DEFAULT_PAGE_SIZE;
+ }
+ }
+ }
+ }else if( !memDb ){
+ /* If a temporary file is requested, it is not opened immediately.
+ ** In this case we accept the default page size and delay actually
+ ** opening the file until the first call to OsWrite().
+ */
+ tempFile = 1;
+ pPager->state = PAGER_EXCLUSIVE;
+ }
+
+ if( pPager && rc==SQLITE_OK ){
+ pPager->pTmpSpace = sqlite3MallocZero(nDefaultPage);
+ }
+
+ /* If an error occured in either of the blocks above.
+ ** Free the Pager structure and close the file.
+ ** Since the pager is not allocated there is no need to set
+ ** any Pager.errMask variables.
+ */
+ if( !pPager || !pPager->pTmpSpace ){
+ sqlite3OsClose(pPager->fd);
+ sqlite3_free(pPager);
+ return ((rc==SQLITE_OK)?SQLITE_NOMEM:rc);
+ }
+
+ PAGERTRACE3("OPEN %d %s\n", FILEHANDLEID(pPager->fd), pPager->zFilename);
+ IOTRACE(("OPEN %p %s\n", pPager, pPager->zFilename))
+
+ /* Fill in Pager.zDirectory[] */
+ memcpy(pPager->zDirectory, pPager->zFilename, nPathname+1);
+ for(i=strlen(pPager->zDirectory); i>0 && pPager->zDirectory[i-1]!='/'; i--){}
+ if( i>0 ) pPager->zDirectory[i-1] = 0;
+
+ /* Fill in Pager.zJournal[] */
+ memcpy(pPager->zJournal, pPager->zFilename, nPathname);
+ memcpy(&pPager->zJournal[nPathname], "-journal", 9);
+
+ /* pPager->journalOpen = 0; */
+ pPager->useJournal = useJournal && !memDb;
+ pPager->noReadlock = noReadlock && readOnly;
+ /* pPager->stmtOpen = 0; */
+ /* pPager->stmtInUse = 0; */
+ /* pPager->nRef = 0; */
+ pPager->dbSize = memDb-1;
+ pPager->pageSize = nDefaultPage;
+ /* pPager->stmtSize = 0; */
+ /* pPager->stmtJSize = 0; */
+ /* pPager->nPage = 0; */
+ pPager->mxPage = 100;
+ pPager->mxPgno = SQLITE_MAX_PAGE_COUNT;
+ /* pPager->state = PAGER_UNLOCK; */
+ assert( pPager->state == (tempFile ? PAGER_EXCLUSIVE : PAGER_UNLOCK) );
+ /* pPager->errMask = 0; */
+ pPager->tempFile = tempFile;
+ assert( tempFile==PAGER_LOCKINGMODE_NORMAL
+ || tempFile==PAGER_LOCKINGMODE_EXCLUSIVE );
+ assert( PAGER_LOCKINGMODE_EXCLUSIVE==1 );
+ pPager->exclusiveMode = tempFile;
+ pPager->memDb = memDb;
+ pPager->readOnly = readOnly;
+ /* pPager->needSync = 0; */
+ pPager->noSync = pPager->tempFile || !useJournal;
+ pPager->fullSync = (pPager->noSync?0:1);
+ pPager->sync_flags = SQLITE_SYNC_NORMAL;
+ /* pPager->pFirst = 0; */
+ /* pPager->pFirstSynced = 0; */
+ /* pPager->pLast = 0; */
+ pPager->nExtra = FORCE_ALIGNMENT(nExtra);
+ assert(pPager->fd->pMethods||memDb||tempFile);
+ if( !memDb ){
+ setSectorSize(pPager);
+ }
+ /* pPager->pBusyHandler = 0; */
+ /* memset(pPager->aHash, 0, sizeof(pPager->aHash)); */
+ *ppPager = pPager;
+#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
+ pPager->iInUseMM = 0;
+ pPager->iInUseDB = 0;
+ if( !memDb ){
+#ifndef SQLITE_MUTEX_NOOP
+ sqlite3_mutex *mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MEM2);
+#endif
+ sqlite3_mutex_enter(mutex);
+ pPager->pNext = sqlite3PagerList;
+ if( sqlite3PagerList ){
+ assert( sqlite3PagerList->pPrev==0 );
+ sqlite3PagerList->pPrev = pPager;
+ }
+ pPager->pPrev = 0;
+ sqlite3PagerList = pPager;
+ sqlite3_mutex_leave(mutex);
+ }
+#endif
+ return SQLITE_OK;
+}
+
+/*
+** Set the busy handler function.
+*/
+SQLITE_PRIVATE void sqlite3PagerSetBusyhandler(Pager *pPager, BusyHandler *pBusyHandler){
+ pPager->pBusyHandler = pBusyHandler;
+}
+
+/*
+** Set the destructor for this pager. If not NULL, the destructor is called
+** when the reference count on each page reaches zero. The destructor can
+** be used to clean up information in the extra segment appended to each page.
+**
+** The destructor is not called as a result sqlite3PagerClose().
+** Destructors are only called by sqlite3PagerUnref().
+*/
+SQLITE_PRIVATE void sqlite3PagerSetDestructor(Pager *pPager, void (*xDesc)(DbPage*,int)){
+ pPager->xDestructor = xDesc;
+}
+
+/*
+** Set the reinitializer for this pager. If not NULL, the reinitializer
+** is called when the content of a page in cache is restored to its original
+** value as a result of a rollback. The callback gives higher-level code
+** an opportunity to restore the EXTRA section to agree with the restored
+** page data.
+*/
+SQLITE_PRIVATE void sqlite3PagerSetReiniter(Pager *pPager, void (*xReinit)(DbPage*,int)){
+ pPager->xReiniter = xReinit;
+}
+
+/*
+** Set the page size to *pPageSize. If the suggest new page size is
+** inappropriate, then an alternative page size is set to that
+** value before returning.
+*/
+SQLITE_PRIVATE int sqlite3PagerSetPagesize(Pager *pPager, u16 *pPageSize){
+ int rc = SQLITE_OK;
+ u16 pageSize = *pPageSize;
+ assert( pageSize==0 || (pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE) );
+ if( pageSize && pageSize!=pPager->pageSize
+ && !pPager->memDb && pPager->nRef==0
+ ){
+ char *pNew = (char *)sqlite3_malloc(pageSize);
+ if( !pNew ){
+ rc = SQLITE_NOMEM;
+ }else{
+ pagerEnter(pPager);
+ pager_reset(pPager);
+ pPager->pageSize = pageSize;
+ setSectorSize(pPager);
+ sqlite3_free(pPager->pTmpSpace);
+ pPager->pTmpSpace = pNew;
+ pagerLeave(pPager);
+ }
+ }
+ *pPageSize = pPager->pageSize;
+ return rc;
+}
+
+/*
+** Return a pointer to the "temporary page" buffer held internally
+** by the pager. This is a buffer that is big enough to hold the
+** entire content of a database page. This buffer is used internally
+** during rollback and will be overwritten whenever a rollback
+** occurs. But other modules are free to use it too, as long as
+** no rollbacks are happening.
+*/
+SQLITE_PRIVATE void *sqlite3PagerTempSpace(Pager *pPager){
+ return pPager->pTmpSpace;
+}
+
+/*
+** Attempt to set the maximum database page count if mxPage is positive.
+** Make no changes if mxPage is zero or negative. And never reduce the
+** maximum page count below the current size of the database.
+**
+** Regardless of mxPage, return the current maximum page count.
+*/
+SQLITE_PRIVATE int sqlite3PagerMaxPageCount(Pager *pPager, int mxPage){
+ if( mxPage>0 ){
+ pPager->mxPgno = mxPage;
+ }
+ sqlite3PagerPagecount(pPager);
+ return pPager->mxPgno;
+}
+
+/*
+** The following set of routines are used to disable the simulated
+** I/O error mechanism. These routines are used to avoid simulated
+** errors in places where we do not care about errors.
+**
+** Unless -DSQLITE_TEST=1 is used, these routines are all no-ops
+** and generate no code.
+*/
+#ifdef SQLITE_TEST
+SQLITE_API extern int sqlite3_io_error_pending;
+SQLITE_API extern int sqlite3_io_error_hit;
+static int saved_cnt;
+void disable_simulated_io_errors(void){
+ saved_cnt = sqlite3_io_error_pending;
+ sqlite3_io_error_pending = -1;
+}
+void enable_simulated_io_errors(void){
+ sqlite3_io_error_pending = saved_cnt;
+}
+#else
+# define disable_simulated_io_errors()
+# define enable_simulated_io_errors()
+#endif
+
+/*
+** Read the first N bytes from the beginning of the file into memory
+** that pDest points to.
+**
+** No error checking is done. The rational for this is that this function
+** may be called even if the file does not exist or contain a header. In
+** these cases sqlite3OsRead() will return an error, to which the correct
+** response is to zero the memory at pDest and continue. A real IO error
+** will presumably recur and be picked up later (Todo: Think about this).
+*/
+SQLITE_PRIVATE int sqlite3PagerReadFileheader(Pager *pPager, int N, unsigned char *pDest){
+ int rc = SQLITE_OK;
+ memset(pDest, 0, N);
+ assert(MEMDB||pPager->fd->pMethods||pPager->tempFile);
+ if( pPager->fd->pMethods ){
+ IOTRACE(("DBHDR %p 0 %d\n", pPager, N))
+ rc = sqlite3OsRead(pPager->fd, pDest, N, 0);
+ if( rc==SQLITE_IOERR_SHORT_READ ){
+ rc = SQLITE_OK;
+ }
+ }
+ return rc;
+}
+
+/*
+** Return the total number of pages in the disk file associated with
+** pPager.
+**
+** If the PENDING_BYTE lies on the page directly after the end of the
+** file, then consider this page part of the file too. For example, if
+** PENDING_BYTE is byte 4096 (the first byte of page 5) and the size of the
+** file is 4096 bytes, 5 is returned instead of 4.
+*/
+SQLITE_PRIVATE int sqlite3PagerPagecount(Pager *pPager){
+ i64 n = 0;
+ int rc;
+ assert( pPager!=0 );
+ if( pPager->errCode ){
+ return -1;
+ }
+ if( pPager->dbSize>=0 ){
+ n = pPager->dbSize;
+ } else {
+ assert(pPager->fd->pMethods||pPager->tempFile);
+ if( (pPager->fd->pMethods)
+ && (rc = sqlite3OsFileSize(pPager->fd, &n))!=SQLITE_OK ){
+ pPager->nRef++;
+ pager_error(pPager, rc);
+ pPager->nRef--;
+ return -1;
+ }
+ if( n>0 && n<pPager->pageSize ){
+ n = 1;
+ }else{
+ n /= pPager->pageSize;
+ }
+ if( pPager->state!=PAGER_UNLOCK ){
+ pPager->dbSize = n;
+ }
+ }
+ if( n==(PENDING_BYTE/pPager->pageSize) ){
+ n++;
+ }
+ if( n>pPager->mxPgno ){
+ pPager->mxPgno = n;
+ }
+ return n;
+}
+
+
+#ifndef SQLITE_OMIT_MEMORYDB
+/*
+** Clear a PgHistory block
+*/
+static void clearHistory(PgHistory *pHist){
+ sqlite3_free(pHist->pOrig);
+ sqlite3_free(pHist->pStmt);
+ pHist->pOrig = 0;
+ pHist->pStmt = 0;
+}
+#else
+#define clearHistory(x)
+#endif
+
+/*
+** Forward declaration
+*/
+static int syncJournal(Pager*);
+
+/*
+** Unlink pPg from its hash chain. Also set the page number to 0 to indicate
+** that the page is not part of any hash chain. This is required because the
+** sqlite3PagerMovepage() routine can leave a page in the
+** pNextFree/pPrevFree list that is not a part of any hash-chain.
+*/
+static void unlinkHashChain(Pager *pPager, PgHdr *pPg){
+ if( pPg->pgno==0 ){
+ assert( pPg->pNextHash==0 && pPg->pPrevHash==0 );
+ return;
+ }
+ if( pPg->pNextHash ){
+ pPg->pNextHash->pPrevHash = pPg->pPrevHash;
+ }
+ if( pPg->pPrevHash ){
+ assert( pPager->aHash[pPg->pgno & (pPager->nHash-1)]!=pPg );
+ pPg->pPrevHash->pNextHash = pPg->pNextHash;
+ }else{
+ int h = pPg->pgno & (pPager->nHash-1);
+ pPager->aHash[h] = pPg->pNextHash;
+ }
+ if( MEMDB ){
+ clearHistory(PGHDR_TO_HIST(pPg, pPager));
+ }
+ pPg->pgno = 0;
+ pPg->pNextHash = pPg->pPrevHash = 0;
+}
+
+/*
+** Unlink a page from the free list (the list of all pages where nRef==0)
+** and from its hash collision chain.
+*/
+static void unlinkPage(PgHdr *pPg){
+ Pager *pPager = pPg->pPager;
+
+ /* Unlink from free page list */
+ lruListRemove(pPg);
+
+ /* Unlink from the pgno hash table */
+ unlinkHashChain(pPager, pPg);
+}
+
+/*
+** This routine is used to truncate the cache when a database
+** is truncated. Drop from the cache all pages whose pgno is
+** larger than pPager->dbSize and is unreferenced.
+**
+** Referenced pages larger than pPager->dbSize are zeroed.
+**
+** Actually, at the point this routine is called, it would be
+** an error to have a referenced page. But rather than delete
+** that page and guarantee a subsequent segfault, it seems better
+** to zero it and hope that we error out sanely.
+*/
+static void pager_truncate_cache(Pager *pPager){
+ PgHdr *pPg;
+ PgHdr **ppPg;
+ int dbSize = pPager->dbSize;
+
+ ppPg = &pPager->pAll;
+ while( (pPg = *ppPg)!=0 ){
+ if( pPg->pgno<=dbSize ){
+ ppPg = &pPg->pNextAll;
+ }else if( pPg->nRef>0 ){
+ memset(PGHDR_TO_DATA(pPg), 0, pPager->pageSize);
+ ppPg = &pPg->pNextAll;
+ }else{
+ *ppPg = pPg->pNextAll;
+ IOTRACE(("PGFREE %p %d\n", pPager, pPg->pgno));
+ PAGER_INCR(sqlite3_pager_pgfree_count);
+ unlinkPage(pPg);
+ makeClean(pPg);
+ sqlite3_free(pPg->pData);
+ sqlite3_free(pPg);
+ pPager->nPage--;
+ }
+ }
+}
+
+/*
+** Try to obtain a lock on a file. Invoke the busy callback if the lock
+** is currently not available. Repeat until the busy callback returns
+** false or until the lock succeeds.
+**
+** Return SQLITE_OK on success and an error code if we cannot obtain
+** the lock.
+*/
+static int pager_wait_on_lock(Pager *pPager, int locktype){
+ int rc;
+
+ /* The OS lock values must be the same as the Pager lock values */
+ assert( PAGER_SHARED==SHARED_LOCK );
+ assert( PAGER_RESERVED==RESERVED_LOCK );
+ assert( PAGER_EXCLUSIVE==EXCLUSIVE_LOCK );
+
+ /* If the file is currently unlocked then the size must be unknown */
+ assert( pPager->state>=PAGER_SHARED || pPager->dbSize<0 || MEMDB );
+
+ if( pPager->state>=locktype ){
+ rc = SQLITE_OK;
+ }else{
+ if( pPager->pBusyHandler ) pPager->pBusyHandler->nBusy = 0;
+ do {
+ rc = sqlite3OsLock(pPager->fd, locktype);
+ }while( rc==SQLITE_BUSY && sqlite3InvokeBusyHandler(pPager->pBusyHandler) );
+ if( rc==SQLITE_OK ){
+ pPager->state = locktype;
+ IOTRACE(("LOCK %p %d\n", pPager, locktype))
+ }
+ }
+ return rc;
+}
+
+/*
+** Truncate the file to the number of pages specified.
+*/
+SQLITE_PRIVATE int sqlite3PagerTruncate(Pager *pPager, Pgno nPage){
+ int rc;
+ assert( pPager->state>=PAGER_SHARED || MEMDB );
+ sqlite3PagerPagecount(pPager);
+ if( pPager->errCode ){
+ rc = pPager->errCode;
+ return rc;
+ }
+ if( nPage>=(unsigned)pPager->dbSize ){
+ return SQLITE_OK;
+ }
+ if( MEMDB ){
+ pPager->dbSize = nPage;
+ pager_truncate_cache(pPager);
+ return SQLITE_OK;
+ }
+ pagerEnter(pPager);
+ rc = syncJournal(pPager);
+ pagerLeave(pPager);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+
+ /* Get an exclusive lock on the database before truncating. */
+ pagerEnter(pPager);
+ rc = pager_wait_on_lock(pPager, EXCLUSIVE_LOCK);
+ pagerLeave(pPager);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+
+ rc = pager_truncate(pPager, nPage);
+ return rc;
+}
+
+/*
+** Shutdown the page cache. Free all memory and close all files.
+**
+** If a transaction was in progress when this routine is called, that
+** transaction is rolled back. All outstanding pages are invalidated
+** and their memory is freed. Any attempt to use a page associated
+** with this page cache after this function returns will likely
+** result in a coredump.
+**
+** This function always succeeds. If a transaction is active an attempt
+** is made to roll it back. If an error occurs during the rollback
+** a hot journal may be left in the filesystem but no error is returned
+** to the caller.
+*/
+SQLITE_PRIVATE int sqlite3PagerClose(Pager *pPager){
+#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
+ if( !MEMDB ){
+#ifndef SQLITE_MUTEX_NOOP
+ sqlite3_mutex *mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MEM2);
+#endif
+ sqlite3_mutex_enter(mutex);
+ if( pPager->pPrev ){
+ pPager->pPrev->pNext = pPager->pNext;
+ }else{
+ sqlite3PagerList = pPager->pNext;
+ }
+ if( pPager->pNext ){
+ pPager->pNext->pPrev = pPager->pPrev;
+ }
+ sqlite3_mutex_leave(mutex);
+ }
+#endif
+
+ disable_simulated_io_errors();
+ sqlite3FaultBeginBenign(-1);
+ pPager->errCode = 0;
+ pPager->exclusiveMode = 0;
+ pager_reset(pPager);
+ pagerUnlockAndRollback(pPager);
+ enable_simulated_io_errors();
+ sqlite3FaultEndBenign(-1);
+ PAGERTRACE2("CLOSE %d\n", PAGERID(pPager));
+ IOTRACE(("CLOSE %p\n", pPager))
+ if( pPager->journalOpen ){
+ sqlite3OsClose(pPager->jfd);
+ }
+ sqlite3BitvecDestroy(pPager->pInJournal);
+ if( pPager->stmtOpen ){
+ sqlite3OsClose(pPager->stfd);
+ }
+ sqlite3OsClose(pPager->fd);
+ /* Temp files are automatically deleted by the OS
+ ** if( pPager->tempFile ){
+ ** sqlite3OsDelete(pPager->zFilename);
+ ** }
+ */
+
+ sqlite3_free(pPager->aHash);
+ sqlite3_free(pPager->pTmpSpace);
+ sqlite3_free(pPager);
+ return SQLITE_OK;
+}
+
+#if !defined(NDEBUG) || defined(SQLITE_TEST)
+/*
+** Return the page number for the given page data.
+*/
+SQLITE_PRIVATE Pgno sqlite3PagerPagenumber(DbPage *p){
+ return p->pgno;
+}
+#endif
+
+/*
+** The page_ref() function increments the reference count for a page.
+** If the page is currently on the freelist (the reference count is zero) then
+** remove it from the freelist.
+**
+** For non-test systems, page_ref() is a macro that calls _page_ref()
+** online of the reference count is zero. For test systems, page_ref()
+** is a real function so that we can set breakpoints and trace it.
+*/
+static void _page_ref(PgHdr *pPg){
+ if( pPg->nRef==0 ){
+ /* The page is currently on the freelist. Remove it. */
+ lruListRemove(pPg);
+ pPg->pPager->nRef++;
+ }
+ pPg->nRef++;
+}
+#ifdef SQLITE_DEBUG
+ static void page_ref(PgHdr *pPg){
+ if( pPg->nRef==0 ){
+ _page_ref(pPg);
+ }else{
+ pPg->nRef++;
+ }
+ }
+#else
+# define page_ref(P) ((P)->nRef==0?_page_ref(P):(void)(P)->nRef++)
+#endif
+
+/*
+** Increment the reference count for a page. The input pointer is
+** a reference to the page data.
+*/
+SQLITE_PRIVATE int sqlite3PagerRef(DbPage *pPg){
+ pagerEnter(pPg->pPager);
+ page_ref(pPg);
+ pagerLeave(pPg->pPager);
+ return SQLITE_OK;
+}
+
+/*
+** Sync the journal. In other words, make sure all the pages that have
+** been written to the journal have actually reached the surface of the
+** disk. It is not safe to modify the original database file until after
+** the journal has been synced. If the original database is modified before
+** the journal is synced and a power failure occurs, the unsynced journal
+** data would be lost and we would be unable to completely rollback the
+** database changes. Database corruption would occur.
+**
+** This routine also updates the nRec field in the header of the journal.
+** (See comments on the pager_playback() routine for additional information.)
+** If the sync mode is FULL, two syncs will occur. First the whole journal
+** is synced, then the nRec field is updated, then a second sync occurs.
+**
+** For temporary databases, we do not care if we are able to rollback
+** after a power failure, so no sync occurs.
+**
+** If the IOCAP_SEQUENTIAL flag is set for the persistent media on which
+** the database is stored, then OsSync() is never called on the journal
+** file. In this case all that is required is to update the nRec field in
+** the journal header.
+**
+** This routine clears the needSync field of every page current held in
+** memory.
+*/
+static int syncJournal(Pager *pPager){
+ PgHdr *pPg;
+ int rc = SQLITE_OK;
+
+
+ /* Sync the journal before modifying the main database
+ ** (assuming there is a journal and it needs to be synced.)
+ */
+ if( pPager->needSync ){
+ if( !pPager->tempFile ){
+ int iDc = sqlite3OsDeviceCharacteristics(pPager->fd);
+ assert( pPager->journalOpen );
+
+ if( 0==(iDc&SQLITE_IOCAP_SAFE_APPEND) ){
+ /* Write the nRec value into the journal file header. If in
+ ** full-synchronous mode, sync the journal first. This ensures that
+ ** all data has really hit the disk before nRec is updated to mark
+ ** it as a candidate for rollback.
+ **
+ ** This is not required if the persistent media supports the
+ ** SAFE_APPEND property. Because in this case it is not possible
+ ** for garbage data to be appended to the file, the nRec field
+ ** is populated with 0xFFFFFFFF when the journal header is written
+ ** and never needs to be updated.
+ */
+ i64 jrnlOff;
+ if( pPager->fullSync && 0==(iDc&SQLITE_IOCAP_SEQUENTIAL) ){
+ PAGERTRACE2("SYNC journal of %d\n", PAGERID(pPager));
+ IOTRACE(("JSYNC %p\n", pPager))
+ rc = sqlite3OsSync(pPager->jfd, pPager->sync_flags);
+ if( rc!=0 ) return rc;
+ }
+
+ jrnlOff = pPager->journalHdr + sizeof(aJournalMagic);
+ IOTRACE(("JHDR %p %lld %d\n", pPager, jrnlOff, 4));
+ rc = write32bits(pPager->jfd, jrnlOff, pPager->nRec);
+ if( rc ) return rc;
+ }
+ if( 0==(iDc&SQLITE_IOCAP_SEQUENTIAL) ){
+ PAGERTRACE2("SYNC journal of %d\n", PAGERID(pPager));
+ IOTRACE(("JSYNC %p\n", pPager))
+ rc = sqlite3OsSync(pPager->jfd, pPager->sync_flags|
+ (pPager->sync_flags==SQLITE_SYNC_FULL?SQLITE_SYNC_DATAONLY:0)
+ );
+ if( rc!=0 ) return rc;
+ }
+ pPager->journalStarted = 1;
+ }
+ pPager->needSync = 0;
+
+ /* Erase the needSync flag from every page.
+ */
+ for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){
+ pPg->needSync = 0;
+ }
+ lruListSetFirstSynced(pPager);
+ }
+
+#ifndef NDEBUG
+ /* If the Pager.needSync flag is clear then the PgHdr.needSync
+ ** flag must also be clear for all pages. Verify that this
+ ** invariant is true.
+ */
+ else{
+ for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){
+ assert( pPg->needSync==0 );
+ }
+ assert( pPager->lru.pFirstSynced==pPager->lru.pFirst );
+ }
+#endif
+
+ return rc;
+}
+
+/*
+** Merge two lists of pages connected by pDirty and in pgno order.
+** Do not both fixing the pPrevDirty pointers.
+*/
+static PgHdr *merge_pagelist(PgHdr *pA, PgHdr *pB){
+ PgHdr result, *pTail;
+ pTail = &result;
+ while( pA && pB ){
+ if( pA->pgno<pB->pgno ){
+ pTail->pDirty = pA;
+ pTail = pA;
+ pA = pA->pDirty;
+ }else{
+ pTail->pDirty = pB;
+ pTail = pB;
+ pB = pB->pDirty;
+ }
+ }
+ if( pA ){
+ pTail->pDirty = pA;
+ }else if( pB ){
+ pTail->pDirty = pB;
+ }else{
+ pTail->pDirty = 0;
+ }
+ return result.pDirty;
+}
+
+/*
+** Sort the list of pages in accending order by pgno. Pages are
+** connected by pDirty pointers. The pPrevDirty pointers are
+** corrupted by this sort.
+*/
+#define N_SORT_BUCKET_ALLOC 25
+#define N_SORT_BUCKET 25
+#ifdef SQLITE_TEST
+ int sqlite3_pager_n_sort_bucket = 0;
+ #undef N_SORT_BUCKET
+ #define N_SORT_BUCKET \
+ (sqlite3_pager_n_sort_bucket?sqlite3_pager_n_sort_bucket:N_SORT_BUCKET_ALLOC)
+#endif
+static PgHdr *sort_pagelist(PgHdr *pIn){
+ PgHdr *a[N_SORT_BUCKET_ALLOC], *p;
+ int i;
+ memset(a, 0, sizeof(a));
+ while( pIn ){
+ p = pIn;
+ pIn = p->pDirty;
+ p->pDirty = 0;
+ for(i=0; i<N_SORT_BUCKET-1; i++){
+ if( a[i]==0 ){
+ a[i] = p;
+ break;
+ }else{
+ p = merge_pagelist(a[i], p);
+ a[i] = 0;
+ }
+ }
+ if( i==N_SORT_BUCKET-1 ){
+ /* Coverage: To get here, there need to be 2^(N_SORT_BUCKET)
+ ** elements in the input list. This is possible, but impractical.
+ ** Testing this line is the point of global variable
+ ** sqlite3_pager_n_sort_bucket.
+ */
+ a[i] = merge_pagelist(a[i], p);
+ }
+ }
+ p = a[0];
+ for(i=1; i<N_SORT_BUCKET; i++){
+ p = merge_pagelist(p, a[i]);
+ }
+ return p;
+}
+
+/*
+** Given a list of pages (connected by the PgHdr.pDirty pointer) write
+** every one of those pages out to the database file and mark them all
+** as clean.
+*/
+static int pager_write_pagelist(PgHdr *pList){
+ Pager *pPager;
+ PgHdr *p;
+ int rc;
+
+ if( pList==0 ) return SQLITE_OK;
+ pPager = pList->pPager;
+
+ /* At this point there may be either a RESERVED or EXCLUSIVE lock on the
+ ** database file. If there is already an EXCLUSIVE lock, the following
+ ** calls to sqlite3OsLock() are no-ops.
+ **
+ ** Moving the lock from RESERVED to EXCLUSIVE actually involves going
+ ** through an intermediate state PENDING. A PENDING lock prevents new
+ ** readers from attaching to the database but is unsufficient for us to
+ ** write. The idea of a PENDING lock is to prevent new readers from
+ ** coming in while we wait for existing readers to clear.
+ **
+ ** While the pager is in the RESERVED state, the original database file
+ ** is unchanged and we can rollback without having to playback the
+ ** journal into the original database file. Once we transition to
+ ** EXCLUSIVE, it means the database file has been changed and any rollback
+ ** will require a journal playback.
+ */
+ rc = pager_wait_on_lock(pPager, EXCLUSIVE_LOCK);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+
+ pList = sort_pagelist(pList);
+ for(p=pList; p; p=p->pDirty){
+ assert( p->dirty );
+ p->dirty = 0;
+ }
+ while( pList ){
+
+ /* If the file has not yet been opened, open it now. */
+ if( !pPager->fd->pMethods ){
+ assert(pPager->tempFile);
+ rc = sqlite3PagerOpentemp(pPager->pVfs, pPager->fd, pPager->zFilename,
+ pPager->vfsFlags);
+ if( rc ) return rc;
+ }
+
+ /* If there are dirty pages in the page cache with page numbers greater
+ ** than Pager.dbSize, this means sqlite3PagerTruncate() was called to
+ ** make the file smaller (presumably by auto-vacuum code). Do not write
+ ** any such pages to the file.
+ */
+ if( pList->pgno<=pPager->dbSize ){
+ i64 offset = (pList->pgno-1)*(i64)pPager->pageSize;
+ char *pData = CODEC2(pPager, PGHDR_TO_DATA(pList), pList->pgno, 6);
+ PAGERTRACE4("STORE %d page %d hash(%08x)\n",
+ PAGERID(pPager), pList->pgno, pager_pagehash(pList));
+ IOTRACE(("PGOUT %p %d\n", pPager, pList->pgno));
+ rc = sqlite3OsWrite(pPager->fd, pData, pPager->pageSize, offset);
+ PAGER_INCR(sqlite3_pager_writedb_count);
+ PAGER_INCR(pPager->nWrite);
+ if( pList->pgno==1 ){
+ memcpy(&pPager->dbFileVers, &pData[24], sizeof(pPager->dbFileVers));
+ }
+ }
+#ifndef NDEBUG
+ else{
+ PAGERTRACE3("NOSTORE %d page %d\n", PAGERID(pPager), pList->pgno);
+ }
+#endif
+ if( rc ) return rc;
+#ifdef SQLITE_CHECK_PAGES
+ pList->pageHash = pager_pagehash(pList);
+#endif
+ pList = pList->pDirty;
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Collect every dirty page into a dirty list and
+** return a pointer to the head of that list. All pages are
+** collected even if they are still in use.
+*/
+static PgHdr *pager_get_all_dirty_pages(Pager *pPager){
+
+#ifndef NDEBUG
+ /* Verify the sanity of the dirty list when we are running
+ ** in debugging mode. This is expensive, so do not
+ ** do this on a normal build. */
+ int n1 = 0;
+ int n2 = 0;
+ PgHdr *p;
+ for(p=pPager->pAll; p; p=p->pNextAll){ if( p->dirty ) n1++; }
+ for(p=pPager->pDirty; p; p=p->pDirty){ n2++; }
+ assert( n1==n2 );
+#endif
+
+ return pPager->pDirty;
+}
+
+/*
+** Return 1 if there is a hot journal on the given pager.
+** A hot journal is one that needs to be played back.
+**
+** If the current size of the database file is 0 but a journal file
+** exists, that is probably an old journal left over from a prior
+** database with the same name. Just delete the journal.
+**
+** Return negative if unable to determine the status of the journal.
+**
+** This routine does not open the journal file to examine its
+** content. Hence, the journal might contain the name of a master
+** journal file that has been deleted, and hence not be hot. Or
+** the header of the journal might be zeroed out. This routine
+** does not discover these cases of a non-hot journal - if the
+** journal file exists and is not empty this routine assumes it
+** is hot. The pager_playback() routine will discover that the
+** journal file is not really hot and will no-op.
+*/
+static int hasHotJournal(Pager *pPager){
+ sqlite3_vfs *pVfs = pPager->pVfs;
+ int rc;
+ if( !pPager->useJournal ) return 0;
+ if( !pPager->fd->pMethods ) return 0;
+ rc = sqlite3OsAccess(pVfs, pPager->zJournal, SQLITE_ACCESS_EXISTS);
+ if( rc<=0 ){
+ return rc;
+ }
+ if( sqlite3OsCheckReservedLock(pPager->fd) ){
+ return 0;
+ }
+ if( sqlite3PagerPagecount(pPager)==0 ){
+ sqlite3OsDelete(pVfs, pPager->zJournal, 0);
+ return 0;
+ }else{
+ return 1;
+ }
+}
+
+/*
+** Try to find a page in the cache that can be recycled.
+**
+** This routine may return SQLITE_IOERR, SQLITE_FULL or SQLITE_OK. It
+** does not set the pPager->errCode variable.
+*/
+static int pager_recycle(Pager *pPager, PgHdr **ppPg){
+ PgHdr *pPg;
+ *ppPg = 0;
+
+ /* It is illegal to call this function unless the pager object
+ ** pointed to by pPager has at least one free page (page with nRef==0).
+ */
+ assert(!MEMDB);
+ assert(pPager->lru.pFirst);
+
+ /* Find a page to recycle. Try to locate a page that does not
+ ** require us to do an fsync() on the journal.
+ */
+ pPg = pPager->lru.pFirstSynced;
+
+ /* If we could not find a page that does not require an fsync()
+ ** on the journal file then fsync the journal file. This is a
+ ** very slow operation, so we work hard to avoid it. But sometimes
+ ** it can't be helped.
+ */
+ if( pPg==0 && pPager->lru.pFirst){
+ int iDc = sqlite3OsDeviceCharacteristics(pPager->fd);
+ int rc = syncJournal(pPager);
+ if( rc!=0 ){
+ return rc;
+ }
+ if( pPager->fullSync && 0==(iDc&SQLITE_IOCAP_SAFE_APPEND) ){
+ /* If in full-sync mode, write a new journal header into the
+ ** journal file. This is done to avoid ever modifying a journal
+ ** header that is involved in the rollback of pages that have
+ ** already been written to the database (in case the header is
+ ** trashed when the nRec field is updated).
+ */
+ pPager->nRec = 0;
+ assert( pPager->journalOff > 0 );
+ assert( pPager->doNotSync==0 );
+ rc = writeJournalHdr(pPager);
+ if( rc!=0 ){
+ return rc;
+ }
+ }
+ pPg = pPager->lru.pFirst;
+ }
+
+ assert( pPg->nRef==0 );
+
+ /* Write the page to the database file if it is dirty.
+ */
+ if( pPg->dirty ){
+ int rc;
+ assert( pPg->needSync==0 );
+ makeClean(pPg);
+ pPg->dirty = 1;
+ pPg->pDirty = 0;
+ rc = pager_write_pagelist( pPg );
+ pPg->dirty = 0;
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ }
+ assert( pPg->dirty==0 );
+
+ /* If the page we are recycling is marked as alwaysRollback, then
+ ** set the global alwaysRollback flag, thus disabling the
+ ** sqlite3PagerDontRollback() optimization for the rest of this transaction.
+ ** It is necessary to do this because the page marked alwaysRollback
+ ** might be reloaded at a later time but at that point we won't remember
+ ** that is was marked alwaysRollback. This means that all pages must
+ ** be marked as alwaysRollback from here on out.
+ */
+ if( pPg->alwaysRollback ){
+ IOTRACE(("ALWAYS_ROLLBACK %p\n", pPager))
+ pPager->alwaysRollback = 1;
+ }
+
+ /* Unlink the old page from the free list and the hash table
+ */
+ unlinkPage(pPg);
+ assert( pPg->pgno==0 );
+
+ *ppPg = pPg;
+ return SQLITE_OK;
+}
+
+#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
+/*
+** This function is called to free superfluous dynamically allocated memory
+** held by the pager system. Memory in use by any SQLite pager allocated
+** by the current thread may be sqlite3_free()ed.
+**
+** nReq is the number of bytes of memory required. Once this much has
+** been released, the function returns. The return value is the total number
+** of bytes of memory released.
+*/
+SQLITE_PRIVATE int sqlite3PagerReleaseMemory(int nReq){
+ int nReleased = 0; /* Bytes of memory released so far */
+ Pager *pPager; /* For looping over pagers */
+ BusyHandler *savedBusy; /* Saved copy of the busy handler */
+ int rc = SQLITE_OK;
+
+ /* Acquire the memory-management mutex
+ */
+#ifndef SQLITE_MUTEX_NOOP
+ sqlite3_mutex *mutex; /* The MEM2 mutex */
+ mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MEM2);
+#endif
+ sqlite3_mutex_enter(mutex);
+
+ /* Signal all database connections that memory management wants
+ ** to have access to the pagers.
+ */
+ for(pPager=sqlite3PagerList; pPager; pPager=pPager->pNext){
+ pPager->iInUseMM = 1;
+ }
+
+ while( rc==SQLITE_OK && (nReq<0 || nReleased<nReq) ){
+ PgHdr *pPg;
+ PgHdr *pRecycled;
+
+ /* Try to find a page to recycle that does not require a sync(). If
+ ** this is not possible, find one that does require a sync().
+ */
+ sqlite3_mutex_enter(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU));
+ pPg = sqlite3LruPageList.pFirstSynced;
+ while( pPg && (pPg->needSync || pPg->pPager->iInUseDB) ){
+ pPg = pPg->gfree.pNext;
+ }
+ if( !pPg ){
+ pPg = sqlite3LruPageList.pFirst;
+ while( pPg && pPg->pPager->iInUseDB ){
+ pPg = pPg->gfree.pNext;
+ }
+ }
+ sqlite3_mutex_leave(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU));
+
+ /* If pPg==0, then the block above has failed to find a page to
+ ** recycle. In this case return early - no further memory will
+ ** be released.
+ */
+ if( !pPg ) break;
+
+ pPager = pPg->pPager;
+ assert(!pPg->needSync || pPg==pPager->lru.pFirst);
+ assert(pPg->needSync || pPg==pPager->lru.pFirstSynced);
+
+ savedBusy = pPager->pBusyHandler;
+ pPager->pBusyHandler = 0;
+ rc = pager_recycle(pPager, &pRecycled);
+ pPager->pBusyHandler = savedBusy;
+ assert(pRecycled==pPg || rc!=SQLITE_OK);
+ if( rc==SQLITE_OK ){
+ /* We've found a page to free. At this point the page has been
+ ** removed from the page hash-table, free-list and synced-list
+ ** (pFirstSynced). It is still in the all pages (pAll) list.
+ ** Remove it from this list before freeing.
+ **
+ ** Todo: Check the Pager.pStmt list to make sure this is Ok. It
+ ** probably is though.
+ */
+ PgHdr *pTmp;
+ assert( pPg );
+ if( pPg==pPager->pAll ){
+ pPager->pAll = pPg->pNextAll;
+ }else{
+ for( pTmp=pPager->pAll; pTmp->pNextAll!=pPg; pTmp=pTmp->pNextAll ){}
+ pTmp->pNextAll = pPg->pNextAll;
+ }
+ nReleased += (
+ sizeof(*pPg) + pPager->pageSize
+ + sizeof(u32) + pPager->nExtra
+ + MEMDB*sizeof(PgHistory)
+ );
+ IOTRACE(("PGFREE %p %d *\n", pPager, pPg->pgno));
+ PAGER_INCR(sqlite3_pager_pgfree_count);
+ sqlite3_free(pPg->pData);
+ sqlite3_free(pPg);
+ pPager->nPage--;
+ }else{
+ /* An error occured whilst writing to the database file or
+ ** journal in pager_recycle(). The error is not returned to the
+ ** caller of this function. Instead, set the Pager.errCode variable.
+ ** The error will be returned to the user (or users, in the case
+ ** of a shared pager cache) of the pager for which the error occured.
+ */
+ assert(
+ (rc&0xff)==SQLITE_IOERR ||
+ rc==SQLITE_FULL ||
+ rc==SQLITE_BUSY
+ );
+ assert( pPager->state>=PAGER_RESERVED );
+ pager_error(pPager, rc);
+ }
+ }
+
+ /* Clear the memory management flags and release the mutex
+ */
+ for(pPager=sqlite3PagerList; pPager; pPager=pPager->pNext){
+ pPager->iInUseMM = 0;
+ }
+ sqlite3_mutex_leave(mutex);
+
+ /* Return the number of bytes released
+ */
+ return nReleased;
+}
+#endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */
+
+/*
+** Read the content of page pPg out of the database file.
+*/
+static int readDbPage(Pager *pPager, PgHdr *pPg, Pgno pgno){
+ int rc;
+ i64 offset;
+ assert( MEMDB==0 );
+ assert(pPager->fd->pMethods||pPager->tempFile);
+ if( !pPager->fd->pMethods ){
+ return SQLITE_IOERR_SHORT_READ;
+ }
+ offset = (pgno-1)*(i64)pPager->pageSize;
+ rc = sqlite3OsRead(pPager->fd, PGHDR_TO_DATA(pPg), pPager->pageSize, offset);
+ PAGER_INCR(sqlite3_pager_readdb_count);
+ PAGER_INCR(pPager->nRead);
+ IOTRACE(("PGIN %p %d\n", pPager, pgno));
+ if( pgno==1 ){
+ memcpy(&pPager->dbFileVers, &((u8*)PGHDR_TO_DATA(pPg))[24],
+ sizeof(pPager->dbFileVers));
+ }
+ CODEC1(pPager, PGHDR_TO_DATA(pPg), pPg->pgno, 3);
+ PAGERTRACE4("FETCH %d page %d hash(%08x)\n",
+ PAGERID(pPager), pPg->pgno, pager_pagehash(pPg));
+ return rc;
+}
+
+
+/*
+** This function is called to obtain the shared lock required before
+** data may be read from the pager cache. If the shared lock has already
+** been obtained, this function is a no-op.
+**
+** Immediately after obtaining the shared lock (if required), this function
+** checks for a hot-journal file. If one is found, an emergency rollback
+** is performed immediately.
+*/
+static int pagerSharedLock(Pager *pPager){
+ int rc = SQLITE_OK;
+ int isHot = 0;
+
+ /* If this database is opened for exclusive access, has no outstanding
+ ** page references and is in an error-state, now is the chance to clear
+ ** the error. Discard the contents of the pager-cache and treat any
+ ** open journal file as a hot-journal.
+ */
+ if( !MEMDB && pPager->exclusiveMode && pPager->nRef==0 && pPager->errCode ){
+ if( pPager->journalOpen ){
+ isHot = 1;
+ }
+ pPager->errCode = SQLITE_OK;
+ pager_reset(pPager);
+ }
+
+ /* If the pager is still in an error state, do not proceed. The error
+ ** state will be cleared at some point in the future when all page
+ ** references are dropped and the cache can be discarded.
+ */
+ if( pPager->errCode && pPager->errCode!=SQLITE_FULL ){
+ return pPager->errCode;
+ }
+
+ if( pPager->state==PAGER_UNLOCK || isHot ){
+ sqlite3_vfs *pVfs = pPager->pVfs;
+ if( !MEMDB ){
+ assert( pPager->nRef==0 );
+ if( !pPager->noReadlock ){
+ rc = pager_wait_on_lock(pPager, SHARED_LOCK);
+ if( rc!=SQLITE_OK ){
+ assert( pPager->state==PAGER_UNLOCK );
+ return pager_error(pPager, rc);
+ }
+ assert( pPager->state>=SHARED_LOCK );
+ }
+
+ /* If a journal file exists, and there is no RESERVED lock on the
+ ** database file, then it either needs to be played back or deleted.
+ */
+ rc = hasHotJournal(pPager);
+ if( rc<0 ){
+ rc = SQLITE_IOERR_NOMEM;
+ goto failed;
+ }
+ if( rc==1 || isHot ){
+ /* Get an EXCLUSIVE lock on the database file. At this point it is
+ ** important that a RESERVED lock is not obtained on the way to the
+ ** EXCLUSIVE lock. If it were, another process might open the
+ ** database file, detect the RESERVED lock, and conclude that the
+ ** database is safe to read while this process is still rolling it
+ ** back.
+ **
+ ** Because the intermediate RESERVED lock is not requested, the
+ ** second process will get to this point in the code and fail to
+ ** obtain its own EXCLUSIVE lock on the database file.
+ */
+ if( pPager->state<EXCLUSIVE_LOCK ){
+ rc = sqlite3OsLock(pPager->fd, EXCLUSIVE_LOCK);
+ if( rc!=SQLITE_OK ){
+ rc = pager_error(pPager, rc);
+ goto failed;
+ }
+ pPager->state = PAGER_EXCLUSIVE;
+ }
+
+ /* Open the journal for read/write access. This is because in
+ ** exclusive-access mode the file descriptor will be kept open and
+ ** possibly used for a transaction later on. On some systems, the
+ ** OsTruncate() call used in exclusive-access mode also requires
+ ** a read/write file handle.
+ */
+ if( !isHot && pPager->journalOpen==0 ){
+ int res = sqlite3OsAccess(pVfs,pPager->zJournal,SQLITE_ACCESS_EXISTS);
+ if( res==1 ){
+ int fout = 0;
+ int f = SQLITE_OPEN_READWRITE|SQLITE_OPEN_MAIN_JOURNAL;
+ assert( !pPager->tempFile );
+ rc = sqlite3OsOpen(pVfs, pPager->zJournal, pPager->jfd, f, &fout);
+ assert( rc!=SQLITE_OK || pPager->jfd->pMethods );
+ if( fout&SQLITE_OPEN_READONLY ){
+ rc = SQLITE_BUSY;
+ sqlite3OsClose(pPager->jfd);
+ }
+ }else if( res==0 ){
+ /* If the journal does not exist, that means some other process
+ ** has already rolled it back */
+ rc = SQLITE_BUSY;
+ }else{
+ /* If sqlite3OsAccess() returns a negative value, that means it
+ ** failed a memory allocation */
+ rc = SQLITE_IOERR_NOMEM;
+ }
+ }
+ if( rc!=SQLITE_OK ){
+ if( rc!=SQLITE_NOMEM && rc!=SQLITE_IOERR_UNLOCK
+ && rc!=SQLITE_IOERR_NOMEM
+ ){
+ rc = SQLITE_BUSY;
+ }
+ goto failed;
+ }
+ pPager->journalOpen = 1;
+ pPager->journalStarted = 0;
+ pPager->journalOff = 0;
+ pPager->setMaster = 0;
+ pPager->journalHdr = 0;
+
+ /* Playback and delete the journal. Drop the database write
+ ** lock and reacquire the read lock.
+ */
+ rc = pager_playback(pPager, 1);
+ if( rc!=SQLITE_OK ){
+ rc = pager_error(pPager, rc);
+ goto failed;
+ }
+ assert(pPager->state==PAGER_SHARED ||
+ (pPager->exclusiveMode && pPager->state>PAGER_SHARED)
+ );
+ }
+
+ if( pPager->pAll ){
+ /* The shared-lock has just been acquired on the database file
+ ** and there are already pages in the cache (from a previous
+ ** read or write transaction). Check to see if the database
+ ** has been modified. If the database has changed, flush the
+ ** cache.
+ **
+ ** Database changes is detected by looking at 15 bytes beginning
+ ** at offset 24 into the file. The first 4 of these 16 bytes are
+ ** a 32-bit counter that is incremented with each change. The
+ ** other bytes change randomly with each file change when
+ ** a codec is in use.
+ **
+ ** There is a vanishingly small chance that a change will not be
+ ** detected. The chance of an undetected change is so small that
+ ** it can be neglected.
+ */
+ char dbFileVers[sizeof(pPager->dbFileVers)];
+ sqlite3PagerPagecount(pPager);
+
+ if( pPager->errCode ){
+ rc = pPager->errCode;
+ goto failed;
+ }
+
+ if( pPager->dbSize>0 ){
+ IOTRACE(("CKVERS %p %d\n", pPager, sizeof(dbFileVers)));
+ rc = sqlite3OsRead(pPager->fd, &dbFileVers, sizeof(dbFileVers), 24);
+ if( rc!=SQLITE_OK ){
+ goto failed;
+ }
+ }else{
+ memset(dbFileVers, 0, sizeof(dbFileVers));
+ }
+
+ if( memcmp(pPager->dbFileVers, dbFileVers, sizeof(dbFileVers))!=0 ){
+ pager_reset(pPager);
+ }
+ }
+ }
+ assert( pPager->exclusiveMode || pPager->state<=PAGER_SHARED );
+ if( pPager->state==PAGER_UNLOCK ){
+ pPager->state = PAGER_SHARED;
+ }
+ }
+
+ failed:
+ if( rc!=SQLITE_OK ){
+ /* pager_unlock() is a no-op for exclusive mode and in-memory databases. */
+ pager_unlock(pPager);
+ }
+ return rc;
+}
+
+/*
+** Allocate a PgHdr object. Either create a new one or reuse
+** an existing one that is not otherwise in use.
+**
+** A new PgHdr structure is created if any of the following are
+** true:
+**
+** (1) We have not exceeded our maximum allocated cache size
+** as set by the "PRAGMA cache_size" command.
+**
+** (2) There are no unused PgHdr objects available at this time.
+**
+** (3) This is an in-memory database.
+**
+** (4) There are no PgHdr objects that do not require a journal
+** file sync and a sync of the journal file is currently
+** prohibited.
+**
+** Otherwise, reuse an existing PgHdr. In other words, reuse an
+** existing PgHdr if all of the following are true:
+**
+** (1) We have reached or exceeded the maximum cache size
+** allowed by "PRAGMA cache_size".
+**
+** (2) There is a PgHdr available with PgHdr->nRef==0
+**
+** (3) We are not in an in-memory database
+**
+** (4) Either there is an available PgHdr that does not need
+** to be synced to disk or else disk syncing is currently
+** allowed.
+*/
+static int pagerAllocatePage(Pager *pPager, PgHdr **ppPg){
+ int rc = SQLITE_OK;
+ PgHdr *pPg;
+ int nByteHdr;
+
+ /* Create a new PgHdr if any of the four conditions defined
+ ** above are met: */
+ if( pPager->nPage<pPager->mxPage
+ || pPager->lru.pFirst==0
+ || MEMDB
+ || (pPager->lru.pFirstSynced==0 && pPager->doNotSync)
+ ){
+ void *pData;
+ if( pPager->nPage>=pPager->nHash ){
+ pager_resize_hash_table(pPager,
+ pPager->nHash<256 ? 256 : pPager->nHash*2);
+ if( pPager->nHash==0 ){
+ rc = SQLITE_NOMEM;
+ goto pager_allocate_out;
+ }
+ }
+ pagerLeave(pPager);
+ nByteHdr = sizeof(*pPg) + sizeof(u32) + pPager->nExtra
+ + MEMDB*sizeof(PgHistory);
+ pPg = sqlite3_malloc( nByteHdr );
+ if( pPg ){
+ pData = sqlite3_malloc( pPager->pageSize );
+ if( pData==0 ){
+ sqlite3_free(pPg);
+ pPg = 0;
+ }
+ }
+ pagerEnter(pPager);
+ if( pPg==0 ){
+ rc = SQLITE_NOMEM;
+ goto pager_allocate_out;
+ }
+ memset(pPg, 0, nByteHdr);
+ pPg->pData = pData;
+ pPg->pPager = pPager;
+ pPg->pNextAll = pPager->pAll;
+ pPager->pAll = pPg;
+ pPager->nPage++;
+ }else{
+ /* Recycle an existing page with a zero ref-count. */
+ rc = pager_recycle(pPager, &pPg);
+ if( rc==SQLITE_BUSY ){
+ rc = SQLITE_IOERR_BLOCKED;
+ }
+ if( rc!=SQLITE_OK ){
+ goto pager_allocate_out;
+ }
+ assert( pPager->state>=SHARED_LOCK );
+ assert(pPg);
+ }
+ *ppPg = pPg;
+
+pager_allocate_out:
+ return rc;
+}
+
+/*
+** Make sure we have the content for a page. If the page was
+** previously acquired with noContent==1, then the content was
+** just initialized to zeros instead of being read from disk.
+** But now we need the real data off of disk. So make sure we
+** have it. Read it in if we do not have it already.
+*/
+static int pager_get_content(PgHdr *pPg){
+ if( pPg->needRead ){
+ int rc = readDbPage(pPg->pPager, pPg, pPg->pgno);
+ if( rc==SQLITE_OK ){
+ pPg->needRead = 0;
+ }else{
+ return rc;
+ }
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Acquire a page.
+**
+** A read lock on the disk file is obtained when the first page is acquired.
+** This read lock is dropped when the last page is released.
+**
+** This routine works for any page number greater than 0. If the database
+** file is smaller than the requested page, then no actual disk
+** read occurs and the memory image of the page is initialized to
+** all zeros. The extra data appended to a page is always initialized
+** to zeros the first time a page is loaded into memory.
+**
+** The acquisition might fail for several reasons. In all cases,
+** an appropriate error code is returned and *ppPage is set to NULL.
+**
+** See also sqlite3PagerLookup(). Both this routine and Lookup() attempt
+** to find a page in the in-memory cache first. If the page is not already
+** in memory, this routine goes to disk to read it in whereas Lookup()
+** just returns 0. This routine acquires a read-lock the first time it
+** has to go to disk, and could also playback an old journal if necessary.
+** Since Lookup() never goes to disk, it never has to deal with locks
+** or journal files.
+**
+** If noContent is false, the page contents are actually read from disk.
+** If noContent is true, it means that we do not care about the contents
+** of the page at this time, so do not do a disk read. Just fill in the
+** page content with zeros. But mark the fact that we have not read the
+** content by setting the PgHdr.needRead flag. Later on, if
+** sqlite3PagerWrite() is called on this page or if this routine is
+** called again with noContent==0, that means that the content is needed
+** and the disk read should occur at that point.
+*/
+static int pagerAcquire(
+ Pager *pPager, /* The pager open on the database file */
+ Pgno pgno, /* Page number to fetch */
+ DbPage **ppPage, /* Write a pointer to the page here */
+ int noContent /* Do not bother reading content from disk if true */
+){
+ PgHdr *pPg;
+ int rc;
+
+ assert( pPager->state==PAGER_UNLOCK || pPager->nRef>0 || pgno==1 );
+
+ /* The maximum page number is 2^31. Return SQLITE_CORRUPT if a page
+ ** number greater than this, or zero, is requested.
+ */
+ if( pgno>PAGER_MAX_PGNO || pgno==0 || pgno==PAGER_MJ_PGNO(pPager) ){
+ return SQLITE_CORRUPT_BKPT;
+ }
+
+ /* Make sure we have not hit any critical errors.
+ */
+ assert( pPager!=0 );
+ *ppPage = 0;
+
+ /* If this is the first page accessed, then get a SHARED lock
+ ** on the database file. pagerSharedLock() is a no-op if
+ ** a database lock is already held.
+ */
+ rc = pagerSharedLock(pPager);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ assert( pPager->state!=PAGER_UNLOCK );
+
+ pPg = pager_lookup(pPager, pgno);
+ if( pPg==0 ){
+ /* The requested page is not in the page cache. */
+ int nMax;
+ int h;
+ PAGER_INCR(pPager->nMiss);
+ rc = pagerAllocatePage(pPager, &pPg);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+
+ pPg->pgno = pgno;
+ assert( !MEMDB || pgno>pPager->stmtSize );
+ pPg->inJournal = sqlite3BitvecTest(pPager->pInJournal, pgno);
+ pPg->needSync = 0;
+
+ makeClean(pPg);
+ pPg->nRef = 1;
+
+ pPager->nRef++;
+ if( pPager->nExtra>0 ){
+ memset(PGHDR_TO_EXTRA(pPg, pPager), 0, pPager->nExtra);
+ }
+ nMax = sqlite3PagerPagecount(pPager);
+ if( pPager->errCode ){
+ rc = pPager->errCode;
+ sqlite3PagerUnref(pPg);
+ return rc;
+ }
+
+ /* Populate the page with data, either by reading from the database
+ ** file, or by setting the entire page to zero.
+ */
+ if( nMax<(int)pgno || MEMDB || (noContent && !pPager->alwaysRollback) ){
+ if( pgno>pPager->mxPgno ){
+ sqlite3PagerUnref(pPg);
+ return SQLITE_FULL;
+ }
+ memset(PGHDR_TO_DATA(pPg), 0, pPager->pageSize);
+ pPg->needRead = noContent && !pPager->alwaysRollback;
+ IOTRACE(("ZERO %p %d\n", pPager, pgno));
+ }else{
+ rc = readDbPage(pPager, pPg, pgno);
+ if( rc!=SQLITE_OK && rc!=SQLITE_IOERR_SHORT_READ ){
+ pPg->pgno = 0;
+ sqlite3PagerUnref(pPg);
+ return rc;
+ }
+ pPg->needRead = 0;
+ }
+
+ /* Link the page into the page hash table */
+ h = pgno & (pPager->nHash-1);
+ assert( pgno!=0 );
+ pPg->pNextHash = pPager->aHash[h];
+ pPager->aHash[h] = pPg;
+ if( pPg->pNextHash ){
+ assert( pPg->pNextHash->pPrevHash==0 );
+ pPg->pNextHash->pPrevHash = pPg;
+ }
+
+#ifdef SQLITE_CHECK_PAGES
+ pPg->pageHash = pager_pagehash(pPg);
+#endif
+ }else{
+ /* The requested page is in the page cache. */
+ assert(pPager->nRef>0 || pgno==1);
+ PAGER_INCR(pPager->nHit);
+ if( !noContent ){
+ rc = pager_get_content(pPg);
+ if( rc ){
+ return rc;
+ }
+ }
+ page_ref(pPg);
+ }
+ *ppPage = pPg;
+ return SQLITE_OK;
+}
+SQLITE_PRIVATE int sqlite3PagerAcquire(
+ Pager *pPager, /* The pager open on the database file */
+ Pgno pgno, /* Page number to fetch */
+ DbPage **ppPage, /* Write a pointer to the page here */
+ int noContent /* Do not bother reading content from disk if true */
+){
+ int rc;
+ pagerEnter(pPager);
+ rc = pagerAcquire(pPager, pgno, ppPage, noContent);
+ pagerLeave(pPager);
+ return rc;
+}
+
+
+/*
+** Acquire a page if it is already in the in-memory cache. Do
+** not read the page from disk. Return a pointer to the page,
+** or 0 if the page is not in cache.
+**
+** See also sqlite3PagerGet(). The difference between this routine
+** and sqlite3PagerGet() is that _get() will go to the disk and read
+** in the page if the page is not already in cache. This routine
+** returns NULL if the page is not in cache or if a disk I/O error
+** has ever happened.
+*/
+SQLITE_PRIVATE DbPage *sqlite3PagerLookup(Pager *pPager, Pgno pgno){
+ PgHdr *pPg = 0;
+
+ assert( pPager!=0 );
+ assert( pgno!=0 );
+
+ pagerEnter(pPager);
+ if( pPager->state==PAGER_UNLOCK ){
+ assert( !pPager->pAll || pPager->exclusiveMode );
+ }else if( pPager->errCode && pPager->errCode!=SQLITE_FULL ){
+ /* Do nothing */
+ }else if( (pPg = pager_lookup(pPager, pgno))!=0 ){
+ page_ref(pPg);
+ }
+ pagerLeave(pPager);
+ return pPg;
+}
+
+/*
+** Release a page.
+**
+** If the number of references to the page drop to zero, then the
+** page is added to the LRU list. When all references to all pages
+** are released, a rollback occurs and the lock on the database is
+** removed.
+*/
+SQLITE_PRIVATE int sqlite3PagerUnref(DbPage *pPg){
+ Pager *pPager;
+
+ if( pPg==0 ) return SQLITE_OK;
+ pPager = pPg->pPager;
+
+ /* Decrement the reference count for this page
+ */
+ assert( pPg->nRef>0 );
+ pagerEnter(pPg->pPager);
+ pPg->nRef--;
+
+ CHECK_PAGE(pPg);
+
+ /* When the number of references to a page reach 0, call the
+ ** destructor and add the page to the freelist.
+ */
+ if( pPg->nRef==0 ){
+
+ lruListAdd(pPg);
+ if( pPager->xDestructor ){
+ pPager->xDestructor(pPg, pPager->pageSize);
+ }
+
+ /* When all pages reach the freelist, drop the read lock from
+ ** the database file.
+ */
+ pPager->nRef--;
+ assert( pPager->nRef>=0 );
+ if( pPager->nRef==0 && (!pPager->exclusiveMode || pPager->journalOff>0) ){
+ pagerUnlockAndRollback(pPager);
+ }
+ }
+ pagerLeave(pPager);
+ return SQLITE_OK;
+}
+
+/*
+** Create a journal file for pPager. There should already be a RESERVED
+** or EXCLUSIVE lock on the database file when this routine is called.
+**
+** Return SQLITE_OK if everything. Return an error code and release the
+** write lock if anything goes wrong.
+*/
+static int pager_open_journal(Pager *pPager){
+ sqlite3_vfs *pVfs = pPager->pVfs;
+ int flags = (SQLITE_OPEN_READWRITE|SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_CREATE);
+
+ int rc;
+ assert( !MEMDB );
+ assert( pPager->state>=PAGER_RESERVED );
+ assert( pPager->useJournal );
+ assert( pPager->pInJournal==0 );
+ sqlite3PagerPagecount(pPager);
+ pagerLeave(pPager);
+ pPager->pInJournal = sqlite3BitvecCreate(pPager->dbSize);
+ pagerEnter(pPager);
+ if( pPager->pInJournal==0 ){
+ rc = SQLITE_NOMEM;
+ goto failed_to_open_journal;
+ }
+
+ if( pPager->journalOpen==0 ){
+ if( pPager->tempFile ){
+ flags |= (SQLITE_OPEN_DELETEONCLOSE|SQLITE_OPEN_TEMP_JOURNAL);
+ }else{
+ flags |= (SQLITE_OPEN_MAIN_JOURNAL);
+ }
+#ifdef SQLITE_ENABLE_ATOMIC_WRITE
+ rc = sqlite3JournalOpen(
+ pVfs, pPager->zJournal, pPager->jfd, flags, jrnlBufferSize(pPager)
+ );
+#else
+ rc = sqlite3OsOpen(pVfs, pPager->zJournal, pPager->jfd, flags, 0);
+#endif
+ assert( rc!=SQLITE_OK || pPager->jfd->pMethods );
+ pPager->journalOff = 0;
+ pPager->setMaster = 0;
+ pPager->journalHdr = 0;
+ if( rc!=SQLITE_OK ){
+ if( rc==SQLITE_NOMEM ){
+ sqlite3OsDelete(pVfs, pPager->zJournal, 0);
+ }
+ goto failed_to_open_journal;
+ }
+ }
+ pPager->journalOpen = 1;
+ pPager->journalStarted = 0;
+ pPager->needSync = 0;
+ pPager->alwaysRollback = 0;
+ pPager->nRec = 0;
+ if( pPager->errCode ){
+ rc = pPager->errCode;
+ goto failed_to_open_journal;
+ }
+ pPager->origDbSize = pPager->dbSize;
+
+ rc = writeJournalHdr(pPager);
+
+ if( pPager->stmtAutoopen && rc==SQLITE_OK ){
+ rc = sqlite3PagerStmtBegin(pPager);
+ }
+ if( rc!=SQLITE_OK && rc!=SQLITE_NOMEM && rc!=SQLITE_IOERR_NOMEM ){
+ rc = pager_end_transaction(pPager, 0);
+ if( rc==SQLITE_OK ){
+ rc = SQLITE_FULL;
+ }
+ }
+ return rc;
+
+failed_to_open_journal:
+ sqlite3BitvecDestroy(pPager->pInJournal);
+ pPager->pInJournal = 0;
+ return rc;
+}
+
+/*
+** Acquire a write-lock on the database. The lock is removed when
+** the any of the following happen:
+**
+** * sqlite3PagerCommitPhaseTwo() is called.
+** * sqlite3PagerRollback() is called.
+** * sqlite3PagerClose() is called.
+** * sqlite3PagerUnref() is called to on every outstanding page.
+**
+** The first parameter to this routine is a pointer to any open page of the
+** database file. Nothing changes about the page - it is used merely to
+** acquire a pointer to the Pager structure and as proof that there is
+** already a read-lock on the database.
+**
+** The second parameter indicates how much space in bytes to reserve for a
+** master journal file-name at the start of the journal when it is created.
+**
+** A journal file is opened if this is not a temporary file. For temporary
+** files, the opening of the journal file is deferred until there is an
+** actual need to write to the journal.
+**
+** If the database is already reserved for writing, this routine is a no-op.
+**
+** If exFlag is true, go ahead and get an EXCLUSIVE lock on the file
+** immediately instead of waiting until we try to flush the cache. The
+** exFlag is ignored if a transaction is already active.
+*/
+SQLITE_PRIVATE int sqlite3PagerBegin(DbPage *pPg, int exFlag){
+ Pager *pPager = pPg->pPager;
+ int rc = SQLITE_OK;
+ pagerEnter(pPager);
+ assert( pPg->nRef>0 );
+ assert( pPager->state!=PAGER_UNLOCK );
+ if( pPager->state==PAGER_SHARED ){
+ assert( pPager->pInJournal==0 );
+ if( MEMDB ){
+ pPager->state = PAGER_EXCLUSIVE;
+ pPager->origDbSize = pPager->dbSize;
+ }else{
+ rc = sqlite3OsLock(pPager->fd, RESERVED_LOCK);
+ if( rc==SQLITE_OK ){
+ pPager->state = PAGER_RESERVED;
+ if( exFlag ){
+ rc = pager_wait_on_lock(pPager, EXCLUSIVE_LOCK);
+ }
+ }
+ if( rc!=SQLITE_OK ){
+ pagerLeave(pPager);
+ return rc;
+ }
+ pPager->dirtyCache = 0;
+ PAGERTRACE2("TRANSACTION %d\n", PAGERID(pPager));
+ if( pPager->useJournal && !pPager->tempFile
+ && pPager->journalMode!=PAGER_JOURNALMODE_OFF ){
+ rc = pager_open_journal(pPager);
+ }
+ }
+ }else if( pPager->journalOpen && pPager->journalOff==0 ){
+ /* This happens when the pager was in exclusive-access mode the last
+ ** time a (read or write) transaction was successfully concluded
+ ** by this connection. Instead of deleting the journal file it was
+ ** kept open and either was truncated to 0 bytes or its header was
+ ** overwritten with zeros.
+ */
+ assert( pPager->nRec==0 );
+ assert( pPager->origDbSize==0 );
+ assert( pPager->pInJournal==0 );
+ sqlite3PagerPagecount(pPager);
+ pagerLeave(pPager);
+ pPager->pInJournal = sqlite3BitvecCreate( pPager->dbSize );
+ pagerEnter(pPager);
+ if( !pPager->pInJournal ){
+ rc = SQLITE_NOMEM;
+ }else{
+ pPager->origDbSize = pPager->dbSize;
+ rc = writeJournalHdr(pPager);
+ }
+ }
+ assert( !pPager->journalOpen || pPager->journalOff>0 || rc!=SQLITE_OK );
+ pagerLeave(pPager);
+ return rc;
+}
+
+/*
+** Make a page dirty. Set its dirty flag and add it to the dirty
+** page list.
+*/
+static void makeDirty(PgHdr *pPg){
+ if( pPg->dirty==0 ){
+ Pager *pPager = pPg->pPager;
+ pPg->dirty = 1;
+ pPg->pDirty = pPager->pDirty;
+ if( pPager->pDirty ){
+ pPager->pDirty->pPrevDirty = pPg;
+ }
+ pPg->pPrevDirty = 0;
+ pPager->pDirty = pPg;
+ }
+}
+
+/*
+** Make a page clean. Clear its dirty bit and remove it from the
+** dirty page list.
+*/
+static void makeClean(PgHdr *pPg){
+ if( pPg->dirty ){
+ pPg->dirty = 0;
+ if( pPg->pDirty ){
+ assert( pPg->pDirty->pPrevDirty==pPg );
+ pPg->pDirty->pPrevDirty = pPg->pPrevDirty;
+ }
+ if( pPg->pPrevDirty ){
+ assert( pPg->pPrevDirty->pDirty==pPg );
+ pPg->pPrevDirty->pDirty = pPg->pDirty;
+ }else{
+ assert( pPg->pPager->pDirty==pPg );
+ pPg->pPager->pDirty = pPg->pDirty;
+ }
+ }
+}
+
+
+/*
+** Mark a data page as writeable. The page is written into the journal
+** if it is not there already. This routine must be called before making
+** changes to a page.
+**
+** The first time this routine is called, the pager creates a new
+** journal and acquires a RESERVED lock on the database. If the RESERVED
+** lock could not be acquired, this routine returns SQLITE_BUSY. The
+** calling routine must check for that return value and be careful not to
+** change any page data until this routine returns SQLITE_OK.
+**
+** If the journal file could not be written because the disk is full,
+** then this routine returns SQLITE_FULL and does an immediate rollback.
+** All subsequent write attempts also return SQLITE_FULL until there
+** is a call to sqlite3PagerCommit() or sqlite3PagerRollback() to
+** reset.
+*/
+static int pager_write(PgHdr *pPg){
+ void *pData = PGHDR_TO_DATA(pPg);
+ Pager *pPager = pPg->pPager;
+ int rc = SQLITE_OK;
+
+ /* Check for errors
+ */
+ if( pPager->errCode ){
+ return pPager->errCode;
+ }
+ if( pPager->readOnly ){
+ return SQLITE_PERM;
+ }
+
+ assert( !pPager->setMaster );
+
+ CHECK_PAGE(pPg);
+
+ /* If this page was previously acquired with noContent==1, that means
+ ** we didn't really read in the content of the page. This can happen
+ ** (for example) when the page is being moved to the freelist. But
+ ** now we are (perhaps) moving the page off of the freelist for
+ ** reuse and we need to know its original content so that content
+ ** can be stored in the rollback journal. So do the read at this
+ ** time.
+ */
+ rc = pager_get_content(pPg);
+ if( rc ){
+ return rc;
+ }
+
+ /* Mark the page as dirty. If the page has already been written
+ ** to the journal then we can return right away.
+ */
+ makeDirty(pPg);
+ if( pPg->inJournal && (pageInStatement(pPg) || pPager->stmtInUse==0) ){
+ pPager->dirtyCache = 1;
+ pPager->dbModified = 1;
+ }else{
+
+ /* If we get this far, it means that the page needs to be
+ ** written to the transaction journal or the ckeckpoint journal
+ ** or both.
+ **
+ ** First check to see that the transaction journal exists and
+ ** create it if it does not.
+ */
+ assert( pPager->state!=PAGER_UNLOCK );
+ rc = sqlite3PagerBegin(pPg, 0);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ assert( pPager->state>=PAGER_RESERVED );
+ if( !pPager->journalOpen && pPager->useJournal
+ && pPager->journalMode!=PAGER_JOURNALMODE_OFF ){
+ rc = pager_open_journal(pPager);
+ if( rc!=SQLITE_OK ) return rc;
+ }
+ pPager->dirtyCache = 1;
+ pPager->dbModified = 1;
+
+ /* The transaction journal now exists and we have a RESERVED or an
+ ** EXCLUSIVE lock on the main database file. Write the current page to
+ ** the transaction journal if it is not there already.
+ */
+ if( !pPg->inJournal && (pPager->journalOpen || MEMDB) ){
+ if( (int)pPg->pgno <= pPager->origDbSize ){
+ if( MEMDB ){
+ PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager);
+ PAGERTRACE3("JOURNAL %d page %d\n", PAGERID(pPager), pPg->pgno);
+ assert( pHist->pOrig==0 );
+ pHist->pOrig = sqlite3_malloc( pPager->pageSize );
+ if( !pHist->pOrig ){
+ return SQLITE_NOMEM;
+ }
+ memcpy(pHist->pOrig, PGHDR_TO_DATA(pPg), pPager->pageSize);
+ }else{
+ u32 cksum;
+ char *pData2;
+
+ /* We should never write to the journal file the page that
+ ** contains the database locks. The following assert verifies
+ ** that we do not. */
+ assert( pPg->pgno!=PAGER_MJ_PGNO(pPager) );
+ pData2 = CODEC2(pPager, pData, pPg->pgno, 7);
+ cksum = pager_cksum(pPager, (u8*)pData2);
+ rc = write32bits(pPager->jfd, pPager->journalOff, pPg->pgno);
+ if( rc==SQLITE_OK ){
+ rc = sqlite3OsWrite(pPager->jfd, pData2, pPager->pageSize,
+ pPager->journalOff + 4);
+ pPager->journalOff += pPager->pageSize+4;
+ }
+ if( rc==SQLITE_OK ){
+ rc = write32bits(pPager->jfd, pPager->journalOff, cksum);
+ pPager->journalOff += 4;
+ }
+ IOTRACE(("JOUT %p %d %lld %d\n", pPager, pPg->pgno,
+ pPager->journalOff, pPager->pageSize));
+ PAGER_INCR(sqlite3_pager_writej_count);
+ PAGERTRACE5("JOURNAL %d page %d needSync=%d hash(%08x)\n",
+ PAGERID(pPager), pPg->pgno, pPg->needSync, pager_pagehash(pPg));
+
+ /* An error has occured writing to the journal file. The
+ ** transaction will be rolled back by the layer above.
+ */
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+
+ pPager->nRec++;
+ assert( pPager->pInJournal!=0 );
+ sqlite3BitvecSet(pPager->pInJournal, pPg->pgno);
+ pPg->needSync = !pPager->noSync;
+ if( pPager->stmtInUse ){
+ sqlite3BitvecSet(pPager->pInStmt, pPg->pgno);
+ }
+ }
+ }else{
+ pPg->needSync = !pPager->journalStarted && !pPager->noSync;
+ PAGERTRACE4("APPEND %d page %d needSync=%d\n",
+ PAGERID(pPager), pPg->pgno, pPg->needSync);
+ }
+ if( pPg->needSync ){
+ pPager->needSync = 1;
+ }
+ pPg->inJournal = 1;
+ }
+
+ /* If the statement journal is open and the page is not in it,
+ ** then write the current page to the statement journal. Note that
+ ** the statement journal format differs from the standard journal format
+ ** in that it omits the checksums and the header.
+ */
+ if( pPager->stmtInUse
+ && !pageInStatement(pPg)
+ && (int)pPg->pgno<=pPager->stmtSize
+ ){
+ assert( pPg->inJournal || (int)pPg->pgno>pPager->origDbSize );
+ if( MEMDB ){
+ PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager);
+ assert( pHist->pStmt==0 );
+ pHist->pStmt = sqlite3_malloc( pPager->pageSize );
+ if( pHist->pStmt ){
+ memcpy(pHist->pStmt, PGHDR_TO_DATA(pPg), pPager->pageSize);
+ }
+ PAGERTRACE3("STMT-JOURNAL %d page %d\n", PAGERID(pPager), pPg->pgno);
+ page_add_to_stmt_list(pPg);
+ }else{
+ i64 offset = pPager->stmtNRec*(4+pPager->pageSize);
+ char *pData2 = CODEC2(pPager, pData, pPg->pgno, 7);
+ rc = write32bits(pPager->stfd, offset, pPg->pgno);
+ if( rc==SQLITE_OK ){
+ rc = sqlite3OsWrite(pPager->stfd, pData2, pPager->pageSize, offset+4);
+ }
+ PAGERTRACE3("STMT-JOURNAL %d page %d\n", PAGERID(pPager), pPg->pgno);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ pPager->stmtNRec++;
+ assert( pPager->pInStmt!=0 );
+ sqlite3BitvecSet(pPager->pInStmt, pPg->pgno);
+ }
+ }
+ }
+
+ /* Update the database size and return.
+ */
+ assert( pPager->state>=PAGER_SHARED );
+ if( pPager->dbSize<(int)pPg->pgno ){
+ pPager->dbSize = pPg->pgno;
+ if( !MEMDB && pPager->dbSize==PENDING_BYTE/pPager->pageSize ){
+ pPager->dbSize++;
+ }
+ }
+ return rc;
+}
+
+/*
+** This function is used to mark a data-page as writable. It uses
+** pager_write() to open a journal file (if it is not already open)
+** and write the page *pData to the journal.
+**
+** The difference between this function and pager_write() is that this
+** function also deals with the special case where 2 or more pages
+** fit on a single disk sector. In this case all co-resident pages
+** must have been written to the journal file before returning.
+*/
+SQLITE_PRIVATE int sqlite3PagerWrite(DbPage *pDbPage){
+ int rc = SQLITE_OK;
+
+ PgHdr *pPg = pDbPage;
+ Pager *pPager = pPg->pPager;
+ Pgno nPagePerSector = (pPager->sectorSize/pPager->pageSize);
+
+ pagerEnter(pPager);
+ if( !MEMDB && nPagePerSector>1 ){
+ Pgno nPageCount; /* Total number of pages in database file */
+ Pgno pg1; /* First page of the sector pPg is located on. */
+ int nPage; /* Number of pages starting at pg1 to journal */
+ int ii;
+ int needSync = 0;
+
+ /* Set the doNotSync flag to 1. This is because we cannot allow a journal
+ ** header to be written between the pages journaled by this function.
+ */
+ assert( pPager->doNotSync==0 );
+ pPager->doNotSync = 1;
+
+ /* This trick assumes that both the page-size and sector-size are
+ ** an integer power of 2. It sets variable pg1 to the identifier
+ ** of the first page of the sector pPg is located on.
+ */
+ pg1 = ((pPg->pgno-1) & ~(nPagePerSector-1)) + 1;
+
+ nPageCount = sqlite3PagerPagecount(pPager);
+ if( pPg->pgno>nPageCount ){
+ nPage = (pPg->pgno - pg1)+1;
+ }else if( (pg1+nPagePerSector-1)>nPageCount ){
+ nPage = nPageCount+1-pg1;
+ }else{
+ nPage = nPagePerSector;
+ }
+ assert(nPage>0);
+ assert(pg1<=pPg->pgno);
+ assert((pg1+nPage)>pPg->pgno);
+
+ for(ii=0; ii<nPage && rc==SQLITE_OK; ii++){
+ Pgno pg = pg1+ii;
+ PgHdr *pPage;
+ if( pg==pPg->pgno || !sqlite3BitvecTest(pPager->pInJournal, pg) ){
+ if( pg!=PAGER_MJ_PGNO(pPager) ){
+ rc = sqlite3PagerGet(pPager, pg, &pPage);
+ if( rc==SQLITE_OK ){
+ rc = pager_write(pPage);
+ if( pPage->needSync ){
+ needSync = 1;
+ }
+ sqlite3PagerUnref(pPage);
+ }
+ }
+ }else if( (pPage = pager_lookup(pPager, pg))!=0 ){
+ if( pPage->needSync ){
+ needSync = 1;
+ }
+ }
+ }
+
+ /* If the PgHdr.needSync flag is set for any of the nPage pages
+ ** starting at pg1, then it needs to be set for all of them. Because
+ ** writing to any of these nPage pages may damage the others, the
+ ** journal file must contain sync()ed copies of all of them
+ ** before any of them can be written out to the database file.
+ */
+ if( needSync ){
+ for(ii=0; ii<nPage && needSync; ii++){
+ PgHdr *pPage = pager_lookup(pPager, pg1+ii);
+ if( pPage ) pPage->needSync = 1;
+ }
+ assert(pPager->needSync);
+ }
+
+ assert( pPager->doNotSync==1 );
+ pPager->doNotSync = 0;
+ }else{
+ rc = pager_write(pDbPage);
+ }
+ pagerLeave(pPager);
+ return rc;
+}
+
+/*
+** Return TRUE if the page given in the argument was previously passed
+** to sqlite3PagerWrite(). In other words, return TRUE if it is ok
+** to change the content of the page.
+*/
+#ifndef NDEBUG
+SQLITE_PRIVATE int sqlite3PagerIswriteable(DbPage *pPg){
+ return pPg->dirty;
+}
+#endif
+
+/*
+** A call to this routine tells the pager that it is not necessary to
+** write the information on page pPg back to the disk, even though
+** that page might be marked as dirty.
+**
+** The overlying software layer calls this routine when all of the data
+** on the given page is unused. The pager marks the page as clean so
+** that it does not get written to disk.
+**
+** Tests show that this optimization, together with the
+** sqlite3PagerDontRollback() below, more than double the speed
+** of large INSERT operations and quadruple the speed of large DELETEs.
+**
+** When this routine is called, set the alwaysRollback flag to true.
+** Subsequent calls to sqlite3PagerDontRollback() for the same page
+** will thereafter be ignored. This is necessary to avoid a problem
+** where a page with data is added to the freelist during one part of
+** a transaction then removed from the freelist during a later part
+** of the same transaction and reused for some other purpose. When it
+** is first added to the freelist, this routine is called. When reused,
+** the sqlite3PagerDontRollback() routine is called. But because the
+** page contains critical data, we still need to be sure it gets
+** rolled back in spite of the sqlite3PagerDontRollback() call.
+*/
+SQLITE_PRIVATE void sqlite3PagerDontWrite(DbPage *pDbPage){
+ PgHdr *pPg = pDbPage;
+ Pager *pPager = pPg->pPager;
+
+ if( MEMDB ) return;
+ pagerEnter(pPager);
+ pPg->alwaysRollback = 1;
+ if( pPg->dirty && !pPager->stmtInUse ){
+ assert( pPager->state>=PAGER_SHARED );
+ if( pPager->dbSize==(int)pPg->pgno && pPager->origDbSize<pPager->dbSize ){
+ /* If this pages is the last page in the file and the file has grown
+ ** during the current transaction, then do NOT mark the page as clean.
+ ** When the database file grows, we must make sure that the last page
+ ** gets written at least once so that the disk file will be the correct
+ ** size. If you do not write this page and the size of the file
+ ** on the disk ends up being too small, that can lead to database
+ ** corruption during the next transaction.
+ */
+ }else{
+ PAGERTRACE3("DONT_WRITE page %d of %d\n", pPg->pgno, PAGERID(pPager));
+ IOTRACE(("CLEAN %p %d\n", pPager, pPg->pgno))
+ makeClean(pPg);
+#ifdef SQLITE_CHECK_PAGES
+ pPg->pageHash = pager_pagehash(pPg);
+#endif
+ }
+ }
+ pagerLeave(pPager);
+}
+
+/*
+** A call to this routine tells the pager that if a rollback occurs,
+** it is not necessary to restore the data on the given page. This
+** means that the pager does not have to record the given page in the
+** rollback journal.
+**
+** If we have not yet actually read the content of this page (if
+** the PgHdr.needRead flag is set) then this routine acts as a promise
+** that we will never need to read the page content in the future.
+** so the needRead flag can be cleared at this point.
+*/
+SQLITE_PRIVATE void sqlite3PagerDontRollback(DbPage *pPg){
+ Pager *pPager = pPg->pPager;
+
+ pagerEnter(pPager);
+ assert( pPager->state>=PAGER_RESERVED );
+
+ /* If the journal file is not open, or DontWrite() has been called on
+ ** this page (DontWrite() sets the alwaysRollback flag), then this
+ ** function is a no-op.
+ */
+ if( pPager->journalOpen==0 || pPg->alwaysRollback || pPager->alwaysRollback ){
+ pagerLeave(pPager);
+ return;
+ }
+ assert( !MEMDB ); /* For a memdb, pPager->journalOpen is always 0 */
+
+#ifdef SQLITE_SECURE_DELETE
+ if( pPg->inJournal || (int)pPg->pgno > pPager->origDbSize ){
+ return;
+ }
+#endif
+
+ /* If SECURE_DELETE is disabled, then there is no way that this
+ ** routine can be called on a page for which sqlite3PagerDontWrite()
+ ** has not been previously called during the same transaction.
+ ** And if DontWrite() has previously been called, the following
+ ** conditions must be met.
+ */
+ assert( !pPg->inJournal && (int)pPg->pgno <= pPager->origDbSize );
+
+ assert( pPager->pInJournal!=0 );
+ sqlite3BitvecSet(pPager->pInJournal, pPg->pgno);
+ pPg->inJournal = 1;
+ pPg->needRead = 0;
+ if( pPager->stmtInUse ){
+ assert( pPager->stmtSize >= pPager->origDbSize );
+ sqlite3BitvecSet(pPager->pInStmt, pPg->pgno);
+ }
+ PAGERTRACE3("DONT_ROLLBACK page %d of %d\n", pPg->pgno, PAGERID(pPager));
+ IOTRACE(("GARBAGE %p %d\n", pPager, pPg->pgno))
+ pagerLeave(pPager);
+}
+
+
+/*
+** This routine is called to increment the database file change-counter,
+** stored at byte 24 of the pager file.
+*/
+static int pager_incr_changecounter(Pager *pPager, int isDirect){
+ PgHdr *pPgHdr;
+ u32 change_counter;
+ int rc = SQLITE_OK;
+
+ if( !pPager->changeCountDone ){
+ /* Open page 1 of the file for writing. */
+ rc = sqlite3PagerGet(pPager, 1, &pPgHdr);
+ if( rc!=SQLITE_OK ) return rc;
+
+ if( !isDirect ){
+ rc = sqlite3PagerWrite(pPgHdr);
+ if( rc!=SQLITE_OK ){
+ sqlite3PagerUnref(pPgHdr);
+ return rc;
+ }
+ }
+
+ /* Increment the value just read and write it back to byte 24. */
+ change_counter = sqlite3Get4byte((u8*)pPager->dbFileVers);
+ change_counter++;
+ put32bits(((char*)PGHDR_TO_DATA(pPgHdr))+24, change_counter);
+
+ if( isDirect && pPager->fd->pMethods ){
+ const void *zBuf = PGHDR_TO_DATA(pPgHdr);
+ rc = sqlite3OsWrite(pPager->fd, zBuf, pPager->pageSize, 0);
+ }
+
+ /* Release the page reference. */
+ sqlite3PagerUnref(pPgHdr);
+ pPager->changeCountDone = 1;
+ }
+ return rc;
+}
+
+/*
+** Sync the pager file to disk.
+*/
+SQLITE_PRIVATE int sqlite3PagerSync(Pager *pPager){
+ int rc;
+ pagerEnter(pPager);
+ rc = sqlite3OsSync(pPager->fd, pPager->sync_flags);
+ pagerLeave(pPager);
+ return rc;
+}
+
+/*
+** Sync the database file for the pager pPager. zMaster points to the name
+** of a master journal file that should be written into the individual
+** journal file. zMaster may be NULL, which is interpreted as no master
+** journal (a single database transaction).
+**
+** This routine ensures that the journal is synced, all dirty pages written
+** to the database file and the database file synced. The only thing that
+** remains to commit the transaction is to delete the journal file (or
+** master journal file if specified).
+**
+** Note that if zMaster==NULL, this does not overwrite a previous value
+** passed to an sqlite3PagerCommitPhaseOne() call.
+**
+** If parameter nTrunc is non-zero, then the pager file is truncated to
+** nTrunc pages (this is used by auto-vacuum databases).
+**
+** If the final parameter - noSync - is true, then the database file itself
+** is not synced. The caller must call sqlite3PagerSync() directly to
+** sync the database file before calling CommitPhaseTwo() to delete the
+** journal file in this case.
+*/
+SQLITE_PRIVATE int sqlite3PagerCommitPhaseOne(
+ Pager *pPager,
+ const char *zMaster,
+ Pgno nTrunc,
+ int noSync
+){
+ int rc = SQLITE_OK;
+
+ /* If no changes have been made, we can leave the transaction early.
+ */
+ if( pPager->dbModified==0 &&
+ (pPager->journalMode!=PAGER_JOURNALMODE_DELETE ||
+ pPager->exclusiveMode!=0) ){
+ assert( pPager->dirtyCache==0 || pPager->journalOpen==0 );
+ return SQLITE_OK;
+ }
+
+ PAGERTRACE4("DATABASE SYNC: File=%s zMaster=%s nTrunc=%d\n",
+ pPager->zFilename, zMaster, nTrunc);
+ pagerEnter(pPager);
+
+ /* If this is an in-memory db, or no pages have been written to, or this
+ ** function has already been called, it is a no-op.
+ */
+ if( pPager->state!=PAGER_SYNCED && !MEMDB && pPager->dirtyCache ){
+ PgHdr *pPg;
+
+#ifdef SQLITE_ENABLE_ATOMIC_WRITE
+ /* The atomic-write optimization can be used if all of the
+ ** following are true:
+ **
+ ** + The file-system supports the atomic-write property for
+ ** blocks of size page-size, and
+ ** + This commit is not part of a multi-file transaction, and
+ ** + Exactly one page has been modified and store in the journal file.
+ **
+ ** If the optimization can be used, then the journal file will never
+ ** be created for this transaction.
+ */
+ int useAtomicWrite = (
+ !zMaster &&
+ pPager->journalOpen &&
+ pPager->journalOff==jrnlBufferSize(pPager) &&
+ nTrunc==0 &&
+ (0==pPager->pDirty || 0==pPager->pDirty->pDirty)
+ );
+ assert( pPager->journalOpen || pPager->journalMode==PAGER_JOURNALMODE_OFF );
+ if( useAtomicWrite ){
+ /* Update the nRec field in the journal file. */
+ int offset = pPager->journalHdr + sizeof(aJournalMagic);
+ assert(pPager->nRec==1);
+ rc = write32bits(pPager->jfd, offset, pPager->nRec);
+
+ /* Update the db file change counter. The following call will modify
+ ** the in-memory representation of page 1 to include the updated
+ ** change counter and then write page 1 directly to the database
+ ** file. Because of the atomic-write property of the host file-system,
+ ** this is safe.
+ */
+ if( rc==SQLITE_OK ){
+ rc = pager_incr_changecounter(pPager, 1);
+ }
+ }else{
+ rc = sqlite3JournalCreate(pPager->jfd);
+ }
+
+ if( !useAtomicWrite && rc==SQLITE_OK )
+#endif
+
+ /* If a master journal file name has already been written to the
+ ** journal file, then no sync is required. This happens when it is
+ ** written, then the process fails to upgrade from a RESERVED to an
+ ** EXCLUSIVE lock. The next time the process tries to commit the
+ ** transaction the m-j name will have already been written.
+ */
+ if( !pPager->setMaster ){
+ rc = pager_incr_changecounter(pPager, 0);
+ if( rc!=SQLITE_OK ) goto sync_exit;
+#ifndef SQLITE_OMIT_AUTOVACUUM
+ if( nTrunc!=0 ){
+ /* If this transaction has made the database smaller, then all pages
+ ** being discarded by the truncation must be written to the journal
+ ** file.
+ */
+ Pgno i;
+ int iSkip = PAGER_MJ_PGNO(pPager);
+ for( i=nTrunc+1; i<=pPager->origDbSize; i++ ){
+ if( !sqlite3BitvecTest(pPager->pInJournal, i) && i!=iSkip ){
+ rc = sqlite3PagerGet(pPager, i, &pPg);
+ if( rc!=SQLITE_OK ) goto sync_exit;
+ rc = sqlite3PagerWrite(pPg);
+ sqlite3PagerUnref(pPg);
+ if( rc!=SQLITE_OK ) goto sync_exit;
+ }
+ }
+ }
+#endif
+ rc = writeMasterJournal(pPager, zMaster);
+ if( rc!=SQLITE_OK ) goto sync_exit;
+ rc = syncJournal(pPager);
+ }
+ if( rc!=SQLITE_OK ) goto sync_exit;
+
+#ifndef SQLITE_OMIT_AUTOVACUUM
+ if( nTrunc!=0 ){
+ rc = sqlite3PagerTruncate(pPager, nTrunc);
+ if( rc!=SQLITE_OK ) goto sync_exit;
+ }
+#endif
+
+ /* Write all dirty pages to the database file */
+ pPg = pager_get_all_dirty_pages(pPager);
+ rc = pager_write_pagelist(pPg);
+ if( rc!=SQLITE_OK ){
+ assert( rc!=SQLITE_IOERR_BLOCKED );
+ /* The error might have left the dirty list all fouled up here,
+ ** but that does not matter because if the if the dirty list did
+ ** get corrupted, then the transaction will roll back and
+ ** discard the dirty list. There is an assert in
+ ** pager_get_all_dirty_pages() that verifies that no attempt
+ ** is made to use an invalid dirty list.
+ */
+ goto sync_exit;
+ }
+ pPager->pDirty = 0;
+
+ /* Sync the database file. */
+ if( !pPager->noSync && !noSync ){
+ rc = sqlite3OsSync(pPager->fd, pPager->sync_flags);
+ }
+ IOTRACE(("DBSYNC %p\n", pPager))
+
+ pPager->state = PAGER_SYNCED;
+ }else if( MEMDB && nTrunc!=0 ){
+ rc = sqlite3PagerTruncate(pPager, nTrunc);
+ }
+
+sync_exit:
+ if( rc==SQLITE_IOERR_BLOCKED ){
+ /* pager_incr_changecounter() may attempt to obtain an exclusive
+ * lock to spill the cache and return IOERR_BLOCKED. But since
+ * there is no chance the cache is inconsistent, it is
+ * better to return SQLITE_BUSY.
+ */
+ rc = SQLITE_BUSY;
+ }
+ pagerLeave(pPager);
+ return rc;
+}
+
+
+/*
+** Commit all changes to the database and release the write lock.
+**
+** If the commit fails for any reason, a rollback attempt is made
+** and an error code is returned. If the commit worked, SQLITE_OK
+** is returned.
+*/
+SQLITE_PRIVATE int sqlite3PagerCommitPhaseTwo(Pager *pPager){
+ int rc;
+ PgHdr *pPg;
+
+ if( pPager->errCode ){
+ return pPager->errCode;
+ }
+ if( pPager->state<PAGER_RESERVED ){
+ return SQLITE_ERROR;
+ }
+ if( pPager->dbModified==0 &&
+ (pPager->journalMode!=PAGER_JOURNALMODE_DELETE ||
+ pPager->exclusiveMode!=0) ){
+ assert( pPager->dirtyCache==0 || pPager->journalOpen==0 );
+ return SQLITE_OK;
+ }
+ pagerEnter(pPager);
+ PAGERTRACE2("COMMIT %d\n", PAGERID(pPager));
+ if( MEMDB ){
+ pPg = pager_get_all_dirty_pages(pPager);
+ while( pPg ){
+ PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager);
+ clearHistory(pHist);
+ pPg->dirty = 0;
+ pPg->inJournal = 0;
+ pHist->inStmt = 0;
+ pPg->needSync = 0;
+ pHist->pPrevStmt = pHist->pNextStmt = 0;
+ pPg = pPg->pDirty;
+ }
+ pPager->pDirty = 0;
+#ifndef NDEBUG
+ for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){
+ PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager);
+ assert( !pPg->alwaysRollback );
+ assert( !pHist->pOrig );
+ assert( !pHist->pStmt );
+ }
+#endif
+ pPager->pStmt = 0;
+ pPager->state = PAGER_SHARED;
+ pagerLeave(pPager);
+ return SQLITE_OK;
+ }
+ assert( pPager->state==PAGER_SYNCED || !pPager->dirtyCache );
+ rc = pager_end_transaction(pPager, pPager->setMaster);
+ rc = pager_error(pPager, rc);
+ pagerLeave(pPager);
+ return rc;
+}
+
+/*
+** Rollback all changes. The database falls back to PAGER_SHARED mode.
+** All in-memory cache pages revert to their original data contents.
+** The journal is deleted.
+**
+** This routine cannot fail unless some other process is not following
+** the correct locking protocol or unless some other
+** process is writing trash into the journal file (SQLITE_CORRUPT) or
+** unless a prior malloc() failed (SQLITE_NOMEM). Appropriate error
+** codes are returned for all these occasions. Otherwise,
+** SQLITE_OK is returned.
+*/
+SQLITE_PRIVATE int sqlite3PagerRollback(Pager *pPager){
+ int rc;
+ PAGERTRACE2("ROLLBACK %d\n", PAGERID(pPager));
+ if( MEMDB ){
+ PgHdr *p;
+ for(p=pPager->pAll; p; p=p->pNextAll){
+ PgHistory *pHist;
+ assert( !p->alwaysRollback );
+ if( !p->dirty ){
+ assert( !((PgHistory *)PGHDR_TO_HIST(p, pPager))->pOrig );
+ assert( !((PgHistory *)PGHDR_TO_HIST(p, pPager))->pStmt );
+ continue;
+ }
+
+ pHist = PGHDR_TO_HIST(p, pPager);
+ if( pHist->pOrig ){
+ memcpy(PGHDR_TO_DATA(p), pHist->pOrig, pPager->pageSize);
+ PAGERTRACE3("ROLLBACK-PAGE %d of %d\n", p->pgno, PAGERID(pPager));
+ }else{
+ PAGERTRACE3("PAGE %d is clean on %d\n", p->pgno, PAGERID(pPager));
+ }
+ clearHistory(pHist);
+ p->dirty = 0;
+ p->inJournal = 0;
+ pHist->inStmt = 0;
+ pHist->pPrevStmt = pHist->pNextStmt = 0;
+ if( pPager->xReiniter ){
+ pPager->xReiniter(p, pPager->pageSize);
+ }
+ }
+ pPager->pDirty = 0;
+ pPager->pStmt = 0;
+ pPager->dbSize = pPager->origDbSize;
+ pager_truncate_cache(pPager);
+ pPager->stmtInUse = 0;
+ pPager->state = PAGER_SHARED;
+ return SQLITE_OK;
+ }
+
+ pagerEnter(pPager);
+ if( !pPager->dirtyCache || !pPager->journalOpen ){
+ rc = pager_end_transaction(pPager, pPager->setMaster);
+ pagerLeave(pPager);
+ return rc;
+ }
+
+ if( pPager->errCode && pPager->errCode!=SQLITE_FULL ){
+ if( pPager->state>=PAGER_EXCLUSIVE ){
+ pager_playback(pPager, 0);
+ }
+ pagerLeave(pPager);
+ return pPager->errCode;
+ }
+ if( pPager->state==PAGER_RESERVED ){
+ int rc2;
+ rc = pager_playback(pPager, 0);
+ rc2 = pager_end_transaction(pPager, pPager->setMaster);
+ if( rc==SQLITE_OK ){
+ rc = rc2;
+ }
+ }else{
+ rc = pager_playback(pPager, 0);
+ }
+ /* pager_reset(pPager); */
+ pPager->dbSize = -1;
+
+ /* If an error occurs during a ROLLBACK, we can no longer trust the pager
+ ** cache. So call pager_error() on the way out to make any error
+ ** persistent.
+ */
+ rc = pager_error(pPager, rc);
+ pagerLeave(pPager);
+ return rc;
+}
+
+/*
+** Return TRUE if the database file is opened read-only. Return FALSE
+** if the database is (in theory) writable.
+*/
+SQLITE_PRIVATE int sqlite3PagerIsreadonly(Pager *pPager){
+ return pPager->readOnly;
+}
+
+/*
+** Return the number of references to the pager.
+*/
+SQLITE_PRIVATE int sqlite3PagerRefcount(Pager *pPager){
+ return pPager->nRef;
+}
+
+#ifdef SQLITE_TEST
+/*
+** This routine is used for testing and analysis only.
+*/
+SQLITE_PRIVATE int *sqlite3PagerStats(Pager *pPager){
+ static int a[11];
+ a[0] = pPager->nRef;
+ a[1] = pPager->nPage;
+ a[2] = pPager->mxPage;
+ a[3] = pPager->dbSize;
+ a[4] = pPager->state;
+ a[5] = pPager->errCode;
+ a[6] = pPager->nHit;
+ a[7] = pPager->nMiss;
+ a[8] = 0; /* Used to be pPager->nOvfl */
+ a[9] = pPager->nRead;
+ a[10] = pPager->nWrite;
+ return a;
+}
+#endif
+
+/*
+** Set the statement rollback point.
+**
+** This routine should be called with the transaction journal already
+** open. A new statement journal is created that can be used to rollback
+** changes of a single SQL command within a larger transaction.
+*/
+static int pagerStmtBegin(Pager *pPager){
+ int rc;
+ assert( !pPager->stmtInUse );
+ assert( pPager->state>=PAGER_SHARED );
+ assert( pPager->dbSize>=0 );
+ PAGERTRACE2("STMT-BEGIN %d\n", PAGERID(pPager));
+ if( MEMDB ){
+ pPager->stmtInUse = 1;
+ pPager->stmtSize = pPager->dbSize;
+ return SQLITE_OK;
+ }
+ if( !pPager->journalOpen ){
+ pPager->stmtAutoopen = 1;
+ return SQLITE_OK;
+ }
+ assert( pPager->journalOpen );
+ pagerLeave(pPager);
+ assert( pPager->pInStmt==0 );
+ pPager->pInStmt = sqlite3BitvecCreate(pPager->dbSize);
+ pagerEnter(pPager);
+ if( pPager->pInStmt==0 ){
+ /* sqlite3OsLock(pPager->fd, SHARED_LOCK); */
+ return SQLITE_NOMEM;
+ }
+ pPager->stmtJSize = pPager->journalOff;
+ pPager->stmtSize = pPager->dbSize;
+ pPager->stmtHdrOff = 0;
+ pPager->stmtCksum = pPager->cksumInit;
+ if( !pPager->stmtOpen ){
+ rc = sqlite3PagerOpentemp(pPager->pVfs, pPager->stfd, pPager->zStmtJrnl,
+ SQLITE_OPEN_SUBJOURNAL);
+ if( rc ){
+ goto stmt_begin_failed;
+ }
+ pPager->stmtOpen = 1;
+ pPager->stmtNRec = 0;
+ }
+ pPager->stmtInUse = 1;
+ return SQLITE_OK;
+
+stmt_begin_failed:
+ if( pPager->pInStmt ){
+ sqlite3BitvecDestroy(pPager->pInStmt);
+ pPager->pInStmt = 0;
+ }
+ return rc;
+}
+SQLITE_PRIVATE int sqlite3PagerStmtBegin(Pager *pPager){
+ int rc;
+ pagerEnter(pPager);
+ rc = pagerStmtBegin(pPager);
+ pagerLeave(pPager);
+ return rc;
+}
+
+/*
+** Commit a statement.
+*/
+SQLITE_PRIVATE int sqlite3PagerStmtCommit(Pager *pPager){
+ pagerEnter(pPager);
+ if( pPager->stmtInUse ){
+ PgHdr *pPg, *pNext;
+ PAGERTRACE2("STMT-COMMIT %d\n", PAGERID(pPager));
+ if( !MEMDB ){
+ /* sqlite3OsTruncate(pPager->stfd, 0); */
+ sqlite3BitvecDestroy(pPager->pInStmt);
+ pPager->pInStmt = 0;
+ }else{
+ for(pPg=pPager->pStmt; pPg; pPg=pNext){
+ PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager);
+ pNext = pHist->pNextStmt;
+ assert( pHist->inStmt );
+ pHist->inStmt = 0;
+ pHist->pPrevStmt = pHist->pNextStmt = 0;
+ sqlite3_free(pHist->pStmt);
+ pHist->pStmt = 0;
+ }
+ }
+ pPager->stmtNRec = 0;
+ pPager->stmtInUse = 0;
+ pPager->pStmt = 0;
+ }
+ pPager->stmtAutoopen = 0;
+ pagerLeave(pPager);
+ return SQLITE_OK;
+}
+
+/*
+** Rollback a statement.
+*/
+SQLITE_PRIVATE int sqlite3PagerStmtRollback(Pager *pPager){
+ int rc;
+ pagerEnter(pPager);
+ if( pPager->stmtInUse ){
+ PAGERTRACE2("STMT-ROLLBACK %d\n", PAGERID(pPager));
+ if( MEMDB ){
+ PgHdr *pPg;
+ PgHistory *pHist;
+ for(pPg=pPager->pStmt; pPg; pPg=pHist->pNextStmt){
+ pHist = PGHDR_TO_HIST(pPg, pPager);
+ if( pHist->pStmt ){
+ memcpy(PGHDR_TO_DATA(pPg), pHist->pStmt, pPager->pageSize);
+ sqlite3_free(pHist->pStmt);
+ pHist->pStmt = 0;
+ }
+ }
+ pPager->dbSize = pPager->stmtSize;
+ pager_truncate_cache(pPager);
+ rc = SQLITE_OK;
+ }else{
+ rc = pager_stmt_playback(pPager);
+ }
+ sqlite3PagerStmtCommit(pPager);
+ }else{
+ rc = SQLITE_OK;
+ }
+ pPager->stmtAutoopen = 0;
+ pagerLeave(pPager);
+ return rc;
+}
+
+/*
+** Return the full pathname of the database file.
+*/
+SQLITE_PRIVATE const char *sqlite3PagerFilename(Pager *pPager){
+ return pPager->zFilename;
+}
+
+/*
+** Return the VFS structure for the pager.
+*/
+SQLITE_PRIVATE const sqlite3_vfs *sqlite3PagerVfs(Pager *pPager){
+ return pPager->pVfs;
+}
+
+/*
+** Return the file handle for the database file associated
+** with the pager. This might return NULL if the file has
+** not yet been opened.
+*/
+SQLITE_PRIVATE sqlite3_file *sqlite3PagerFile(Pager *pPager){
+ return pPager->fd;
+}
+
+/*
+** Return the directory of the database file.
+*/
+SQLITE_PRIVATE const char *sqlite3PagerDirname(Pager *pPager){
+ return pPager->zDirectory;
+}
+
+/*
+** Return the full pathname of the journal file.
+*/
+SQLITE_PRIVATE const char *sqlite3PagerJournalname(Pager *pPager){
+ return pPager->zJournal;
+}
+
+/*
+** Return true if fsync() calls are disabled for this pager. Return FALSE
+** if fsync()s are executed normally.
+*/
+SQLITE_PRIVATE int sqlite3PagerNosync(Pager *pPager){
+ return pPager->noSync;
+}
+
+#ifdef SQLITE_HAS_CODEC
+/*
+** Set the codec for this pager
+*/
+SQLITE_PRIVATE void sqlite3PagerSetCodec(
+ Pager *pPager,
+ void *(*xCodec)(void*,void*,Pgno,int),
+ void *pCodecArg
+){
+ pPager->xCodec = xCodec;
+ pPager->pCodecArg = pCodecArg;
+}
+#endif
+
+#ifndef SQLITE_OMIT_AUTOVACUUM
+/*
+** Move the page pPg to location pgno in the file.
+**
+** There must be no references to the page previously located at
+** pgno (which we call pPgOld) though that page is allowed to be
+** in cache. If the page previous located at pgno is not already
+** in the rollback journal, it is not put there by by this routine.
+**
+** References to the page pPg remain valid. Updating any
+** meta-data associated with pPg (i.e. data stored in the nExtra bytes
+** allocated along with the page) is the responsibility of the caller.
+**
+** A transaction must be active when this routine is called. It used to be
+** required that a statement transaction was not active, but this restriction
+** has been removed (CREATE INDEX needs to move a page when a statement
+** transaction is active).
+*/
+SQLITE_PRIVATE int sqlite3PagerMovepage(Pager *pPager, DbPage *pPg, Pgno pgno){
+ PgHdr *pPgOld; /* The page being overwritten. */
+ int h;
+ Pgno needSyncPgno = 0;
+
+ pagerEnter(pPager);
+ assert( pPg->nRef>0 );
+
+ PAGERTRACE5("MOVE %d page %d (needSync=%d) moves to %d\n",
+ PAGERID(pPager), pPg->pgno, pPg->needSync, pgno);
+ IOTRACE(("MOVE %p %d %d\n", pPager, pPg->pgno, pgno))
+
+ pager_get_content(pPg);
+ if( pPg->needSync ){
+ needSyncPgno = pPg->pgno;
+ assert( pPg->inJournal || (int)pgno>pPager->origDbSize );
+ assert( pPg->dirty );
+ assert( pPager->needSync );
+ }
+
+ /* Unlink pPg from its hash-chain */
+ unlinkHashChain(pPager, pPg);
+
+ /* If the cache contains a page with page-number pgno, remove it
+ ** from its hash chain. Also, if the PgHdr.needSync was set for
+ ** page pgno before the 'move' operation, it needs to be retained
+ ** for the page moved there.
+ */
+ pPg->needSync = 0;
+ pPgOld = pager_lookup(pPager, pgno);
+ if( pPgOld ){
+ assert( pPgOld->nRef==0 );
+ unlinkHashChain(pPager, pPgOld);
+ makeClean(pPgOld);
+ pPg->needSync = pPgOld->needSync;
+ }else{
+ pPg->needSync = 0;
+ }
+ pPg->inJournal = sqlite3BitvecTest(pPager->pInJournal, pgno);
+
+ /* Change the page number for pPg and insert it into the new hash-chain. */
+ assert( pgno!=0 );
+ pPg->pgno = pgno;
+ h = pgno & (pPager->nHash-1);
+ if( pPager->aHash[h] ){
+ assert( pPager->aHash[h]->pPrevHash==0 );
+ pPager->aHash[h]->pPrevHash = pPg;
+ }
+ pPg->pNextHash = pPager->aHash[h];
+ pPager->aHash[h] = pPg;
+ pPg->pPrevHash = 0;
+
+ makeDirty(pPg);
+ pPager->dirtyCache = 1;
+ pPager->dbModified = 1;
+
+ if( needSyncPgno ){
+ /* If needSyncPgno is non-zero, then the journal file needs to be
+ ** sync()ed before any data is written to database file page needSyncPgno.
+ ** Currently, no such page exists in the page-cache and the
+ ** Pager.pInJournal bit has been set. This needs to be remedied by loading
+ ** the page into the pager-cache and setting the PgHdr.needSync flag.
+ **
+ ** If the attempt to load the page into the page-cache fails, (due
+ ** to a malloc() or IO failure), clear the bit in the pInJournal[]
+ ** array. Otherwise, if the page is loaded and written again in
+ ** this transaction, it may be written to the database file before
+ ** it is synced into the journal file. This way, it may end up in
+ ** the journal file twice, but that is not a problem.
+ **
+ ** The sqlite3PagerGet() call may cause the journal to sync. So make
+ ** sure the Pager.needSync flag is set too.
+ */
+ int rc;
+ PgHdr *pPgHdr;
+ assert( pPager->needSync );
+ rc = sqlite3PagerGet(pPager, needSyncPgno, &pPgHdr);
+ if( rc!=SQLITE_OK ){
+ if( pPager->pInJournal && (int)needSyncPgno<=pPager->origDbSize ){
+ sqlite3BitvecClear(pPager->pInJournal, needSyncPgno);
+ }
+ pagerLeave(pPager);
+ return rc;
+ }
+ pPager->needSync = 1;
+ pPgHdr->needSync = 1;
+ pPgHdr->inJournal = 1;
+ makeDirty(pPgHdr);
+ sqlite3PagerUnref(pPgHdr);
+ }
+
+ pagerLeave(pPager);
+ return SQLITE_OK;
+}
+#endif
+
+/*
+** Return a pointer to the data for the specified page.
+*/
+SQLITE_PRIVATE void *sqlite3PagerGetData(DbPage *pPg){
+ return PGHDR_TO_DATA(pPg);
+}
+
+/*
+** Return a pointer to the Pager.nExtra bytes of "extra" space
+** allocated along with the specified page.
+*/
+SQLITE_PRIVATE void *sqlite3PagerGetExtra(DbPage *pPg){
+ Pager *pPager = pPg->pPager;
+ return (pPager?PGHDR_TO_EXTRA(pPg, pPager):0);
+}
+
+/*
+** Get/set the locking-mode for this pager. Parameter eMode must be one
+** of PAGER_LOCKINGMODE_QUERY, PAGER_LOCKINGMODE_NORMAL or
+** PAGER_LOCKINGMODE_EXCLUSIVE. If the parameter is not _QUERY, then
+** the locking-mode is set to the value specified.
+**
+** The returned value is either PAGER_LOCKINGMODE_NORMAL or
+** PAGER_LOCKINGMODE_EXCLUSIVE, indicating the current (possibly updated)
+** locking-mode.
+*/
+SQLITE_PRIVATE int sqlite3PagerLockingMode(Pager *pPager, int eMode){
+ assert( eMode==PAGER_LOCKINGMODE_QUERY
+ || eMode==PAGER_LOCKINGMODE_NORMAL
+ || eMode==PAGER_LOCKINGMODE_EXCLUSIVE );
+ assert( PAGER_LOCKINGMODE_QUERY<0 );
+ assert( PAGER_LOCKINGMODE_NORMAL>=0 && PAGER_LOCKINGMODE_EXCLUSIVE>=0 );
+ if( eMode>=0 && !pPager->tempFile ){
+ pPager->exclusiveMode = eMode;
+ }
+ return (int)pPager->exclusiveMode;
+}
+
+/*
+** Get/set the journal-mode for this pager. Parameter eMode must be one
+** of PAGER_JOURNALMODE_QUERY, PAGER_JOURNALMODE_DELETE or
+** PAGER_JOURNALMODE_PERSIST. If the parameter is not _QUERY, then
+** the journal-mode is set to the value specified.
+**
+** The returned value is either PAGER_JOURNALMODE_DELETE or
+** PAGER_JOURNALMODE_PERSIST, indicating the current (possibly updated)
+** journal-mode.
+*/
+SQLITE_PRIVATE int sqlite3PagerJournalMode(Pager *pPager, int eMode){
+ assert( eMode==PAGER_JOURNALMODE_QUERY
+ || eMode==PAGER_JOURNALMODE_DELETE
+ || eMode==PAGER_JOURNALMODE_PERSIST
+ || eMode==PAGER_JOURNALMODE_OFF );
+ assert( PAGER_JOURNALMODE_QUERY<0 );
+ assert( PAGER_JOURNALMODE_DELETE>=0 && PAGER_JOURNALMODE_PERSIST>=0 );
+ if( eMode>=0 ){
+ pPager->journalMode = eMode;
+ }
+ return (int)pPager->journalMode;
+}
+
+#ifdef SQLITE_TEST
+/*
+** Print a listing of all referenced pages and their ref count.
+*/
+SQLITE_PRIVATE void sqlite3PagerRefdump(Pager *pPager){
+ PgHdr *pPg;
+ for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){
+ if( pPg->nRef<=0 ) continue;
+ sqlite3DebugPrintf("PAGE %3d addr=%p nRef=%d\n",
+ pPg->pgno, PGHDR_TO_DATA(pPg), pPg->nRef);
+ }
+}
+#endif
+
+#endif /* SQLITE_OMIT_DISKIO */
+
+/************** End of pager.c ***********************************************/
+/************** Begin file btmutex.c *****************************************/
+/*
+** 2007 August 27
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+**
+** $Id: btmutex.c,v 1.9 2008/01/23 12:52:41 drh Exp $
+**
+** This file contains code used to implement mutexes on Btree objects.
+** This code really belongs in btree.c. But btree.c is getting too
+** big and we want to break it down some. This packaged seemed like
+** a good breakout.
+*/
+/************** Include btreeInt.h in the middle of btmutex.c ****************/
+/************** Begin file btreeInt.h ****************************************/
+/*
+** 2004 April 6
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** $Id: btreeInt.h,v 1.21 2008/04/24 19:15:10 shane Exp $
+**
+** This file implements a external (disk-based) database using BTrees.
+** For a detailed discussion of BTrees, refer to
+**
+** Donald E. Knuth, THE ART OF COMPUTER PROGRAMMING, Volume 3:
+** "Sorting And Searching", pages 473-480. Addison-Wesley
+** Publishing Company, Reading, Massachusetts.
+**
+** The basic idea is that each page of the file contains N database
+** entries and N+1 pointers to subpages.
+**
+** ----------------------------------------------------------------
+** | Ptr(0) | Key(0) | Ptr(1) | Key(1) | ... | Key(N-1) | Ptr(N) |
+** ----------------------------------------------------------------
+**
+** All of the keys on the page that Ptr(0) points to have values less
+** than Key(0). All of the keys on page Ptr(1) and its subpages have
+** values greater than Key(0) and less than Key(1). All of the keys
+** on Ptr(N) and its subpages have values greater than Key(N-1). And
+** so forth.
+**
+** Finding a particular key requires reading O(log(M)) pages from the
+** disk where M is the number of entries in the tree.
+**
+** In this implementation, a single file can hold one or more separate
+** BTrees. Each BTree is identified by the index of its root page. The
+** key and data for any entry are combined to form the "payload". A
+** fixed amount of payload can be carried directly on the database
+** page. If the payload is larger than the preset amount then surplus
+** bytes are stored on overflow pages. The payload for an entry
+** and the preceding pointer are combined to form a "Cell". Each
+** page has a small header which contains the Ptr(N) pointer and other
+** information such as the size of key and data.
+**
+** FORMAT DETAILS
+**
+** The file is divided into pages. The first page is called page 1,
+** the second is page 2, and so forth. A page number of zero indicates
+** "no such page". The page size can be anything between 512 and 65536.
+** Each page can be either a btree page, a freelist page or an overflow
+** page.
+**
+** The first page is always a btree page. The first 100 bytes of the first
+** page contain a special header (the "file header") that describes the file.
+** The format of the file header is as follows:
+**
+** OFFSET SIZE DESCRIPTION
+** 0 16 Header string: "SQLite format 3\000"
+** 16 2 Page size in bytes.
+** 18 1 File format write version
+** 19 1 File format read version
+** 20 1 Bytes of unused space at the end of each page
+** 21 1 Max embedded payload fraction
+** 22 1 Min embedded payload fraction
+** 23 1 Min leaf payload fraction
+** 24 4 File change counter
+** 28 4 Reserved for future use
+** 32 4 First freelist page
+** 36 4 Number of freelist pages in the file
+** 40 60 15 4-byte meta values passed to higher layers
+**
+** All of the integer values are big-endian (most significant byte first).
+**
+** The file change counter is incremented when the database is changed
+** This counter allows other processes to know when the file has changed
+** and thus when they need to flush their cache.
+**
+** The max embedded payload fraction is the amount of the total usable
+** space in a page that can be consumed by a single cell for standard
+** B-tree (non-LEAFDATA) tables. A value of 255 means 100%. The default
+** is to limit the maximum cell size so that at least 4 cells will fit
+** on one page. Thus the default max embedded payload fraction is 64.
+**
+** If the payload for a cell is larger than the max payload, then extra
+** payload is spilled to overflow pages. Once an overflow page is allocated,
+** as many bytes as possible are moved into the overflow pages without letting
+** the cell size drop below the min embedded payload fraction.
+**
+** The min leaf payload fraction is like the min embedded payload fraction
+** except that it applies to leaf nodes in a LEAFDATA tree. The maximum
+** payload fraction for a LEAFDATA tree is always 100% (or 255) and it
+** not specified in the header.
+**
+** Each btree pages is divided into three sections: The header, the
+** cell pointer array, and the cell content area. Page 1 also has a 100-byte
+** file header that occurs before the page header.
+**
+** |----------------|
+** | file header | 100 bytes. Page 1 only.
+** |----------------|
+** | page header | 8 bytes for leaves. 12 bytes for interior nodes
+** |----------------|
+** | cell pointer | | 2 bytes per cell. Sorted order.
+** | array | | Grows downward
+** | | v
+** |----------------|
+** | unallocated |
+** | space |
+** |----------------| ^ Grows upwards
+** | cell content | | Arbitrary order interspersed with freeblocks.
+** | area | | and free space fragments.
+** |----------------|
+**
+** The page headers looks like this:
+**
+** OFFSET SIZE DESCRIPTION
+** 0 1 Flags. 1: intkey, 2: zerodata, 4: leafdata, 8: leaf
+** 1 2 byte offset to the first freeblock
+** 3 2 number of cells on this page
+** 5 2 first byte of the cell content area
+** 7 1 number of fragmented free bytes
+** 8 4 Right child (the Ptr(N) value). Omitted on leaves.
+**
+** The flags define the format of this btree page. The leaf flag means that
+** this page has no children. The zerodata flag means that this page carries
+** only keys and no data. The intkey flag means that the key is a integer
+** which is stored in the key size entry of the cell header rather than in
+** the payload area.
+**
+** The cell pointer array begins on the first byte after the page header.
+** The cell pointer array contains zero or more 2-byte numbers which are
+** offsets from the beginning of the page to the cell content in the cell
+** content area. The cell pointers occur in sorted order. The system strives
+** to keep free space after the last cell pointer so that new cells can
+** be easily added without having to defragment the page.
+**
+** Cell content is stored at the very end of the page and grows toward the
+** beginning of the page.
+**
+** Unused space within the cell content area is collected into a linked list of
+** freeblocks. Each freeblock is at least 4 bytes in size. The byte offset
+** to the first freeblock is given in the header. Freeblocks occur in
+** increasing order. Because a freeblock must be at least 4 bytes in size,
+** any group of 3 or fewer unused bytes in the cell content area cannot
+** exist on the freeblock chain. A group of 3 or fewer free bytes is called
+** a fragment. The total number of bytes in all fragments is recorded.
+** in the page header at offset 7.
+**
+** SIZE DESCRIPTION
+** 2 Byte offset of the next freeblock
+** 2 Bytes in this freeblock
+**
+** Cells are of variable length. Cells are stored in the cell content area at
+** the end of the page. Pointers to the cells are in the cell pointer array
+** that immediately follows the page header. Cells is not necessarily
+** contiguous or in order, but cell pointers are contiguous and in order.
+**
+** Cell content makes use of variable length integers. A variable
+** length integer is 1 to 9 bytes where the lower 7 bits of each
+** byte are used. The integer consists of all bytes that have bit 8 set and
+** the first byte with bit 8 clear. The most significant byte of the integer
+** appears first. A variable-length integer may not be more than 9 bytes long.
+** As a special case, all 8 bytes of the 9th byte are used as data. This
+** allows a 64-bit integer to be encoded in 9 bytes.
+**
+** 0x00 becomes 0x00000000
+** 0x7f becomes 0x0000007f
+** 0x81 0x00 becomes 0x00000080
+** 0x82 0x00 becomes 0x00000100
+** 0x80 0x7f becomes 0x0000007f
+** 0x8a 0x91 0xd1 0xac 0x78 becomes 0x12345678
+** 0x81 0x81 0x81 0x81 0x01 becomes 0x10204081
+**
+** Variable length integers are used for rowids and to hold the number of
+** bytes of key and data in a btree cell.
+**
+** The content of a cell looks like this:
+**
+** SIZE DESCRIPTION
+** 4 Page number of the left child. Omitted if leaf flag is set.
+** var Number of bytes of data. Omitted if the zerodata flag is set.
+** var Number of bytes of key. Or the key itself if intkey flag is set.
+** * Payload
+** 4 First page of the overflow chain. Omitted if no overflow
+**
+** Overflow pages form a linked list. Each page except the last is completely
+** filled with data (pagesize - 4 bytes). The last page can have as little
+** as 1 byte of data.
+**
+** SIZE DESCRIPTION
+** 4 Page number of next overflow page
+** * Data
+**
+** Freelist pages come in two subtypes: trunk pages and leaf pages. The
+** file header points to the first in a linked list of trunk page. Each trunk
+** page points to multiple leaf pages. The content of a leaf page is
+** unspecified. A trunk page looks like this:
+**
+** SIZE DESCRIPTION
+** 4 Page number of next trunk page
+** 4 Number of leaf pointers on this page
+** * zero or more pages numbers of leaves
+*/
+
+/* Round up a number to the next larger multiple of 8. This is used
+** to force 8-byte alignment on 64-bit architectures.
+*/
+#define ROUND8(x) ((x+7)&~7)
+
+
+/* The following value is the maximum cell size assuming a maximum page
+** size give above.
+*/
+#define MX_CELL_SIZE(pBt) (pBt->pageSize-8)
+
+/* The maximum number of cells on a single page of the database. This
+** assumes a minimum cell size of 6 bytes (4 bytes for the cell itself
+** plus 2 bytes for the index to the cell in the page header). Such
+** small cells will be rare, but they are possible.
+*/
+#define MX_CELL(pBt) ((pBt->pageSize-8)/6)
+
+/* Forward declarations */
+typedef struct MemPage MemPage;
+typedef struct BtLock BtLock;
+
+/*
+** This is a magic string that appears at the beginning of every
+** SQLite database in order to identify the file as a real database.
+**
+** You can change this value at compile-time by specifying a
+** -DSQLITE_FILE_HEADER="..." on the compiler command-line. The
+** header must be exactly 16 bytes including the zero-terminator so
+** the string itself should be 15 characters long. If you change
+** the header, then your custom library will not be able to read
+** databases generated by the standard tools and the standard tools
+** will not be able to read databases created by your custom library.
+*/
+#ifndef SQLITE_FILE_HEADER /* 123456789 123456 */
+# define SQLITE_FILE_HEADER "SQLite format 3"
+#endif
+
+/*
+** Page type flags. An ORed combination of these flags appear as the
+** first byte of on-disk image of every BTree page.
+*/
+#define PTF_INTKEY 0x01
+#define PTF_ZERODATA 0x02
+#define PTF_LEAFDATA 0x04
+#define PTF_LEAF 0x08
+
+/*
+** As each page of the file is loaded into memory, an instance of the following
+** structure is appended and initialized to zero. This structure stores
+** information about the page that is decoded from the raw file page.
+**
+** The pParent field points back to the parent page. This allows us to
+** walk up the BTree from any leaf to the root. Care must be taken to
+** unref() the parent page pointer when this page is no longer referenced.
+** The pageDestructor() routine handles that chore.
+**
+** Access to all fields of this structure is controlled by the mutex
+** stored in MemPage.pBt->mutex.
+*/
+struct MemPage {
+ u8 isInit; /* True if previously initialized. MUST BE FIRST! */
+ u8 idxShift; /* True if Cell indices have changed */
+ u8 nOverflow; /* Number of overflow cell bodies in aCell[] */
+ u8 intKey; /* True if intkey flag is set */
+ u8 leaf; /* True if leaf flag is set */
+ u8 zeroData; /* True if table stores keys only */
+ u8 leafData; /* True if tables stores data on leaves only */
+ u8 hasData; /* True if this page stores data */
+ u8 hdrOffset; /* 100 for page 1. 0 otherwise */
+ u8 childPtrSize; /* 0 if leaf==1. 4 if leaf==0 */
+ u16 maxLocal; /* Copy of BtShared.maxLocal or BtShared.maxLeaf */
+ u16 minLocal; /* Copy of BtShared.minLocal or BtShared.minLeaf */
+ u16 cellOffset; /* Index in aData of first cell pointer */
+ u16 idxParent; /* Index in parent of this node */
+ u16 nFree; /* Number of free bytes on the page */
+ u16 nCell; /* Number of cells on this page, local and ovfl */
+ struct _OvflCell { /* Cells that will not fit on aData[] */
+ u8 *pCell; /* Pointers to the body of the overflow cell */
+ u16 idx; /* Insert this cell before idx-th non-overflow cell */
+ } aOvfl[5];
+ BtShared *pBt; /* Pointer to BtShared that this page is part of */
+ u8 *aData; /* Pointer to disk image of the page data */
+ DbPage *pDbPage; /* Pager page handle */
+ Pgno pgno; /* Page number for this page */
+ MemPage *pParent; /* The parent of this page. NULL for root */
+};
+
+/*
+** The in-memory image of a disk page has the auxiliary information appended
+** to the end. EXTRA_SIZE is the number of bytes of space needed to hold
+** that extra information.
+*/
+#define EXTRA_SIZE sizeof(MemPage)
+
+/* A Btree handle
+**
+** A database connection contains a pointer to an instance of
+** this object for every database file that it has open. This structure
+** is opaque to the database connection. The database connection cannot
+** see the internals of this structure and only deals with pointers to
+** this structure.
+**
+** For some database files, the same underlying database cache might be
+** shared between multiple connections. In that case, each contection
+** has it own pointer to this object. But each instance of this object
+** points to the same BtShared object. The database cache and the
+** schema associated with the database file are all contained within
+** the BtShared object.
+**
+** All fields in this structure are accessed under sqlite3.mutex.
+** The pBt pointer itself may not be changed while there exists cursors
+** in the referenced BtShared that point back to this Btree since those
+** cursors have to do go through this Btree to find their BtShared and
+** they often do so without holding sqlite3.mutex.
+*/
+struct Btree {
+ sqlite3 *db; /* The database connection holding this btree */
+ BtShared *pBt; /* Sharable content of this btree */
+ u8 inTrans; /* TRANS_NONE, TRANS_READ or TRANS_WRITE */
+ u8 sharable; /* True if we can share pBt with another db */
+ u8 locked; /* True if db currently has pBt locked */
+ int wantToLock; /* Number of nested calls to sqlite3BtreeEnter() */
+ Btree *pNext; /* List of other sharable Btrees from the same db */
+ Btree *pPrev; /* Back pointer of the same list */
+};
+
+/*
+** Btree.inTrans may take one of the following values.
+**
+** If the shared-data extension is enabled, there may be multiple users
+** of the Btree structure. At most one of these may open a write transaction,
+** but any number may have active read transactions.
+*/
+#define TRANS_NONE 0
+#define TRANS_READ 1
+#define TRANS_WRITE 2
+
+/*
+** An instance of this object represents a single database file.
+**
+** A single database file can be in use as the same time by two
+** or more database connections. When two or more connections are
+** sharing the same database file, each connection has it own
+** private Btree object for the file and each of those Btrees points
+** to this one BtShared object. BtShared.nRef is the number of
+** connections currently sharing this database file.
+**
+** Fields in this structure are accessed under the BtShared.mutex
+** mutex, except for nRef and pNext which are accessed under the
+** global SQLITE_MUTEX_STATIC_MASTER mutex. The pPager field
+** may not be modified once it is initially set as long as nRef>0.
+** The pSchema field may be set once under BtShared.mutex and
+** thereafter is unchanged as long as nRef>0.
+*/
+struct BtShared {
+ Pager *pPager; /* The page cache */
+ sqlite3 *db; /* Database connection currently using this Btree */
+ BtCursor *pCursor; /* A list of all open cursors */
+ MemPage *pPage1; /* First page of the database */
+ u8 inStmt; /* True if we are in a statement subtransaction */
+ u8 readOnly; /* True if the underlying file is readonly */
+ u8 maxEmbedFrac; /* Maximum payload as % of total page size */
+ u8 minEmbedFrac; /* Minimum payload as % of total page size */
+ u8 minLeafFrac; /* Minimum leaf payload as % of total page size */
+ u8 pageSizeFixed; /* True if the page size can no longer be changed */
+#ifndef SQLITE_OMIT_AUTOVACUUM
+ u8 autoVacuum; /* True if auto-vacuum is enabled */
+ u8 incrVacuum; /* True if incr-vacuum is enabled */
+ Pgno nTrunc; /* Non-zero if the db will be truncated (incr vacuum) */
+#endif
+ u16 pageSize; /* Total number of bytes on a page */
+ u16 usableSize; /* Number of usable bytes on each page */
+ int maxLocal; /* Maximum local payload in non-LEAFDATA tables */
+ int minLocal; /* Minimum local payload in non-LEAFDATA tables */
+ int maxLeaf; /* Maximum local payload in a LEAFDATA table */
+ int minLeaf; /* Minimum local payload in a LEAFDATA table */
+ u8 inTransaction; /* Transaction state */
+ int nTransaction; /* Number of open transactions (read + write) */
+ void *pSchema; /* Pointer to space allocated by sqlite3BtreeSchema() */
+ void (*xFreeSchema)(void*); /* Destructor for BtShared.pSchema */
+ sqlite3_mutex *mutex; /* Non-recursive mutex required to access this struct */
+ BusyHandler busyHdr; /* The busy handler for this btree */
+#ifndef SQLITE_OMIT_SHARED_CACHE
+ int nRef; /* Number of references to this structure */
+ BtShared *pNext; /* Next on a list of sharable BtShared structs */
+ BtLock *pLock; /* List of locks held on this shared-btree struct */
+ Btree *pExclusive; /* Btree with an EXCLUSIVE lock on the whole db */
+#endif
+ u8 *pTmpSpace; /* BtShared.pageSize bytes of space for tmp use */
+};
+
+/*
+** An instance of the following structure is used to hold information
+** about a cell. The parseCellPtr() function fills in this structure
+** based on information extract from the raw disk page.
+*/
+typedef struct CellInfo CellInfo;
+struct CellInfo {
+ u8 *pCell; /* Pointer to the start of cell content */
+ i64 nKey; /* The key for INTKEY tables, or number of bytes in key */
+ u32 nData; /* Number of bytes of data */
+ u32 nPayload; /* Total amount of payload */
+ u16 nHeader; /* Size of the cell content header in bytes */
+ u16 nLocal; /* Amount of payload held locally */
+ u16 iOverflow; /* Offset to overflow page number. Zero if no overflow */
+ u16 nSize; /* Size of the cell content on the main b-tree page */
+};
+
+/*
+** A cursor is a pointer to a particular entry within a particular
+** b-tree within a database file.
+**
+** The entry is identified by its MemPage and the index in
+** MemPage.aCell[] of the entry.
+**
+** When a single database file can shared by two more database connections,
+** but cursors cannot be shared. Each cursor is associated with a
+** particular database connection identified BtCursor.pBtree.db.
+**
+** Fields in this structure are accessed under the BtShared.mutex
+** found at self->pBt->mutex.
+*/
+struct BtCursor {
+ Btree *pBtree; /* The Btree to which this cursor belongs */
+ BtShared *pBt; /* The BtShared this cursor points to */
+ BtCursor *pNext, *pPrev; /* Forms a linked list of all cursors */
+ struct KeyInfo *pKeyInfo; /* Argument passed to comparison function */
+ Pgno pgnoRoot; /* The root page of this tree */
+ MemPage *pPage; /* Page that contains the entry */
+ int idx; /* Index of the entry in pPage->aCell[] */
+ CellInfo info; /* A parse of the cell we are pointing at */
+ u8 wrFlag; /* True if writable */
+ u8 atLast; /* Cursor pointing to the last entry */
+ u8 validNKey; /* True if info.nKey is valid */
+ u8 eState; /* One of the CURSOR_XXX constants (see below) */
+ void *pKey; /* Saved key that was cursor's last known position */
+ i64 nKey; /* Size of pKey, or last integer key */
+ int skip; /* (skip<0) -> Prev() is a no-op. (skip>0) -> Next() is */
+#ifndef SQLITE_OMIT_INCRBLOB
+ u8 isIncrblobHandle; /* True if this cursor is an incr. io handle */
+ Pgno *aOverflow; /* Cache of overflow page locations */
+#endif
+};
+
+/*
+** Potential values for BtCursor.eState.
+**
+** CURSOR_VALID:
+** Cursor points to a valid entry. getPayload() etc. may be called.
+**
+** CURSOR_INVALID:
+** Cursor does not point to a valid entry. This can happen (for example)
+** because the table is empty or because BtreeCursorFirst() has not been
+** called.
+**
+** CURSOR_REQUIRESEEK:
+** The table that this cursor was opened on still exists, but has been
+** modified since the cursor was last used. The cursor position is saved
+** in variables BtCursor.pKey and BtCursor.nKey. When a cursor is in
+** this state, restoreOrClearCursorPosition() can be called to attempt to
+** seek the cursor to the saved position.
+**
+** CURSOR_FAULT:
+** A unrecoverable error (an I/O error or a malloc failure) has occurred
+** on a different connection that shares the BtShared cache with this
+** cursor. The error has left the cache in an inconsistent state.
+** Do nothing else with this cursor. Any attempt to use the cursor
+** should return the error code stored in BtCursor.skip
+*/
+#define CURSOR_INVALID 0
+#define CURSOR_VALID 1
+#define CURSOR_REQUIRESEEK 2
+#define CURSOR_FAULT 3
+
+/*
+** The TRACE macro will print high-level status information about the
+** btree operation when the global variable sqlite3BtreeTrace is
+** enabled.
+*/
+#if SQLITE_TEST
+# define TRACE(X) if( sqlite3BtreeTrace ){ printf X; fflush(stdout); }
+#else
+# define TRACE(X)
+#endif
+
+/* The database page the PENDING_BYTE occupies. This page is never used.
+** TODO: This macro is very similary to PAGER_MJ_PGNO() in pager.c. They
+** should possibly be consolidated (presumably in pager.h).
+**
+** If disk I/O is omitted (meaning that the database is stored purely
+** in memory) then there is no pending byte.
+*/
+#ifdef SQLITE_OMIT_DISKIO
+# define PENDING_BYTE_PAGE(pBt) 0x7fffffff
+#else
+# define PENDING_BYTE_PAGE(pBt) ((PENDING_BYTE/(pBt)->pageSize)+1)
+#endif
+
+/*
+** A linked list of the following structures is stored at BtShared.pLock.
+** Locks are added (or upgraded from READ_LOCK to WRITE_LOCK) when a cursor
+** is opened on the table with root page BtShared.iTable. Locks are removed
+** from this list when a transaction is committed or rolled back, or when
+** a btree handle is closed.
+*/
+struct BtLock {
+ Btree *pBtree; /* Btree handle holding this lock */
+ Pgno iTable; /* Root page of table */
+ u8 eLock; /* READ_LOCK or WRITE_LOCK */
+ BtLock *pNext; /* Next in BtShared.pLock list */
+};
+
+/* Candidate values for BtLock.eLock */
+#define READ_LOCK 1
+#define WRITE_LOCK 2
+
+/*
+** These macros define the location of the pointer-map entry for a
+** database page. The first argument to each is the number of usable
+** bytes on each page of the database (often 1024). The second is the
+** page number to look up in the pointer map.
+**
+** PTRMAP_PAGENO returns the database page number of the pointer-map
+** page that stores the required pointer. PTRMAP_PTROFFSET returns
+** the offset of the requested map entry.
+**
+** If the pgno argument passed to PTRMAP_PAGENO is a pointer-map page,
+** then pgno is returned. So (pgno==PTRMAP_PAGENO(pgsz, pgno)) can be
+** used to test if pgno is a pointer-map page. PTRMAP_ISPAGE implements
+** this test.
+*/
+#define PTRMAP_PAGENO(pBt, pgno) ptrmapPageno(pBt, pgno)
+#define PTRMAP_PTROFFSET(pBt, pgno) (5*(pgno-ptrmapPageno(pBt, pgno)-1))
+#define PTRMAP_ISPAGE(pBt, pgno) (PTRMAP_PAGENO((pBt),(pgno))==(pgno))
+
+/*
+** The pointer map is a lookup table that identifies the parent page for
+** each child page in the database file. The parent page is the page that
+** contains a pointer to the child. Every page in the database contains
+** 0 or 1 parent pages. (In this context 'database page' refers
+** to any page that is not part of the pointer map itself.) Each pointer map
+** entry consists of a single byte 'type' and a 4 byte parent page number.
+** The PTRMAP_XXX identifiers below are the valid types.
+**
+** The purpose of the pointer map is to facility moving pages from one
+** position in the file to another as part of autovacuum. When a page
+** is moved, the pointer in its parent must be updated to point to the
+** new location. The pointer map is used to locate the parent page quickly.
+**
+** PTRMAP_ROOTPAGE: The database page is a root-page. The page-number is not
+** used in this case.
+**
+** PTRMAP_FREEPAGE: The database page is an unused (free) page. The page-number
+** is not used in this case.
+**
+** PTRMAP_OVERFLOW1: The database page is the first page in a list of
+** overflow pages. The page number identifies the page that
+** contains the cell with a pointer to this overflow page.
+**
+** PTRMAP_OVERFLOW2: The database page is the second or later page in a list of
+** overflow pages. The page-number identifies the previous
+** page in the overflow page list.
+**
+** PTRMAP_BTREE: The database page is a non-root btree page. The page number
+** identifies the parent page in the btree.
+*/
+#define PTRMAP_ROOTPAGE 1
+#define PTRMAP_FREEPAGE 2
+#define PTRMAP_OVERFLOW1 3
+#define PTRMAP_OVERFLOW2 4
+#define PTRMAP_BTREE 5
+
+/* A bunch of assert() statements to check the transaction state variables
+** of handle p (type Btree*) are internally consistent.
+*/
+#define btreeIntegrity(p) \
+ assert( p->pBt->inTransaction!=TRANS_NONE || p->pBt->nTransaction==0 ); \
+ assert( p->pBt->inTransaction>=p->inTrans );
+
+
+/*
+** The ISAUTOVACUUM macro is used within balance_nonroot() to determine
+** if the database supports auto-vacuum or not. Because it is used
+** within an expression that is an argument to another macro
+** (sqliteMallocRaw), it is not possible to use conditional compilation.
+** So, this macro is defined instead.
+*/
+#ifndef SQLITE_OMIT_AUTOVACUUM
+#define ISAUTOVACUUM (pBt->autoVacuum)
+#else
+#define ISAUTOVACUUM 0
+#endif
+
+
+/*
+** This structure is passed around through all the sanity checking routines
+** in order to keep track of some global state information.
+*/
+typedef struct IntegrityCk IntegrityCk;
+struct IntegrityCk {
+ BtShared *pBt; /* The tree being checked out */
+ Pager *pPager; /* The associated pager. Also accessible by pBt->pPager */
+ int nPage; /* Number of pages in the database */
+ int *anRef; /* Number of times each page is referenced */
+ int mxErr; /* Stop accumulating errors when this reaches zero */
+ char *zErrMsg; /* An error message. NULL if no errors seen. */
+ int nErr; /* Number of messages written to zErrMsg so far */
+};
+
+/*
+** Read or write a two- and four-byte big-endian integer values.
+*/
+#define get2byte(x) ((x)[0]<<8 | (x)[1])
+#define put2byte(p,v) ((p)[0] = (v)>>8, (p)[1] = (v))
+#define get4byte sqlite3Get4byte
+#define put4byte sqlite3Put4byte
+
+/*
+** Internal routines that should be accessed by the btree layer only.
+*/
+SQLITE_PRIVATE int sqlite3BtreeGetPage(BtShared*, Pgno, MemPage**, int);
+SQLITE_PRIVATE int sqlite3BtreeInitPage(MemPage *pPage, MemPage *pParent);
+SQLITE_PRIVATE void sqlite3BtreeParseCellPtr(MemPage*, u8*, CellInfo*);
+SQLITE_PRIVATE void sqlite3BtreeParseCell(MemPage*, int, CellInfo*);
+#ifdef SQLITE_TEST
+SQLITE_PRIVATE u8 *sqlite3BtreeFindCell(MemPage *pPage, int iCell);
+#endif
+SQLITE_PRIVATE int sqlite3BtreeRestoreOrClearCursorPosition(BtCursor *pCur);
+SQLITE_PRIVATE void sqlite3BtreeGetTempCursor(BtCursor *pCur, BtCursor *pTempCur);
+SQLITE_PRIVATE void sqlite3BtreeReleaseTempCursor(BtCursor *pCur);
+SQLITE_PRIVATE int sqlite3BtreeIsRootPage(MemPage *pPage);
+SQLITE_PRIVATE void sqlite3BtreeMoveToParent(BtCursor *pCur);
+
+/************** End of btreeInt.h ********************************************/
+/************** Continuing where we left off in btmutex.c ********************/
+#if SQLITE_THREADSAFE && !defined(SQLITE_OMIT_SHARED_CACHE)
+
+
+/*
+** Enter a mutex on the given BTree object.
+**
+** If the object is not sharable, then no mutex is ever required
+** and this routine is a no-op. The underlying mutex is non-recursive.
+** But we keep a reference count in Btree.wantToLock so the behavior
+** of this interface is recursive.
+**
+** To avoid deadlocks, multiple Btrees are locked in the same order
+** by all database connections. The p->pNext is a list of other
+** Btrees belonging to the same database connection as the p Btree
+** which need to be locked after p. If we cannot get a lock on
+** p, then first unlock all of the others on p->pNext, then wait
+** for the lock to become available on p, then relock all of the
+** subsequent Btrees that desire a lock.
+*/
+SQLITE_PRIVATE void sqlite3BtreeEnter(Btree *p){
+ Btree *pLater;
+
+ /* Some basic sanity checking on the Btree. The list of Btrees
+ ** connected by pNext and pPrev should be in sorted order by
+ ** Btree.pBt value. All elements of the list should belong to
+ ** the same connection. Only shared Btrees are on the list. */
+ assert( p->pNext==0 || p->pNext->pBt>p->pBt );
+ assert( p->pPrev==0 || p->pPrev->pBt<p->pBt );
+ assert( p->pNext==0 || p->pNext->db==p->db );
+ assert( p->pPrev==0 || p->pPrev->db==p->db );
+ assert( p->sharable || (p->pNext==0 && p->pPrev==0) );
+
+ /* Check for locking consistency */
+ assert( !p->locked || p->wantToLock>0 );
+ assert( p->sharable || p->wantToLock==0 );
+
+ /* We should already hold a lock on the database connection */
+ assert( sqlite3_mutex_held(p->db->mutex) );
+
+ if( !p->sharable ) return;
+ p->wantToLock++;
+ if( p->locked ) return;
+
+#ifndef SQLITE_MUTEX_NOOP
+ /* In most cases, we should be able to acquire the lock we
+ ** want without having to go throught the ascending lock
+ ** procedure that follows. Just be sure not to block.
+ */
+ if( sqlite3_mutex_try(p->pBt->mutex)==SQLITE_OK ){
+ p->locked = 1;
+ return;
+ }
+
+ /* To avoid deadlock, first release all locks with a larger
+ ** BtShared address. Then acquire our lock. Then reacquire
+ ** the other BtShared locks that we used to hold in ascending
+ ** order.
+ */
+ for(pLater=p->pNext; pLater; pLater=pLater->pNext){
+ assert( pLater->sharable );
+ assert( pLater->pNext==0 || pLater->pNext->pBt>pLater->pBt );
+ assert( !pLater->locked || pLater->wantToLock>0 );
+ if( pLater->locked ){
+ sqlite3_mutex_leave(pLater->pBt->mutex);
+ pLater->locked = 0;
+ }
+ }
+ sqlite3_mutex_enter(p->pBt->mutex);
+ p->locked = 1;
+ for(pLater=p->pNext; pLater; pLater=pLater->pNext){
+ if( pLater->wantToLock ){
+ sqlite3_mutex_enter(pLater->pBt->mutex);
+ pLater->locked = 1;
+ }
+ }
+#endif /* SQLITE_MUTEX_NOOP */
+}
+
+/*
+** Exit the recursive mutex on a Btree.
+*/
+SQLITE_PRIVATE void sqlite3BtreeLeave(Btree *p){
+ if( p->sharable ){
+ assert( p->wantToLock>0 );
+ p->wantToLock--;
+ if( p->wantToLock==0 ){
+ assert( p->locked );
+ sqlite3_mutex_leave(p->pBt->mutex);
+ p->locked = 0;
+ }
+ }
+}
+
+#ifndef NDEBUG
+/*
+** Return true if the BtShared mutex is held on the btree.
+**
+** This routine makes no determination one why or another if the
+** database connection mutex is held.
+**
+** This routine is used only from within assert() statements.
+*/
+SQLITE_PRIVATE int sqlite3BtreeHoldsMutex(Btree *p){
+ return (p->sharable==0 ||
+ (p->locked && p->wantToLock && sqlite3_mutex_held(p->pBt->mutex)));
+}
+#endif
+
+
+#ifndef SQLITE_OMIT_INCRBLOB
+/*
+** Enter and leave a mutex on a Btree given a cursor owned by that
+** Btree. These entry points are used by incremental I/O and can be
+** omitted if that module is not used.
+*/
+SQLITE_PRIVATE void sqlite3BtreeEnterCursor(BtCursor *pCur){
+ sqlite3BtreeEnter(pCur->pBtree);
+}
+SQLITE_PRIVATE void sqlite3BtreeLeaveCursor(BtCursor *pCur){
+ sqlite3BtreeLeave(pCur->pBtree);
+}
+#endif /* SQLITE_OMIT_INCRBLOB */
+
+
+/*
+** Enter the mutex on every Btree associated with a database
+** connection. This is needed (for example) prior to parsing
+** a statement since we will be comparing table and column names
+** against all schemas and we do not want those schemas being
+** reset out from under us.
+**
+** There is a corresponding leave-all procedures.
+**
+** Enter the mutexes in accending order by BtShared pointer address
+** to avoid the possibility of deadlock when two threads with
+** two or more btrees in common both try to lock all their btrees
+** at the same instant.
+*/
+SQLITE_PRIVATE void sqlite3BtreeEnterAll(sqlite3 *db){
+ int i;
+ Btree *p, *pLater;
+ assert( sqlite3_mutex_held(db->mutex) );
+ for(i=0; i<db->nDb; i++){
+ p = db->aDb[i].pBt;
+ if( p && p->sharable ){
+ p->wantToLock++;
+ if( !p->locked ){
+ assert( p->wantToLock==1 );
+ while( p->pPrev ) p = p->pPrev;
+ while( p->locked && p->pNext ) p = p->pNext;
+ for(pLater = p->pNext; pLater; pLater=pLater->pNext){
+ if( pLater->locked ){
+ sqlite3_mutex_leave(pLater->pBt->mutex);
+ pLater->locked = 0;
+ }
+ }
+ while( p ){
+ sqlite3_mutex_enter(p->pBt->mutex);
+ p->locked++;
+ p = p->pNext;
+ }
+ }
+ }
+ }
+}
+SQLITE_PRIVATE void sqlite3BtreeLeaveAll(sqlite3 *db){
+ int i;
+ Btree *p;
+ assert( sqlite3_mutex_held(db->mutex) );
+ for(i=0; i<db->nDb; i++){
+ p = db->aDb[i].pBt;
+ if( p && p->sharable ){
+ assert( p->wantToLock>0 );
+ p->wantToLock--;
+ if( p->wantToLock==0 ){
+ assert( p->locked );
+ sqlite3_mutex_leave(p->pBt->mutex);
+ p->locked = 0;
+ }
+ }
+ }
+}
+
+#ifndef NDEBUG
+/*
+** Return true if the current thread holds the database connection
+** mutex and all required BtShared mutexes.
+**
+** This routine is used inside assert() statements only.
+*/
+SQLITE_PRIVATE int sqlite3BtreeHoldsAllMutexes(sqlite3 *db){
+ int i;
+ if( !sqlite3_mutex_held(db->mutex) ){
+ return 0;
+ }
+ for(i=0; i<db->nDb; i++){
+ Btree *p;
+ p = db->aDb[i].pBt;
+ if( p && p->sharable &&
+ (p->wantToLock==0 || !sqlite3_mutex_held(p->pBt->mutex)) ){
+ return 0;
+ }
+ }
+ return 1;
+}
+#endif /* NDEBUG */
+
+/*
+** Potentially dd a new Btree pointer to a BtreeMutexArray.
+** Really only add the Btree if it can possibly be shared with
+** another database connection.
+**
+** The Btrees are kept in sorted order by pBtree->pBt. That
+** way when we go to enter all the mutexes, we can enter them
+** in order without every having to backup and retry and without
+** worrying about deadlock.
+**
+** The number of shared btrees will always be small (usually 0 or 1)
+** so an insertion sort is an adequate algorithm here.
+*/
+SQLITE_PRIVATE void sqlite3BtreeMutexArrayInsert(BtreeMutexArray *pArray, Btree *pBtree){
+ int i, j;
+ BtShared *pBt;
+ if( pBtree==0 || pBtree->sharable==0 ) return;
+#ifndef NDEBUG
+ {
+ for(i=0; i<pArray->nMutex; i++){
+ assert( pArray->aBtree[i]!=pBtree );
+ }
+ }
+#endif
+ assert( pArray->nMutex>=0 );
+ assert( pArray->nMutex<sizeof(pArray->aBtree)/sizeof(pArray->aBtree[0])-1 );
+ pBt = pBtree->pBt;
+ for(i=0; i<pArray->nMutex; i++){
+ assert( pArray->aBtree[i]!=pBtree );
+ if( pArray->aBtree[i]->pBt>pBt ){
+ for(j=pArray->nMutex; j>i; j--){
+ pArray->aBtree[j] = pArray->aBtree[j-1];
+ }
+ pArray->aBtree[i] = pBtree;
+ pArray->nMutex++;
+ return;
+ }
+ }
+ pArray->aBtree[pArray->nMutex++] = pBtree;
+}
+
+/*
+** Enter the mutex of every btree in the array. This routine is
+** called at the beginning of sqlite3VdbeExec(). The mutexes are
+** exited at the end of the same function.
+*/
+SQLITE_PRIVATE void sqlite3BtreeMutexArrayEnter(BtreeMutexArray *pArray){
+ int i;
+ for(i=0; i<pArray->nMutex; i++){
+ Btree *p = pArray->aBtree[i];
+ /* Some basic sanity checking */
+ assert( i==0 || pArray->aBtree[i-1]->pBt<p->pBt );
+ assert( !p->locked || p->wantToLock>0 );
+
+ /* We should already hold a lock on the database connection */
+ assert( sqlite3_mutex_held(p->db->mutex) );
+
+ p->wantToLock++;
+ if( !p->locked && p->sharable ){
+ sqlite3_mutex_enter(p->pBt->mutex);
+ p->locked = 1;
+ }
+ }
+}
+
+/*
+** Leave the mutex of every btree in the group.
+*/
+SQLITE_PRIVATE void sqlite3BtreeMutexArrayLeave(BtreeMutexArray *pArray){
+ int i;
+ for(i=0; i<pArray->nMutex; i++){
+ Btree *p = pArray->aBtree[i];
+ /* Some basic sanity checking */
+ assert( i==0 || pArray->aBtree[i-1]->pBt<p->pBt );
+ assert( p->locked || !p->sharable );
+ assert( p->wantToLock>0 );
+
+ /* We should already hold a lock on the database connection */
+ assert( sqlite3_mutex_held(p->db->mutex) );
+
+ p->wantToLock--;
+ if( p->wantToLock==0 && p->locked ){
+ sqlite3_mutex_leave(p->pBt->mutex);
+ p->locked = 0;
+ }
+ }
+}
+
+
+#endif /* SQLITE_THREADSAFE && !SQLITE_OMIT_SHARED_CACHE */
+
+/************** End of btmutex.c *********************************************/
+/************** Begin file btree.c *******************************************/
+/*
+** 2004 April 6
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** $Id: btree.c,v 1.458 2008/05/09 16:57:51 danielk1977 Exp $
+**
+** This file implements a external (disk-based) database using BTrees.
+** See the header comment on "btreeInt.h" for additional information.
+** Including a description of file format and an overview of operation.
+*/
+
+/*
+** The header string that appears at the beginning of every
+** SQLite database.
+*/
+static const char zMagicHeader[] = SQLITE_FILE_HEADER;
+
+/*
+** Set this global variable to 1 to enable tracing using the TRACE
+** macro.
+*/
+#if SQLITE_TEST
+int sqlite3BtreeTrace=0; /* True to enable tracing */
+#endif
+
+
+
+#ifndef SQLITE_OMIT_SHARED_CACHE
+/*
+** A flag to indicate whether or not shared cache is enabled. Also,
+** a list of BtShared objects that are eligible for participation
+** in shared cache. The variables have file scope during normal builds,
+** but the test harness needs to access these variables so we make them
+** global for test builds.
+*/
+#ifdef SQLITE_TEST
+SQLITE_PRIVATE BtShared *sqlite3SharedCacheList = 0;
+SQLITE_PRIVATE int sqlite3SharedCacheEnabled = 0;
+#else
+static BtShared *sqlite3SharedCacheList = 0;
+static int sqlite3SharedCacheEnabled = 0;
+#endif
+#endif /* SQLITE_OMIT_SHARED_CACHE */
+
+#ifndef SQLITE_OMIT_SHARED_CACHE
+/*
+** Enable or disable the shared pager and schema features.
+**
+** This routine has no effect on existing database connections.
+** The shared cache setting effects only future calls to
+** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
+*/
+SQLITE_API int sqlite3_enable_shared_cache(int enable){
+ sqlite3SharedCacheEnabled = enable;
+ return SQLITE_OK;
+}
+#endif
+
+
+/*
+** Forward declaration
+*/
+static int checkReadLocks(Btree*,Pgno,BtCursor*);
+
+
+#ifdef SQLITE_OMIT_SHARED_CACHE
+ /*
+ ** The functions queryTableLock(), lockTable() and unlockAllTables()
+ ** manipulate entries in the BtShared.pLock linked list used to store
+ ** shared-cache table level locks. If the library is compiled with the
+ ** shared-cache feature disabled, then there is only ever one user
+ ** of each BtShared structure and so this locking is not necessary.
+ ** So define the lock related functions as no-ops.
+ */
+ #define queryTableLock(a,b,c) SQLITE_OK
+ #define lockTable(a,b,c) SQLITE_OK
+ #define unlockAllTables(a)
+#endif
+
+#ifndef SQLITE_OMIT_SHARED_CACHE
+/*
+** Query to see if btree handle p may obtain a lock of type eLock
+** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
+** SQLITE_OK if the lock may be obtained (by calling lockTable()), or
+** SQLITE_LOCKED if not.
+*/
+static int queryTableLock(Btree *p, Pgno iTab, u8 eLock){
+ BtShared *pBt = p->pBt;
+ BtLock *pIter;
+
+ assert( sqlite3BtreeHoldsMutex(p) );
+
+ /* This is a no-op if the shared-cache is not enabled */
+ if( !p->sharable ){
+ return SQLITE_OK;
+ }
+
+ /* If some other connection is holding an exclusive lock, the
+ ** requested lock may not be obtained.
+ */
+ if( pBt->pExclusive && pBt->pExclusive!=p ){
+ return SQLITE_LOCKED;
+ }
+
+ /* This (along with lockTable()) is where the ReadUncommitted flag is
+ ** dealt with. If the caller is querying for a read-lock and the flag is
+ ** set, it is unconditionally granted - even if there are write-locks
+ ** on the table. If a write-lock is requested, the ReadUncommitted flag
+ ** is not considered.
+ **
+ ** In function lockTable(), if a read-lock is demanded and the
+ ** ReadUncommitted flag is set, no entry is added to the locks list
+ ** (BtShared.pLock).
+ **
+ ** To summarize: If the ReadUncommitted flag is set, then read cursors do
+ ** not create or respect table locks. The locking procedure for a
+ ** write-cursor does not change.
+ */
+ if(
+ !p->db ||
+ 0==(p->db->flags&SQLITE_ReadUncommitted) ||
+ eLock==WRITE_LOCK ||
+ iTab==MASTER_ROOT
+ ){
+ for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
+ if( pIter->pBtree!=p && pIter->iTable==iTab &&
+ (pIter->eLock!=eLock || eLock!=READ_LOCK) ){
+ return SQLITE_LOCKED;
+ }
+ }
+ }
+ return SQLITE_OK;
+}
+#endif /* !SQLITE_OMIT_SHARED_CACHE */
+
+#ifndef SQLITE_OMIT_SHARED_CACHE
+/*
+** Add a lock on the table with root-page iTable to the shared-btree used
+** by Btree handle p. Parameter eLock must be either READ_LOCK or
+** WRITE_LOCK.
+**
+** SQLITE_OK is returned if the lock is added successfully. SQLITE_BUSY and
+** SQLITE_NOMEM may also be returned.
+*/
+static int lockTable(Btree *p, Pgno iTable, u8 eLock){
+ BtShared *pBt = p->pBt;
+ BtLock *pLock = 0;
+ BtLock *pIter;
+
+ assert( sqlite3BtreeHoldsMutex(p) );
+
+ /* This is a no-op if the shared-cache is not enabled */
+ if( !p->sharable ){
+ return SQLITE_OK;
+ }
+
+ assert( SQLITE_OK==queryTableLock(p, iTable, eLock) );
+
+ /* If the read-uncommitted flag is set and a read-lock is requested,
+ ** return early without adding an entry to the BtShared.pLock list. See
+ ** comment in function queryTableLock() for more info on handling
+ ** the ReadUncommitted flag.
+ */
+ if(
+ (p->db) &&
+ (p->db->flags&SQLITE_ReadUncommitted) &&
+ (eLock==READ_LOCK) &&
+ iTable!=MASTER_ROOT
+ ){
+ return SQLITE_OK;
+ }
+
+ /* First search the list for an existing lock on this table. */
+ for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
+ if( pIter->iTable==iTable && pIter->pBtree==p ){
+ pLock = pIter;
+ break;
+ }
+ }
+
+ /* If the above search did not find a BtLock struct associating Btree p
+ ** with table iTable, allocate one and link it into the list.
+ */
+ if( !pLock ){
+ pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
+ if( !pLock ){
+ return SQLITE_NOMEM;
+ }
+ pLock->iTable = iTable;
+ pLock->pBtree = p;
+ pLock->pNext = pBt->pLock;
+ pBt->pLock = pLock;
+ }
+
+ /* Set the BtLock.eLock variable to the maximum of the current lock
+ ** and the requested lock. This means if a write-lock was already held
+ ** and a read-lock requested, we don't incorrectly downgrade the lock.
+ */
+ assert( WRITE_LOCK>READ_LOCK );
+ if( eLock>pLock->eLock ){
+ pLock->eLock = eLock;
+ }
+
+ return SQLITE_OK;
+}
+#endif /* !SQLITE_OMIT_SHARED_CACHE */
+
+#ifndef SQLITE_OMIT_SHARED_CACHE
+/*
+** Release all the table locks (locks obtained via calls to the lockTable()
+** procedure) held by Btree handle p.
+*/
+static void unlockAllTables(Btree *p){
+ BtShared *pBt = p->pBt;
+ BtLock **ppIter = &pBt->pLock;
+
+ assert( sqlite3BtreeHoldsMutex(p) );
+ assert( p->sharable || 0==*ppIter );
+
+ while( *ppIter ){
+ BtLock *pLock = *ppIter;
+ assert( pBt->pExclusive==0 || pBt->pExclusive==pLock->pBtree );
+ if( pLock->pBtree==p ){
+ *ppIter = pLock->pNext;
+ sqlite3_free(pLock);
+ }else{
+ ppIter = &pLock->pNext;
+ }
+ }
+
+ if( pBt->pExclusive==p ){
+ pBt->pExclusive = 0;
+ }
+}
+#endif /* SQLITE_OMIT_SHARED_CACHE */
+
+static void releasePage(MemPage *pPage); /* Forward reference */
+
+/*
+** Verify that the cursor holds a mutex on the BtShared
+*/
+#ifndef NDEBUG
+static int cursorHoldsMutex(BtCursor *p){
+ return sqlite3_mutex_held(p->pBt->mutex);
+}
+#endif
+
+
+#ifndef SQLITE_OMIT_INCRBLOB
+/*
+** Invalidate the overflow page-list cache for cursor pCur, if any.
+*/
+static void invalidateOverflowCache(BtCursor *pCur){
+ assert( cursorHoldsMutex(pCur) );
+ sqlite3_free(pCur->aOverflow);
+ pCur->aOverflow = 0;
+}
+
+/*
+** Invalidate the overflow page-list cache for all cursors opened
+** on the shared btree structure pBt.
+*/
+static void invalidateAllOverflowCache(BtShared *pBt){
+ BtCursor *p;
+ assert( sqlite3_mutex_held(pBt->mutex) );
+ for(p=pBt->pCursor; p; p=p->pNext){
+ invalidateOverflowCache(p);
+ }
+}
+#else
+ #define invalidateOverflowCache(x)
+ #define invalidateAllOverflowCache(x)
+#endif
+
+/*
+** Save the current cursor position in the variables BtCursor.nKey
+** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
+*/
+static int saveCursorPosition(BtCursor *pCur){
+ int rc;
+
+ assert( CURSOR_VALID==pCur->eState );
+ assert( 0==pCur->pKey );
+ assert( cursorHoldsMutex(pCur) );
+
+ rc = sqlite3BtreeKeySize(pCur, &pCur->nKey);
+
+ /* If this is an intKey table, then the above call to BtreeKeySize()
+ ** stores the integer key in pCur->nKey. In this case this value is
+ ** all that is required. Otherwise, if pCur is not open on an intKey
+ ** table, then malloc space for and store the pCur->nKey bytes of key
+ ** data.
+ */
+ if( rc==SQLITE_OK && 0==pCur->pPage->intKey){
+ void *pKey = sqlite3_malloc(pCur->nKey);
+ if( pKey ){
+ rc = sqlite3BtreeKey(pCur, 0, pCur->nKey, pKey);
+ if( rc==SQLITE_OK ){
+ pCur->pKey = pKey;
+ }else{
+ sqlite3_free(pKey);
+ }
+ }else{
+ rc = SQLITE_NOMEM;
+ }
+ }
+ assert( !pCur->pPage->intKey || !pCur->pKey );
+
+ if( rc==SQLITE_OK ){
+ releasePage(pCur->pPage);
+ pCur->pPage = 0;
+ pCur->eState = CURSOR_REQUIRESEEK;
+ }
+
+ invalidateOverflowCache(pCur);
+ return rc;
+}
+
+/*
+** Save the positions of all cursors except pExcept open on the table
+** with root-page iRoot. Usually, this is called just before cursor
+** pExcept is used to modify the table (BtreeDelete() or BtreeInsert()).
+*/
+static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
+ BtCursor *p;
+ assert( sqlite3_mutex_held(pBt->mutex) );
+ assert( pExcept==0 || pExcept->pBt==pBt );
+ for(p=pBt->pCursor; p; p=p->pNext){
+ if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) &&
+ p->eState==CURSOR_VALID ){
+ int rc = saveCursorPosition(p);
+ if( SQLITE_OK!=rc ){
+ return rc;
+ }
+ }
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Clear the current cursor position.
+*/
+static void clearCursorPosition(BtCursor *pCur){
+ assert( cursorHoldsMutex(pCur) );
+ sqlite3_free(pCur->pKey);
+ pCur->pKey = 0;
+ pCur->eState = CURSOR_INVALID;
+}
+
+/*
+** Restore the cursor to the position it was in (or as close to as possible)
+** when saveCursorPosition() was called. Note that this call deletes the
+** saved position info stored by saveCursorPosition(), so there can be
+** at most one effective restoreOrClearCursorPosition() call after each
+** saveCursorPosition().
+**
+** If the second argument argument - doSeek - is false, then instead of
+** returning the cursor to its saved position, any saved position is deleted
+** and the cursor state set to CURSOR_INVALID.
+*/
+SQLITE_PRIVATE int sqlite3BtreeRestoreOrClearCursorPosition(BtCursor *pCur){
+ int rc;
+ assert( cursorHoldsMutex(pCur) );
+ assert( pCur->eState>=CURSOR_REQUIRESEEK );
+ if( pCur->eState==CURSOR_FAULT ){
+ return pCur->skip;
+ }
+#ifndef SQLITE_OMIT_INCRBLOB
+ if( pCur->isIncrblobHandle ){
+ return SQLITE_ABORT;
+ }
+#endif
+ pCur->eState = CURSOR_INVALID;
+ rc = sqlite3BtreeMoveto(pCur, pCur->pKey, 0, pCur->nKey, 0, &pCur->skip);
+ if( rc==SQLITE_OK ){
+ sqlite3_free(pCur->pKey);
+ pCur->pKey = 0;
+ assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
+ }
+ return rc;
+}
+
+#define restoreOrClearCursorPosition(p) \
+ (p->eState>=CURSOR_REQUIRESEEK ? \
+ sqlite3BtreeRestoreOrClearCursorPosition(p) : \
+ SQLITE_OK)
+
+#ifndef SQLITE_OMIT_AUTOVACUUM
+/*
+** Given a page number of a regular database page, return the page
+** number for the pointer-map page that contains the entry for the
+** input page number.
+*/
+static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
+ int nPagesPerMapPage, iPtrMap, ret;
+ assert( sqlite3_mutex_held(pBt->mutex) );
+ nPagesPerMapPage = (pBt->usableSize/5)+1;
+ iPtrMap = (pgno-2)/nPagesPerMapPage;
+ ret = (iPtrMap*nPagesPerMapPage) + 2;
+ if( ret==PENDING_BYTE_PAGE(pBt) ){
+ ret++;
+ }
+ return ret;
+}
+
+/*
+** Write an entry into the pointer map.
+**
+** This routine updates the pointer map entry for page number 'key'
+** so that it maps to type 'eType' and parent page number 'pgno'.
+** An error code is returned if something goes wrong, otherwise SQLITE_OK.
+*/
+static int ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent){
+ DbPage *pDbPage; /* The pointer map page */
+ u8 *pPtrmap; /* The pointer map data */
+ Pgno iPtrmap; /* The pointer map page number */
+ int offset; /* Offset in pointer map page */
+ int rc;
+
+ assert( sqlite3_mutex_held(pBt->mutex) );
+ /* The master-journal page number must never be used as a pointer map page */
+ assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
+
+ assert( pBt->autoVacuum );
+ if( key==0 ){
+ return SQLITE_CORRUPT_BKPT;
+ }
+ iPtrmap = PTRMAP_PAGENO(pBt, key);
+ rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ offset = PTRMAP_PTROFFSET(pBt, key);
+ pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
+
+ if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
+ TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
+ rc = sqlite3PagerWrite(pDbPage);
+ if( rc==SQLITE_OK ){
+ pPtrmap[offset] = eType;
+ put4byte(&pPtrmap[offset+1], parent);
+ }
+ }
+
+ sqlite3PagerUnref(pDbPage);
+ return rc;
+}
+
+/*
+** Read an entry from the pointer map.
+**
+** This routine retrieves the pointer map entry for page 'key', writing
+** the type and parent page number to *pEType and *pPgno respectively.
+** An error code is returned if something goes wrong, otherwise SQLITE_OK.
+*/
+static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
+ DbPage *pDbPage; /* The pointer map page */
+ int iPtrmap; /* Pointer map page index */
+ u8 *pPtrmap; /* Pointer map page data */
+ int offset; /* Offset of entry in pointer map */
+ int rc;
+
+ assert( sqlite3_mutex_held(pBt->mutex) );
+
+ iPtrmap = PTRMAP_PAGENO(pBt, key);
+ rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
+ if( rc!=0 ){
+ return rc;
+ }
+ pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
+
+ offset = PTRMAP_PTROFFSET(pBt, key);
+ assert( pEType!=0 );
+ *pEType = pPtrmap[offset];
+ if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
+
+ sqlite3PagerUnref(pDbPage);
+ if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_BKPT;
+ return SQLITE_OK;
+}
+
+#endif /* SQLITE_OMIT_AUTOVACUUM */
+
+/*
+** Given a btree page and a cell index (0 means the first cell on
+** the page, 1 means the second cell, and so forth) return a pointer
+** to the cell content.
+**
+** This routine works only for pages that do not contain overflow cells.
+*/
+#define findCell(pPage, iCell) \
+ ((pPage)->aData + get2byte(&(pPage)->aData[(pPage)->cellOffset+2*(iCell)]))
+#ifdef SQLITE_TEST
+SQLITE_PRIVATE u8 *sqlite3BtreeFindCell(MemPage *pPage, int iCell){
+ assert( iCell>=0 );
+ assert( iCell<get2byte(&pPage->aData[pPage->hdrOffset+3]) );
+ return findCell(pPage, iCell);
+}
+#endif
+
+/*
+** This a more complex version of sqlite3BtreeFindCell() that works for
+** pages that do contain overflow cells. See insert
+*/
+static u8 *findOverflowCell(MemPage *pPage, int iCell){
+ int i;
+ assert( sqlite3_mutex_held(pPage->pBt->mutex) );
+ for(i=pPage->nOverflow-1; i>=0; i--){
+ int k;
+ struct _OvflCell *pOvfl;
+ pOvfl = &pPage->aOvfl[i];
+ k = pOvfl->idx;
+ if( k<=iCell ){
+ if( k==iCell ){
+ return pOvfl->pCell;
+ }
+ iCell--;
+ }
+ }
+ return findCell(pPage, iCell);
+}
+
+/*
+** Parse a cell content block and fill in the CellInfo structure. There
+** are two versions of this function. sqlite3BtreeParseCell() takes a
+** cell index as the second argument and sqlite3BtreeParseCellPtr()
+** takes a pointer to the body of the cell as its second argument.
+**
+** Within this file, the parseCell() macro can be called instead of
+** sqlite3BtreeParseCellPtr(). Using some compilers, this will be faster.
+*/
+SQLITE_PRIVATE void sqlite3BtreeParseCellPtr(
+ MemPage *pPage, /* Page containing the cell */
+ u8 *pCell, /* Pointer to the cell text. */
+ CellInfo *pInfo /* Fill in this structure */
+){
+ int n; /* Number bytes in cell content header */
+ u32 nPayload; /* Number of bytes of cell payload */
+
+ assert( sqlite3_mutex_held(pPage->pBt->mutex) );
+
+ pInfo->pCell = pCell;
+ assert( pPage->leaf==0 || pPage->leaf==1 );
+ n = pPage->childPtrSize;
+ assert( n==4-4*pPage->leaf );
+ if( pPage->hasData ){
+ n += getVarint32(&pCell[n], nPayload);
+ }else{
+ nPayload = 0;
+ }
+ pInfo->nData = nPayload;
+ if( pPage->intKey ){
+ n += getVarint(&pCell[n], (u64 *)&pInfo->nKey);
+ }else{
+ u32 x;
+ n += getVarint32(&pCell[n], x);
+ pInfo->nKey = x;
+ nPayload += x;
+ }
+ pInfo->nPayload = nPayload;
+ pInfo->nHeader = n;
+ if( nPayload<=pPage->maxLocal ){
+ /* This is the (easy) common case where the entire payload fits
+ ** on the local page. No overflow is required.
+ */
+ int nSize; /* Total size of cell content in bytes */
+ pInfo->nLocal = nPayload;
+ pInfo->iOverflow = 0;
+ nSize = nPayload + n;
+ if( nSize<4 ){
+ nSize = 4; /* Minimum cell size is 4 */
+ }
+ pInfo->nSize = nSize;
+ }else{
+ /* If the payload will not fit completely on the local page, we have
+ ** to decide how much to store locally and how much to spill onto
+ ** overflow pages. The strategy is to minimize the amount of unused
+ ** space on overflow pages while keeping the amount of local storage
+ ** in between minLocal and maxLocal.
+ **
+ ** Warning: changing the way overflow payload is distributed in any
+ ** way will result in an incompatible file format.
+ */
+ int minLocal; /* Minimum amount of payload held locally */
+ int maxLocal; /* Maximum amount of payload held locally */
+ int surplus; /* Overflow payload available for local storage */
+
+ minLocal = pPage->minLocal;
+ maxLocal = pPage->maxLocal;
+ surplus = minLocal + (nPayload - minLocal)%(pPage->pBt->usableSize - 4);
+ if( surplus <= maxLocal ){
+ pInfo->nLocal = surplus;
+ }else{
+ pInfo->nLocal = minLocal;
+ }
+ pInfo->iOverflow = pInfo->nLocal + n;
+ pInfo->nSize = pInfo->iOverflow + 4;
+ }
+}
+#define parseCell(pPage, iCell, pInfo) \
+ sqlite3BtreeParseCellPtr((pPage), findCell((pPage), (iCell)), (pInfo))
+SQLITE_PRIVATE void sqlite3BtreeParseCell(
+ MemPage *pPage, /* Page containing the cell */
+ int iCell, /* The cell index. First cell is 0 */
+ CellInfo *pInfo /* Fill in this structure */
+){
+ parseCell(pPage, iCell, pInfo);
+}
+
+/*
+** Compute the total number of bytes that a Cell needs in the cell
+** data area of the btree-page. The return number includes the cell
+** data header and the local payload, but not any overflow page or
+** the space used by the cell pointer.
+*/
+#ifndef NDEBUG
+static u16 cellSize(MemPage *pPage, int iCell){
+ CellInfo info;
+ sqlite3BtreeParseCell(pPage, iCell, &info);
+ return info.nSize;
+}
+#endif
+static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
+ CellInfo info;
+ sqlite3BtreeParseCellPtr(pPage, pCell, &info);
+ return info.nSize;
+}
+
+#ifndef SQLITE_OMIT_AUTOVACUUM
+/*
+** If the cell pCell, part of page pPage contains a pointer
+** to an overflow page, insert an entry into the pointer-map
+** for the overflow page.
+*/
+static int ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell){
+ if( pCell ){
+ CellInfo info;
+ sqlite3BtreeParseCellPtr(pPage, pCell, &info);
+ assert( (info.nData+(pPage->intKey?0:info.nKey))==info.nPayload );
+ if( (info.nData+(pPage->intKey?0:info.nKey))>info.nLocal ){
+ Pgno ovfl = get4byte(&pCell[info.iOverflow]);
+ return ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno);
+ }
+ }
+ return SQLITE_OK;
+}
+/*
+** If the cell with index iCell on page pPage contains a pointer
+** to an overflow page, insert an entry into the pointer-map
+** for the overflow page.
+*/
+static int ptrmapPutOvfl(MemPage *pPage, int iCell){
+ u8 *pCell;
+ assert( sqlite3_mutex_held(pPage->pBt->mutex) );
+ pCell = findOverflowCell(pPage, iCell);
+ return ptrmapPutOvflPtr(pPage, pCell);
+}
+#endif
+
+
+/*
+** Defragment the page given. All Cells are moved to the
+** end of the page and all free space is collected into one
+** big FreeBlk that occurs in between the header and cell
+** pointer array and the cell content area.
+*/
+static int defragmentPage(MemPage *pPage){
+ int i; /* Loop counter */
+ int pc; /* Address of a i-th cell */
+ int addr; /* Offset of first byte after cell pointer array */
+ int hdr; /* Offset to the page header */
+ int size; /* Size of a cell */
+ int usableSize; /* Number of usable bytes on a page */
+ int cellOffset; /* Offset to the cell pointer array */
+ int brk; /* Offset to the cell content area */
+ int nCell; /* Number of cells on the page */
+ unsigned char *data; /* The page data */
+ unsigned char *temp; /* Temp area for cell content */
+
+ assert( sqlite3PagerIswriteable(pPage->pDbPage) );
+ assert( pPage->pBt!=0 );
+ assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
+ assert( pPage->nOverflow==0 );
+ assert( sqlite3_mutex_held(pPage->pBt->mutex) );
+ temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
+ data = pPage->aData;
+ hdr = pPage->hdrOffset;
+ cellOffset = pPage->cellOffset;
+ nCell = pPage->nCell;
+ assert( nCell==get2byte(&data[hdr+3]) );
+ usableSize = pPage->pBt->usableSize;
+ brk = get2byte(&data[hdr+5]);
+ memcpy(&temp[brk], &data[brk], usableSize - brk);
+ brk = usableSize;
+ for(i=0; i<nCell; i++){
+ u8 *pAddr; /* The i-th cell pointer */
+ pAddr = &data[cellOffset + i*2];
+ pc = get2byte(pAddr);
+ assert( pc<pPage->pBt->usableSize );
+ size = cellSizePtr(pPage, &temp[pc]);
+ brk -= size;
+ memcpy(&data[brk], &temp[pc], size);
+ put2byte(pAddr, brk);
+ }
+ assert( brk>=cellOffset+2*nCell );
+ put2byte(&data[hdr+5], brk);
+ data[hdr+1] = 0;
+ data[hdr+2] = 0;
+ data[hdr+7] = 0;
+ addr = cellOffset+2*nCell;
+ memset(&data[addr], 0, brk-addr);
+ return SQLITE_OK;
+}
+
+/*
+** Allocate nByte bytes of space on a page.
+**
+** Return the index into pPage->aData[] of the first byte of
+** the new allocation. Or return 0 if there is not enough free
+** space on the page to satisfy the allocation request.
+**
+** If the page contains nBytes of free space but does not contain
+** nBytes of contiguous free space, then this routine automatically
+** calls defragementPage() to consolidate all free space before
+** allocating the new chunk.
+*/
+static int allocateSpace(MemPage *pPage, int nByte){
+ int addr, pc, hdr;
+ int size;
+ int nFrag;
+ int top;
+ int nCell;
+ int cellOffset;
+ unsigned char *data;
+
+ data = pPage->aData;
+ assert( sqlite3PagerIswriteable(pPage->pDbPage) );
+ assert( pPage->pBt );
+ assert( sqlite3_mutex_held(pPage->pBt->mutex) );
+ if( nByte<4 ) nByte = 4;
+ if( pPage->nFree<nByte || pPage->nOverflow>0 ) return 0;
+ pPage->nFree -= nByte;
+ hdr = pPage->hdrOffset;
+
+ nFrag = data[hdr+7];
+ if( nFrag<60 ){
+ /* Search the freelist looking for a slot big enough to satisfy the
+ ** space request. */
+ addr = hdr+1;
+ while( (pc = get2byte(&data[addr]))>0 ){
+ size = get2byte(&data[pc+2]);
+ if( size>=nByte ){
+ if( size<nByte+4 ){
+ memcpy(&data[addr], &data[pc], 2);
+ data[hdr+7] = nFrag + size - nByte;
+ return pc;
+ }else{
+ put2byte(&data[pc+2], size-nByte);
+ return pc + size - nByte;
+ }
+ }
+ addr = pc;
+ }
+ }
+
+ /* Allocate memory from the gap in between the cell pointer array
+ ** and the cell content area.
+ */
+ top = get2byte(&data[hdr+5]);
+ nCell = get2byte(&data[hdr+3]);
+ cellOffset = pPage->cellOffset;
+ if( nFrag>=60 || cellOffset + 2*nCell > top - nByte ){
+ if( defragmentPage(pPage) ) return 0;
+ top = get2byte(&data[hdr+5]);
+ }
+ top -= nByte;
+ assert( cellOffset + 2*nCell <= top );
+ put2byte(&data[hdr+5], top);
+ return top;
+}
+
+/*
+** Return a section of the pPage->aData to the freelist.
+** The first byte of the new free block is pPage->aDisk[start]
+** and the size of the block is "size" bytes.
+**
+** Most of the effort here is involved in coalesing adjacent
+** free blocks into a single big free block.
+*/
+static void freeSpace(MemPage *pPage, int start, int size){
+ int addr, pbegin, hdr;
+ unsigned char *data = pPage->aData;
+
+ assert( pPage->pBt!=0 );
+ assert( sqlite3PagerIswriteable(pPage->pDbPage) );
+ assert( start>=pPage->hdrOffset+6+(pPage->leaf?0:4) );
+ assert( (start + size)<=pPage->pBt->usableSize );
+ assert( sqlite3_mutex_held(pPage->pBt->mutex) );
+ if( size<4 ) size = 4;
+
+#ifdef SQLITE_SECURE_DELETE
+ /* Overwrite deleted information with zeros when the SECURE_DELETE
+ ** option is enabled at compile-time */
+ memset(&data[start], 0, size);
+#endif
+
+ /* Add the space back into the linked list of freeblocks */
+ hdr = pPage->hdrOffset;
+ addr = hdr + 1;
+ while( (pbegin = get2byte(&data[addr]))<start && pbegin>0 ){
+ assert( pbegin<=pPage->pBt->usableSize-4 );
+ assert( pbegin>addr );
+ addr = pbegin;
+ }
+ assert( pbegin<=pPage->pBt->usableSize-4 );
+ assert( pbegin>addr || pbegin==0 );
+ put2byte(&data[addr], start);
+ put2byte(&data[start], pbegin);
+ put2byte(&data[start+2], size);
+ pPage->nFree += size;
+
+ /* Coalesce adjacent free blocks */
+ addr = pPage->hdrOffset + 1;
+ while( (pbegin = get2byte(&data[addr]))>0 ){
+ int pnext, psize;
+ assert( pbegin>addr );
+ assert( pbegin<=pPage->pBt->usableSize-4 );
+ pnext = get2byte(&data[pbegin]);
+ psize = get2byte(&data[pbegin+2]);
+ if( pbegin + psize + 3 >= pnext && pnext>0 ){
+ int frag = pnext - (pbegin+psize);
+ assert( frag<=data[pPage->hdrOffset+7] );
+ data[pPage->hdrOffset+7] -= frag;
+ put2byte(&data[pbegin], get2byte(&data[pnext]));
+ put2byte(&data[pbegin+2], pnext+get2byte(&data[pnext+2])-pbegin);
+ }else{
+ addr = pbegin;
+ }
+ }
+
+ /* If the cell content area begins with a freeblock, remove it. */
+ if( data[hdr+1]==data[hdr+5] && data[hdr+2]==data[hdr+6] ){
+ int top;
+ pbegin = get2byte(&data[hdr+1]);
+ memcpy(&data[hdr+1], &data[pbegin], 2);
+ top = get2byte(&data[hdr+5]);
+ put2byte(&data[hdr+5], top + get2byte(&data[pbegin+2]));
+ }
+}
+
+/*
+** Decode the flags byte (the first byte of the header) for a page
+** and initialize fields of the MemPage structure accordingly.
+*/
+static void decodeFlags(MemPage *pPage, int flagByte){
+ BtShared *pBt; /* A copy of pPage->pBt */
+
+ assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
+ assert( sqlite3_mutex_held(pPage->pBt->mutex) );
+ pPage->intKey = (flagByte & (PTF_INTKEY|PTF_LEAFDATA))!=0;
+ pPage->zeroData = (flagByte & PTF_ZERODATA)!=0;
+ pPage->leaf = (flagByte & PTF_LEAF)!=0;
+ pPage->childPtrSize = 4*(pPage->leaf==0);
+ pBt = pPage->pBt;
+ if( flagByte & PTF_LEAFDATA ){
+ pPage->leafData = 1;
+ pPage->maxLocal = pBt->maxLeaf;
+ pPage->minLocal = pBt->minLeaf;
+ }else{
+ pPage->leafData = 0;
+ pPage->maxLocal = pBt->maxLocal;
+ pPage->minLocal = pBt->minLocal;
+ }
+ pPage->hasData = !(pPage->zeroData || (!pPage->leaf && pPage->leafData));
+}
+
+/*
+** Initialize the auxiliary information for a disk block.
+**
+** The pParent parameter must be a pointer to the MemPage which
+** is the parent of the page being initialized. The root of a
+** BTree has no parent and so for that page, pParent==NULL.
+**
+** Return SQLITE_OK on success. If we see that the page does
+** not contain a well-formed database page, then return
+** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
+** guarantee that the page is well-formed. It only shows that
+** we failed to detect any corruption.
+*/
+SQLITE_PRIVATE int sqlite3BtreeInitPage(
+ MemPage *pPage, /* The page to be initialized */
+ MemPage *pParent /* The parent. Might be NULL */
+){
+ int pc; /* Address of a freeblock within pPage->aData[] */
+ int hdr; /* Offset to beginning of page header */
+ u8 *data; /* Equal to pPage->aData */
+ BtShared *pBt; /* The main btree structure */
+ int usableSize; /* Amount of usable space on each page */
+ int cellOffset; /* Offset from start of page to first cell pointer */
+ int nFree; /* Number of unused bytes on the page */
+ int top; /* First byte of the cell content area */
+
+ pBt = pPage->pBt;
+ assert( pBt!=0 );
+ assert( pParent==0 || pParent->pBt==pBt );
+ assert( sqlite3_mutex_held(pBt->mutex) );
+ assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
+ assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
+ assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
+ if( pPage->pParent!=pParent && (pPage->pParent!=0 || pPage->isInit) ){
+ /* The parent page should never change unless the file is corrupt */
+ return SQLITE_CORRUPT_BKPT;
+ }
+ if( pPage->isInit ) return SQLITE_OK;
+ if( pPage->pParent==0 && pParent!=0 ){
+ pPage->pParent = pParent;
+ sqlite3PagerRef(pParent->pDbPage);
+ }
+ hdr = pPage->hdrOffset;
+ data = pPage->aData;
+ decodeFlags(pPage, data[hdr]);
+ pPage->nOverflow = 0;
+ pPage->idxShift = 0;
+ usableSize = pBt->usableSize;
+ pPage->cellOffset = cellOffset = hdr + 12 - 4*pPage->leaf;
+ top = get2byte(&data[hdr+5]);
+ pPage->nCell = get2byte(&data[hdr+3]);
+ if( pPage->nCell>MX_CELL(pBt) ){
+ /* To many cells for a single page. The page must be corrupt */
+ return SQLITE_CORRUPT_BKPT;
+ }
+ if( pPage->nCell==0 && pParent!=0 && pParent->pgno!=1 ){
+ /* All pages must have at least one cell, except for root pages */
+ return SQLITE_CORRUPT_BKPT;
+ }
+
+ /* Compute the total free space on the page */
+ pc = get2byte(&data[hdr+1]);
+ nFree = data[hdr+7] + top - (cellOffset + 2*pPage->nCell);
+ while( pc>0 ){
+ int next, size;
+ if( pc>usableSize-4 ){
+ /* Free block is off the page */
+ return SQLITE_CORRUPT_BKPT;
+ }
+ next = get2byte(&data[pc]);
+ size = get2byte(&data[pc+2]);
+ if( next>0 && next<=pc+size+3 ){
+ /* Free blocks must be in accending order */
+ return SQLITE_CORRUPT_BKPT;
+ }
+ nFree += size;
+ pc = next;
+ }
+ pPage->nFree = nFree;
+ if( nFree>=usableSize ){
+ /* Free space cannot exceed total page size */
+ return SQLITE_CORRUPT_BKPT;
+ }
+
+ pPage->isInit = 1;
+ return SQLITE_OK;
+}
+
+/*
+** Set up a raw page so that it looks like a database page holding
+** no entries.
+*/
+static void zeroPage(MemPage *pPage, int flags){
+ unsigned char *data = pPage->aData;
+ BtShared *pBt = pPage->pBt;
+ int hdr = pPage->hdrOffset;
+ int first;
+
+ assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno );
+ assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
+ assert( sqlite3PagerGetData(pPage->pDbPage) == data );
+ assert( sqlite3PagerIswriteable(pPage->pDbPage) );
+ assert( sqlite3_mutex_held(pBt->mutex) );
+ memset(&data[hdr], 0, pBt->usableSize - hdr);
+ data[hdr] = flags;
+ first = hdr + 8 + 4*((flags&PTF_LEAF)==0);
+ memset(&data[hdr+1], 0, 4);
+ data[hdr+7] = 0;
+ put2byte(&data[hdr+5], pBt->usableSize);
+ pPage->nFree = pBt->usableSize - first;
+ decodeFlags(pPage, flags);
+ pPage->hdrOffset = hdr;
+ pPage->cellOffset = first;
+ pPage->nOverflow = 0;
+ pPage->idxShift = 0;
+ pPage->nCell = 0;
+ pPage->isInit = 1;
+}
+
+/*
+** Get a page from the pager. Initialize the MemPage.pBt and
+** MemPage.aData elements if needed.
+**
+** If the noContent flag is set, it means that we do not care about
+** the content of the page at this time. So do not go to the disk
+** to fetch the content. Just fill in the content with zeros for now.
+** If in the future we call sqlite3PagerWrite() on this page, that
+** means we have started to be concerned about content and the disk
+** read should occur at that point.
+*/
+SQLITE_PRIVATE int sqlite3BtreeGetPage(
+ BtShared *pBt, /* The btree */
+ Pgno pgno, /* Number of the page to fetch */
+ MemPage **ppPage, /* Return the page in this parameter */
+ int noContent /* Do not load page content if true */
+){
+ int rc;
+ MemPage *pPage;
+ DbPage *pDbPage;
+
+ assert( sqlite3_mutex_held(pBt->mutex) );
+ rc = sqlite3PagerAcquire(pBt->pPager, pgno, (DbPage**)&pDbPage, noContent);
+ if( rc ) return rc;
+ pPage = (MemPage *)sqlite3PagerGetExtra(pDbPage);
+ pPage->aData = sqlite3PagerGetData(pDbPage);
+ pPage->pDbPage = pDbPage;
+ pPage->pBt = pBt;
+ pPage->pgno = pgno;
+ pPage->hdrOffset = pPage->pgno==1 ? 100 : 0;
+ *ppPage = pPage;
+ return SQLITE_OK;
+}
+
+/*
+** Get a page from the pager and initialize it. This routine
+** is just a convenience wrapper around separate calls to
+** sqlite3BtreeGetPage() and sqlite3BtreeInitPage().
+*/
+static int getAndInitPage(
+ BtShared *pBt, /* The database file */
+ Pgno pgno, /* Number of the page to get */
+ MemPage **ppPage, /* Write the page pointer here */
+ MemPage *pParent /* Parent of the page */
+){
+ int rc;
+ assert( sqlite3_mutex_held(pBt->mutex) );
+ if( pgno==0 ){
+ return SQLITE_CORRUPT_BKPT;
+ }
+ rc = sqlite3BtreeGetPage(pBt, pgno, ppPage, 0);
+ if( rc==SQLITE_OK && (*ppPage)->isInit==0 ){
+ rc = sqlite3BtreeInitPage(*ppPage, pParent);
+ if( rc!=SQLITE_OK ){
+ releasePage(*ppPage);
+ *ppPage = 0;
+ }
+ }
+ return rc;
+}
+
+/*
+** Release a MemPage. This should be called once for each prior
+** call to sqlite3BtreeGetPage.
+*/
+static void releasePage(MemPage *pPage){
+ if( pPage ){
+ assert( pPage->aData );
+ assert( pPage->pBt );
+ assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
+ assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
+ assert( sqlite3_mutex_held(pPage->pBt->mutex) );
+ sqlite3PagerUnref(pPage->pDbPage);
+ }
+}
+
+/*
+** This routine is called when the reference count for a page
+** reaches zero. We need to unref the pParent pointer when that
+** happens.
+*/
+static void pageDestructor(DbPage *pData, int pageSize){
+ MemPage *pPage;
+ assert( (pageSize & 7)==0 );
+ pPage = (MemPage *)sqlite3PagerGetExtra(pData);
+ assert( pPage->isInit==0 || sqlite3_mutex_held(pPage->pBt->mutex) );
+ if( pPage->pParent ){
+ MemPage *pParent = pPage->pParent;
+ assert( pParent->pBt==pPage->pBt );
+ pPage->pParent = 0;
+ releasePage(pParent);
+ }
+ pPage->isInit = 0;
+}
+
+/*
+** During a rollback, when the pager reloads information into the cache
+** so that the cache is restored to its original state at the start of
+** the transaction, for each page restored this routine is called.
+**
+** This routine needs to reset the extra data section at the end of the
+** page to agree with the restored data.
+*/
+static void pageReinit(DbPage *pData, int pageSize){
+ MemPage *pPage;
+ assert( (pageSize & 7)==0 );
+ pPage = (MemPage *)sqlite3PagerGetExtra(pData);
+ if( pPage->isInit ){
+ assert( sqlite3_mutex_held(pPage->pBt->mutex) );
+ pPage->isInit = 0;
+ sqlite3BtreeInitPage(pPage, pPage->pParent);
+ }
+}
+
+/*
+** Invoke the busy handler for a btree.
+*/
+static int sqlite3BtreeInvokeBusyHandler(void *pArg, int n){
+ BtShared *pBt = (BtShared*)pArg;
+ assert( pBt->db );
+ assert( sqlite3_mutex_held(pBt->db->mutex) );
+ return sqlite3InvokeBusyHandler(&pBt->db->busyHandler);
+}
+
+/*
+** Open a database file.
+**
+** zFilename is the name of the database file. If zFilename is NULL
+** a new database with a random name is created. This randomly named
+** database file will be deleted when sqlite3BtreeClose() is called.
+** If zFilename is ":memory:" then an in-memory database is created
+** that is automatically destroyed when it is closed.
+*/
+SQLITE_PRIVATE int sqlite3BtreeOpen(
+ const char *zFilename, /* Name of the file containing the BTree database */
+ sqlite3 *db, /* Associated database handle */
+ Btree **ppBtree, /* Pointer to new Btree object written here */
+ int flags, /* Options */
+ int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */
+){
+ sqlite3_vfs *pVfs; /* The VFS to use for this btree */
+ BtShared *pBt = 0; /* Shared part of btree structure */
+ Btree *p; /* Handle to return */
+ int rc = SQLITE_OK;
+ int nReserve;
+ unsigned char zDbHeader[100];
+
+ /* Set the variable isMemdb to true for an in-memory database, or
+ ** false for a file-based database. This symbol is only required if
+ ** either of the shared-data or autovacuum features are compiled
+ ** into the library.
+ */
+#if !defined(SQLITE_OMIT_SHARED_CACHE) || !defined(SQLITE_OMIT_AUTOVACUUM)
+ #ifdef SQLITE_OMIT_MEMORYDB
+ const int isMemdb = 0;
+ #else
+ const int isMemdb = zFilename && !strcmp(zFilename, ":memory:");
+ #endif
+#endif
+
+ assert( db!=0 );
+ assert( sqlite3_mutex_held(db->mutex) );
+
+ pVfs = db->pVfs;
+ p = sqlite3MallocZero(sizeof(Btree));
+ if( !p ){
+ return SQLITE_NOMEM;
+ }
+ p->inTrans = TRANS_NONE;
+ p->db = db;
+
+#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
+ /*
+ ** If this Btree is a candidate for shared cache, try to find an
+ ** existing BtShared object that we can share with
+ */
+ if( (flags & BTREE_PRIVATE)==0
+ && isMemdb==0
+ && (db->flags & SQLITE_Vtab)==0
+ && zFilename && zFilename[0]
+ ){
+ if( sqlite3SharedCacheEnabled ){
+ int nFullPathname = pVfs->mxPathname+1;
+ char *zFullPathname = (char *)sqlite3_malloc(nFullPathname);
+ sqlite3_mutex *mutexShared;
+ p->sharable = 1;
+ if( db ){
+ db->flags |= SQLITE_SharedCache;
+ }
+ if( !zFullPathname ){
+ sqlite3_free(p);
+ return SQLITE_NOMEM;
+ }
+ sqlite3OsFullPathname(pVfs, zFilename, nFullPathname, zFullPathname);
+ mutexShared = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER);
+ sqlite3_mutex_enter(mutexShared);
+ for(pBt=sqlite3SharedCacheList; pBt; pBt=pBt->pNext){
+ assert( pBt->nRef>0 );
+ if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager))
+ && sqlite3PagerVfs(pBt->pPager)==pVfs ){
+ p->pBt = pBt;
+ pBt->nRef++;
+ break;
+ }
+ }
+ sqlite3_mutex_leave(mutexShared);
+ sqlite3_free(zFullPathname);
+ }
+#ifdef SQLITE_DEBUG
+ else{
+ /* In debug mode, we mark all persistent databases as sharable
+ ** even when they are not. This exercises the locking code and
+ ** gives more opportunity for asserts(sqlite3_mutex_held())
+ ** statements to find locking problems.
+ */
+ p->sharable = 1;
+ }
+#endif
+ }
+#endif
+ if( pBt==0 ){
+ /*
+ ** The following asserts make sure that structures used by the btree are
+ ** the right size. This is to guard against size changes that result
+ ** when compiling on a different architecture.
+ */
+ assert( sizeof(i64)==8 || sizeof(i64)==4 );
+ assert( sizeof(u64)==8 || sizeof(u64)==4 );
+ assert( sizeof(u32)==4 );
+ assert( sizeof(u16)==2 );
+ assert( sizeof(Pgno)==4 );
+
+ pBt = sqlite3MallocZero( sizeof(*pBt) );
+ if( pBt==0 ){
+ rc = SQLITE_NOMEM;
+ goto btree_open_out;
+ }
+ pBt->busyHdr.xFunc = sqlite3BtreeInvokeBusyHandler;
+ pBt->busyHdr.pArg = pBt;
+ rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
+ EXTRA_SIZE, flags, vfsFlags);
+ if( rc==SQLITE_OK ){
+ rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
+ }
+ if( rc!=SQLITE_OK ){
+ goto btree_open_out;
+ }
+ sqlite3PagerSetBusyhandler(pBt->pPager, &pBt->busyHdr);
+ p->pBt = pBt;
+
+ sqlite3PagerSetDestructor(pBt->pPager, pageDestructor);
+ sqlite3PagerSetReiniter(pBt->pPager, pageReinit);
+ pBt->pCursor = 0;
+ pBt->pPage1 = 0;
+ pBt->readOnly = sqlite3PagerIsreadonly(pBt->pPager);
+ pBt->pageSize = get2byte(&zDbHeader[16]);
+ if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
+ || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
+ pBt->pageSize = 0;
+ sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize);
+ pBt->maxEmbedFrac = 64; /* 25% */
+ pBt->minEmbedFrac = 32; /* 12.5% */
+ pBt->minLeafFrac = 32; /* 12.5% */
+#ifndef SQLITE_OMIT_AUTOVACUUM
+ /* If the magic name ":memory:" will create an in-memory database, then
+ ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
+ ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
+ ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
+ ** regular file-name. In this case the auto-vacuum applies as per normal.
+ */
+ if( zFilename && !isMemdb ){
+ pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
+ pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
+ }
+#endif
+ nReserve = 0;
+ }else{
+ nReserve = zDbHeader[20];
+ pBt->maxEmbedFrac = zDbHeader[21];
+ pBt->minEmbedFrac = zDbHeader[22];
+ pBt->minLeafFrac = zDbHeader[23];
+ pBt->pageSizeFixed = 1;
+#ifndef SQLITE_OMIT_AUTOVACUUM
+ pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
+ pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
+#endif
+ }
+ pBt->usableSize = pBt->pageSize - nReserve;
+ assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */
+ sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize);
+
+#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
+ /* Add the new BtShared object to the linked list sharable BtShareds.
+ */
+ if( p->sharable ){
+ sqlite3_mutex *mutexShared;
+ pBt->nRef = 1;
+ mutexShared = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER);
+ if( SQLITE_THREADSAFE ){
+ pBt->mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_FAST);
+ if( pBt->mutex==0 ){
+ rc = SQLITE_NOMEM;
+ db->mallocFailed = 0;
+ goto btree_open_out;
+ }
+ }
+ sqlite3_mutex_enter(mutexShared);
+ pBt->pNext = sqlite3SharedCacheList;
+ sqlite3SharedCacheList = pBt;
+ sqlite3_mutex_leave(mutexShared);
+ }
+#endif
+ }
+
+#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
+ /* If the new Btree uses a sharable pBtShared, then link the new
+ ** Btree into the list of all sharable Btrees for the same connection.
+ ** The list is kept in ascending order by pBt address.
+ */
+ if( p->sharable ){
+ int i;
+ Btree *pSib;
+ for(i=0; i<db->nDb; i++){
+ if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
+ while( pSib->pPrev ){ pSib = pSib->pPrev; }
+ if( p->pBt<pSib->pBt ){
+ p->pNext = pSib;
+ p->pPrev = 0;
+ pSib->pPrev = p;
+ }else{
+ while( pSib->pNext && pSib->pNext->pBt<p->pBt ){
+ pSib = pSib->pNext;
+ }
+ p->pNext = pSib->pNext;
+ p->pPrev = pSib;
+ if( p->pNext ){
+ p->pNext->pPrev = p;
+ }
+ pSib->pNext = p;
+ }
+ break;
+ }
+ }
+ }
+#endif
+ *ppBtree = p;
+
+btree_open_out:
+ if( rc!=SQLITE_OK ){
+ if( pBt && pBt->pPager ){
+ sqlite3PagerClose(pBt->pPager);
+ }
+ sqlite3_free(pBt);
+ sqlite3_free(p);
+ *ppBtree = 0;
+ }
+ return rc;
+}
+
+/*
+** Decrement the BtShared.nRef counter. When it reaches zero,
+** remove the BtShared structure from the sharing list. Return
+** true if the BtShared.nRef counter reaches zero and return
+** false if it is still positive.
+*/
+static int removeFromSharingList(BtShared *pBt){
+#ifndef SQLITE_OMIT_SHARED_CACHE
+ sqlite3_mutex *pMaster;
+ BtShared *pList;
+ int removed = 0;
+
+ assert( sqlite3_mutex_notheld(pBt->mutex) );
+ pMaster = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER);
+ sqlite3_mutex_enter(pMaster);
+ pBt->nRef--;
+ if( pBt->nRef<=0 ){
+ if( sqlite3SharedCacheList==pBt ){
+ sqlite3SharedCacheList = pBt->pNext;
+ }else{
+ pList = sqlite3SharedCacheList;
+ while( pList && pList->pNext!=pBt ){
+ pList=pList->pNext;
+ }
+ if( pList ){
+ pList->pNext = pBt->pNext;
+ }
+ }
+ if( SQLITE_THREADSAFE ){
+ sqlite3_mutex_free(pBt->mutex);
+ }
+ removed = 1;
+ }
+ sqlite3_mutex_leave(pMaster);
+ return removed;
+#else
+ return 1;
+#endif
+}
+
+/*
+** Close an open database and invalidate all cursors.
+*/
+SQLITE_PRIVATE int sqlite3BtreeClose(Btree *p){
+ BtShared *pBt = p->pBt;
+ BtCursor *pCur;
+
+ /* Close all cursors opened via this handle. */
+ assert( sqlite3_mutex_held(p->db->mutex) );
+ sqlite3BtreeEnter(p);
+ pBt->db = p->db;
+ pCur = pBt->pCursor;
+ while( pCur ){
+ BtCursor *pTmp = pCur;
+ pCur = pCur->pNext;
+ if( pTmp->pBtree==p ){
+ sqlite3BtreeCloseCursor(pTmp);
+ }
+ }
+
+ /* Rollback any active transaction and free the handle structure.
+ ** The call to sqlite3BtreeRollback() drops any table-locks held by
+ ** this handle.
+ */
+ sqlite3BtreeRollback(p);
+ sqlite3BtreeLeave(p);
+
+ /* If there are still other outstanding references to the shared-btree
+ ** structure, return now. The remainder of this procedure cleans
+ ** up the shared-btree.
+ */
+ assert( p->wantToLock==0 && p->locked==0 );
+ if( !p->sharable || removeFromSharingList(pBt) ){
+ /* The pBt is no longer on the sharing list, so we can access
+ ** it without having to hold the mutex.
+ **
+ ** Clean out and delete the BtShared object.
+ */
+ assert( !pBt->pCursor );
+ sqlite3PagerClose(pBt->pPager);
+ if( pBt->xFreeSchema && pBt->pSchema ){
+ pBt->xFreeSchema(pBt->pSchema);
+ }
+ sqlite3_free(pBt->pSchema);
+ sqlite3_free(pBt->pTmpSpace);
+ sqlite3_free(pBt);
+ }
+
+#ifndef SQLITE_OMIT_SHARED_CACHE
+ assert( p->wantToLock==0 );
+ assert( p->locked==0 );
+ if( p->pPrev ) p->pPrev->pNext = p->pNext;
+ if( p->pNext ) p->pNext->pPrev = p->pPrev;
+#endif
+
+ sqlite3_free(p);
+ return SQLITE_OK;
+}
+
+/*
+** Change the limit on the number of pages allowed in the cache.
+**
+** The maximum number of cache pages is set to the absolute
+** value of mxPage. If mxPage is negative, the pager will
+** operate asynchronously - it will not stop to do fsync()s
+** to insure data is written to the disk surface before
+** continuing. Transactions still work if synchronous is off,
+** and the database cannot be corrupted if this program
+** crashes. But if the operating system crashes or there is
+** an abrupt power failure when synchronous is off, the database
+** could be left in an inconsistent and unrecoverable state.
+** Synchronous is on by default so database corruption is not
+** normally a worry.
+*/
+SQLITE_PRIVATE int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
+ BtShared *pBt = p->pBt;
+ assert( sqlite3_mutex_held(p->db->mutex) );
+ sqlite3BtreeEnter(p);
+ sqlite3PagerSetCachesize(pBt->pPager, mxPage);
+ sqlite3BtreeLeave(p);
+ return SQLITE_OK;
+}
+
+/*
+** Change the way data is synced to disk in order to increase or decrease
+** how well the database resists damage due to OS crashes and power
+** failures. Level 1 is the same as asynchronous (no syncs() occur and
+** there is a high probability of damage) Level 2 is the default. There
+** is a very low but non-zero probability of damage. Level 3 reduces the
+** probability of damage to near zero but with a write performance reduction.
+*/
+#ifndef SQLITE_OMIT_PAGER_PRAGMAS
+SQLITE_PRIVATE int sqlite3BtreeSetSafetyLevel(Btree *p, int level, int fullSync){
+ BtShared *pBt = p->pBt;
+ assert( sqlite3_mutex_held(p->db->mutex) );
+ sqlite3BtreeEnter(p);
+ sqlite3PagerSetSafetyLevel(pBt->pPager, level, fullSync);
+ sqlite3BtreeLeave(p);
+ return SQLITE_OK;
+}
+#endif
+
+/*
+** Return TRUE if the given btree is set to safety level 1. In other
+** words, return TRUE if no sync() occurs on the disk files.
+*/
+SQLITE_PRIVATE int sqlite3BtreeSyncDisabled(Btree *p){
+ BtShared *pBt = p->pBt;
+ int rc;
+ assert( sqlite3_mutex_held(p->db->mutex) );
+ sqlite3BtreeEnter(p);
+ assert( pBt && pBt->pPager );
+ rc = sqlite3PagerNosync(pBt->pPager);
+ sqlite3BtreeLeave(p);
+ return rc;
+}
+
+#if !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM)
+/*
+** Change the default pages size and the number of reserved bytes per page.
+**
+** The page size must be a power of 2 between 512 and 65536. If the page
+** size supplied does not meet this constraint then the page size is not
+** changed.
+**
+** Page sizes are constrained to be a power of two so that the region
+** of the database file used for locking (beginning at PENDING_BYTE,
+** the first byte past the 1GB boundary, 0x40000000) needs to occur
+** at the beginning of a page.
+**
+** If parameter nReserve is less than zero, then the number of reserved
+** bytes per page is left unchanged.
+*/
+SQLITE_PRIVATE int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve){
+ int rc = SQLITE_OK;
+ BtShared *pBt = p->pBt;
+ sqlite3BtreeEnter(p);
+ if( pBt->pageSizeFixed ){
+ sqlite3BtreeLeave(p);
+ return SQLITE_READONLY;
+ }
+ if( nReserve<0 ){
+ nReserve = pBt->pageSize - pBt->usableSize;
+ }
+ if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
+ ((pageSize-1)&pageSize)==0 ){
+ assert( (pageSize & 7)==0 );
+ assert( !pBt->pPage1 && !pBt->pCursor );
+ pBt->pageSize = pageSize;
+ sqlite3_free(pBt->pTmpSpace);
+ pBt->pTmpSpace = 0;
+ rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize);
+ }
+ pBt->usableSize = pBt->pageSize - nReserve;
+ sqlite3BtreeLeave(p);
+ return rc;
+}
+
+/*
+** Return the currently defined page size
+*/
+SQLITE_PRIVATE int sqlite3BtreeGetPageSize(Btree *p){
+ return p->pBt->pageSize;
+}
+SQLITE_PRIVATE int sqlite3BtreeGetReserve(Btree *p){
+ int n;
+ sqlite3BtreeEnter(p);
+ n = p->pBt->pageSize - p->pBt->usableSize;
+ sqlite3BtreeLeave(p);
+ return n;
+}
+
+/*
+** Set the maximum page count for a database if mxPage is positive.
+** No changes are made if mxPage is 0 or negative.
+** Regardless of the value of mxPage, return the maximum page count.
+*/
+SQLITE_PRIVATE int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){
+ int n;
+ sqlite3BtreeEnter(p);
+ n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
+ sqlite3BtreeLeave(p);
+ return n;
+}
+#endif /* !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM) */
+
+/*
+** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
+** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
+** is disabled. The default value for the auto-vacuum property is
+** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
+*/
+SQLITE_PRIVATE int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
+#ifdef SQLITE_OMIT_AUTOVACUUM
+ return SQLITE_READONLY;
+#else
+ BtShared *pBt = p->pBt;
+ int rc = SQLITE_OK;
+ int av = (autoVacuum?1:0);
+
+ sqlite3BtreeEnter(p);
+ if( pBt->pageSizeFixed && av!=pBt->autoVacuum ){
+ rc = SQLITE_READONLY;
+ }else{
+ pBt->autoVacuum = av;
+ }
+ sqlite3BtreeLeave(p);
+ return rc;
+#endif
+}
+
+/*
+** Return the value of the 'auto-vacuum' property. If auto-vacuum is
+** enabled 1 is returned. Otherwise 0.
+*/
+SQLITE_PRIVATE int sqlite3BtreeGetAutoVacuum(Btree *p){
+#ifdef SQLITE_OMIT_AUTOVACUUM
+ return BTREE_AUTOVACUUM_NONE;
+#else
+ int rc;
+ sqlite3BtreeEnter(p);
+ rc = (
+ (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
+ (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
+ BTREE_AUTOVACUUM_INCR
+ );
+ sqlite3BtreeLeave(p);
+ return rc;
+#endif
+}
+
+
+/*
+** Get a reference to pPage1 of the database file. This will
+** also acquire a readlock on that file.
+**
+** SQLITE_OK is returned on success. If the file is not a
+** well-formed database file, then SQLITE_CORRUPT is returned.
+** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
+** is returned if we run out of memory.
+*/
+static int lockBtree(BtShared *pBt){
+ int rc;
+ MemPage *pPage1;
+ int nPage;
+
+ assert( sqlite3_mutex_held(pBt->mutex) );
+ if( pBt->pPage1 ) return SQLITE_OK;
+ rc = sqlite3BtreeGetPage(pBt, 1, &pPage1, 0);
+ if( rc!=SQLITE_OK ) return rc;
+
+ /* Do some checking to help insure the file we opened really is
+ ** a valid database file.
+ */
+ rc = SQLITE_NOTADB;
+ nPage = sqlite3PagerPagecount(pBt->pPager);
+ if( nPage<0 ){
+ rc = SQLITE_IOERR;
+ goto page1_init_failed;
+ }else if( nPage>0 ){
+ int pageSize;
+ int usableSize;
+ u8 *page1 = pPage1->aData;
+ if( memcmp(page1, zMagicHeader, 16)!=0 ){
+ goto page1_init_failed;
+ }
+ if( page1[18]>1 ){
+ pBt->readOnly = 1;
+ }
+ if( page1[19]>1 ){
+ goto page1_init_failed;
+ }
+ pageSize = get2byte(&page1[16]);
+ if( ((pageSize-1)&pageSize)!=0 || pageSize<512 ||
+ (SQLITE_MAX_PAGE_SIZE<32768 && pageSize>SQLITE_MAX_PAGE_SIZE)
+ ){
+ goto page1_init_failed;
+ }
+ assert( (pageSize & 7)==0 );
+ usableSize = pageSize - page1[20];
+ if( pageSize!=pBt->pageSize ){
+ /* After reading the first page of the database assuming a page size
+ ** of BtShared.pageSize, we have discovered that the page-size is
+ ** actually pageSize. Unlock the database, leave pBt->pPage1 at
+ ** zero and return SQLITE_OK. The caller will call this function
+ ** again with the correct page-size.
+ */
+ releasePage(pPage1);
+ pBt->usableSize = usableSize;
+ pBt->pageSize = pageSize;
+ sqlite3_free(pBt->pTmpSpace);
+ pBt->pTmpSpace = 0;
+ sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize);
+ return SQLITE_OK;
+ }
+ if( usableSize<500 ){
+ goto page1_init_failed;
+ }
+ pBt->pageSize = pageSize;
+ pBt->usableSize = usableSize;
+ pBt->maxEmbedFrac = page1[21];
+ pBt->minEmbedFrac = page1[22];
+ pBt->minLeafFrac = page1[23];
+#ifndef SQLITE_OMIT_AUTOVACUUM
+ pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
+ pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
+#endif
+ }
+
+ /* maxLocal is the maximum amount of payload to store locally for
+ ** a cell. Make sure it is small enough so that at least minFanout
+ ** cells can will fit on one page. We assume a 10-byte page header.
+ ** Besides the payload, the cell must store:
+ ** 2-byte pointer to the cell
+ ** 4-byte child pointer
+ ** 9-byte nKey value
+ ** 4-byte nData value
+ ** 4-byte overflow page pointer
+ ** So a cell consists of a 2-byte poiner, a header which is as much as
+ ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
+ ** page pointer.
+ */
+ pBt->maxLocal = (pBt->usableSize-12)*pBt->maxEmbedFrac/255 - 23;
+ pBt->minLocal = (pBt->usableSize-12)*pBt->minEmbedFrac/255 - 23;
+ pBt->maxLeaf = pBt->usableSize - 35;
+ pBt->minLeaf = (pBt->usableSize-12)*pBt->minLeafFrac/255 - 23;
+ if( pBt->minLocal>pBt->maxLocal || pBt->maxLocal<0 ){
+ goto page1_init_failed;
+ }
+ assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
+ pBt->pPage1 = pPage1;
+ return SQLITE_OK;
+
+page1_init_failed:
+ releasePage(pPage1);
+ pBt->pPage1 = 0;
+ return rc;
+}
+
+/*
+** This routine works like lockBtree() except that it also invokes the
+** busy callback if there is lock contention.
+*/
+static int lockBtreeWithRetry(Btree *pRef){
+ int rc = SQLITE_OK;
+
+ assert( sqlite3BtreeHoldsMutex(pRef) );
+ if( pRef->inTrans==TRANS_NONE ){
+ u8 inTransaction = pRef->pBt->inTransaction;
+ btreeIntegrity(pRef);
+ rc = sqlite3BtreeBeginTrans(pRef, 0);
+ pRef->pBt->inTransaction = inTransaction;
+ pRef->inTrans = TRANS_NONE;
+ if( rc==SQLITE_OK ){
+ pRef->pBt->nTransaction--;
+ }
+ btreeIntegrity(pRef);
+ }
+ return rc;
+}
+
+
+/*
+** If there are no outstanding cursors and we are not in the middle
+** of a transaction but there is a read lock on the database, then
+** this routine unrefs the first page of the database file which
+** has the effect of releasing the read lock.
+**
+** If there are any outstanding cursors, this routine is a no-op.
+**
+** If there is a transaction in progress, this routine is a no-op.
+*/
+static void unlockBtreeIfUnused(BtShared *pBt){
+ assert( sqlite3_mutex_held(pBt->mutex) );
+ if( pBt->inTransaction==TRANS_NONE && pBt->pCursor==0 && pBt->pPage1!=0 ){
+ if( sqlite3PagerRefcount(pBt->pPager)>=1 ){
+ assert( pBt->pPage1->aData );
+#if 0
+ if( pBt->pPage1->aData==0 ){
+ MemPage *pPage = pBt->pPage1;
+ pPage->aData = sqlite3PagerGetData(pPage->pDbPage);
+ pPage->pBt = pBt;
+ pPage->pgno = 1;
+ }
+#endif
+ releasePage(pBt->pPage1);
+ }
+ pBt->pPage1 = 0;
+ pBt->inStmt = 0;
+ }
+}
+
+/*
+** Create a new database by initializing the first page of the
+** file.
+*/
+static int newDatabase(BtShared *pBt){
+ MemPage *pP1;
+ unsigned char *data;
+ int rc;
+
+ assert( sqlite3_mutex_held(pBt->mutex) );
+ if( sqlite3PagerPagecount(pBt->pPager)>0 ) return SQLITE_OK;
+ pP1 = pBt->pPage1;
+ assert( pP1!=0 );
+ data = pP1->aData;
+ rc = sqlite3PagerWrite(pP1->pDbPage);
+ if( rc ) return rc;
+ memcpy(data, zMagicHeader, sizeof(zMagicHeader));
+ assert( sizeof(zMagicHeader)==16 );
+ put2byte(&data[16], pBt->pageSize);
+ data[18] = 1;
+ data[19] = 1;
+ data[20] = pBt->pageSize - pBt->usableSize;
+ data[21] = pBt->maxEmbedFrac;
+ data[22] = pBt->minEmbedFrac;
+ data[23] = pBt->minLeafFrac;
+ memset(&data[24], 0, 100-24);
+ zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
+ pBt->pageSizeFixed = 1;
+#ifndef SQLITE_OMIT_AUTOVACUUM
+ assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
+ assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
+ put4byte(&data[36 + 4*4], pBt->autoVacuum);
+ put4byte(&data[36 + 7*4], pBt->incrVacuum);
+#endif
+ return SQLITE_OK;
+}
+
+/*
+** Attempt to start a new transaction. A write-transaction
+** is started if the second argument is nonzero, otherwise a read-
+** transaction. If the second argument is 2 or more and exclusive
+** transaction is started, meaning that no other process is allowed
+** to access the database. A preexisting transaction may not be
+** upgraded to exclusive by calling this routine a second time - the
+** exclusivity flag only works for a new transaction.
+**
+** A write-transaction must be started before attempting any
+** changes to the database. None of the following routines
+** will work unless a transaction is started first:
+**
+** sqlite3BtreeCreateTable()
+** sqlite3BtreeCreateIndex()
+** sqlite3BtreeClearTable()
+** sqlite3BtreeDropTable()
+** sqlite3BtreeInsert()
+** sqlite3BtreeDelete()
+** sqlite3BtreeUpdateMeta()
+**
+** If an initial attempt to acquire the lock fails because of lock contention
+** and the database was previously unlocked, then invoke the busy handler
+** if there is one. But if there was previously a read-lock, do not
+** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is
+** returned when there is already a read-lock in order to avoid a deadlock.
+**
+** Suppose there are two processes A and B. A has a read lock and B has
+** a reserved lock. B tries to promote to exclusive but is blocked because
+** of A's read lock. A tries to promote to reserved but is blocked by B.
+** One or the other of the two processes must give way or there can be
+** no progress. By returning SQLITE_BUSY and not invoking the busy callback
+** when A already has a read lock, we encourage A to give up and let B
+** proceed.
+*/
+SQLITE_PRIVATE int sqlite3BtreeBeginTrans(Btree *p, int wrflag){
+ BtShared *pBt = p->pBt;
+ int rc = SQLITE_OK;
+
+ sqlite3BtreeEnter(p);
+ pBt->db = p->db;
+ btreeIntegrity(p);
+
+ /* If the btree is already in a write-transaction, or it
+ ** is already in a read-transaction and a read-transaction
+ ** is requested, this is a no-op.
+ */
+ if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
+ goto trans_begun;
+ }
+
+ /* Write transactions are not possible on a read-only database */
+ if( pBt->readOnly && wrflag ){
+ rc = SQLITE_READONLY;
+ goto trans_begun;
+ }
+
+ /* If another database handle has already opened a write transaction
+ ** on this shared-btree structure and a second write transaction is
+ ** requested, return SQLITE_BUSY.
+ */
+ if( pBt->inTransaction==TRANS_WRITE && wrflag ){
+ rc = SQLITE_BUSY;
+ goto trans_begun;
+ }
+
+#ifndef SQLITE_OMIT_SHARED_CACHE
+ if( wrflag>1 ){
+ BtLock *pIter;
+ for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
+ if( pIter->pBtree!=p ){
+ rc = SQLITE_BUSY;
+ goto trans_begun;
+ }
+ }
+ }
+#endif
+
+ do {
+ if( pBt->pPage1==0 ){
+ do{
+ rc = lockBtree(pBt);
+ }while( pBt->pPage1==0 && rc==SQLITE_OK );
+ }
+
+ if( rc==SQLITE_OK && wrflag ){
+ if( pBt->readOnly ){
+ rc = SQLITE_READONLY;
+ }else{
+ rc = sqlite3PagerBegin(pBt->pPage1->pDbPage, wrflag>1);
+ if( rc==SQLITE_OK ){
+ rc = newDatabase(pBt);
+ }
+ }
+ }
+
+ if( rc==SQLITE_OK ){
+ if( wrflag ) pBt->inStmt = 0;
+ }else{
+ unlockBtreeIfUnused(pBt);
+ }
+ }while( rc==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
+ sqlite3BtreeInvokeBusyHandler(pBt, 0) );
+
+ if( rc==SQLITE_OK ){
+ if( p->inTrans==TRANS_NONE ){
+ pBt->nTransaction++;
+ }
+ p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
+ if( p->inTrans>pBt->inTransaction ){
+ pBt->inTransaction = p->inTrans;
+ }
+#ifndef SQLITE_OMIT_SHARED_CACHE
+ if( wrflag>1 ){
+ assert( !pBt->pExclusive );
+ pBt->pExclusive = p;
+ }
+#endif
+ }
+
+
+trans_begun:
+ btreeIntegrity(p);
+ sqlite3BtreeLeave(p);
+ return rc;
+}
+
+#ifndef SQLITE_OMIT_AUTOVACUUM
+
+/*
+** Set the pointer-map entries for all children of page pPage. Also, if
+** pPage contains cells that point to overflow pages, set the pointer
+** map entries for the overflow pages as well.
+*/
+static int setChildPtrmaps(MemPage *pPage){
+ int i; /* Counter variable */
+ int nCell; /* Number of cells in page pPage */
+ int rc; /* Return code */
+ BtShared *pBt = pPage->pBt;
+ int isInitOrig = pPage->isInit;
+ Pgno pgno = pPage->pgno;
+
+ assert( sqlite3_mutex_held(pPage->pBt->mutex) );
+ rc = sqlite3BtreeInitPage(pPage, pPage->pParent);
+ if( rc!=SQLITE_OK ){
+ goto set_child_ptrmaps_out;
+ }
+ nCell = pPage->nCell;
+
+ for(i=0; i<nCell; i++){
+ u8 *pCell = findCell(pPage, i);
+
+ rc = ptrmapPutOvflPtr(pPage, pCell);
+ if( rc!=SQLITE_OK ){
+ goto set_child_ptrmaps_out;
+ }
+
+ if( !pPage->leaf ){
+ Pgno childPgno = get4byte(pCell);
+ rc = ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno);
+ if( rc!=SQLITE_OK ) goto set_child_ptrmaps_out;
+ }
+ }
+
+ if( !pPage->leaf ){
+ Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
+ rc = ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno);
+ }
+
+set_child_ptrmaps_out:
+ pPage->isInit = isInitOrig;
+ return rc;
+}
+
+/*
+** Somewhere on pPage, which is guarenteed to be a btree page, not an overflow
+** page, is a pointer to page iFrom. Modify this pointer so that it points to
+** iTo. Parameter eType describes the type of pointer to be modified, as
+** follows:
+**
+** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child
+** page of pPage.
+**
+** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
+** page pointed to by one of the cells on pPage.
+**
+** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
+** overflow page in the list.
+*/
+static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
+ assert( sqlite3_mutex_held(pPage->pBt->mutex) );
+ if( eType==PTRMAP_OVERFLOW2 ){
+ /* The pointer is always the first 4 bytes of the page in this case. */
+ if( get4byte(pPage->aData)!=iFrom ){
+ return SQLITE_CORRUPT_BKPT;
+ }
+ put4byte(pPage->aData, iTo);
+ }else{
+ int isInitOrig = pPage->isInit;
+ int i;
+ int nCell;
+
+ sqlite3BtreeInitPage(pPage, 0);
+ nCell = pPage->nCell;
+
+ for(i=0; i<nCell; i++){
+ u8 *pCell = findCell(pPage, i);
+ if( eType==PTRMAP_OVERFLOW1 ){
+ CellInfo info;
+ sqlite3BtreeParseCellPtr(pPage, pCell, &info);
+ if( info.iOverflow ){
+ if( iFrom==get4byte(&pCell[info.iOverflow]) ){
+ put4byte(&pCell[info.iOverflow], iTo);
+ break;
+ }
+ }
+ }else{
+ if( get4byte(pCell)==iFrom ){
+ put4byte(pCell, iTo);
+ break;
+ }
+ }
+ }
+
+ if( i==nCell ){
+ if( eType!=PTRMAP_BTREE ||
+ get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
+ return SQLITE_CORRUPT_BKPT;
+ }
+ put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
+ }
+
+ pPage->isInit = isInitOrig;
+ }
+ return SQLITE_OK;
+}
+
+
+/*
+** Move the open database page pDbPage to location iFreePage in the
+** database. The pDbPage reference remains valid.
+*/
+static int relocatePage(
+ BtShared *pBt, /* Btree */
+ MemPage *pDbPage, /* Open page to move */
+ u8 eType, /* Pointer map 'type' entry for pDbPage */
+ Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */
+ Pgno iFreePage /* The location to move pDbPage to */
+){
+ MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */
+ Pgno iDbPage = pDbPage->pgno;
+ Pager *pPager = pBt->pPager;
+ int rc;
+
+ assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
+ eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
+ assert( sqlite3_mutex_held(pBt->mutex) );
+ assert( pDbPage->pBt==pBt );
+
+ /* Move page iDbPage from its current location to page number iFreePage */
+ TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
+ iDbPage, iFreePage, iPtrPage, eType));
+ rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ pDbPage->pgno = iFreePage;
+
+ /* If pDbPage was a btree-page, then it may have child pages and/or cells
+ ** that point to overflow pages. The pointer map entries for all these
+ ** pages need to be changed.
+ **
+ ** If pDbPage is an overflow page, then the first 4 bytes may store a
+ ** pointer to a subsequent overflow page. If this is the case, then
+ ** the pointer map needs to be updated for the subsequent overflow page.
+ */
+ if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
+ rc = setChildPtrmaps(pDbPage);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ }else{
+ Pgno nextOvfl = get4byte(pDbPage->aData);
+ if( nextOvfl!=0 ){
+ rc = ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ }
+ }
+
+ /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
+ ** that it points at iFreePage. Also fix the pointer map entry for
+ ** iPtrPage.
+ */
+ if( eType!=PTRMAP_ROOTPAGE ){
+ rc = sqlite3BtreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ rc = sqlite3PagerWrite(pPtrPage->pDbPage);
+ if( rc!=SQLITE_OK ){
+ releasePage(pPtrPage);
+ return rc;
+ }
+ rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
+ releasePage(pPtrPage);
+ if( rc==SQLITE_OK ){
+ rc = ptrmapPut(pBt, iFreePage, eType, iPtrPage);
+ }
+ }
+ return rc;
+}
+
+/* Forward declaration required by incrVacuumStep(). */
+static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
+
+/*
+** Perform a single step of an incremental-vacuum. If successful,
+** return SQLITE_OK. If there is no work to do (and therefore no
+** point in calling this function again), return SQLITE_DONE.
+**
+** More specificly, this function attempts to re-organize the
+** database so that the last page of the file currently in use
+** is no longer in use.
+**
+** If the nFin parameter is non-zero, the implementation assumes
+** that the caller will keep calling incrVacuumStep() until
+** it returns SQLITE_DONE or an error, and that nFin is the
+** number of pages the database file will contain after this
+** process is complete.
+*/
+static int incrVacuumStep(BtShared *pBt, Pgno nFin){
+ Pgno iLastPg; /* Last page in the database */
+ Pgno nFreeList; /* Number of pages still on the free-list */
+
+ assert( sqlite3_mutex_held(pBt->mutex) );
+ iLastPg = pBt->nTrunc;
+ if( iLastPg==0 ){
+ iLastPg = sqlite3PagerPagecount(pBt->pPager);
+ }
+
+ if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
+ int rc;
+ u8 eType;
+ Pgno iPtrPage;
+
+ nFreeList = get4byte(&pBt->pPage1->aData[36]);
+ if( nFreeList==0 || nFin==iLastPg ){
+ return SQLITE_DONE;
+ }
+
+ rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ if( eType==PTRMAP_ROOTPAGE ){
+ return SQLITE_CORRUPT_BKPT;
+ }
+
+ if( eType==PTRMAP_FREEPAGE ){
+ if( nFin==0 ){
+ /* Remove the page from the files free-list. This is not required
+ ** if nFin is non-zero. In that case, the free-list will be
+ ** truncated to zero after this function returns, so it doesn't
+ ** matter if it still contains some garbage entries.
+ */
+ Pgno iFreePg;
+ MemPage *pFreePg;
+ rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, 1);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ assert( iFreePg==iLastPg );
+ releasePage(pFreePg);
+ }
+ } else {
+ Pgno iFreePg; /* Index of free page to move pLastPg to */
+ MemPage *pLastPg;
+
+ rc = sqlite3BtreeGetPage(pBt, iLastPg, &pLastPg, 0);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+
+ /* If nFin is zero, this loop runs exactly once and page pLastPg
+ ** is swapped with the first free page pulled off the free list.
+ **
+ ** On the other hand, if nFin is greater than zero, then keep
+ ** looping until a free-page located within the first nFin pages
+ ** of the file is found.
+ */
+ do {
+ MemPage *pFreePg;
+ rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, 0, 0);
+ if( rc!=SQLITE_OK ){
+ releasePage(pLastPg);
+ return rc;
+ }
+ releasePage(pFreePg);
+ }while( nFin!=0 && iFreePg>nFin );
+ assert( iFreePg<iLastPg );
+
+ rc = sqlite3PagerWrite(pLastPg->pDbPage);
+ if( rc==SQLITE_OK ){
+ rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg);
+ }
+ releasePage(pLastPg);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ }
+ }
+
+ pBt->nTrunc = iLastPg - 1;
+ while( pBt->nTrunc==PENDING_BYTE_PAGE(pBt)||PTRMAP_ISPAGE(pBt, pBt->nTrunc) ){
+ pBt->nTrunc--;
+ }
+ return SQLITE_OK;
+}
+
+/*
+** A write-transaction must be opened before calling this function.
+** It performs a single unit of work towards an incremental vacuum.
+**
+** If the incremental vacuum is finished after this function has run,
+** SQLITE_DONE is returned. If it is not finished, but no error occured,
+** SQLITE_OK is returned. Otherwise an SQLite error code.
+*/
+SQLITE_PRIVATE int sqlite3BtreeIncrVacuum(Btree *p){
+ int rc;
+ BtShared *pBt = p->pBt;
+
+ sqlite3BtreeEnter(p);
+ pBt->db = p->db;
+ assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
+ if( !pBt->autoVacuum ){
+ rc = SQLITE_DONE;
+ }else{
+ invalidateAllOverflowCache(pBt);
+ rc = incrVacuumStep(pBt, 0);
+ }
+ sqlite3BtreeLeave(p);
+ return rc;
+}
+
+/*
+** This routine is called prior to sqlite3PagerCommit when a transaction
+** is commited for an auto-vacuum database.
+**
+** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages
+** the database file should be truncated to during the commit process.
+** i.e. the database has been reorganized so that only the first *pnTrunc
+** pages are in use.
+*/
+static int autoVacuumCommit(BtShared *pBt, Pgno *pnTrunc){
+ int rc = SQLITE_OK;
+ Pager *pPager = pBt->pPager;
+#ifndef NDEBUG
+ int nRef = sqlite3PagerRefcount(pPager);
+#endif
+
+ assert( sqlite3_mutex_held(pBt->mutex) );
+ invalidateAllOverflowCache(pBt);
+ assert(pBt->autoVacuum);
+ if( !pBt->incrVacuum ){
+ Pgno nFin = 0;
+
+ if( pBt->nTrunc==0 ){
+ Pgno nFree;
+ Pgno nPtrmap;
+ const int pgsz = pBt->pageSize;
+ Pgno nOrig = sqlite3PagerPagecount(pBt->pPager);
+
+ if( PTRMAP_ISPAGE(pBt, nOrig) ){
+ return SQLITE_CORRUPT_BKPT;
+ }
+ if( nOrig==PENDING_BYTE_PAGE(pBt) ){
+ nOrig--;
+ }
+ nFree = get4byte(&pBt->pPage1->aData[36]);
+ nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+pgsz/5)/(pgsz/5);
+ nFin = nOrig - nFree - nPtrmap;
+ if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<=PENDING_BYTE_PAGE(pBt) ){
+ nFin--;
+ }
+ while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
+ nFin--;
+ }
+ }
+
+ while( rc==SQLITE_OK ){
+ rc = incrVacuumStep(pBt, nFin);
+ }
+ if( rc==SQLITE_DONE ){
+ assert(nFin==0 || pBt->nTrunc==0 || nFin<=pBt->nTrunc);
+ rc = SQLITE_OK;
+ if( pBt->nTrunc && nFin ){
+ rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
+ put4byte(&pBt->pPage1->aData[32], 0);
+ put4byte(&pBt->pPage1->aData[36], 0);
+ pBt->nTrunc = nFin;
+ }
+ }
+ if( rc!=SQLITE_OK ){
+ sqlite3PagerRollback(pPager);
+ }
+ }
+
+ if( rc==SQLITE_OK ){
+ *pnTrunc = pBt->nTrunc;
+ pBt->nTrunc = 0;
+ }
+ assert( nRef==sqlite3PagerRefcount(pPager) );
+ return rc;
+}
+
+#endif
+
+/*
+** This routine does the first phase of a two-phase commit. This routine
+** causes a rollback journal to be created (if it does not already exist)
+** and populated with enough information so that if a power loss occurs
+** the database can be restored to its original state by playing back
+** the journal. Then the contents of the journal are flushed out to
+** the disk. After the journal is safely on oxide, the changes to the
+** database are written into the database file and flushed to oxide.
+** At the end of this call, the rollback journal still exists on the
+** disk and we are still holding all locks, so the transaction has not
+** committed. See sqlite3BtreeCommit() for the second phase of the
+** commit process.
+**
+** This call is a no-op if no write-transaction is currently active on pBt.
+**
+** Otherwise, sync the database file for the btree pBt. zMaster points to
+** the name of a master journal file that should be written into the
+** individual journal file, or is NULL, indicating no master journal file
+** (single database transaction).
+**
+** When this is called, the master journal should already have been
+** created, populated with this journal pointer and synced to disk.
+**
+** Once this is routine has returned, the only thing required to commit
+** the write-transaction for this database file is to delete the journal.
+*/
+SQLITE_PRIVATE int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){
+ int rc = SQLITE_OK;
+ if( p->inTrans==TRANS_WRITE ){
+ BtShared *pBt = p->pBt;
+ Pgno nTrunc = 0;
+ sqlite3BtreeEnter(p);
+ pBt->db = p->db;
+#ifndef SQLITE_OMIT_AUTOVACUUM
+ if( pBt->autoVacuum ){
+ rc = autoVacuumCommit(pBt, &nTrunc);
+ if( rc!=SQLITE_OK ){
+ sqlite3BtreeLeave(p);
+ return rc;
+ }
+ }
+#endif
+ rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, nTrunc, 0);
+ sqlite3BtreeLeave(p);
+ }
+ return rc;
+}
+
+/*
+** Commit the transaction currently in progress.
+**
+** This routine implements the second phase of a 2-phase commit. The
+** sqlite3BtreeSync() routine does the first phase and should be invoked
+** prior to calling this routine. The sqlite3BtreeSync() routine did
+** all the work of writing information out to disk and flushing the
+** contents so that they are written onto the disk platter. All this
+** routine has to do is delete or truncate the rollback journal
+** (which causes the transaction to commit) and drop locks.
+**
+** This will release the write lock on the database file. If there
+** are no active cursors, it also releases the read lock.
+*/
+SQLITE_PRIVATE int sqlite3BtreeCommitPhaseTwo(Btree *p){
+ BtShared *pBt = p->pBt;
+
+ sqlite3BtreeEnter(p);
+ pBt->db = p->db;
+ btreeIntegrity(p);
+
+ /* If the handle has a write-transaction open, commit the shared-btrees
+ ** transaction and set the shared state to TRANS_READ.
+ */
+ if( p->inTrans==TRANS_WRITE ){
+ int rc;
+ assert( pBt->inTransaction==TRANS_WRITE );
+ assert( pBt->nTransaction>0 );
+ rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
+ if( rc!=SQLITE_OK ){
+ sqlite3BtreeLeave(p);
+ return rc;
+ }
+ pBt->inTransaction = TRANS_READ;
+ pBt->inStmt = 0;
+ }
+ unlockAllTables(p);
+
+ /* If the handle has any kind of transaction open, decrement the transaction
+ ** count of the shared btree. If the transaction count reaches 0, set
+ ** the shared state to TRANS_NONE. The unlockBtreeIfUnused() call below
+ ** will unlock the pager.
+ */
+ if( p->inTrans!=TRANS_NONE ){
+ pBt->nTransaction--;
+ if( 0==pBt->nTransaction ){
+ pBt->inTransaction = TRANS_NONE;
+ }
+ }
+
+ /* Set the handles current transaction state to TRANS_NONE and unlock
+ ** the pager if this call closed the only read or write transaction.
+ */
+ p->inTrans = TRANS_NONE;
+ unlockBtreeIfUnused(pBt);
+
+ btreeIntegrity(p);
+ sqlite3BtreeLeave(p);
+ return SQLITE_OK;
+}
+
+/*
+** Do both phases of a commit.
+*/
+SQLITE_PRIVATE int sqlite3BtreeCommit(Btree *p){
+ int rc;
+ sqlite3BtreeEnter(p);
+ rc = sqlite3BtreeCommitPhaseOne(p, 0);
+ if( rc==SQLITE_OK ){
+ rc = sqlite3BtreeCommitPhaseTwo(p);
+ }
+ sqlite3BtreeLeave(p);
+ return rc;
+}
+
+#ifndef NDEBUG
+/*
+** Return the number of write-cursors open on this handle. This is for use
+** in assert() expressions, so it is only compiled if NDEBUG is not
+** defined.
+**
+** For the purposes of this routine, a write-cursor is any cursor that
+** is capable of writing to the databse. That means the cursor was
+** originally opened for writing and the cursor has not be disabled
+** by having its state changed to CURSOR_FAULT.
+*/
+static int countWriteCursors(BtShared *pBt){
+ BtCursor *pCur;
+ int r = 0;
+ for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
+ if( pCur->wrFlag && pCur->eState!=CURSOR_FAULT ) r++;
+ }
+ return r;
+}
+#endif
+
+/*
+** This routine sets the state to CURSOR_FAULT and the error
+** code to errCode for every cursor on BtShared that pBtree
+** references.
+**
+** Every cursor is tripped, including cursors that belong
+** to other database connections that happen to be sharing
+** the cache with pBtree.
+**
+** This routine gets called when a rollback occurs.
+** All cursors using the same cache must be tripped
+** to prevent them from trying to use the btree after
+** the rollback. The rollback may have deleted tables
+** or moved root pages, so it is not sufficient to
+** save the state of the cursor. The cursor must be
+** invalidated.
+*/
+SQLITE_PRIVATE void sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode){
+ BtCursor *p;
+ sqlite3BtreeEnter(pBtree);
+ for(p=pBtree->pBt->pCursor; p; p=p->pNext){
+ clearCursorPosition(p);
+ p->eState = CURSOR_FAULT;
+ p->skip = errCode;
+ }
+ sqlite3BtreeLeave(pBtree);
+}
+
+/*
+** Rollback the transaction in progress. All cursors will be
+** invalided by this operation. Any attempt to use a cursor
+** that was open at the beginning of this operation will result
+** in an error.
+**
+** This will release the write lock on the database file. If there
+** are no active cursors, it also releases the read lock.
+*/
+SQLITE_PRIVATE int sqlite3BtreeRollback(Btree *p){
+ int rc;
+ BtShared *pBt = p->pBt;
+ MemPage *pPage1;
+
+ sqlite3BtreeEnter(p);
+ pBt->db = p->db;
+ rc = saveAllCursors(pBt, 0, 0);
+#ifndef SQLITE_OMIT_SHARED_CACHE
+ if( rc!=SQLITE_OK ){
+ /* This is a horrible situation. An IO or malloc() error occured whilst
+ ** trying to save cursor positions. If this is an automatic rollback (as
+ ** the result of a constraint, malloc() failure or IO error) then
+ ** the cache may be internally inconsistent (not contain valid trees) so
+ ** we cannot simply return the error to the caller. Instead, abort
+ ** all queries that may be using any of the cursors that failed to save.
+ */
+ sqlite3BtreeTripAllCursors(p, rc);
+ }
+#endif
+ btreeIntegrity(p);
+ unlockAllTables(p);
+
+ if( p->inTrans==TRANS_WRITE ){
+ int rc2;
+
+#ifndef SQLITE_OMIT_AUTOVACUUM
+ pBt->nTrunc = 0;
+#endif
+
+ assert( TRANS_WRITE==pBt->inTransaction );
+ rc2 = sqlite3PagerRollback(pBt->pPager);
+ if( rc2!=SQLITE_OK ){
+ rc = rc2;
+ }
+
+ /* The rollback may have destroyed the pPage1->aData value. So
+ ** call sqlite3BtreeGetPage() on page 1 again to make
+ ** sure pPage1->aData is set correctly. */
+ if( sqlite3BtreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
+ releasePage(pPage1);
+ }
+ assert( countWriteCursors(pBt)==0 );
+ pBt->inTransaction = TRANS_READ;
+ }
+
+ if( p->inTrans!=TRANS_NONE ){
+ assert( pBt->nTransaction>0 );
+ pBt->nTransaction--;
+ if( 0==pBt->nTransaction ){
+ pBt->inTransaction = TRANS_NONE;
+ }
+ }
+
+ p->inTrans = TRANS_NONE;
+ pBt->inStmt = 0;
+ unlockBtreeIfUnused(pBt);
+
+ btreeIntegrity(p);
+ sqlite3BtreeLeave(p);
+ return rc;
+}
+
+/*
+** Start a statement subtransaction. The subtransaction can
+** can be rolled back independently of the main transaction.
+** You must start a transaction before starting a subtransaction.
+** The subtransaction is ended automatically if the main transaction
+** commits or rolls back.
+**
+** Only one subtransaction may be active at a time. It is an error to try
+** to start a new subtransaction if another subtransaction is already active.
+**
+** Statement subtransactions are used around individual SQL statements
+** that are contained within a BEGIN...COMMIT block. If a constraint
+** error occurs within the statement, the effect of that one statement
+** can be rolled back without having to rollback the entire transaction.
+*/
+SQLITE_PRIVATE int sqlite3BtreeBeginStmt(Btree *p){
+ int rc;
+ BtShared *pBt = p->pBt;
+ sqlite3BtreeEnter(p);
+ pBt->db = p->db;
+ if( (p->inTrans!=TRANS_WRITE) || pBt->inStmt ){
+ rc = pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
+ }else{
+ assert( pBt->inTransaction==TRANS_WRITE );
+ rc = pBt->readOnly ? SQLITE_OK : sqlite3PagerStmtBegin(pBt->pPager);
+ pBt->inStmt = 1;
+ }
+ sqlite3BtreeLeave(p);
+ return rc;
+}
+
+
+/*
+** Commit the statment subtransaction currently in progress. If no
+** subtransaction is active, this is a no-op.
+*/
+SQLITE_PRIVATE int sqlite3BtreeCommitStmt(Btree *p){
+ int rc;
+ BtShared *pBt = p->pBt;
+ sqlite3BtreeEnter(p);
+ pBt->db = p->db;
+ if( pBt->inStmt && !pBt->readOnly ){
+ rc = sqlite3PagerStmtCommit(pBt->pPager);
+ }else{
+ rc = SQLITE_OK;
+ }
+ pBt->inStmt = 0;
+ sqlite3BtreeLeave(p);
+ return rc;
+}
+
+/*
+** Rollback the active statement subtransaction. If no subtransaction
+** is active this routine is a no-op.
+**
+** All cursors will be invalidated by this operation. Any attempt
+** to use a cursor that was open at the beginning of this operation
+** will result in an error.
+*/
+SQLITE_PRIVATE int sqlite3BtreeRollbackStmt(Btree *p){
+ int rc = SQLITE_OK;
+ BtShared *pBt = p->pBt;
+ sqlite3BtreeEnter(p);
+ pBt->db = p->db;
+ if( pBt->inStmt && !pBt->readOnly ){
+ rc = sqlite3PagerStmtRollback(pBt->pPager);
+ assert( countWriteCursors(pBt)==0 );
+ pBt->inStmt = 0;
+ }
+ sqlite3BtreeLeave(p);
+ return rc;
+}
+
+/*
+** Create a new cursor for the BTree whose root is on the page
+** iTable. The act of acquiring a cursor gets a read lock on
+** the database file.
+**
+** If wrFlag==0, then the cursor can only be used for reading.
+** If wrFlag==1, then the cursor can be used for reading or for
+** writing if other conditions for writing are also met. These
+** are the conditions that must be met in order for writing to
+** be allowed:
+**
+** 1: The cursor must have been opened with wrFlag==1
+**
+** 2: Other database connections that share the same pager cache
+** but which are not in the READ_UNCOMMITTED state may not have
+** cursors open with wrFlag==0 on the same table. Otherwise
+** the changes made by this write cursor would be visible to
+** the read cursors in the other database connection.
+**
+** 3: The database must be writable (not on read-only media)
+**
+** 4: There must be an active transaction.
+**
+** No checking is done to make sure that page iTable really is the
+** root page of a b-tree. If it is not, then the cursor acquired
+** will not work correctly.
+*/
+static int btreeCursor(
+ Btree *p, /* The btree */
+ int iTable, /* Root page of table to open */
+ int wrFlag, /* 1 to write. 0 read-only */
+ struct KeyInfo *pKeyInfo, /* First arg to comparison function */
+ BtCursor *pCur /* Space for new cursor */
+){
+ int rc;
+ BtShared *pBt = p->pBt;
+
+ assert( sqlite3BtreeHoldsMutex(p) );
+ if( wrFlag ){
+ if( pBt->readOnly ){
+ return SQLITE_READONLY;
+ }
+ if( checkReadLocks(p, iTable, 0) ){
+ return SQLITE_LOCKED;
+ }
+ }
+
+ if( pBt->pPage1==0 ){
+ rc = lockBtreeWithRetry(p);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ if( pBt->readOnly && wrFlag ){
+ return SQLITE_READONLY;
+ }
+ }
+ pCur->pgnoRoot = (Pgno)iTable;
+ if( iTable==1 && sqlite3PagerPagecount(pBt->pPager)==0 ){
+ rc = SQLITE_EMPTY;
+ goto create_cursor_exception;
+ }
+ rc = getAndInitPage(pBt, pCur->pgnoRoot, &pCur->pPage, 0);
+ if( rc!=SQLITE_OK ){
+ goto create_cursor_exception;
+ }
+
+ /* Now that no other errors can occur, finish filling in the BtCursor
+ ** variables, link the cursor into the BtShared list and set *ppCur (the
+ ** output argument to this function).
+ */
+ pCur->pKeyInfo = pKeyInfo;
+ pCur->pBtree = p;
+ pCur->pBt = pBt;
+ pCur->wrFlag = wrFlag;
+ pCur->pNext = pBt->pCursor;
+ if( pCur->pNext ){
+ pCur->pNext->pPrev = pCur;
+ }
+ pBt->pCursor = pCur;
+ pCur->eState = CURSOR_INVALID;
+
+ return SQLITE_OK;
+
+create_cursor_exception:
+ if( pCur ){
+ releasePage(pCur->pPage);
+ }
+ unlockBtreeIfUnused(pBt);
+ return rc;
+}
+SQLITE_PRIVATE int sqlite3BtreeCursor(
+ Btree *p, /* The btree */
+ int iTable, /* Root page of table to open */
+ int wrFlag, /* 1 to write. 0 read-only */
+ struct KeyInfo *pKeyInfo, /* First arg to xCompare() */
+ BtCursor *pCur /* Write new cursor here */
+){
+ int rc;
+ sqlite3BtreeEnter(p);
+ p->pBt->db = p->db;
+ rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
+ sqlite3BtreeLeave(p);
+ return rc;
+}
+SQLITE_PRIVATE int sqlite3BtreeCursorSize(){
+ return sizeof(BtCursor);
+}
+
+
+
+/*
+** Close a cursor. The read lock on the database file is released
+** when the last cursor is closed.
+*/
+SQLITE_PRIVATE int sqlite3BtreeCloseCursor(BtCursor *pCur){
+ Btree *pBtree = pCur->pBtree;
+ if( pBtree ){
+ BtShared *pBt = pCur->pBt;
+ sqlite3BtreeEnter(pBtree);
+ pBt->db = pBtree->db;
+ clearCursorPosition(pCur);
+ if( pCur->pPrev ){
+ pCur->pPrev->pNext = pCur->pNext;
+ }else{
+ pBt->pCursor = pCur->pNext;
+ }
+ if( pCur->pNext ){
+ pCur->pNext->pPrev = pCur->pPrev;
+ }
+ releasePage(pCur->pPage);
+ unlockBtreeIfUnused(pBt);
+ invalidateOverflowCache(pCur);
+ /* sqlite3_free(pCur); */
+ sqlite3BtreeLeave(pBtree);
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Make a temporary cursor by filling in the fields of pTempCur.
+** The temporary cursor is not on the cursor list for the Btree.
+*/
+SQLITE_PRIVATE void sqlite3BtreeGetTempCursor(BtCursor *pCur, BtCursor *pTempCur){
+ assert( cursorHoldsMutex(pCur) );
+ memcpy(pTempCur, pCur, sizeof(*pCur));
+ pTempCur->pNext = 0;
+ pTempCur->pPrev = 0;
+ if( pTempCur->pPage ){
+ sqlite3PagerRef(pTempCur->pPage->pDbPage);
+ }
+}
+
+/*
+** Delete a temporary cursor such as was made by the CreateTemporaryCursor()
+** function above.
+*/
+SQLITE_PRIVATE void sqlite3BtreeReleaseTempCursor(BtCursor *pCur){
+ assert( cursorHoldsMutex(pCur) );
+ if( pCur->pPage ){
+ sqlite3PagerUnref(pCur->pPage->pDbPage);
+ }
+}
+
+/*
+** Make sure the BtCursor* given in the argument has a valid
+** BtCursor.info structure. If it is not already valid, call
+** sqlite3BtreeParseCell() to fill it in.
+**
+** BtCursor.info is a cache of the information in the current cell.
+** Using this cache reduces the number of calls to sqlite3BtreeParseCell().
+**
+** 2007-06-25: There is a bug in some versions of MSVC that cause the
+** compiler to crash when getCellInfo() is implemented as a macro.
+** But there is a measureable speed advantage to using the macro on gcc
+** (when less compiler optimizations like -Os or -O0 are used and the
+** compiler is not doing agressive inlining.) So we use a real function
+** for MSVC and a macro for everything else. Ticket #2457.
+*/
+#ifndef NDEBUG
+ static void assertCellInfo(BtCursor *pCur){
+ CellInfo info;
+ memset(&info, 0, sizeof(info));
+ sqlite3BtreeParseCell(pCur->pPage, pCur->idx, &info);
+ assert( memcmp(&info, &pCur->info, sizeof(info))==0 );
+ }
+#else
+ #define assertCellInfo(x)
+#endif
+#ifdef _MSC_VER
+ /* Use a real function in MSVC to work around bugs in that compiler. */
+ static void getCellInfo(BtCursor *pCur){
+ if( pCur->info.nSize==0 ){
+ sqlite3BtreeParseCell(pCur->pPage, pCur->idx, &pCur->info);
+ pCur->validNKey = 1;
+ }else{
+ assertCellInfo(pCur);
+ }
+ }
+#else /* if not _MSC_VER */
+ /* Use a macro in all other compilers so that the function is inlined */
+#define getCellInfo(pCur) \
+ if( pCur->info.nSize==0 ){ \
+ sqlite3BtreeParseCell(pCur->pPage, pCur->idx, &pCur->info); \
+ pCur->validNKey = 1; \
+ }else{ \
+ assertCellInfo(pCur); \
+ }
+#endif /* _MSC_VER */
+
+/*
+** Set *pSize to the size of the buffer needed to hold the value of
+** the key for the current entry. If the cursor is not pointing
+** to a valid entry, *pSize is set to 0.
+**
+** For a table with the INTKEY flag set, this routine returns the key
+** itself, not the number of bytes in the key.
+*/
+SQLITE_PRIVATE int sqlite3BtreeKeySize(BtCursor *pCur, i64 *pSize){
+ int rc;
+
+ assert( cursorHoldsMutex(pCur) );
+ rc = restoreOrClearCursorPosition(pCur);
+ if( rc==SQLITE_OK ){
+ assert( pCur->eState==CURSOR_INVALID || pCur->eState==CURSOR_VALID );
+ if( pCur->eState==CURSOR_INVALID ){
+ *pSize = 0;
+ }else{
+ getCellInfo(pCur);
+ *pSize = pCur->info.nKey;
+ }
+ }
+ return rc;
+}
+
+/*
+** Set *pSize to the number of bytes of data in the entry the
+** cursor currently points to. Always return SQLITE_OK.
+** Failure is not possible. If the cursor is not currently
+** pointing to an entry (which can happen, for example, if
+** the database is empty) then *pSize is set to 0.
+*/
+SQLITE_PRIVATE int sqlite3BtreeDataSize(BtCursor *pCur, u32 *pSize){
+ int rc;
+
+ assert( cursorHoldsMutex(pCur) );
+ rc = restoreOrClearCursorPosition(pCur);
+ if( rc==SQLITE_OK ){
+ assert( pCur->eState==CURSOR_INVALID || pCur->eState==CURSOR_VALID );
+ if( pCur->eState==CURSOR_INVALID ){
+ /* Not pointing at a valid entry - set *pSize to 0. */
+ *pSize = 0;
+ }else{
+ getCellInfo(pCur);
+ *pSize = pCur->info.nData;
+ }
+ }
+ return rc;
+}
+
+/*
+** Given the page number of an overflow page in the database (parameter
+** ovfl), this function finds the page number of the next page in the
+** linked list of overflow pages. If possible, it uses the auto-vacuum
+** pointer-map data instead of reading the content of page ovfl to do so.
+**
+** If an error occurs an SQLite error code is returned. Otherwise:
+**
+** Unless pPgnoNext is NULL, the page number of the next overflow
+** page in the linked list is written to *pPgnoNext. If page ovfl
+** is the last page in its linked list, *pPgnoNext is set to zero.
+**
+** If ppPage is not NULL, *ppPage is set to the MemPage* handle
+** for page ovfl. The underlying pager page may have been requested
+** with the noContent flag set, so the page data accessable via
+** this handle may not be trusted.
+*/
+static int getOverflowPage(
+ BtShared *pBt,
+ Pgno ovfl, /* Overflow page */
+ MemPage **ppPage, /* OUT: MemPage handle */
+ Pgno *pPgnoNext /* OUT: Next overflow page number */
+){
+ Pgno next = 0;
+ int rc;
+
+ assert( sqlite3_mutex_held(pBt->mutex) );
+ /* One of these must not be NULL. Otherwise, why call this function? */
+ assert(ppPage || pPgnoNext);
+
+ /* If pPgnoNext is NULL, then this function is being called to obtain
+ ** a MemPage* reference only. No page-data is required in this case.
+ */
+ if( !pPgnoNext ){
+ return sqlite3BtreeGetPage(pBt, ovfl, ppPage, 1);
+ }
+
+#ifndef SQLITE_OMIT_AUTOVACUUM
+ /* Try to find the next page in the overflow list using the
+ ** autovacuum pointer-map pages. Guess that the next page in
+ ** the overflow list is page number (ovfl+1). If that guess turns
+ ** out to be wrong, fall back to loading the data of page
+ ** number ovfl to determine the next page number.
+ */
+ if( pBt->autoVacuum ){
+ Pgno pgno;
+ Pgno iGuess = ovfl+1;
+ u8 eType;
+
+ while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
+ iGuess++;
+ }
+
+ if( iGuess<=sqlite3PagerPagecount(pBt->pPager) ){
+ rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ if( eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
+ next = iGuess;
+ }
+ }
+ }
+#endif
+
+ if( next==0 || ppPage ){
+ MemPage *pPage = 0;
+
+ rc = sqlite3BtreeGetPage(pBt, ovfl, &pPage, next!=0);
+ assert(rc==SQLITE_OK || pPage==0);
+ if( next==0 && rc==SQLITE_OK ){
+ next = get4byte(pPage->aData);
+ }
+
+ if( ppPage ){
+ *ppPage = pPage;
+ }else{
+ releasePage(pPage);
+ }
+ }
+ *pPgnoNext = next;
+
+ return rc;
+}
+
+/*
+** Copy data from a buffer to a page, or from a page to a buffer.
+**
+** pPayload is a pointer to data stored on database page pDbPage.
+** If argument eOp is false, then nByte bytes of data are copied
+** from pPayload to the buffer pointed at by pBuf. If eOp is true,
+** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
+** of data are copied from the buffer pBuf to pPayload.
+**
+** SQLITE_OK is returned on success, otherwise an error code.
+*/
+static int copyPayload(
+ void *pPayload, /* Pointer to page data */
+ void *pBuf, /* Pointer to buffer */
+ int nByte, /* Number of bytes to copy */
+ int eOp, /* 0 -> copy from page, 1 -> copy to page */
+ DbPage *pDbPage /* Page containing pPayload */
+){
+ if( eOp ){
+ /* Copy data from buffer to page (a write operation) */
+ int rc = sqlite3PagerWrite(pDbPage);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ memcpy(pPayload, pBuf, nByte);
+ }else{
+ /* Copy data from page to buffer (a read operation) */
+ memcpy(pBuf, pPayload, nByte);
+ }
+ return SQLITE_OK;
+}
+
+/*
+** This function is used to read or overwrite payload information
+** for the entry that the pCur cursor is pointing to. If the eOp
+** parameter is 0, this is a read operation (data copied into
+** buffer pBuf). If it is non-zero, a write (data copied from
+** buffer pBuf).
+**
+** A total of "amt" bytes are read or written beginning at "offset".
+** Data is read to or from the buffer pBuf.
+**
+** This routine does not make a distinction between key and data.
+** It just reads or writes bytes from the payload area. Data might
+** appear on the main page or be scattered out on multiple overflow
+** pages.
+**
+** If the BtCursor.isIncrblobHandle flag is set, and the current
+** cursor entry uses one or more overflow pages, this function
+** allocates space for and lazily popluates the overflow page-list
+** cache array (BtCursor.aOverflow). Subsequent calls use this
+** cache to make seeking to the supplied offset more efficient.
+**
+** Once an overflow page-list cache has been allocated, it may be
+** invalidated if some other cursor writes to the same table, or if
+** the cursor is moved to a different row. Additionally, in auto-vacuum
+** mode, the following events may invalidate an overflow page-list cache.
+**
+** * An incremental vacuum,
+** * A commit in auto_vacuum="full" mode,
+** * Creating a table (may require moving an overflow page).
+*/
+static int accessPayload(
+ BtCursor *pCur, /* Cursor pointing to entry to read from */
+ int offset, /* Begin reading this far into payload */
+ int amt, /* Read this many bytes */
+ unsigned char *pBuf, /* Write the bytes into this buffer */
+ int skipKey, /* offset begins at data if this is true */
+ int eOp /* zero to read. non-zero to write. */
+){
+ unsigned char *aPayload;
+ int rc = SQLITE_OK;
+ u32 nKey;
+ int iIdx = 0;
+ MemPage *pPage = pCur->pPage; /* Btree page of current cursor entry */
+ BtShared *pBt; /* Btree this cursor belongs to */
+
+ assert( pPage );
+ assert( pCur->eState==CURSOR_VALID );
+ assert( pCur->idx>=0 && pCur->idx<pPage->nCell );
+ assert( offset>=0 );
+ assert( cursorHoldsMutex(pCur) );
+
+ getCellInfo(pCur);
+ aPayload = pCur->info.pCell + pCur->info.nHeader;
+ nKey = (pPage->intKey ? 0 : pCur->info.nKey);
+
+ if( skipKey ){
+ offset += nKey;
+ }
+ if( offset+amt > nKey+pCur->info.nData ){
+ /* Trying to read or write past the end of the data is an error */
+ return SQLITE_ERROR;
+ }
+
+ /* Check if data must be read/written to/from the btree page itself. */
+ if( offset<pCur->info.nLocal ){
+ int a = amt;
+ if( a+offset>pCur->info.nLocal ){
+ a = pCur->info.nLocal - offset;
+ }
+ rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage);
+ offset = 0;
+ pBuf += a;
+ amt -= a;
+ }else{
+ offset -= pCur->info.nLocal;
+ }
+
+ pBt = pCur->pBt;
+ if( rc==SQLITE_OK && amt>0 ){
+ const int ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */
+ Pgno nextPage;
+
+ nextPage = get4byte(&aPayload[pCur->info.nLocal]);
+
+#ifndef SQLITE_OMIT_INCRBLOB
+ /* If the isIncrblobHandle flag is set and the BtCursor.aOverflow[]
+ ** has not been allocated, allocate it now. The array is sized at
+ ** one entry for each overflow page in the overflow chain. The
+ ** page number of the first overflow page is stored in aOverflow[0],
+ ** etc. A value of 0 in the aOverflow[] array means "not yet known"
+ ** (the cache is lazily populated).
+ */
+ if( pCur->isIncrblobHandle && !pCur->aOverflow ){
+ int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
+ pCur->aOverflow = (Pgno *)sqlite3MallocZero(sizeof(Pgno)*nOvfl);
+ if( nOvfl && !pCur->aOverflow ){
+ rc = SQLITE_NOMEM;
+ }
+ }
+
+ /* If the overflow page-list cache has been allocated and the
+ ** entry for the first required overflow page is valid, skip
+ ** directly to it.
+ */
+ if( pCur->aOverflow && pCur->aOverflow[offset/ovflSize] ){
+ iIdx = (offset/ovflSize);
+ nextPage = pCur->aOverflow[iIdx];
+ offset = (offset%ovflSize);
+ }
+#endif
+
+ for( ; rc==SQLITE_OK && amt>0 && nextPage; iIdx++){
+
+#ifndef SQLITE_OMIT_INCRBLOB
+ /* If required, populate the overflow page-list cache. */
+ if( pCur->aOverflow ){
+ assert(!pCur->aOverflow[iIdx] || pCur->aOverflow[iIdx]==nextPage);
+ pCur->aOverflow[iIdx] = nextPage;
+ }
+#endif
+
+ if( offset>=ovflSize ){
+ /* The only reason to read this page is to obtain the page
+ ** number for the next page in the overflow chain. The page
+ ** data is not required. So first try to lookup the overflow
+ ** page-list cache, if any, then fall back to the getOverflowPage()
+ ** function.
+ */
+#ifndef SQLITE_OMIT_INCRBLOB
+ if( pCur->aOverflow && pCur->aOverflow[iIdx+1] ){
+ nextPage = pCur->aOverflow[iIdx+1];
+ } else
+#endif
+ rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
+ offset -= ovflSize;
+ }else{
+ /* Need to read this page properly. It contains some of the
+ ** range of data that is being read (eOp==0) or written (eOp!=0).
+ */
+ DbPage *pDbPage;
+ int a = amt;
+ rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage);
+ if( rc==SQLITE_OK ){
+ aPayload = sqlite3PagerGetData(pDbPage);
+ nextPage = get4byte(aPayload);
+ if( a + offset > ovflSize ){
+ a = ovflSize - offset;
+ }
+ rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage);
+ sqlite3PagerUnref(pDbPage);
+ offset = 0;
+ amt -= a;
+ pBuf += a;
+ }
+ }
+ }
+ }
+
+ if( rc==SQLITE_OK && amt>0 ){
+ return SQLITE_CORRUPT_BKPT;
+ }
+ return rc;
+}
+
+/*
+** Read part of the key associated with cursor pCur. Exactly
+** "amt" bytes will be transfered into pBuf[]. The transfer
+** begins at "offset".
+**
+** Return SQLITE_OK on success or an error code if anything goes
+** wrong. An error is returned if "offset+amt" is larger than
+** the available payload.
+*/
+SQLITE_PRIVATE int sqlite3BtreeKey(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
+ int rc;
+
+ assert( cursorHoldsMutex(pCur) );
+ rc = restoreOrClearCursorPosition(pCur);
+ if( rc==SQLITE_OK ){
+ assert( pCur->eState==CURSOR_VALID );
+ assert( pCur->pPage!=0 );
+ if( pCur->pPage->intKey ){
+ return SQLITE_CORRUPT_BKPT;
+ }
+ assert( pCur->pPage->intKey==0 );
+ assert( pCur->idx>=0 && pCur->idx<pCur->pPage->nCell );
+ rc = accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0, 0);
+ }
+ return rc;
+}
+
+/*
+** Read part of the data associated with cursor pCur. Exactly
+** "amt" bytes will be transfered into pBuf[]. The transfer
+** begins at "offset".
+**
+** Return SQLITE_OK on success or an error code if anything goes
+** wrong. An error is returned if "offset+amt" is larger than
+** the available payload.
+*/
+SQLITE_PRIVATE int sqlite3BtreeData(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
+ int rc;
+
+ assert( cursorHoldsMutex(pCur) );
+ rc = restoreOrClearCursorPosition(pCur);
+ if( rc==SQLITE_OK ){
+ assert( pCur->eState==CURSOR_VALID );
+ assert( pCur->pPage!=0 );
+ assert( pCur->idx>=0 && pCur->idx<pCur->pPage->nCell );
+ rc = accessPayload(pCur, offset, amt, pBuf, 1, 0);
+ }
+ return rc;
+}
+
+/*
+** Return a pointer to payload information from the entry that the
+** pCur cursor is pointing to. The pointer is to the beginning of
+** the key if skipKey==0 and it points to the beginning of data if
+** skipKey==1. The number of bytes of available key/data is written
+** into *pAmt. If *pAmt==0, then the value returned will not be
+** a valid pointer.
+**
+** This routine is an optimization. It is common for the entire key
+** and data to fit on the local page and for there to be no overflow
+** pages. When that is so, this routine can be used to access the
+** key and data without making a copy. If the key and/or data spills
+** onto overflow pages, then accessPayload() must be used to reassembly
+** the key/data and copy it into a preallocated buffer.
+**
+** The pointer returned by this routine looks directly into the cached
+** page of the database. The data might change or move the next time
+** any btree routine is called.
+*/
+static const unsigned char *fetchPayload(
+ BtCursor *pCur, /* Cursor pointing to entry to read from */
+ int *pAmt, /* Write the number of available bytes here */
+ int skipKey /* read beginning at data if this is true */
+){
+ unsigned char *aPayload;
+ MemPage *pPage;
+ u32 nKey;
+ int nLocal;
+
+ assert( pCur!=0 && pCur->pPage!=0 );
+ assert( pCur->eState==CURSOR_VALID );
+ assert( cursorHoldsMutex(pCur) );
+ pPage = pCur->pPage;
+ assert( pCur->idx>=0 && pCur->idx<pPage->nCell );
+ getCellInfo(pCur);
+ aPayload = pCur->info.pCell;
+ aPayload += pCur->info.nHeader;
+ if( pPage->intKey ){
+ nKey = 0;
+ }else{
+ nKey = pCur->info.nKey;
+ }
+ if( skipKey ){
+ aPayload += nKey;
+ nLocal = pCur->info.nLocal - nKey;
+ }else{
+ nLocal = pCur->info.nLocal;
+ if( nLocal>nKey ){
+ nLocal = nKey;
+ }
+ }
+ *pAmt = nLocal;
+ return aPayload;
+}
+
+
+/*
+** For the entry that cursor pCur is point to, return as
+** many bytes of the key or data as are available on the local
+** b-tree page. Write the number of available bytes into *pAmt.
+**
+** The pointer returned is ephemeral. The key/data may move
+** or be destroyed on the next call to any Btree routine,
+** including calls from other threads against the same cache.
+** Hence, a mutex on the BtShared should be held prior to calling
+** this routine.
+**
+** These routines is used to get quick access to key and data
+** in the common case where no overflow pages are used.
+*/
+SQLITE_PRIVATE const void *sqlite3BtreeKeyFetch(BtCursor *pCur, int *pAmt){
+ assert( cursorHoldsMutex(pCur) );
+ if( pCur->eState==CURSOR_VALID ){
+ return (const void*)fetchPayload(pCur, pAmt, 0);
+ }
+ return 0;
+}
+SQLITE_PRIVATE const void *sqlite3BtreeDataFetch(BtCursor *pCur, int *pAmt){
+ assert( cursorHoldsMutex(pCur) );
+ if( pCur->eState==CURSOR_VALID ){
+ return (const void*)fetchPayload(pCur, pAmt, 1);
+ }
+ return 0;
+}
+
+
+/*
+** Move the cursor down to a new child page. The newPgno argument is the
+** page number of the child page to move to.
+*/
+static int moveToChild(BtCursor *pCur, u32 newPgno){
+ int rc;
+ MemPage *pNewPage;
+ MemPage *pOldPage;
+ BtShared *pBt = pCur->pBt;
+
+ assert( cursorHoldsMutex(pCur) );
+ assert( pCur->eState==CURSOR_VALID );
+ rc = getAndInitPage(pBt, newPgno, &pNewPage, pCur->pPage);
+ if( rc ) return rc;
+ pNewPage->idxParent = pCur->idx;
+ pOldPage = pCur->pPage;
+ pOldPage->idxShift = 0;
+ releasePage(pOldPage);
+ pCur->pPage = pNewPage;
+ pCur->idx = 0;
+ pCur->info.nSize = 0;
+ pCur->validNKey = 0;
+ if( pNewPage->nCell<1 ){
+ return SQLITE_CORRUPT_BKPT;
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Return true if the page is the virtual root of its table.
+**
+** The virtual root page is the root page for most tables. But
+** for the table rooted on page 1, sometime the real root page
+** is empty except for the right-pointer. In such cases the
+** virtual root page is the page that the right-pointer of page
+** 1 is pointing to.
+*/
+SQLITE_PRIVATE int sqlite3BtreeIsRootPage(MemPage *pPage){
+ MemPage *pParent;
+
+ assert( sqlite3_mutex_held(pPage->pBt->mutex) );
+ pParent = pPage->pParent;
+ if( pParent==0 ) return 1;
+ if( pParent->pgno>1 ) return 0;
+ if( get2byte(&pParent->aData[pParent->hdrOffset+3])==0 ) return 1;
+ return 0;
+}
+
+/*
+** Move the cursor up to the parent page.
+**
+** pCur->idx is set to the cell index that contains the pointer
+** to the page we are coming from. If we are coming from the
+** right-most child page then pCur->idx is set to one more than
+** the largest cell index.
+*/
+SQLITE_PRIVATE void sqlite3BtreeMoveToParent(BtCursor *pCur){
+ MemPage *pParent;
+ MemPage *pPage;
+ int idxParent;
+
+ assert( cursorHoldsMutex(pCur) );
+ assert( pCur->eState==CURSOR_VALID );
+ pPage = pCur->pPage;
+ assert( pPage!=0 );
+ assert( !sqlite3BtreeIsRootPage(pPage) );
+ pParent = pPage->pParent;
+ assert( pParent!=0 );
+ idxParent = pPage->idxParent;
+ sqlite3PagerRef(pParent->pDbPage);
+ releasePage(pPage);
+ pCur->pPage = pParent;
+ pCur->info.nSize = 0;
+ pCur->validNKey = 0;
+ assert( pParent->idxShift==0 );
+ pCur->idx = idxParent;
+}
+
+/*
+** Move the cursor to the root page
+*/
+static int moveToRoot(BtCursor *pCur){
+ MemPage *pRoot;
+ int rc = SQLITE_OK;
+ Btree *p = pCur->pBtree;
+ BtShared *pBt = p->pBt;
+
+ assert( cursorHoldsMutex(pCur) );
+ assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
+ assert( CURSOR_VALID < CURSOR_REQUIRESEEK );
+ assert( CURSOR_FAULT > CURSOR_REQUIRESEEK );
+ if( pCur->eState>=CURSOR_REQUIRESEEK ){
+ if( pCur->eState==CURSOR_FAULT ){
+ return pCur->skip;
+ }
+ clearCursorPosition(pCur);
+ }
+ pRoot = pCur->pPage;
+ if( pRoot && pRoot->pgno==pCur->pgnoRoot ){
+ assert( pRoot->isInit );
+ }else{
+ if(
+ SQLITE_OK!=(rc = getAndInitPage(pBt, pCur->pgnoRoot, &pRoot, 0))
+ ){
+ pCur->eState = CURSOR_INVALID;
+ return rc;
+ }
+ releasePage(pCur->pPage);
+ pCur->pPage = pRoot;
+ }
+ pCur->idx = 0;
+ pCur->info.nSize = 0;
+ pCur->atLast = 0;
+ pCur->validNKey = 0;
+ if( pRoot->nCell==0 && !pRoot->leaf ){
+ Pgno subpage;
+ assert( pRoot->pgno==1 );
+ subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
+ assert( subpage>0 );
+ pCur->eState = CURSOR_VALID;
+ rc = moveToChild(pCur, subpage);
+ }
+ pCur->eState = ((pCur->pPage->nCell>0)?CURSOR_VALID:CURSOR_INVALID);
+ return rc;
+}
+
+/*
+** Move the cursor down to the left-most leaf entry beneath the
+** entry to which it is currently pointing.
+**
+** The left-most leaf is the one with the smallest key - the first
+** in ascending order.
+*/
+static int moveToLeftmost(BtCursor *pCur){
+ Pgno pgno;
+ int rc = SQLITE_OK;
+ MemPage *pPage;
+
+ assert( cursorHoldsMutex(pCur) );
+ assert( pCur->eState==CURSOR_VALID );
+ while( rc==SQLITE_OK && !(pPage = pCur->pPage)->leaf ){
+ assert( pCur->idx>=0 && pCur->idx<pPage->nCell );
+ pgno = get4byte(findCell(pPage, pCur->idx));
+ rc = moveToChild(pCur, pgno);
+ }
+ return rc;
+}
+
+/*
+** Move the cursor down to the right-most leaf entry beneath the
+** page to which it is currently pointing. Notice the difference
+** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
+** finds the left-most entry beneath the *entry* whereas moveToRightmost()
+** finds the right-most entry beneath the *page*.
+**
+** The right-most entry is the one with the largest key - the last
+** key in ascending order.
+*/
+static int moveToRightmost(BtCursor *pCur){
+ Pgno pgno;
+ int rc = SQLITE_OK;
+ MemPage *pPage;
+
+ assert( cursorHoldsMutex(pCur) );
+ assert( pCur->eState==CURSOR_VALID );
+ while( rc==SQLITE_OK && !(pPage = pCur->pPage)->leaf ){
+ pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
+ pCur->idx = pPage->nCell;
+ rc = moveToChild(pCur, pgno);
+ }
+ if( rc==SQLITE_OK ){
+ pCur->idx = pPage->nCell - 1;
+ pCur->info.nSize = 0;
+ pCur->validNKey = 0;
+ }
+ return SQLITE_OK;
+}
+
+/* Move the cursor to the first entry in the table. Return SQLITE_OK
+** on success. Set *pRes to 0 if the cursor actually points to something
+** or set *pRes to 1 if the table is empty.
+*/
+SQLITE_PRIVATE int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
+ int rc;
+
+ assert( cursorHoldsMutex(pCur) );
+ assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
+ rc = moveToRoot(pCur);
+ if( rc==SQLITE_OK ){
+ if( pCur->eState==CURSOR_INVALID ){
+ assert( pCur->pPage->nCell==0 );
+ *pRes = 1;
+ rc = SQLITE_OK;
+ }else{
+ assert( pCur->pPage->nCell>0 );
+ *pRes = 0;
+ rc = moveToLeftmost(pCur);
+ }
+ }
+ return rc;
+}
+
+/* Move the cursor to the last entry in the table. Return SQLITE_OK
+** on success. Set *pRes to 0 if the cursor actually points to something
+** or set *pRes to 1 if the table is empty.
+*/
+SQLITE_PRIVATE int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
+ int rc;
+
+ assert( cursorHoldsMutex(pCur) );
+ assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
+ rc = moveToRoot(pCur);
+ if( rc==SQLITE_OK ){
+ if( CURSOR_INVALID==pCur->eState ){
+ assert( pCur->pPage->nCell==0 );
+ *pRes = 1;
+ }else{
+ assert( pCur->eState==CURSOR_VALID );
+ *pRes = 0;
+ rc = moveToRightmost(pCur);
+ getCellInfo(pCur);
+ pCur->atLast = rc==SQLITE_OK;
+ }
+ }
+ return rc;
+}
+
+/* Move the cursor so that it points to an entry near the key
+** specified by pKey/nKey/pUnKey. Return a success code.
+**
+** For INTKEY tables, only the nKey parameter is used. pKey
+** and pUnKey must be NULL. For index tables, either pUnKey
+** must point to a key that has already been unpacked, or else
+** pKey/nKey describes a blob containing the key.
+**
+** If an exact match is not found, then the cursor is always
+** left pointing at a leaf page which would hold the entry if it
+** were present. The cursor might point to an entry that comes
+** before or after the key.
+**
+** The result of comparing the key with the entry to which the
+** cursor is written to *pRes if pRes!=NULL. The meaning of
+** this value is as follows:
+**
+** *pRes<0 The cursor is left pointing at an entry that
+** is smaller than pKey or if the table is empty
+** and the cursor is therefore left point to nothing.
+**
+** *pRes==0 The cursor is left pointing at an entry that
+** exactly matches pKey.
+**
+** *pRes>0 The cursor is left pointing at an entry that
+** is larger than pKey.
+**
+*/
+SQLITE_PRIVATE int sqlite3BtreeMoveto(
+ BtCursor *pCur, /* The cursor to be moved */
+ const void *pKey, /* The key content for indices. Not used by tables */
+ UnpackedRecord *pUnKey,/* Unpacked version of pKey */
+ i64 nKey, /* Size of pKey. Or the key for tables */
+ int biasRight, /* If true, bias the search to the high end */
+ int *pRes /* Search result flag */
+){
+ int rc;
+ char aSpace[200];
+
+ assert( cursorHoldsMutex(pCur) );
+ assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
+
+ /* If the cursor is already positioned at the point we are trying
+ ** to move to, then just return without doing any work */
+ if( pCur->eState==CURSOR_VALID && pCur->validNKey && pCur->pPage->intKey ){
+ if( pCur->info.nKey==nKey ){
+ *pRes = 0;
+ return SQLITE_OK;
+ }
+ if( pCur->atLast && pCur->info.nKey<nKey ){
+ *pRes = -1;
+ return SQLITE_OK;
+ }
+ }
+
+
+ rc = moveToRoot(pCur);
+ if( rc ){
+ return rc;
+ }
+ assert( pCur->pPage );
+ assert( pCur->pPage->isInit );
+ if( pCur->eState==CURSOR_INVALID ){
+ *pRes = -1;
+ assert( pCur->pPage->nCell==0 );
+ return SQLITE_OK;
+ }
+ if( pCur->pPage->intKey ){
+ /* We are given an SQL table to search. The key is the integer
+ ** rowid contained in nKey. pKey and pUnKey should both be NULL */
+ assert( pUnKey==0 );
+ assert( pKey==0 );
+ }else if( pUnKey==0 ){
+ /* We are to search an SQL index using a key encoded as a blob.
+ ** The blob is found at pKey and is nKey bytes in length. Unpack
+ ** this key so that we can use it. */
+ assert( pKey!=0 );
+ pUnKey = sqlite3VdbeRecordUnpack(pCur->pKeyInfo, nKey, pKey,
+ aSpace, sizeof(aSpace));
+ if( pUnKey==0 ) return SQLITE_NOMEM;
+ }else{
+ /* We are to search an SQL index using a key that is already unpacked
+ ** and handed to us in pUnKey. */
+ assert( pKey==0 );
+ }
+ for(;;){
+ int lwr, upr;
+ Pgno chldPg;
+ MemPage *pPage = pCur->pPage;
+ int c = -1; /* pRes return if table is empty must be -1 */
+ lwr = 0;
+ upr = pPage->nCell-1;
+ if( !pPage->intKey && pUnKey==0 ){
+ rc = SQLITE_CORRUPT_BKPT;
+ goto moveto_finish;
+ }
+ if( biasRight ){
+ pCur->idx = upr;
+ }else{
+ pCur->idx = (upr+lwr)/2;
+ }
+ if( lwr<=upr ) for(;;){
+ void *pCellKey;
+ i64 nCellKey;
+ pCur->info.nSize = 0;
+ pCur->validNKey = 1;
+ if( pPage->intKey ){
+ u8 *pCell;
+ pCell = findCell(pPage, pCur->idx) + pPage->childPtrSize;
+ if( pPage->hasData ){
+ u32 dummy;
+ pCell += getVarint32(pCell, dummy);
+ }
+ getVarint(pCell, (u64*)&nCellKey);
+ if( nCellKey==nKey ){
+ c = 0;
+ }else if( nCellKey<nKey ){
+ c = -1;
+ }else{
+ assert( nCellKey>nKey );
+ c = +1;
+ }
+ }else{
+ int available;
+ pCellKey = (void *)fetchPayload(pCur, &available, 0);
+ nCellKey = pCur->info.nKey;
+ if( available>=nCellKey ){
+ c = sqlite3VdbeRecordCompare(nCellKey, pCellKey, pUnKey);
+ }else{
+ pCellKey = sqlite3_malloc( nCellKey );
+ if( pCellKey==0 ){
+ rc = SQLITE_NOMEM;
+ goto moveto_finish;
+ }
+ rc = sqlite3BtreeKey(pCur, 0, nCellKey, (void *)pCellKey);
+ c = sqlite3VdbeRecordCompare(nCellKey, pCellKey, pUnKey);
+ sqlite3_free(pCellKey);
+ if( rc ) goto moveto_finish;
+ }
+ }
+ if( c==0 ){
+ pCur->info.nKey = nCellKey;
+ if( pPage->leafData && !pPage->leaf ){
+ lwr = pCur->idx;
+ upr = lwr - 1;
+ break;
+ }else{
+ if( pRes ) *pRes = 0;
+ rc = SQLITE_OK;
+ goto moveto_finish;
+ }
+ }
+ if( c<0 ){
+ lwr = pCur->idx+1;
+ }else{
+ upr = pCur->idx-1;
+ }
+ if( lwr>upr ){
+ pCur->info.nKey = nCellKey;
+ break;
+ }
+ pCur->idx = (lwr+upr)/2;
+ }
+ assert( lwr==upr+1 );
+ assert( pPage->isInit );
+ if( pPage->leaf ){
+ chldPg = 0;
+ }else if( lwr>=pPage->nCell ){
+ chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
+ }else{
+ chldPg = get4byte(findCell(pPage, lwr));
+ }
+ if( chldPg==0 ){
+ assert( pCur->idx>=0 && pCur->idx<pCur->pPage->nCell );
+ if( pRes ) *pRes = c;
+ rc = SQLITE_OK;
+ goto moveto_finish;
+ }
+ pCur->idx = lwr;
+ pCur->info.nSize = 0;
+ pCur->validNKey = 0;
+ rc = moveToChild(pCur, chldPg);
+ if( rc ) goto moveto_finish;
+ }
+moveto_finish:
+ if( pKey ){
+ /* If we created our own unpacked key at the top of this
+ ** procedure, then destroy that key before returning. */
+ sqlite3VdbeDeleteUnpackedRecord(pUnKey);
+ }
+ return rc;
+}
+
+
+/*
+** Return TRUE if the cursor is not pointing at an entry of the table.
+**
+** TRUE will be returned after a call to sqlite3BtreeNext() moves
+** past the last entry in the table or sqlite3BtreePrev() moves past
+** the first entry. TRUE is also returned if the table is empty.
+*/
+SQLITE_PRIVATE int sqlite3BtreeEof(BtCursor *pCur){
+ /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
+ ** have been deleted? This API will need to change to return an error code
+ ** as well as the boolean result value.
+ */
+ return (CURSOR_VALID!=pCur->eState);
+}
+
+/*
+** Return the database connection handle for a cursor.
+*/
+SQLITE_PRIVATE sqlite3 *sqlite3BtreeCursorDb(const BtCursor *pCur){
+ assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
+ return pCur->pBtree->db;
+}
+
+/*
+** Advance the cursor to the next entry in the database. If
+** successful then set *pRes=0. If the cursor
+** was already pointing to the last entry in the database before
+** this routine was called, then set *pRes=1.
+*/
+SQLITE_PRIVATE int sqlite3BtreeNext(BtCursor *pCur, int *pRes){
+ int rc;
+ MemPage *pPage;
+
+ assert( cursorHoldsMutex(pCur) );
+ rc = restoreOrClearCursorPosition(pCur);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ assert( pRes!=0 );
+ pPage = pCur->pPage;
+ if( CURSOR_INVALID==pCur->eState ){
+ *pRes = 1;
+ return SQLITE_OK;
+ }
+ if( pCur->skip>0 ){
+ pCur->skip = 0;
+ *pRes = 0;
+ return SQLITE_OK;
+ }
+ pCur->skip = 0;
+
+ assert( pPage->isInit );
+ assert( pCur->idx<pPage->nCell );
+
+ pCur->idx++;
+ pCur->info.nSize = 0;
+ pCur->validNKey = 0;
+ if( pCur->idx>=pPage->nCell ){
+ if( !pPage->leaf ){
+ rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
+ if( rc ) return rc;
+ rc = moveToLeftmost(pCur);
+ *pRes = 0;
+ return rc;
+ }
+ do{
+ if( sqlite3BtreeIsRootPage(pPage) ){
+ *pRes = 1;
+ pCur->eState = CURSOR_INVALID;
+ return SQLITE_OK;
+ }
+ sqlite3BtreeMoveToParent(pCur);
+ pPage = pCur->pPage;
+ }while( pCur->idx>=pPage->nCell );
+ *pRes = 0;
+ if( pPage->leafData ){
+ rc = sqlite3BtreeNext(pCur, pRes);
+ }else{
+ rc = SQLITE_OK;
+ }
+ return rc;
+ }
+ *pRes = 0;
+ if( pPage->leaf ){
+ return SQLITE_OK;
+ }
+ rc = moveToLeftmost(pCur);
+ return rc;
+}
+
+
+/*
+** Step the cursor to the back to the previous entry in the database. If
+** successful then set *pRes=0. If the cursor
+** was already pointing to the first entry in the database before
+** this routine was called, then set *pRes=1.
+*/
+SQLITE_PRIVATE int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){
+ int rc;
+ Pgno pgno;
+ MemPage *pPage;
+
+ assert( cursorHoldsMutex(pCur) );
+ rc = restoreOrClearCursorPosition(pCur);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ pCur->atLast = 0;
+ if( CURSOR_INVALID==pCur->eState ){
+ *pRes = 1;
+ return SQLITE_OK;
+ }
+ if( pCur->skip<0 ){
+ pCur->skip = 0;
+ *pRes = 0;
+ return SQLITE_OK;
+ }
+ pCur->skip = 0;
+
+ pPage = pCur->pPage;
+ assert( pPage->isInit );
+ assert( pCur->idx>=0 );
+ if( !pPage->leaf ){
+ pgno = get4byte( findCell(pPage, pCur->idx) );
+ rc = moveToChild(pCur, pgno);
+ if( rc ){
+ return rc;
+ }
+ rc = moveToRightmost(pCur);
+ }else{
+ while( pCur->idx==0 ){
+ if( sqlite3BtreeIsRootPage(pPage) ){
+ pCur->eState = CURSOR_INVALID;
+ *pRes = 1;
+ return SQLITE_OK;
+ }
+ sqlite3BtreeMoveToParent(pCur);
+ pPage = pCur->pPage;
+ }
+ pCur->idx--;
+ pCur->info.nSize = 0;
+ pCur->validNKey = 0;
+ if( pPage->leafData && !pPage->leaf ){
+ rc = sqlite3BtreePrevious(pCur, pRes);
+ }else{
+ rc = SQLITE_OK;
+ }
+ }
+ *pRes = 0;
+ return rc;
+}
+
+/*
+** Allocate a new page from the database file.
+**
+** The new page is marked as dirty. (In other words, sqlite3PagerWrite()
+** has already been called on the new page.) The new page has also
+** been referenced and the calling routine is responsible for calling
+** sqlite3PagerUnref() on the new page when it is done.
+**
+** SQLITE_OK is returned on success. Any other return value indicates
+** an error. *ppPage and *pPgno are undefined in the event of an error.
+** Do not invoke sqlite3PagerUnref() on *ppPage if an error is returned.
+**
+** If the "nearby" parameter is not 0, then a (feeble) effort is made to
+** locate a page close to the page number "nearby". This can be used in an
+** attempt to keep related pages close to each other in the database file,
+** which in turn can make database access faster.
+**
+** If the "exact" parameter is not 0, and the page-number nearby exists
+** anywhere on the free-list, then it is guarenteed to be returned. This
+** is only used by auto-vacuum databases when allocating a new table.
+*/
+static int allocateBtreePage(
+ BtShared *pBt,
+ MemPage **ppPage,
+ Pgno *pPgno,
+ Pgno nearby,
+ u8 exact
+){
+ MemPage *pPage1;
+ int rc;
+ int n; /* Number of pages on the freelist */
+ int k; /* Number of leaves on the trunk of the freelist */
+ MemPage *pTrunk = 0;
+ MemPage *pPrevTrunk = 0;
+
+ assert( sqlite3_mutex_held(pBt->mutex) );
+ pPage1 = pBt->pPage1;
+ n = get4byte(&pPage1->aData[36]);
+ if( n>0 ){
+ /* There are pages on the freelist. Reuse one of those pages. */
+ Pgno iTrunk;
+ u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
+
+ /* If the 'exact' parameter was true and a query of the pointer-map
+ ** shows that the page 'nearby' is somewhere on the free-list, then
+ ** the entire-list will be searched for that page.
+ */
+#ifndef SQLITE_OMIT_AUTOVACUUM
+ if( exact && nearby<=sqlite3PagerPagecount(pBt->pPager) ){
+ u8 eType;
+ assert( nearby>0 );
+ assert( pBt->autoVacuum );
+ rc = ptrmapGet(pBt, nearby, &eType, 0);
+ if( rc ) return rc;
+ if( eType==PTRMAP_FREEPAGE ){
+ searchList = 1;
+ }
+ *pPgno = nearby;
+ }
+#endif
+
+ /* Decrement the free-list count by 1. Set iTrunk to the index of the
+ ** first free-list trunk page. iPrevTrunk is initially 1.
+ */
+ rc = sqlite3PagerWrite(pPage1->pDbPage);
+ if( rc ) return rc;
+ put4byte(&pPage1->aData[36], n-1);
+
+ /* The code within this loop is run only once if the 'searchList' variable
+ ** is not true. Otherwise, it runs once for each trunk-page on the
+ ** free-list until the page 'nearby' is located.
+ */
+ do {
+ pPrevTrunk = pTrunk;
+ if( pPrevTrunk ){
+ iTrunk = get4byte(&pPrevTrunk->aData[0]);
+ }else{
+ iTrunk = get4byte(&pPage1->aData[32]);
+ }
+ rc = sqlite3BtreeGetPage(pBt, iTrunk, &pTrunk, 0);
+ if( rc ){
+ pTrunk = 0;
+ goto end_allocate_page;
+ }
+
+ k = get4byte(&pTrunk->aData[4]);
+ if( k==0 && !searchList ){
+ /* The trunk has no leaves and the list is not being searched.
+ ** So extract the trunk page itself and use it as the newly
+ ** allocated page */
+ assert( pPrevTrunk==0 );
+ rc = sqlite3PagerWrite(pTrunk->pDbPage);
+ if( rc ){
+ goto end_allocate_page;
+ }
+ *pPgno = iTrunk;
+ memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
+ *ppPage = pTrunk;
+ pTrunk = 0;
+ TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
+ }else if( k>pBt->usableSize/4 - 8 ){
+ /* Value of k is out of range. Database corruption */
+ rc = SQLITE_CORRUPT_BKPT;
+ goto end_allocate_page;
+#ifndef SQLITE_OMIT_AUTOVACUUM
+ }else if( searchList && nearby==iTrunk ){
+ /* The list is being searched and this trunk page is the page
+ ** to allocate, regardless of whether it has leaves.
+ */
+ assert( *pPgno==iTrunk );
+ *ppPage = pTrunk;
+ searchList = 0;
+ rc = sqlite3PagerWrite(pTrunk->pDbPage);
+ if( rc ){
+ goto end_allocate_page;
+ }
+ if( k==0 ){
+ if( !pPrevTrunk ){
+ memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
+ }else{
+ memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
+ }
+ }else{
+ /* The trunk page is required by the caller but it contains
+ ** pointers to free-list leaves. The first leaf becomes a trunk
+ ** page in this case.
+ */
+ MemPage *pNewTrunk;
+ Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
+ rc = sqlite3BtreeGetPage(pBt, iNewTrunk, &pNewTrunk, 0);
+ if( rc!=SQLITE_OK ){
+ goto end_allocate_page;
+ }
+ rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
+ if( rc!=SQLITE_OK ){
+ releasePage(pNewTrunk);
+ goto end_allocate_page;
+ }
+ memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
+ put4byte(&pNewTrunk->aData[4], k-1);
+ memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
+ releasePage(pNewTrunk);
+ if( !pPrevTrunk ){
+ put4byte(&pPage1->aData[32], iNewTrunk);
+ }else{
+ rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
+ if( rc ){
+ goto end_allocate_page;
+ }
+ put4byte(&pPrevTrunk->aData[0], iNewTrunk);
+ }
+ }
+ pTrunk = 0;
+ TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
+#endif
+ }else{
+ /* Extract a leaf from the trunk */
+ int closest;
+ Pgno iPage;
+ unsigned char *aData = pTrunk->aData;
+ rc = sqlite3PagerWrite(pTrunk->pDbPage);
+ if( rc ){
+ goto end_allocate_page;
+ }
+ if( nearby>0 ){
+ int i, dist;
+ closest = 0;
+ dist = get4byte(&aData[8]) - nearby;
+ if( dist<0 ) dist = -dist;
+ for(i=1; i<k; i++){
+ int d2 = get4byte(&aData[8+i*4]) - nearby;
+ if( d2<0 ) d2 = -d2;
+ if( d2<dist ){
+ closest = i;
+ dist = d2;
+ }
+ }
+ }else{
+ closest = 0;
+ }
+
+ iPage = get4byte(&aData[8+closest*4]);
+ if( !searchList || iPage==nearby ){
+ *pPgno = iPage;
+ if( *pPgno>sqlite3PagerPagecount(pBt->pPager) ){
+ /* Free page off the end of the file */
+ rc = SQLITE_CORRUPT_BKPT;
+ goto end_allocate_page;
+ }
+ TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
+ ": %d more free pages\n",
+ *pPgno, closest+1, k, pTrunk->pgno, n-1));
+ if( closest<k-1 ){
+ memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
+ }
+ put4byte(&aData[4], k-1);
+ rc = sqlite3BtreeGetPage(pBt, *pPgno, ppPage, 1);
+ if( rc==SQLITE_OK ){
+ sqlite3PagerDontRollback((*ppPage)->pDbPage);
+ rc = sqlite3PagerWrite((*ppPage)->pDbPage);
+ if( rc!=SQLITE_OK ){
+ releasePage(*ppPage);
+ }
+ }
+ searchList = 0;
+ }
+ }
+ releasePage(pPrevTrunk);
+ pPrevTrunk = 0;
+ }while( searchList );
+ }else{
+ /* There are no pages on the freelist, so create a new page at the
+ ** end of the file */
+ *pPgno = sqlite3PagerPagecount(pBt->pPager) + 1;
+
+#ifndef SQLITE_OMIT_AUTOVACUUM
+ if( pBt->nTrunc ){
+ /* An incr-vacuum has already run within this transaction. So the
+ ** page to allocate is not from the physical end of the file, but
+ ** at pBt->nTrunc.
+ */
+ *pPgno = pBt->nTrunc+1;
+ if( *pPgno==PENDING_BYTE_PAGE(pBt) ){
+ (*pPgno)++;
+ }
+ }
+ if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, *pPgno) ){
+ /* If *pPgno refers to a pointer-map page, allocate two new pages
+ ** at the end of the file instead of one. The first allocated page
+ ** becomes a new pointer-map page, the second is used by the caller.
+ */
+ TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", *pPgno));
+ assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
+ (*pPgno)++;
+ if( *pPgno==PENDING_BYTE_PAGE(pBt) ){ (*pPgno)++; }
+ }
+ if( pBt->nTrunc ){
+ pBt->nTrunc = *pPgno;
+ }
+#endif
+
+ assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
+ rc = sqlite3BtreeGetPage(pBt, *pPgno, ppPage, 0);
+ if( rc ) return rc;
+ rc = sqlite3PagerWrite((*ppPage)->pDbPage);
+ if( rc!=SQLITE_OK ){
+ releasePage(*ppPage);
+ }
+ TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
+ }
+
+ assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
+
+end_allocate_page:
+ releasePage(pTrunk);
+ releasePage(pPrevTrunk);
+ return rc;
+}
+
+/*
+** Add a page of the database file to the freelist.
+**
+** sqlite3PagerUnref() is NOT called for pPage.
+*/
+static int freePage(MemPage *pPage){
+ BtShared *pBt = pPage->pBt;
+ MemPage *pPage1 = pBt->pPage1;
+ int rc, n, k;
+
+ /* Prepare the page for freeing */
+ assert( sqlite3_mutex_held(pPage->pBt->mutex) );
+ assert( pPage->pgno>1 );
+ pPage->isInit = 0;
+ releasePage(pPage->pParent);
+ pPage->pParent = 0;
+
+ /* Increment the free page count on pPage1 */
+ rc = sqlite3PagerWrite(pPage1->pDbPage);
+ if( rc ) return rc;
+ n = get4byte(&pPage1->aData[36]);
+ put4byte(&pPage1->aData[36], n+1);
+
+#ifdef SQLITE_SECURE_DELETE
+ /* If the SQLITE_SECURE_DELETE compile-time option is enabled, then
+ ** always fully overwrite deleted information with zeros.
+ */
+ rc = sqlite3PagerWrite(pPage->pDbPage);
+ if( rc ) return rc;
+ memset(pPage->aData, 0, pPage->pBt->pageSize);
+#endif
+
+#ifndef SQLITE_OMIT_AUTOVACUUM
+ /* If the database supports auto-vacuum, write an entry in the pointer-map
+ ** to indicate that the page is free.
+ */
+ if( pBt->autoVacuum ){
+ rc = ptrmapPut(pBt, pPage->pgno, PTRMAP_FREEPAGE, 0);
+ if( rc ) return rc;
+ }
+#endif
+
+ if( n==0 ){
+ /* This is the first free page */
+ rc = sqlite3PagerWrite(pPage->pDbPage);
+ if( rc ) return rc;
+ memset(pPage->aData, 0, 8);
+ put4byte(&pPage1->aData[32], pPage->pgno);
+ TRACE(("FREE-PAGE: %d first\n", pPage->pgno));
+ }else{
+ /* Other free pages already exist. Retrive the first trunk page
+ ** of the freelist and find out how many leaves it has. */
+ MemPage *pTrunk;
+ rc = sqlite3BtreeGetPage(pBt, get4byte(&pPage1->aData[32]), &pTrunk, 0);
+ if( rc ) return rc;
+ k = get4byte(&pTrunk->aData[4]);
+ if( k>=pBt->usableSize/4 - 8 ){
+ /* The trunk is full. Turn the page being freed into a new
+ ** trunk page with no leaves. */
+ rc = sqlite3PagerWrite(pPage->pDbPage);
+ if( rc==SQLITE_OK ){
+ put4byte(pPage->aData, pTrunk->pgno);
+ put4byte(&pPage->aData[4], 0);
+ put4byte(&pPage1->aData[32], pPage->pgno);
+ TRACE(("FREE-PAGE: %d new trunk page replacing %d\n",
+ pPage->pgno, pTrunk->pgno));
+ }
+ }else if( k<0 ){
+ rc = SQLITE_CORRUPT;
+ }else{
+ /* Add the newly freed page as a leaf on the current trunk */
+ rc = sqlite3PagerWrite(pTrunk->pDbPage);
+ if( rc==SQLITE_OK ){
+ put4byte(&pTrunk->aData[4], k+1);
+ put4byte(&pTrunk->aData[8+k*4], pPage->pgno);
+#ifndef SQLITE_SECURE_DELETE
+ sqlite3PagerDontWrite(pPage->pDbPage);
+#endif
+ }
+ TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
+ }
+ releasePage(pTrunk);
+ }
+ return rc;
+}
+
+/*
+** Free any overflow pages associated with the given Cell.
+*/
+static int clearCell(MemPage *pPage, unsigned char *pCell){
+ BtShared *pBt = pPage->pBt;
+ CellInfo info;
+ Pgno ovflPgno;
+ int rc;
+ int nOvfl;
+ int ovflPageSize;
+
+ assert( sqlite3_mutex_held(pPage->pBt->mutex) );
+ sqlite3BtreeParseCellPtr(pPage, pCell, &info);
+ if( info.iOverflow==0 ){
+ return SQLITE_OK; /* No overflow pages. Return without doing anything */
+ }
+ ovflPgno = get4byte(&pCell[info.iOverflow]);
+ ovflPageSize = pBt->usableSize - 4;
+ nOvfl = (info.nPayload - info.nLocal + ovflPageSize - 1)/ovflPageSize;
+ assert( ovflPgno==0 || nOvfl>0 );
+ while( nOvfl-- ){
+ MemPage *pOvfl;
+ if( ovflPgno==0 || ovflPgno>sqlite3PagerPagecount(pBt->pPager) ){
+ return SQLITE_CORRUPT_BKPT;
+ }
+
+ rc = getOverflowPage(pBt, ovflPgno, &pOvfl, (nOvfl==0)?0:&ovflPgno);
+ if( rc ) return rc;
+ rc = freePage(pOvfl);
+ sqlite3PagerUnref(pOvfl->pDbPage);
+ if( rc ) return rc;
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Create the byte sequence used to represent a cell on page pPage
+** and write that byte sequence into pCell[]. Overflow pages are
+** allocated and filled in as necessary. The calling procedure
+** is responsible for making sure sufficient space has been allocated
+** for pCell[].
+**
+** Note that pCell does not necessary need to point to the pPage->aData
+** area. pCell might point to some temporary storage. The cell will
+** be constructed in this temporary area then copied into pPage->aData
+** later.
+*/
+static int fillInCell(
+ MemPage *pPage, /* The page that contains the cell */
+ unsigned char *pCell, /* Complete text of the cell */
+ const void *pKey, i64 nKey, /* The key */
+ const void *pData,int nData, /* The data */
+ int nZero, /* Extra zero bytes to append to pData */
+ int *pnSize /* Write cell size here */
+){
+ int nPayload;
+ const u8 *pSrc;
+ int nSrc, n, rc;
+ int spaceLeft;
+ MemPage *pOvfl = 0;
+ MemPage *pToRelease = 0;
+ unsigned char *pPrior;
+ unsigned char *pPayload;
+ BtShared *pBt = pPage->pBt;
+ Pgno pgnoOvfl = 0;
+ int nHeader;
+ CellInfo info;
+
+ assert( sqlite3_mutex_held(pPage->pBt->mutex) );
+
+ /* Fill in the header. */
+ nHeader = 0;
+ if( !pPage->leaf ){
+ nHeader += 4;
+ }
+ if( pPage->hasData ){
+ nHeader += putVarint(&pCell[nHeader], nData+nZero);
+ }else{
+ nData = nZero = 0;
+ }
+ nHeader += putVarint(&pCell[nHeader], *(u64*)&nKey);
+ sqlite3BtreeParseCellPtr(pPage, pCell, &info);
+ assert( info.nHeader==nHeader );
+ assert( info.nKey==nKey );
+ assert( info.nData==nData+nZero );
+
+ /* Fill in the payload */
+ nPayload = nData + nZero;
+ if( pPage->intKey ){
+ pSrc = pData;
+ nSrc = nData;
+ nData = 0;
+ }else{
+ nPayload += nKey;
+ pSrc = pKey;
+ nSrc = nKey;
+ }
+ *pnSize = info.nSize;
+ spaceLeft = info.nLocal;
+ pPayload = &pCell[nHeader];
+ pPrior = &pCell[info.iOverflow];
+
+ while( nPayload>0 ){
+ if( spaceLeft==0 ){
+ int isExact = 0;
+#ifndef SQLITE_OMIT_AUTOVACUUM
+ Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
+ if( pBt->autoVacuum ){
+ do{
+ pgnoOvfl++;
+ } while(
+ PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt)
+ );
+ if( pgnoOvfl>1 ){
+ /* isExact = 1; */
+ }
+ }
+#endif
+ rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, isExact);
+#ifndef SQLITE_OMIT_AUTOVACUUM
+ /* If the database supports auto-vacuum, and the second or subsequent
+ ** overflow page is being allocated, add an entry to the pointer-map
+ ** for that page now.
+ **
+ ** If this is the first overflow page, then write a partial entry
+ ** to the pointer-map. If we write nothing to this pointer-map slot,
+ ** then the optimistic overflow chain processing in clearCell()
+ ** may misinterpret the uninitialised values and delete the
+ ** wrong pages from the database.
+ */
+ if( pBt->autoVacuum && rc==SQLITE_OK ){
+ u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
+ rc = ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap);
+ if( rc ){
+ releasePage(pOvfl);
+ }
+ }
+#endif
+ if( rc ){
+ releasePage(pToRelease);
+ return rc;
+ }
+ put4byte(pPrior, pgnoOvfl);
+ releasePage(pToRelease);
+ pToRelease = pOvfl;
+ pPrior = pOvfl->aData;
+ put4byte(pPrior, 0);
+ pPayload = &pOvfl->aData[4];
+ spaceLeft = pBt->usableSize - 4;
+ }
+ n = nPayload;
+ if( n>spaceLeft ) n = spaceLeft;
+ if( nSrc>0 ){
+ if( n>nSrc ) n = nSrc;
+ assert( pSrc );
+ memcpy(pPayload, pSrc, n);
+ }else{
+ memset(pPayload, 0, n);
+ }
+ nPayload -= n;
+ pPayload += n;
+ pSrc += n;
+ nSrc -= n;
+ spaceLeft -= n;
+ if( nSrc==0 ){
+ nSrc = nData;
+ pSrc = pData;
+ }
+ }
+ releasePage(pToRelease);
+ return SQLITE_OK;
+}
+
+/*
+** Change the MemPage.pParent pointer on the page whose number is
+** given in the second argument so that MemPage.pParent holds the
+** pointer in the third argument.
+*/
+static int reparentPage(BtShared *pBt, Pgno pgno, MemPage *pNewParent, int idx){
+ MemPage *pThis;
+ DbPage *pDbPage;
+
+ assert( sqlite3_mutex_held(pBt->mutex) );
+ assert( pNewParent!=0 );
+ if( pgno==0 ) return SQLITE_OK;
+ assert( pBt->pPager!=0 );
+ pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
+ if( pDbPage ){
+ pThis = (MemPage *)sqlite3PagerGetExtra(pDbPage);
+ if( pThis->isInit ){
+ assert( pThis->aData==sqlite3PagerGetData(pDbPage) );
+ if( pThis->pParent!=pNewParent ){
+ if( pThis->pParent ) sqlite3PagerUnref(pThis->pParent->pDbPage);
+ pThis->pParent = pNewParent;
+ sqlite3PagerRef(pNewParent->pDbPage);
+ }
+ pThis->idxParent = idx;
+ }
+ sqlite3PagerUnref(pDbPage);
+ }
+
+#ifndef SQLITE_OMIT_AUTOVACUUM
+ if( pBt->autoVacuum ){
+ return ptrmapPut(pBt, pgno, PTRMAP_BTREE, pNewParent->pgno);
+ }
+#endif
+ return SQLITE_OK;
+}
+
+
+
+/*
+** Change the pParent pointer of all children of pPage to point back
+** to pPage.
+**
+** In other words, for every child of pPage, invoke reparentPage()
+** to make sure that each child knows that pPage is its parent.
+**
+** This routine gets called after you memcpy() one page into
+** another.
+*/
+static int reparentChildPages(MemPage *pPage){
+ int i;
+ BtShared *pBt = pPage->pBt;
+ int rc = SQLITE_OK;
+
+ assert( sqlite3_mutex_held(pPage->pBt->mutex) );
+ if( pPage->leaf ) return SQLITE_OK;
+
+ for(i=0; i<pPage->nCell; i++){
+ u8 *pCell = findCell(pPage, i);
+ rc = reparentPage(pBt, get4byte(pCell), pPage, i);
+ if( rc!=SQLITE_OK ) return rc;
+ }
+ rc = reparentPage(pBt, get4byte(&pPage->aData[pPage->hdrOffset+8]),
+ pPage, i);
+ pPage->idxShift = 0;
+ return rc;
+}
+
+/*
+** Remove the i-th cell from pPage. This routine effects pPage only.
+** The cell content is not freed or deallocated. It is assumed that
+** the cell content has been copied someplace else. This routine just
+** removes the reference to the cell from pPage.
+**
+** "sz" must be the number of bytes in the cell.
+*/
+static void dropCell(MemPage *pPage, int idx, int sz){
+ int i; /* Loop counter */
+ int pc; /* Offset to cell content of cell being deleted */
+ u8 *data; /* pPage->aData */
+ u8 *ptr; /* Used to move bytes around within data[] */
+
+ assert( idx>=0 && idx<pPage->nCell );
+ assert( sz==cellSize(pPage, idx) );
+ assert( sqlite3PagerIswriteable(pPage->pDbPage) );
+ assert( sqlite3_mutex_held(pPage->pBt->mutex) );
+ data = pPage->aData;
+ ptr = &data[pPage->cellOffset + 2*idx];
+ pc = get2byte(ptr);
+ assert( pc>10 && pc+sz<=pPage->pBt->usableSize );
+ freeSpace(pPage, pc, sz);
+ for(i=idx+1; i<pPage->nCell; i++, ptr+=2){
+ ptr[0] = ptr[2];
+ ptr[1] = ptr[3];
+ }
+ pPage->nCell--;
+ put2byte(&data[pPage->hdrOffset+3], pPage->nCell);
+ pPage->nFree += 2;
+ pPage->idxShift = 1;
+}
+
+/*
+** Insert a new cell on pPage at cell index "i". pCell points to the
+** content of the cell.
+**
+** If the cell content will fit on the page, then put it there. If it
+** will not fit, then make a copy of the cell content into pTemp if
+** pTemp is not null. Regardless of pTemp, allocate a new entry
+** in pPage->aOvfl[] and make it point to the cell content (either
+** in pTemp or the original pCell) and also record its index.
+** Allocating a new entry in pPage->aCell[] implies that
+** pPage->nOverflow is incremented.
+**
+** If nSkip is non-zero, then do not copy the first nSkip bytes of the
+** cell. The caller will overwrite them after this function returns. If
+** nSkip is non-zero, then pCell may not point to an invalid memory location
+** (but pCell+nSkip is always valid).
+*/
+static int insertCell(
+ MemPage *pPage, /* Page into which we are copying */
+ int i, /* New cell becomes the i-th cell of the page */
+ u8 *pCell, /* Content of the new cell */
+ int sz, /* Bytes of content in pCell */
+ u8 *pTemp, /* Temp storage space for pCell, if needed */
+ u8 nSkip /* Do not write the first nSkip bytes of the cell */
+){
+ int idx; /* Where to write new cell content in data[] */
+ int j; /* Loop counter */
+ int top; /* First byte of content for any cell in data[] */
+ int end; /* First byte past the last cell pointer in data[] */
+ int ins; /* Index in data[] where new cell pointer is inserted */
+ int hdr; /* Offset into data[] of the page header */
+ int cellOffset; /* Address of first cell pointer in data[] */
+ u8 *data; /* The content of the whole page */
+ u8 *ptr; /* Used for moving information around in data[] */
+
+ assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
+ assert( sz==cellSizePtr(pPage, pCell) );
+ assert( sqlite3_mutex_held(pPage->pBt->mutex) );
+ if( pPage->nOverflow || sz+2>pPage->nFree ){
+ if( pTemp ){
+ memcpy(pTemp+nSkip, pCell+nSkip, sz-nSkip);
+ pCell = pTemp;
+ }
+ j = pPage->nOverflow++;
+ assert( j<sizeof(pPage->aOvfl)/sizeof(pPage->aOvfl[0]) );
+ pPage->aOvfl[j].pCell = pCell;
+ pPage->aOvfl[j].idx = i;
+ pPage->nFree = 0;
+ }else{
+ int rc = sqlite3PagerWrite(pPage->pDbPage);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ assert( sqlite3PagerIswriteable(pPage->pDbPage) );
+ data = pPage->aData;
+ hdr = pPage->hdrOffset;
+ top = get2byte(&data[hdr+5]);
+ cellOffset = pPage->cellOffset;
+ end = cellOffset + 2*pPage->nCell + 2;
+ ins = cellOffset + 2*i;
+ if( end > top - sz ){
+ rc = defragmentPage(pPage);
+ if( rc!=SQLITE_OK ) return rc;
+ top = get2byte(&data[hdr+5]);
+ assert( end + sz <= top );
+ }
+ idx = allocateSpace(pPage, sz);
+ assert( idx>0 );
+ assert( end <= get2byte(&data[hdr+5]) );
+ pPage->nCell++;
+ pPage->nFree -= 2;
+ memcpy(&data[idx+nSkip], pCell+nSkip, sz-nSkip);
+ for(j=end-2, ptr=&data[j]; j>ins; j-=2, ptr-=2){
+ ptr[0] = ptr[-2];
+ ptr[1] = ptr[-1];
+ }
+ put2byte(&data[ins], idx);
+ put2byte(&data[hdr+3], pPage->nCell);
+ pPage->idxShift = 1;
+#ifndef SQLITE_OMIT_AUTOVACUUM
+ if( pPage->pBt->autoVacuum ){
+ /* The cell may contain a pointer to an overflow page. If so, write
+ ** the entry for the overflow page into the pointer map.
+ */
+ CellInfo info;
+ sqlite3BtreeParseCellPtr(pPage, pCell, &info);
+ assert( (info.nData+(pPage->intKey?0:info.nKey))==info.nPayload );
+ if( (info.nData+(pPage->intKey?0:info.nKey))>info.nLocal ){
+ Pgno pgnoOvfl = get4byte(&pCell[info.iOverflow]);
+ rc = ptrmapPut(pPage->pBt, pgnoOvfl, PTRMAP_OVERFLOW1, pPage->pgno);
+ if( rc!=SQLITE_OK ) return rc;
+ }
+ }
+#endif
+ }
+
+ return SQLITE_OK;
+}
+
+/*
+** Add a list of cells to a page. The page should be initially empty.
+** The cells are guaranteed to fit on the page.
+*/
+static void assemblePage(
+ MemPage *pPage, /* The page to be assemblied */
+ int nCell, /* The number of cells to add to this page */
+ u8 **apCell, /* Pointers to cell bodies */
+ u16 *aSize /* Sizes of the cells */
+){
+ int i; /* Loop counter */
+ int totalSize; /* Total size of all cells */
+ int hdr; /* Index of page header */
+ int cellptr; /* Address of next cell pointer */
+ int cellbody; /* Address of next cell body */
+ u8 *data; /* Data for the page */
+
+ assert( pPage->nOverflow==0 );
+ assert( sqlite3_mutex_held(pPage->pBt->mutex) );
+ totalSize = 0;
+ for(i=0; i<nCell; i++){
+ totalSize += aSize[i];
+ }
+ assert( totalSize+2*nCell<=pPage->nFree );
+ assert( pPage->nCell==0 );
+ cellptr = pPage->cellOffset;
+ data = pPage->aData;
+ hdr = pPage->hdrOffset;
+ put2byte(&data[hdr+3], nCell);
+ if( nCell ){
+ cellbody = allocateSpace(pPage, totalSize);
+ assert( cellbody>0 );
+ assert( pPage->nFree >= 2*nCell );
+ pPage->nFree -= 2*nCell;
+ for(i=0; i<nCell; i++){
+ put2byte(&data[cellptr], cellbody);
+ memcpy(&data[cellbody], apCell[i], aSize[i]);
+ cellptr += 2;
+ cellbody += aSize[i];
+ }
+ assert( cellbody==pPage->pBt->usableSize );
+ }
+ pPage->nCell = nCell;
+}
+
+/*
+** The following parameters determine how many adjacent pages get involved
+** in a balancing operation. NN is the number of neighbors on either side
+** of the page that participate in the balancing operation. NB is the
+** total number of pages that participate, including the target page and
+** NN neighbors on either side.
+**
+** The minimum value of NN is 1 (of course). Increasing NN above 1
+** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
+** in exchange for a larger degradation in INSERT and UPDATE performance.
+** The value of NN appears to give the best results overall.
+*/
+#define NN 1 /* Number of neighbors on either side of pPage */
+#define NB (NN*2+1) /* Total pages involved in the balance */
+
+/* Forward reference */
+static int balance(MemPage*, int);
+
+#ifndef SQLITE_OMIT_QUICKBALANCE
+/*
+** This version of balance() handles the common special case where
+** a new entry is being inserted on the extreme right-end of the
+** tree, in other words, when the new entry will become the largest
+** entry in the tree.
+**
+** Instead of trying balance the 3 right-most leaf pages, just add
+** a new page to the right-hand side and put the one new entry in
+** that page. This leaves the right side of the tree somewhat
+** unbalanced. But odds are that we will be inserting new entries
+** at the end soon afterwards so the nearly empty page will quickly
+** fill up. On average.
+**
+** pPage is the leaf page which is the right-most page in the tree.
+** pParent is its parent. pPage must have a single overflow entry
+** which is also the right-most entry on the page.
+*/
+static int balance_quick(MemPage *pPage, MemPage *pParent){
+ int rc;
+ MemPage *pNew;
+ Pgno pgnoNew;
+ u8 *pCell;
+ u16 szCell;
+ CellInfo info;
+ BtShared *pBt = pPage->pBt;
+ int parentIdx = pParent->nCell; /* pParent new divider cell index */
+ int parentSize; /* Size of new divider cell */
+ u8 parentCell[64]; /* Space for the new divider cell */
+
+ assert( sqlite3_mutex_held(pPage->pBt->mutex) );
+
+ /* Allocate a new page. Insert the overflow cell from pPage
+ ** into it. Then remove the overflow cell from pPage.
+ */
+ rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ pCell = pPage->aOvfl[0].pCell;
+ szCell = cellSizePtr(pPage, pCell);
+ zeroPage(pNew, pPage->aData[0]);
+ assemblePage(pNew, 1, &pCell, &szCell);
+ pPage->nOverflow = 0;
+
+ /* Set the parent of the newly allocated page to pParent. */
+ pNew->pParent = pParent;
+ sqlite3PagerRef(pParent->pDbPage);
+
+ /* pPage is currently the right-child of pParent. Change this
+ ** so that the right-child is the new page allocated above and
+ ** pPage is the next-to-right child.
+ */
+ assert( pPage->nCell>0 );
+ pCell = findCell(pPage, pPage->nCell-1);
+ sqlite3BtreeParseCellPtr(pPage, pCell, &info);
+ rc = fillInCell(pParent, parentCell, 0, info.nKey, 0, 0, 0, &parentSize);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ assert( parentSize<64 );
+ rc = insertCell(pParent, parentIdx, parentCell, parentSize, 0, 4);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ put4byte(findOverflowCell(pParent,parentIdx), pPage->pgno);
+ put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
+
+#ifndef SQLITE_OMIT_AUTOVACUUM
+ /* If this is an auto-vacuum database, update the pointer map
+ ** with entries for the new page, and any pointer from the
+ ** cell on the page to an overflow page.
+ */
+ if( pBt->autoVacuum ){
+ rc = ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno);
+ if( rc==SQLITE_OK ){
+ rc = ptrmapPutOvfl(pNew, 0);
+ }
+ if( rc!=SQLITE_OK ){
+ releasePage(pNew);
+ return rc;
+ }
+ }
+#endif
+
+ /* Release the reference to the new page and balance the parent page,
+ ** in case the divider cell inserted caused it to become overfull.
+ */
+ releasePage(pNew);
+ return balance(pParent, 0);
+}
+#endif /* SQLITE_OMIT_QUICKBALANCE */
+
+/*
+** This routine redistributes Cells on pPage and up to NN*2 siblings
+** of pPage so that all pages have about the same amount of free space.
+** Usually NN siblings on either side of pPage is used in the balancing,
+** though more siblings might come from one side if pPage is the first
+** or last child of its parent. If pPage has fewer than 2*NN siblings
+** (something which can only happen if pPage is the root page or a
+** child of root) then all available siblings participate in the balancing.
+**
+** The number of siblings of pPage might be increased or decreased by one or
+** two in an effort to keep pages nearly full but not over full. The root page
+** is special and is allowed to be nearly empty. If pPage is
+** the root page, then the depth of the tree might be increased
+** or decreased by one, as necessary, to keep the root page from being
+** overfull or completely empty.
+**
+** Note that when this routine is called, some of the Cells on pPage
+** might not actually be stored in pPage->aData[]. This can happen
+** if the page is overfull. Part of the job of this routine is to
+** make sure all Cells for pPage once again fit in pPage->aData[].
+**
+** In the course of balancing the siblings of pPage, the parent of pPage
+** might become overfull or underfull. If that happens, then this routine
+** is called recursively on the parent.
+**
+** If this routine fails for any reason, it might leave the database
+** in a corrupted state. So if this routine fails, the database should
+** be rolled back.
+*/
+static int balance_nonroot(MemPage *pPage){
+ MemPage *pParent; /* The parent of pPage */
+ BtShared *pBt; /* The whole database */
+ int nCell = 0; /* Number of cells in apCell[] */
+ int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */
+ int nOld; /* Number of pages in apOld[] */
+ int nNew; /* Number of pages in apNew[] */
+ int nDiv; /* Number of cells in apDiv[] */
+ int i, j, k; /* Loop counters */
+ int idx; /* Index of pPage in pParent->aCell[] */
+ int nxDiv; /* Next divider slot in pParent->aCell[] */
+ int rc; /* The return code */
+ int leafCorrection; /* 4 if pPage is a leaf. 0 if not */
+ int leafData; /* True if pPage is a leaf of a LEAFDATA tree */
+ int usableSpace; /* Bytes in pPage beyond the header */
+ int pageFlags; /* Value of pPage->aData[0] */
+ int subtotal; /* Subtotal of bytes in cells on one page */
+ int iSpace = 0; /* First unused byte of aSpace[] */
+ MemPage *apOld[NB]; /* pPage and up to two siblings */
+ Pgno pgnoOld[NB]; /* Page numbers for each page in apOld[] */
+ MemPage *apCopy[NB]; /* Private copies of apOld[] pages */
+ MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */
+ Pgno pgnoNew[NB+2]; /* Page numbers for each page in apNew[] */
+ u8 *apDiv[NB]; /* Divider cells in pParent */
+ int cntNew[NB+2]; /* Index in aCell[] of cell after i-th page */
+ int szNew[NB+2]; /* Combined size of cells place on i-th page */
+ u8 **apCell = 0; /* All cells begin balanced */
+ u16 *szCell; /* Local size of all cells in apCell[] */
+ u8 *aCopy[NB]; /* Space for holding data of apCopy[] */
+ u8 *aSpace; /* Space to hold copies of dividers cells */
+#ifndef SQLITE_OMIT_AUTOVACUUM
+ u8 *aFrom = 0;
+#endif
+
+ assert( sqlite3_mutex_held(pPage->pBt->mutex) );
+
+ /*
+ ** Find the parent page.
+ */
+ assert( pPage->isInit );
+ assert( sqlite3PagerIswriteable(pPage->pDbPage) || pPage->nOverflow==1 );
+ pBt = pPage->pBt;
+ pParent = pPage->pParent;
+ assert( pParent );
+ if( SQLITE_OK!=(rc = sqlite3PagerWrite(pParent->pDbPage)) ){
+ return rc;
+ }
+ TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno));
+
+#ifndef SQLITE_OMIT_QUICKBALANCE
+ /*
+ ** A special case: If a new entry has just been inserted into a
+ ** table (that is, a btree with integer keys and all data at the leaves)
+ ** and the new entry is the right-most entry in the tree (it has the
+ ** largest key) then use the special balance_quick() routine for
+ ** balancing. balance_quick() is much faster and results in a tighter
+ ** packing of data in the common case.
+ */
+ if( pPage->leaf &&
+ pPage->intKey &&
+ pPage->leafData &&
+ pPage->nOverflow==1 &&
+ pPage->aOvfl[0].idx==pPage->nCell &&
+ pPage->pParent->pgno!=1 &&
+ get4byte(&pParent->aData[pParent->hdrOffset+8])==pPage->pgno
+ ){
+ /*
+ ** TODO: Check the siblings to the left of pPage. It may be that
+ ** they are not full and no new page is required.
+ */
+ return balance_quick(pPage, pParent);
+ }
+#endif
+
+ if( SQLITE_OK!=(rc = sqlite3PagerWrite(pPage->pDbPage)) ){
+ return rc;
+ }
+
+ /*
+ ** Find the cell in the parent page whose left child points back
+ ** to pPage. The "idx" variable is the index of that cell. If pPage
+ ** is the rightmost child of pParent then set idx to pParent->nCell
+ */
+ if( pParent->idxShift ){
+ Pgno pgno;
+ pgno = pPage->pgno;
+ assert( pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
+ for(idx=0; idx<pParent->nCell; idx++){
+ if( get4byte(findCell(pParent, idx))==pgno ){
+ break;
+ }
+ }
+ assert( idx<pParent->nCell
+ || get4byte(&pParent->aData[pParent->hdrOffset+8])==pgno );
+ }else{
+ idx = pPage->idxParent;
+ }
+
+ /*
+ ** Initialize variables so that it will be safe to jump
+ ** directly to balance_cleanup at any moment.
+ */
+ nOld = nNew = 0;
+ sqlite3PagerRef(pParent->pDbPage);
+
+ /*
+ ** Find sibling pages to pPage and the cells in pParent that divide
+ ** the siblings. An attempt is made to find NN siblings on either
+ ** side of pPage. More siblings are taken from one side, however, if
+ ** pPage there are fewer than NN siblings on the other side. If pParent
+ ** has NB or fewer children then all children of pParent are taken.
+ */
+ nxDiv = idx - NN;
+ if( nxDiv + NB > pParent->nCell ){
+ nxDiv = pParent->nCell - NB + 1;
+ }
+ if( nxDiv<0 ){
+ nxDiv = 0;
+ }
+ nDiv = 0;
+ for(i=0, k=nxDiv; i<NB; i++, k++){
+ if( k<pParent->nCell ){
+ apDiv[i] = findCell(pParent, k);
+ nDiv++;
+ assert( !pParent->leaf );
+ pgnoOld[i] = get4byte(apDiv[i]);
+ }else if( k==pParent->nCell ){
+ pgnoOld[i] = get4byte(&pParent->aData[pParent->hdrOffset+8]);
+ }else{
+ break;
+ }
+ rc = getAndInitPage(pBt, pgnoOld[i], &apOld[i], pParent);
+ if( rc ) goto balance_cleanup;
+ apOld[i]->idxParent = k;
+ apCopy[i] = 0;
+ assert( i==nOld );
+ nOld++;
+ nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow;
+ }
+
+ /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
+ ** alignment */
+ nMaxCells = (nMaxCells + 3)&~3;
+
+ /*
+ ** Allocate space for memory structures
+ */
+ apCell = sqlite3_malloc(
+ nMaxCells*sizeof(u8*) /* apCell */
+ + nMaxCells*sizeof(u16) /* szCell */
+ + (ROUND8(sizeof(MemPage))+pBt->pageSize)*NB /* aCopy */
+ + pBt->pageSize*5 /* aSpace */
+ + (ISAUTOVACUUM ? nMaxCells : 0) /* aFrom */
+ );
+ if( apCell==0 ){
+ rc = SQLITE_NOMEM;
+ goto balance_cleanup;
+ }
+ szCell = (u16*)&apCell[nMaxCells];
+ aCopy[0] = (u8*)&szCell[nMaxCells];
+ assert( ((aCopy[0] - (u8*)apCell) & 7)==0 ); /* 8-byte alignment required */
+ for(i=1; i<NB; i++){
+ aCopy[i] = &aCopy[i-1][pBt->pageSize+ROUND8(sizeof(MemPage))];
+ assert( ((aCopy[i] - (u8*)apCell) & 7)==0 ); /* 8-byte alignment required */
+ }
+ aSpace = &aCopy[NB-1][pBt->pageSize+ROUND8(sizeof(MemPage))];
+ assert( ((aSpace - (u8*)apCell) & 7)==0 ); /* 8-byte alignment required */
+#ifndef SQLITE_OMIT_AUTOVACUUM
+ if( pBt->autoVacuum ){
+ aFrom = &aSpace[5*pBt->pageSize];
+ }
+#endif
+
+ /*
+ ** Make copies of the content of pPage and its siblings into aOld[].
+ ** The rest of this function will use data from the copies rather
+ ** that the original pages since the original pages will be in the
+ ** process of being overwritten.
+ */
+ for(i=0; i<nOld; i++){
+ MemPage *p = apCopy[i] = (MemPage*)aCopy[i];
+ memcpy(p, apOld[i], sizeof(MemPage));
+ p->aData = (void*)&p[1];
+ memcpy(p->aData, apOld[i]->aData, pBt->pageSize);
+ }
+
+ /*
+ ** Load pointers to all cells on sibling pages and the divider cells
+ ** into the local apCell[] array. Make copies of the divider cells
+ ** into space obtained form aSpace[] and remove the the divider Cells
+ ** from pParent.
+ **
+ ** If the siblings are on leaf pages, then the child pointers of the
+ ** divider cells are stripped from the cells before they are copied
+ ** into aSpace[]. In this way, all cells in apCell[] are without
+ ** child pointers. If siblings are not leaves, then all cell in
+ ** apCell[] include child pointers. Either way, all cells in apCell[]
+ ** are alike.
+ **
+ ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf.
+ ** leafData: 1 if pPage holds key+data and pParent holds only keys.
+ */
+ nCell = 0;
+ leafCorrection = pPage->leaf*4;
+ leafData = pPage->leafData && pPage->leaf;
+ for(i=0; i<nOld; i++){
+ MemPage *pOld = apCopy[i];
+ int limit = pOld->nCell+pOld->nOverflow;
+ for(j=0; j<limit; j++){
+ assert( nCell<nMaxCells );
+ apCell[nCell] = findOverflowCell(pOld, j);
+ szCell[nCell] = cellSizePtr(pOld, apCell[nCell]);
+#ifndef SQLITE_OMIT_AUTOVACUUM
+ if( pBt->autoVacuum ){
+ int a;
+ aFrom[nCell] = i;
+ for(a=0; a<pOld->nOverflow; a++){
+ if( pOld->aOvfl[a].pCell==apCell[nCell] ){
+ aFrom[nCell] = 0xFF;
+ break;
+ }
+ }
+ }
+#endif
+ nCell++;
+ }
+ if( i<nOld-1 ){
+ u16 sz = cellSizePtr(pParent, apDiv[i]);
+ if( leafData ){
+ /* With the LEAFDATA flag, pParent cells hold only INTKEYs that
+ ** are duplicates of keys on the child pages. We need to remove
+ ** the divider cells from pParent, but the dividers cells are not
+ ** added to apCell[] because they are duplicates of child cells.
+ */
+ dropCell(pParent, nxDiv, sz);
+ }else{
+ u8 *pTemp;
+ assert( nCell<nMaxCells );
+ szCell[nCell] = sz;
+ pTemp = &aSpace[iSpace];
+ iSpace += sz;
+ assert( iSpace<=pBt->pageSize*5 );
+ memcpy(pTemp, apDiv[i], sz);
+ apCell[nCell] = pTemp+leafCorrection;
+#ifndef SQLITE_OMIT_AUTOVACUUM
+ if( pBt->autoVacuum ){
+ aFrom[nCell] = 0xFF;
+ }
+#endif
+ dropCell(pParent, nxDiv, sz);
+ szCell[nCell] -= leafCorrection;
+ assert( get4byte(pTemp)==pgnoOld[i] );
+ if( !pOld->leaf ){
+ assert( leafCorrection==0 );
+ /* The right pointer of the child page pOld becomes the left
+ ** pointer of the divider cell */
+ memcpy(apCell[nCell], &pOld->aData[pOld->hdrOffset+8], 4);
+ }else{
+ assert( leafCorrection==4 );
+ if( szCell[nCell]<4 ){
+ /* Do not allow any cells smaller than 4 bytes. */
+ szCell[nCell] = 4;
+ }
+ }
+ nCell++;
+ }
+ }
+ }
+
+ /*
+ ** Figure out the number of pages needed to hold all nCell cells.
+ ** Store this number in "k". Also compute szNew[] which is the total
+ ** size of all cells on the i-th page and cntNew[] which is the index
+ ** in apCell[] of the cell that divides page i from page i+1.
+ ** cntNew[k] should equal nCell.
+ **
+ ** Values computed by this block:
+ **
+ ** k: The total number of sibling pages
+ ** szNew[i]: Spaced used on the i-th sibling page.
+ ** cntNew[i]: Index in apCell[] and szCell[] for the first cell to
+ ** the right of the i-th sibling page.
+ ** usableSpace: Number of bytes of space available on each sibling.
+ **
+ */
+ usableSpace = pBt->usableSize - 12 + leafCorrection;
+ for(subtotal=k=i=0; i<nCell; i++){
+ assert( i<nMaxCells );
+ subtotal += szCell[i] + 2;
+ if( subtotal > usableSpace ){
+ szNew[k] = subtotal - szCell[i];
+ cntNew[k] = i;
+ if( leafData ){ i--; }
+ subtotal = 0;
+ k++;
+ }
+ }
+ szNew[k] = subtotal;
+ cntNew[k] = nCell;
+ k++;
+
+ /*
+ ** The packing computed by the previous block is biased toward the siblings
+ ** on the left side. The left siblings are always nearly full, while the
+ ** right-most sibling might be nearly empty. This block of code attempts
+ ** to adjust the packing of siblings to get a better balance.
+ **
+ ** This adjustment is more than an optimization. The packing above might
+ ** be so out of balance as to be illegal. For example, the right-most
+ ** sibling might be completely empty. This adjustment is not optional.
+ */
+ for(i=k-1; i>0; i--){
+ int szRight = szNew[i]; /* Size of sibling on the right */
+ int szLeft = szNew[i-1]; /* Size of sibling on the left */
+ int r; /* Index of right-most cell in left sibling */
+ int d; /* Index of first cell to the left of right sibling */
+
+ r = cntNew[i-1] - 1;
+ d = r + 1 - leafData;
+ assert( d<nMaxCells );
+ assert( r<nMaxCells );
+ while( szRight==0 || szRight+szCell[d]+2<=szLeft-(szCell[r]+2) ){
+ szRight += szCell[d] + 2;
+ szLeft -= szCell[r] + 2;
+ cntNew[i-1]--;
+ r = cntNew[i-1] - 1;
+ d = r + 1 - leafData;
+ }
+ szNew[i] = szRight;
+ szNew[i-1] = szLeft;
+ }
+
+ /* Either we found one or more cells (cntnew[0])>0) or we are the
+ ** a virtual root page. A virtual root page is when the real root
+ ** page is page 1 and we are the only child of that page.
+ */
+ assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) );
+
+ /*
+ ** Allocate k new pages. Reuse old pages where possible.
+ */
+ assert( pPage->pgno>1 );
+ pageFlags = pPage->aData[0];
+ for(i=0; i<k; i++){
+ MemPage *pNew;
+ if( i<nOld ){
+ pNew = apNew[i] = apOld[i];
+ pgnoNew[i] = pgnoOld[i];
+ apOld[i] = 0;
+ rc = sqlite3PagerWrite(pNew->pDbPage);
+ nNew++;
+ if( rc ) goto balance_cleanup;
+ }else{
+ assert( i>0 );
+ rc = allocateBtreePage(pBt, &pNew, &pgnoNew[i], pgnoNew[i-1], 0);
+ if( rc ) goto balance_cleanup;
+ apNew[i] = pNew;
+ nNew++;
+ }
+ zeroPage(pNew, pageFlags);
+ }
+
+ /* Free any old pages that were not reused as new pages.
+ */
+ while( i<nOld ){
+ rc = freePage(apOld[i]);
+ if( rc ) goto balance_cleanup;
+ releasePage(apOld[i]);
+ apOld[i] = 0;
+ i++;
+ }
+
+ /*
+ ** Put the new pages in accending order. This helps to
+ ** keep entries in the disk file in order so that a scan
+ ** of the table is a linear scan through the file. That
+ ** in turn helps the operating system to deliver pages
+ ** from the disk more rapidly.
+ **
+ ** An O(n^2) insertion sort algorithm is used, but since
+ ** n is never more than NB (a small constant), that should
+ ** not be a problem.
+ **
+ ** When NB==3, this one optimization makes the database
+ ** about 25% faster for large insertions and deletions.
+ */
+ for(i=0; i<k-1; i++){
+ int minV = pgnoNew[i];
+ int minI = i;
+ for(j=i+1; j<k; j++){
+ if( pgnoNew[j]<(unsigned)minV ){
+ minI = j;
+ minV = pgnoNew[j];
+ }
+ }
+ if( minI>i ){
+ int t;
+ MemPage *pT;
+ t = pgnoNew[i];
+ pT = apNew[i];
+ pgnoNew[i] = pgnoNew[minI];
+ apNew[i] = apNew[minI];
+ pgnoNew[minI] = t;
+ apNew[minI] = pT;
+ }
+ }
+ TRACE(("BALANCE: old: %d %d %d new: %d(%d) %d(%d) %d(%d) %d(%d) %d(%d)\n",
+ pgnoOld[0],
+ nOld>=2 ? pgnoOld[1] : 0,
+ nOld>=3 ? pgnoOld[2] : 0,
+ pgnoNew[0], szNew[0],
+ nNew>=2 ? pgnoNew[1] : 0, nNew>=2 ? szNew[1] : 0,
+ nNew>=3 ? pgnoNew[2] : 0, nNew>=3 ? szNew[2] : 0,
+ nNew>=4 ? pgnoNew[3] : 0, nNew>=4 ? szNew[3] : 0,
+ nNew>=5 ? pgnoNew[4] : 0, nNew>=5 ? szNew[4] : 0));
+
+ /*
+ ** Evenly distribute the data in apCell[] across the new pages.
+ ** Insert divider cells into pParent as necessary.
+ */
+ j = 0;
+ for(i=0; i<nNew; i++){
+ /* Assemble the new sibling page. */
+ MemPage *pNew = apNew[i];
+ assert( j<nMaxCells );
+ assert( pNew->pgno==pgnoNew[i] );
+ assemblePage(pNew, cntNew[i]-j, &apCell[j], &szCell[j]);
+ assert( pNew->nCell>0 || (nNew==1 && cntNew[0]==0) );
+ assert( pNew->nOverflow==0 );
+
+#ifndef SQLITE_OMIT_AUTOVACUUM
+ /* If this is an auto-vacuum database, update the pointer map entries
+ ** that point to the siblings that were rearranged. These can be: left
+ ** children of cells, the right-child of the page, or overflow pages
+ ** pointed to by cells.
+ */
+ if( pBt->autoVacuum ){
+ for(k=j; k<cntNew[i]; k++){
+ assert( k<nMaxCells );
+ if( aFrom[k]==0xFF || apCopy[aFrom[k]]->pgno!=pNew->pgno ){
+ rc = ptrmapPutOvfl(pNew, k-j);
+ if( rc!=SQLITE_OK ){
+ goto balance_cleanup;
+ }
+ }
+ }
+ }
+#endif
+
+ j = cntNew[i];
+
+ /* If the sibling page assembled above was not the right-most sibling,
+ ** insert a divider cell into the parent page.
+ */
+ if( i<nNew-1 && j<nCell ){
+ u8 *pCell;
+ u8 *pTemp;
+ int sz;
+
+ assert( j<nMaxCells );
+ pCell = apCell[j];
+ sz = szCell[j] + leafCorrection;
+ if( !pNew->leaf ){
+ memcpy(&pNew->aData[8], pCell, 4);
+ pTemp = 0;
+ }else if( leafData ){
+ /* If the tree is a leaf-data tree, and the siblings are leaves,
+ ** then there is no divider cell in apCell[]. Instead, the divider
+ ** cell consists of the integer key for the right-most cell of
+ ** the sibling-page assembled above only.
+ */
+ CellInfo info;
+ j--;
+ sqlite3BtreeParseCellPtr(pNew, apCell[j], &info);
+ pCell = &aSpace[iSpace];
+ fillInCell(pParent, pCell, 0, info.nKey, 0, 0, 0, &sz);
+ iSpace += sz;
+ assert( iSpace<=pBt->pageSize*5 );
+ pTemp = 0;
+ }else{
+ pCell -= 4;
+ pTemp = &aSpace[iSpace];
+ iSpace += sz;
+ assert( iSpace<=pBt->pageSize*5 );
+ /* Obscure case for non-leaf-data trees: If the cell at pCell was
+ ** previously stored on a leaf node, and its reported size was 4
+ ** bytes, then it may actually be smaller than this
+ ** (see sqlite3BtreeParseCellPtr(), 4 bytes is the minimum size of
+ ** any cell). But it is important to pass the correct size to
+ ** insertCell(), so reparse the cell now.
+ **
+ ** Note that this can never happen in an SQLite data file, as all
+ ** cells are at least 4 bytes. It only happens in b-trees used
+ ** to evaluate "IN (SELECT ...)" and similar clauses.
+ */
+ if( szCell[j]==4 ){
+ assert(leafCorrection==4);
+ sz = cellSizePtr(pParent, pCell);
+ }
+ }
+ rc = insertCell(pParent, nxDiv, pCell, sz, pTemp, 4);
+ if( rc!=SQLITE_OK ) goto balance_cleanup;
+ put4byte(findOverflowCell(pParent,nxDiv), pNew->pgno);
+#ifndef SQLITE_OMIT_AUTOVACUUM
+ /* If this is an auto-vacuum database, and not a leaf-data tree,
+ ** then update the pointer map with an entry for the overflow page
+ ** that the cell just inserted points to (if any).
+ */
+ if( pBt->autoVacuum && !leafData ){
+ rc = ptrmapPutOvfl(pParent, nxDiv);
+ if( rc!=SQLITE_OK ){
+ goto balance_cleanup;
+ }
+ }
+#endif
+ j++;
+ nxDiv++;
+ }
+ }
+ assert( j==nCell );
+ assert( nOld>0 );
+ assert( nNew>0 );
+ if( (pageFlags & PTF_LEAF)==0 ){
+ memcpy(&apNew[nNew-1]->aData[8], &apCopy[nOld-1]->aData[8], 4);
+ }
+ if( nxDiv==pParent->nCell+pParent->nOverflow ){
+ /* Right-most sibling is the right-most child of pParent */
+ put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew[nNew-1]);
+ }else{
+ /* Right-most sibling is the left child of the first entry in pParent
+ ** past the right-most divider entry */
+ put4byte(findOverflowCell(pParent, nxDiv), pgnoNew[nNew-1]);
+ }
+
+ /*
+ ** Reparent children of all cells.
+ */
+ for(i=0; i<nNew; i++){
+ rc = reparentChildPages(apNew[i]);
+ if( rc!=SQLITE_OK ) goto balance_cleanup;
+ }
+ rc = reparentChildPages(pParent);
+ if( rc!=SQLITE_OK ) goto balance_cleanup;
+
+ /*
+ ** Balance the parent page. Note that the current page (pPage) might
+ ** have been added to the freelist so it might no longer be initialized.
+ ** But the parent page will always be initialized.
+ */
+ assert( pParent->isInit );
+ rc = balance(pParent, 0);
+
+ /*
+ ** Cleanup before returning.
+ */
+balance_cleanup:
+ sqlite3_free(apCell);
+ for(i=0; i<nOld; i++){
+ releasePage(apOld[i]);
+ }
+ for(i=0; i<nNew; i++){
+ releasePage(apNew[i]);
+ }
+ releasePage(pParent);
+ TRACE(("BALANCE: finished with %d: old=%d new=%d cells=%d\n",
+ pPage->pgno, nOld, nNew, nCell));
+ return rc;
+}
+
+/*
+** This routine is called for the root page of a btree when the root
+** page contains no cells. This is an opportunity to make the tree
+** shallower by one level.
+*/
+static int balance_shallower(MemPage *pPage){
+ MemPage *pChild; /* The only child page of pPage */
+ Pgno pgnoChild; /* Page number for pChild */
+ int rc = SQLITE_OK; /* Return code from subprocedures */
+ BtShared *pBt; /* The main BTree structure */
+ int mxCellPerPage; /* Maximum number of cells per page */
+ u8 **apCell; /* All cells from pages being balanced */
+ u16 *szCell; /* Local size of all cells */
+
+ assert( pPage->pParent==0 );
+ assert( pPage->nCell==0 );
+ assert( sqlite3_mutex_held(pPage->pBt->mutex) );
+ pBt = pPage->pBt;
+ mxCellPerPage = MX_CELL(pBt);
+ apCell = sqlite3_malloc( mxCellPerPage*(sizeof(u8*)+sizeof(u16)) );
+ if( apCell==0 ) return SQLITE_NOMEM;
+ szCell = (u16*)&apCell[mxCellPerPage];
+ if( pPage->leaf ){
+ /* The table is completely empty */
+ TRACE(("BALANCE: empty table %d\n", pPage->pgno));
+ }else{
+ /* The root page is empty but has one child. Transfer the
+ ** information from that one child into the root page if it
+ ** will fit. This reduces the depth of the tree by one.
+ **
+ ** If the root page is page 1, it has less space available than
+ ** its child (due to the 100 byte header that occurs at the beginning
+ ** of the database fle), so it might not be able to hold all of the
+ ** information currently contained in the child. If this is the
+ ** case, then do not do the transfer. Leave page 1 empty except
+ ** for the right-pointer to the child page. The child page becomes
+ ** the virtual root of the tree.
+ */
+ pgnoChild = get4byte(&pPage->aData[pPage->hdrOffset+8]);
+ assert( pgnoChild>0 );
+ assert( pgnoChild<=sqlite3PagerPagecount(pPage->pBt->pPager) );
+ rc = sqlite3BtreeGetPage(pPage->pBt, pgnoChild, &pChild, 0);
+ if( rc ) goto end_shallow_balance;
+ if( pPage->pgno==1 ){
+ rc = sqlite3BtreeInitPage(pChild, pPage);
+ if( rc ) goto end_shallow_balance;
+ assert( pChild->nOverflow==0 );
+ if( pChild->nFree>=100 ){
+ /* The child information will fit on the root page, so do the
+ ** copy */
+ int i;
+ zeroPage(pPage, pChild->aData[0]);
+ for(i=0; i<pChild->nCell; i++){
+ apCell[i] = findCell(pChild,i);
+ szCell[i] = cellSizePtr(pChild, apCell[i]);
+ }
+ assemblePage(pPage, pChild->nCell, apCell, szCell);
+ /* Copy the right-pointer of the child to the parent. */
+ put4byte(&pPage->aData[pPage->hdrOffset+8],
+ get4byte(&pChild->aData[pChild->hdrOffset+8]));
+ freePage(pChild);
+ TRACE(("BALANCE: child %d transfer to page 1\n", pChild->pgno));
+ }else{
+ /* The child has more information that will fit on the root.
+ ** The tree is already balanced. Do nothing. */
+ TRACE(("BALANCE: child %d will not fit on page 1\n", pChild->pgno));
+ }
+ }else{
+ memcpy(pPage->aData, pChild->aData, pPage->pBt->usableSize);
+ pPage->isInit = 0;
+ pPage->pParent = 0;
+ rc = sqlite3BtreeInitPage(pPage, 0);
+ assert( rc==SQLITE_OK );
+ freePage(pChild);
+ TRACE(("BALANCE: transfer child %d into root %d\n",
+ pChild->pgno, pPage->pgno));
+ }
+ rc = reparentChildPages(pPage);
+ assert( pPage->nOverflow==0 );
+#ifndef SQLITE_OMIT_AUTOVACUUM
+ if( pBt->autoVacuum ){
+ int i;
+ for(i=0; i<pPage->nCell; i++){
+ rc = ptrmapPutOvfl(pPage, i);
+ if( rc!=SQLITE_OK ){
+ goto end_shallow_balance;
+ }
+ }
+ }
+#endif
+ releasePage(pChild);
+ }
+end_shallow_balance:
+ sqlite3_free(apCell);
+ return rc;
+}
+
+
+/*
+** The root page is overfull
+**
+** When this happens, Create a new child page and copy the
+** contents of the root into the child. Then make the root
+** page an empty page with rightChild pointing to the new
+** child. Finally, call balance_internal() on the new child
+** to cause it to split.
+*/
+static int balance_deeper(MemPage *pPage){
+ int rc; /* Return value from subprocedures */
+ MemPage *pChild; /* Pointer to a new child page */
+ Pgno pgnoChild; /* Page number of the new child page */
+ BtShared *pBt; /* The BTree */
+ int usableSize; /* Total usable size of a page */
+ u8 *data; /* Content of the parent page */
+ u8 *cdata; /* Content of the child page */
+ int hdr; /* Offset to page header in parent */
+ int brk; /* Offset to content of first cell in parent */
+
+ assert( pPage->pParent==0 );
+ assert( pPage->nOverflow>0 );
+ pBt = pPage->pBt;
+ assert( sqlite3_mutex_held(pBt->mutex) );
+ rc = allocateBtreePage(pBt, &pChild, &pgnoChild, pPage->pgno, 0);
+ if( rc ) return rc;
+ assert( sqlite3PagerIswriteable(pChild->pDbPage) );
+ usableSize = pBt->usableSize;
+ data = pPage->aData;
+ hdr = pPage->hdrOffset;
+ brk = get2byte(&data[hdr+5]);
+ cdata = pChild->aData;
+ memcpy(cdata, &data[hdr], pPage->cellOffset+2*pPage->nCell-hdr);
+ memcpy(&cdata[brk], &data[brk], usableSize-brk);
+ assert( pChild->isInit==0 );
+ rc = sqlite3BtreeInitPage(pChild, pPage);
+ if( rc ) goto balancedeeper_out;
+ memcpy(pChild->aOvfl, pPage->aOvfl, pPage->nOverflow*sizeof(pPage->aOvfl[0]));
+ pChild->nOverflow = pPage->nOverflow;
+ if( pChild->nOverflow ){
+ pChild->nFree = 0;
+ }
+ assert( pChild->nCell==pPage->nCell );
+ zeroPage(pPage, pChild->aData[0] & ~PTF_LEAF);
+ put4byte(&pPage->aData[pPage->hdrOffset+8], pgnoChild);
+ TRACE(("BALANCE: copy root %d into %d\n", pPage->pgno, pChild->pgno));
+#ifndef SQLITE_OMIT_AUTOVACUUM
+ if( pBt->autoVacuum ){
+ int i;
+ rc = ptrmapPut(pBt, pChild->pgno, PTRMAP_BTREE, pPage->pgno);
+ if( rc ) goto balancedeeper_out;
+ for(i=0; i<pChild->nCell; i++){
+ rc = ptrmapPutOvfl(pChild, i);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ }
+ }
+#endif
+ rc = balance_nonroot(pChild);
+
+balancedeeper_out:
+ releasePage(pChild);
+ return rc;
+}
+
+/*
+** Decide if the page pPage needs to be balanced. If balancing is
+** required, call the appropriate balancing routine.
+*/
+static int balance(MemPage *pPage, int insert){
+ int rc = SQLITE_OK;
+ assert( sqlite3_mutex_held(pPage->pBt->mutex) );
+ if( pPage->pParent==0 ){
+ rc = sqlite3PagerWrite(pPage->pDbPage);
+ if( rc==SQLITE_OK && pPage->nOverflow>0 ){
+ rc = balance_deeper(pPage);
+ }
+ if( rc==SQLITE_OK && pPage->nCell==0 ){
+ rc = balance_shallower(pPage);
+ }
+ }else{
+ if( pPage->nOverflow>0 ||
+ (!insert && pPage->nFree>pPage->pBt->usableSize*2/3) ){
+ rc = balance_nonroot(pPage);
+ }
+ }
+ return rc;
+}
+
+/*
+** This routine checks all cursors that point to table pgnoRoot.
+** If any of those cursors were opened with wrFlag==0 in a different
+** database connection (a database connection that shares the pager
+** cache with the current connection) and that other connection
+** is not in the ReadUncommmitted state, then this routine returns
+** SQLITE_LOCKED.
+**
+** In addition to checking for read-locks (where a read-lock
+** means a cursor opened with wrFlag==0) this routine also moves
+** all write cursors so that they are pointing to the
+** first Cell on the root page. This is necessary because an insert
+** or delete might change the number of cells on a page or delete
+** a page entirely and we do not want to leave any cursors
+** pointing to non-existant pages or cells.
+*/
+static int checkReadLocks(Btree *pBtree, Pgno pgnoRoot, BtCursor *pExclude){
+ BtCursor *p;
+ BtShared *pBt = pBtree->pBt;
+ sqlite3 *db = pBtree->db;
+ assert( sqlite3BtreeHoldsMutex(pBtree) );
+ for(p=pBt->pCursor; p; p=p->pNext){
+ if( p==pExclude ) continue;
+ if( p->eState!=CURSOR_VALID ) continue;
+ if( p->pgnoRoot!=pgnoRoot ) continue;
+ if( p->wrFlag==0 ){
+ sqlite3 *dbOther = p->pBtree->db;
+ if( dbOther==0 ||
+ (dbOther!=db && (dbOther->flags & SQLITE_ReadUncommitted)==0) ){
+ return SQLITE_LOCKED;
+ }
+ }else if( p->pPage->pgno!=p->pgnoRoot ){
+ moveToRoot(p);
+ }
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Make sure pBt->pTmpSpace points to an allocation of
+** MX_CELL_SIZE(pBt) bytes.
+*/
+static void allocateTempSpace(BtShared *pBt){
+ if( !pBt->pTmpSpace ){
+ pBt->pTmpSpace = sqlite3_malloc(MX_CELL_SIZE(pBt));
+ }
+}
+
+/*
+** Insert a new record into the BTree. The key is given by (pKey,nKey)
+** and the data is given by (pData,nData). The cursor is used only to
+** define what table the record should be inserted into. The cursor
+** is left pointing at a random location.
+**
+** For an INTKEY table, only the nKey value of the key is used. pKey is
+** ignored. For a ZERODATA table, the pData and nData are both ignored.
+*/
+SQLITE_PRIVATE int sqlite3BtreeInsert(
+ BtCursor *pCur, /* Insert data into the table of this cursor */
+ const void *pKey, i64 nKey, /* The key of the new record */
+ const void *pData, int nData, /* The data of the new record */
+ int nZero, /* Number of extra 0 bytes to append to data */
+ int appendBias /* True if this is likely an append */
+){
+ int rc;
+ int loc;
+ int szNew;
+ MemPage *pPage;
+ Btree *p = pCur->pBtree;
+ BtShared *pBt = p->pBt;
+ unsigned char *oldCell;
+ unsigned char *newCell = 0;
+
+ assert( cursorHoldsMutex(pCur) );
+ if( pBt->inTransaction!=TRANS_WRITE ){
+ /* Must start a transaction before doing an insert */
+ rc = pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
+ return rc;
+ }
+ assert( !pBt->readOnly );
+ if( !pCur->wrFlag ){
+ return SQLITE_PERM; /* Cursor not open for writing */
+ }
+ if( checkReadLocks(pCur->pBtree, pCur->pgnoRoot, pCur) ){
+ return SQLITE_LOCKED; /* The table pCur points to has a read lock */
+ }
+ if( pCur->eState==CURSOR_FAULT ){
+ return pCur->skip;
+ }
+
+ /* Save the positions of any other cursors open on this table */
+ clearCursorPosition(pCur);
+ if(
+ SQLITE_OK!=(rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur)) ||
+ SQLITE_OK!=(rc = sqlite3BtreeMoveto(pCur, pKey, 0, nKey, appendBias, &loc))
+ ){
+ return rc;
+ }
+
+ pPage = pCur->pPage;
+ assert( pPage->intKey || nKey>=0 );
+ assert( pPage->leaf || !pPage->leafData );
+ TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
+ pCur->pgnoRoot, nKey, nData, pPage->pgno,
+ loc==0 ? "overwrite" : "new entry"));
+ assert( pPage->isInit );
+ allocateTempSpace(pBt);
+ newCell = pBt->pTmpSpace;
+ if( newCell==0 ) return SQLITE_NOMEM;
+ rc = fillInCell(pPage, newCell, pKey, nKey, pData, nData, nZero, &szNew);
+ if( rc ) goto end_insert;
+ assert( szNew==cellSizePtr(pPage, newCell) );
+ assert( szNew<=MX_CELL_SIZE(pBt) );
+ if( loc==0 && CURSOR_VALID==pCur->eState ){
+ u16 szOld;
+ assert( pCur->idx>=0 && pCur->idx<pPage->nCell );
+ rc = sqlite3PagerWrite(pPage->pDbPage);
+ if( rc ){
+ goto end_insert;
+ }
+ oldCell = findCell(pPage, pCur->idx);
+ if( !pPage->leaf ){
+ memcpy(newCell, oldCell, 4);
+ }
+ szOld = cellSizePtr(pPage, oldCell);
+ rc = clearCell(pPage, oldCell);
+ if( rc ) goto end_insert;
+ dropCell(pPage, pCur->idx, szOld);
+ }else if( loc<0 && pPage->nCell>0 ){
+ assert( pPage->leaf );
+ pCur->idx++;
+ pCur->info.nSize = 0;
+ pCur->validNKey = 0;
+ }else{
+ assert( pPage->leaf );
+ }
+ rc = insertCell(pPage, pCur->idx, newCell, szNew, 0, 0);
+ if( rc!=SQLITE_OK ) goto end_insert;
+ rc = balance(pPage, 1);
+ /* sqlite3BtreePageDump(pCur->pBt, pCur->pgnoRoot, 1); */
+ /* fflush(stdout); */
+ if( rc==SQLITE_OK ){
+ moveToRoot(pCur);
+ }
+end_insert:
+ return rc;
+}
+
+/*
+** Delete the entry that the cursor is pointing to. The cursor
+** is left pointing at a random location.
+*/
+SQLITE_PRIVATE int sqlite3BtreeDelete(BtCursor *pCur){
+ MemPage *pPage = pCur->pPage;
+ unsigned char *pCell;
+ int rc;
+ Pgno pgnoChild = 0;
+ Btree *p = pCur->pBtree;
+ BtShared *pBt = p->pBt;
+
+ assert( cursorHoldsMutex(pCur) );
+ assert( pPage->isInit );
+ if( pBt->inTransaction!=TRANS_WRITE ){
+ /* Must start a transaction before doing a delete */
+ rc = pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
+ return rc;
+ }
+ assert( !pBt->readOnly );
+ if( pCur->eState==CURSOR_FAULT ){
+ return pCur->skip;
+ }
+ if( pCur->idx >= pPage->nCell ){
+ return SQLITE_ERROR; /* The cursor is not pointing to anything */
+ }
+ if( !pCur->wrFlag ){
+ return SQLITE_PERM; /* Did not open this cursor for writing */
+ }
+ if( checkReadLocks(pCur->pBtree, pCur->pgnoRoot, pCur) ){
+ return SQLITE_LOCKED; /* The table pCur points to has a read lock */
+ }
+
+ /* Restore the current cursor position (a no-op if the cursor is not in
+ ** CURSOR_REQUIRESEEK state) and save the positions of any other cursors
+ ** open on the same table. Then call sqlite3PagerWrite() on the page
+ ** that the entry will be deleted from.
+ */
+ if(
+ (rc = restoreOrClearCursorPosition(pCur))!=0 ||
+ (rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur))!=0 ||
+ (rc = sqlite3PagerWrite(pPage->pDbPage))!=0
+ ){
+ return rc;
+ }
+
+ /* Locate the cell within its page and leave pCell pointing to the
+ ** data. The clearCell() call frees any overflow pages associated with the
+ ** cell. The cell itself is still intact.
+ */
+ pCell = findCell(pPage, pCur->idx);
+ if( !pPage->leaf ){
+ pgnoChild = get4byte(pCell);
+ }
+ rc = clearCell(pPage, pCell);
+ if( rc ){
+ return rc;
+ }
+
+ if( !pPage->leaf ){
+ /*
+ ** The entry we are about to delete is not a leaf so if we do not
+ ** do something we will leave a hole on an internal page.
+ ** We have to fill the hole by moving in a cell from a leaf. The
+ ** next Cell after the one to be deleted is guaranteed to exist and
+ ** to be a leaf so we can use it.
+ */
+ BtCursor leafCur;
+ unsigned char *pNext;
+ int notUsed;
+ unsigned char *tempCell = 0;
+ assert( !pPage->leafData );
+ sqlite3BtreeGetTempCursor(pCur, &leafCur);
+ rc = sqlite3BtreeNext(&leafCur, &notUsed);
+ if( rc==SQLITE_OK ){
+ rc = sqlite3PagerWrite(leafCur.pPage->pDbPage);
+ }
+ if( rc==SQLITE_OK ){
+ u16 szNext;
+ TRACE(("DELETE: table=%d delete internal from %d replace from leaf %d\n",
+ pCur->pgnoRoot, pPage->pgno, leafCur.pPage->pgno));
+ dropCell(pPage, pCur->idx, cellSizePtr(pPage, pCell));
+ pNext = findCell(leafCur.pPage, leafCur.idx);
+ szNext = cellSizePtr(leafCur.pPage, pNext);
+ assert( MX_CELL_SIZE(pBt)>=szNext+4 );
+ allocateTempSpace(pBt);
+ tempCell = pBt->pTmpSpace;
+ if( tempCell==0 ){
+ rc = SQLITE_NOMEM;
+ }
+ if( rc==SQLITE_OK ){
+ rc = insertCell(pPage, pCur->idx, pNext-4, szNext+4, tempCell, 0);
+ }
+ if( rc==SQLITE_OK ){
+ put4byte(findOverflowCell(pPage, pCur->idx), pgnoChild);
+ rc = balance(pPage, 0);
+ }
+ if( rc==SQLITE_OK ){
+ dropCell(leafCur.pPage, leafCur.idx, szNext);
+ rc = balance(leafCur.pPage, 0);
+ }
+ }
+ sqlite3BtreeReleaseTempCursor(&leafCur);
+ }else{
+ TRACE(("DELETE: table=%d delete from leaf %d\n",
+ pCur->pgnoRoot, pPage->pgno));
+ dropCell(pPage, pCur->idx, cellSizePtr(pPage, pCell));
+ rc = balance(pPage, 0);
+ }
+ if( rc==SQLITE_OK ){
+ moveToRoot(pCur);
+ }
+ return rc;
+}
+
+/*
+** Create a new BTree table. Write into *piTable the page
+** number for the root page of the new table.
+**
+** The type of type is determined by the flags parameter. Only the
+** following values of flags are currently in use. Other values for
+** flags might not work:
+**
+** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys
+** BTREE_ZERODATA Used for SQL indices
+*/
+static int btreeCreateTable(Btree *p, int *piTable, int flags){
+ BtShared *pBt = p->pBt;
+ MemPage *pRoot;
+ Pgno pgnoRoot;
+ int rc;
+
+ assert( sqlite3BtreeHoldsMutex(p) );
+ if( pBt->inTransaction!=TRANS_WRITE ){
+ /* Must start a transaction first */
+ rc = pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
+ return rc;
+ }
+ assert( !pBt->readOnly );
+
+#ifdef SQLITE_OMIT_AUTOVACUUM
+ rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
+ if( rc ){
+ return rc;
+ }
+#else
+ if( pBt->autoVacuum ){
+ Pgno pgnoMove; /* Move a page here to make room for the root-page */
+ MemPage *pPageMove; /* The page to move to. */
+
+ /* Creating a new table may probably require moving an existing database
+ ** to make room for the new tables root page. In case this page turns
+ ** out to be an overflow page, delete all overflow page-map caches
+ ** held by open cursors.
+ */
+ invalidateAllOverflowCache(pBt);
+
+ /* Read the value of meta[3] from the database to determine where the
+ ** root page of the new table should go. meta[3] is the largest root-page
+ ** created so far, so the new root-page is (meta[3]+1).
+ */
+ rc = sqlite3BtreeGetMeta(p, 4, &pgnoRoot);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ pgnoRoot++;
+
+ /* The new root-page may not be allocated on a pointer-map page, or the
+ ** PENDING_BYTE page.
+ */
+ while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
+ pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
+ pgnoRoot++;
+ }
+ assert( pgnoRoot>=3 );
+
+ /* Allocate a page. The page that currently resides at pgnoRoot will
+ ** be moved to the allocated page (unless the allocated page happens
+ ** to reside at pgnoRoot).
+ */
+ rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, 1);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+
+ if( pgnoMove!=pgnoRoot ){
+ /* pgnoRoot is the page that will be used for the root-page of
+ ** the new table (assuming an error did not occur). But we were
+ ** allocated pgnoMove. If required (i.e. if it was not allocated
+ ** by extending the file), the current page at position pgnoMove
+ ** is already journaled.
+ */
+ u8 eType;
+ Pgno iPtrPage;
+
+ releasePage(pPageMove);
+
+ /* Move the page currently at pgnoRoot to pgnoMove. */
+ rc = sqlite3BtreeGetPage(pBt, pgnoRoot, &pRoot, 0);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
+ if( rc!=SQLITE_OK || eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
+ releasePage(pRoot);
+ return rc;
+ }
+ assert( eType!=PTRMAP_ROOTPAGE );
+ assert( eType!=PTRMAP_FREEPAGE );
+ rc = sqlite3PagerWrite(pRoot->pDbPage);
+ if( rc!=SQLITE_OK ){
+ releasePage(pRoot);
+ return rc;
+ }
+ rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove);
+ releasePage(pRoot);
+
+ /* Obtain the page at pgnoRoot */
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ rc = sqlite3BtreeGetPage(pBt, pgnoRoot, &pRoot, 0);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ rc = sqlite3PagerWrite(pRoot->pDbPage);
+ if( rc!=SQLITE_OK ){
+ releasePage(pRoot);
+ return rc;
+ }
+ }else{
+ pRoot = pPageMove;
+ }
+
+ /* Update the pointer-map and meta-data with the new root-page number. */
+ rc = ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0);
+ if( rc ){
+ releasePage(pRoot);
+ return rc;
+ }
+ rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
+ if( rc ){
+ releasePage(pRoot);
+ return rc;
+ }
+
+ }else{
+ rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
+ if( rc ) return rc;
+ }
+#endif
+ assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
+ zeroPage(pRoot, flags | PTF_LEAF);
+ sqlite3PagerUnref(pRoot->pDbPage);
+ *piTable = (int)pgnoRoot;
+ return SQLITE_OK;
+}
+SQLITE_PRIVATE int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){
+ int rc;
+ sqlite3BtreeEnter(p);
+ p->pBt->db = p->db;
+ rc = btreeCreateTable(p, piTable, flags);
+ sqlite3BtreeLeave(p);
+ return rc;
+}
+
+/*
+** Erase the given database page and all its children. Return
+** the page to the freelist.
+*/
+static int clearDatabasePage(
+ BtShared *pBt, /* The BTree that contains the table */
+ Pgno pgno, /* Page number to clear */
+ MemPage *pParent, /* Parent page. NULL for the root */
+ int freePageFlag /* Deallocate page if true */
+){
+ MemPage *pPage = 0;
+ int rc;
+ unsigned char *pCell;
+ int i;
+
+ assert( sqlite3_mutex_held(pBt->mutex) );
+ if( pgno>sqlite3PagerPagecount(pBt->pPager) ){
+ return SQLITE_CORRUPT_BKPT;
+ }
+
+ rc = getAndInitPage(pBt, pgno, &pPage, pParent);
+ if( rc ) goto cleardatabasepage_out;
+ for(i=0; i<pPage->nCell; i++){
+ pCell = findCell(pPage, i);
+ if( !pPage->leaf ){
+ rc = clearDatabasePage(pBt, get4byte(pCell), pPage->pParent, 1);
+ if( rc ) goto cleardatabasepage_out;
+ }
+ rc = clearCell(pPage, pCell);
+ if( rc ) goto cleardatabasepage_out;
+ }
+ if( !pPage->leaf ){
+ rc = clearDatabasePage(pBt, get4byte(&pPage->aData[8]), pPage->pParent, 1);
+ if( rc ) goto cleardatabasepage_out;
+ }
+ if( freePageFlag ){
+ rc = freePage(pPage);
+ }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
+ zeroPage(pPage, pPage->aData[0] | PTF_LEAF);
+ }
+
+cleardatabasepage_out:
+ releasePage(pPage);
+ return rc;
+}
+
+/*
+** Delete all information from a single table in the database. iTable is
+** the page number of the root of the table. After this routine returns,
+** the root page is empty, but still exists.
+**
+** This routine will fail with SQLITE_LOCKED if there are any open
+** read cursors on the table. Open write cursors are moved to the
+** root of the table.
+*/
+SQLITE_PRIVATE int sqlite3BtreeClearTable(Btree *p, int iTable){
+ int rc;
+ BtShared *pBt = p->pBt;
+ sqlite3BtreeEnter(p);
+ pBt->db = p->db;
+ if( p->inTrans!=TRANS_WRITE ){
+ rc = pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
+ }else if( (rc = checkReadLocks(p, iTable, 0))!=SQLITE_OK ){
+ /* nothing to do */
+ }else if( SQLITE_OK!=(rc = saveAllCursors(pBt, iTable, 0)) ){
+ /* nothing to do */
+ }else{
+ rc = clearDatabasePage(pBt, (Pgno)iTable, 0, 0);
+ }
+ sqlite3BtreeLeave(p);
+ return rc;
+}
+
+/*
+** Erase all information in a table and add the root of the table to
+** the freelist. Except, the root of the principle table (the one on
+** page 1) is never added to the freelist.
+**
+** This routine will fail with SQLITE_LOCKED if there are any open
+** cursors on the table.
+**
+** If AUTOVACUUM is enabled and the page at iTable is not the last
+** root page in the database file, then the last root page
+** in the database file is moved into the slot formerly occupied by
+** iTable and that last slot formerly occupied by the last root page
+** is added to the freelist instead of iTable. In this say, all
+** root pages are kept at the beginning of the database file, which
+** is necessary for AUTOVACUUM to work right. *piMoved is set to the
+** page number that used to be the last root page in the file before
+** the move. If no page gets moved, *piMoved is set to 0.
+** The last root page is recorded in meta[3] and the value of
+** meta[3] is updated by this procedure.
+*/
+static int btreeDropTable(Btree *p, int iTable, int *piMoved){
+ int rc;
+ MemPage *pPage = 0;
+ BtShared *pBt = p->pBt;
+
+ assert( sqlite3BtreeHoldsMutex(p) );
+ if( p->inTrans!=TRANS_WRITE ){
+ return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
+ }
+
+ /* It is illegal to drop a table if any cursors are open on the
+ ** database. This is because in auto-vacuum mode the backend may
+ ** need to move another root-page to fill a gap left by the deleted
+ ** root page. If an open cursor was using this page a problem would
+ ** occur.
+ */
+ if( pBt->pCursor ){
+ return SQLITE_LOCKED;
+ }
+
+ rc = sqlite3BtreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
+ if( rc ) return rc;
+ rc = sqlite3BtreeClearTable(p, iTable);
+ if( rc ){
+ releasePage(pPage);
+ return rc;
+ }
+
+ *piMoved = 0;
+
+ if( iTable>1 ){
+#ifdef SQLITE_OMIT_AUTOVACUUM
+ rc = freePage(pPage);
+ releasePage(pPage);
+#else
+ if( pBt->autoVacuum ){
+ Pgno maxRootPgno;
+ rc = sqlite3BtreeGetMeta(p, 4, &maxRootPgno);
+ if( rc!=SQLITE_OK ){
+ releasePage(pPage);
+ return rc;
+ }
+
+ if( iTable==maxRootPgno ){
+ /* If the table being dropped is the table with the largest root-page
+ ** number in the database, put the root page on the free list.
+ */
+ rc = freePage(pPage);
+ releasePage(pPage);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ }else{
+ /* The table being dropped does not have the largest root-page
+ ** number in the database. So move the page that does into the
+ ** gap left by the deleted root-page.
+ */
+ MemPage *pMove;
+ releasePage(pPage);
+ rc = sqlite3BtreeGetPage(pBt, maxRootPgno, &pMove, 0);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable);
+ releasePage(pMove);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ rc = sqlite3BtreeGetPage(pBt, maxRootPgno, &pMove, 0);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ rc = freePage(pMove);
+ releasePage(pMove);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ *piMoved = maxRootPgno;
+ }
+
+ /* Set the new 'max-root-page' value in the database header. This
+ ** is the old value less one, less one more if that happens to
+ ** be a root-page number, less one again if that is the
+ ** PENDING_BYTE_PAGE.
+ */
+ maxRootPgno--;
+ if( maxRootPgno==PENDING_BYTE_PAGE(pBt) ){
+ maxRootPgno--;
+ }
+ if( maxRootPgno==PTRMAP_PAGENO(pBt, maxRootPgno) ){
+ maxRootPgno--;
+ }
+ assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
+
+ rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
+ }else{
+ rc = freePage(pPage);
+ releasePage(pPage);
+ }
+#endif
+ }else{
+ /* If sqlite3BtreeDropTable was called on page 1. */
+ zeroPage(pPage, PTF_INTKEY|PTF_LEAF );
+ releasePage(pPage);
+ }
+ return rc;
+}
+SQLITE_PRIVATE int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
+ int rc;
+ sqlite3BtreeEnter(p);
+ p->pBt->db = p->db;
+ rc = btreeDropTable(p, iTable, piMoved);
+ sqlite3BtreeLeave(p);
+ return rc;
+}
+
+
+/*
+** Read the meta-information out of a database file. Meta[0]
+** is the number of free pages currently in the database. Meta[1]
+** through meta[15] are available for use by higher layers. Meta[0]
+** is read-only, the others are read/write.
+**
+** The schema layer numbers meta values differently. At the schema
+** layer (and the SetCookie and ReadCookie opcodes) the number of
+** free pages is not visible. So Cookie[0] is the same as Meta[1].
+*/
+SQLITE_PRIVATE int sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
+ DbPage *pDbPage;
+ int rc;
+ unsigned char *pP1;
+ BtShared *pBt = p->pBt;
+
+ sqlite3BtreeEnter(p);
+ pBt->db = p->db;
+
+ /* Reading a meta-data value requires a read-lock on page 1 (and hence
+ ** the sqlite_master table. We grab this lock regardless of whether or
+ ** not the SQLITE_ReadUncommitted flag is set (the table rooted at page
+ ** 1 is treated as a special case by queryTableLock() and lockTable()).
+ */
+ rc = queryTableLock(p, 1, READ_LOCK);
+ if( rc!=SQLITE_OK ){
+ sqlite3BtreeLeave(p);
+ return rc;
+ }
+
+ assert( idx>=0 && idx<=15 );
+ rc = sqlite3PagerGet(pBt->pPager, 1, &pDbPage);
+ if( rc ){
+ sqlite3BtreeLeave(p);
+ return rc;
+ }
+ pP1 = (unsigned char *)sqlite3PagerGetData(pDbPage);
+ *pMeta = get4byte(&pP1[36 + idx*4]);
+ sqlite3PagerUnref(pDbPage);
+
+ /* If autovacuumed is disabled in this build but we are trying to
+ ** access an autovacuumed database, then make the database readonly.
+ */
+#ifdef SQLITE_OMIT_AUTOVACUUM
+ if( idx==4 && *pMeta>0 ) pBt->readOnly = 1;
+#endif
+
+ /* Grab the read-lock on page 1. */
+ rc = lockTable(p, 1, READ_LOCK);
+ sqlite3BtreeLeave(p);
+ return rc;
+}
+
+/*
+** Write meta-information back into the database. Meta[0] is
+** read-only and may not be written.
+*/
+SQLITE_PRIVATE int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
+ BtShared *pBt = p->pBt;
+ unsigned char *pP1;
+ int rc;
+ assert( idx>=1 && idx<=15 );
+ sqlite3BtreeEnter(p);
+ pBt->db = p->db;
+ if( p->inTrans!=TRANS_WRITE ){
+ rc = pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
+ }else{
+ assert( pBt->pPage1!=0 );
+ pP1 = pBt->pPage1->aData;
+ rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
+ if( rc==SQLITE_OK ){
+ put4byte(&pP1[36 + idx*4], iMeta);
+#ifndef SQLITE_OMIT_AUTOVACUUM
+ if( idx==7 ){
+ assert( pBt->autoVacuum || iMeta==0 );
+ assert( iMeta==0 || iMeta==1 );
+ pBt->incrVacuum = iMeta;
+ }
+#endif
+ }
+ }
+ sqlite3BtreeLeave(p);
+ return rc;
+}
+
+/*
+** Return the flag byte at the beginning of the page that the cursor
+** is currently pointing to.
+*/
+SQLITE_PRIVATE int sqlite3BtreeFlags(BtCursor *pCur){
+ /* TODO: What about CURSOR_REQUIRESEEK state? Probably need to call
+ ** restoreOrClearCursorPosition() here.
+ */
+ MemPage *pPage;
+ restoreOrClearCursorPosition(pCur);
+ pPage = pCur->pPage;
+ assert( cursorHoldsMutex(pCur) );
+ assert( pPage->pBt==pCur->pBt );
+ return pPage ? pPage->aData[pPage->hdrOffset] : 0;
+}
+
+
+/*
+** Return the pager associated with a BTree. This routine is used for
+** testing and debugging only.
+*/
+SQLITE_PRIVATE Pager *sqlite3BtreePager(Btree *p){
+ return p->pBt->pPager;
+}
+
+#ifndef SQLITE_OMIT_INTEGRITY_CHECK
+/*
+** Append a message to the error message string.
+*/
+static void checkAppendMsg(
+ IntegrityCk *pCheck,
+ char *zMsg1,
+ const char *zFormat,
+ ...
+){
+ va_list ap;
+ char *zMsg2;
+ if( !pCheck->mxErr ) return;
+ pCheck->mxErr--;
+ pCheck->nErr++;
+ va_start(ap, zFormat);
+ zMsg2 = sqlite3VMPrintf(0, zFormat, ap);
+ va_end(ap);
+ if( zMsg1==0 ) zMsg1 = "";
+ if( pCheck->zErrMsg ){
+ char *zOld = pCheck->zErrMsg;
+ pCheck->zErrMsg = 0;
+ sqlite3SetString(&pCheck->zErrMsg, zOld, "\n", zMsg1, zMsg2, (char*)0);
+ sqlite3_free(zOld);
+ }else{
+ sqlite3SetString(&pCheck->zErrMsg, zMsg1, zMsg2, (char*)0);
+ }
+ sqlite3_free(zMsg2);
+}
+#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
+
+#ifndef SQLITE_OMIT_INTEGRITY_CHECK
+/*
+** Add 1 to the reference count for page iPage. If this is the second
+** reference to the page, add an error message to pCheck->zErrMsg.
+** Return 1 if there are 2 ore more references to the page and 0 if
+** if this is the first reference to the page.
+**
+** Also check that the page number is in bounds.
+*/
+static int checkRef(IntegrityCk *pCheck, int iPage, char *zContext){
+ if( iPage==0 ) return 1;
+ if( iPage>pCheck->nPage || iPage<0 ){
+ checkAppendMsg(pCheck, zContext, "invalid page number %d", iPage);
+ return 1;
+ }
+ if( pCheck->anRef[iPage]==1 ){
+ checkAppendMsg(pCheck, zContext, "2nd reference to page %d", iPage);
+ return 1;
+ }
+ return (pCheck->anRef[iPage]++)>1;
+}
+
+#ifndef SQLITE_OMIT_AUTOVACUUM
+/*
+** Check that the entry in the pointer-map for page iChild maps to
+** page iParent, pointer type ptrType. If not, append an error message
+** to pCheck.
+*/
+static void checkPtrmap(
+ IntegrityCk *pCheck, /* Integrity check context */
+ Pgno iChild, /* Child page number */
+ u8 eType, /* Expected pointer map type */
+ Pgno iParent, /* Expected pointer map parent page number */
+ char *zContext /* Context description (used for error msg) */
+){
+ int rc;
+ u8 ePtrmapType;
+ Pgno iPtrmapParent;
+
+ rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
+ if( rc!=SQLITE_OK ){
+ checkAppendMsg(pCheck, zContext, "Failed to read ptrmap key=%d", iChild);
+ return;
+ }
+
+ if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
+ checkAppendMsg(pCheck, zContext,
+ "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
+ iChild, eType, iParent, ePtrmapType, iPtrmapParent);
+ }
+}
+#endif
+
+/*
+** Check the integrity of the freelist or of an overflow page list.
+** Verify that the number of pages on the list is N.
+*/
+static void checkList(
+ IntegrityCk *pCheck, /* Integrity checking context */
+ int isFreeList, /* True for a freelist. False for overflow page list */
+ int iPage, /* Page number for first page in the list */
+ int N, /* Expected number of pages in the list */
+ char *zContext /* Context for error messages */
+){
+ int i;
+ int expected = N;
+ int iFirst = iPage;
+ while( N-- > 0 && pCheck->mxErr ){
+ DbPage *pOvflPage;
+ unsigned char *pOvflData;
+ if( iPage<1 ){
+ checkAppendMsg(pCheck, zContext,
+ "%d of %d pages missing from overflow list starting at %d",
+ N+1, expected, iFirst);
+ break;
+ }
+ if( checkRef(pCheck, iPage, zContext) ) break;
+ if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage) ){
+ checkAppendMsg(pCheck, zContext, "failed to get page %d", iPage);
+ break;
+ }
+ pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
+ if( isFreeList ){
+ int n = get4byte(&pOvflData[4]);
+#ifndef SQLITE_OMIT_AUTOVACUUM
+ if( pCheck->pBt->autoVacuum ){
+ checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0, zContext);
+ }
+#endif
+ if( n>pCheck->pBt->usableSize/4-8 ){
+ checkAppendMsg(pCheck, zContext,
+ "freelist leaf count too big on page %d", iPage);
+ N--;
+ }else{
+ for(i=0; i<n; i++){
+ Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
+#ifndef SQLITE_OMIT_AUTOVACUUM
+ if( pCheck->pBt->autoVacuum ){
+ checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0, zContext);
+ }
+#endif
+ checkRef(pCheck, iFreePage, zContext);
+ }
+ N -= n;
+ }
+ }
+#ifndef SQLITE_OMIT_AUTOVACUUM
+ else{
+ /* If this database supports auto-vacuum and iPage is not the last
+ ** page in this overflow list, check that the pointer-map entry for
+ ** the following page matches iPage.
+ */
+ if( pCheck->pBt->autoVacuum && N>0 ){
+ i = get4byte(pOvflData);
+ checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage, zContext);
+ }
+ }
+#endif
+ iPage = get4byte(pOvflData);
+ sqlite3PagerUnref(pOvflPage);
+ }
+}
+#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
+
+#ifndef SQLITE_OMIT_INTEGRITY_CHECK
+/*
+** Do various sanity checks on a single page of a tree. Return
+** the tree depth. Root pages return 0. Parents of root pages
+** return 1, and so forth.
+**
+** These checks are done:
+**
+** 1. Make sure that cells and freeblocks do not overlap
+** but combine to completely cover the page.
+** NO 2. Make sure cell keys are in order.
+** NO 3. Make sure no key is less than or equal to zLowerBound.
+** NO 4. Make sure no key is greater than or equal to zUpperBound.
+** 5. Check the integrity of overflow pages.
+** 6. Recursively call checkTreePage on all children.
+** 7. Verify that the depth of all children is the same.
+** 8. Make sure this page is at least 33% full or else it is
+** the root of the tree.
+*/
+static int checkTreePage(
+ IntegrityCk *pCheck, /* Context for the sanity check */
+ int iPage, /* Page number of the page to check */
+ MemPage *pParent, /* Parent page */
+ char *zParentContext /* Parent context */
+){
+ MemPage *pPage;
+ int i, rc, depth, d2, pgno, cnt;
+ int hdr, cellStart;
+ int nCell;
+ u8 *data;
+ BtShared *pBt;
+ int usableSize;
+ char zContext[100];
+ char *hit;
+
+ sqlite3_snprintf(sizeof(zContext), zContext, "Page %d: ", iPage);
+
+ /* Check that the page exists
+ */
+ pBt = pCheck->pBt;
+ usableSize = pBt->usableSize;
+ if( iPage==0 ) return 0;
+ if( checkRef(pCheck, iPage, zParentContext) ) return 0;
+ if( (rc = sqlite3BtreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){
+ checkAppendMsg(pCheck, zContext,
+ "unable to get the page. error code=%d", rc);
+ return 0;
+ }
+ if( (rc = sqlite3BtreeInitPage(pPage, pParent))!=0 ){
+ checkAppendMsg(pCheck, zContext,
+ "sqlite3BtreeInitPage() returns error code %d", rc);
+ releasePage(pPage);
+ return 0;
+ }
+
+ /* Check out all the cells.
+ */
+ depth = 0;
+ for(i=0; i<pPage->nCell && pCheck->mxErr; i++){
+ u8 *pCell;
+ int sz;
+ CellInfo info;
+
+ /* Check payload overflow pages
+ */
+ sqlite3_snprintf(sizeof(zContext), zContext,
+ "On tree page %d cell %d: ", iPage, i);
+ pCell = findCell(pPage,i);
+ sqlite3BtreeParseCellPtr(pPage, pCell, &info);
+ sz = info.nData;
+ if( !pPage->intKey ) sz += info.nKey;
+ assert( sz==info.nPayload );
+ if( sz>info.nLocal ){
+ int nPage = (sz - info.nLocal + usableSize - 5)/(usableSize - 4);
+ Pgno pgnoOvfl = get4byte(&pCell[info.iOverflow]);
+#ifndef SQLITE_OMIT_AUTOVACUUM
+ if( pBt->autoVacuum ){
+ checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage, zContext);
+ }
+#endif
+ checkList(pCheck, 0, pgnoOvfl, nPage, zContext);
+ }
+
+ /* Check sanity of left child page.
+ */
+ if( !pPage->leaf ){
+ pgno = get4byte(pCell);
+#ifndef SQLITE_OMIT_AUTOVACUUM
+ if( pBt->autoVacuum ){
+ checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, zContext);
+ }
+#endif
+ d2 = checkTreePage(pCheck,pgno,pPage,zContext);
+ if( i>0 && d2!=depth ){
+ checkAppendMsg(pCheck, zContext, "Child page depth differs");
+ }
+ depth = d2;
+ }
+ }
+ if( !pPage->leaf ){
+ pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
+ sqlite3_snprintf(sizeof(zContext), zContext,
+ "On page %d at right child: ", iPage);
+#ifndef SQLITE_OMIT_AUTOVACUUM
+ if( pBt->autoVacuum ){
+ checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, 0);
+ }
+#endif
+ checkTreePage(pCheck, pgno, pPage, zContext);
+ }
+
+ /* Check for complete coverage of the page
+ */
+ data = pPage->aData;
+ hdr = pPage->hdrOffset;
+ hit = sqlite3MallocZero( usableSize );
+ if( hit ){
+ memset(hit, 1, get2byte(&data[hdr+5]));
+ nCell = get2byte(&data[hdr+3]);
+ cellStart = hdr + 12 - 4*pPage->leaf;
+ for(i=0; i<nCell; i++){
+ int pc = get2byte(&data[cellStart+i*2]);
+ u16 size = cellSizePtr(pPage, &data[pc]);
+ int j;
+ if( (pc+size-1)>=usableSize || pc<0 ){
+ checkAppendMsg(pCheck, 0,
+ "Corruption detected in cell %d on page %d",i,iPage,0);
+ }else{
+ for(j=pc+size-1; j>=pc; j--) hit[j]++;
+ }
+ }
+ for(cnt=0, i=get2byte(&data[hdr+1]); i>0 && i<usableSize && cnt<10000;
+ cnt++){
+ int size = get2byte(&data[i+2]);
+ int j;
+ if( (i+size-1)>=usableSize || i<0 ){
+ checkAppendMsg(pCheck, 0,
+ "Corruption detected in cell %d on page %d",i,iPage,0);
+ }else{
+ for(j=i+size-1; j>=i; j--) hit[j]++;
+ }
+ i = get2byte(&data[i]);
+ }
+ for(i=cnt=0; i<usableSize; i++){
+ if( hit[i]==0 ){
+ cnt++;
+ }else if( hit[i]>1 ){
+ checkAppendMsg(pCheck, 0,
+ "Multiple uses for byte %d of page %d", i, iPage);
+ break;
+ }
+ }
+ if( cnt!=data[hdr+7] ){
+ checkAppendMsg(pCheck, 0,
+ "Fragmented space is %d byte reported as %d on page %d",
+ cnt, data[hdr+7], iPage);
+ }
+ }
+ sqlite3_free(hit);
+
+ releasePage(pPage);
+ return depth+1;
+}
+#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
+
+#ifndef SQLITE_OMIT_INTEGRITY_CHECK
+/*
+** This routine does a complete check of the given BTree file. aRoot[] is
+** an array of pages numbers were each page number is the root page of
+** a table. nRoot is the number of entries in aRoot.
+**
+** If everything checks out, this routine returns NULL. If something is
+** amiss, an error message is written into memory obtained from malloc()
+** and a pointer to that error message is returned. The calling function
+** is responsible for freeing the error message when it is done.
+*/
+SQLITE_PRIVATE char *sqlite3BtreeIntegrityCheck(
+ Btree *p, /* The btree to be checked */
+ int *aRoot, /* An array of root pages numbers for individual trees */
+ int nRoot, /* Number of entries in aRoot[] */
+ int mxErr, /* Stop reporting errors after this many */
+ int *pnErr /* Write number of errors seen to this variable */
+){
+ int i;
+ int nRef;
+ IntegrityCk sCheck;
+ BtShared *pBt = p->pBt;
+
+ sqlite3BtreeEnter(p);
+ pBt->db = p->db;
+ nRef = sqlite3PagerRefcount(pBt->pPager);
+ if( lockBtreeWithRetry(p)!=SQLITE_OK ){
+ sqlite3BtreeLeave(p);
+ return sqlite3StrDup("Unable to acquire a read lock on the database");
+ }
+ sCheck.pBt = pBt;
+ sCheck.pPager = pBt->pPager;
+ sCheck.nPage = sqlite3PagerPagecount(sCheck.pPager);
+ sCheck.mxErr = mxErr;
+ sCheck.nErr = 0;
+ *pnErr = 0;
+#ifndef SQLITE_OMIT_AUTOVACUUM
+ if( pBt->nTrunc!=0 ){
+ sCheck.nPage = pBt->nTrunc;
+ }
+#endif
+ if( sCheck.nPage==0 ){
+ unlockBtreeIfUnused(pBt);
+ sqlite3BtreeLeave(p);
+ return 0;
+ }
+ sCheck.anRef = sqlite3_malloc( (sCheck.nPage+1)*sizeof(sCheck.anRef[0]) );
+ if( !sCheck.anRef ){
+ unlockBtreeIfUnused(pBt);
+ *pnErr = 1;
+ sqlite3BtreeLeave(p);
+ return sqlite3MPrintf(p->db, "Unable to malloc %d bytes",
+ (sCheck.nPage+1)*sizeof(sCheck.anRef[0]));
+ }
+ for(i=0; i<=sCheck.nPage; i++){ sCheck.anRef[i] = 0; }
+ i = PENDING_BYTE_PAGE(pBt);
+ if( i<=sCheck.nPage ){
+ sCheck.anRef[i] = 1;
+ }
+ sCheck.zErrMsg = 0;
+
+ /* Check the integrity of the freelist
+ */
+ checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
+ get4byte(&pBt->pPage1->aData[36]), "Main freelist: ");
+
+ /* Check all the tables.
+ */
+ for(i=0; i<nRoot && sCheck.mxErr; i++){
+ if( aRoot[i]==0 ) continue;
+#ifndef SQLITE_OMIT_AUTOVACUUM
+ if( pBt->autoVacuum && aRoot[i]>1 ){
+ checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0, 0);
+ }
+#endif
+ checkTreePage(&sCheck, aRoot[i], 0, "List of tree roots: ");
+ }
+
+ /* Make sure every page in the file is referenced
+ */
+ for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
+#ifdef SQLITE_OMIT_AUTOVACUUM
+ if( sCheck.anRef[i]==0 ){
+ checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
+ }
+#else
+ /* If the database supports auto-vacuum, make sure no tables contain
+ ** references to pointer-map pages.
+ */
+ if( sCheck.anRef[i]==0 &&
+ (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
+ checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
+ }
+ if( sCheck.anRef[i]!=0 &&
+ (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
+ checkAppendMsg(&sCheck, 0, "Pointer map page %d is referenced", i);
+ }
+#endif
+ }
+
+ /* Make sure this analysis did not leave any unref() pages
+ */
+ unlockBtreeIfUnused(pBt);
+ if( nRef != sqlite3PagerRefcount(pBt->pPager) ){
+ checkAppendMsg(&sCheck, 0,
+ "Outstanding page count goes from %d to %d during this analysis",
+ nRef, sqlite3PagerRefcount(pBt->pPager)
+ );
+ }
+
+ /* Clean up and report errors.
+ */
+ sqlite3BtreeLeave(p);
+ sqlite3_free(sCheck.anRef);
+ *pnErr = sCheck.nErr;
+ return sCheck.zErrMsg;
+}
+#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
+
+/*
+** Return the full pathname of the underlying database file.
+**
+** The pager filename is invariant as long as the pager is
+** open so it is safe to access without the BtShared mutex.
+*/
+SQLITE_PRIVATE const char *sqlite3BtreeGetFilename(Btree *p){
+ assert( p->pBt->pPager!=0 );
+ return sqlite3PagerFilename(p->pBt->pPager);
+}
+
+/*
+** Return the pathname of the directory that contains the database file.
+**
+** The pager directory name is invariant as long as the pager is
+** open so it is safe to access without the BtShared mutex.
+*/
+SQLITE_PRIVATE const char *sqlite3BtreeGetDirname(Btree *p){
+ assert( p->pBt->pPager!=0 );
+ return sqlite3PagerDirname(p->pBt->pPager);
+}
+
+/*
+** Return the pathname of the journal file for this database. The return
+** value of this routine is the same regardless of whether the journal file
+** has been created or not.
+**
+** The pager journal filename is invariant as long as the pager is
+** open so it is safe to access without the BtShared mutex.
+*/
+SQLITE_PRIVATE const char *sqlite3BtreeGetJournalname(Btree *p){
+ assert( p->pBt->pPager!=0 );
+ return sqlite3PagerJournalname(p->pBt->pPager);
+}
+
+#ifndef SQLITE_OMIT_VACUUM
+/*
+** Copy the complete content of pBtFrom into pBtTo. A transaction
+** must be active for both files.
+**
+** The size of file pTo may be reduced by this operation.
+** If anything goes wrong, the transaction on pTo is rolled back.
+**
+** If successful, CommitPhaseOne() may be called on pTo before returning.
+** The caller should finish committing the transaction on pTo by calling
+** sqlite3BtreeCommit().
+*/
+static int btreeCopyFile(Btree *pTo, Btree *pFrom){
+ int rc = SQLITE_OK;
+ Pgno i;
+
+ Pgno nFromPage; /* Number of pages in pFrom */
+ Pgno nToPage; /* Number of pages in pTo */
+ Pgno nNewPage; /* Number of pages in pTo after the copy */
+
+ Pgno iSkip; /* Pending byte page in pTo */
+ int nToPageSize; /* Page size of pTo in bytes */
+ int nFromPageSize; /* Page size of pFrom in bytes */
+
+ BtShared *pBtTo = pTo->pBt;
+ BtShared *pBtFrom = pFrom->pBt;
+ pBtTo->db = pTo->db;
+ pBtFrom->db = pFrom->db;
+
+ nToPageSize = pBtTo->pageSize;
+ nFromPageSize = pBtFrom->pageSize;
+
+ if( pTo->inTrans!=TRANS_WRITE || pFrom->inTrans!=TRANS_WRITE ){
+ return SQLITE_ERROR;
+ }
+ if( pBtTo->pCursor ){
+ return SQLITE_BUSY;
+ }
+
+ nToPage = sqlite3PagerPagecount(pBtTo->pPager);
+ nFromPage = sqlite3PagerPagecount(pBtFrom->pPager);
+ iSkip = PENDING_BYTE_PAGE(pBtTo);
+
+ /* Variable nNewPage is the number of pages required to store the
+ ** contents of pFrom using the current page-size of pTo.
+ */
+ nNewPage = ((i64)nFromPage * (i64)nFromPageSize + (i64)nToPageSize - 1) /
+ (i64)nToPageSize;
+
+ for(i=1; rc==SQLITE_OK && (i<=nToPage || i<=nNewPage); i++){
+
+ /* Journal the original page.
+ **
+ ** iSkip is the page number of the locking page (PENDING_BYTE_PAGE)
+ ** in database *pTo (before the copy). This page is never written
+ ** into the journal file. Unless i==iSkip or the page was not
+ ** present in pTo before the copy operation, journal page i from pTo.
+ */
+ if( i!=iSkip && i<=nToPage ){
+ DbPage *pDbPage = 0;
+ rc = sqlite3PagerGet(pBtTo->pPager, i, &pDbPage);
+ if( rc==SQLITE_OK ){
+ rc = sqlite3PagerWrite(pDbPage);
+ if( rc==SQLITE_OK && i>nFromPage ){
+ /* Yeah. It seems wierd to call DontWrite() right after Write(). But
+ ** that is because the names of those procedures do not exactly
+ ** represent what they do. Write() really means "put this page in the
+ ** rollback journal and mark it as dirty so that it will be written
+ ** to the database file later." DontWrite() undoes the second part of
+ ** that and prevents the page from being written to the database. The
+ ** page is still on the rollback journal, though. And that is the
+ ** whole point of this block: to put pages on the rollback journal.
+ */
+ sqlite3PagerDontWrite(pDbPage);
+ }
+ sqlite3PagerUnref(pDbPage);
+ }
+ }
+
+ /* Overwrite the data in page i of the target database */
+ if( rc==SQLITE_OK && i!=iSkip && i<=nNewPage ){
+
+ DbPage *pToPage = 0;
+ sqlite3_int64 iOff;
+
+ rc = sqlite3PagerGet(pBtTo->pPager, i, &pToPage);
+ if( rc==SQLITE_OK ){
+ rc = sqlite3PagerWrite(pToPage);
+ }
+
+ for(
+ iOff=(i-1)*nToPageSize;
+ rc==SQLITE_OK && iOff<i*nToPageSize;
+ iOff += nFromPageSize
+ ){
+ DbPage *pFromPage = 0;
+ Pgno iFrom = (iOff/nFromPageSize)+1;
+
+ if( iFrom==PENDING_BYTE_PAGE(pBtFrom) ){
+ continue;
+ }
+
+ rc = sqlite3PagerGet(pBtFrom->pPager, iFrom, &pFromPage);
+ if( rc==SQLITE_OK ){
+ char *zTo = sqlite3PagerGetData(pToPage);
+ char *zFrom = sqlite3PagerGetData(pFromPage);
+ int nCopy;
+
+ if( nFromPageSize>=nToPageSize ){
+ zFrom += ((i-1)*nToPageSize - ((iFrom-1)*nFromPageSize));
+ nCopy = nToPageSize;
+ }else{
+ zTo += (((iFrom-1)*nFromPageSize) - (i-1)*nToPageSize);
+ nCopy = nFromPageSize;
+ }
+
+ memcpy(zTo, zFrom, nCopy);
+ sqlite3PagerUnref(pFromPage);
+ }
+ }
+
+ if( pToPage ) sqlite3PagerUnref(pToPage);
+ }
+ }
+
+ /* If things have worked so far, the database file may need to be
+ ** truncated. The complex part is that it may need to be truncated to
+ ** a size that is not an integer multiple of nToPageSize - the current
+ ** page size used by the pager associated with B-Tree pTo.
+ **
+ ** For example, say the page-size of pTo is 2048 bytes and the original
+ ** number of pages is 5 (10 KB file). If pFrom has a page size of 1024
+ ** bytes and 9 pages, then the file needs to be truncated to 9KB.
+ */
+ if( rc==SQLITE_OK ){
+ if( nFromPageSize!=nToPageSize ){
+ sqlite3_file *pFile = sqlite3PagerFile(pBtTo->pPager);
+ i64 iSize = (i64)nFromPageSize * (i64)nFromPage;
+ i64 iNow = (i64)((nToPage>nNewPage)?nToPage:nNewPage) * (i64)nToPageSize;
+ i64 iPending = ((i64)PENDING_BYTE_PAGE(pBtTo)-1) *(i64)nToPageSize;
+
+ assert( iSize<=iNow );
+
+ /* Commit phase one syncs the journal file associated with pTo
+ ** containing the original data. It does not sync the database file
+ ** itself. After doing this it is safe to use OsTruncate() and other
+ ** file APIs on the database file directly.
+ */
+ pBtTo->db = pTo->db;
+ rc = sqlite3PagerCommitPhaseOne(pBtTo->pPager, 0, 0, 1);
+ if( iSize<iNow && rc==SQLITE_OK ){
+ rc = sqlite3OsTruncate(pFile, iSize);
+ }
+
+ /* The loop that copied data from database pFrom to pTo did not
+ ** populate the locking page of database pTo. If the page-size of
+ ** pFrom is smaller than that of pTo, this means some data will
+ ** not have been copied.
+ **
+ ** This block copies the missing data from database pFrom to pTo
+ ** using file APIs. This is safe because at this point we know that
+ ** all of the original data from pTo has been synced into the
+ ** journal file. At this point it would be safe to do anything at
+ ** all to the database file except truncate it to zero bytes.
+ */
+ if( rc==SQLITE_OK && nFromPageSize<nToPageSize && iSize>iPending){
+ i64 iOff;
+ for(
+ iOff=iPending;
+ rc==SQLITE_OK && iOff<(iPending+nToPageSize);
+ iOff += nFromPageSize
+ ){
+ DbPage *pFromPage = 0;
+ Pgno iFrom = (iOff/nFromPageSize)+1;
+
+ if( iFrom==PENDING_BYTE_PAGE(pBtFrom) || iFrom>nFromPage ){
+ continue;
+ }
+
+ rc = sqlite3PagerGet(pBtFrom->pPager, iFrom, &pFromPage);
+ if( rc==SQLITE_OK ){
+ char *zFrom = sqlite3PagerGetData(pFromPage);
+ rc = sqlite3OsWrite(pFile, zFrom, nFromPageSize, iOff);
+ sqlite3PagerUnref(pFromPage);
+ }
+ }
+ }
+
+ /* Sync the database file */
+ if( rc==SQLITE_OK ){
+ rc = sqlite3PagerSync(pBtTo->pPager);
+ }
+ }else{
+ rc = sqlite3PagerTruncate(pBtTo->pPager, nNewPage);
+ }
+ if( rc==SQLITE_OK ){
+ pBtTo->pageSizeFixed = 0;
+ }
+ }
+
+ if( rc ){
+ sqlite3BtreeRollback(pTo);
+ }
+
+ return rc;
+}
+SQLITE_PRIVATE int sqlite3BtreeCopyFile(Btree *pTo, Btree *pFrom){
+ int rc;
+ sqlite3BtreeEnter(pTo);
+ sqlite3BtreeEnter(pFrom);
+ rc = btreeCopyFile(pTo, pFrom);
+ sqlite3BtreeLeave(pFrom);
+ sqlite3BtreeLeave(pTo);
+ return rc;
+}
+
+#endif /* SQLITE_OMIT_VACUUM */
+
+/*
+** Return non-zero if a transaction is active.
+*/
+SQLITE_PRIVATE int sqlite3BtreeIsInTrans(Btree *p){
+ assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
+ return (p && (p->inTrans==TRANS_WRITE));
+}
+
+/*
+** Return non-zero if a statement transaction is active.
+*/
+SQLITE_PRIVATE int sqlite3BtreeIsInStmt(Btree *p){
+ assert( sqlite3BtreeHoldsMutex(p) );
+ return (p->pBt && p->pBt->inStmt);
+}
+
+/*
+** Return non-zero if a read (or write) transaction is active.
+*/
+SQLITE_PRIVATE int sqlite3BtreeIsInReadTrans(Btree *p){
+ assert( sqlite3_mutex_held(p->db->mutex) );
+ return (p && (p->inTrans!=TRANS_NONE));
+}
+
+/*
+** This function returns a pointer to a blob of memory associated with
+** a single shared-btree. The memory is used by client code for its own
+** purposes (for example, to store a high-level schema associated with
+** the shared-btree). The btree layer manages reference counting issues.
+**
+** The first time this is called on a shared-btree, nBytes bytes of memory
+** are allocated, zeroed, and returned to the caller. For each subsequent
+** call the nBytes parameter is ignored and a pointer to the same blob
+** of memory returned.
+**
+** Just before the shared-btree is closed, the function passed as the
+** xFree argument when the memory allocation was made is invoked on the
+** blob of allocated memory. This function should not call sqlite3_free()
+** on the memory, the btree layer does that.
+*/
+SQLITE_PRIVATE void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
+ BtShared *pBt = p->pBt;
+ sqlite3BtreeEnter(p);
+ if( !pBt->pSchema ){
+ pBt->pSchema = sqlite3MallocZero(nBytes);
+ pBt->xFreeSchema = xFree;
+ }
+ sqlite3BtreeLeave(p);
+ return pBt->pSchema;
+}
+
+/*
+** Return true if another user of the same shared btree as the argument
+** handle holds an exclusive lock on the sqlite_master table.
+*/
+SQLITE_PRIVATE int sqlite3BtreeSchemaLocked(Btree *p){
+ int rc;
+ assert( sqlite3_mutex_held(p->db->mutex) );
+ sqlite3BtreeEnter(p);
+ rc = (queryTableLock(p, MASTER_ROOT, READ_LOCK)!=SQLITE_OK);
+ sqlite3BtreeLeave(p);
+ return rc;
+}
+
+
+#ifndef SQLITE_OMIT_SHARED_CACHE
+/*
+** Obtain a lock on the table whose root page is iTab. The
+** lock is a write lock if isWritelock is true or a read lock
+** if it is false.
+*/
+SQLITE_PRIVATE int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
+ int rc = SQLITE_OK;
+ if( p->sharable ){
+ u8 lockType = READ_LOCK + isWriteLock;
+ assert( READ_LOCK+1==WRITE_LOCK );
+ assert( isWriteLock==0 || isWriteLock==1 );
+ sqlite3BtreeEnter(p);
+ rc = queryTableLock(p, iTab, lockType);
+ if( rc==SQLITE_OK ){
+ rc = lockTable(p, iTab, lockType);
+ }
+ sqlite3BtreeLeave(p);
+ }
+ return rc;
+}
+#endif
+
+#ifndef SQLITE_OMIT_INCRBLOB
+/*
+** Argument pCsr must be a cursor opened for writing on an
+** INTKEY table currently pointing at a valid table entry.
+** This function modifies the data stored as part of that entry.
+** Only the data content may only be modified, it is not possible
+** to change the length of the data stored.
+*/
+SQLITE_PRIVATE int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
+ assert( cursorHoldsMutex(pCsr) );
+ assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
+ assert(pCsr->isIncrblobHandle);
+ if( pCsr->eState>=CURSOR_REQUIRESEEK ){
+ if( pCsr->eState==CURSOR_FAULT ){
+ return pCsr->skip;
+ }else{
+ return SQLITE_ABORT;
+ }
+ }
+
+ /* Check some preconditions:
+ ** (a) the cursor is open for writing,
+ ** (b) there is no read-lock on the table being modified and
+ ** (c) the cursor points at a valid row of an intKey table.
+ */
+ if( !pCsr->wrFlag ){
+ return SQLITE_READONLY;
+ }
+ assert( !pCsr->pBt->readOnly
+ && pCsr->pBt->inTransaction==TRANS_WRITE );
+ if( checkReadLocks(pCsr->pBtree, pCsr->pgnoRoot, pCsr) ){
+ return SQLITE_LOCKED; /* The table pCur points to has a read lock */
+ }
+ if( pCsr->eState==CURSOR_INVALID || !pCsr->pPage->intKey ){
+ return SQLITE_ERROR;
+ }
+
+ return accessPayload(pCsr, offset, amt, (unsigned char *)z, 0, 1);
+}
+
+/*
+** Set a flag on this cursor to cache the locations of pages from the
+** overflow list for the current row. This is used by cursors opened
+** for incremental blob IO only.
+**
+** This function sets a flag only. The actual page location cache
+** (stored in BtCursor.aOverflow[]) is allocated and used by function
+** accessPayload() (the worker function for sqlite3BtreeData() and
+** sqlite3BtreePutData()).
+*/
+SQLITE_PRIVATE void sqlite3BtreeCacheOverflow(BtCursor *pCur){
+ assert( cursorHoldsMutex(pCur) );
+ assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
+ assert(!pCur->isIncrblobHandle);
+ assert(!pCur->aOverflow);
+ pCur->isIncrblobHandle = 1;
+}
+#endif
+
+/************** End of btree.c ***********************************************/
+/************** Begin file vdbefifo.c ****************************************/
+/*
+** 2005 June 16
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file implements a FIFO queue of rowids used for processing
+** UPDATE and DELETE statements.
+*/
+
+/*
+** Constants FIFOSIZE_FIRST and FIFOSIZE_MAX are the initial
+** number of entries in a fifo page and the maximum number of
+** entries in a fifo page.
+*/
+#define FIFOSIZE_FIRST (((128-sizeof(FifoPage))/8)+1)
+#ifdef SQLITE_MALLOC_SOFT_LIMIT
+# define FIFOSIZE_MAX (((SQLITE_MALLOC_SOFT_LIMIT-sizeof(FifoPage))/8)+1)
+#else
+# define FIFOSIZE_MAX (((262144-sizeof(FifoPage))/8)+1)
+#endif
+
+/*
+** Allocate a new FifoPage and return a pointer to it. Return NULL if
+** we run out of memory. Leave space on the page for nEntry entries.
+*/
+static FifoPage *allocateFifoPage(int nEntry){
+ FifoPage *pPage;
+ if( nEntry>FIFOSIZE_MAX ){
+ nEntry = FIFOSIZE_MAX;
+ }
+ pPage = sqlite3_malloc( sizeof(FifoPage) + sizeof(i64)*(nEntry-1) );
+ if( pPage ){
+ pPage->nSlot = nEntry;
+ pPage->iWrite = 0;
+ pPage->iRead = 0;
+ pPage->pNext = 0;
+ }
+ return pPage;
+}
+
+/*
+** Initialize a Fifo structure.
+*/
+SQLITE_PRIVATE void sqlite3VdbeFifoInit(Fifo *pFifo){
+ memset(pFifo, 0, sizeof(*pFifo));
+}
+
+/*
+** Push a single 64-bit integer value into the Fifo. Return SQLITE_OK
+** normally. SQLITE_NOMEM is returned if we are unable to allocate
+** memory.
+*/
+SQLITE_PRIVATE int sqlite3VdbeFifoPush(Fifo *pFifo, i64 val){
+ FifoPage *pPage;
+ pPage = pFifo->pLast;
+ if( pPage==0 ){
+ pPage = pFifo->pLast = pFifo->pFirst = allocateFifoPage(FIFOSIZE_FIRST);
+ if( pPage==0 ){
+ return SQLITE_NOMEM;
+ }
+ }else if( pPage->iWrite>=pPage->nSlot ){
+ pPage->pNext = allocateFifoPage(pFifo->nEntry);
+ if( pPage->pNext==0 ){
+ return SQLITE_NOMEM;
+ }
+ pPage = pFifo->pLast = pPage->pNext;
+ }
+ pPage->aSlot[pPage->iWrite++] = val;
+ pFifo->nEntry++;
+ return SQLITE_OK;
+}
+
+/*
+** Extract a single 64-bit integer value from the Fifo. The integer
+** extracted is the one least recently inserted. If the Fifo is empty
+** return SQLITE_DONE.
+*/
+SQLITE_PRIVATE int sqlite3VdbeFifoPop(Fifo *pFifo, i64 *pVal){
+ FifoPage *pPage;
+ if( pFifo->nEntry==0 ){
+ return SQLITE_DONE;
+ }
+ assert( pFifo->nEntry>0 );
+ pPage = pFifo->pFirst;
+ assert( pPage!=0 );
+ assert( pPage->iWrite>pPage->iRead );
+ assert( pPage->iWrite<=pPage->nSlot );
+ assert( pPage->iRead<pPage->nSlot );
+ assert( pPage->iRead>=0 );
+ *pVal = pPage->aSlot[pPage->iRead++];
+ pFifo->nEntry--;
+ if( pPage->iRead>=pPage->iWrite ){
+ pFifo->pFirst = pPage->pNext;
+ sqlite3_free(pPage);
+ if( pFifo->nEntry==0 ){
+ assert( pFifo->pLast==pPage );
+ pFifo->pLast = 0;
+ }else{
+ assert( pFifo->pFirst!=0 );
+ }
+ }else{
+ assert( pFifo->nEntry>0 );
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Delete all information from a Fifo object. Free all memory held
+** by the Fifo.
+*/
+SQLITE_PRIVATE void sqlite3VdbeFifoClear(Fifo *pFifo){
+ FifoPage *pPage, *pNextPage;
+ for(pPage=pFifo->pFirst; pPage; pPage=pNextPage){
+ pNextPage = pPage->pNext;
+ sqlite3_free(pPage);
+ }
+ sqlite3VdbeFifoInit(pFifo);
+}
+
+/************** End of vdbefifo.c ********************************************/
+/************** Begin file vdbemem.c *****************************************/
+/*
+** 2004 May 26
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+**
+** This file contains code use to manipulate "Mem" structure. A "Mem"
+** stores a single value in the VDBE. Mem is an opaque structure visible
+** only within the VDBE. Interface routines refer to a Mem using the
+** name sqlite_value
+*/
+
+/*
+** Call sqlite3VdbeMemExpandBlob() on the supplied value (type Mem*)
+** P if required.
+*/
+#define expandBlob(P) (((P)->flags&MEM_Zero)?sqlite3VdbeMemExpandBlob(P):0)
+
+/*
+** If pMem is an object with a valid string representation, this routine
+** ensures the internal encoding for the string representation is
+** 'desiredEnc', one of SQLITE_UTF8, SQLITE_UTF16LE or SQLITE_UTF16BE.
+**
+** If pMem is not a string object, or the encoding of the string
+** representation is already stored using the requested encoding, then this
+** routine is a no-op.
+**
+** SQLITE_OK is returned if the conversion is successful (or not required).
+** SQLITE_NOMEM may be returned if a malloc() fails during conversion
+** between formats.
+*/
+SQLITE_PRIVATE int sqlite3VdbeChangeEncoding(Mem *pMem, int desiredEnc){
+ int rc;
+ if( !(pMem->flags&MEM_Str) || pMem->enc==desiredEnc ){
+ return SQLITE_OK;
+ }
+ assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
+#ifdef SQLITE_OMIT_UTF16
+ return SQLITE_ERROR;
+#else
+
+ /* MemTranslate() may return SQLITE_OK or SQLITE_NOMEM. If NOMEM is returned,
+ ** then the encoding of the value may not have changed.
+ */
+ rc = sqlite3VdbeMemTranslate(pMem, desiredEnc);
+ assert(rc==SQLITE_OK || rc==SQLITE_NOMEM);
+ assert(rc==SQLITE_OK || pMem->enc!=desiredEnc);
+ assert(rc==SQLITE_NOMEM || pMem->enc==desiredEnc);
+ return rc;
+#endif
+}
+
+/*
+** Make sure pMem->z points to a writable allocation of at least
+** n bytes.
+**
+** If the memory cell currently contains string or blob data
+** and the third argument passed to this function is true, the
+** current content of the cell is preserved. Otherwise, it may
+** be discarded.
+**
+** This function sets the MEM_Dyn flag and clears any xDel callback.
+** It also clears MEM_Ephem and MEM_Static. If the preserve flag is
+** not set, Mem.n is zeroed.
+*/
+SQLITE_PRIVATE int sqlite3VdbeMemGrow(Mem *pMem, int n, int preserve){
+ assert( 1 >=
+ ((pMem->zMalloc && pMem->zMalloc==pMem->z) ? 1 : 0) +
+ (((pMem->flags&MEM_Dyn)&&pMem->xDel) ? 1 : 0) +
+ ((pMem->flags&MEM_Ephem) ? 1 : 0) +
+ ((pMem->flags&MEM_Static) ? 1 : 0)
+ );
+
+ if( !pMem->zMalloc || sqlite3MallocSize(pMem->zMalloc)<n ){
+ n = (n>32?n:32);
+ if( preserve && pMem->z==pMem->zMalloc ){
+ pMem->z = pMem->zMalloc = sqlite3DbReallocOrFree(pMem->db, pMem->z, n);
+ if( !pMem->z ){
+ pMem->flags = MEM_Null;
+ }
+ preserve = 0;
+ }else{
+ sqlite3_free(pMem->zMalloc);
+ pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, n);
+ }
+ }
+
+ if( preserve && pMem->z && pMem->zMalloc && pMem->z!=pMem->zMalloc ){
+ memcpy(pMem->zMalloc, pMem->z, pMem->n);
+ }
+ if( pMem->flags&MEM_Dyn && pMem->xDel ){
+ pMem->xDel((void *)(pMem->z));
+ }
+
+ pMem->z = pMem->zMalloc;
+ pMem->flags &= ~(MEM_Ephem|MEM_Static);
+ pMem->xDel = 0;
+ return (pMem->z ? SQLITE_OK : SQLITE_NOMEM);
+}
+
+/*
+** Make the given Mem object MEM_Dyn.
+**
+** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails.
+*/
+SQLITE_PRIVATE int sqlite3VdbeMemDynamicify(Mem *pMem){
+ int f;
+ assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
+ expandBlob(pMem);
+ f = pMem->flags;
+ if( (f&(MEM_Str|MEM_Blob)) && pMem->z!=pMem->zMalloc ){
+ if( sqlite3VdbeMemGrow(pMem, pMem->n + 2, 1) ){
+ return SQLITE_NOMEM;
+ }
+ pMem->z[pMem->n] = 0;
+ pMem->z[pMem->n+1] = 0;
+ pMem->flags |= MEM_Term;
+ }
+
+ return SQLITE_OK;
+}
+
+/*
+** If the given Mem* has a zero-filled tail, turn it into an ordinary
+** blob stored in dynamically allocated space.
+*/
+#ifndef SQLITE_OMIT_INCRBLOB
+SQLITE_PRIVATE int sqlite3VdbeMemExpandBlob(Mem *pMem){
+ if( pMem->flags & MEM_Zero ){
+ int nByte;
+ assert( pMem->flags&MEM_Blob );
+ assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
+
+ /* Set nByte to the number of bytes required to store the expanded blob. */
+ nByte = pMem->n + pMem->u.i;
+ if( nByte<=0 ){
+ nByte = 1;
+ }
+ if( sqlite3VdbeMemGrow(pMem, nByte, 1) ){
+ return SQLITE_NOMEM;
+ }
+
+ memset(&pMem->z[pMem->n], 0, pMem->u.i);
+ pMem->n += pMem->u.i;
+ pMem->flags &= ~(MEM_Zero|MEM_Term);
+ }
+ return SQLITE_OK;
+}
+#endif
+
+
+/*
+** Make the given Mem object either MEM_Short or MEM_Dyn so that bytes
+** of the Mem.z[] array can be modified.
+**
+** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails.
+*/
+SQLITE_PRIVATE int sqlite3VdbeMemMakeWriteable(Mem *pMem){
+ return sqlite3VdbeMemDynamicify(pMem);
+}
+
+/*
+** Make sure the given Mem is \u0000 terminated.
+*/
+SQLITE_PRIVATE int sqlite3VdbeMemNulTerminate(Mem *pMem){
+ assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
+ if( (pMem->flags & MEM_Term)!=0 || (pMem->flags & MEM_Str)==0 ){
+ return SQLITE_OK; /* Nothing to do */
+ }
+ if( sqlite3VdbeMemGrow(pMem, pMem->n+2, 1) ){
+ return SQLITE_NOMEM;
+ }
+ pMem->z[pMem->n] = 0;
+ pMem->z[pMem->n+1] = 0;
+ pMem->flags |= MEM_Term;
+ return SQLITE_OK;
+}
+
+/*
+** Add MEM_Str to the set of representations for the given Mem. Numbers
+** are converted using sqlite3_snprintf(). Converting a BLOB to a string
+** is a no-op.
+**
+** Existing representations MEM_Int and MEM_Real are *not* invalidated.
+**
+** A MEM_Null value will never be passed to this function. This function is
+** used for converting values to text for returning to the user (i.e. via
+** sqlite3_value_text()), or for ensuring that values to be used as btree
+** keys are strings. In the former case a NULL pointer is returned the
+** user and the later is an internal programming error.
+*/
+SQLITE_PRIVATE int sqlite3VdbeMemStringify(Mem *pMem, int enc){
+ int rc = SQLITE_OK;
+ int fg = pMem->flags;
+ const int nByte = 32;
+
+ assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
+ assert( !(fg&MEM_Zero) );
+ assert( !(fg&(MEM_Str|MEM_Blob)) );
+ assert( fg&(MEM_Int|MEM_Real) );
+
+ if( sqlite3VdbeMemGrow(pMem, nByte, 0) ){
+ return SQLITE_NOMEM;
+ }
+
+ /* For a Real or Integer, use sqlite3_mprintf() to produce the UTF-8
+ ** string representation of the value. Then, if the required encoding
+ ** is UTF-16le or UTF-16be do a translation.
+ **
+ ** FIX ME: It would be better if sqlite3_snprintf() could do UTF-16.
+ */
+ if( fg & MEM_Int ){
+ sqlite3_snprintf(nByte, pMem->z, "%lld", pMem->u.i);
+ }else{
+ assert( fg & MEM_Real );
+ sqlite3_snprintf(nByte, pMem->z, "%!.15g", pMem->r);
+ }
+ pMem->n = strlen(pMem->z);
+ pMem->enc = SQLITE_UTF8;
+ pMem->flags |= MEM_Str|MEM_Term;
+ sqlite3VdbeChangeEncoding(pMem, enc);
+ return rc;
+}
+
+/*
+** Memory cell pMem contains the context of an aggregate function.
+** This routine calls the finalize method for that function. The
+** result of the aggregate is stored back into pMem.
+**
+** Return SQLITE_ERROR if the finalizer reports an error. SQLITE_OK
+** otherwise.
+*/
+SQLITE_PRIVATE int sqlite3VdbeMemFinalize(Mem *pMem, FuncDef *pFunc){
+ int rc = SQLITE_OK;
+ if( pFunc && pFunc->xFinalize ){
+ sqlite3_context ctx;
+ assert( (pMem->flags & MEM_Null)!=0 || pFunc==pMem->u.pDef );
+ assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
+ ctx.s.flags = MEM_Null;
+ ctx.s.db = pMem->db;
+ ctx.s.zMalloc = 0;
+ ctx.pMem = pMem;
+ ctx.pFunc = pFunc;
+ ctx.isError = 0;
+ pFunc->xFinalize(&ctx);
+ assert( 0==(pMem->flags&MEM_Dyn) && !pMem->xDel );
+ sqlite3_free(pMem->zMalloc);
+ *pMem = ctx.s;
+ rc = (ctx.isError?SQLITE_ERROR:SQLITE_OK);
+ }
+ return rc;
+}
+
+/*
+** If the memory cell contains a string value that must be freed by
+** invoking an external callback, free it now. Calling this function
+** does not free any Mem.zMalloc buffer.
+*/
+SQLITE_PRIVATE void sqlite3VdbeMemReleaseExternal(Mem *p){
+ assert( p->db==0 || sqlite3_mutex_held(p->db->mutex) );
+ if( p->flags&MEM_Agg ){
+ sqlite3VdbeMemFinalize(p, p->u.pDef);
+ assert( (p->flags & MEM_Agg)==0 );
+ sqlite3VdbeMemRelease(p);
+ }else if( p->flags&MEM_Dyn && p->xDel ){
+ p->xDel((void *)p->z);
+ p->xDel = 0;
+ }
+}
+
+/*
+** Release any memory held by the Mem. This may leave the Mem in an
+** inconsistent state, for example with (Mem.z==0) and
+** (Mem.type==SQLITE_TEXT).
+*/
+SQLITE_PRIVATE void sqlite3VdbeMemRelease(Mem *p){
+ sqlite3VdbeMemReleaseExternal(p);
+ sqlite3_free(p->zMalloc);
+ p->z = 0;
+ p->zMalloc = 0;
+ p->xDel = 0;
+}
+
+/*
+** Convert a 64-bit IEEE double into a 64-bit signed integer.
+** If the double is too large, return 0x8000000000000000.
+**
+** Most systems appear to do this simply by assigning
+** variables and without the extra range tests. But
+** there are reports that windows throws an expection
+** if the floating point value is out of range. (See ticket #2880.)
+** Because we do not completely understand the problem, we will
+** take the conservative approach and always do range tests
+** before attempting the conversion.
+*/
+static i64 doubleToInt64(double r){
+ /*
+ ** Many compilers we encounter do not define constants for the
+ ** minimum and maximum 64-bit integers, or they define them
+ ** inconsistently. And many do not understand the "LL" notation.
+ ** So we define our own static constants here using nothing
+ ** larger than a 32-bit integer constant.
+ */
+ static const i64 maxInt = LARGEST_INT64;
+ static const i64 minInt = SMALLEST_INT64;
+
+ if( r<(double)minInt ){
+ return minInt;
+ }else if( r>(double)maxInt ){
+ return minInt;
+ }else{
+ return (i64)r;
+ }
+}
+
+/*
+** Return some kind of integer value which is the best we can do
+** at representing the value that *pMem describes as an integer.
+** If pMem is an integer, then the value is exact. If pMem is
+** a floating-point then the value returned is the integer part.
+** If pMem is a string or blob, then we make an attempt to convert
+** it into a integer and return that. If pMem is NULL, return 0.
+**
+** If pMem is a string, its encoding might be changed.
+*/
+SQLITE_PRIVATE i64 sqlite3VdbeIntValue(Mem *pMem){
+ int flags;
+ assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
+ flags = pMem->flags;
+ if( flags & MEM_Int ){
+ return pMem->u.i;
+ }else if( flags & MEM_Real ){
+ return doubleToInt64(pMem->r);
+ }else if( flags & (MEM_Str|MEM_Blob) ){
+ i64 value;
+ pMem->flags |= MEM_Str;
+ if( sqlite3VdbeChangeEncoding(pMem, SQLITE_UTF8)
+ || sqlite3VdbeMemNulTerminate(pMem) ){
+ return 0;
+ }
+ assert( pMem->z );
+ sqlite3Atoi64(pMem->z, &value);
+ return value;
+ }else{
+ return 0;
+ }
+}
+
+/*
+** Return the best representation of pMem that we can get into a
+** double. If pMem is already a double or an integer, return its
+** value. If it is a string or blob, try to convert it to a double.
+** If it is a NULL, return 0.0.
+*/
+SQLITE_PRIVATE double sqlite3VdbeRealValue(Mem *pMem){
+ assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
+ if( pMem->flags & MEM_Real ){
+ return pMem->r;
+ }else if( pMem->flags & MEM_Int ){
+ return (double)pMem->u.i;
+ }else if( pMem->flags & (MEM_Str|MEM_Blob) ){
+ double val = 0.0;
+ pMem->flags |= MEM_Str;
+ if( sqlite3VdbeChangeEncoding(pMem, SQLITE_UTF8)
+ || sqlite3VdbeMemNulTerminate(pMem) ){
+ return 0.0;
+ }
+ assert( pMem->z );
+ sqlite3AtoF(pMem->z, &val);
+ return val;
+ }else{
+ return 0.0;
+ }
+}
+
+/*
+** The MEM structure is already a MEM_Real. Try to also make it a
+** MEM_Int if we can.
+*/
+SQLITE_PRIVATE void sqlite3VdbeIntegerAffinity(Mem *pMem){
+ assert( pMem->flags & MEM_Real );
+ assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
+
+ pMem->u.i = doubleToInt64(pMem->r);
+ if( pMem->r==(double)pMem->u.i ){
+ pMem->flags |= MEM_Int;
+ }
+}
+
+static void setTypeFlag(Mem *pMem, int f){
+ MemSetTypeFlag(pMem, f);
+}
+
+/*
+** Convert pMem to type integer. Invalidate any prior representations.
+*/
+SQLITE_PRIVATE int sqlite3VdbeMemIntegerify(Mem *pMem){
+ assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
+ pMem->u.i = sqlite3VdbeIntValue(pMem);
+ setTypeFlag(pMem, MEM_Int);
+ return SQLITE_OK;
+}
+
+/*
+** Convert pMem so that it is of type MEM_Real.
+** Invalidate any prior representations.
+*/
+SQLITE_PRIVATE int sqlite3VdbeMemRealify(Mem *pMem){
+ assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
+ pMem->r = sqlite3VdbeRealValue(pMem);
+ setTypeFlag(pMem, MEM_Real);
+ return SQLITE_OK;
+}
+
+/*
+** Convert pMem so that it has types MEM_Real or MEM_Int or both.
+** Invalidate any prior representations.
+*/
+SQLITE_PRIVATE int sqlite3VdbeMemNumerify(Mem *pMem){
+ double r1, r2;
+ i64 i;
+ assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_Null))==0 );
+ assert( (pMem->flags & (MEM_Blob|MEM_Str))!=0 );
+ assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
+ r1 = sqlite3VdbeRealValue(pMem);
+ i = doubleToInt64(r1);
+ r2 = (double)i;
+ if( r1==r2 ){
+ sqlite3VdbeMemIntegerify(pMem);
+ }else{
+ pMem->r = r1;
+ setTypeFlag(pMem, MEM_Real);
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Delete any previous value and set the value stored in *pMem to NULL.
+*/
+SQLITE_PRIVATE void sqlite3VdbeMemSetNull(Mem *pMem){
+ setTypeFlag(pMem, MEM_Null);
+ pMem->type = SQLITE_NULL;
+}
+
+/*
+** Delete any previous value and set the value to be a BLOB of length
+** n containing all zeros.
+*/
+SQLITE_PRIVATE void sqlite3VdbeMemSetZeroBlob(Mem *pMem, int n){
+ sqlite3VdbeMemRelease(pMem);
+ setTypeFlag(pMem, MEM_Blob);
+ pMem->flags = MEM_Blob|MEM_Zero;
+ pMem->type = SQLITE_BLOB;
+ pMem->n = 0;
+ if( n<0 ) n = 0;
+ pMem->u.i = n;
+ pMem->enc = SQLITE_UTF8;
+}
+
+/*
+** Delete any previous value and set the value stored in *pMem to val,
+** manifest type INTEGER.
+*/
+SQLITE_PRIVATE void sqlite3VdbeMemSetInt64(Mem *pMem, i64 val){
+ sqlite3VdbeMemRelease(pMem);
+ pMem->u.i = val;
+ pMem->flags = MEM_Int;
+ pMem->type = SQLITE_INTEGER;
+}
+
+/*
+** Delete any previous value and set the value stored in *pMem to val,
+** manifest type REAL.
+*/
+SQLITE_PRIVATE void sqlite3VdbeMemSetDouble(Mem *pMem, double val){
+ if( sqlite3IsNaN(val) ){
+ sqlite3VdbeMemSetNull(pMem);
+ }else{
+ sqlite3VdbeMemRelease(pMem);
+ pMem->r = val;
+ pMem->flags = MEM_Real;
+ pMem->type = SQLITE_FLOAT;
+ }
+}
+
+/*
+** Return true if the Mem object contains a TEXT or BLOB that is
+** too large - whose size exceeds SQLITE_MAX_LENGTH.
+*/
+SQLITE_PRIVATE int sqlite3VdbeMemTooBig(Mem *p){
+ assert( p->db!=0 );
+ if( p->flags & (MEM_Str|MEM_Blob) ){
+ int n = p->n;
+ if( p->flags & MEM_Zero ){
+ n += p->u.i;
+ }
+ return n>p->db->aLimit[SQLITE_LIMIT_LENGTH];
+ }
+ return 0;
+}
+
+/*
+** Size of struct Mem not including the Mem.zMalloc member.
+*/
+#define MEMCELLSIZE (size_t)(&(((Mem *)0)->zMalloc))
+
+/*
+** Make an shallow copy of pFrom into pTo. Prior contents of
+** pTo are freed. The pFrom->z field is not duplicated. If
+** pFrom->z is used, then pTo->z points to the same thing as pFrom->z
+** and flags gets srcType (either MEM_Ephem or MEM_Static).
+*/
+SQLITE_PRIVATE void sqlite3VdbeMemShallowCopy(Mem *pTo, const Mem *pFrom, int srcType){
+ sqlite3VdbeMemReleaseExternal(pTo);
+ memcpy(pTo, pFrom, MEMCELLSIZE);
+ pTo->xDel = 0;
+ if( (pFrom->flags&MEM_Dyn)!=0 || pFrom->z==pFrom->zMalloc ){
+ pTo->flags &= ~(MEM_Dyn|MEM_Static|MEM_Ephem);
+ assert( srcType==MEM_Ephem || srcType==MEM_Static );
+ pTo->flags |= srcType;
+ }
+}
+
+/*
+** Make a full copy of pFrom into pTo. Prior contents of pTo are
+** freed before the copy is made.
+*/
+SQLITE_PRIVATE int sqlite3VdbeMemCopy(Mem *pTo, const Mem *pFrom){
+ int rc = SQLITE_OK;
+
+ sqlite3VdbeMemReleaseExternal(pTo);
+ memcpy(pTo, pFrom, MEMCELLSIZE);
+ pTo->flags &= ~MEM_Dyn;
+
+ if( pTo->flags&(MEM_Str|MEM_Blob) ){
+ if( 0==(pFrom->flags&MEM_Static) ){
+ pTo->flags |= MEM_Ephem;
+ rc = sqlite3VdbeMemMakeWriteable(pTo);
+ }
+ }
+
+ return rc;
+}
+
+/*
+** Transfer the contents of pFrom to pTo. Any existing value in pTo is
+** freed. If pFrom contains ephemeral data, a copy is made.
+**
+** pFrom contains an SQL NULL when this routine returns.
+*/
+SQLITE_PRIVATE void sqlite3VdbeMemMove(Mem *pTo, Mem *pFrom){
+ assert( pFrom->db==0 || sqlite3_mutex_held(pFrom->db->mutex) );
+ assert( pTo->db==0 || sqlite3_mutex_held(pTo->db->mutex) );
+ assert( pFrom->db==0 || pTo->db==0 || pFrom->db==pTo->db );
+
+ sqlite3VdbeMemRelease(pTo);
+ memcpy(pTo, pFrom, sizeof(Mem));
+ pFrom->flags = MEM_Null;
+ pFrom->xDel = 0;
+ pFrom->zMalloc = 0;
+}
+
+/*
+** Change the value of a Mem to be a string or a BLOB.
+**
+** The memory management strategy depends on the value of the xDel
+** parameter. If the value passed is SQLITE_TRANSIENT, then the
+** string is copied into a (possibly existing) buffer managed by the
+** Mem structure. Otherwise, any existing buffer is freed and the
+** pointer copied.
+*/
+SQLITE_PRIVATE int sqlite3VdbeMemSetStr(
+ Mem *pMem, /* Memory cell to set to string value */
+ const char *z, /* String pointer */
+ int n, /* Bytes in string, or negative */
+ u8 enc, /* Encoding of z. 0 for BLOBs */
+ void (*xDel)(void*) /* Destructor function */
+){
+ int nByte = n; /* New value for pMem->n */
+ int flags = 0; /* New value for pMem->flags */
+
+ assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
+
+ /* If z is a NULL pointer, set pMem to contain an SQL NULL. */
+ if( !z ){
+ sqlite3VdbeMemSetNull(pMem);
+ return SQLITE_OK;
+ }
+
+ flags = (enc==0?MEM_Blob:MEM_Str);
+ if( nByte<0 ){
+ assert( enc!=0 );
+ if( enc==SQLITE_UTF8 ){
+ for(nByte=0; z[nByte]; nByte++){}
+ }else{
+ for(nByte=0; z[nByte] | z[nByte+1]; nByte+=2){}
+ }
+ flags |= MEM_Term;
+ }
+
+ /* The following block sets the new values of Mem.z and Mem.xDel. It
+ ** also sets a flag in local variable "flags" to indicate the memory
+ ** management (one of MEM_Dyn or MEM_Static).
+ */
+ if( xDel==SQLITE_TRANSIENT ){
+ int nAlloc = nByte;
+ if( flags&MEM_Term ){
+ nAlloc += (enc==SQLITE_UTF8?1:2);
+ }
+ if( sqlite3VdbeMemGrow(pMem, nAlloc, 0) ){
+ return SQLITE_NOMEM;
+ }
+ memcpy(pMem->z, z, nAlloc);
+ }else{
+ sqlite3VdbeMemRelease(pMem);
+ pMem->z = (char *)z;
+ pMem->xDel = xDel;
+ flags |= ((xDel==SQLITE_STATIC)?MEM_Static:MEM_Dyn);
+ }
+
+ pMem->n = nByte;
+ pMem->flags = flags;
+ pMem->enc = (enc==0 ? SQLITE_UTF8 : enc);
+ pMem->type = (enc==0 ? SQLITE_BLOB : SQLITE_TEXT);
+
+#ifndef SQLITE_OMIT_UTF16
+ if( pMem->enc!=SQLITE_UTF8 && sqlite3VdbeMemHandleBom(pMem) ){
+ return SQLITE_NOMEM;
+ }
+#endif
+
+ return SQLITE_OK;
+}
+
+/*
+** Compare the values contained by the two memory cells, returning
+** negative, zero or positive if pMem1 is less than, equal to, or greater
+** than pMem2. Sorting order is NULL's first, followed by numbers (integers
+** and reals) sorted numerically, followed by text ordered by the collating
+** sequence pColl and finally blob's ordered by memcmp().
+**
+** Two NULL values are considered equal by this function.
+*/
+SQLITE_PRIVATE int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){
+ int rc;
+ int f1, f2;
+ int combined_flags;
+
+ /* Interchange pMem1 and pMem2 if the collating sequence specifies
+ ** DESC order.
+ */
+ f1 = pMem1->flags;
+ f2 = pMem2->flags;
+ combined_flags = f1|f2;
+
+ /* If one value is NULL, it is less than the other. If both values
+ ** are NULL, return 0.
+ */
+ if( combined_flags&MEM_Null ){
+ return (f2&MEM_Null) - (f1&MEM_Null);
+ }
+
+ /* If one value is a number and the other is not, the number is less.
+ ** If both are numbers, compare as reals if one is a real, or as integers
+ ** if both values are integers.
+ */
+ if( combined_flags&(MEM_Int|MEM_Real) ){
+ if( !(f1&(MEM_Int|MEM_Real)) ){
+ return 1;
+ }
+ if( !(f2&(MEM_Int|MEM_Real)) ){
+ return -1;
+ }
+ if( (f1 & f2 & MEM_Int)==0 ){
+ double r1, r2;
+ if( (f1&MEM_Real)==0 ){
+ r1 = pMem1->u.i;
+ }else{
+ r1 = pMem1->r;
+ }
+ if( (f2&MEM_Real)==0 ){
+ r2 = pMem2->u.i;
+ }else{
+ r2 = pMem2->r;
+ }
+ if( r1<r2 ) return -1;
+ if( r1>r2 ) return 1;
+ return 0;
+ }else{
+ assert( f1&MEM_Int );
+ assert( f2&MEM_Int );
+ if( pMem1->u.i < pMem2->u.i ) return -1;
+ if( pMem1->u.i > pMem2->u.i ) return 1;
+ return 0;
+ }
+ }
+
+ /* If one value is a string and the other is a blob, the string is less.
+ ** If both are strings, compare using the collating functions.
+ */
+ if( combined_flags&MEM_Str ){
+ if( (f1 & MEM_Str)==0 ){
+ return 1;
+ }
+ if( (f2 & MEM_Str)==0 ){
+ return -1;
+ }
+
+ assert( pMem1->enc==pMem2->enc );
+ assert( pMem1->enc==SQLITE_UTF8 ||
+ pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE );
+
+ /* The collation sequence must be defined at this point, even if
+ ** the user deletes the collation sequence after the vdbe program is
+ ** compiled (this was not always the case).
+ */
+ assert( !pColl || pColl->xCmp );
+
+ if( pColl ){
+ if( pMem1->enc==pColl->enc ){
+ /* The strings are already in the correct encoding. Call the
+ ** comparison function directly */
+ return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z);
+ }else{
+ u8 origEnc = pMem1->enc;
+ const void *v1, *v2;
+ int n1, n2;
+ /* Convert the strings into the encoding that the comparison
+ ** function expects */
+ v1 = sqlite3ValueText((sqlite3_value*)pMem1, pColl->enc);
+ n1 = v1==0 ? 0 : pMem1->n;
+ assert( n1==sqlite3ValueBytes((sqlite3_value*)pMem1, pColl->enc) );
+ v2 = sqlite3ValueText((sqlite3_value*)pMem2, pColl->enc);
+ n2 = v2==0 ? 0 : pMem2->n;
+ assert( n2==sqlite3ValueBytes((sqlite3_value*)pMem2, pColl->enc) );
+ /* Do the comparison */
+ rc = pColl->xCmp(pColl->pUser, n1, v1, n2, v2);
+ /* Convert the strings back into the database encoding */
+ sqlite3ValueText((sqlite3_value*)pMem1, origEnc);
+ sqlite3ValueText((sqlite3_value*)pMem2, origEnc);
+ return rc;
+ }
+ }
+ /* If a NULL pointer was passed as the collate function, fall through
+ ** to the blob case and use memcmp(). */
+ }
+
+ /* Both values must be blobs. Compare using memcmp(). */
+ rc = memcmp(pMem1->z, pMem2->z, (pMem1->n>pMem2->n)?pMem2->n:pMem1->n);
+ if( rc==0 ){
+ rc = pMem1->n - pMem2->n;
+ }
+ return rc;
+}
+
+/*
+** Move data out of a btree key or data field and into a Mem structure.
+** The data or key is taken from the entry that pCur is currently pointing
+** to. offset and amt determine what portion of the data or key to retrieve.
+** key is true to get the key or false to get data. The result is written
+** into the pMem element.
+**
+** The pMem structure is assumed to be uninitialized. Any prior content
+** is overwritten without being freed.
+**
+** If this routine fails for any reason (malloc returns NULL or unable
+** to read from the disk) then the pMem is left in an inconsistent state.
+*/
+SQLITE_PRIVATE int sqlite3VdbeMemFromBtree(
+ BtCursor *pCur, /* Cursor pointing at record to retrieve. */
+ int offset, /* Offset from the start of data to return bytes from. */
+ int amt, /* Number of bytes to return. */
+ int key, /* If true, retrieve from the btree key, not data. */
+ Mem *pMem /* OUT: Return data in this Mem structure. */
+){
+ char *zData; /* Data from the btree layer */
+ int available = 0; /* Number of bytes available on the local btree page */
+ sqlite3 *db; /* Database connection */
+ int rc = SQLITE_OK;
+
+ db = sqlite3BtreeCursorDb(pCur);
+ assert( sqlite3_mutex_held(db->mutex) );
+ if( key ){
+ zData = (char *)sqlite3BtreeKeyFetch(pCur, &available);
+ }else{
+ zData = (char *)sqlite3BtreeDataFetch(pCur, &available);
+ }
+ assert( zData!=0 );
+
+ if( offset+amt<=available && ((pMem->flags&MEM_Dyn)==0 || pMem->xDel) ){
+ sqlite3VdbeMemRelease(pMem);
+ pMem->z = &zData[offset];
+ pMem->flags = MEM_Blob|MEM_Ephem;
+ }else if( SQLITE_OK==(rc = sqlite3VdbeMemGrow(pMem, amt+2, 0)) ){
+ pMem->flags = MEM_Blob|MEM_Dyn|MEM_Term;
+ pMem->enc = 0;
+ pMem->type = SQLITE_BLOB;
+ if( key ){
+ rc = sqlite3BtreeKey(pCur, offset, amt, pMem->z);
+ }else{
+ rc = sqlite3BtreeData(pCur, offset, amt, pMem->z);
+ }
+ pMem->z[amt] = 0;
+ pMem->z[amt+1] = 0;
+ if( rc!=SQLITE_OK ){
+ sqlite3VdbeMemRelease(pMem);
+ }
+ }
+ pMem->n = amt;
+
+ return rc;
+}
+
+#if 0
+/*
+** Perform various checks on the memory cell pMem. An assert() will
+** fail if pMem is internally inconsistent.
+*/
+SQLITE_PRIVATE void sqlite3VdbeMemSanity(Mem *pMem){
+ int flags = pMem->flags;
+ assert( flags!=0 ); /* Must define some type */
+ if( flags & (MEM_Str|MEM_Blob) ){
+ int x = flags & (MEM_Static|MEM_Dyn|MEM_Ephem|MEM_Short);
+ assert( x!=0 ); /* Strings must define a string subtype */
+ assert( (x & (x-1))==0 ); /* Only one string subtype can be defined */
+ assert( pMem->z!=0 ); /* Strings must have a value */
+ /* Mem.z points to Mem.zShort iff the subtype is MEM_Short */
+ assert( (x & MEM_Short)==0 || pMem->z==pMem->zShort );
+ assert( (x & MEM_Short)!=0 || pMem->z!=pMem->zShort );
+ /* No destructor unless there is MEM_Dyn */
+ assert( pMem->xDel==0 || (pMem->flags & MEM_Dyn)!=0 );
+
+ if( (flags & MEM_Str) ){
+ assert( pMem->enc==SQLITE_UTF8 ||
+ pMem->enc==SQLITE_UTF16BE ||
+ pMem->enc==SQLITE_UTF16LE
+ );
+ /* If the string is UTF-8 encoded and nul terminated, then pMem->n
+ ** must be the length of the string. (Later:) If the database file
+ ** has been corrupted, '\000' characters might have been inserted
+ ** into the middle of the string. In that case, the strlen() might
+ ** be less.
+ */
+ if( pMem->enc==SQLITE_UTF8 && (flags & MEM_Term) ){
+ assert( strlen(pMem->z)<=pMem->n );
+ assert( pMem->z[pMem->n]==0 );
+ }
+ }
+ }else{
+ /* Cannot define a string subtype for non-string objects */
+ assert( (pMem->flags & (MEM_Static|MEM_Dyn|MEM_Ephem|MEM_Short))==0 );
+ assert( pMem->xDel==0 );
+ }
+ /* MEM_Null excludes all other types */
+ assert( (pMem->flags&(MEM_Str|MEM_Int|MEM_Real|MEM_Blob))==0
+ || (pMem->flags&MEM_Null)==0 );
+ /* If the MEM is both real and integer, the values are equal */
+ assert( (pMem->flags & (MEM_Int|MEM_Real))!=(MEM_Int|MEM_Real)
+ || pMem->r==pMem->u.i );
+}
+#endif
+
+/* This function is only available internally, it is not part of the
+** external API. It works in a similar way to sqlite3_value_text(),
+** except the data returned is in the encoding specified by the second
+** parameter, which must be one of SQLITE_UTF16BE, SQLITE_UTF16LE or
+** SQLITE_UTF8.
+**
+** (2006-02-16:) The enc value can be or-ed with SQLITE_UTF16_ALIGNED.
+** If that is the case, then the result must be aligned on an even byte
+** boundary.
+*/
+SQLITE_PRIVATE const void *sqlite3ValueText(sqlite3_value* pVal, u8 enc){
+ if( !pVal ) return 0;
+
+ assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) );
+ assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) );
+
+ if( pVal->flags&MEM_Null ){
+ return 0;
+ }
+ assert( (MEM_Blob>>3) == MEM_Str );
+ pVal->flags |= (pVal->flags & MEM_Blob)>>3;
+ expandBlob(pVal);
+ if( pVal->flags&MEM_Str ){
+ sqlite3VdbeChangeEncoding(pVal, enc & ~SQLITE_UTF16_ALIGNED);
+ if( (enc & SQLITE_UTF16_ALIGNED)!=0 && 1==(1&(int)pVal->z) ){
+ assert( (pVal->flags & (MEM_Ephem|MEM_Static))!=0 );
+ if( sqlite3VdbeMemMakeWriteable(pVal)!=SQLITE_OK ){
+ return 0;
+ }
+ }
+ sqlite3VdbeMemNulTerminate(pVal);
+ }else{
+ assert( (pVal->flags&MEM_Blob)==0 );
+ sqlite3VdbeMemStringify(pVal, enc);
+ assert( 0==(1&(int)pVal->z) );
+ }
+ assert(pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) || pVal->db==0
+ || pVal->db->mallocFailed );
+ if( pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) ){
+ return pVal->z;
+ }else{
+ return 0;
+ }
+}
+
+/*
+** Create a new sqlite3_value object.
+*/
+SQLITE_PRIVATE sqlite3_value *sqlite3ValueNew(sqlite3 *db){
+ Mem *p = sqlite3DbMallocZero(db, sizeof(*p));
+ if( p ){
+ p->flags = MEM_Null;
+ p->type = SQLITE_NULL;
+ p->db = db;
+ }
+ return p;
+}
+
+/*
+** Create a new sqlite3_value object, containing the value of pExpr.
+**
+** This only works for very simple expressions that consist of one constant
+** token (i.e. "5", "5.1", "'a string'"). If the expression can
+** be converted directly into a value, then the value is allocated and
+** a pointer written to *ppVal. The caller is responsible for deallocating
+** the value by passing it to sqlite3ValueFree() later on. If the expression
+** cannot be converted to a value, then *ppVal is set to NULL.
+*/
+SQLITE_PRIVATE int sqlite3ValueFromExpr(
+ sqlite3 *db, /* The database connection */
+ Expr *pExpr, /* The expression to evaluate */
+ u8 enc, /* Encoding to use */
+ u8 affinity, /* Affinity to use */
+ sqlite3_value **ppVal /* Write the new value here */
+){
+ int op;
+ char *zVal = 0;
+ sqlite3_value *pVal = 0;
+
+ if( !pExpr ){
+ *ppVal = 0;
+ return SQLITE_OK;
+ }
+ op = pExpr->op;
+
+ if( op==TK_STRING || op==TK_FLOAT || op==TK_INTEGER ){
+ zVal = sqlite3StrNDup((char*)pExpr->token.z, pExpr->token.n);
+ pVal = sqlite3ValueNew(db);
+ if( !zVal || !pVal ) goto no_mem;
+ sqlite3Dequote(zVal);
+ sqlite3ValueSetStr(pVal, -1, zVal, SQLITE_UTF8, sqlite3_free);
+ if( (op==TK_INTEGER || op==TK_FLOAT ) && affinity==SQLITE_AFF_NONE ){
+ sqlite3ValueApplyAffinity(pVal, SQLITE_AFF_NUMERIC, enc);
+ }else{
+ sqlite3ValueApplyAffinity(pVal, affinity, enc);
+ }
+ }else if( op==TK_UMINUS ) {
+ if( SQLITE_OK==sqlite3ValueFromExpr(db,pExpr->pLeft,enc,affinity,&pVal) ){
+ pVal->u.i = -1 * pVal->u.i;
+ pVal->r = -1.0 * pVal->r;
+ }
+ }
+#ifndef SQLITE_OMIT_BLOB_LITERAL
+ else if( op==TK_BLOB ){
+ int nVal;
+ assert( pExpr->token.n>=3 );
+ assert( pExpr->token.z[0]=='x' || pExpr->token.z[0]=='X' );
+ assert( pExpr->token.z[1]=='\'' );
+ assert( pExpr->token.z[pExpr->token.n-1]=='\'' );
+ pVal = sqlite3ValueNew(db);
+ nVal = pExpr->token.n - 3;
+ zVal = (char*)pExpr->token.z + 2;
+ sqlite3VdbeMemSetStr(pVal, sqlite3HexToBlob(db, zVal, nVal), nVal/2,
+ 0, sqlite3_free);
+ }
+#endif
+
+ *ppVal = pVal;
+ return SQLITE_OK;
+
+no_mem:
+ db->mallocFailed = 1;
+ sqlite3_free(zVal);
+ sqlite3ValueFree(pVal);
+ *ppVal = 0;
+ return SQLITE_NOMEM;
+}
+
+/*
+** Change the string value of an sqlite3_value object
+*/
+SQLITE_PRIVATE void sqlite3ValueSetStr(
+ sqlite3_value *v, /* Value to be set */
+ int n, /* Length of string z */
+ const void *z, /* Text of the new string */
+ u8 enc, /* Encoding to use */
+ void (*xDel)(void*) /* Destructor for the string */
+){
+ if( v ) sqlite3VdbeMemSetStr((Mem *)v, z, n, enc, xDel);
+}
+
+/*
+** Free an sqlite3_value object
+*/
+SQLITE_PRIVATE void sqlite3ValueFree(sqlite3_value *v){
+ if( !v ) return;
+ sqlite3VdbeMemRelease((Mem *)v);
+ sqlite3_free(v);
+}
+
+/*
+** Return the number of bytes in the sqlite3_value object assuming
+** that it uses the encoding "enc"
+*/
+SQLITE_PRIVATE int sqlite3ValueBytes(sqlite3_value *pVal, u8 enc){
+ Mem *p = (Mem*)pVal;
+ if( (p->flags & MEM_Blob)!=0 || sqlite3ValueText(pVal, enc) ){
+ if( p->flags & MEM_Zero ){
+ return p->n+p->u.i;
+ }else{
+ return p->n;
+ }
+ }
+ return 0;
+}
+
+/************** End of vdbemem.c *********************************************/
+/************** Begin file vdbeaux.c *****************************************/
+/*
+** 2003 September 6
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains code used for creating, destroying, and populating
+** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.) Prior
+** to version 2.8.7, all this code was combined into the vdbe.c source file.
+** But that file was getting too big so this subroutines were split out.
+**
+** $Id: vdbeaux.c,v 1.383 2008/05/13 13:27:34 drh Exp $
+*/
+
+
+
+/*
+** When debugging the code generator in a symbolic debugger, one can
+** set the sqlite3VdbeAddopTrace to 1 and all opcodes will be printed
+** as they are added to the instruction stream.
+*/
+#ifdef SQLITE_DEBUG
+SQLITE_PRIVATE int sqlite3VdbeAddopTrace = 0;
+#endif
+
+
+/*
+** Create a new virtual database engine.
+*/
+SQLITE_PRIVATE Vdbe *sqlite3VdbeCreate(sqlite3 *db){
+ Vdbe *p;
+ p = sqlite3DbMallocZero(db, sizeof(Vdbe) );
+ if( p==0 ) return 0;
+ p->db = db;
+ if( db->pVdbe ){
+ db->pVdbe->pPrev = p;
+ }
+ p->pNext = db->pVdbe;
+ p->pPrev = 0;
+ db->pVdbe = p;
+ p->magic = VDBE_MAGIC_INIT;
+ return p;
+}
+
+/*
+** Remember the SQL string for a prepared statement.
+*/
+SQLITE_PRIVATE void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n){
+ if( p==0 ) return;
+ assert( p->zSql==0 );
+ p->zSql = sqlite3DbStrNDup(p->db, z, n);
+}
+
+/*
+** Return the SQL associated with a prepared statement
+*/
+SQLITE_API const char *sqlite3_sql(sqlite3_stmt *pStmt){
+ return ((Vdbe *)pStmt)->zSql;
+}
+
+/*
+** Swap all content between two VDBE structures.
+*/
+SQLITE_PRIVATE void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){
+ Vdbe tmp, *pTmp;
+ char *zTmp;
+ int nTmp;
+ tmp = *pA;
+ *pA = *pB;
+ *pB = tmp;
+ pTmp = pA->pNext;
+ pA->pNext = pB->pNext;
+ pB->pNext = pTmp;
+ pTmp = pA->pPrev;
+ pA->pPrev = pB->pPrev;
+ pB->pPrev = pTmp;
+ zTmp = pA->zSql;
+ pA->zSql = pB->zSql;
+ pB->zSql = zTmp;
+ nTmp = pA->nSql;
+ pA->nSql = pB->nSql;
+ pB->nSql = nTmp;
+}
+
+#ifdef SQLITE_DEBUG
+/*
+** Turn tracing on or off
+*/
+SQLITE_PRIVATE void sqlite3VdbeTrace(Vdbe *p, FILE *trace){
+ p->trace = trace;
+}
+#endif
+
+/*
+** Resize the Vdbe.aOp array so that it contains at least N
+** elements.
+**
+** If an out-of-memory error occurs while resizing the array,
+** Vdbe.aOp and Vdbe.nOpAlloc remain unchanged (this is so that
+** any opcodes already allocated can be correctly deallocated
+** along with the rest of the Vdbe).
+*/
+static void resizeOpArray(Vdbe *p, int N){
+ VdbeOp *pNew;
+ pNew = sqlite3DbRealloc(p->db, p->aOp, N*sizeof(Op));
+ if( pNew ){
+ p->nOpAlloc = N;
+ p->aOp = pNew;
+ }
+}
+
+/*
+** Add a new instruction to the list of instructions current in the
+** VDBE. Return the address of the new instruction.
+**
+** Parameters:
+**
+** p Pointer to the VDBE
+**
+** op The opcode for this instruction
+**
+** p1, p2, p3 Operands
+**
+** Use the sqlite3VdbeResolveLabel() function to fix an address and
+** the sqlite3VdbeChangeP4() function to change the value of the P4
+** operand.
+*/
+SQLITE_PRIVATE int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){
+ int i;
+ VdbeOp *pOp;
+
+ i = p->nOp;
+ assert( p->magic==VDBE_MAGIC_INIT );
+ if( p->nOpAlloc<=i ){
+ resizeOpArray(p, p->nOpAlloc ? p->nOpAlloc*2 : 1024/sizeof(Op));
+ if( p->db->mallocFailed ){
+ return 0;
+ }
+ }
+ p->nOp++;
+ pOp = &p->aOp[i];
+ pOp->opcode = op;
+ pOp->p5 = 0;
+ pOp->p1 = p1;
+ pOp->p2 = p2;
+ pOp->p3 = p3;
+ pOp->p4.p = 0;
+ pOp->p4type = P4_NOTUSED;
+ p->expired = 0;
+#ifdef SQLITE_DEBUG
+ pOp->zComment = 0;
+ if( sqlite3VdbeAddopTrace ) sqlite3VdbePrintOp(0, i, &p->aOp[i]);
+#endif
+#ifdef VDBE_PROFILE
+ pOp->cycles = 0;
+ pOp->cnt = 0;
+#endif
+ return i;
+}
+SQLITE_PRIVATE int sqlite3VdbeAddOp0(Vdbe *p, int op){
+ return sqlite3VdbeAddOp3(p, op, 0, 0, 0);
+}
+SQLITE_PRIVATE int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){
+ return sqlite3VdbeAddOp3(p, op, p1, 0, 0);
+}
+SQLITE_PRIVATE int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){
+ return sqlite3VdbeAddOp3(p, op, p1, p2, 0);
+}
+
+
+/*
+** Add an opcode that includes the p4 value as a pointer.
+*/
+SQLITE_PRIVATE int sqlite3VdbeAddOp4(
+ Vdbe *p, /* Add the opcode to this VM */
+ int op, /* The new opcode */
+ int p1, /* The P1 operand */
+ int p2, /* The P2 operand */
+ int p3, /* The P3 operand */
+ const char *zP4, /* The P4 operand */
+ int p4type /* P4 operand type */
+){
+ int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
+ sqlite3VdbeChangeP4(p, addr, zP4, p4type);
+ return addr;
+}
+
+/*
+** Create a new symbolic label for an instruction that has yet to be
+** coded. The symbolic label is really just a negative number. The
+** label can be used as the P2 value of an operation. Later, when
+** the label is resolved to a specific address, the VDBE will scan
+** through its operation list and change all values of P2 which match
+** the label into the resolved address.
+**
+** The VDBE knows that a P2 value is a label because labels are
+** always negative and P2 values are suppose to be non-negative.
+** Hence, a negative P2 value is a label that has yet to be resolved.
+**
+** Zero is returned if a malloc() fails.
+*/
+SQLITE_PRIVATE int sqlite3VdbeMakeLabel(Vdbe *p){
+ int i;
+ i = p->nLabel++;
+ assert( p->magic==VDBE_MAGIC_INIT );
+ if( i>=p->nLabelAlloc ){
+ p->nLabelAlloc = p->nLabelAlloc*2 + 10;
+ p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel,
+ p->nLabelAlloc*sizeof(p->aLabel[0]));
+ }
+ if( p->aLabel ){
+ p->aLabel[i] = -1;
+ }
+ return -1-i;
+}
+
+/*
+** Resolve label "x" to be the address of the next instruction to
+** be inserted. The parameter "x" must have been obtained from
+** a prior call to sqlite3VdbeMakeLabel().
+*/
+SQLITE_PRIVATE void sqlite3VdbeResolveLabel(Vdbe *p, int x){
+ int j = -1-x;
+ assert( p->magic==VDBE_MAGIC_INIT );
+ assert( j>=0 && j<p->nLabel );
+ if( p->aLabel ){
+ p->aLabel[j] = p->nOp;
+ }
+}
+
+/*
+** Loop through the program looking for P2 values that are negative
+** on jump instructions. Each such value is a label. Resolve the
+** label by setting the P2 value to its correct non-zero value.
+**
+** This routine is called once after all opcodes have been inserted.
+**
+** Variable *pMaxFuncArgs is set to the maximum value of any P2 argument
+** to an OP_Function, OP_AggStep or OP_VFilter opcode. This is used by
+** sqlite3VdbeMakeReady() to size the Vdbe.apArg[] array.
+**
+** This routine also does the following optimization: It scans for
+** instructions that might cause a statement rollback. Such instructions
+** are:
+**
+** * OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
+** * OP_Destroy
+** * OP_VUpdate
+** * OP_VRename
+**
+** If no such instruction is found, then every Statement instruction
+** is changed to a Noop. In this way, we avoid creating the statement
+** journal file unnecessarily.
+*/
+static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){
+ int i;
+ int nMaxArgs = 0;
+ Op *pOp;
+ int *aLabel = p->aLabel;
+ int doesStatementRollback = 0;
+ int hasStatementBegin = 0;
+ for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){
+ u8 opcode = pOp->opcode;
+
+ if( opcode==OP_Function ){
+ if( pOp->p5>nMaxArgs ) nMaxArgs = pOp->p5;
+ }else if( opcode==OP_AggStep
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ || opcode==OP_VUpdate
+#endif
+ ){
+ if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2;
+ }
+ if( opcode==OP_Halt ){
+ if( pOp->p1==SQLITE_CONSTRAINT && pOp->p2==OE_Abort ){
+ doesStatementRollback = 1;
+ }
+ }else if( opcode==OP_Statement ){
+ hasStatementBegin = 1;
+ }else if( opcode==OP_Destroy ){
+ doesStatementRollback = 1;
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ }else if( opcode==OP_VUpdate || opcode==OP_VRename ){
+ doesStatementRollback = 1;
+ }else if( opcode==OP_VFilter ){
+ int n;
+ assert( p->nOp - i >= 3 );
+ assert( pOp[-1].opcode==OP_Integer );
+ n = pOp[-1].p1;
+ if( n>nMaxArgs ) nMaxArgs = n;
+#endif
+ }
+
+ if( sqlite3VdbeOpcodeHasProperty(opcode, OPFLG_JUMP) && pOp->p2<0 ){
+ assert( -1-pOp->p2<p->nLabel );
+ pOp->p2 = aLabel[-1-pOp->p2];
+ }
+ }
+ sqlite3_free(p->aLabel);
+ p->aLabel = 0;
+
+ *pMaxFuncArgs = nMaxArgs;
+
+ /* If we never rollback a statement transaction, then statement
+ ** transactions are not needed. So change every OP_Statement
+ ** opcode into an OP_Noop. This avoid a call to sqlite3OsOpenExclusive()
+ ** which can be expensive on some platforms.
+ */
+ if( hasStatementBegin && !doesStatementRollback ){
+ for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){
+ if( pOp->opcode==OP_Statement ){
+ pOp->opcode = OP_Noop;
+ }
+ }
+ }
+}
+
+/*
+** Return the address of the next instruction to be inserted.
+*/
+SQLITE_PRIVATE int sqlite3VdbeCurrentAddr(Vdbe *p){
+ assert( p->magic==VDBE_MAGIC_INIT );
+ return p->nOp;
+}
+
+/*
+** Add a whole list of operations to the operation stack. Return the
+** address of the first operation added.
+*/
+SQLITE_PRIVATE int sqlite3VdbeAddOpList(Vdbe *p, int nOp, VdbeOpList const *aOp){
+ int addr;
+ assert( p->magic==VDBE_MAGIC_INIT );
+ if( p->nOp + nOp > p->nOpAlloc ){
+ resizeOpArray(p, p->nOpAlloc ? p->nOpAlloc*2 : 1024/sizeof(Op));
+ assert( p->nOp+nOp<=p->nOpAlloc || p->db->mallocFailed );
+ }
+ if( p->db->mallocFailed ){
+ return 0;
+ }
+ addr = p->nOp;
+ if( nOp>0 ){
+ int i;
+ VdbeOpList const *pIn = aOp;
+ for(i=0; i<nOp; i++, pIn++){
+ int p2 = pIn->p2;
+ VdbeOp *pOut = &p->aOp[i+addr];
+ pOut->opcode = pIn->opcode;
+ pOut->p1 = pIn->p1;
+ if( p2<0 && sqlite3VdbeOpcodeHasProperty(pOut->opcode, OPFLG_JUMP) ){
+ pOut->p2 = addr + ADDR(p2);
+ }else{
+ pOut->p2 = p2;
+ }
+ pOut->p3 = pIn->p3;
+ pOut->p4type = P4_NOTUSED;
+ pOut->p4.p = 0;
+ pOut->p5 = 0;
+#ifdef SQLITE_DEBUG
+ pOut->zComment = 0;
+ if( sqlite3VdbeAddopTrace ){
+ sqlite3VdbePrintOp(0, i+addr, &p->aOp[i+addr]);
+ }
+#endif
+ }
+ p->nOp += nOp;
+ }
+ return addr;
+}
+
+/*
+** Change the value of the P1 operand for a specific instruction.
+** This routine is useful when a large program is loaded from a
+** static array using sqlite3VdbeAddOpList but we want to make a
+** few minor changes to the program.
+*/
+SQLITE_PRIVATE void sqlite3VdbeChangeP1(Vdbe *p, int addr, int val){
+ assert( p==0 || p->magic==VDBE_MAGIC_INIT );
+ if( p && addr>=0 && p->nOp>addr && p->aOp ){
+ p->aOp[addr].p1 = val;
+ }
+}
+
+/*
+** Change the value of the P2 operand for a specific instruction.
+** This routine is useful for setting a jump destination.
+*/
+SQLITE_PRIVATE void sqlite3VdbeChangeP2(Vdbe *p, int addr, int val){
+ assert( p==0 || p->magic==VDBE_MAGIC_INIT );
+ if( p && addr>=0 && p->nOp>addr && p->aOp ){
+ p->aOp[addr].p2 = val;
+ }
+}
+
+/*
+** Change the value of the P3 operand for a specific instruction.
+*/
+SQLITE_PRIVATE void sqlite3VdbeChangeP3(Vdbe *p, int addr, int val){
+ assert( p==0 || p->magic==VDBE_MAGIC_INIT );
+ if( p && addr>=0 && p->nOp>addr && p->aOp ){
+ p->aOp[addr].p3 = val;
+ }
+}
+
+/*
+** Change the value of the P5 operand for the most recently
+** added operation.
+*/
+SQLITE_PRIVATE void sqlite3VdbeChangeP5(Vdbe *p, u8 val){
+ assert( p==0 || p->magic==VDBE_MAGIC_INIT );
+ if( p && p->aOp ){
+ assert( p->nOp>0 );
+ p->aOp[p->nOp-1].p5 = val;
+ }
+}
+
+/*
+** Change the P2 operand of instruction addr so that it points to
+** the address of the next instruction to be coded.
+*/
+SQLITE_PRIVATE void sqlite3VdbeJumpHere(Vdbe *p, int addr){
+ sqlite3VdbeChangeP2(p, addr, p->nOp);
+}
+
+
+/*
+** If the input FuncDef structure is ephemeral, then free it. If
+** the FuncDef is not ephermal, then do nothing.
+*/
+static void freeEphemeralFunction(FuncDef *pDef){
+ if( pDef && (pDef->flags & SQLITE_FUNC_EPHEM)!=0 ){
+ sqlite3_free(pDef);
+ }
+}
+
+/*
+** Delete a P4 value if necessary.
+*/
+static void freeP4(int p4type, void *p3){
+ if( p3 ){
+ switch( p4type ){
+ case P4_REAL:
+ case P4_INT64:
+ case P4_MPRINTF:
+ case P4_DYNAMIC:
+ case P4_KEYINFO:
+ case P4_KEYINFO_HANDOFF: {
+ sqlite3_free(p3);
+ break;
+ }
+ case P4_VDBEFUNC: {
+ VdbeFunc *pVdbeFunc = (VdbeFunc *)p3;
+ freeEphemeralFunction(pVdbeFunc->pFunc);
+ sqlite3VdbeDeleteAuxData(pVdbeFunc, 0);
+ sqlite3_free(pVdbeFunc);
+ break;
+ }
+ case P4_FUNCDEF: {
+ freeEphemeralFunction((FuncDef*)p3);
+ break;
+ }
+ case P4_MEM: {
+ sqlite3ValueFree((sqlite3_value*)p3);
+ break;
+ }
+ }
+ }
+}
+
+
+/*
+** Change N opcodes starting at addr to No-ops.
+*/
+SQLITE_PRIVATE void sqlite3VdbeChangeToNoop(Vdbe *p, int addr, int N){
+ if( p && p->aOp ){
+ VdbeOp *pOp = &p->aOp[addr];
+ while( N-- ){
+ freeP4(pOp->p4type, pOp->p4.p);
+ memset(pOp, 0, sizeof(pOp[0]));
+ pOp->opcode = OP_Noop;
+ pOp++;
+ }
+ }
+}
+
+/*
+** Change the value of the P4 operand for a specific instruction.
+** This routine is useful when a large program is loaded from a
+** static array using sqlite3VdbeAddOpList but we want to make a
+** few minor changes to the program.
+**
+** If n>=0 then the P4 operand is dynamic, meaning that a copy of
+** the string is made into memory obtained from sqlite3_malloc().
+** A value of n==0 means copy bytes of zP4 up to and including the
+** first null byte. If n>0 then copy n+1 bytes of zP4.
+**
+** If n==P4_KEYINFO it means that zP4 is a pointer to a KeyInfo structure.
+** A copy is made of the KeyInfo structure into memory obtained from
+** sqlite3_malloc, to be freed when the Vdbe is finalized.
+** n==P4_KEYINFO_HANDOFF indicates that zP4 points to a KeyInfo structure
+** stored in memory that the caller has obtained from sqlite3_malloc. The
+** caller should not free the allocation, it will be freed when the Vdbe is
+** finalized.
+**
+** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points
+** to a string or structure that is guaranteed to exist for the lifetime of
+** the Vdbe. In these cases we can just copy the pointer.
+**
+** If addr<0 then change P4 on the most recently inserted instruction.
+*/
+SQLITE_PRIVATE void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){
+ Op *pOp;
+ assert( p!=0 );
+ assert( p->magic==VDBE_MAGIC_INIT );
+ if( p->aOp==0 || p->db->mallocFailed ){
+ if (n != P4_KEYINFO) {
+ freeP4(n, (void*)*(char**)&zP4);
+ }
+ return;
+ }
+ assert( addr<p->nOp );
+ if( addr<0 ){
+ addr = p->nOp - 1;
+ if( addr<0 ) return;
+ }
+ pOp = &p->aOp[addr];
+ freeP4(pOp->p4type, pOp->p4.p);
+ pOp->p4.p = 0;
+ if( n==P4_INT32 ){
+ /* Note: this cast is safe, because the origin data point was an int
+ ** that was cast to a (const char *). */
+ pOp->p4.i = (int)zP4;
+ pOp->p4type = n;
+ }else if( zP4==0 ){
+ pOp->p4.p = 0;
+ pOp->p4type = P4_NOTUSED;
+ }else if( n==P4_KEYINFO ){
+ KeyInfo *pKeyInfo;
+ int nField, nByte;
+
+ nField = ((KeyInfo*)zP4)->nField;
+ nByte = sizeof(*pKeyInfo) + (nField-1)*sizeof(pKeyInfo->aColl[0]) + nField;
+ pKeyInfo = sqlite3_malloc( nByte );
+ pOp->p4.pKeyInfo = pKeyInfo;
+ if( pKeyInfo ){
+ memcpy(pKeyInfo, zP4, nByte);
+ /* In the current implementation, P4_KEYINFO is only ever used on
+ ** KeyInfo structures that have no aSortOrder component. Elements
+ ** with an aSortOrder always use P4_KEYINFO_HANDOFF. So we do not
+ ** need to bother with duplicating the aSortOrder. */
+ assert( pKeyInfo->aSortOrder==0 );
+#if 0
+ aSortOrder = pKeyInfo->aSortOrder;
+ if( aSortOrder ){
+ pKeyInfo->aSortOrder = (unsigned char*)&pKeyInfo->aColl[nField];
+ memcpy(pKeyInfo->aSortOrder, aSortOrder, nField);
+ }
+#endif
+ pOp->p4type = P4_KEYINFO;
+ }else{
+ p->db->mallocFailed = 1;
+ pOp->p4type = P4_NOTUSED;
+ }
+ }else if( n==P4_KEYINFO_HANDOFF ){
+ pOp->p4.p = (void*)zP4;
+ pOp->p4type = P4_KEYINFO;
+ }else if( n<0 ){
+ pOp->p4.p = (void*)zP4;
+ pOp->p4type = n;
+ }else{
+ if( n==0 ) n = strlen(zP4);
+ pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n);
+ pOp->p4type = P4_DYNAMIC;
+ }
+}
+
+#ifndef NDEBUG
+/*
+** Change the comment on the the most recently coded instruction.
+*/
+SQLITE_PRIVATE void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){
+ va_list ap;
+ assert( p->nOp>0 || p->aOp==0 );
+ assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed );
+ if( p->nOp ){
+ char **pz = &p->aOp[p->nOp-1].zComment;
+ va_start(ap, zFormat);
+ sqlite3_free(*pz);
+ *pz = sqlite3VMPrintf(p->db, zFormat, ap);
+ va_end(ap);
+ }
+}
+#endif
+
+/*
+** Return the opcode for a given address.
+*/
+SQLITE_PRIVATE VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){
+ assert( p->magic==VDBE_MAGIC_INIT );
+ assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed );
+ return ((addr>=0 && addr<p->nOp)?(&p->aOp[addr]):0);
+}
+
+#if !defined(SQLITE_OMIT_EXPLAIN) || !defined(NDEBUG) \
+ || defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
+/*
+** Compute a string that describes the P4 parameter for an opcode.
+** Use zTemp for any required temporary buffer space.
+*/
+static char *displayP4(Op *pOp, char *zTemp, int nTemp){
+ char *zP4 = zTemp;
+ assert( nTemp>=20 );
+ switch( pOp->p4type ){
+ case P4_KEYINFO: {
+ int i, j;
+ KeyInfo *pKeyInfo = pOp->p4.pKeyInfo;
+ sqlite3_snprintf(nTemp, zTemp, "keyinfo(%d", pKeyInfo->nField);
+ i = strlen(zTemp);
+ for(j=0; j<pKeyInfo->nField; j++){
+ CollSeq *pColl = pKeyInfo->aColl[j];
+ if( pColl ){
+ int n = strlen(pColl->zName);
+ if( i+n>nTemp-6 ){
+ memcpy(&zTemp[i],",...",4);
+ break;
+ }
+ zTemp[i++] = ',';
+ if( pKeyInfo->aSortOrder && pKeyInfo->aSortOrder[j] ){
+ zTemp[i++] = '-';
+ }
+ memcpy(&zTemp[i], pColl->zName,n+1);
+ i += n;
+ }else if( i+4<nTemp-6 ){
+ memcpy(&zTemp[i],",nil",4);
+ i += 4;
+ }
+ }
+ zTemp[i++] = ')';
+ zTemp[i] = 0;
+ assert( i<nTemp );
+ break;
+ }
+ case P4_COLLSEQ: {
+ CollSeq *pColl = pOp->p4.pColl;
+ sqlite3_snprintf(nTemp, zTemp, "collseq(%.20s)", pColl->zName);
+ break;
+ }
+ case P4_FUNCDEF: {
+ FuncDef *pDef = pOp->p4.pFunc;
+ sqlite3_snprintf(nTemp, zTemp, "%s(%d)", pDef->zName, pDef->nArg);
+ break;
+ }
+ case P4_INT64: {
+ sqlite3_snprintf(nTemp, zTemp, "%lld", *pOp->p4.pI64);
+ break;
+ }
+ case P4_INT32: {
+ sqlite3_snprintf(nTemp, zTemp, "%d", pOp->p4.i);
+ break;
+ }
+ case P4_REAL: {
+ sqlite3_snprintf(nTemp, zTemp, "%.16g", *pOp->p4.pReal);
+ break;
+ }
+ case P4_MEM: {
+ Mem *pMem = pOp->p4.pMem;
+ assert( (pMem->flags & MEM_Null)==0 );
+ if( pMem->flags & MEM_Str ){
+ zP4 = pMem->z;
+ }else if( pMem->flags & MEM_Int ){
+ sqlite3_snprintf(nTemp, zTemp, "%lld", pMem->u.i);
+ }else if( pMem->flags & MEM_Real ){
+ sqlite3_snprintf(nTemp, zTemp, "%.16g", pMem->r);
+ }
+ break;
+ }
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ case P4_VTAB: {
+ sqlite3_vtab *pVtab = pOp->p4.pVtab;
+ sqlite3_snprintf(nTemp, zTemp, "vtab:%p:%p", pVtab, pVtab->pModule);
+ break;
+ }
+#endif
+ default: {
+ zP4 = pOp->p4.z;
+ if( zP4==0 ){
+ zP4 = zTemp;
+ zTemp[0] = 0;
+ }
+ }
+ }
+ assert( zP4!=0 );
+ return zP4;
+}
+#endif
+
+/*
+** Declare to the Vdbe that the BTree object at db->aDb[i] is used.
+**
+*/
+SQLITE_PRIVATE void sqlite3VdbeUsesBtree(Vdbe *p, int i){
+ int mask;
+ assert( i>=0 && i<p->db->nDb );
+ assert( i<sizeof(p->btreeMask)*8 );
+ mask = 1<<i;
+ if( (p->btreeMask & mask)==0 ){
+ p->btreeMask |= mask;
+ sqlite3BtreeMutexArrayInsert(&p->aMutex, p->db->aDb[i].pBt);
+ }
+}
+
+
+#if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
+/*
+** Print a single opcode. This routine is used for debugging only.
+*/
+SQLITE_PRIVATE void sqlite3VdbePrintOp(FILE *pOut, int pc, Op *pOp){
+ char *zP4;
+ char zPtr[50];
+ static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-4s %.2X %s\n";
+ if( pOut==0 ) pOut = stdout;
+ zP4 = displayP4(pOp, zPtr, sizeof(zPtr));
+ fprintf(pOut, zFormat1, pc,
+ sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3, zP4, pOp->p5,
+#ifdef SQLITE_DEBUG
+ pOp->zComment ? pOp->zComment : ""
+#else
+ ""
+#endif
+ );
+ fflush(pOut);
+}
+#endif
+
+/*
+** Release an array of N Mem elements
+*/
+static void releaseMemArray(Mem *p, int N, int freebuffers){
+ if( p && N ){
+ sqlite3 *db = p->db;
+ int malloc_failed = db->mallocFailed;
+ while( N-->0 ){
+ assert( N<2 || p[0].db==p[1].db );
+ if( freebuffers ){
+ sqlite3VdbeMemRelease(p);
+ }else{
+ sqlite3VdbeMemReleaseExternal(p);
+ }
+ p->flags = MEM_Null;
+ p++;
+ }
+ db->mallocFailed = malloc_failed;
+ }
+}
+
+#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
+SQLITE_PRIVATE int sqlite3VdbeReleaseBuffers(Vdbe *p){
+ int ii;
+ int nFree = 0;
+ assert( sqlite3_mutex_held(p->db->mutex) );
+ for(ii=1; ii<=p->nMem; ii++){
+ Mem *pMem = &p->aMem[ii];
+ if( pMem->z && pMem->flags&MEM_Dyn ){
+ assert( !pMem->xDel );
+ nFree += sqlite3MallocSize(pMem->z);
+ sqlite3VdbeMemRelease(pMem);
+ }
+ }
+ return nFree;
+}
+#endif
+
+#ifndef SQLITE_OMIT_EXPLAIN
+/*
+** Give a listing of the program in the virtual machine.
+**
+** The interface is the same as sqlite3VdbeExec(). But instead of
+** running the code, it invokes the callback once for each instruction.
+** This feature is used to implement "EXPLAIN".
+**
+** When p->explain==1, each instruction is listed. When
+** p->explain==2, only OP_Explain instructions are listed and these
+** are shown in a different format. p->explain==2 is used to implement
+** EXPLAIN QUERY PLAN.
+*/
+SQLITE_PRIVATE int sqlite3VdbeList(
+ Vdbe *p /* The VDBE */
+){
+ sqlite3 *db = p->db;
+ int i;
+ int rc = SQLITE_OK;
+ Mem *pMem = p->pResultSet = &p->aMem[1];
+
+ assert( p->explain );
+ if( p->magic!=VDBE_MAGIC_RUN ) return SQLITE_MISUSE;
+ assert( db->magic==SQLITE_MAGIC_BUSY );
+ assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY );
+
+ /* Even though this opcode does not use dynamic strings for
+ ** the result, result columns may become dynamic if the user calls
+ ** sqlite3_column_text16(), causing a translation to UTF-16 encoding.
+ */
+ releaseMemArray(pMem, p->nMem, 1);
+
+ do{
+ i = p->pc++;
+ }while( i<p->nOp && p->explain==2 && p->aOp[i].opcode!=OP_Explain );
+ if( i>=p->nOp ){
+ p->rc = SQLITE_OK;
+ rc = SQLITE_DONE;
+ }else if( db->u1.isInterrupted ){
+ p->rc = SQLITE_INTERRUPT;
+ rc = SQLITE_ERROR;
+ sqlite3SetString(&p->zErrMsg, sqlite3ErrStr(p->rc), (char*)0);
+ }else{
+ char *z;
+ Op *pOp = &p->aOp[i];
+ if( p->explain==1 ){
+ pMem->flags = MEM_Int;
+ pMem->type = SQLITE_INTEGER;
+ pMem->u.i = i; /* Program counter */
+ pMem++;
+
+ pMem->flags = MEM_Static|MEM_Str|MEM_Term;
+ pMem->z = (char*)sqlite3OpcodeName(pOp->opcode); /* Opcode */
+ assert( pMem->z!=0 );
+ pMem->n = strlen(pMem->z);
+ pMem->type = SQLITE_TEXT;
+ pMem->enc = SQLITE_UTF8;
+ pMem++;
+ }
+
+ pMem->flags = MEM_Int;
+ pMem->u.i = pOp->p1; /* P1 */
+ pMem->type = SQLITE_INTEGER;
+ pMem++;
+
+ pMem->flags = MEM_Int;
+ pMem->u.i = pOp->p2; /* P2 */
+ pMem->type = SQLITE_INTEGER;
+ pMem++;
+
+ if( p->explain==1 ){
+ pMem->flags = MEM_Int;
+ pMem->u.i = pOp->p3; /* P3 */
+ pMem->type = SQLITE_INTEGER;
+ pMem++;
+ }
+
+ if( sqlite3VdbeMemGrow(pMem, 32, 0) ){ /* P4 */
+ p->db->mallocFailed = 1;
+ return SQLITE_NOMEM;
+ }
+ pMem->flags = MEM_Dyn|MEM_Str|MEM_Term;
+ z = displayP4(pOp, pMem->z, 32);
+ if( z!=pMem->z ){
+ sqlite3VdbeMemSetStr(pMem, z, -1, SQLITE_UTF8, 0);
+ }else{
+ assert( pMem->z!=0 );
+ pMem->n = strlen(pMem->z);
+ pMem->enc = SQLITE_UTF8;
+ }
+ pMem->type = SQLITE_TEXT;
+ pMem++;
+
+ if( p->explain==1 ){
+ if( sqlite3VdbeMemGrow(pMem, 4, 0) ){
+ p->db->mallocFailed = 1;
+ return SQLITE_NOMEM;
+ }
+ pMem->flags = MEM_Dyn|MEM_Str|MEM_Term;
+ pMem->n = 2;
+ sqlite3_snprintf(3, pMem->z, "%.2x", pOp->p5); /* P5 */
+ pMem->type = SQLITE_TEXT;
+ pMem->enc = SQLITE_UTF8;
+ pMem++;
+
+#ifdef SQLITE_DEBUG
+ if( pOp->zComment ){
+ pMem->flags = MEM_Str|MEM_Term;
+ pMem->z = pOp->zComment;
+ pMem->n = strlen(pMem->z);
+ pMem->enc = SQLITE_UTF8;
+ }else
+#endif
+ {
+ pMem->flags = MEM_Null; /* Comment */
+ pMem->type = SQLITE_NULL;
+ }
+ }
+
+ p->nResColumn = 8 - 5*(p->explain-1);
+ p->rc = SQLITE_OK;
+ rc = SQLITE_ROW;
+ }
+ return rc;
+}
+#endif /* SQLITE_OMIT_EXPLAIN */
+
+#ifdef SQLITE_DEBUG
+/*
+** Print the SQL that was used to generate a VDBE program.
+*/
+SQLITE_PRIVATE void sqlite3VdbePrintSql(Vdbe *p){
+ int nOp = p->nOp;
+ VdbeOp *pOp;
+ if( nOp<1 ) return;
+ pOp = &p->aOp[0];
+ if( pOp->opcode==OP_Trace && pOp->p4.z!=0 ){
+ const char *z = pOp->p4.z;
+ while( isspace(*(u8*)z) ) z++;
+ printf("SQL: [%s]\n", z);
+ }
+}
+#endif
+
+#if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE)
+/*
+** Print an IOTRACE message showing SQL content.
+*/
+SQLITE_PRIVATE void sqlite3VdbeIOTraceSql(Vdbe *p){
+ int nOp = p->nOp;
+ VdbeOp *pOp;
+ if( sqlite3IoTrace==0 ) return;
+ if( nOp<1 ) return;
+ pOp = &p->aOp[0];
+ if( pOp->opcode==OP_Trace && pOp->p4.z!=0 ){
+ int i, j;
+ char z[1000];
+ sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z);
+ for(i=0; isspace((unsigned char)z[i]); i++){}
+ for(j=0; z[i]; i++){
+ if( isspace((unsigned char)z[i]) ){
+ if( z[i-1]!=' ' ){
+ z[j++] = ' ';
+ }
+ }else{
+ z[j++] = z[i];
+ }
+ }
+ z[j] = 0;
+ sqlite3IoTrace("SQL %s\n", z);
+ }
+}
+#endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */
+
+
+/*
+** Prepare a virtual machine for execution. This involves things such
+** as allocating stack space and initializing the program counter.
+** After the VDBE has be prepped, it can be executed by one or more
+** calls to sqlite3VdbeExec().
+**
+** This is the only way to move a VDBE from VDBE_MAGIC_INIT to
+** VDBE_MAGIC_RUN.
+*/
+SQLITE_PRIVATE void sqlite3VdbeMakeReady(
+ Vdbe *p, /* The VDBE */
+ int nVar, /* Number of '?' see in the SQL statement */
+ int nMem, /* Number of memory cells to allocate */
+ int nCursor, /* Number of cursors to allocate */
+ int isExplain /* True if the EXPLAIN keywords is present */
+){
+ int n;
+ sqlite3 *db = p->db;
+
+ assert( p!=0 );
+ assert( p->magic==VDBE_MAGIC_INIT );
+
+ /* There should be at least one opcode.
+ */
+ assert( p->nOp>0 );
+
+ /* Set the magic to VDBE_MAGIC_RUN sooner rather than later. This
+ * is because the call to resizeOpArray() below may shrink the
+ * p->aOp[] array to save memory if called when in VDBE_MAGIC_RUN
+ * state.
+ */
+ p->magic = VDBE_MAGIC_RUN;
+
+ /* For each cursor required, also allocate a memory cell. Memory
+ ** cells (nMem+1-nCursor)..nMem, inclusive, will never be used by
+ ** the vdbe program. Instead they are used to allocate space for
+ ** Cursor/BtCursor structures. The blob of memory associated with
+ ** cursor 0 is stored in memory cell nMem. Memory cell (nMem-1)
+ ** stores the blob of memory associated with cursor 1, etc.
+ **
+ ** See also: allocateCursor().
+ */
+ nMem += nCursor;
+
+ /*
+ ** Allocation space for registers.
+ */
+ if( p->aMem==0 ){
+ int nArg; /* Maximum number of args passed to a user function. */
+ resolveP2Values(p, &nArg);
+ /*resizeOpArray(p, p->nOp);*/
+ assert( nVar>=0 );
+ if( isExplain && nMem<10 ){
+ p->nMem = nMem = 10;
+ }
+ p->aMem = sqlite3DbMallocZero(db,
+ nMem*sizeof(Mem) /* aMem */
+ + nVar*sizeof(Mem) /* aVar */
+ + nArg*sizeof(Mem*) /* apArg */
+ + nVar*sizeof(char*) /* azVar */
+ + nCursor*sizeof(Cursor*) + 1 /* apCsr */
+ );
+ if( !db->mallocFailed ){
+ p->aMem--; /* aMem[] goes from 1..nMem */
+ p->nMem = nMem; /* not from 0..nMem-1 */
+ p->aVar = &p->aMem[nMem+1];
+ p->nVar = nVar;
+ p->okVar = 0;
+ p->apArg = (Mem**)&p->aVar[nVar];
+ p->azVar = (char**)&p->apArg[nArg];
+ p->apCsr = (Cursor**)&p->azVar[nVar];
+ p->nCursor = nCursor;
+ for(n=0; n<nVar; n++){
+ p->aVar[n].flags = MEM_Null;
+ p->aVar[n].db = db;
+ }
+ for(n=1; n<=nMem; n++){
+ p->aMem[n].flags = MEM_Null;
+ p->aMem[n].db = db;
+ }
+ }
+ }
+#ifdef SQLITE_DEBUG
+ for(n=1; n<p->nMem; n++){
+ assert( p->aMem[n].db==db );
+ }
+#endif
+
+ p->pc = -1;
+ p->rc = SQLITE_OK;
+ p->uniqueCnt = 0;
+ p->returnDepth = 0;
+ p->errorAction = OE_Abort;
+ p->explain |= isExplain;
+ p->magic = VDBE_MAGIC_RUN;
+ p->nChange = 0;
+ p->cacheCtr = 1;
+ p->minWriteFileFormat = 255;
+ p->openedStatement = 0;
+#ifdef VDBE_PROFILE
+ {
+ int i;
+ for(i=0; i<p->nOp; i++){
+ p->aOp[i].cnt = 0;
+ p->aOp[i].cycles = 0;
+ }
+ }
+#endif
+}
+
+/*
+** Close a VDBE cursor and release all the resources that cursor
+** happens to hold.
+*/
+SQLITE_PRIVATE void sqlite3VdbeFreeCursor(Vdbe *p, Cursor *pCx){
+ if( pCx==0 ){
+ return;
+ }
+ if( pCx->pCursor ){
+ sqlite3BtreeCloseCursor(pCx->pCursor);
+ }
+ if( pCx->pBt ){
+ sqlite3BtreeClose(pCx->pBt);
+ }
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ if( pCx->pVtabCursor ){
+ sqlite3_vtab_cursor *pVtabCursor = pCx->pVtabCursor;
+ const sqlite3_module *pModule = pCx->pModule;
+ p->inVtabMethod = 1;
+ (void)sqlite3SafetyOff(p->db);
+ pModule->xClose(pVtabCursor);
+ (void)sqlite3SafetyOn(p->db);
+ p->inVtabMethod = 0;
+ }
+#endif
+ if( !pCx->ephemPseudoTable ){
+ sqlite3_free(pCx->pData);
+ }
+ /* memset(pCx, 0, sizeof(Cursor)); */
+ /* sqlite3_free(pCx->aType); */
+ /* sqlite3_free(pCx); */
+}
+
+/*
+** Close all cursors except for VTab cursors that are currently
+** in use.
+*/
+static void closeAllCursorsExceptActiveVtabs(Vdbe *p){
+ int i;
+ if( p->apCsr==0 ) return;
+ for(i=0; i<p->nCursor; i++){
+ Cursor *pC = p->apCsr[i];
+ if( pC && (!p->inVtabMethod || !pC->pVtabCursor) ){
+ sqlite3VdbeFreeCursor(p, pC);
+ p->apCsr[i] = 0;
+ }
+ }
+}
+
+/*
+** Clean up the VM after execution.
+**
+** This routine will automatically close any cursors, lists, and/or
+** sorters that were left open. It also deletes the values of
+** variables in the aVar[] array.
+*/
+static void Cleanup(Vdbe *p, int freebuffers){
+ int i;
+ closeAllCursorsExceptActiveVtabs(p);
+ for(i=1; i<=p->nMem; i++){
+ MemSetTypeFlag(&p->aMem[i], MEM_Null);
+ }
+ releaseMemArray(&p->aMem[1], p->nMem, freebuffers);
+ sqlite3VdbeFifoClear(&p->sFifo);
+ if( p->contextStack ){
+ for(i=0; i<p->contextStackTop; i++){
+ sqlite3VdbeFifoClear(&p->contextStack[i].sFifo);
+ }
+ sqlite3_free(p->contextStack);
+ }
+ p->contextStack = 0;
+ p->contextStackDepth = 0;
+ p->contextStackTop = 0;
+ sqlite3_free(p->zErrMsg);
+ p->zErrMsg = 0;
+ p->pResultSet = 0;
+}
+
+/*
+** Set the number of result columns that will be returned by this SQL
+** statement. This is now set at compile time, rather than during
+** execution of the vdbe program so that sqlite3_column_count() can
+** be called on an SQL statement before sqlite3_step().
+*/
+SQLITE_PRIVATE void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){
+ Mem *pColName;
+ int n;
+
+ releaseMemArray(p->aColName, p->nResColumn*COLNAME_N, 1);
+ sqlite3_free(p->aColName);
+ n = nResColumn*COLNAME_N;
+ p->nResColumn = nResColumn;
+ p->aColName = pColName = (Mem*)sqlite3DbMallocZero(p->db, sizeof(Mem)*n );
+ if( p->aColName==0 ) return;
+ while( n-- > 0 ){
+ pColName->flags = MEM_Null;
+ pColName->db = p->db;
+ pColName++;
+ }
+}
+
+/*
+** Set the name of the idx'th column to be returned by the SQL statement.
+** zName must be a pointer to a nul terminated string.
+**
+** This call must be made after a call to sqlite3VdbeSetNumCols().
+**
+** If N==P4_STATIC it means that zName is a pointer to a constant static
+** string and we can just copy the pointer. If it is P4_DYNAMIC, then
+** the string is freed using sqlite3_free() when the vdbe is finished with
+** it. Otherwise, N bytes of zName are copied.
+*/
+SQLITE_PRIVATE int sqlite3VdbeSetColName(Vdbe *p, int idx, int var, const char *zName, int N){
+ int rc;
+ Mem *pColName;
+ assert( idx<p->nResColumn );
+ assert( var<COLNAME_N );
+ if( p->db->mallocFailed ) return SQLITE_NOMEM;
+ assert( p->aColName!=0 );
+ pColName = &(p->aColName[idx+var*p->nResColumn]);
+ if( N==P4_DYNAMIC || N==P4_STATIC ){
+ rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, SQLITE_STATIC);
+ }else{
+ rc = sqlite3VdbeMemSetStr(pColName, zName, N, SQLITE_UTF8,SQLITE_TRANSIENT);
+ }
+ if( rc==SQLITE_OK && N==P4_DYNAMIC ){
+ pColName->flags &= (~MEM_Static);
+ pColName->zMalloc = pColName->z;
+ }
+ return rc;
+}
+
+/*
+** A read or write transaction may or may not be active on database handle
+** db. If a transaction is active, commit it. If there is a
+** write-transaction spanning more than one database file, this routine
+** takes care of the master journal trickery.
+*/
+static int vdbeCommit(sqlite3 *db){
+ int i;
+ int nTrans = 0; /* Number of databases with an active write-transaction */
+ int rc = SQLITE_OK;
+ int needXcommit = 0;
+
+ /* Before doing anything else, call the xSync() callback for any
+ ** virtual module tables written in this transaction. This has to
+ ** be done before determining whether a master journal file is
+ ** required, as an xSync() callback may add an attached database
+ ** to the transaction.
+ */
+ rc = sqlite3VtabSync(db, rc);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+
+ /* This loop determines (a) if the commit hook should be invoked and
+ ** (b) how many database files have open write transactions, not
+ ** including the temp database. (b) is important because if more than
+ ** one database file has an open write transaction, a master journal
+ ** file is required for an atomic commit.
+ */
+ for(i=0; i<db->nDb; i++){
+ Btree *pBt = db->aDb[i].pBt;
+ if( sqlite3BtreeIsInTrans(pBt) ){
+ needXcommit = 1;
+ if( i!=1 ) nTrans++;
+ }
+ }
+
+ /* If there are any write-transactions at all, invoke the commit hook */
+ if( needXcommit && db->xCommitCallback ){
+ (void)sqlite3SafetyOff(db);
+ rc = db->xCommitCallback(db->pCommitArg);
+ (void)sqlite3SafetyOn(db);
+ if( rc ){
+ return SQLITE_CONSTRAINT;
+ }
+ }
+
+ /* The simple case - no more than one database file (not counting the
+ ** TEMP database) has a transaction active. There is no need for the
+ ** master-journal.
+ **
+ ** If the return value of sqlite3BtreeGetFilename() is a zero length
+ ** string, it means the main database is :memory:. In that case we do
+ ** not support atomic multi-file commits, so use the simple case then
+ ** too.
+ */
+ if( 0==strlen(sqlite3BtreeGetFilename(db->aDb[0].pBt)) || nTrans<=1 ){
+ for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
+ Btree *pBt = db->aDb[i].pBt;
+ if( pBt ){
+ rc = sqlite3BtreeCommitPhaseOne(pBt, 0);
+ }
+ }
+
+ /* Do the commit only if all databases successfully complete phase 1.
+ ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an
+ ** IO error while deleting or truncating a journal file. It is unlikely,
+ ** but could happen. In this case abandon processing and return the error.
+ */
+ for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
+ Btree *pBt = db->aDb[i].pBt;
+ if( pBt ){
+ rc = sqlite3BtreeCommitPhaseTwo(pBt);
+ }
+ }
+ if( rc==SQLITE_OK ){
+ sqlite3VtabCommit(db);
+ }
+ }
+
+ /* The complex case - There is a multi-file write-transaction active.
+ ** This requires a master journal file to ensure the transaction is
+ ** committed atomicly.
+ */
+#ifndef SQLITE_OMIT_DISKIO
+ else{
+ sqlite3_vfs *pVfs = db->pVfs;
+ int needSync = 0;
+ char *zMaster = 0; /* File-name for the master journal */
+ char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt);
+ sqlite3_file *pMaster = 0;
+ i64 offset = 0;
+
+ /* Select a master journal file name */
+ do {
+ u32 random;
+ sqlite3_free(zMaster);
+ sqlite3_randomness(sizeof(random), &random);
+ zMaster = sqlite3MPrintf(db, "%s-mj%08X", zMainFile, random&0x7fffffff);
+ if( !zMaster ){
+ return SQLITE_NOMEM;
+ }
+ rc = sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS);
+ }while( rc==1 );
+ if( rc!=0 ){
+ rc = SQLITE_IOERR_NOMEM;
+ }else{
+ /* Open the master journal. */
+ rc = sqlite3OsOpenMalloc(pVfs, zMaster, &pMaster,
+ SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|
+ SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_MASTER_JOURNAL, 0
+ );
+ }
+ if( rc!=SQLITE_OK ){
+ sqlite3_free(zMaster);
+ return rc;
+ }
+
+ /* Write the name of each database file in the transaction into the new
+ ** master journal file. If an error occurs at this point close
+ ** and delete the master journal file. All the individual journal files
+ ** still have 'null' as the master journal pointer, so they will roll
+ ** back independently if a failure occurs.
+ */
+ for(i=0; i<db->nDb; i++){
+ Btree *pBt = db->aDb[i].pBt;
+ if( i==1 ) continue; /* Ignore the TEMP database */
+ if( sqlite3BtreeIsInTrans(pBt) ){
+ char const *zFile = sqlite3BtreeGetJournalname(pBt);
+ if( zFile[0]==0 ) continue; /* Ignore :memory: databases */
+ if( !needSync && !sqlite3BtreeSyncDisabled(pBt) ){
+ needSync = 1;
+ }
+ rc = sqlite3OsWrite(pMaster, zFile, strlen(zFile)+1, offset);
+ offset += strlen(zFile)+1;
+ if( rc!=SQLITE_OK ){
+ sqlite3OsCloseFree(pMaster);
+ sqlite3OsDelete(pVfs, zMaster, 0);
+ sqlite3_free(zMaster);
+ return rc;
+ }
+ }
+ }
+
+ /* Sync the master journal file. If the IOCAP_SEQUENTIAL device
+ ** flag is set this is not required.
+ */
+ zMainFile = sqlite3BtreeGetDirname(db->aDb[0].pBt);
+ if( (needSync
+ && (0==(sqlite3OsDeviceCharacteristics(pMaster)&SQLITE_IOCAP_SEQUENTIAL))
+ && (rc=sqlite3OsSync(pMaster, SQLITE_SYNC_NORMAL))!=SQLITE_OK) ){
+ sqlite3OsCloseFree(pMaster);
+ sqlite3OsDelete(pVfs, zMaster, 0);
+ sqlite3_free(zMaster);
+ return rc;
+ }
+
+ /* Sync all the db files involved in the transaction. The same call
+ ** sets the master journal pointer in each individual journal. If
+ ** an error occurs here, do not delete the master journal file.
+ **
+ ** If the error occurs during the first call to
+ ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the
+ ** master journal file will be orphaned. But we cannot delete it,
+ ** in case the master journal file name was written into the journal
+ ** file before the failure occured.
+ */
+ for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
+ Btree *pBt = db->aDb[i].pBt;
+ if( pBt ){
+ rc = sqlite3BtreeCommitPhaseOne(pBt, zMaster);
+ }
+ }
+ sqlite3OsCloseFree(pMaster);
+ if( rc!=SQLITE_OK ){
+ sqlite3_free(zMaster);
+ return rc;
+ }
+
+ /* Delete the master journal file. This commits the transaction. After
+ ** doing this the directory is synced again before any individual
+ ** transaction files are deleted.
+ */
+ rc = sqlite3OsDelete(pVfs, zMaster, 1);
+ sqlite3_free(zMaster);
+ zMaster = 0;
+ if( rc ){
+ return rc;
+ }
+
+ /* All files and directories have already been synced, so the following
+ ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and
+ ** deleting or truncating journals. If something goes wrong while
+ ** this is happening we don't really care. The integrity of the
+ ** transaction is already guaranteed, but some stray 'cold' journals
+ ** may be lying around. Returning an error code won't help matters.
+ */
+ disable_simulated_io_errors();
+ sqlite3FaultBeginBenign(SQLITE_FAULTINJECTOR_MALLOC);
+ for(i=0; i<db->nDb; i++){
+ Btree *pBt = db->aDb[i].pBt;
+ if( pBt ){
+ sqlite3BtreeCommitPhaseTwo(pBt);
+ }
+ }
+ sqlite3FaultEndBenign(SQLITE_FAULTINJECTOR_MALLOC);
+ enable_simulated_io_errors();
+
+ sqlite3VtabCommit(db);
+ }
+#endif
+
+ return rc;
+}
+
+/*
+** This routine checks that the sqlite3.activeVdbeCnt count variable
+** matches the number of vdbe's in the list sqlite3.pVdbe that are
+** currently active. An assertion fails if the two counts do not match.
+** This is an internal self-check only - it is not an essential processing
+** step.
+**
+** This is a no-op if NDEBUG is defined.
+*/
+#ifndef NDEBUG
+static void checkActiveVdbeCnt(sqlite3 *db){
+ Vdbe *p;
+ int cnt = 0;
+ p = db->pVdbe;
+ while( p ){
+ if( p->magic==VDBE_MAGIC_RUN && p->pc>=0 ){
+ cnt++;
+ }
+ p = p->pNext;
+ }
+ assert( cnt==db->activeVdbeCnt );
+}
+#else
+#define checkActiveVdbeCnt(x)
+#endif
+
+/*
+** For every Btree that in database connection db which
+** has been modified, "trip" or invalidate each cursor in
+** that Btree might have been modified so that the cursor
+** can never be used again. This happens when a rollback
+*** occurs. We have to trip all the other cursors, even
+** cursor from other VMs in different database connections,
+** so that none of them try to use the data at which they
+** were pointing and which now may have been changed due
+** to the rollback.
+**
+** Remember that a rollback can delete tables complete and
+** reorder rootpages. So it is not sufficient just to save
+** the state of the cursor. We have to invalidate the cursor
+** so that it is never used again.
+*/
+static void invalidateCursorsOnModifiedBtrees(sqlite3 *db){
+ int i;
+ for(i=0; i<db->nDb; i++){
+ Btree *p = db->aDb[i].pBt;
+ if( p && sqlite3BtreeIsInTrans(p) ){
+ sqlite3BtreeTripAllCursors(p, SQLITE_ABORT);
+ }
+ }
+}
+
+/*
+** This routine is called the when a VDBE tries to halt. If the VDBE
+** has made changes and is in autocommit mode, then commit those
+** changes. If a rollback is needed, then do the rollback.
+**
+** This routine is the only way to move the state of a VM from
+** SQLITE_MAGIC_RUN to SQLITE_MAGIC_HALT. It is harmless to
+** call this on a VM that is in the SQLITE_MAGIC_HALT state.
+**
+** Return an error code. If the commit could not complete because of
+** lock contention, return SQLITE_BUSY. If SQLITE_BUSY is returned, it
+** means the close did not happen and needs to be repeated.
+*/
+SQLITE_PRIVATE int sqlite3VdbeHalt(Vdbe *p){
+ sqlite3 *db = p->db;
+ int i;
+ int (*xFunc)(Btree *pBt) = 0; /* Function to call on each btree backend */
+ int isSpecialError; /* Set to true if SQLITE_NOMEM or IOERR */
+
+ /* This function contains the logic that determines if a statement or
+ ** transaction will be committed or rolled back as a result of the
+ ** execution of this virtual machine.
+ **
+ ** If any of the following errors occur:
+ **
+ ** SQLITE_NOMEM
+ ** SQLITE_IOERR
+ ** SQLITE_FULL
+ ** SQLITE_INTERRUPT
+ **
+ ** Then the internal cache might have been left in an inconsistent
+ ** state. We need to rollback the statement transaction, if there is
+ ** one, or the complete transaction if there is no statement transaction.
+ */
+
+ if( p->db->mallocFailed ){
+ p->rc = SQLITE_NOMEM;
+ }
+ closeAllCursorsExceptActiveVtabs(p);
+ if( p->magic!=VDBE_MAGIC_RUN ){
+ return SQLITE_OK;
+ }
+ checkActiveVdbeCnt(db);
+
+ /* No commit or rollback needed if the program never started */
+ if( p->pc>=0 ){
+ int mrc; /* Primary error code from p->rc */
+
+ /* Lock all btrees used by the statement */
+ sqlite3BtreeMutexArrayEnter(&p->aMutex);
+
+ /* Check for one of the special errors */
+ mrc = p->rc & 0xff;
+ isSpecialError = mrc==SQLITE_NOMEM || mrc==SQLITE_IOERR
+ || mrc==SQLITE_INTERRUPT || mrc==SQLITE_FULL;
+ if( isSpecialError ){
+ /* This loop does static analysis of the query to see which of the
+ ** following three categories it falls into:
+ **
+ ** Read-only
+ ** Query with statement journal
+ ** Query without statement journal
+ **
+ ** We could do something more elegant than this static analysis (i.e.
+ ** store the type of query as part of the compliation phase), but
+ ** handling malloc() or IO failure is a fairly obscure edge case so
+ ** this is probably easier. Todo: Might be an opportunity to reduce
+ ** code size a very small amount though...
+ */
+ int notReadOnly = 0;
+ int isStatement = 0;
+ assert(p->aOp || p->nOp==0);
+ for(i=0; i<p->nOp; i++){
+ switch( p->aOp[i].opcode ){
+ case OP_Transaction:
+ notReadOnly |= p->aOp[i].p2;
+ break;
+ case OP_Statement:
+ isStatement = 1;
+ break;
+ }
+ }
+
+
+ /* If the query was read-only, we need do no rollback at all. Otherwise,
+ ** proceed with the special handling.
+ */
+ if( notReadOnly || mrc!=SQLITE_INTERRUPT ){
+ if( p->rc==SQLITE_IOERR_BLOCKED && isStatement ){
+ xFunc = sqlite3BtreeRollbackStmt;
+ p->rc = SQLITE_BUSY;
+ } else if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && isStatement ){
+ xFunc = sqlite3BtreeRollbackStmt;
+ }else{
+ /* We are forced to roll back the active transaction. Before doing
+ ** so, abort any other statements this handle currently has active.
+ */
+ invalidateCursorsOnModifiedBtrees(db);
+ sqlite3RollbackAll(db);
+ db->autoCommit = 1;
+ }
+ }
+ }
+
+ /* If the auto-commit flag is set and this is the only active vdbe, then
+ ** we do either a commit or rollback of the current transaction.
+ **
+ ** Note: This block also runs if one of the special errors handled
+ ** above has occured.
+ */
+ if( db->autoCommit && db->activeVdbeCnt==1 ){
+ if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){
+ /* The auto-commit flag is true, and the vdbe program was
+ ** successful or hit an 'OR FAIL' constraint. This means a commit
+ ** is required.
+ */
+ int rc = vdbeCommit(db);
+ if( rc==SQLITE_BUSY ){
+ sqlite3BtreeMutexArrayLeave(&p->aMutex);
+ return SQLITE_BUSY;
+ }else if( rc!=SQLITE_OK ){
+ p->rc = rc;
+ sqlite3RollbackAll(db);
+ }else{
+ sqlite3CommitInternalChanges(db);
+ }
+ }else{
+ sqlite3RollbackAll(db);
+ }
+ }else if( !xFunc ){
+ if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){
+ if( p->openedStatement ){
+ xFunc = sqlite3BtreeCommitStmt;
+ }
+ }else if( p->errorAction==OE_Abort ){
+ xFunc = sqlite3BtreeRollbackStmt;
+ }else{
+ invalidateCursorsOnModifiedBtrees(db);
+ sqlite3RollbackAll(db);
+ db->autoCommit = 1;
+ }
+ }
+
+ /* If xFunc is not NULL, then it is one of sqlite3BtreeRollbackStmt or
+ ** sqlite3BtreeCommitStmt. Call it once on each backend. If an error occurs
+ ** and the return code is still SQLITE_OK, set the return code to the new
+ ** error value.
+ */
+ assert(!xFunc ||
+ xFunc==sqlite3BtreeCommitStmt ||
+ xFunc==sqlite3BtreeRollbackStmt
+ );
+ for(i=0; xFunc && i<db->nDb; i++){
+ int rc;
+ Btree *pBt = db->aDb[i].pBt;
+ if( pBt ){
+ rc = xFunc(pBt);
+ if( rc && (p->rc==SQLITE_OK || p->rc==SQLITE_CONSTRAINT) ){
+ p->rc = rc;
+ sqlite3SetString(&p->zErrMsg, 0);
+ }
+ }
+ }
+
+ /* If this was an INSERT, UPDATE or DELETE and the statement was committed,
+ ** set the change counter.
+ */
+ if( p->changeCntOn && p->pc>=0 ){
+ if( !xFunc || xFunc==sqlite3BtreeCommitStmt ){
+ sqlite3VdbeSetChanges(db, p->nChange);
+ }else{
+ sqlite3VdbeSetChanges(db, 0);
+ }
+ p->nChange = 0;
+ }
+
+ /* Rollback or commit any schema changes that occurred. */
+ if( p->rc!=SQLITE_OK && db->flags&SQLITE_InternChanges ){
+ sqlite3ResetInternalSchema(db, 0);
+ db->flags = (db->flags | SQLITE_InternChanges);
+ }
+
+ /* Release the locks */
+ sqlite3BtreeMutexArrayLeave(&p->aMutex);
+ }
+
+ /* We have successfully halted and closed the VM. Record this fact. */
+ if( p->pc>=0 ){
+ db->activeVdbeCnt--;
+ }
+ p->magic = VDBE_MAGIC_HALT;
+ checkActiveVdbeCnt(db);
+ if( p->db->mallocFailed ){
+ p->rc = SQLITE_NOMEM;
+ }
+
+ return SQLITE_OK;
+}
+
+
+/*
+** Each VDBE holds the result of the most recent sqlite3_step() call
+** in p->rc. This routine sets that result back to SQLITE_OK.
+*/
+SQLITE_PRIVATE void sqlite3VdbeResetStepResult(Vdbe *p){
+ p->rc = SQLITE_OK;
+}
+
+/*
+** Clean up a VDBE after execution but do not delete the VDBE just yet.
+** Write any error messages into *pzErrMsg. Return the result code.
+**
+** After this routine is run, the VDBE should be ready to be executed
+** again.
+**
+** To look at it another way, this routine resets the state of the
+** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to
+** VDBE_MAGIC_INIT.
+*/
+SQLITE_PRIVATE int sqlite3VdbeReset(Vdbe *p, int freebuffers){
+ sqlite3 *db;
+ db = p->db;
+
+ /* If the VM did not run to completion or if it encountered an
+ ** error, then it might not have been halted properly. So halt
+ ** it now.
+ */
+ (void)sqlite3SafetyOn(db);
+ sqlite3VdbeHalt(p);
+ (void)sqlite3SafetyOff(db);
+
+ /* If the VDBE has be run even partially, then transfer the error code
+ ** and error message from the VDBE into the main database structure. But
+ ** if the VDBE has just been set to run but has not actually executed any
+ ** instructions yet, leave the main database error information unchanged.
+ */
+ if( p->pc>=0 ){
+ if( p->zErrMsg ){
+ sqlite3ValueSetStr(db->pErr,-1,p->zErrMsg,SQLITE_UTF8,sqlite3_free);
+ db->errCode = p->rc;
+ p->zErrMsg = 0;
+ }else if( p->rc ){
+ sqlite3Error(db, p->rc, 0);
+ }else{
+ sqlite3Error(db, SQLITE_OK, 0);
+ }
+ }else if( p->rc && p->expired ){
+ /* The expired flag was set on the VDBE before the first call
+ ** to sqlite3_step(). For consistency (since sqlite3_step() was
+ ** called), set the database error in this case as well.
+ */
+ sqlite3Error(db, p->rc, 0);
+ sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, sqlite3_free);
+ p->zErrMsg = 0;
+ }
+
+ /* Reclaim all memory used by the VDBE
+ */
+ Cleanup(p, freebuffers);
+
+ /* Save profiling information from this VDBE run.
+ */
+#ifdef VDBE_PROFILE
+ {
+ FILE *out = fopen("vdbe_profile.out", "a");
+ if( out ){
+ int i;
+ fprintf(out, "---- ");
+ for(i=0; i<p->nOp; i++){
+ fprintf(out, "%02x", p->aOp[i].opcode);
+ }
+ fprintf(out, "\n");
+ for(i=0; i<p->nOp; i++){
+ fprintf(out, "%6d %10lld %8lld ",
+ p->aOp[i].cnt,
+ p->aOp[i].cycles,
+ p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0
+ );
+ sqlite3VdbePrintOp(out, i, &p->aOp[i]);
+ }
+ fclose(out);
+ }
+ }
+#endif
+ p->magic = VDBE_MAGIC_INIT;
+ p->aborted = 0;
+ return p->rc & db->errMask;
+}
+
+/*
+** Clean up and delete a VDBE after execution. Return an integer which is
+** the result code. Write any error message text into *pzErrMsg.
+*/
+SQLITE_PRIVATE int sqlite3VdbeFinalize(Vdbe *p){
+ int rc = SQLITE_OK;
+ if( p->magic==VDBE_MAGIC_RUN || p->magic==VDBE_MAGIC_HALT ){
+ rc = sqlite3VdbeReset(p, 1);
+ assert( (rc & p->db->errMask)==rc );
+ }else if( p->magic!=VDBE_MAGIC_INIT ){
+ return SQLITE_MISUSE;
+ }
+ releaseMemArray(&p->aMem[1], p->nMem, 1);
+ sqlite3VdbeDelete(p);
+ return rc;
+}
+
+/*
+** Call the destructor for each auxdata entry in pVdbeFunc for which
+** the corresponding bit in mask is clear. Auxdata entries beyond 31
+** are always destroyed. To destroy all auxdata entries, call this
+** routine with mask==0.
+*/
+SQLITE_PRIVATE void sqlite3VdbeDeleteAuxData(VdbeFunc *pVdbeFunc, int mask){
+ int i;
+ for(i=0; i<pVdbeFunc->nAux; i++){
+ struct AuxData *pAux = &pVdbeFunc->apAux[i];
+ if( (i>31 || !(mask&(1<<i))) && pAux->pAux ){
+ if( pAux->xDelete ){
+ pAux->xDelete(pAux->pAux);
+ }
+ pAux->pAux = 0;
+ }
+ }
+}
+
+/*
+** Delete an entire VDBE.
+*/
+SQLITE_PRIVATE void sqlite3VdbeDelete(Vdbe *p){
+ int i;
+ if( p==0 ) return;
+ Cleanup(p, 1);
+ if( p->pPrev ){
+ p->pPrev->pNext = p->pNext;
+ }else{
+ assert( p->db->pVdbe==p );
+ p->db->pVdbe = p->pNext;
+ }
+ if( p->pNext ){
+ p->pNext->pPrev = p->pPrev;
+ }
+ if( p->aOp ){
+ Op *pOp = p->aOp;
+ for(i=0; i<p->nOp; i++, pOp++){
+ freeP4(pOp->p4type, pOp->p4.p);
+#ifdef SQLITE_DEBUG
+ sqlite3_free(pOp->zComment);
+#endif
+ }
+ sqlite3_free(p->aOp);
+ }
+ releaseMemArray(p->aVar, p->nVar, 1);
+ sqlite3_free(p->aLabel);
+ if( p->aMem ){
+ sqlite3_free(&p->aMem[1]);
+ }
+ releaseMemArray(p->aColName, p->nResColumn*COLNAME_N, 1);
+ sqlite3_free(p->aColName);
+ sqlite3_free(p->zSql);
+ p->magic = VDBE_MAGIC_DEAD;
+ sqlite3_free(p);
+}
+
+/*
+** If a MoveTo operation is pending on the given cursor, then do that
+** MoveTo now. Return an error code. If no MoveTo is pending, this
+** routine does nothing and returns SQLITE_OK.
+*/
+SQLITE_PRIVATE int sqlite3VdbeCursorMoveto(Cursor *p){
+ if( p->deferredMoveto ){
+ int res, rc;
+#ifdef SQLITE_TEST
+ extern int sqlite3_search_count;
+#endif
+ assert( p->isTable );
+ rc = sqlite3BtreeMoveto(p->pCursor, 0, 0, p->movetoTarget, 0, &res);
+ if( rc ) return rc;
+ *p->pIncrKey = 0;
+ p->lastRowid = keyToInt(p->movetoTarget);
+ p->rowidIsValid = res==0;
+ if( res<0 ){
+ rc = sqlite3BtreeNext(p->pCursor, &res);
+ if( rc ) return rc;
+ }
+#ifdef SQLITE_TEST
+ sqlite3_search_count++;
+#endif
+ p->deferredMoveto = 0;
+ p->cacheStatus = CACHE_STALE;
+ }
+ return SQLITE_OK;
+}
+
+/*
+** The following functions:
+**
+** sqlite3VdbeSerialType()
+** sqlite3VdbeSerialTypeLen()
+** sqlite3VdbeSerialRead()
+** sqlite3VdbeSerialLen()
+** sqlite3VdbeSerialWrite()
+**
+** encapsulate the code that serializes values for storage in SQLite
+** data and index records. Each serialized value consists of a
+** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned
+** integer, stored as a varint.
+**
+** In an SQLite index record, the serial type is stored directly before
+** the blob of data that it corresponds to. In a table record, all serial
+** types are stored at the start of the record, and the blobs of data at
+** the end. Hence these functions allow the caller to handle the
+** serial-type and data blob seperately.
+**
+** The following table describes the various storage classes for data:
+**
+** serial type bytes of data type
+** -------------- --------------- ---------------
+** 0 0 NULL
+** 1 1 signed integer
+** 2 2 signed integer
+** 3 3 signed integer
+** 4 4 signed integer
+** 5 6 signed integer
+** 6 8 signed integer
+** 7 8 IEEE float
+** 8 0 Integer constant 0
+** 9 0 Integer constant 1
+** 10,11 reserved for expansion
+** N>=12 and even (N-12)/2 BLOB
+** N>=13 and odd (N-13)/2 text
+**
+** The 8 and 9 types were added in 3.3.0, file format 4. Prior versions
+** of SQLite will not understand those serial types.
+*/
+
+/*
+** Return the serial-type for the value stored in pMem.
+*/
+SQLITE_PRIVATE u32 sqlite3VdbeSerialType(Mem *pMem, int file_format){
+ int flags = pMem->flags;
+ int n;
+
+ if( flags&MEM_Null ){
+ return 0;
+ }
+ if( flags&MEM_Int ){
+ /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
+# define MAX_6BYTE ((((i64)0x00008000)<<32)-1)
+ i64 i = pMem->u.i;
+ u64 u;
+ if( file_format>=4 && (i&1)==i ){
+ return 8+i;
+ }
+ u = i<0 ? -i : i;
+ if( u<=127 ) return 1;
+ if( u<=32767 ) return 2;
+ if( u<=8388607 ) return 3;
+ if( u<=2147483647 ) return 4;
+ if( u<=MAX_6BYTE ) return 5;
+ return 6;
+ }
+ if( flags&MEM_Real ){
+ return 7;
+ }
+ assert( flags&(MEM_Str|MEM_Blob) );
+ n = pMem->n;
+ if( flags & MEM_Zero ){
+ n += pMem->u.i;
+ }
+ assert( n>=0 );
+ return ((n*2) + 12 + ((flags&MEM_Str)!=0));
+}
+
+/*
+** Return the length of the data corresponding to the supplied serial-type.
+*/
+SQLITE_PRIVATE int sqlite3VdbeSerialTypeLen(u32 serial_type){
+ if( serial_type>=12 ){
+ return (serial_type-12)/2;
+ }else{
+ static const u8 aSize[] = { 0, 1, 2, 3, 4, 6, 8, 8, 0, 0, 0, 0 };
+ return aSize[serial_type];
+ }
+}
+
+/*
+** If we are on an architecture with mixed-endian floating
+** points (ex: ARM7) then swap the lower 4 bytes with the
+** upper 4 bytes. Return the result.
+**
+** For most architectures, this is a no-op.
+**
+** (later): It is reported to me that the mixed-endian problem
+** on ARM7 is an issue with GCC, not with the ARM7 chip. It seems
+** that early versions of GCC stored the two words of a 64-bit
+** float in the wrong order. And that error has been propagated
+** ever since. The blame is not necessarily with GCC, though.
+** GCC might have just copying the problem from a prior compiler.
+** I am also told that newer versions of GCC that follow a different
+** ABI get the byte order right.
+**
+** Developers using SQLite on an ARM7 should compile and run their
+** application using -DSQLITE_DEBUG=1 at least once. With DEBUG
+** enabled, some asserts below will ensure that the byte order of
+** floating point values is correct.
+**
+** (2007-08-30) Frank van Vugt has studied this problem closely
+** and has send his findings to the SQLite developers. Frank
+** writes that some Linux kernels offer floating point hardware
+** emulation that uses only 32-bit mantissas instead of a full
+** 48-bits as required by the IEEE standard. (This is the
+** CONFIG_FPE_FASTFPE option.) On such systems, floating point
+** byte swapping becomes very complicated. To avoid problems,
+** the necessary byte swapping is carried out using a 64-bit integer
+** rather than a 64-bit float. Frank assures us that the code here
+** works for him. We, the developers, have no way to independently
+** verify this, but Frank seems to know what he is talking about
+** so we trust him.
+*/
+#ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
+static u64 floatSwap(u64 in){
+ union {
+ u64 r;
+ u32 i[2];
+ } u;
+ u32 t;
+
+ u.r = in;
+ t = u.i[0];
+ u.i[0] = u.i[1];
+ u.i[1] = t;
+ return u.r;
+}
+# define swapMixedEndianFloat(X) X = floatSwap(X)
+#else
+# define swapMixedEndianFloat(X)
+#endif
+
+/*
+** Write the serialized data blob for the value stored in pMem into
+** buf. It is assumed that the caller has allocated sufficient space.
+** Return the number of bytes written.
+**
+** nBuf is the amount of space left in buf[]. nBuf must always be
+** large enough to hold the entire field. Except, if the field is
+** a blob with a zero-filled tail, then buf[] might be just the right
+** size to hold everything except for the zero-filled tail. If buf[]
+** is only big enough to hold the non-zero prefix, then only write that
+** prefix into buf[]. But if buf[] is large enough to hold both the
+** prefix and the tail then write the prefix and set the tail to all
+** zeros.
+**
+** Return the number of bytes actually written into buf[]. The number
+** of bytes in the zero-filled tail is included in the return value only
+** if those bytes were zeroed in buf[].
+*/
+SQLITE_PRIVATE int sqlite3VdbeSerialPut(u8 *buf, int nBuf, Mem *pMem, int file_format){
+ u32 serial_type = sqlite3VdbeSerialType(pMem, file_format);
+ int len;
+
+ /* Integer and Real */
+ if( serial_type<=7 && serial_type>0 ){
+ u64 v;
+ int i;
+ if( serial_type==7 ){
+ assert( sizeof(v)==sizeof(pMem->r) );
+ memcpy(&v, &pMem->r, sizeof(v));
+ swapMixedEndianFloat(v);
+ }else{
+ v = pMem->u.i;
+ }
+ len = i = sqlite3VdbeSerialTypeLen(serial_type);
+ assert( len<=nBuf );
+ while( i-- ){
+ buf[i] = (v&0xFF);
+ v >>= 8;
+ }
+ return len;
+ }
+
+ /* String or blob */
+ if( serial_type>=12 ){
+ assert( pMem->n + ((pMem->flags & MEM_Zero)?pMem->u.i:0)
+ == sqlite3VdbeSerialTypeLen(serial_type) );
+ assert( pMem->n<=nBuf );
+ len = pMem->n;
+ memcpy(buf, pMem->z, len);
+ if( pMem->flags & MEM_Zero ){
+ len += pMem->u.i;
+ if( len>nBuf ){
+ len = nBuf;
+ }
+ memset(&buf[pMem->n], 0, len-pMem->n);
+ }
+ return len;
+ }
+
+ /* NULL or constants 0 or 1 */
+ return 0;
+}
+
+/*
+** Deserialize the data blob pointed to by buf as serial type serial_type
+** and store the result in pMem. Return the number of bytes read.
+*/
+SQLITE_PRIVATE int sqlite3VdbeSerialGet(
+ const unsigned char *buf, /* Buffer to deserialize from */
+ u32 serial_type, /* Serial type to deserialize */
+ Mem *pMem /* Memory cell to write value into */
+){
+ switch( serial_type ){
+ case 10: /* Reserved for future use */
+ case 11: /* Reserved for future use */
+ case 0: { /* NULL */
+ pMem->flags = MEM_Null;
+ break;
+ }
+ case 1: { /* 1-byte signed integer */
+ pMem->u.i = (signed char)buf[0];
+ pMem->flags = MEM_Int;
+ return 1;
+ }
+ case 2: { /* 2-byte signed integer */
+ pMem->u.i = (((signed char)buf[0])<<8) | buf[1];
+ pMem->flags = MEM_Int;
+ return 2;
+ }
+ case 3: { /* 3-byte signed integer */
+ pMem->u.i = (((signed char)buf[0])<<16) | (buf[1]<<8) | buf[2];
+ pMem->flags = MEM_Int;
+ return 3;
+ }
+ case 4: { /* 4-byte signed integer */
+ pMem->u.i = (buf[0]<<24) | (buf[1]<<16) | (buf[2]<<8) | buf[3];
+ pMem->flags = MEM_Int;
+ return 4;
+ }
+ case 5: { /* 6-byte signed integer */
+ u64 x = (((signed char)buf[0])<<8) | buf[1];
+ u32 y = (buf[2]<<24) | (buf[3]<<16) | (buf[4]<<8) | buf[5];
+ x = (x<<32) | y;
+ pMem->u.i = *(i64*)&x;
+ pMem->flags = MEM_Int;
+ return 6;
+ }
+ case 6: /* 8-byte signed integer */
+ case 7: { /* IEEE floating point */
+ u64 x;
+ u32 y;
+#if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT)
+ /* Verify that integers and floating point values use the same
+ ** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is
+ ** defined that 64-bit floating point values really are mixed
+ ** endian.
+ */
+ static const u64 t1 = ((u64)0x3ff00000)<<32;
+ static const double r1 = 1.0;
+ u64 t2 = t1;
+ swapMixedEndianFloat(t2);
+ assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 );
+#endif
+
+ x = (buf[0]<<24) | (buf[1]<<16) | (buf[2]<<8) | buf[3];
+ y = (buf[4]<<24) | (buf[5]<<16) | (buf[6]<<8) | buf[7];
+ x = (x<<32) | y;
+ if( serial_type==6 ){
+ pMem->u.i = *(i64*)&x;
+ pMem->flags = MEM_Int;
+ }else{
+ assert( sizeof(x)==8 && sizeof(pMem->r)==8 );
+ swapMixedEndianFloat(x);
+ memcpy(&pMem->r, &x, sizeof(x));
+ pMem->flags = sqlite3IsNaN(pMem->r) ? MEM_Null : MEM_Real;
+ }
+ return 8;
+ }
+ case 8: /* Integer 0 */
+ case 9: { /* Integer 1 */
+ pMem->u.i = serial_type-8;
+ pMem->flags = MEM_Int;
+ return 0;
+ }
+ default: {
+ int len = (serial_type-12)/2;
+ pMem->z = (char *)buf;
+ pMem->n = len;
+ pMem->xDel = 0;
+ if( serial_type&0x01 ){
+ pMem->flags = MEM_Str | MEM_Ephem;
+ }else{
+ pMem->flags = MEM_Blob | MEM_Ephem;
+ }
+ return len;
+ }
+ }
+ return 0;
+}
+
+
+/*
+** Given the nKey-byte encoding of a record in pKey[], parse the
+** record into a UnpackedRecord structure. Return a pointer to
+** that structure.
+**
+** The calling function might provide szSpace bytes of memory
+** space at pSpace. This space can be used to hold the returned
+** VDbeParsedRecord structure if it is large enough. If it is
+** not big enough, space is obtained from sqlite3_malloc().
+**
+** The returned structure should be closed by a call to
+** sqlite3VdbeDeleteUnpackedRecord().
+*/
+SQLITE_PRIVATE UnpackedRecord *sqlite3VdbeRecordUnpack(
+ KeyInfo *pKeyInfo, /* Information about the record format */
+ int nKey, /* Size of the binary record */
+ const void *pKey, /* The binary record */
+ void *pSpace, /* Space available to hold resulting object */
+ int szSpace /* Size of pSpace[] in bytes */
+){
+ const unsigned char *aKey = (const unsigned char *)pKey;
+ UnpackedRecord *p;
+ int nByte;
+ int i, idx, d;
+ u32 szHdr;
+ Mem *pMem;
+
+ assert( sizeof(Mem)>sizeof(*p) );
+ nByte = sizeof(Mem)*(pKeyInfo->nField+2);
+ if( nByte>szSpace ){
+ p = sqlite3DbMallocRaw(pKeyInfo->db, nByte);
+ if( p==0 ) return 0;
+ p->needFree = 1;
+ }else{
+ p = pSpace;
+ p->needFree = 0;
+ }
+ p->pKeyInfo = pKeyInfo;
+ p->nField = pKeyInfo->nField + 1;
+ p->needDestroy = 1;
+ p->aMem = pMem = &((Mem*)p)[1];
+ idx = getVarint32(aKey, szHdr);
+ d = szHdr;
+ i = 0;
+ while( idx<szHdr && i<p->nField ){
+ u32 serial_type;
+
+ idx += getVarint32( aKey+idx, serial_type);
+ if( d>=nKey && sqlite3VdbeSerialTypeLen(serial_type)>0 ) break;
+ pMem->enc = pKeyInfo->enc;
+ pMem->db = pKeyInfo->db;
+ pMem->flags = 0;
+ pMem->zMalloc = 0;
+ d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem);
+ pMem++;
+ i++;
+ }
+ p->nField = i;
+ return (void*)p;
+}
+
+/*
+** This routine destroys a UnpackedRecord object
+*/
+SQLITE_PRIVATE void sqlite3VdbeDeleteUnpackedRecord(UnpackedRecord *p){
+ if( p ){
+ if( p->needDestroy ){
+ int i;
+ Mem *pMem;
+ for(i=0, pMem=p->aMem; i<p->nField; i++, pMem++){
+ if( pMem->zMalloc ){
+ sqlite3VdbeMemRelease(pMem);
+ }
+ }
+ }
+ if( p->needFree ){
+ sqlite3_free(p);
+ }
+ }
+}
+
+/*
+** This function compares the two table rows or index records
+** specified by {nKey1, pKey1} and pPKey2. It returns a negative, zero
+** or positive integer if {nKey1, pKey1} is less than, equal to or
+** greater than pPKey2. The {nKey1, pKey1} key must be a blob
+** created by th OP_MakeRecord opcode of the VDBE. The pPKey2
+** key must be a parsed key such as obtained from
+** sqlite3VdbeParseRecord.
+**
+** Key1 and Key2 do not have to contain the same number of fields.
+** But if the lengths differ, Key2 must be the shorter of the two.
+**
+** Historical note: In earlier versions of this routine both Key1
+** and Key2 were blobs obtained from OP_MakeRecord. But we found
+** that in typical use the same Key2 would be submitted multiple times
+** in a row. So an optimization was added to parse the Key2 key
+** separately and submit the parsed version. In this way, we avoid
+** parsing the same Key2 multiple times in a row.
+*/
+SQLITE_PRIVATE int sqlite3VdbeRecordCompare(
+ int nKey1, const void *pKey1,
+ UnpackedRecord *pPKey2
+){
+ u32 d1; /* Offset into aKey[] of next data element */
+ u32 idx1; /* Offset into aKey[] of next header element */
+ u32 szHdr1; /* Number of bytes in header */
+ int i = 0;
+ int nField;
+ int rc = 0;
+ const unsigned char *aKey1 = (const unsigned char *)pKey1;
+ KeyInfo *pKeyInfo;
+ Mem mem1;
+
+ pKeyInfo = pPKey2->pKeyInfo;
+ mem1.enc = pKeyInfo->enc;
+ mem1.db = pKeyInfo->db;
+ mem1.flags = 0;
+ mem1.zMalloc = 0;
+
+ idx1 = getVarint32(aKey1, szHdr1);
+ d1 = szHdr1;
+ nField = pKeyInfo->nField;
+ while( idx1<szHdr1 && i<pPKey2->nField ){
+ u32 serial_type1;
+
+ /* Read the serial types for the next element in each key. */
+ idx1 += getVarint32( aKey1+idx1, serial_type1 );
+ if( d1>=nKey1 && sqlite3VdbeSerialTypeLen(serial_type1)>0 ) break;
+
+ /* Extract the values to be compared.
+ */
+ d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1);
+
+ /* Do the comparison
+ */
+ rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i],
+ i<nField ? pKeyInfo->aColl[i] : 0);
+ if( rc!=0 ){
+ break;
+ }
+ i++;
+ }
+ if( mem1.zMalloc ) sqlite3VdbeMemRelease(&mem1);
+
+ /* One of the keys ran out of fields, but all the fields up to that point
+ ** were equal. If the incrKey flag is true, then the second key is
+ ** treated as larger.
+ */
+ if( rc==0 ){
+ if( pKeyInfo->incrKey ){
+ rc = -1;
+ }else if( !pKeyInfo->prefixIsEqual ){
+ if( d1<nKey1 ){
+ rc = 1;
+ }
+ }
+ }else if( pKeyInfo->aSortOrder && i<pKeyInfo->nField
+ && pKeyInfo->aSortOrder[i] ){
+ rc = -rc;
+ }
+
+ return rc;
+}
+
+/*
+** The argument is an index entry composed using the OP_MakeRecord opcode.
+** The last entry in this record should be an integer (specifically
+** an integer rowid). This routine returns the number of bytes in
+** that integer.
+*/
+SQLITE_PRIVATE int sqlite3VdbeIdxRowidLen(const u8 *aKey){
+ u32 szHdr; /* Size of the header */
+ u32 typeRowid; /* Serial type of the rowid */
+
+ (void)getVarint32(aKey, szHdr);
+ (void)getVarint32(&aKey[szHdr-1], typeRowid);
+ return sqlite3VdbeSerialTypeLen(typeRowid);
+}
+
+
+/*
+** pCur points at an index entry created using the OP_MakeRecord opcode.
+** Read the rowid (the last field in the record) and store it in *rowid.
+** Return SQLITE_OK if everything works, or an error code otherwise.
+*/
+SQLITE_PRIVATE int sqlite3VdbeIdxRowid(BtCursor *pCur, i64 *rowid){
+ i64 nCellKey = 0;
+ int rc;
+ u32 szHdr; /* Size of the header */
+ u32 typeRowid; /* Serial type of the rowid */
+ u32 lenRowid; /* Size of the rowid */
+ Mem m, v;
+
+ sqlite3BtreeKeySize(pCur, &nCellKey);
+ if( nCellKey<=0 ){
+ return SQLITE_CORRUPT_BKPT;
+ }
+ m.flags = 0;
+ m.db = 0;
+ m.zMalloc = 0;
+ rc = sqlite3VdbeMemFromBtree(pCur, 0, nCellKey, 1, &m);
+ if( rc ){
+ return rc;
+ }
+ (void)getVarint32((u8*)m.z, szHdr);
+ (void)getVarint32((u8*)&m.z[szHdr-1], typeRowid);
+ lenRowid = sqlite3VdbeSerialTypeLen(typeRowid);
+ sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v);
+ *rowid = v.u.i;
+ sqlite3VdbeMemRelease(&m);
+ return SQLITE_OK;
+}
+
+/*
+** Compare the key of the index entry that cursor pC is point to against
+** the key string in pKey (of length nKey). Write into *pRes a number
+** that is negative, zero, or positive if pC is less than, equal to,
+** or greater than pKey. Return SQLITE_OK on success.
+**
+** pKey is either created without a rowid or is truncated so that it
+** omits the rowid at the end. The rowid at the end of the index entry
+** is ignored as well.
+*/
+SQLITE_PRIVATE int sqlite3VdbeIdxKeyCompare(
+ Cursor *pC, /* The cursor to compare against */
+ UnpackedRecord *pUnpacked,
+ int nKey, const u8 *pKey, /* The key to compare */
+ int *res /* Write the comparison result here */
+){
+ i64 nCellKey = 0;
+ int rc;
+ BtCursor *pCur = pC->pCursor;
+ int lenRowid;
+ Mem m;
+ UnpackedRecord *pRec;
+ char zSpace[200];
+
+ sqlite3BtreeKeySize(pCur, &nCellKey);
+ if( nCellKey<=0 ){
+ *res = 0;
+ return SQLITE_OK;
+ }
+ m.db = 0;
+ m.flags = 0;
+ m.zMalloc = 0;
+ rc = sqlite3VdbeMemFromBtree(pC->pCursor, 0, nCellKey, 1, &m);
+ if( rc ){
+ return rc;
+ }
+ lenRowid = sqlite3VdbeIdxRowidLen((u8*)m.z);
+ if( !pUnpacked ){
+ pRec = sqlite3VdbeRecordUnpack(pC->pKeyInfo, nKey, pKey,
+ zSpace, sizeof(zSpace));
+ }else{
+ pRec = pUnpacked;
+ }
+ if( pRec==0 ){
+ return SQLITE_NOMEM;
+ }
+ *res = sqlite3VdbeRecordCompare(m.n-lenRowid, m.z, pRec);
+ if( !pUnpacked ){
+ sqlite3VdbeDeleteUnpackedRecord(pRec);
+ }
+ sqlite3VdbeMemRelease(&m);
+ return SQLITE_OK;
+}
+
+/*
+** This routine sets the value to be returned by subsequent calls to
+** sqlite3_changes() on the database handle 'db'.
+*/
+SQLITE_PRIVATE void sqlite3VdbeSetChanges(sqlite3 *db, int nChange){
+ assert( sqlite3_mutex_held(db->mutex) );
+ db->nChange = nChange;
+ db->nTotalChange += nChange;
+}
+
+/*
+** Set a flag in the vdbe to update the change counter when it is finalised
+** or reset.
+*/
+SQLITE_PRIVATE void sqlite3VdbeCountChanges(Vdbe *v){
+ v->changeCntOn = 1;
+}
+
+/*
+** Mark every prepared statement associated with a database connection
+** as expired.
+**
+** An expired statement means that recompilation of the statement is
+** recommend. Statements expire when things happen that make their
+** programs obsolete. Removing user-defined functions or collating
+** sequences, or changing an authorization function are the types of
+** things that make prepared statements obsolete.
+*/
+SQLITE_PRIVATE void sqlite3ExpirePreparedStatements(sqlite3 *db){
+ Vdbe *p;
+ for(p = db->pVdbe; p; p=p->pNext){
+ p->expired = 1;
+ }
+}
+
+/*
+** Return the database associated with the Vdbe.
+*/
+SQLITE_PRIVATE sqlite3 *sqlite3VdbeDb(Vdbe *v){
+ return v->db;
+}
+
+/************** End of vdbeaux.c *********************************************/
+/************** Begin file vdbeapi.c *****************************************/
+/*
+** 2004 May 26
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+**
+** This file contains code use to implement APIs that are part of the
+** VDBE.
+*/
+
+#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
+/*
+** The following structure contains pointers to the end points of a
+** doubly-linked list of all compiled SQL statements that may be holding
+** buffers eligible for release when the sqlite3_release_memory() interface is
+** invoked. Access to this list is protected by the SQLITE_MUTEX_STATIC_LRU2
+** mutex.
+**
+** Statements are added to the end of this list when sqlite3_reset() is
+** called. They are removed either when sqlite3_step() or sqlite3_finalize()
+** is called. When statements are added to this list, the associated
+** register array (p->aMem[1..p->nMem]) may contain dynamic buffers that
+** can be freed using sqlite3VdbeReleaseMemory().
+**
+** When statements are added or removed from this list, the mutex
+** associated with the Vdbe being added or removed (Vdbe.db->mutex) is
+** already held. The LRU2 mutex is then obtained, blocking if necessary,
+** the linked-list pointers manipulated and the LRU2 mutex relinquished.
+*/
+struct StatementLruList {
+ Vdbe *pFirst;
+ Vdbe *pLast;
+};
+static struct StatementLruList sqlite3LruStatements;
+
+/*
+** Check that the list looks to be internally consistent. This is used
+** as part of an assert() statement as follows:
+**
+** assert( stmtLruCheck() );
+*/
+#ifndef NDEBUG
+static int stmtLruCheck(){
+ Vdbe *p;
+ for(p=sqlite3LruStatements.pFirst; p; p=p->pLruNext){
+ assert(p->pLruNext || p==sqlite3LruStatements.pLast);
+ assert(!p->pLruNext || p->pLruNext->pLruPrev==p);
+ assert(p->pLruPrev || p==sqlite3LruStatements.pFirst);
+ assert(!p->pLruPrev || p->pLruPrev->pLruNext==p);
+ }
+ return 1;
+}
+#endif
+
+/*
+** Add vdbe p to the end of the statement lru list. It is assumed that
+** p is not already part of the list when this is called. The lru list
+** is protected by the SQLITE_MUTEX_STATIC_LRU mutex.
+*/
+static void stmtLruAdd(Vdbe *p){
+ sqlite3_mutex_enter(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU2));
+
+ if( p->pLruPrev || p->pLruNext || sqlite3LruStatements.pFirst==p ){
+ sqlite3_mutex_leave(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU2));
+ return;
+ }
+
+ assert( stmtLruCheck() );
+
+ if( !sqlite3LruStatements.pFirst ){
+ assert( !sqlite3LruStatements.pLast );
+ sqlite3LruStatements.pFirst = p;
+ sqlite3LruStatements.pLast = p;
+ }else{
+ assert( !sqlite3LruStatements.pLast->pLruNext );
+ p->pLruPrev = sqlite3LruStatements.pLast;
+ sqlite3LruStatements.pLast->pLruNext = p;
+ sqlite3LruStatements.pLast = p;
+ }
+
+ assert( stmtLruCheck() );
+
+ sqlite3_mutex_leave(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU2));
+}
+
+/*
+** Assuming the SQLITE_MUTEX_STATIC_LRU2 mutext is already held, remove
+** statement p from the least-recently-used statement list. If the
+** statement is not currently part of the list, this call is a no-op.
+*/
+static void stmtLruRemoveNomutex(Vdbe *p){
+ if( p->pLruPrev || p->pLruNext || p==sqlite3LruStatements.pFirst ){
+ assert( stmtLruCheck() );
+ if( p->pLruNext ){
+ p->pLruNext->pLruPrev = p->pLruPrev;
+ }else{
+ sqlite3LruStatements.pLast = p->pLruPrev;
+ }
+ if( p->pLruPrev ){
+ p->pLruPrev->pLruNext = p->pLruNext;
+ }else{
+ sqlite3LruStatements.pFirst = p->pLruNext;
+ }
+ p->pLruNext = 0;
+ p->pLruPrev = 0;
+ assert( stmtLruCheck() );
+ }
+}
+
+/*
+** Assuming the SQLITE_MUTEX_STATIC_LRU2 mutext is not held, remove
+** statement p from the least-recently-used statement list. If the
+** statement is not currently part of the list, this call is a no-op.
+*/
+static void stmtLruRemove(Vdbe *p){
+ sqlite3_mutex_enter(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU2));
+ stmtLruRemoveNomutex(p);
+ sqlite3_mutex_leave(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU2));
+}
+
+/*
+** Try to release n bytes of memory by freeing buffers associated
+** with the memory registers of currently unused vdbes.
+*/
+SQLITE_PRIVATE int sqlite3VdbeReleaseMemory(int n){
+ Vdbe *p;
+ Vdbe *pNext;
+ int nFree = 0;
+
+ sqlite3_mutex_enter(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU2));
+ for(p=sqlite3LruStatements.pFirst; p && nFree<n; p=pNext){
+ pNext = p->pLruNext;
+
+ /* For each statement handle in the lru list, attempt to obtain the
+ ** associated database mutex. If it cannot be obtained, continue
+ ** to the next statement handle. It is not possible to block on
+ ** the database mutex - that could cause deadlock.
+ */
+ if( SQLITE_OK==sqlite3_mutex_try(p->db->mutex) ){
+ nFree += sqlite3VdbeReleaseBuffers(p);
+ stmtLruRemoveNomutex(p);
+ sqlite3_mutex_leave(p->db->mutex);
+ }
+ }
+ sqlite3_mutex_leave(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU2));
+
+ return nFree;
+}
+
+/*
+** Call sqlite3Reprepare() on the statement. Remove it from the
+** lru list before doing so, as Reprepare() will free all the
+** memory register buffers anyway.
+*/
+int vdbeReprepare(Vdbe *p){
+ stmtLruRemove(p);
+ return sqlite3Reprepare(p);
+}
+
+#else /* !SQLITE_ENABLE_MEMORY_MANAGEMENT */
+ #define stmtLruRemove(x)
+ #define stmtLruAdd(x)
+ #define vdbeReprepare(x) sqlite3Reprepare(x)
+#endif
+
+
+/*
+** Return TRUE (non-zero) of the statement supplied as an argument needs
+** to be recompiled. A statement needs to be recompiled whenever the
+** execution environment changes in a way that would alter the program
+** that sqlite3_prepare() generates. For example, if new functions or
+** collating sequences are registered or if an authorizer function is
+** added or changed.
+*/
+SQLITE_API int sqlite3_expired(sqlite3_stmt *pStmt){
+ Vdbe *p = (Vdbe*)pStmt;
+ return p==0 || p->expired;
+}
+
+/*
+** The following routine destroys a virtual machine that is created by
+** the sqlite3_compile() routine. The integer returned is an SQLITE_
+** success/failure code that describes the result of executing the virtual
+** machine.
+**
+** This routine sets the error code and string returned by
+** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16().
+*/
+SQLITE_API int sqlite3_finalize(sqlite3_stmt *pStmt){
+ int rc;
+ if( pStmt==0 ){
+ rc = SQLITE_OK;
+ }else{
+ Vdbe *v = (Vdbe*)pStmt;
+#ifndef SQLITE_MUTEX_NOOP
+ sqlite3_mutex *mutex = v->db->mutex;
+#endif
+ sqlite3_mutex_enter(mutex);
+ stmtLruRemove(v);
+ rc = sqlite3VdbeFinalize(v);
+ sqlite3_mutex_leave(mutex);
+ }
+ return rc;
+}
+
+/*
+** Terminate the current execution of an SQL statement and reset it
+** back to its starting state so that it can be reused. A success code from
+** the prior execution is returned.
+**
+** This routine sets the error code and string returned by
+** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16().
+*/
+SQLITE_API int sqlite3_reset(sqlite3_stmt *pStmt){
+ int rc;
+ if( pStmt==0 ){
+ rc = SQLITE_OK;
+ }else{
+ Vdbe *v = (Vdbe*)pStmt;
+ sqlite3_mutex_enter(v->db->mutex);
+ rc = sqlite3VdbeReset(v, 1);
+ stmtLruAdd(v);
+ sqlite3VdbeMakeReady(v, -1, 0, 0, 0);
+ assert( (rc & (v->db->errMask))==rc );
+ sqlite3_mutex_leave(v->db->mutex);
+ }
+ return rc;
+}
+
+/*
+** Set all the parameters in the compiled SQL statement to NULL.
+*/
+SQLITE_API int sqlite3_clear_bindings(sqlite3_stmt *pStmt){
+ int i;
+ int rc = SQLITE_OK;
+ Vdbe *p = (Vdbe*)pStmt;
+#ifndef SQLITE_MUTEX_NOOP
+ sqlite3_mutex *mutex = ((Vdbe*)pStmt)->db->mutex;
+#endif
+ sqlite3_mutex_enter(mutex);
+ for(i=0; i<p->nVar; i++){
+ sqlite3VdbeMemRelease(&p->aVar[i]);
+ p->aVar[i].flags = MEM_Null;
+ }
+ sqlite3_mutex_leave(mutex);
+ return rc;
+}
+
+
+/**************************** sqlite3_value_ *******************************
+** The following routines extract information from a Mem or sqlite3_value
+** structure.
+*/
+SQLITE_API const void *sqlite3_value_blob(sqlite3_value *pVal){
+ Mem *p = (Mem*)pVal;
+ if( p->flags & (MEM_Blob|MEM_Str) ){
+ sqlite3VdbeMemExpandBlob(p);
+ p->flags &= ~MEM_Str;
+ p->flags |= MEM_Blob;
+ return p->z;
+ }else{
+ return sqlite3_value_text(pVal);
+ }
+}
+SQLITE_API int sqlite3_value_bytes(sqlite3_value *pVal){
+ return sqlite3ValueBytes(pVal, SQLITE_UTF8);
+}
+SQLITE_API int sqlite3_value_bytes16(sqlite3_value *pVal){
+ return sqlite3ValueBytes(pVal, SQLITE_UTF16NATIVE);
+}
+SQLITE_API double sqlite3_value_double(sqlite3_value *pVal){
+ return sqlite3VdbeRealValue((Mem*)pVal);
+}
+SQLITE_API int sqlite3_value_int(sqlite3_value *pVal){
+ return sqlite3VdbeIntValue((Mem*)pVal);
+}
+SQLITE_API sqlite_int64 sqlite3_value_int64(sqlite3_value *pVal){
+ return sqlite3VdbeIntValue((Mem*)pVal);
+}
+SQLITE_API const unsigned char *sqlite3_value_text(sqlite3_value *pVal){
+ return (const unsigned char *)sqlite3ValueText(pVal, SQLITE_UTF8);
+}
+#ifndef SQLITE_OMIT_UTF16
+SQLITE_API const void *sqlite3_value_text16(sqlite3_value* pVal){
+ return sqlite3ValueText(pVal, SQLITE_UTF16NATIVE);
+}
+SQLITE_API const void *sqlite3_value_text16be(sqlite3_value *pVal){
+ return sqlite3ValueText(pVal, SQLITE_UTF16BE);
+}
+SQLITE_API const void *sqlite3_value_text16le(sqlite3_value *pVal){
+ return sqlite3ValueText(pVal, SQLITE_UTF16LE);
+}
+#endif /* SQLITE_OMIT_UTF16 */
+SQLITE_API int sqlite3_value_type(sqlite3_value* pVal){
+ return pVal->type;
+}
+
+/**************************** sqlite3_result_ *******************************
+** The following routines are used by user-defined functions to specify
+** the function result.
+*/
+SQLITE_API void sqlite3_result_blob(
+ sqlite3_context *pCtx,
+ const void *z,
+ int n,
+ void (*xDel)(void *)
+){
+ assert( n>=0 );
+ assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
+ sqlite3VdbeMemSetStr(&pCtx->s, z, n, 0, xDel);
+}
+SQLITE_API void sqlite3_result_double(sqlite3_context *pCtx, double rVal){
+ assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
+ sqlite3VdbeMemSetDouble(&pCtx->s, rVal);
+}
+SQLITE_API void sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){
+ assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
+ pCtx->isError = SQLITE_ERROR;
+ sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF8, SQLITE_TRANSIENT);
+}
+#ifndef SQLITE_OMIT_UTF16
+SQLITE_API void sqlite3_result_error16(sqlite3_context *pCtx, const void *z, int n){
+ assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
+ pCtx->isError = SQLITE_ERROR;
+ sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16NATIVE, SQLITE_TRANSIENT);
+}
+#endif
+SQLITE_API void sqlite3_result_int(sqlite3_context *pCtx, int iVal){
+ assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
+ sqlite3VdbeMemSetInt64(&pCtx->s, (i64)iVal);
+}
+SQLITE_API void sqlite3_result_int64(sqlite3_context *pCtx, i64 iVal){
+ assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
+ sqlite3VdbeMemSetInt64(&pCtx->s, iVal);
+}
+SQLITE_API void sqlite3_result_null(sqlite3_context *pCtx){
+ assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
+ sqlite3VdbeMemSetNull(&pCtx->s);
+}
+SQLITE_API void sqlite3_result_text(
+ sqlite3_context *pCtx,
+ const char *z,
+ int n,
+ void (*xDel)(void *)
+){
+ assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
+ sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF8, xDel);
+}
+#ifndef SQLITE_OMIT_UTF16
+SQLITE_API void sqlite3_result_text16(
+ sqlite3_context *pCtx,
+ const void *z,
+ int n,
+ void (*xDel)(void *)
+){
+ assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
+ sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16NATIVE, xDel);
+}
+SQLITE_API void sqlite3_result_text16be(
+ sqlite3_context *pCtx,
+ const void *z,
+ int n,
+ void (*xDel)(void *)
+){
+ assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
+ sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16BE, xDel);
+}
+SQLITE_API void sqlite3_result_text16le(
+ sqlite3_context *pCtx,
+ const void *z,
+ int n,
+ void (*xDel)(void *)
+){
+ assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
+ sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16LE, xDel);
+}
+#endif /* SQLITE_OMIT_UTF16 */
+SQLITE_API void sqlite3_result_value(sqlite3_context *pCtx, sqlite3_value *pValue){
+ assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
+ sqlite3VdbeMemCopy(&pCtx->s, pValue);
+}
+SQLITE_API void sqlite3_result_zeroblob(sqlite3_context *pCtx, int n){
+ assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
+ sqlite3VdbeMemSetZeroBlob(&pCtx->s, n);
+}
+SQLITE_API void sqlite3_result_error_code(sqlite3_context *pCtx, int errCode){
+ pCtx->isError = errCode;
+}
+
+/* Force an SQLITE_TOOBIG error. */
+SQLITE_API void sqlite3_result_error_toobig(sqlite3_context *pCtx){
+ assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
+ pCtx->isError = SQLITE_TOOBIG;
+ sqlite3VdbeMemSetStr(&pCtx->s, "string or blob too big", -1,
+ SQLITE_UTF8, SQLITE_STATIC);
+}
+
+/* An SQLITE_NOMEM error. */
+SQLITE_API void sqlite3_result_error_nomem(sqlite3_context *pCtx){
+ assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
+ sqlite3VdbeMemSetNull(&pCtx->s);
+ pCtx->isError = SQLITE_NOMEM;
+ pCtx->s.db->mallocFailed = 1;
+}
+
+/*
+** Execute the statement pStmt, either until a row of data is ready, the
+** statement is completely executed or an error occurs.
+**
+** This routine implements the bulk of the logic behind the sqlite_step()
+** API. The only thing omitted is the automatic recompile if a
+** schema change has occurred. That detail is handled by the
+** outer sqlite3_step() wrapper procedure.
+*/
+static int sqlite3Step(Vdbe *p){
+ sqlite3 *db;
+ int rc;
+
+ assert(p);
+ if( p->magic!=VDBE_MAGIC_RUN ){
+ return SQLITE_MISUSE;
+ }
+
+ /* Assert that malloc() has not failed */
+ db = p->db;
+ assert( !db->mallocFailed );
+
+ if( p->aborted ){
+ return SQLITE_ABORT;
+ }
+ if( p->pc<=0 && p->expired ){
+ if( p->rc==SQLITE_OK ){
+ p->rc = SQLITE_SCHEMA;
+ }
+ rc = SQLITE_ERROR;
+ goto end_of_step;
+ }
+ if( sqlite3SafetyOn(db) ){
+ p->rc = SQLITE_MISUSE;
+ return SQLITE_MISUSE;
+ }
+ if( p->pc<0 ){
+ /* If there are no other statements currently running, then
+ ** reset the interrupt flag. This prevents a call to sqlite3_interrupt
+ ** from interrupting a statement that has not yet started.
+ */
+ if( db->activeVdbeCnt==0 ){
+ db->u1.isInterrupted = 0;
+ }
+
+#ifndef SQLITE_OMIT_TRACE
+ if( db->xProfile && !db->init.busy ){
+ double rNow;
+ sqlite3OsCurrentTime(db->pVfs, &rNow);
+ p->startTime = (rNow - (int)rNow)*3600.0*24.0*1000000000.0;
+ }
+#endif
+
+ db->activeVdbeCnt++;
+ p->pc = 0;
+ stmtLruRemove(p);
+ }
+#ifndef SQLITE_OMIT_EXPLAIN
+ if( p->explain ){
+ rc = sqlite3VdbeList(p);
+ }else
+#endif /* SQLITE_OMIT_EXPLAIN */
+ {
+ rc = sqlite3VdbeExec(p);
+ }
+
+ if( sqlite3SafetyOff(db) ){
+ rc = SQLITE_MISUSE;
+ }
+
+#ifndef SQLITE_OMIT_TRACE
+ /* Invoke the profile callback if there is one
+ */
+ if( rc!=SQLITE_ROW && db->xProfile && !db->init.busy && p->nOp>0
+ && p->aOp[0].opcode==OP_Trace && p->aOp[0].p4.z!=0 ){
+ double rNow;
+ u64 elapseTime;
+
+ sqlite3OsCurrentTime(db->pVfs, &rNow);
+ elapseTime = (rNow - (int)rNow)*3600.0*24.0*1000000000.0 - p->startTime;
+ db->xProfile(db->pProfileArg, p->aOp[0].p4.z, elapseTime);
+ }
+#endif
+
+ sqlite3Error(p->db, rc, 0);
+ p->rc = sqlite3ApiExit(p->db, p->rc);
+end_of_step:
+ assert( (rc&0xff)==rc );
+ if( p->zSql && (rc&0xff)<SQLITE_ROW ){
+ /* This behavior occurs if sqlite3_prepare_v2() was used to build
+ ** the prepared statement. Return error codes directly */
+ sqlite3Error(p->db, p->rc, 0);
+ return p->rc;
+ }else{
+ /* This is for legacy sqlite3_prepare() builds and when the code
+ ** is SQLITE_ROW or SQLITE_DONE */
+ return rc;
+ }
+}
+
+/*
+** This is the top-level implementation of sqlite3_step(). Call
+** sqlite3Step() to do most of the work. If a schema error occurs,
+** call sqlite3Reprepare() and try again.
+*/
+#ifdef SQLITE_OMIT_PARSER
+SQLITE_API int sqlite3_step(sqlite3_stmt *pStmt){
+ int rc = SQLITE_MISUSE;
+ if( pStmt ){
+ Vdbe *v;
+ v = (Vdbe*)pStmt;
+ sqlite3_mutex_enter(v->db->mutex);
+ rc = sqlite3Step(v);
+ sqlite3_mutex_leave(v->db->mutex);
+ }
+ return rc;
+}
+#else
+SQLITE_API int sqlite3_step(sqlite3_stmt *pStmt){
+ int rc = SQLITE_MISUSE;
+ if( pStmt ){
+ int cnt = 0;
+ Vdbe *v = (Vdbe*)pStmt;
+ sqlite3 *db = v->db;
+ sqlite3_mutex_enter(db->mutex);
+ while( (rc = sqlite3Step(v))==SQLITE_SCHEMA
+ && cnt++ < 5
+ && vdbeReprepare(v) ){
+ sqlite3_reset(pStmt);
+ v->expired = 0;
+ }
+ if( rc==SQLITE_SCHEMA && v->zSql && db->pErr ){
+ /* This case occurs after failing to recompile an sql statement.
+ ** The error message from the SQL compiler has already been loaded
+ ** into the database handle. This block copies the error message
+ ** from the database handle into the statement and sets the statement
+ ** program counter to 0 to ensure that when the statement is
+ ** finalized or reset the parser error message is available via
+ ** sqlite3_errmsg() and sqlite3_errcode().
+ */
+ const char *zErr = (const char *)sqlite3_value_text(db->pErr);
+ sqlite3_free(v->zErrMsg);
+ if( !db->mallocFailed ){
+ v->zErrMsg = sqlite3DbStrDup(db, zErr);
+ } else {
+ v->zErrMsg = 0;
+ v->rc = SQLITE_NOMEM;
+ }
+ }
+ rc = sqlite3ApiExit(db, rc);
+ sqlite3_mutex_leave(db->mutex);
+ }
+ return rc;
+}
+#endif
+
+/*
+** Extract the user data from a sqlite3_context structure and return a
+** pointer to it.
+*/
+SQLITE_API void *sqlite3_user_data(sqlite3_context *p){
+ assert( p && p->pFunc );
+ return p->pFunc->pUserData;
+}
+
+/*
+** Extract the user data from a sqlite3_context structure and return a
+** pointer to it.
+*/
+SQLITE_API sqlite3 *sqlite3_context_db_handle(sqlite3_context *p){
+ assert( p && p->pFunc );
+ return p->s.db;
+}
+
+/*
+** The following is the implementation of an SQL function that always
+** fails with an error message stating that the function is used in the
+** wrong context. The sqlite3_overload_function() API might construct
+** SQL function that use this routine so that the functions will exist
+** for name resolution but are actually overloaded by the xFindFunction
+** method of virtual tables.
+*/
+SQLITE_PRIVATE void sqlite3InvalidFunction(
+ sqlite3_context *context, /* The function calling context */
+ int argc, /* Number of arguments to the function */
+ sqlite3_value **argv /* Value of each argument */
+){
+ const char *zName = context->pFunc->zName;
+ char *zErr;
+ zErr = sqlite3MPrintf(0,
+ "unable to use function %s in the requested context", zName);
+ sqlite3_result_error(context, zErr, -1);
+ sqlite3_free(zErr);
+}
+
+/*
+** Allocate or return the aggregate context for a user function. A new
+** context is allocated on the first call. Subsequent calls return the
+** same context that was returned on prior calls.
+*/
+SQLITE_API void *sqlite3_aggregate_context(sqlite3_context *p, int nByte){
+ Mem *pMem;
+ assert( p && p->pFunc && p->pFunc->xStep );
+ assert( sqlite3_mutex_held(p->s.db->mutex) );
+ pMem = p->pMem;
+ if( (pMem->flags & MEM_Agg)==0 ){
+ if( nByte==0 ){
+ sqlite3VdbeMemReleaseExternal(pMem);
+ pMem->flags = MEM_Null;
+ pMem->z = 0;
+ }else{
+ sqlite3VdbeMemGrow(pMem, nByte, 0);
+ pMem->flags = MEM_Agg;
+ pMem->u.pDef = p->pFunc;
+ if( pMem->z ){
+ memset(pMem->z, 0, nByte);
+ }
+ }
+ }
+ return (void*)pMem->z;
+}
+
+/*
+** Return the auxilary data pointer, if any, for the iArg'th argument to
+** the user-function defined by pCtx.
+*/
+SQLITE_API void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){
+ VdbeFunc *pVdbeFunc;
+
+ assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
+ pVdbeFunc = pCtx->pVdbeFunc;
+ if( !pVdbeFunc || iArg>=pVdbeFunc->nAux || iArg<0 ){
+ return 0;
+ }
+ return pVdbeFunc->apAux[iArg].pAux;
+}
+
+/*
+** Set the auxilary data pointer and delete function, for the iArg'th
+** argument to the user-function defined by pCtx. Any previous value is
+** deleted by calling the delete function specified when it was set.
+*/
+SQLITE_API void sqlite3_set_auxdata(
+ sqlite3_context *pCtx,
+ int iArg,
+ void *pAux,
+ void (*xDelete)(void*)
+){
+ struct AuxData *pAuxData;
+ VdbeFunc *pVdbeFunc;
+ if( iArg<0 ) goto failed;
+
+ assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
+ pVdbeFunc = pCtx->pVdbeFunc;
+ if( !pVdbeFunc || pVdbeFunc->nAux<=iArg ){
+ int nAux = (pVdbeFunc ? pVdbeFunc->nAux : 0);
+ int nMalloc = sizeof(VdbeFunc) + sizeof(struct AuxData)*iArg;
+ pVdbeFunc = sqlite3DbRealloc(pCtx->s.db, pVdbeFunc, nMalloc);
+ if( !pVdbeFunc ){
+ goto failed;
+ }
+ pCtx->pVdbeFunc = pVdbeFunc;
+ memset(&pVdbeFunc->apAux[nAux], 0, sizeof(struct AuxData)*(iArg+1-nAux));
+ pVdbeFunc->nAux = iArg+1;
+ pVdbeFunc->pFunc = pCtx->pFunc;
+ }
+
+ pAuxData = &pVdbeFunc->apAux[iArg];
+ if( pAuxData->pAux && pAuxData->xDelete ){
+ pAuxData->xDelete(pAuxData->pAux);
+ }
+ pAuxData->pAux = pAux;
+ pAuxData->xDelete = xDelete;
+ return;
+
+failed:
+ if( xDelete ){
+ xDelete(pAux);
+ }
+}
+
+/*
+** Return the number of times the Step function of a aggregate has been
+** called.
+**
+** This function is deprecated. Do not use it for new code. It is
+** provide only to avoid breaking legacy code. New aggregate function
+** implementations should keep their own counts within their aggregate
+** context.
+*/
+SQLITE_API int sqlite3_aggregate_count(sqlite3_context *p){
+ assert( p && p->pFunc && p->pFunc->xStep );
+ return p->pMem->n;
+}
+
+/*
+** Return the number of columns in the result set for the statement pStmt.
+*/
+SQLITE_API int sqlite3_column_count(sqlite3_stmt *pStmt){
+ Vdbe *pVm = (Vdbe *)pStmt;
+ return pVm ? pVm->nResColumn : 0;
+}
+
+/*
+** Return the number of values available from the current row of the
+** currently executing statement pStmt.
+*/
+SQLITE_API int sqlite3_data_count(sqlite3_stmt *pStmt){
+ Vdbe *pVm = (Vdbe *)pStmt;
+ if( pVm==0 || pVm->pResultSet==0 ) return 0;
+ return pVm->nResColumn;
+}
+
+
+/*
+** Check to see if column iCol of the given statement is valid. If
+** it is, return a pointer to the Mem for the value of that column.
+** If iCol is not valid, return a pointer to a Mem which has a value
+** of NULL.
+*/
+static Mem *columnMem(sqlite3_stmt *pStmt, int i){
+ Vdbe *pVm;
+ int vals;
+ Mem *pOut;
+
+ pVm = (Vdbe *)pStmt;
+ if( pVm && pVm->pResultSet!=0 && i<pVm->nResColumn && i>=0 ){
+ sqlite3_mutex_enter(pVm->db->mutex);
+ vals = sqlite3_data_count(pStmt);
+ pOut = &pVm->pResultSet[i];
+ }else{
+ static const Mem nullMem = {{0}, 0.0, 0, "", 0, MEM_Null, SQLITE_NULL, 0, 0, 0 };
+ if( pVm->db ){
+ sqlite3_mutex_enter(pVm->db->mutex);
+ sqlite3Error(pVm->db, SQLITE_RANGE, 0);
+ }
+ pOut = (Mem*)&nullMem;
+ }
+ return pOut;
+}
+
+/*
+** This function is called after invoking an sqlite3_value_XXX function on a
+** column value (i.e. a value returned by evaluating an SQL expression in the
+** select list of a SELECT statement) that may cause a malloc() failure. If
+** malloc() has failed, the threads mallocFailed flag is cleared and the result
+** code of statement pStmt set to SQLITE_NOMEM.
+**
+** Specifically, this is called from within:
+**
+** sqlite3_column_int()
+** sqlite3_column_int64()
+** sqlite3_column_text()
+** sqlite3_column_text16()
+** sqlite3_column_real()
+** sqlite3_column_bytes()
+** sqlite3_column_bytes16()
+**
+** But not for sqlite3_column_blob(), which never calls malloc().
+*/
+static void columnMallocFailure(sqlite3_stmt *pStmt)
+{
+ /* If malloc() failed during an encoding conversion within an
+ ** sqlite3_column_XXX API, then set the return code of the statement to
+ ** SQLITE_NOMEM. The next call to _step() (if any) will return SQLITE_ERROR
+ ** and _finalize() will return NOMEM.
+ */
+ Vdbe *p = (Vdbe *)pStmt;
+ if( p ){
+ p->rc = sqlite3ApiExit(p->db, p->rc);
+ sqlite3_mutex_leave(p->db->mutex);
+ }
+}
+
+/**************************** sqlite3_column_ *******************************
+** The following routines are used to access elements of the current row
+** in the result set.
+*/
+SQLITE_API const void *sqlite3_column_blob(sqlite3_stmt *pStmt, int i){
+ const void *val;
+ val = sqlite3_value_blob( columnMem(pStmt,i) );
+ /* Even though there is no encoding conversion, value_blob() might
+ ** need to call malloc() to expand the result of a zeroblob()
+ ** expression.
+ */
+ columnMallocFailure(pStmt);
+ return val;
+}
+SQLITE_API int sqlite3_column_bytes(sqlite3_stmt *pStmt, int i){
+ int val = sqlite3_value_bytes( columnMem(pStmt,i) );
+ columnMallocFailure(pStmt);
+ return val;
+}
+SQLITE_API int sqlite3_column_bytes16(sqlite3_stmt *pStmt, int i){
+ int val = sqlite3_value_bytes16( columnMem(pStmt,i) );
+ columnMallocFailure(pStmt);
+ return val;
+}
+SQLITE_API double sqlite3_column_double(sqlite3_stmt *pStmt, int i){
+ double val = sqlite3_value_double( columnMem(pStmt,i) );
+ columnMallocFailure(pStmt);
+ return val;
+}
+SQLITE_API int sqlite3_column_int(sqlite3_stmt *pStmt, int i){
+ int val = sqlite3_value_int( columnMem(pStmt,i) );
+ columnMallocFailure(pStmt);
+ return val;
+}
+SQLITE_API sqlite_int64 sqlite3_column_int64(sqlite3_stmt *pStmt, int i){
+ sqlite_int64 val = sqlite3_value_int64( columnMem(pStmt,i) );
+ columnMallocFailure(pStmt);
+ return val;
+}
+SQLITE_API const unsigned char *sqlite3_column_text(sqlite3_stmt *pStmt, int i){
+ const unsigned char *val = sqlite3_value_text( columnMem(pStmt,i) );
+ columnMallocFailure(pStmt);
+ return val;
+}
+SQLITE_API sqlite3_value *sqlite3_column_value(sqlite3_stmt *pStmt, int i){
+ sqlite3_value *pOut = columnMem(pStmt, i);
+ columnMallocFailure(pStmt);
+ return pOut;
+}
+#ifndef SQLITE_OMIT_UTF16
+SQLITE_API const void *sqlite3_column_text16(sqlite3_stmt *pStmt, int i){
+ const void *val = sqlite3_value_text16( columnMem(pStmt,i) );
+ columnMallocFailure(pStmt);
+ return val;
+}
+#endif /* SQLITE_OMIT_UTF16 */
+SQLITE_API int sqlite3_column_type(sqlite3_stmt *pStmt, int i){
+ int iType = sqlite3_value_type( columnMem(pStmt,i) );
+ columnMallocFailure(pStmt);
+ return iType;
+}
+
+/* The following function is experimental and subject to change or
+** removal */
+/*int sqlite3_column_numeric_type(sqlite3_stmt *pStmt, int i){
+** return sqlite3_value_numeric_type( columnMem(pStmt,i) );
+**}
+*/
+
+/*
+** Convert the N-th element of pStmt->pColName[] into a string using
+** xFunc() then return that string. If N is out of range, return 0.
+**
+** There are up to 5 names for each column. useType determines which
+** name is returned. Here are the names:
+**
+** 0 The column name as it should be displayed for output
+** 1 The datatype name for the column
+** 2 The name of the database that the column derives from
+** 3 The name of the table that the column derives from
+** 4 The name of the table column that the result column derives from
+**
+** If the result is not a simple column reference (if it is an expression
+** or a constant) then useTypes 2, 3, and 4 return NULL.
+*/
+static const void *columnName(
+ sqlite3_stmt *pStmt,
+ int N,
+ const void *(*xFunc)(Mem*),
+ int useType
+){
+ const void *ret = 0;
+ Vdbe *p = (Vdbe *)pStmt;
+ int n;
+
+
+ if( p!=0 ){
+ n = sqlite3_column_count(pStmt);
+ if( N<n && N>=0 ){
+ N += useType*n;
+ sqlite3_mutex_enter(p->db->mutex);
+ ret = xFunc(&p->aColName[N]);
+
+ /* A malloc may have failed inside of the xFunc() call. If this
+ ** is the case, clear the mallocFailed flag and return NULL.
+ */
+ if( p->db && p->db->mallocFailed ){
+ p->db->mallocFailed = 0;
+ ret = 0;
+ }
+ sqlite3_mutex_leave(p->db->mutex);
+ }
+ }
+ return ret;
+}
+
+/*
+** Return the name of the Nth column of the result set returned by SQL
+** statement pStmt.
+*/
+SQLITE_API const char *sqlite3_column_name(sqlite3_stmt *pStmt, int N){
+ return columnName(
+ pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_NAME);
+}
+#ifndef SQLITE_OMIT_UTF16
+SQLITE_API const void *sqlite3_column_name16(sqlite3_stmt *pStmt, int N){
+ return columnName(
+ pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_NAME);
+}
+#endif
+
+/*
+** Constraint: If you have ENABLE_COLUMN_METADATA then you must
+** not define OMIT_DECLTYPE.
+*/
+#if defined(SQLITE_OMIT_DECLTYPE) && defined(SQLITE_ENABLE_COLUMN_METADATA)
+# error "Must not define both SQLITE_OMIT_DECLTYPE \
+ and SQLITE_ENABLE_COLUMN_METADATA"
+#endif
+
+#ifndef SQLITE_OMIT_DECLTYPE
+/*
+** Return the column declaration type (if applicable) of the 'i'th column
+** of the result set of SQL statement pStmt.
+*/
+SQLITE_API const char *sqlite3_column_decltype(sqlite3_stmt *pStmt, int N){
+ return columnName(
+ pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DECLTYPE);
+}
+#ifndef SQLITE_OMIT_UTF16
+SQLITE_API const void *sqlite3_column_decltype16(sqlite3_stmt *pStmt, int N){
+ return columnName(
+ pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DECLTYPE);
+}
+#endif /* SQLITE_OMIT_UTF16 */
+#endif /* SQLITE_OMIT_DECLTYPE */
+
+#ifdef SQLITE_ENABLE_COLUMN_METADATA
+/*
+** Return the name of the database from which a result column derives.
+** NULL is returned if the result column is an expression or constant or
+** anything else which is not an unabiguous reference to a database column.
+*/
+SQLITE_API const char *sqlite3_column_database_name(sqlite3_stmt *pStmt, int N){
+ return columnName(
+ pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DATABASE);
+}
+#ifndef SQLITE_OMIT_UTF16
+SQLITE_API const void *sqlite3_column_database_name16(sqlite3_stmt *pStmt, int N){
+ return columnName(
+ pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DATABASE);
+}
+#endif /* SQLITE_OMIT_UTF16 */
+
+/*
+** Return the name of the table from which a result column derives.
+** NULL is returned if the result column is an expression or constant or
+** anything else which is not an unabiguous reference to a database column.
+*/
+SQLITE_API const char *sqlite3_column_table_name(sqlite3_stmt *pStmt, int N){
+ return columnName(
+ pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_TABLE);
+}
+#ifndef SQLITE_OMIT_UTF16
+SQLITE_API const void *sqlite3_column_table_name16(sqlite3_stmt *pStmt, int N){
+ return columnName(
+ pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_TABLE);
+}
+#endif /* SQLITE_OMIT_UTF16 */
+
+/*
+** Return the name of the table column from which a result column derives.
+** NULL is returned if the result column is an expression or constant or
+** anything else which is not an unabiguous reference to a database column.
+*/
+SQLITE_API const char *sqlite3_column_origin_name(sqlite3_stmt *pStmt, int N){
+ return columnName(
+ pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_COLUMN);
+}
+#ifndef SQLITE_OMIT_UTF16
+SQLITE_API const void *sqlite3_column_origin_name16(sqlite3_stmt *pStmt, int N){
+ return columnName(
+ pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_COLUMN);
+}
+#endif /* SQLITE_OMIT_UTF16 */
+#endif /* SQLITE_ENABLE_COLUMN_METADATA */
+
+
+/******************************* sqlite3_bind_ ***************************
+**
+** Routines used to attach values to wildcards in a compiled SQL statement.
+*/
+/*
+** Unbind the value bound to variable i in virtual machine p. This is the
+** the same as binding a NULL value to the column. If the "i" parameter is
+** out of range, then SQLITE_RANGE is returned. Othewise SQLITE_OK.
+**
+** The error code stored in database p->db is overwritten with the return
+** value in any case.
+*/
+static int vdbeUnbind(Vdbe *p, int i){
+ Mem *pVar;
+ if( p==0 || p->magic!=VDBE_MAGIC_RUN || p->pc>=0 ){
+ if( p ) sqlite3Error(p->db, SQLITE_MISUSE, 0);
+ return SQLITE_MISUSE;
+ }
+ if( i<1 || i>p->nVar ){
+ sqlite3Error(p->db, SQLITE_RANGE, 0);
+ return SQLITE_RANGE;
+ }
+ i--;
+ pVar = &p->aVar[i];
+ sqlite3VdbeMemRelease(pVar);
+ pVar->flags = MEM_Null;
+ sqlite3Error(p->db, SQLITE_OK, 0);
+ return SQLITE_OK;
+}
+
+/*
+** Bind a text or BLOB value.
+*/
+static int bindText(
+ sqlite3_stmt *pStmt, /* The statement to bind against */
+ int i, /* Index of the parameter to bind */
+ const void *zData, /* Pointer to the data to be bound */
+ int nData, /* Number of bytes of data to be bound */
+ void (*xDel)(void*), /* Destructor for the data */
+ int encoding /* Encoding for the data */
+){
+ Vdbe *p = (Vdbe *)pStmt;
+ Mem *pVar;
+ int rc;
+
+ if( p==0 ){
+ return SQLITE_MISUSE;
+ }
+ sqlite3_mutex_enter(p->db->mutex);
+ rc = vdbeUnbind(p, i);
+ if( rc==SQLITE_OK && zData!=0 ){
+ pVar = &p->aVar[i-1];
+ rc = sqlite3VdbeMemSetStr(pVar, zData, nData, encoding, xDel);
+ if( rc==SQLITE_OK && encoding!=0 ){
+ rc = sqlite3VdbeChangeEncoding(pVar, ENC(p->db));
+ }
+ sqlite3Error(p->db, rc, 0);
+ rc = sqlite3ApiExit(p->db, rc);
+ }
+ sqlite3_mutex_leave(p->db->mutex);
+ return rc;
+}
+
+
+/*
+** Bind a blob value to an SQL statement variable.
+*/
+SQLITE_API int sqlite3_bind_blob(
+ sqlite3_stmt *pStmt,
+ int i,
+ const void *zData,
+ int nData,
+ void (*xDel)(void*)
+){
+ return bindText(pStmt, i, zData, nData, xDel, 0);
+}
+SQLITE_API int sqlite3_bind_double(sqlite3_stmt *pStmt, int i, double rValue){
+ int rc;
+ Vdbe *p = (Vdbe *)pStmt;
+ sqlite3_mutex_enter(p->db->mutex);
+ rc = vdbeUnbind(p, i);
+ if( rc==SQLITE_OK ){
+ sqlite3VdbeMemSetDouble(&p->aVar[i-1], rValue);
+ }
+ sqlite3_mutex_leave(p->db->mutex);
+ return rc;
+}
+SQLITE_API int sqlite3_bind_int(sqlite3_stmt *p, int i, int iValue){
+ return sqlite3_bind_int64(p, i, (i64)iValue);
+}
+SQLITE_API int sqlite3_bind_int64(sqlite3_stmt *pStmt, int i, sqlite_int64 iValue){
+ int rc;
+ Vdbe *p = (Vdbe *)pStmt;
+ sqlite3_mutex_enter(p->db->mutex);
+ rc = vdbeUnbind(p, i);
+ if( rc==SQLITE_OK ){
+ sqlite3VdbeMemSetInt64(&p->aVar[i-1], iValue);
+ }
+ sqlite3_mutex_leave(p->db->mutex);
+ return rc;
+}
+SQLITE_API int sqlite3_bind_null(sqlite3_stmt *pStmt, int i){
+ int rc;
+ Vdbe *p = (Vdbe*)pStmt;
+ sqlite3_mutex_enter(p->db->mutex);
+ rc = vdbeUnbind(p, i);
+ sqlite3_mutex_leave(p->db->mutex);
+ return rc;
+}
+SQLITE_API int sqlite3_bind_text(
+ sqlite3_stmt *pStmt,
+ int i,
+ const char *zData,
+ int nData,
+ void (*xDel)(void*)
+){
+ return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF8);
+}
+#ifndef SQLITE_OMIT_UTF16
+SQLITE_API int sqlite3_bind_text16(
+ sqlite3_stmt *pStmt,
+ int i,
+ const void *zData,
+ int nData,
+ void (*xDel)(void*)
+){
+ return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF16NATIVE);
+}
+#endif /* SQLITE_OMIT_UTF16 */
+SQLITE_API int sqlite3_bind_value(sqlite3_stmt *pStmt, int i, const sqlite3_value *pValue){
+ int rc;
+ Vdbe *p = (Vdbe *)pStmt;
+ sqlite3_mutex_enter(p->db->mutex);
+ rc = vdbeUnbind(p, i);
+ if( rc==SQLITE_OK ){
+ rc = sqlite3VdbeMemCopy(&p->aVar[i-1], pValue);
+ }
+ rc = sqlite3ApiExit(p->db, rc);
+ sqlite3_mutex_leave(p->db->mutex);
+ return rc;
+}
+SQLITE_API int sqlite3_bind_zeroblob(sqlite3_stmt *pStmt, int i, int n){
+ int rc;
+ Vdbe *p = (Vdbe *)pStmt;
+ sqlite3_mutex_enter(p->db->mutex);
+ rc = vdbeUnbind(p, i);
+ if( rc==SQLITE_OK ){
+ sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n);
+ }
+ sqlite3_mutex_leave(p->db->mutex);
+ return rc;
+}
+
+/*
+** Return the number of wildcards that can be potentially bound to.
+** This routine is added to support DBD::SQLite.
+*/
+SQLITE_API int sqlite3_bind_parameter_count(sqlite3_stmt *pStmt){
+ Vdbe *p = (Vdbe*)pStmt;
+ return p ? p->nVar : 0;
+}
+
+/*
+** Create a mapping from variable numbers to variable names
+** in the Vdbe.azVar[] array, if such a mapping does not already
+** exist.
+*/
+static void createVarMap(Vdbe *p){
+ if( !p->okVar ){
+ sqlite3_mutex_enter(p->db->mutex);
+ if( !p->okVar ){
+ int j;
+ Op *pOp;
+ for(j=0, pOp=p->aOp; j<p->nOp; j++, pOp++){
+ if( pOp->opcode==OP_Variable ){
+ assert( pOp->p1>0 && pOp->p1<=p->nVar );
+ p->azVar[pOp->p1-1] = pOp->p4.z;
+ }
+ }
+ p->okVar = 1;
+ }
+ sqlite3_mutex_leave(p->db->mutex);
+ }
+}
+
+/*
+** Return the name of a wildcard parameter. Return NULL if the index
+** is out of range or if the wildcard is unnamed.
+**
+** The result is always UTF-8.
+*/
+SQLITE_API const char *sqlite3_bind_parameter_name(sqlite3_stmt *pStmt, int i){
+ Vdbe *p = (Vdbe*)pStmt;
+ if( p==0 || i<1 || i>p->nVar ){
+ return 0;
+ }
+ createVarMap(p);
+ return p->azVar[i-1];
+}
+
+/*
+** Given a wildcard parameter name, return the index of the variable
+** with that name. If there is no variable with the given name,
+** return 0.
+*/
+SQLITE_API int sqlite3_bind_parameter_index(sqlite3_stmt *pStmt, const char *zName){
+ Vdbe *p = (Vdbe*)pStmt;
+ int i;
+ if( p==0 ){
+ return 0;
+ }
+ createVarMap(p);
+ if( zName ){
+ for(i=0; i<p->nVar; i++){
+ const char *z = p->azVar[i];
+ if( z && strcmp(z,zName)==0 ){
+ return i+1;
+ }
+ }
+ }
+ return 0;
+}
+
+/*
+** Transfer all bindings from the first statement over to the second.
+** If the two statements contain a different number of bindings, then
+** an SQLITE_ERROR is returned.
+*/
+SQLITE_API int sqlite3_transfer_bindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){
+ Vdbe *pFrom = (Vdbe*)pFromStmt;
+ Vdbe *pTo = (Vdbe*)pToStmt;
+ int i, rc = SQLITE_OK;
+ if( (pFrom->magic!=VDBE_MAGIC_RUN && pFrom->magic!=VDBE_MAGIC_HALT)
+ || (pTo->magic!=VDBE_MAGIC_RUN && pTo->magic!=VDBE_MAGIC_HALT)
+ || pTo->db!=pFrom->db ){
+ return SQLITE_MISUSE;
+ }
+ if( pFrom->nVar!=pTo->nVar ){
+ return SQLITE_ERROR;
+ }
+ sqlite3_mutex_enter(pTo->db->mutex);
+ for(i=0; rc==SQLITE_OK && i<pFrom->nVar; i++){
+ sqlite3VdbeMemMove(&pTo->aVar[i], &pFrom->aVar[i]);
+ }
+ sqlite3_mutex_leave(pTo->db->mutex);
+ assert( rc==SQLITE_OK || rc==SQLITE_NOMEM );
+ return rc;
+}
+
+/*
+** Return the sqlite3* database handle to which the prepared statement given
+** in the argument belongs. This is the same database handle that was
+** the first argument to the sqlite3_prepare() that was used to create
+** the statement in the first place.
+*/
+SQLITE_API sqlite3 *sqlite3_db_handle(sqlite3_stmt *pStmt){
+ return pStmt ? ((Vdbe*)pStmt)->db : 0;
+}
+
+/************** End of vdbeapi.c *********************************************/
+/************** Begin file vdbe.c ********************************************/
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** The code in this file implements execution method of the
+** Virtual Database Engine (VDBE). A separate file ("vdbeaux.c")
+** handles housekeeping details such as creating and deleting
+** VDBE instances. This file is solely interested in executing
+** the VDBE program.
+**
+** In the external interface, an "sqlite3_stmt*" is an opaque pointer
+** to a VDBE.
+**
+** The SQL parser generates a program which is then executed by
+** the VDBE to do the work of the SQL statement. VDBE programs are
+** similar in form to assembly language. The program consists of
+** a linear sequence of operations. Each operation has an opcode
+** and 5 operands. Operands P1, P2, and P3 are integers. Operand P4
+** is a null-terminated string. Operand P5 is an unsigned character.
+** Few opcodes use all 5 operands.
+**
+** Computation results are stored on a set of registers numbered beginning
+** with 1 and going up to Vdbe.nMem. Each register can store
+** either an integer, a null-terminated string, a floating point
+** number, or the SQL "NULL" value. An inplicit conversion from one
+** type to the other occurs as necessary.
+**
+** Most of the code in this file is taken up by the sqlite3VdbeExec()
+** function which does the work of interpreting a VDBE program.
+** But other routines are also provided to help in building up
+** a program instruction by instruction.
+**
+** Various scripts scan this source file in order to generate HTML
+** documentation, headers files, or other derived files. The formatting
+** of the code in this file is, therefore, important. See other comments
+** in this file for details. If in doubt, do not deviate from existing
+** commenting and indentation practices when changing or adding code.
+**
+** $Id: vdbe.c,v 1.740 2008/05/13 13:27:34 drh Exp $
+*/
+
+/*
+** The following global variable is incremented every time a cursor
+** moves, either by the OP_MoveXX, OP_Next, or OP_Prev opcodes. The test
+** procedures use this information to make sure that indices are
+** working correctly. This variable has no function other than to
+** help verify the correct operation of the library.
+*/
+#ifdef SQLITE_TEST
+SQLITE_API int sqlite3_search_count = 0;
+#endif
+
+/*
+** When this global variable is positive, it gets decremented once before
+** each instruction in the VDBE. When reaches zero, the u1.isInterrupted
+** field of the sqlite3 structure is set in order to simulate and interrupt.
+**
+** This facility is used for testing purposes only. It does not function
+** in an ordinary build.
+*/
+#ifdef SQLITE_TEST
+SQLITE_API int sqlite3_interrupt_count = 0;
+#endif
+
+/*
+** The next global variable is incremented each type the OP_Sort opcode
+** is executed. The test procedures use this information to make sure that
+** sorting is occurring or not occuring at appropriate times. This variable
+** has no function other than to help verify the correct operation of the
+** library.
+*/
+#ifdef SQLITE_TEST
+SQLITE_API int sqlite3_sort_count = 0;
+#endif
+
+/*
+** The next global variable records the size of the largest MEM_Blob
+** or MEM_Str that has been used by a VDBE opcode. The test procedures
+** use this information to make sure that the zero-blob functionality
+** is working correctly. This variable has no function other than to
+** help verify the correct operation of the library.
+*/
+#ifdef SQLITE_TEST
+SQLITE_API int sqlite3_max_blobsize = 0;
+static void updateMaxBlobsize(Mem *p){
+ if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){
+ sqlite3_max_blobsize = p->n;
+ }
+}
+#endif
+
+/*
+** Test a register to see if it exceeds the current maximum blob size.
+** If it does, record the new maximum blob size.
+*/
+#if defined(SQLITE_TEST) && !defined(SQLITE_OMIT_BUILTIN_TEST)
+# define UPDATE_MAX_BLOBSIZE(P) updateMaxBlobsize(P)
+#else
+# define UPDATE_MAX_BLOBSIZE(P)
+#endif
+
+/*
+** Release the memory associated with a register. This
+** leaves the Mem.flags field in an inconsistent state.
+*/
+#define Release(P) if((P)->flags&MEM_Dyn){ sqlite3VdbeMemRelease(P); }
+
+/*
+** Convert the given register into a string if it isn't one
+** already. Return non-zero if a malloc() fails.
+*/
+#define Stringify(P, enc) \
+ if(((P)->flags&(MEM_Str|MEM_Blob))==0 && sqlite3VdbeMemStringify(P,enc)) \
+ { goto no_mem; }
+
+/*
+** An ephemeral string value (signified by the MEM_Ephem flag) contains
+** a pointer to a dynamically allocated string where some other entity
+** is responsible for deallocating that string. Because the register
+** does not control the string, it might be deleted without the register
+** knowing it.
+**
+** This routine converts an ephemeral string into a dynamically allocated
+** string that the register itself controls. In other words, it
+** converts an MEM_Ephem string into an MEM_Dyn string.
+*/
+#define Deephemeralize(P) \
+ if( ((P)->flags&MEM_Ephem)!=0 \
+ && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;}
+
+/*
+** Call sqlite3VdbeMemExpandBlob() on the supplied value (type Mem*)
+** P if required.
+*/
+#define ExpandBlob(P) (((P)->flags&MEM_Zero)?sqlite3VdbeMemExpandBlob(P):0)
+
+/*
+** Argument pMem points at a regiser that will be passed to a
+** user-defined function or returned to the user as the result of a query.
+** The second argument, 'db_enc' is the text encoding used by the vdbe for
+** register variables. This routine sets the pMem->enc and pMem->type
+** variables used by the sqlite3_value_*() routines.
+*/
+#define storeTypeInfo(A,B) _storeTypeInfo(A)
+static void _storeTypeInfo(Mem *pMem){
+ int flags = pMem->flags;
+ if( flags & MEM_Null ){
+ pMem->type = SQLITE_NULL;
+ }
+ else if( flags & MEM_Int ){
+ pMem->type = SQLITE_INTEGER;
+ }
+ else if( flags & MEM_Real ){
+ pMem->type = SQLITE_FLOAT;
+ }
+ else if( flags & MEM_Str ){
+ pMem->type = SQLITE_TEXT;
+ }else{
+ pMem->type = SQLITE_BLOB;
+ }
+}
+
+/*
+** Properties of opcodes. The OPFLG_INITIALIZER macro is
+** created by mkopcodeh.awk during compilation. Data is obtained
+** from the comments following the "case OP_xxxx:" statements in
+** this file.
+*/
+static unsigned char opcodeProperty[] = OPFLG_INITIALIZER;
+
+/*
+** Return true if an opcode has any of the OPFLG_xxx properties
+** specified by mask.
+*/
+SQLITE_PRIVATE int sqlite3VdbeOpcodeHasProperty(int opcode, int mask){
+ assert( opcode>0 && opcode<sizeof(opcodeProperty) );
+ return (opcodeProperty[opcode]&mask)!=0;
+}
+
+/*
+** Allocate cursor number iCur. Return a pointer to it. Return NULL
+** if we run out of memory.
+*/
+static Cursor *allocateCursor(
+ Vdbe *p,
+ int iCur,
+ Op *pOp,
+ int iDb,
+ int isBtreeCursor
+){
+ /* Find the memory cell that will be used to store the blob of memory
+ ** required for this Cursor structure. It is convenient to use a
+ ** vdbe memory cell to manage the memory allocation required for a
+ ** Cursor structure for the following reasons:
+ **
+ ** * Sometimes cursor numbers are used for a couple of different
+ ** purposes in a vdbe program. The different uses might require
+ ** different sized allocations. Memory cells provide growable
+ ** allocations.
+ **
+ ** * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can
+ ** be freed lazily via the sqlite3_release_memory() API. This
+ ** minimizes the number of malloc calls made by the system.
+ **
+ ** Memory cells for cursors are allocated at the top of the address
+ ** space. Memory cell (p->nMem) corresponds to cursor 0. Space for
+ ** cursor 1 is managed by memory cell (p->nMem-1), etc.
+ */
+ Mem *pMem = &p->aMem[p->nMem-iCur];
+
+ int nByte;
+ Cursor *pCx = 0;
+ /* If the opcode of pOp is OP_SetNumColumns, then pOp->p2 contains
+ ** the number of fields in the records contained in the table or
+ ** index being opened. Use this to reserve space for the
+ ** Cursor.aType[] array.
+ */
+ int nField = 0;
+ if( pOp->opcode==OP_SetNumColumns || pOp->opcode==OP_OpenEphemeral ){
+ nField = pOp->p2;
+ }
+ nByte =
+ sizeof(Cursor) +
+ (isBtreeCursor?sqlite3BtreeCursorSize():0) +
+ 2*nField*sizeof(u32);
+
+ assert( iCur<p->nCursor );
+ if( p->apCsr[iCur] ){
+ sqlite3VdbeFreeCursor(p, p->apCsr[iCur]);
+ p->apCsr[iCur] = 0;
+ }
+ if( SQLITE_OK==sqlite3VdbeMemGrow(pMem, nByte, 0) ){
+ p->apCsr[iCur] = pCx = (Cursor *)pMem->z;
+ memset(pMem->z, 0, nByte);
+ pCx->iDb = iDb;
+ pCx->nField = nField;
+ if( nField ){
+ pCx->aType = (u32 *)&pMem->z[sizeof(Cursor)];
+ }
+ if( isBtreeCursor ){
+ pCx->pCursor = (BtCursor *)&pMem->z[sizeof(Cursor)+2*nField*sizeof(u32)];
+ }
+ }
+ return pCx;
+}
+
+/*
+** Try to convert a value into a numeric representation if we can
+** do so without loss of information. In other words, if the string
+** looks like a number, convert it into a number. If it does not
+** look like a number, leave it alone.
+*/
+static void applyNumericAffinity(Mem *pRec){
+ if( (pRec->flags & (MEM_Real|MEM_Int))==0 ){
+ int realnum;
+ sqlite3VdbeMemNulTerminate(pRec);
+ if( (pRec->flags&MEM_Str)
+ && sqlite3IsNumber(pRec->z, &realnum, pRec->enc) ){
+ i64 value;
+ sqlite3VdbeChangeEncoding(pRec, SQLITE_UTF8);
+ if( !realnum && sqlite3Atoi64(pRec->z, &value) ){
+ pRec->u.i = value;
+ MemSetTypeFlag(pRec, MEM_Int);
+ }else{
+ sqlite3VdbeMemRealify(pRec);
+ }
+ }
+ }
+}
+
+/*
+** Processing is determine by the affinity parameter:
+**
+** SQLITE_AFF_INTEGER:
+** SQLITE_AFF_REAL:
+** SQLITE_AFF_NUMERIC:
+** Try to convert pRec to an integer representation or a
+** floating-point representation if an integer representation
+** is not possible. Note that the integer representation is
+** always preferred, even if the affinity is REAL, because
+** an integer representation is more space efficient on disk.
+**
+** SQLITE_AFF_TEXT:
+** Convert pRec to a text representation.
+**
+** SQLITE_AFF_NONE:
+** No-op. pRec is unchanged.
+*/
+static void applyAffinity(
+ Mem *pRec, /* The value to apply affinity to */
+ char affinity, /* The affinity to be applied */
+ u8 enc /* Use this text encoding */
+){
+ if( affinity==SQLITE_AFF_TEXT ){
+ /* Only attempt the conversion to TEXT if there is an integer or real
+ ** representation (blob and NULL do not get converted) but no string
+ ** representation.
+ */
+ if( 0==(pRec->flags&MEM_Str) && (pRec->flags&(MEM_Real|MEM_Int)) ){
+ sqlite3VdbeMemStringify(pRec, enc);
+ }
+ pRec->flags &= ~(MEM_Real|MEM_Int);
+ }else if( affinity!=SQLITE_AFF_NONE ){
+ assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL
+ || affinity==SQLITE_AFF_NUMERIC );
+ applyNumericAffinity(pRec);
+ if( pRec->flags & MEM_Real ){
+ sqlite3VdbeIntegerAffinity(pRec);
+ }
+ }
+}
+
+/*
+** Try to convert the type of a function argument or a result column
+** into a numeric representation. Use either INTEGER or REAL whichever
+** is appropriate. But only do the conversion if it is possible without
+** loss of information and return the revised type of the argument.
+**
+** This is an EXPERIMENTAL api and is subject to change or removal.
+*/
+SQLITE_API int sqlite3_value_numeric_type(sqlite3_value *pVal){
+ Mem *pMem = (Mem*)pVal;
+ applyNumericAffinity(pMem);
+ storeTypeInfo(pMem, 0);
+ return pMem->type;
+}
+
+/*
+** Exported version of applyAffinity(). This one works on sqlite3_value*,
+** not the internal Mem* type.
+*/
+SQLITE_PRIVATE void sqlite3ValueApplyAffinity(
+ sqlite3_value *pVal,
+ u8 affinity,
+ u8 enc
+){
+ applyAffinity((Mem *)pVal, affinity, enc);
+}
+
+#ifdef SQLITE_DEBUG
+/*
+** Write a nice string representation of the contents of cell pMem
+** into buffer zBuf, length nBuf.
+*/
+SQLITE_PRIVATE void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf){
+ char *zCsr = zBuf;
+ int f = pMem->flags;
+
+ static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"};
+
+ if( f&MEM_Blob ){
+ int i;
+ char c;
+ if( f & MEM_Dyn ){
+ c = 'z';
+ assert( (f & (MEM_Static|MEM_Ephem))==0 );
+ }else if( f & MEM_Static ){
+ c = 't';
+ assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
+ }else if( f & MEM_Ephem ){
+ c = 'e';
+ assert( (f & (MEM_Static|MEM_Dyn))==0 );
+ }else{
+ c = 's';
+ }
+
+ sqlite3_snprintf(100, zCsr, "%c", c);
+ zCsr += strlen(zCsr);
+ sqlite3_snprintf(100, zCsr, "%d[", pMem->n);
+ zCsr += strlen(zCsr);
+ for(i=0; i<16 && i<pMem->n; i++){
+ sqlite3_snprintf(100, zCsr, "%02X", ((int)pMem->z[i] & 0xFF));
+ zCsr += strlen(zCsr);
+ }
+ for(i=0; i<16 && i<pMem->n; i++){
+ char z = pMem->z[i];
+ if( z<32 || z>126 ) *zCsr++ = '.';
+ else *zCsr++ = z;
+ }
+
+ sqlite3_snprintf(100, zCsr, "]%s", encnames[pMem->enc]);
+ zCsr += strlen(zCsr);
+ if( f & MEM_Zero ){
+ sqlite3_snprintf(100, zCsr,"+%lldz",pMem->u.i);
+ zCsr += strlen(zCsr);
+ }
+ *zCsr = '\0';
+ }else if( f & MEM_Str ){
+ int j, k;
+ zBuf[0] = ' ';
+ if( f & MEM_Dyn ){
+ zBuf[1] = 'z';
+ assert( (f & (MEM_Static|MEM_Ephem))==0 );
+ }else if( f & MEM_Static ){
+ zBuf[1] = 't';
+ assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
+ }else if( f & MEM_Ephem ){
+ zBuf[1] = 'e';
+ assert( (f & (MEM_Static|MEM_Dyn))==0 );
+ }else{
+ zBuf[1] = 's';
+ }
+ k = 2;
+ sqlite3_snprintf(100, &zBuf[k], "%d", pMem->n);
+ k += strlen(&zBuf[k]);
+ zBuf[k++] = '[';
+ for(j=0; j<15 && j<pMem->n; j++){
+ u8 c = pMem->z[j];
+ if( c>=0x20 && c<0x7f ){
+ zBuf[k++] = c;
+ }else{
+ zBuf[k++] = '.';
+ }
+ }
+ zBuf[k++] = ']';
+ sqlite3_snprintf(100,&zBuf[k], encnames[pMem->enc]);
+ k += strlen(&zBuf[k]);
+ zBuf[k++] = 0;
+ }
+}
+#endif
+
+#ifdef SQLITE_DEBUG
+/*
+** Print the value of a register for tracing purposes:
+*/
+static void memTracePrint(FILE *out, Mem *p){
+ if( p->flags & MEM_Null ){
+ fprintf(out, " NULL");
+ }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){
+ fprintf(out, " si:%lld", p->u.i);
+ }else if( p->flags & MEM_Int ){
+ fprintf(out, " i:%lld", p->u.i);
+ }else if( p->flags & MEM_Real ){
+ fprintf(out, " r:%g", p->r);
+ }else{
+ char zBuf[200];
+ sqlite3VdbeMemPrettyPrint(p, zBuf);
+ fprintf(out, " ");
+ fprintf(out, "%s", zBuf);
+ }
+}
+static void registerTrace(FILE *out, int iReg, Mem *p){
+ fprintf(out, "REG[%d] = ", iReg);
+ memTracePrint(out, p);
+ fprintf(out, "\n");
+}
+#endif
+
+#ifdef SQLITE_DEBUG
+# define REGISTER_TRACE(R,M) if(p->trace&&R>0)registerTrace(p->trace,R,M)
+#else
+# define REGISTER_TRACE(R,M)
+#endif
+
+
+#ifdef VDBE_PROFILE
+/*
+** The following routine only works on pentium-class processors.
+** It uses the RDTSC opcode to read the cycle count value out of the
+** processor and returns that value. This can be used for high-res
+** profiling.
+*/
+__inline__ unsigned long long int hwtime(void){
+ unsigned int lo, hi;
+ /* We cannot use "=A", since this would use %rax on x86_64 */
+ __asm__ __volatile__ ("rdtsc" : "=a" (lo), "=d" (hi));
+ return (unsigned long long int)hi << 32 | lo;
+}
+#endif
+
+/*
+** The CHECK_FOR_INTERRUPT macro defined here looks to see if the
+** sqlite3_interrupt() routine has been called. If it has been, then
+** processing of the VDBE program is interrupted.
+**
+** This macro added to every instruction that does a jump in order to
+** implement a loop. This test used to be on every single instruction,
+** but that meant we more testing that we needed. By only testing the
+** flag on jump instructions, we get a (small) speed improvement.
+*/
+#define CHECK_FOR_INTERRUPT \
+ if( db->u1.isInterrupted ) goto abort_due_to_interrupt;
+
+
+/*
+** Execute as much of a VDBE program as we can then return.
+**
+** sqlite3VdbeMakeReady() must be called before this routine in order to
+** close the program with a final OP_Halt and to set up the callbacks
+** and the error message pointer.
+**
+** Whenever a row or result data is available, this routine will either
+** invoke the result callback (if there is one) or return with
+** SQLITE_ROW.
+**
+** If an attempt is made to open a locked database, then this routine
+** will either invoke the busy callback (if there is one) or it will
+** return SQLITE_BUSY.
+**
+** If an error occurs, an error message is written to memory obtained
+** from sqlite3_malloc() and p->zErrMsg is made to point to that memory.
+** The error code is stored in p->rc and this routine returns SQLITE_ERROR.
+**
+** If the callback ever returns non-zero, then the program exits
+** immediately. There will be no error message but the p->rc field is
+** set to SQLITE_ABORT and this routine will return SQLITE_ERROR.
+**
+** A memory allocation error causes p->rc to be set to SQLITE_NOMEM and this
+** routine to return SQLITE_ERROR.
+**
+** Other fatal errors return SQLITE_ERROR.
+**
+** After this routine has finished, sqlite3VdbeFinalize() should be
+** used to clean up the mess that was left behind.
+*/
+SQLITE_PRIVATE int sqlite3VdbeExec(
+ Vdbe *p /* The VDBE */
+){
+ int pc; /* The program counter */
+ Op *pOp; /* Current operation */
+ int rc = SQLITE_OK; /* Value to return */
+ sqlite3 *db = p->db; /* The database */
+ u8 encoding = ENC(db); /* The database encoding */
+ Mem *pIn1, *pIn2, *pIn3; /* Input operands */
+ Mem *pOut; /* Output operand */
+ u8 opProperty;
+#ifdef VDBE_PROFILE
+ unsigned long long start; /* CPU clock count at start of opcode */
+ int origPc; /* Program counter at start of opcode */
+#endif
+#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
+ int nProgressOps = 0; /* Opcodes executed since progress callback. */
+#endif
+
+ assert( p->magic==VDBE_MAGIC_RUN ); /* sqlite3_step() verifies this */
+ assert( db->magic==SQLITE_MAGIC_BUSY );
+ sqlite3BtreeMutexArrayEnter(&p->aMutex);
+ if( p->rc==SQLITE_NOMEM ){
+ /* This happens if a malloc() inside a call to sqlite3_column_text() or
+ ** sqlite3_column_text16() failed. */
+ goto no_mem;
+ }
+ assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY );
+ p->rc = SQLITE_OK;
+ assert( p->explain==0 );
+ p->pResultSet = 0;
+ db->busyHandler.nBusy = 0;
+ CHECK_FOR_INTERRUPT;
+ sqlite3VdbeIOTraceSql(p);
+#ifdef SQLITE_DEBUG
+ sqlite3FaultBeginBenign(-1);
+ if( p->pc==0 && ((p->db->flags & SQLITE_VdbeListing)!=0
+ || sqlite3OsAccess(db->pVfs, "vdbe_explain", SQLITE_ACCESS_EXISTS)==1 )
+ ){
+ int i;
+ printf("VDBE Program Listing:\n");
+ sqlite3VdbePrintSql(p);
+ for(i=0; i<p->nOp; i++){
+ sqlite3VdbePrintOp(stdout, i, &p->aOp[i]);
+ }
+ }
+ if( sqlite3OsAccess(db->pVfs, "vdbe_trace", SQLITE_ACCESS_EXISTS)==1 ){
+ p->trace = stdout;
+ }
+ sqlite3FaultEndBenign(-1);
+#endif
+ for(pc=p->pc; rc==SQLITE_OK; pc++){
+ assert( pc>=0 && pc<p->nOp );
+ if( db->mallocFailed ) goto no_mem;
+#ifdef VDBE_PROFILE
+ origPc = pc;
+ start = hwtime();
+#endif
+ pOp = &p->aOp[pc];
+
+ /* Only allow tracing if SQLITE_DEBUG is defined.
+ */
+#ifdef SQLITE_DEBUG
+ if( p->trace ){
+ if( pc==0 ){
+ printf("VDBE Execution Trace:\n");
+ sqlite3VdbePrintSql(p);
+ }
+ sqlite3VdbePrintOp(p->trace, pc, pOp);
+ }
+ if( p->trace==0 && pc==0 ){
+ sqlite3FaultBeginBenign(-1);
+ if( sqlite3OsAccess(db->pVfs, "vdbe_sqltrace", SQLITE_ACCESS_EXISTS)==1 ){
+ sqlite3VdbePrintSql(p);
+ }
+ sqlite3FaultEndBenign(-1);
+ }
+#endif
+
+
+ /* Check to see if we need to simulate an interrupt. This only happens
+ ** if we have a special test build.
+ */
+#ifdef SQLITE_TEST
+ if( sqlite3_interrupt_count>0 ){
+ sqlite3_interrupt_count--;
+ if( sqlite3_interrupt_count==0 ){
+ sqlite3_interrupt(db);
+ }
+ }
+#endif
+
+#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
+ /* Call the progress callback if it is configured and the required number
+ ** of VDBE ops have been executed (either since this invocation of
+ ** sqlite3VdbeExec() or since last time the progress callback was called).
+ ** If the progress callback returns non-zero, exit the virtual machine with
+ ** a return code SQLITE_ABORT.
+ */
+ if( db->xProgress ){
+ if( db->nProgressOps==nProgressOps ){
+ int prc;
+ if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
+ prc =db->xProgress(db->pProgressArg);
+ if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
+ if( prc!=0 ){
+ rc = SQLITE_INTERRUPT;
+ goto vdbe_error_halt;
+ }
+ nProgressOps = 0;
+ }
+ nProgressOps++;
+ }
+#endif
+
+ /* Do common setup processing for any opcode that is marked
+ ** with the "out2-prerelease" tag. Such opcodes have a single
+ ** output which is specified by the P2 parameter. The P2 register
+ ** is initialized to a NULL.
+ */
+ opProperty = opcodeProperty[pOp->opcode];
+ if( (opProperty & OPFLG_OUT2_PRERELEASE)!=0 ){
+ assert( pOp->p2>0 );
+ assert( pOp->p2<=p->nMem );
+ pOut = &p->aMem[pOp->p2];
+ sqlite3VdbeMemReleaseExternal(pOut);
+ pOut->flags = MEM_Null;
+ }else
+
+ /* Do common setup for opcodes marked with one of the following
+ ** combinations of properties.
+ **
+ ** in1
+ ** in1 in2
+ ** in1 in2 out3
+ ** in1 in3
+ **
+ ** Variables pIn1, pIn2, and pIn3 are made to point to appropriate
+ ** registers for inputs. Variable pOut points to the output register.
+ */
+ if( (opProperty & OPFLG_IN1)!=0 ){
+ assert( pOp->p1>0 );
+ assert( pOp->p1<=p->nMem );
+ pIn1 = &p->aMem[pOp->p1];
+ REGISTER_TRACE(pOp->p1, pIn1);
+ if( (opProperty & OPFLG_IN2)!=0 ){
+ assert( pOp->p2>0 );
+ assert( pOp->p2<=p->nMem );
+ pIn2 = &p->aMem[pOp->p2];
+ REGISTER_TRACE(pOp->p2, pIn2);
+ if( (opProperty & OPFLG_OUT3)!=0 ){
+ assert( pOp->p3>0 );
+ assert( pOp->p3<=p->nMem );
+ pOut = &p->aMem[pOp->p3];
+ }
+ }else if( (opProperty & OPFLG_IN3)!=0 ){
+ assert( pOp->p3>0 );
+ assert( pOp->p3<=p->nMem );
+ pIn3 = &p->aMem[pOp->p3];
+ REGISTER_TRACE(pOp->p3, pIn3);
+ }
+ }else if( (opProperty & OPFLG_IN2)!=0 ){
+ assert( pOp->p2>0 );
+ assert( pOp->p2<=p->nMem );
+ pIn2 = &p->aMem[pOp->p2];
+ REGISTER_TRACE(pOp->p2, pIn2);
+ }else if( (opProperty & OPFLG_IN3)!=0 ){
+ assert( pOp->p3>0 );
+ assert( pOp->p3<=p->nMem );
+ pIn3 = &p->aMem[pOp->p3];
+ REGISTER_TRACE(pOp->p3, pIn3);
+ }
+
+ switch( pOp->opcode ){
+
+/*****************************************************************************
+** What follows is a massive switch statement where each case implements a
+** separate instruction in the virtual machine. If we follow the usual
+** indentation conventions, each case should be indented by 6 spaces. But
+** that is a lot of wasted space on the left margin. So the code within
+** the switch statement will break with convention and be flush-left. Another
+** big comment (similar to this one) will mark the point in the code where
+** we transition back to normal indentation.
+**
+** The formatting of each case is important. The makefile for SQLite
+** generates two C files "opcodes.h" and "opcodes.c" by scanning this
+** file looking for lines that begin with "case OP_". The opcodes.h files
+** will be filled with #defines that give unique integer values to each
+** opcode and the opcodes.c file is filled with an array of strings where
+** each string is the symbolic name for the corresponding opcode. If the
+** case statement is followed by a comment of the form "/# same as ... #/"
+** that comment is used to determine the particular value of the opcode.
+**
+** Other keywords in the comment that follows each case are used to
+** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[].
+** Keywords include: in1, in2, in3, out2_prerelease, out2, out3. See
+** the mkopcodeh.awk script for additional information.
+**
+** Documentation about VDBE opcodes is generated by scanning this file
+** for lines of that contain "Opcode:". That line and all subsequent
+** comment lines are used in the generation of the opcode.html documentation
+** file.
+**
+** SUMMARY:
+**
+** Formatting is important to scripts that scan this file.
+** Do not deviate from the formatting style currently in use.
+**
+*****************************************************************************/
+
+/* Opcode: Goto * P2 * * *
+**
+** An unconditional jump to address P2.
+** The next instruction executed will be
+** the one at index P2 from the beginning of
+** the program.
+*/
+case OP_Goto: { /* jump */
+ CHECK_FOR_INTERRUPT;
+ pc = pOp->p2 - 1;
+ break;
+}
+
+/* Opcode: Gosub * P2 * * *
+**
+** Push the current address plus 1 onto the return address stack
+** and then jump to address P2.
+**
+** The return address stack is of limited depth. If too many
+** OP_Gosub operations occur without intervening OP_Returns, then
+** the return address stack will fill up and processing will abort
+** with a fatal error.
+*/
+case OP_Gosub: { /* jump */
+ assert( p->returnDepth<sizeof(p->returnStack)/sizeof(p->returnStack[0]) );
+ p->returnStack[p->returnDepth++] = pc+1;
+ pc = pOp->p2 - 1;
+ break;
+}
+
+/* Opcode: Return * * * * *
+**
+** Jump immediately to the next instruction after the last unreturned
+** OP_Gosub. If an OP_Return has occurred for all OP_Gosubs, then
+** processing aborts with a fatal error.
+*/
+case OP_Return: {
+ assert( p->returnDepth>0 );
+ p->returnDepth--;
+ pc = p->returnStack[p->returnDepth] - 1;
+ break;
+}
+
+/* Opcode: Halt P1 P2 * P4 *
+**
+** Exit immediately. All open cursors, Fifos, etc are closed
+** automatically.
+**
+** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(),
+** or sqlite3_finalize(). For a normal halt, this should be SQLITE_OK (0).
+** For errors, it can be some other value. If P1!=0 then P2 will determine
+** whether or not to rollback the current transaction. Do not rollback
+** if P2==OE_Fail. Do the rollback if P2==OE_Rollback. If P2==OE_Abort,
+** then back out all changes that have occurred during this execution of the
+** VDBE, but do not rollback the transaction.
+**
+** If P4 is not null then it is an error message string.
+**
+** There is an implied "Halt 0 0 0" instruction inserted at the very end of
+** every program. So a jump past the last instruction of the program
+** is the same as executing Halt.
+*/
+case OP_Halt: {
+ p->rc = pOp->p1;
+ p->pc = pc;
+ p->errorAction = pOp->p2;
+ if( pOp->p4.z ){
+ sqlite3SetString(&p->zErrMsg, pOp->p4.z, (char*)0);
+ }
+ rc = sqlite3VdbeHalt(p);
+ assert( rc==SQLITE_BUSY || rc==SQLITE_OK );
+ if( rc==SQLITE_BUSY ){
+ p->rc = rc = SQLITE_BUSY;
+ }else{
+ rc = p->rc ? SQLITE_ERROR : SQLITE_DONE;
+ }
+ goto vdbe_return;
+}
+
+/* Opcode: Integer P1 P2 * * *
+**
+** The 32-bit integer value P1 is written into register P2.
+*/
+case OP_Integer: { /* out2-prerelease */
+ pOut->flags = MEM_Int;
+ pOut->u.i = pOp->p1;
+ break;
+}
+
+/* Opcode: Int64 * P2 * P4 *
+**
+** P4 is a pointer to a 64-bit integer value.
+** Write that value into register P2.
+*/
+case OP_Int64: { /* out2-prerelease */
+ assert( pOp->p4.pI64!=0 );
+ pOut->flags = MEM_Int;
+ pOut->u.i = *pOp->p4.pI64;
+ break;
+}
+
+/* Opcode: Real * P2 * P4 *
+**
+** P4 is a pointer to a 64-bit floating point value.
+** Write that value into register P2.
+*/
+case OP_Real: { /* same as TK_FLOAT, out2-prerelease */
+ pOut->flags = MEM_Real;
+ assert( !sqlite3IsNaN(*pOp->p4.pReal) );
+ pOut->r = *pOp->p4.pReal;
+ break;
+}
+
+/* Opcode: String8 * P2 * P4 *
+**
+** P4 points to a nul terminated UTF-8 string. This opcode is transformed
+** into an OP_String before it is executed for the first time.
+*/
+case OP_String8: { /* same as TK_STRING, out2-prerelease */
+ assert( pOp->p4.z!=0 );
+ pOp->opcode = OP_String;
+ pOp->p1 = strlen(pOp->p4.z);
+
+#ifndef SQLITE_OMIT_UTF16
+ if( encoding!=SQLITE_UTF8 ){
+ sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC);
+ if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem;
+ if( SQLITE_OK!=sqlite3VdbeMemDynamicify(pOut) ) goto no_mem;
+ pOut->zMalloc = 0;
+ pOut->flags |= MEM_Static;
+ pOut->flags &= ~MEM_Dyn;
+ if( pOp->p4type==P4_DYNAMIC ){
+ sqlite3_free(pOp->p4.z);
+ }
+ pOp->p4type = P4_DYNAMIC;
+ pOp->p4.z = pOut->z;
+ pOp->p1 = pOut->n;
+ if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
+ goto too_big;
+ }
+ UPDATE_MAX_BLOBSIZE(pOut);
+ break;
+ }
+#endif
+ if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
+ goto too_big;
+ }
+ /* Fall through to the next case, OP_String */
+}
+
+/* Opcode: String P1 P2 * P4 *
+**
+** The string value P4 of length P1 (bytes) is stored in register P2.
+*/
+case OP_String: { /* out2-prerelease */
+ assert( pOp->p4.z!=0 );
+ pOut->flags = MEM_Str|MEM_Static|MEM_Term;
+ pOut->z = pOp->p4.z;
+ pOut->n = pOp->p1;
+ pOut->enc = encoding;
+ UPDATE_MAX_BLOBSIZE(pOut);
+ break;
+}
+
+/* Opcode: Null * P2 * * *
+**
+** Write a NULL into register P2.
+*/
+case OP_Null: { /* out2-prerelease */
+ break;
+}
+
+
+#ifndef SQLITE_OMIT_BLOB_LITERAL
+/* Opcode: Blob P1 P2 * P4
+**
+** P4 points to a blob of data P1 bytes long. Store this
+** blob in register P2. This instruction is not coded directly
+** by the compiler. Instead, the compiler layer specifies
+** an OP_HexBlob opcode, with the hex string representation of
+** the blob as P4. This opcode is transformed to an OP_Blob
+** the first time it is executed.
+*/
+case OP_Blob: { /* out2-prerelease */
+ assert( pOp->p1 <= SQLITE_MAX_LENGTH );
+ sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0);
+ pOut->enc = encoding;
+ UPDATE_MAX_BLOBSIZE(pOut);
+ break;
+}
+#endif /* SQLITE_OMIT_BLOB_LITERAL */
+
+/* Opcode: Variable P1 P2 * * *
+**
+** The value of variable P1 is written into register P2. A variable is
+** an unknown in the original SQL string as handed to sqlite3_compile().
+** Any occurance of the '?' character in the original SQL is considered
+** a variable. Variables in the SQL string are number from left to
+** right beginning with 1. The values of variables are set using the
+** sqlite3_bind() API.
+*/
+case OP_Variable: { /* out2-prerelease */
+ int j = pOp->p1 - 1;
+ Mem *pVar;
+ assert( j>=0 && j<p->nVar );
+
+ pVar = &p->aVar[j];
+ if( sqlite3VdbeMemTooBig(pVar) ){
+ goto too_big;
+ }
+ sqlite3VdbeMemShallowCopy(pOut, &p->aVar[j], MEM_Static);
+ UPDATE_MAX_BLOBSIZE(pOut);
+ break;
+}
+
+/* Opcode: Move P1 P2 * * *
+**
+** Move the value in register P1 over into register P2. Register P1
+** is left holding a NULL. It is an error for P1 and P2 to be the
+** same register.
+*/
+case OP_Move: {
+ char *zMalloc;
+ assert( pOp->p1>0 );
+ assert( pOp->p1<=p->nMem );
+ pIn1 = &p->aMem[pOp->p1];
+ REGISTER_TRACE(pOp->p1, pIn1);
+ assert( pOp->p2>0 );
+ assert( pOp->p2<=p->nMem );
+ pOut = &p->aMem[pOp->p2];
+ assert( pOut!=pIn1 );
+ zMalloc = pOut->zMalloc;
+ pOut->zMalloc = 0;
+ sqlite3VdbeMemMove(pOut, pIn1);
+ pIn1->zMalloc = zMalloc;
+ REGISTER_TRACE(pOp->p2, pOut);
+ break;
+}
+
+/* Opcode: Copy P1 P2 * * *
+**
+** Make a copy of register P1 into register P2.
+**
+** This instruction makes a deep copy of the value. A duplicate
+** is made of any string or blob constant. See also OP_SCopy.
+*/
+case OP_Copy: {
+ assert( pOp->p1>0 );
+ assert( pOp->p1<=p->nMem );
+ pIn1 = &p->aMem[pOp->p1];
+ REGISTER_TRACE(pOp->p1, pIn1);
+ assert( pOp->p2>0 );
+ assert( pOp->p2<=p->nMem );
+ pOut = &p->aMem[pOp->p2];
+ assert( pOut!=pIn1 );
+ sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
+ Deephemeralize(pOut);
+ REGISTER_TRACE(pOp->p2, pOut);
+ break;
+}
+
+/* Opcode: SCopy P1 P2 * * *
+**
+** Make a shallow copy of register P1 into register P2.
+**
+** This instruction makes a shallow copy of the value. If the value
+** is a string or blob, then the copy is only a pointer to the
+** original and hence if the original changes so will the copy.
+** Worse, if the original is deallocated, the copy becomes invalid.
+** Thus the program must guarantee that the original will not change
+** during the lifetime of the copy. Use OP_Copy to make a complete
+** copy.
+*/
+case OP_SCopy: {
+ assert( pOp->p1>0 );
+ assert( pOp->p1<=p->nMem );
+ pIn1 = &p->aMem[pOp->p1];
+ REGISTER_TRACE(pOp->p1, pIn1);
+ assert( pOp->p2>0 );
+ assert( pOp->p2<=p->nMem );
+ pOut = &p->aMem[pOp->p2];
+ assert( pOut!=pIn1 );
+ sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
+ REGISTER_TRACE(pOp->p2, pOut);
+ break;
+}
+
+/* Opcode: ResultRow P1 P2 * * *
+**
+** The registers P1 throught P1+P2-1 contain a single row of
+** results. This opcode causes the sqlite3_step() call to terminate
+** with an SQLITE_ROW return code and it sets up the sqlite3_stmt
+** structure to provide access to the top P1 values as the result
+** row.
+*/
+case OP_ResultRow: {
+ Mem *pMem;
+ int i;
+ assert( p->nResColumn==pOp->p2 );
+ assert( pOp->p1>0 );
+ assert( pOp->p1+pOp->p2<=p->nMem );
+
+ /* Invalidate all ephemeral cursor row caches */
+ p->cacheCtr = (p->cacheCtr + 2)|1;
+
+ /* Make sure the results of the current row are \000 terminated
+ ** and have an assigned type. The results are deephemeralized as
+ ** as side effect.
+ */
+ pMem = p->pResultSet = &p->aMem[pOp->p1];
+ for(i=0; i<pOp->p2; i++){
+ sqlite3VdbeMemNulTerminate(&pMem[i]);
+ storeTypeInfo(&pMem[i], encoding);
+ }
+ if( db->mallocFailed ) goto no_mem;
+
+ /* Return SQLITE_ROW
+ */
+ p->nCallback++;
+ p->pc = pc + 1;
+ rc = SQLITE_ROW;
+ goto vdbe_return;
+}
+
+/* Opcode: Concat P1 P2 P3 * *
+**
+** Add the text in register P1 onto the end of the text in
+** register P2 and store the result in register P3.
+** If either the P1 or P2 text are NULL then store NULL in P3.
+**
+** P3 = P2 || P1
+**
+** It is illegal for P1 and P3 to be the same register. Sometimes,
+** if P3 is the same register as P2, the implementation is able
+** to avoid a memcpy().
+*/
+case OP_Concat: { /* same as TK_CONCAT, in1, in2, out3 */
+ i64 nByte;
+
+ assert( pIn1!=pOut );
+ if( (pIn1->flags | pIn2->flags) & MEM_Null ){
+ sqlite3VdbeMemSetNull(pOut);
+ break;
+ }
+ ExpandBlob(pIn1);
+ Stringify(pIn1, encoding);
+ ExpandBlob(pIn2);
+ Stringify(pIn2, encoding);
+ nByte = pIn1->n + pIn2->n;
+ if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
+ goto too_big;
+ }
+ MemSetTypeFlag(pOut, MEM_Str);
+ if( sqlite3VdbeMemGrow(pOut, nByte+2, pOut==pIn2) ){
+ goto no_mem;
+ }
+ if( pOut!=pIn2 ){
+ memcpy(pOut->z, pIn2->z, pIn2->n);
+ }
+ memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n);
+ pOut->z[nByte] = 0;
+ pOut->z[nByte+1] = 0;
+ pOut->flags |= MEM_Term;
+ pOut->n = nByte;
+ pOut->enc = encoding;
+ UPDATE_MAX_BLOBSIZE(pOut);
+ break;
+}
+
+/* Opcode: Add P1 P2 P3 * *
+**
+** Add the value in register P1 to the value in register P2
+** and store the result in regiser P3.
+** If either input is NULL, the result is NULL.
+*/
+/* Opcode: Multiply P1 P2 P3 * *
+**
+**
+** Multiply the value in regiser P1 by the value in regiser P2
+** and store the result in register P3.
+** If either input is NULL, the result is NULL.
+*/
+/* Opcode: Subtract P1 P2 P3 * *
+**
+** Subtract the value in register P1 from the value in register P2
+** and store the result in register P3.
+** If either input is NULL, the result is NULL.
+*/
+/* Opcode: Divide P1 P2 P3 * *
+**
+** Divide the value in register P1 by the value in register P2
+** and store the result in register P3. If the value in register P2
+** is zero, then the result is NULL.
+** If either input is NULL, the result is NULL.
+*/
+/* Opcode: Remainder P1 P2 P3 * *
+**
+** Compute the remainder after integer division of the value in
+** register P1 by the value in register P2 and store the result in P3.
+** If the value in register P2 is zero the result is NULL.
+** If either operand is NULL, the result is NULL.
+*/
+case OP_Add: /* same as TK_PLUS, in1, in2, out3 */
+case OP_Subtract: /* same as TK_MINUS, in1, in2, out3 */
+case OP_Multiply: /* same as TK_STAR, in1, in2, out3 */
+case OP_Divide: /* same as TK_SLASH, in1, in2, out3 */
+case OP_Remainder: { /* same as TK_REM, in1, in2, out3 */
+ int flags;
+ flags = pIn1->flags | pIn2->flags;
+ if( (flags & MEM_Null)!=0 ) goto arithmetic_result_is_null;
+ if( (pIn1->flags & pIn2->flags & MEM_Int)==MEM_Int ){
+ i64 a, b;
+ a = pIn1->u.i;
+ b = pIn2->u.i;
+ switch( pOp->opcode ){
+ case OP_Add: b += a; break;
+ case OP_Subtract: b -= a; break;
+ case OP_Multiply: b *= a; break;
+ case OP_Divide: {
+ if( a==0 ) goto arithmetic_result_is_null;
+ /* Dividing the largest possible negative 64-bit integer (1<<63) by
+ ** -1 returns an integer too large to store in a 64-bit data-type. On
+ ** some architectures, the value overflows to (1<<63). On others,
+ ** a SIGFPE is issued. The following statement normalizes this
+ ** behaviour so that all architectures behave as if integer
+ ** overflow occured.
+ */
+ if( a==-1 && b==SMALLEST_INT64 ) a = 1;
+ b /= a;
+ break;
+ }
+ default: {
+ if( a==0 ) goto arithmetic_result_is_null;
+ if( a==-1 ) a = 1;
+ b %= a;
+ break;
+ }
+ }
+ pOut->u.i = b;
+ MemSetTypeFlag(pOut, MEM_Int);
+ }else{
+ double a, b;
+ a = sqlite3VdbeRealValue(pIn1);
+ b = sqlite3VdbeRealValue(pIn2);
+ switch( pOp->opcode ){
+ case OP_Add: b += a; break;
+ case OP_Subtract: b -= a; break;
+ case OP_Multiply: b *= a; break;
+ case OP_Divide: {
+ if( a==0.0 ) goto arithmetic_result_is_null;
+ b /= a;
+ break;
+ }
+ default: {
+ i64 ia = (i64)a;
+ i64 ib = (i64)b;
+ if( ia==0 ) goto arithmetic_result_is_null;
+ if( ia==-1 ) ia = 1;
+ b = ib % ia;
+ break;
+ }
+ }
+ if( sqlite3IsNaN(b) ){
+ goto arithmetic_result_is_null;
+ }
+ pOut->r = b;
+ MemSetTypeFlag(pOut, MEM_Real);
+ if( (flags & MEM_Real)==0 ){
+ sqlite3VdbeIntegerAffinity(pOut);
+ }
+ }
+ break;
+
+arithmetic_result_is_null:
+ sqlite3VdbeMemSetNull(pOut);
+ break;
+}
+
+/* Opcode: CollSeq * * P4
+**
+** P4 is a pointer to a CollSeq struct. If the next call to a user function
+** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will
+** be returned. This is used by the built-in min(), max() and nullif()
+** functions.
+**
+** The interface used by the implementation of the aforementioned functions
+** to retrieve the collation sequence set by this opcode is not available
+** publicly, only to user functions defined in func.c.
+*/
+case OP_CollSeq: {
+ assert( pOp->p4type==P4_COLLSEQ );
+ break;
+}
+
+/* Opcode: Function P1 P2 P3 P4 P5
+**
+** Invoke a user function (P4 is a pointer to a Function structure that
+** defines the function) with P5 arguments taken from register P2 and
+** successors. The result of the function is stored in register P3.
+** Register P3 must not be one of the function inputs.
+**
+** P1 is a 32-bit bitmask indicating whether or not each argument to the
+** function was determined to be constant at compile time. If the first
+** argument was constant then bit 0 of P1 is set. This is used to determine
+** whether meta data associated with a user function argument using the
+** sqlite3_set_auxdata() API may be safely retained until the next
+** invocation of this opcode.
+**
+** See also: AggStep and AggFinal
+*/
+case OP_Function: {
+ int i;
+ Mem *pArg;
+ sqlite3_context ctx;
+ sqlite3_value **apVal;
+ int n = pOp->p5;
+
+ apVal = p->apArg;
+ assert( apVal || n==0 );
+
+ assert( n==0 || (pOp->p2>0 && pOp->p2+n<=p->nMem) );
+ assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
+ pArg = &p->aMem[pOp->p2];
+ for(i=0; i<n; i++, pArg++){
+ apVal[i] = pArg;
+ storeTypeInfo(pArg, encoding);
+ REGISTER_TRACE(pOp->p2, pArg);
+ }
+
+ assert( pOp->p4type==P4_FUNCDEF || pOp->p4type==P4_VDBEFUNC );
+ if( pOp->p4type==P4_FUNCDEF ){
+ ctx.pFunc = pOp->p4.pFunc;
+ ctx.pVdbeFunc = 0;
+ }else{
+ ctx.pVdbeFunc = (VdbeFunc*)pOp->p4.pVdbeFunc;
+ ctx.pFunc = ctx.pVdbeFunc->pFunc;
+ }
+
+ assert( pOp->p3>0 && pOp->p3<=p->nMem );
+ pOut = &p->aMem[pOp->p3];
+ ctx.s.flags = MEM_Null;
+ ctx.s.db = db;
+ ctx.s.xDel = 0;
+ ctx.s.zMalloc = 0;
+
+ /* The output cell may already have a buffer allocated. Move
+ ** the pointer to ctx.s so in case the user-function can use
+ ** the already allocated buffer instead of allocating a new one.
+ */
+ sqlite3VdbeMemMove(&ctx.s, pOut);
+ MemSetTypeFlag(&ctx.s, MEM_Null);
+
+ ctx.isError = 0;
+ if( ctx.pFunc->needCollSeq ){
+ assert( pOp>p->aOp );
+ assert( pOp[-1].p4type==P4_COLLSEQ );
+ assert( pOp[-1].opcode==OP_CollSeq );
+ ctx.pColl = pOp[-1].p4.pColl;
+ }
+ if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
+ (*ctx.pFunc->xFunc)(&ctx, n, apVal);
+ if( sqlite3SafetyOn(db) ){
+ sqlite3VdbeMemRelease(&ctx.s);
+ goto abort_due_to_misuse;
+ }
+ if( db->mallocFailed ){
+ /* Even though a malloc() has failed, the implementation of the
+ ** user function may have called an sqlite3_result_XXX() function
+ ** to return a value. The following call releases any resources
+ ** associated with such a value.
+ **
+ ** Note: Maybe MemRelease() should be called if sqlite3SafetyOn()
+ ** fails also (the if(...) statement above). But if people are
+ ** misusing sqlite, they have bigger problems than a leaked value.
+ */
+ sqlite3VdbeMemRelease(&ctx.s);
+ goto no_mem;
+ }
+
+ /* If any auxilary data functions have been called by this user function,
+ ** immediately call the destructor for any non-static values.
+ */
+ if( ctx.pVdbeFunc ){
+ sqlite3VdbeDeleteAuxData(ctx.pVdbeFunc, pOp->p1);
+ pOp->p4.pVdbeFunc = ctx.pVdbeFunc;
+ pOp->p4type = P4_VDBEFUNC;
+ }
+
+ /* If the function returned an error, throw an exception */
+ if( ctx.isError ){
+ sqlite3SetString(&p->zErrMsg, sqlite3_value_text(&ctx.s), (char*)0);
+ rc = ctx.isError;
+ }
+
+ /* Copy the result of the function into register P3 */
+ sqlite3VdbeChangeEncoding(&ctx.s, encoding);
+ sqlite3VdbeMemMove(pOut, &ctx.s);
+ if( sqlite3VdbeMemTooBig(pOut) ){
+ goto too_big;
+ }
+ REGISTER_TRACE(pOp->p3, pOut);
+ UPDATE_MAX_BLOBSIZE(pOut);
+ break;
+}
+
+/* Opcode: BitAnd P1 P2 P3 * *
+**
+** Take the bit-wise AND of the values in register P1 and P2 and
+** store the result in register P3.
+** If either input is NULL, the result is NULL.
+*/
+/* Opcode: BitOr P1 P2 P3 * *
+**
+** Take the bit-wise OR of the values in register P1 and P2 and
+** store the result in register P3.
+** If either input is NULL, the result is NULL.
+*/
+/* Opcode: ShiftLeft P1 P2 P3 * *
+**
+** Shift the integer value in register P2 to the left by the
+** number of bits specified by the integer in regiser P1.
+** Store the result in register P3.
+** If either input is NULL, the result is NULL.
+*/
+/* Opcode: ShiftRight P1 P2 P3 * *
+**
+** Shift the integer value in register P2 to the right by the
+** number of bits specified by the integer in register P1.
+** Store the result in register P3.
+** If either input is NULL, the result is NULL.
+*/
+case OP_BitAnd: /* same as TK_BITAND, in1, in2, out3 */
+case OP_BitOr: /* same as TK_BITOR, in1, in2, out3 */
+case OP_ShiftLeft: /* same as TK_LSHIFT, in1, in2, out3 */
+case OP_ShiftRight: { /* same as TK_RSHIFT, in1, in2, out3 */
+ i64 a, b;
+
+ if( (pIn1->flags | pIn2->flags) & MEM_Null ){
+ sqlite3VdbeMemSetNull(pOut);
+ break;
+ }
+ a = sqlite3VdbeIntValue(pIn2);
+ b = sqlite3VdbeIntValue(pIn1);
+ switch( pOp->opcode ){
+ case OP_BitAnd: a &= b; break;
+ case OP_BitOr: a |= b; break;
+ case OP_ShiftLeft: a <<= b; break;
+ default: assert( pOp->opcode==OP_ShiftRight );
+ a >>= b; break;
+ }
+ pOut->u.i = a;
+ MemSetTypeFlag(pOut, MEM_Int);
+ break;
+}
+
+/* Opcode: AddImm P1 P2 * * *
+**
+** Add the constant P2 the value in register P1.
+** The result is always an integer.
+**
+** To force any register to be an integer, just add 0.
+*/
+case OP_AddImm: { /* in1 */
+ sqlite3VdbeMemIntegerify(pIn1);
+ pIn1->u.i += pOp->p2;
+ break;
+}
+
+/* Opcode: ForceInt P1 P2 P3 * *
+**
+** Convert value in register P1 into an integer. If the value
+** in P1 is not numeric (meaning that is is a NULL or a string that
+** does not look like an integer or floating point number) then
+** jump to P2. If the value in P1 is numeric then
+** convert it into the least integer that is greater than or equal to its
+** current value if P3==0, or to the least integer that is strictly
+** greater than its current value if P3==1.
+*/
+case OP_ForceInt: { /* jump, in1 */
+ i64 v;
+ applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding);
+ if( (pIn1->flags & (MEM_Int|MEM_Real))==0 ){
+ pc = pOp->p2 - 1;
+ break;
+ }
+ if( pIn1->flags & MEM_Int ){
+ v = pIn1->u.i + (pOp->p3!=0);
+ }else{
+ assert( pIn1->flags & MEM_Real );
+ v = (sqlite3_int64)pIn1->r;
+ if( pIn1->r>(double)v ) v++;
+ if( pOp->p3 && pIn1->r==(double)v ) v++;
+ }
+ pIn1->u.i = v;
+ MemSetTypeFlag(pIn1, MEM_Int);
+ break;
+}
+
+/* Opcode: MustBeInt P1 P2 * * *
+**
+** Force the value in register P1 to be an integer. If the value
+** in P1 is not an integer and cannot be converted into an integer
+** without data loss, then jump immediately to P2, or if P2==0
+** raise an SQLITE_MISMATCH exception.
+*/
+case OP_MustBeInt: { /* jump, in1 */
+ applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding);
+ if( (pIn1->flags & MEM_Int)==0 ){
+ if( pOp->p2==0 ){
+ rc = SQLITE_MISMATCH;
+ goto abort_due_to_error;
+ }else{
+ pc = pOp->p2 - 1;
+ }
+ }else{
+ MemSetTypeFlag(pIn1, MEM_Int);
+ }
+ break;
+}
+
+/* Opcode: RealAffinity P1 * * * *
+**
+** If register P1 holds an integer convert it to a real value.
+**
+** This opcode is used when extracting information from a column that
+** has REAL affinity. Such column values may still be stored as
+** integers, for space efficiency, but after extraction we want them
+** to have only a real value.
+*/
+case OP_RealAffinity: { /* in1 */
+ if( pIn1->flags & MEM_Int ){
+ sqlite3VdbeMemRealify(pIn1);
+ }
+ break;
+}
+
+#ifndef SQLITE_OMIT_CAST
+/* Opcode: ToText P1 * * * *
+**
+** Force the value in register P1 to be text.
+** If the value is numeric, convert it to a string using the
+** equivalent of printf(). Blob values are unchanged and
+** are afterwards simply interpreted as text.
+**
+** A NULL value is not changed by this routine. It remains NULL.
+*/
+case OP_ToText: { /* same as TK_TO_TEXT, in1 */
+ if( pIn1->flags & MEM_Null ) break;
+ assert( MEM_Str==(MEM_Blob>>3) );
+ pIn1->flags |= (pIn1->flags&MEM_Blob)>>3;
+ applyAffinity(pIn1, SQLITE_AFF_TEXT, encoding);
+ rc = ExpandBlob(pIn1);
+ assert( pIn1->flags & MEM_Str || db->mallocFailed );
+ pIn1->flags &= ~(MEM_Int|MEM_Real|MEM_Blob);
+ UPDATE_MAX_BLOBSIZE(pIn1);
+ break;
+}
+
+/* Opcode: ToBlob P1 * * * *
+**
+** Force the value in register P1 to be a BLOB.
+** If the value is numeric, convert it to a string first.
+** Strings are simply reinterpreted as blobs with no change
+** to the underlying data.
+**
+** A NULL value is not changed by this routine. It remains NULL.
+*/
+case OP_ToBlob: { /* same as TK_TO_BLOB, in1 */
+ if( pIn1->flags & MEM_Null ) break;
+ if( (pIn1->flags & MEM_Blob)==0 ){
+ applyAffinity(pIn1, SQLITE_AFF_TEXT, encoding);
+ assert( pIn1->flags & MEM_Str || db->mallocFailed );
+ }
+ MemSetTypeFlag(pIn1, MEM_Blob);
+ UPDATE_MAX_BLOBSIZE(pIn1);
+ break;
+}
+
+/* Opcode: ToNumeric P1 * * * *
+**
+** Force the value in register P1 to be numeric (either an
+** integer or a floating-point number.)
+** If the value is text or blob, try to convert it to an using the
+** equivalent of atoi() or atof() and store 0 if no such conversion
+** is possible.
+**
+** A NULL value is not changed by this routine. It remains NULL.
+*/
+case OP_ToNumeric: { /* same as TK_TO_NUMERIC, in1 */
+ if( (pIn1->flags & (MEM_Null|MEM_Int|MEM_Real))==0 ){
+ sqlite3VdbeMemNumerify(pIn1);
+ }
+ break;
+}
+#endif /* SQLITE_OMIT_CAST */
+
+/* Opcode: ToInt P1 * * * *
+**
+** Force the value in register P1 be an integer. If
+** The value is currently a real number, drop its fractional part.
+** If the value is text or blob, try to convert it to an integer using the
+** equivalent of atoi() and store 0 if no such conversion is possible.
+**
+** A NULL value is not changed by this routine. It remains NULL.
+*/
+case OP_ToInt: { /* same as TK_TO_INT, in1 */
+ if( (pIn1->flags & MEM_Null)==0 ){
+ sqlite3VdbeMemIntegerify(pIn1);
+ }
+ break;
+}
+
+#ifndef SQLITE_OMIT_CAST
+/* Opcode: ToReal P1 * * * *
+**
+** Force the value in register P1 to be a floating point number.
+** If The value is currently an integer, convert it.
+** If the value is text or blob, try to convert it to an integer using the
+** equivalent of atoi() and store 0.0 if no such conversion is possible.
+**
+** A NULL value is not changed by this routine. It remains NULL.
+*/
+case OP_ToReal: { /* same as TK_TO_REAL, in1 */
+ if( (pIn1->flags & MEM_Null)==0 ){
+ sqlite3VdbeMemRealify(pIn1);
+ }
+ break;
+}
+#endif /* SQLITE_OMIT_CAST */
+
+/* Opcode: Lt P1 P2 P3 P4 P5
+**
+** Compare the values in register P1 and P3. If reg(P3)<reg(P1) then
+** jump to address P2.
+**
+** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or
+** reg(P3) is NULL then take the jump. If the SQLITE_JUMPIFNULL
+** bit is clear then fall thru if either operand is NULL.
+**
+** If the SQLITE_NULLEQUAL bit of P5 is set then treat NULL operands
+** as being equal to one another. Normally NULLs are not equal to
+** anything including other NULLs.
+**
+** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
+** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
+** to coerce both inputs according to this affinity before the
+** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
+** affinity is used. Note that the affinity conversions are stored
+** back into the input registers P1 and P3. So this opcode can cause
+** persistent changes to registers P1 and P3.
+**
+** Once any conversions have taken place, and neither value is NULL,
+** the values are compared. If both values are blobs then memcmp() is
+** used to determine the results of the comparison. If both values
+** are text, then the appropriate collating function specified in
+** P4 is used to do the comparison. If P4 is not specified then
+** memcmp() is used to compare text string. If both values are
+** numeric, then a numeric comparison is used. If the two values
+** are of different types, then numbers are considered less than
+** strings and strings are considered less than blobs.
+**
+** If the SQLITE_STOREP2 bit of P5 is set, then do not jump. Instead,
+** store a boolean result (either 0, or 1, or NULL) in register P2.
+*/
+/* Opcode: Ne P1 P2 P3 P4 P5
+**
+** This works just like the Lt opcode except that the jump is taken if
+** the operands in registers P1 and P3 are not equal. See the Lt opcode for
+** additional information.
+*/
+/* Opcode: Eq P1 P2 P3 P4 P5
+**
+** This works just like the Lt opcode except that the jump is taken if
+** the operands in registers P1 and P3 are equal.
+** See the Lt opcode for additional information.
+*/
+/* Opcode: Le P1 P2 P3 P4 P5
+**
+** This works just like the Lt opcode except that the jump is taken if
+** the content of register P3 is less than or equal to the content of
+** register P1. See the Lt opcode for additional information.
+*/
+/* Opcode: Gt P1 P2 P3 P4 P5
+**
+** This works just like the Lt opcode except that the jump is taken if
+** the content of register P3 is greater than the content of
+** register P1. See the Lt opcode for additional information.
+*/
+/* Opcode: Ge P1 P2 P3 P4 P5
+**
+** This works just like the Lt opcode except that the jump is taken if
+** the content of register P3 is greater than or equal to the content of
+** register P1. See the Lt opcode for additional information.
+*/
+case OP_Eq: /* same as TK_EQ, jump, in1, in3 */
+case OP_Ne: /* same as TK_NE, jump, in1, in3 */
+case OP_Lt: /* same as TK_LT, jump, in1, in3 */
+case OP_Le: /* same as TK_LE, jump, in1, in3 */
+case OP_Gt: /* same as TK_GT, jump, in1, in3 */
+case OP_Ge: { /* same as TK_GE, jump, in1, in3 */
+ int flags;
+ int res;
+ char affinity;
+ Mem x1, x3;
+
+ flags = pIn1->flags|pIn3->flags;
+
+ if( flags&MEM_Null ){
+ if( (pOp->p5 & SQLITE_NULLEQUAL)!=0 ){
+ /*
+ ** When SQLITE_NULLEQUAL set and either operand is NULL
+ ** then both operands are converted to integers prior to being
+ ** passed down into the normal comparison logic below.
+ ** NULL operands are converted to zero and non-NULL operands
+ ** are converted to 1. Thus, for example, with SQLITE_NULLEQUAL
+ ** set, NULL==NULL is true whereas it would normally NULL.
+ ** Similarly, NULL!=123 is true.
+ */
+ x1.flags = MEM_Int;
+ x1.u.i = (pIn1->flags & MEM_Null)==0;
+ pIn1 = &x1;
+ x3.flags = MEM_Int;
+ x3.u.i = (pIn3->flags & MEM_Null)==0;
+ pIn3 = &x3;
+ }else{
+ /* If the SQLITE_NULLEQUAL bit is clear and either operand is NULL then
+ ** the result is always NULL. The jump is taken if the
+ ** SQLITE_JUMPIFNULL bit is set.
+ */
+ if( pOp->p5 & SQLITE_STOREP2 ){
+ pOut = &p->aMem[pOp->p2];
+ MemSetTypeFlag(pOut, MEM_Null);
+ REGISTER_TRACE(pOp->p2, pOut);
+ }else if( pOp->p5 & SQLITE_JUMPIFNULL ){
+ pc = pOp->p2-1;
+ }
+ break;
+ }
+ }
+
+ affinity = pOp->p5 & SQLITE_AFF_MASK;
+ if( affinity ){
+ applyAffinity(pIn1, affinity, encoding);
+ applyAffinity(pIn3, affinity, encoding);
+ }
+
+ assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 );
+ ExpandBlob(pIn1);
+ ExpandBlob(pIn3);
+ res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl);
+ switch( pOp->opcode ){
+ case OP_Eq: res = res==0; break;
+ case OP_Ne: res = res!=0; break;
+ case OP_Lt: res = res<0; break;
+ case OP_Le: res = res<=0; break;
+ case OP_Gt: res = res>0; break;
+ default: res = res>=0; break;
+ }
+
+ if( pOp->p5 & SQLITE_STOREP2 ){
+ pOut = &p->aMem[pOp->p2];
+ MemSetTypeFlag(pOut, MEM_Int);
+ pOut->u.i = res;
+ REGISTER_TRACE(pOp->p2, pOut);
+ }else if( res ){
+ pc = pOp->p2-1;
+ }
+ break;
+}
+
+/* Opcode: And P1 P2 P3 * *
+**
+** Take the logical AND of the values in registers P1 and P2 and
+** write the result into register P3.
+**
+** If either P1 or P2 is 0 (false) then the result is 0 even if
+** the other input is NULL. A NULL and true or two NULLs give
+** a NULL output.
+*/
+/* Opcode: Or P1 P2 P3 * *
+**
+** Take the logical OR of the values in register P1 and P2 and
+** store the answer in register P3.
+**
+** If either P1 or P2 is nonzero (true) then the result is 1 (true)
+** even if the other input is NULL. A NULL and false or two NULLs
+** give a NULL output.
+*/
+case OP_And: /* same as TK_AND, in1, in2, out3 */
+case OP_Or: { /* same as TK_OR, in1, in2, out3 */
+ int v1, v2; /* 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
+
+ if( pIn1->flags & MEM_Null ){
+ v1 = 2;
+ }else{
+ v1 = sqlite3VdbeIntValue(pIn1)!=0;
+ }
+ if( pIn2->flags & MEM_Null ){
+ v2 = 2;
+ }else{
+ v2 = sqlite3VdbeIntValue(pIn2)!=0;
+ }
+ if( pOp->opcode==OP_And ){
+ static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
+ v1 = and_logic[v1*3+v2];
+ }else{
+ static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
+ v1 = or_logic[v1*3+v2];
+ }
+ if( v1==2 ){
+ MemSetTypeFlag(pOut, MEM_Null);
+ }else{
+ pOut->u.i = v1;
+ MemSetTypeFlag(pOut, MEM_Int);
+ }
+ break;
+}
+
+/* Opcode: Not P1 * * * *
+**
+** Interpret the value in register P1 as a boolean value. Replace it
+** with its complement. If the value in register P1 is NULL its value
+** is unchanged.
+*/
+case OP_Not: { /* same as TK_NOT, in1 */
+ if( pIn1->flags & MEM_Null ) break; /* Do nothing to NULLs */
+ sqlite3VdbeMemIntegerify(pIn1);
+ pIn1->u.i = !pIn1->u.i;
+ assert( pIn1->flags&MEM_Int );
+ break;
+}
+
+/* Opcode: BitNot P1 * * * *
+**
+** Interpret the content of register P1 as an integer. Replace it
+** with its ones-complement. If the value is originally NULL, leave
+** it unchanged.
+*/
+case OP_BitNot: { /* same as TK_BITNOT, in1 */
+ if( pIn1->flags & MEM_Null ) break; /* Do nothing to NULLs */
+ sqlite3VdbeMemIntegerify(pIn1);
+ pIn1->u.i = ~pIn1->u.i;
+ assert( pIn1->flags&MEM_Int );
+ break;
+}
+
+/* Opcode: If P1 P2 P3 * *
+**
+** Jump to P2 if the value in register P1 is true. The value is
+** is considered true if it is numeric and non-zero. If the value
+** in P1 is NULL then take the jump if P3 is true.
+*/
+/* Opcode: IfNot P1 P2 P3 * *
+**
+** Jump to P2 if the value in register P1 is False. The value is
+** is considered true if it has a numeric value of zero. If the value
+** in P1 is NULL then take the jump if P3 is true.
+*/
+case OP_If: /* jump, in1 */
+case OP_IfNot: { /* jump, in1 */
+ int c;
+ if( pIn1->flags & MEM_Null ){
+ c = pOp->p3;
+ }else{
+#ifdef SQLITE_OMIT_FLOATING_POINT
+ c = sqlite3VdbeIntValue(pIn1);
+#else
+ c = sqlite3VdbeRealValue(pIn1)!=0.0;
+#endif
+ if( pOp->opcode==OP_IfNot ) c = !c;
+ }
+ if( c ){
+ pc = pOp->p2-1;
+ }
+ break;
+}
+
+/* Opcode: IsNull P1 P2 P3 * *
+**
+** Jump to P2 if the value in register P1 is NULL. If P3 is greater
+** than zero, then check all values reg(P1), reg(P1+1),
+** reg(P1+2), ..., reg(P1+P3-1).
+*/
+case OP_IsNull: { /* same as TK_ISNULL, jump, in1 */
+ int n = pOp->p3;
+ assert( pOp->p3==0 || pOp->p1>0 );
+ do{
+ if( (pIn1->flags & MEM_Null)!=0 ){
+ pc = pOp->p2 - 1;
+ break;
+ }
+ pIn1++;
+ }while( --n > 0 );
+ break;
+}
+
+/* Opcode: NotNull P1 P2 * * *
+**
+** Jump to P2 if the value in register P1 is not NULL.
+*/
+case OP_NotNull: { /* same as TK_NOTNULL, jump, in1 */
+ if( (pIn1->flags & MEM_Null)==0 ){
+ pc = pOp->p2 - 1;
+ }
+ break;
+}
+
+/* Opcode: SetNumColumns * P2 * * *
+**
+** This opcode sets the number of columns for the cursor opened by the
+** following instruction to P2.
+**
+** An OP_SetNumColumns is only useful if it occurs immediately before
+** one of the following opcodes:
+**
+** OpenRead
+** OpenWrite
+** OpenPseudo
+**
+** If the OP_Column opcode is to be executed on a cursor, then
+** this opcode must be present immediately before the opcode that
+** opens the cursor.
+*/
+case OP_SetNumColumns: {
+ break;
+}
+
+/* Opcode: Column P1 P2 P3 P4 *
+**
+** Interpret the data that cursor P1 points to as a structure built using
+** the MakeRecord instruction. (See the MakeRecord opcode for additional
+** information about the format of the data.) Extract the P2-th column
+** from this record. If there are less that (P2+1)
+** values in the record, extract a NULL.
+**
+** The value extracted is stored in register P3.
+**
+** If the KeyAsData opcode has previously executed on this cursor, then the
+** field might be extracted from the key rather than the data.
+**
+** If the column contains fewer than P2 fields, then extract a NULL. Or,
+** if the P4 argument is a P4_MEM use the value of the P4 argument as
+** the result.
+*/
+case OP_Column: {
+ u32 payloadSize; /* Number of bytes in the record */
+ int p1 = pOp->p1; /* P1 value of the opcode */
+ int p2 = pOp->p2; /* column number to retrieve */
+ Cursor *pC = 0; /* The VDBE cursor */
+ char *zRec; /* Pointer to complete record-data */
+ BtCursor *pCrsr; /* The BTree cursor */
+ u32 *aType; /* aType[i] holds the numeric type of the i-th column */
+ u32 *aOffset; /* aOffset[i] is offset to start of data for i-th column */
+ u32 nField; /* number of fields in the record */
+ int len; /* The length of the serialized data for the column */
+ int i; /* Loop counter */
+ char *zData; /* Part of the record being decoded */
+ Mem *pDest; /* Where to write the extracted value */
+ Mem sMem; /* For storing the record being decoded */
+
+ sMem.flags = 0;
+ sMem.db = 0;
+ sMem.zMalloc = 0;
+ assert( p1<p->nCursor );
+ assert( pOp->p3>0 && pOp->p3<=p->nMem );
+ pDest = &p->aMem[pOp->p3];
+ MemSetTypeFlag(pDest, MEM_Null);
+
+ /* This block sets the variable payloadSize to be the total number of
+ ** bytes in the record.
+ **
+ ** zRec is set to be the complete text of the record if it is available.
+ ** The complete record text is always available for pseudo-tables
+ ** If the record is stored in a cursor, the complete record text
+ ** might be available in the pC->aRow cache. Or it might not be.
+ ** If the data is unavailable, zRec is set to NULL.
+ **
+ ** We also compute the number of columns in the record. For cursors,
+ ** the number of columns is stored in the Cursor.nField element.
+ */
+ pC = p->apCsr[p1];
+ assert( pC!=0 );
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ assert( pC->pVtabCursor==0 );
+#endif
+ if( pC->pCursor!=0 ){
+ /* The record is stored in a B-Tree */
+ rc = sqlite3VdbeCursorMoveto(pC);
+ if( rc ) goto abort_due_to_error;
+ zRec = 0;
+ pCrsr = pC->pCursor;
+ if( pC->nullRow ){
+ payloadSize = 0;
+ }else if( pC->cacheStatus==p->cacheCtr ){
+ payloadSize = pC->payloadSize;
+ zRec = (char*)pC->aRow;
+ }else if( pC->isIndex ){
+ i64 payloadSize64;
+ sqlite3BtreeKeySize(pCrsr, &payloadSize64);
+ payloadSize = payloadSize64;
+ }else{
+ sqlite3BtreeDataSize(pCrsr, &payloadSize);
+ }
+ nField = pC->nField;
+ }else{
+ assert( pC->pseudoTable );
+ /* The record is the sole entry of a pseudo-table */
+ payloadSize = pC->nData;
+ zRec = pC->pData;
+ pC->cacheStatus = CACHE_STALE;
+ assert( payloadSize==0 || zRec!=0 );
+ nField = pC->nField;
+ pCrsr = 0;
+ }
+
+ /* If payloadSize is 0, then just store a NULL */
+ if( payloadSize==0 ){
+ assert( pDest->flags&MEM_Null );
+ goto op_column_out;
+ }
+ if( payloadSize>db->aLimit[SQLITE_LIMIT_LENGTH] ){
+ goto too_big;
+ }
+
+ assert( p2<nField );
+
+ /* Read and parse the table header. Store the results of the parse
+ ** into the record header cache fields of the cursor.
+ */
+ aType = pC->aType;
+ if( pC->cacheStatus==p->cacheCtr ){
+ aOffset = pC->aOffset;
+ }else{
+ u8 *zIdx; /* Index into header */
+ u8 *zEndHdr; /* Pointer to first byte after the header */
+ u32 offset; /* Offset into the data */
+ int szHdrSz; /* Size of the header size field at start of record */
+ int avail; /* Number of bytes of available data */
+
+ assert(aType);
+ pC->aOffset = aOffset = &aType[nField];
+ pC->payloadSize = payloadSize;
+ pC->cacheStatus = p->cacheCtr;
+
+ /* Figure out how many bytes are in the header */
+ if( zRec ){
+ zData = zRec;
+ }else{
+ if( pC->isIndex ){
+ zData = (char*)sqlite3BtreeKeyFetch(pCrsr, &avail);
+ }else{
+ zData = (char*)sqlite3BtreeDataFetch(pCrsr, &avail);
+ }
+ /* If KeyFetch()/DataFetch() managed to get the entire payload,
+ ** save the payload in the pC->aRow cache. That will save us from
+ ** having to make additional calls to fetch the content portion of
+ ** the record.
+ */
+ if( avail>=payloadSize ){
+ zRec = zData;
+ pC->aRow = (u8*)zData;
+ }else{
+ pC->aRow = 0;
+ }
+ }
+ /* The following assert is true in all cases accept when
+ ** the database file has been corrupted externally.
+ ** assert( zRec!=0 || avail>=payloadSize || avail>=9 ); */
+ szHdrSz = getVarint32((u8*)zData, offset);
+
+ /* The KeyFetch() or DataFetch() above are fast and will get the entire
+ ** record header in most cases. But they will fail to get the complete
+ ** record header if the record header does not fit on a single page
+ ** in the B-Tree. When that happens, use sqlite3VdbeMemFromBtree() to
+ ** acquire the complete header text.
+ */
+ if( !zRec && avail<offset ){
+ sMem.flags = 0;
+ sMem.db = 0;
+ rc = sqlite3VdbeMemFromBtree(pCrsr, 0, offset, pC->isIndex, &sMem);
+ if( rc!=SQLITE_OK ){
+ goto op_column_out;
+ }
+ zData = sMem.z;
+ }
+ zEndHdr = (u8 *)&zData[offset];
+ zIdx = (u8 *)&zData[szHdrSz];
+
+ /* Scan the header and use it to fill in the aType[] and aOffset[]
+ ** arrays. aType[i] will contain the type integer for the i-th
+ ** column and aOffset[i] will contain the offset from the beginning
+ ** of the record to the start of the data for the i-th column
+ */
+ for(i=0; i<nField; i++){
+ if( zIdx<zEndHdr ){
+ aOffset[i] = offset;
+ zIdx += getVarint32(zIdx, aType[i]);
+ offset += sqlite3VdbeSerialTypeLen(aType[i]);
+ }else{
+ /* If i is less that nField, then there are less fields in this
+ ** record than SetNumColumns indicated there are columns in the
+ ** table. Set the offset for any extra columns not present in
+ ** the record to 0. This tells code below to store a NULL
+ ** instead of deserializing a value from the record.
+ */
+ aOffset[i] = 0;
+ }
+ }
+ sqlite3VdbeMemRelease(&sMem);
+ sMem.flags = MEM_Null;
+
+ /* If we have read more header data than was contained in the header,
+ ** or if the end of the last field appears to be past the end of the
+ ** record, or if the end of the last field appears to be before the end
+ ** of the record (when all fields present), then we must be dealing
+ ** with a corrupt database.
+ */
+ if( zIdx>zEndHdr || offset>payloadSize || (zIdx==zEndHdr && offset!=payloadSize) ){
+ rc = SQLITE_CORRUPT_BKPT;
+ goto op_column_out;
+ }
+ }
+
+ /* Get the column information. If aOffset[p2] is non-zero, then
+ ** deserialize the value from the record. If aOffset[p2] is zero,
+ ** then there are not enough fields in the record to satisfy the
+ ** request. In this case, set the value NULL or to P4 if P4 is
+ ** a pointer to a Mem object.
+ */
+ if( aOffset[p2] ){
+ assert( rc==SQLITE_OK );
+ if( zRec ){
+ if( pDest->flags&MEM_Dyn ){
+ sqlite3VdbeSerialGet((u8 *)&zRec[aOffset[p2]], aType[p2], &sMem);
+ sMem.db = db;
+ rc = sqlite3VdbeMemCopy(pDest, &sMem);
+ assert( !(sMem.flags&MEM_Dyn) );
+ if( rc!=SQLITE_OK ){
+ goto op_column_out;
+ }
+ }else{
+ sqlite3VdbeSerialGet((u8 *)&zRec[aOffset[p2]], aType[p2], pDest);
+ }
+ }else{
+ len = sqlite3VdbeSerialTypeLen(aType[p2]);
+ sqlite3VdbeMemMove(&sMem, pDest);
+ rc = sqlite3VdbeMemFromBtree(pCrsr, aOffset[p2], len, pC->isIndex, &sMem);
+ if( rc!=SQLITE_OK ){
+ goto op_column_out;
+ }
+ zData = sMem.z;
+ sqlite3VdbeSerialGet((u8*)zData, aType[p2], pDest);
+ }
+ pDest->enc = encoding;
+ }else{
+ if( pOp->p4type==P4_MEM ){
+ sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static);
+ }else{
+ assert( pDest->flags&MEM_Null );
+ }
+ }
+
+ /* If we dynamically allocated space to hold the data (in the
+ ** sqlite3VdbeMemFromBtree() call above) then transfer control of that
+ ** dynamically allocated space over to the pDest structure.
+ ** This prevents a memory copy.
+ */
+ if( sMem.zMalloc ){
+ assert( sMem.z==sMem.zMalloc );
+ assert( !(pDest->flags & MEM_Dyn) );
+ assert( !(pDest->flags & (MEM_Blob|MEM_Str)) || pDest->z==sMem.z );
+ pDest->flags &= ~(MEM_Ephem|MEM_Static);
+ pDest->flags |= MEM_Term;
+ pDest->z = sMem.z;
+ pDest->zMalloc = sMem.zMalloc;
+ }
+
+ rc = sqlite3VdbeMemMakeWriteable(pDest);
+
+op_column_out:
+ UPDATE_MAX_BLOBSIZE(pDest);
+ REGISTER_TRACE(pOp->p3, pDest);
+ break;
+}
+
+/* Opcode: Affinity P1 P2 * P4 *
+**
+** Apply affinities to a range of P2 registers starting with P1.
+**
+** P4 is a string that is P2 characters long. The nth character of the
+** string indicates the column affinity that should be used for the nth
+** memory cell in the range.
+*/
+case OP_Affinity: {
+ char *zAffinity = pOp->p4.z;
+ Mem *pData0 = &p->aMem[pOp->p1];
+ Mem *pLast = &pData0[pOp->p2-1];
+ Mem *pRec;
+
+ for(pRec=pData0; pRec<=pLast; pRec++){
+ ExpandBlob(pRec);
+ applyAffinity(pRec, zAffinity[pRec-pData0], encoding);
+ }
+ break;
+}
+
+/* Opcode: MakeRecord P1 P2 P3 P4 *
+**
+** Convert P2 registers beginning with P1 into a single entry
+** suitable for use as a data record in a database table or as a key
+** in an index. The details of the format are irrelavant as long as
+** the OP_Column opcode can decode the record later.
+** Refer to source code comments for the details of the record
+** format.
+**
+** P4 may be a string that is P2 characters long. The nth character of the
+** string indicates the column affinity that should be used for the nth
+** field of the index key.
+**
+** The mapping from character to affinity is given by the SQLITE_AFF_
+** macros defined in sqliteInt.h.
+**
+** If P4 is NULL then all index fields have the affinity NONE.
+*/
+case OP_MakeRecord: {
+ /* Assuming the record contains N fields, the record format looks
+ ** like this:
+ **
+ ** ------------------------------------------------------------------------
+ ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 |
+ ** ------------------------------------------------------------------------
+ **
+ ** Data(0) is taken from register P1. Data(1) comes from register P1+1
+ ** and so froth.
+ **
+ ** Each type field is a varint representing the serial type of the
+ ** corresponding data element (see sqlite3VdbeSerialType()). The
+ ** hdr-size field is also a varint which is the offset from the beginning
+ ** of the record to data0.
+ */
+ u8 *zNewRecord; /* A buffer to hold the data for the new record */
+ Mem *pRec; /* The new record */
+ u64 nData = 0; /* Number of bytes of data space */
+ int nHdr = 0; /* Number of bytes of header space */
+ u64 nByte = 0; /* Data space required for this record */
+ int nZero = 0; /* Number of zero bytes at the end of the record */
+ int nVarint; /* Number of bytes in a varint */
+ u32 serial_type; /* Type field */
+ Mem *pData0; /* First field to be combined into the record */
+ Mem *pLast; /* Last field of the record */
+ int nField; /* Number of fields in the record */
+ char *zAffinity; /* The affinity string for the record */
+ int file_format; /* File format to use for encoding */
+ int i; /* Space used in zNewRecord[] */
+
+ nField = pOp->p1;
+ zAffinity = pOp->p4.z;
+ assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=p->nMem );
+ pData0 = &p->aMem[nField];
+ nField = pOp->p2;
+ pLast = &pData0[nField-1];
+ file_format = p->minWriteFileFormat;
+
+ /* Loop through the elements that will make up the record to figure
+ ** out how much space is required for the new record.
+ */
+ for(pRec=pData0; pRec<=pLast; pRec++){
+ int len;
+ if( zAffinity ){
+ applyAffinity(pRec, zAffinity[pRec-pData0], encoding);
+ }
+ if( pRec->flags&MEM_Zero && pRec->n>0 ){
+ sqlite3VdbeMemExpandBlob(pRec);
+ }
+ serial_type = sqlite3VdbeSerialType(pRec, file_format);
+ len = sqlite3VdbeSerialTypeLen(serial_type);
+ nData += len;
+ nHdr += sqlite3VarintLen(serial_type);
+ if( pRec->flags & MEM_Zero ){
+ /* Only pure zero-filled BLOBs can be input to this Opcode.
+ ** We do not allow blobs with a prefix and a zero-filled tail. */
+ nZero += pRec->u.i;
+ }else if( len ){
+ nZero = 0;
+ }
+ }
+
+ /* Add the initial header varint and total the size */
+ nHdr += nVarint = sqlite3VarintLen(nHdr);
+ if( nVarint<sqlite3VarintLen(nHdr) ){
+ nHdr++;
+ }
+ nByte = nHdr+nData-nZero;
+ if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
+ goto too_big;
+ }
+
+ /* Make sure the output register has a buffer large enough to store
+ ** the new record. The output register (pOp->p3) is not allowed to
+ ** be one of the input registers (because the following call to
+ ** sqlite3VdbeMemGrow() could clobber the value before it is used).
+ */
+ assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 );
+ pOut = &p->aMem[pOp->p3];
+ if( sqlite3VdbeMemGrow(pOut, nByte, 0) ){
+ goto no_mem;
+ }
+ zNewRecord = (u8 *)pOut->z;
+
+ /* Write the record */
+ i = putVarint32(zNewRecord, nHdr);
+ for(pRec=pData0; pRec<=pLast; pRec++){
+ serial_type = sqlite3VdbeSerialType(pRec, file_format);
+ i += putVarint32(&zNewRecord[i], serial_type); /* serial type */
+ }
+ for(pRec=pData0; pRec<=pLast; pRec++){ /* serial data */
+ i += sqlite3VdbeSerialPut(&zNewRecord[i], nByte-i, pRec, file_format);
+ }
+ assert( i==nByte );
+
+ assert( pOp->p3>0 && pOp->p3<=p->nMem );
+ pOut->n = nByte;
+ pOut->flags = MEM_Blob | MEM_Dyn;
+ pOut->xDel = 0;
+ if( nZero ){
+ pOut->u.i = nZero;
+ pOut->flags |= MEM_Zero;
+ }
+ pOut->enc = SQLITE_UTF8; /* In case the blob is ever converted to text */
+ REGISTER_TRACE(pOp->p3, pOut);
+ UPDATE_MAX_BLOBSIZE(pOut);
+ break;
+}
+
+/* Opcode: Statement P1 * * * *
+**
+** Begin an individual statement transaction which is part of a larger
+** transaction. This is needed so that the statement
+** can be rolled back after an error without having to roll back the
+** entire transaction. The statement transaction will automatically
+** commit when the VDBE halts.
+**
+** If the database connection is currently in autocommit mode (that
+** is to say, if it is in between BEGIN and COMMIT)
+** and if there are no other active statements on the same database
+** connection, then this operation is a no-op. No statement transaction
+** is needed since any error can use the normal ROLLBACK process to
+** undo changes.
+**
+** If a statement transaction is started, then a statement journal file
+** will be allocated and initialized.
+**
+** The statement is begun on the database file with index P1. The main
+** database file has an index of 0 and the file used for temporary tables
+** has an index of 1.
+*/
+case OP_Statement: {
+ if( db->autoCommit==0 || db->activeVdbeCnt>1 ){
+ int i = pOp->p1;
+ Btree *pBt;
+ assert( i>=0 && i<db->nDb );
+ assert( db->aDb[i].pBt!=0 );
+ pBt = db->aDb[i].pBt;
+ assert( sqlite3BtreeIsInTrans(pBt) );
+ assert( (p->btreeMask & (1<<i))!=0 );
+ if( !sqlite3BtreeIsInStmt(pBt) ){
+ rc = sqlite3BtreeBeginStmt(pBt);
+ p->openedStatement = 1;
+ }
+ }
+ break;
+}
+
+/* Opcode: AutoCommit P1 P2 * * *
+**
+** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll
+** back any currently active btree transactions. If there are any active
+** VMs (apart from this one), then the COMMIT or ROLLBACK statement fails.
+**
+** This instruction causes the VM to halt.
+*/
+case OP_AutoCommit: {
+ u8 i = pOp->p1;
+ u8 rollback = pOp->p2;
+
+ assert( i==1 || i==0 );
+ assert( i==1 || rollback==0 );
+
+ assert( db->activeVdbeCnt>0 ); /* At least this one VM is active */
+
+ if( db->activeVdbeCnt>1 && i && !db->autoCommit ){
+ /* If this instruction implements a COMMIT or ROLLBACK, other VMs are
+ ** still running, and a transaction is active, return an error indicating
+ ** that the other VMs must complete first.
+ */
+ sqlite3SetString(&p->zErrMsg, "cannot ", rollback?"rollback":"commit",
+ " transaction - SQL statements in progress", (char*)0);
+ rc = SQLITE_ERROR;
+ }else if( i!=db->autoCommit ){
+ if( pOp->p2 ){
+ assert( i==1 );
+ sqlite3RollbackAll(db);
+ db->autoCommit = 1;
+ }else{
+ db->autoCommit = i;
+ if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
+ p->pc = pc;
+ db->autoCommit = 1-i;
+ p->rc = rc = SQLITE_BUSY;
+ goto vdbe_return;
+ }
+ }
+ if( p->rc==SQLITE_OK ){
+ rc = SQLITE_DONE;
+ }else{
+ rc = SQLITE_ERROR;
+ }
+ goto vdbe_return;
+ }else{
+ sqlite3SetString(&p->zErrMsg,
+ (!i)?"cannot start a transaction within a transaction":(
+ (rollback)?"cannot rollback - no transaction is active":
+ "cannot commit - no transaction is active"), (char*)0);
+
+ rc = SQLITE_ERROR;
+ }
+ break;
+}
+
+/* Opcode: Transaction P1 P2 * * *
+**
+** Begin a transaction. The transaction ends when a Commit or Rollback
+** opcode is encountered. Depending on the ON CONFLICT setting, the
+** transaction might also be rolled back if an error is encountered.
+**
+** P1 is the index of the database file on which the transaction is
+** started. Index 0 is the main database file and index 1 is the
+** file used for temporary tables. Indices of 2 or more are used for
+** attached databases.
+**
+** If P2 is non-zero, then a write-transaction is started. A RESERVED lock is
+** obtained on the database file when a write-transaction is started. No
+** other process can start another write transaction while this transaction is
+** underway. Starting a write transaction also creates a rollback journal. A
+** write transaction must be started before any changes can be made to the
+** database. If P2 is 2 or greater then an EXCLUSIVE lock is also obtained
+** on the file.
+**
+** If P2 is zero, then a read-lock is obtained on the database file.
+*/
+case OP_Transaction: {
+ int i = pOp->p1;
+ Btree *pBt;
+
+ assert( i>=0 && i<db->nDb );
+ assert( (p->btreeMask & (1<<i))!=0 );
+ pBt = db->aDb[i].pBt;
+
+ if( pBt ){
+ rc = sqlite3BtreeBeginTrans(pBt, pOp->p2);
+ if( rc==SQLITE_BUSY ){
+ p->pc = pc;
+ p->rc = rc = SQLITE_BUSY;
+ goto vdbe_return;
+ }
+ if( rc!=SQLITE_OK && rc!=SQLITE_READONLY /* && rc!=SQLITE_BUSY */ ){
+ goto abort_due_to_error;
+ }
+ }
+ break;
+}
+
+/* Opcode: ReadCookie P1 P2 P3 * *
+**
+** Read cookie number P3 from database P1 and write it into register P2.
+** P3==0 is the schema version. P3==1 is the database format.
+** P3==2 is the recommended pager cache size, and so forth. P1==0 is
+** the main database file and P1==1 is the database file used to store
+** temporary tables.
+**
+** If P1 is negative, then this is a request to read the size of a
+** databases free-list. P3 must be set to 1 in this case. The actual
+** database accessed is ((P1+1)*-1). For example, a P1 parameter of -1
+** corresponds to database 0 ("main"), a P1 of -2 is database 1 ("temp").
+**
+** There must be a read-lock on the database (either a transaction
+** must be started or there must be an open cursor) before
+** executing this instruction.
+*/
+case OP_ReadCookie: { /* out2-prerelease */
+ int iMeta;
+ int iDb = pOp->p1;
+ int iCookie = pOp->p3;
+
+ assert( pOp->p3<SQLITE_N_BTREE_META );
+ if( iDb<0 ){
+ iDb = (-1*(iDb+1));
+ iCookie *= -1;
+ }
+ assert( iDb>=0 && iDb<db->nDb );
+ assert( db->aDb[iDb].pBt!=0 );
+ assert( (p->btreeMask & (1<<iDb))!=0 );
+ /* The indexing of meta values at the schema layer is off by one from
+ ** the indexing in the btree layer. The btree considers meta[0] to
+ ** be the number of free pages in the database (a read-only value)
+ ** and meta[1] to be the schema cookie. The schema layer considers
+ ** meta[1] to be the schema cookie. So we have to shift the index
+ ** by one in the following statement.
+ */
+ rc = sqlite3BtreeGetMeta(db->aDb[iDb].pBt, 1 + iCookie, (u32 *)&iMeta);
+ pOut->u.i = iMeta;
+ MemSetTypeFlag(pOut, MEM_Int);
+ break;
+}
+
+/* Opcode: SetCookie P1 P2 P3 * *
+**
+** Write the content of register P3 (interpreted as an integer)
+** into cookie number P2 of database P1.
+** P2==0 is the schema version. P2==1 is the database format.
+** P2==2 is the recommended pager cache size, and so forth. P1==0 is
+** the main database file and P1==1 is the database file used to store
+** temporary tables.
+**
+** A transaction must be started before executing this opcode.
+*/
+case OP_SetCookie: { /* in3 */
+ Db *pDb;
+ assert( pOp->p2<SQLITE_N_BTREE_META );
+ assert( pOp->p1>=0 && pOp->p1<db->nDb );
+ assert( (p->btreeMask & (1<<pOp->p1))!=0 );
+ pDb = &db->aDb[pOp->p1];
+ assert( pDb->pBt!=0 );
+ sqlite3VdbeMemIntegerify(pIn3);
+ /* See note about index shifting on OP_ReadCookie */
+ rc = sqlite3BtreeUpdateMeta(pDb->pBt, 1+pOp->p2, (int)pIn3->u.i);
+ if( pOp->p2==0 ){
+ /* When the schema cookie changes, record the new cookie internally */
+ pDb->pSchema->schema_cookie = pIn3->u.i;
+ db->flags |= SQLITE_InternChanges;
+ }else if( pOp->p2==1 ){
+ /* Record changes in the file format */
+ pDb->pSchema->file_format = pIn3->u.i;
+ }
+ if( pOp->p1==1 ){
+ /* Invalidate all prepared statements whenever the TEMP database
+ ** schema is changed. Ticket #1644 */
+ sqlite3ExpirePreparedStatements(db);
+ }
+ break;
+}
+
+/* Opcode: VerifyCookie P1 P2 *
+**
+** Check the value of global database parameter number 0 (the
+** schema version) and make sure it is equal to P2.
+** P1 is the database number which is 0 for the main database file
+** and 1 for the file holding temporary tables and some higher number
+** for auxiliary databases.
+**
+** The cookie changes its value whenever the database schema changes.
+** This operation is used to detect when that the cookie has changed
+** and that the current process needs to reread the schema.
+**
+** Either a transaction needs to have been started or an OP_Open needs
+** to be executed (to establish a read lock) before this opcode is
+** invoked.
+*/
+case OP_VerifyCookie: {
+ int iMeta;
+ Btree *pBt;
+ assert( pOp->p1>=0 && pOp->p1<db->nDb );
+ assert( (p->btreeMask & (1<<pOp->p1))!=0 );
+ pBt = db->aDb[pOp->p1].pBt;
+ if( pBt ){
+ rc = sqlite3BtreeGetMeta(pBt, 1, (u32 *)&iMeta);
+ }else{
+ rc = SQLITE_OK;
+ iMeta = 0;
+ }
+ if( rc==SQLITE_OK && iMeta!=pOp->p2 ){
+ sqlite3_free(p->zErrMsg);
+ p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed");
+ /* If the schema-cookie from the database file matches the cookie
+ ** stored with the in-memory representation of the schema, do
+ ** not reload the schema from the database file.
+ **
+ ** If virtual-tables are in use, this is not just an optimisation.
+ ** Often, v-tables store their data in other SQLite tables, which
+ ** are queried from within xNext() and other v-table methods using
+ ** prepared queries. If such a query is out-of-date, we do not want to
+ ** discard the database schema, as the user code implementing the
+ ** v-table would have to be ready for the sqlite3_vtab structure itself
+ ** to be invalidated whenever sqlite3_step() is called from within
+ ** a v-table method.
+ */
+ if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){
+ sqlite3ResetInternalSchema(db, pOp->p1);
+ }
+
+ sqlite3ExpirePreparedStatements(db);
+ rc = SQLITE_SCHEMA;
+ }
+ break;
+}
+
+/* Opcode: OpenRead P1 P2 P3 P4 P5
+**
+** Open a read-only cursor for the database table whose root page is
+** P2 in a database file. The database file is determined by P3.
+** P3==0 means the main database, P3==1 means the database used for
+** temporary tables, and P3>1 means used the corresponding attached
+** database. Give the new cursor an identifier of P1. The P1
+** values need not be contiguous but all P1 values should be small integers.
+** It is an error for P1 to be negative.
+**
+** If P5!=0 then use the content of register P2 as the root page, not
+** the value of P2 itself.
+**
+** There will be a read lock on the database whenever there is an
+** open cursor. If the database was unlocked prior to this instruction
+** then a read lock is acquired as part of this instruction. A read
+** lock allows other processes to read the database but prohibits
+** any other process from modifying the database. The read lock is
+** released when all cursors are closed. If this instruction attempts
+** to get a read lock but fails, the script terminates with an
+** SQLITE_BUSY error code.
+**
+** The P4 value is a pointer to a KeyInfo structure that defines the
+** content and collating sequence of indices. P4 is NULL for cursors
+** that are not pointing to indices.
+**
+** See also OpenWrite.
+*/
+/* Opcode: OpenWrite P1 P2 P3 P4 P5
+**
+** Open a read/write cursor named P1 on the table or index whose root
+** page is P2. Or if P5!=0 use the content of register P2 to find the
+** root page.
+**
+** The P4 value is a pointer to a KeyInfo structure that defines the
+** content and collating sequence of indices. P4 is NULL for cursors
+** that are not pointing to indices.
+**
+** This instruction works just like OpenRead except that it opens the cursor
+** in read/write mode. For a given table, there can be one or more read-only
+** cursors or a single read/write cursor but not both.
+**
+** See also OpenRead.
+*/
+case OP_OpenRead:
+case OP_OpenWrite: {
+ int i = pOp->p1;
+ int p2 = pOp->p2;
+ int iDb = pOp->p3;
+ int wrFlag;
+ Btree *pX;
+ Cursor *pCur;
+ Db *pDb;
+
+ assert( iDb>=0 && iDb<db->nDb );
+ assert( (p->btreeMask & (1<<iDb))!=0 );
+ pDb = &db->aDb[iDb];
+ pX = pDb->pBt;
+ assert( pX!=0 );
+ if( pOp->opcode==OP_OpenWrite ){
+ wrFlag = 1;
+ if( pDb->pSchema->file_format < p->minWriteFileFormat ){
+ p->minWriteFileFormat = pDb->pSchema->file_format;
+ }
+ }else{
+ wrFlag = 0;
+ }
+ if( pOp->p5 ){
+ assert( p2>0 );
+ assert( p2<=p->nMem );
+ pIn2 = &p->aMem[p2];
+ sqlite3VdbeMemIntegerify(pIn2);
+ p2 = pIn2->u.i;
+ assert( p2>=2 );
+ }
+ assert( i>=0 );
+ pCur = allocateCursor(p, i, &pOp[-1], iDb, 1);
+ if( pCur==0 ) goto no_mem;
+ pCur->nullRow = 1;
+ rc = sqlite3BtreeCursor(pX, p2, wrFlag, pOp->p4.p, pCur->pCursor);
+ if( pOp->p4type==P4_KEYINFO ){
+ pCur->pKeyInfo = pOp->p4.pKeyInfo;
+ pCur->pIncrKey = &pCur->pKeyInfo->incrKey;
+ pCur->pKeyInfo->enc = ENC(p->db);
+ }else{
+ pCur->pKeyInfo = 0;
+ pCur->pIncrKey = &pCur->bogusIncrKey;
+ }
+ switch( rc ){
+ case SQLITE_BUSY: {
+ p->pc = pc;
+ p->rc = rc = SQLITE_BUSY;
+ goto vdbe_return;
+ }
+ case SQLITE_OK: {
+ int flags = sqlite3BtreeFlags(pCur->pCursor);
+ /* Sanity checking. Only the lower four bits of the flags byte should
+ ** be used. Bit 3 (mask 0x08) is unpreditable. The lower 3 bits
+ ** (mask 0x07) should be either 5 (intkey+leafdata for tables) or
+ ** 2 (zerodata for indices). If these conditions are not met it can
+ ** only mean that we are dealing with a corrupt database file
+ */
+ if( (flags & 0xf0)!=0 || ((flags & 0x07)!=5 && (flags & 0x07)!=2) ){
+ rc = SQLITE_CORRUPT_BKPT;
+ goto abort_due_to_error;
+ }
+ pCur->isTable = (flags & BTREE_INTKEY)!=0;
+ pCur->isIndex = (flags & BTREE_ZERODATA)!=0;
+ /* If P4==0 it means we are expected to open a table. If P4!=0 then
+ ** we expect to be opening an index. If this is not what happened,
+ ** then the database is corrupt
+ */
+ if( (pCur->isTable && pOp->p4type==P4_KEYINFO)
+ || (pCur->isIndex && pOp->p4type!=P4_KEYINFO) ){
+ rc = SQLITE_CORRUPT_BKPT;
+ goto abort_due_to_error;
+ }
+ break;
+ }
+ case SQLITE_EMPTY: {
+ pCur->isTable = pOp->p4type!=P4_KEYINFO;
+ pCur->isIndex = !pCur->isTable;
+ pCur->pCursor = 0;
+ rc = SQLITE_OK;
+ break;
+ }
+ default: {
+ goto abort_due_to_error;
+ }
+ }
+ break;
+}
+
+/* Opcode: OpenEphemeral P1 P2 * P4 *
+**
+** Open a new cursor P1 to a transient table.
+** The cursor is always opened read/write even if
+** the main database is read-only. The transient or virtual
+** table is deleted automatically when the cursor is closed.
+**
+** P2 is the number of columns in the virtual table.
+** The cursor points to a BTree table if P4==0 and to a BTree index
+** if P4 is not 0. If P4 is not NULL, it points to a KeyInfo structure
+** that defines the format of keys in the index.
+**
+** This opcode was once called OpenTemp. But that created
+** confusion because the term "temp table", might refer either
+** to a TEMP table at the SQL level, or to a table opened by
+** this opcode. Then this opcode was call OpenVirtual. But
+** that created confusion with the whole virtual-table idea.
+*/
+case OP_OpenEphemeral: {
+ int i = pOp->p1;
+ Cursor *pCx;
+ static const int openFlags =
+ SQLITE_OPEN_READWRITE |
+ SQLITE_OPEN_CREATE |
+ SQLITE_OPEN_EXCLUSIVE |
+ SQLITE_OPEN_DELETEONCLOSE |
+ SQLITE_OPEN_TRANSIENT_DB;
+
+ assert( i>=0 );
+ pCx = allocateCursor(p, i, pOp, -1, 1);
+ if( pCx==0 ) goto no_mem;
+ pCx->nullRow = 1;
+ rc = sqlite3BtreeFactory(db, 0, 1, SQLITE_DEFAULT_TEMP_CACHE_SIZE, openFlags,
+ &pCx->pBt);
+ if( rc==SQLITE_OK ){
+ rc = sqlite3BtreeBeginTrans(pCx->pBt, 1);
+ }
+ if( rc==SQLITE_OK ){
+ /* If a transient index is required, create it by calling
+ ** sqlite3BtreeCreateTable() with the BTREE_ZERODATA flag before
+ ** opening it. If a transient table is required, just use the
+ ** automatically created table with root-page 1 (an INTKEY table).
+ */
+ if( pOp->p4.pKeyInfo ){
+ int pgno;
+ assert( pOp->p4type==P4_KEYINFO );
+ rc = sqlite3BtreeCreateTable(pCx->pBt, &pgno, BTREE_ZERODATA);
+ if( rc==SQLITE_OK ){
+ assert( pgno==MASTER_ROOT+1 );
+ rc = sqlite3BtreeCursor(pCx->pBt, pgno, 1,
+ (KeyInfo*)pOp->p4.z, pCx->pCursor);
+ pCx->pKeyInfo = pOp->p4.pKeyInfo;
+ pCx->pKeyInfo->enc = ENC(p->db);
+ pCx->pIncrKey = &pCx->pKeyInfo->incrKey;
+ }
+ pCx->isTable = 0;
+ }else{
+ rc = sqlite3BtreeCursor(pCx->pBt, MASTER_ROOT, 1, 0, pCx->pCursor);
+ pCx->isTable = 1;
+ pCx->pIncrKey = &pCx->bogusIncrKey;
+ }
+ }
+ pCx->isIndex = !pCx->isTable;
+ break;
+}
+
+/* Opcode: OpenPseudo P1 P2 * * *
+**
+** Open a new cursor that points to a fake table that contains a single
+** row of data. Any attempt to write a second row of data causes the
+** first row to be deleted. All data is deleted when the cursor is
+** closed.
+**
+** A pseudo-table created by this opcode is useful for holding the
+** NEW or OLD tables in a trigger. Also used to hold the a single
+** row output from the sorter so that the row can be decomposed into
+** individual columns using the OP_Column opcode.
+**
+** When OP_Insert is executed to insert a row in to the pseudo table,
+** the pseudo-table cursor may or may not make it's own copy of the
+** original row data. If P2 is 0, then the pseudo-table will copy the
+** original row data. Otherwise, a pointer to the original memory cell
+** is stored. In this case, the vdbe program must ensure that the
+** memory cell containing the row data is not overwritten until the
+** pseudo table is closed (or a new row is inserted into it).
+*/
+case OP_OpenPseudo: {
+ int i = pOp->p1;
+ Cursor *pCx;
+ assert( i>=0 );
+ pCx = allocateCursor(p, i, &pOp[-1], -1, 0);
+ if( pCx==0 ) goto no_mem;
+ pCx->nullRow = 1;
+ pCx->pseudoTable = 1;
+ pCx->ephemPseudoTable = pOp->p2;
+ pCx->pIncrKey = &pCx->bogusIncrKey;
+ pCx->isTable = 1;
+ pCx->isIndex = 0;
+ break;
+}
+
+/* Opcode: Close P1 * * * *
+**
+** Close a cursor previously opened as P1. If P1 is not
+** currently open, this instruction is a no-op.
+*/
+case OP_Close: {
+ int i = pOp->p1;
+ assert( i>=0 && i<p->nCursor );
+ sqlite3VdbeFreeCursor(p, p->apCsr[i]);
+ p->apCsr[i] = 0;
+ break;
+}
+
+/* Opcode: MoveGe P1 P2 P3 P4 *
+**
+** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
+** use the integer value in register P3 as a key. If cursor P1 refers
+** to an SQL index, then P3 is the first in an array of P4 registers
+** that are used as an unpacked index key.
+**
+** Reposition cursor P1 so that it points to the smallest entry that
+** is greater than or equal to the key value. If there are no records
+** greater than or equal to the key and P2 is not zero, then jump to P2.
+**
+** A special feature of this opcode (and different from the
+** related OP_MoveGt, OP_MoveLt, and OP_MoveLe) is that if P2 is
+** zero and P1 is an SQL table (a b-tree with integer keys) then
+** the seek is deferred until it is actually needed. It might be
+** the case that the cursor is never accessed. By deferring the
+** seek, we avoid unnecessary seeks.
+**
+** See also: Found, NotFound, Distinct, MoveLt, MoveGt, MoveLe
+*/
+/* Opcode: MoveGt P1 P2 P3 P4 *
+**
+** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
+** use the integer value in register P3 as a key. If cursor P1 refers
+** to an SQL index, then P3 is the first in an array of P4 registers
+** that are used as an unpacked index key.
+**
+** Reposition cursor P1 so that it points to the smallest entry that
+** is greater than the key value. If there are no records greater than
+** the key and P2 is not zero, then jump to P2.
+**
+** See also: Found, NotFound, Distinct, MoveLt, MoveGe, MoveLe
+*/
+/* Opcode: MoveLt P1 P2 P3 P4 *
+**
+** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
+** use the integer value in register P3 as a key. If cursor P1 refers
+** to an SQL index, then P3 is the first in an array of P4 registers
+** that are used as an unpacked index key.
+**
+** Reposition cursor P1 so that it points to the largest entry that
+** is less than the key value. If there are no records less than
+** the key and P2 is not zero, then jump to P2.
+**
+** See also: Found, NotFound, Distinct, MoveGt, MoveGe, MoveLe
+*/
+/* Opcode: MoveLe P1 P2 P3 P4 *
+**
+** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
+** use the integer value in register P3 as a key. If cursor P1 refers
+** to an SQL index, then P3 is the first in an array of P4 registers
+** that are used as an unpacked index key.
+**
+** Reposition cursor P1 so that it points to the largest entry that
+** is less than or equal to the key value. If there are no records
+** less than or equal to the key and P2 is not zero, then jump to P2.
+**
+** See also: Found, NotFound, Distinct, MoveGt, MoveGe, MoveLt
+*/
+case OP_MoveLt: /* jump, in3 */
+case OP_MoveLe: /* jump, in3 */
+case OP_MoveGe: /* jump, in3 */
+case OP_MoveGt: { /* jump, in3 */
+ int i = pOp->p1;
+ Cursor *pC;
+
+ assert( i>=0 && i<p->nCursor );
+ pC = p->apCsr[i];
+ assert( pC!=0 );
+ if( pC->pCursor!=0 ){
+ int res, oc;
+ oc = pOp->opcode;
+ pC->nullRow = 0;
+ *pC->pIncrKey = oc==OP_MoveGt || oc==OP_MoveLe;
+ if( pC->isTable ){
+ i64 iKey = sqlite3VdbeIntValue(pIn3);
+ if( pOp->p2==0 ){
+ assert( pOp->opcode==OP_MoveGe );
+ pC->movetoTarget = iKey;
+ pC->rowidIsValid = 0;
+ pC->deferredMoveto = 1;
+ break;
+ }
+ rc = sqlite3BtreeMoveto(pC->pCursor, 0, 0, (u64)iKey, 0, &res);
+ if( rc!=SQLITE_OK ){
+ goto abort_due_to_error;
+ }
+ pC->lastRowid = iKey;
+ pC->rowidIsValid = res==0;
+ }else{
+ UnpackedRecord r;
+ int nField = pOp->p4.i;
+ assert( pOp->p4type==P4_INT32 );
+ assert( nField>0 );
+ r.pKeyInfo = pC->pKeyInfo;
+ r.nField = nField;
+ r.needFree = 0;
+ r.needDestroy = 0;
+ r.aMem = &p->aMem[pOp->p3];
+ rc = sqlite3BtreeMoveto(pC->pCursor, 0, &r, 0, 0, &res);
+ if( rc!=SQLITE_OK ){
+ goto abort_due_to_error;
+ }
+ pC->rowidIsValid = 0;
+ }
+ pC->deferredMoveto = 0;
+ pC->cacheStatus = CACHE_STALE;
+ *pC->pIncrKey = 0;
+#ifdef SQLITE_TEST
+ sqlite3_search_count++;
+#endif
+ if( oc==OP_MoveGe || oc==OP_MoveGt ){
+ if( res<0 ){
+ rc = sqlite3BtreeNext(pC->pCursor, &res);
+ if( rc!=SQLITE_OK ) goto abort_due_to_error;
+ pC->rowidIsValid = 0;
+ }else{
+ res = 0;
+ }
+ }else{
+ assert( oc==OP_MoveLt || oc==OP_MoveLe );
+ if( res>=0 ){
+ rc = sqlite3BtreePrevious(pC->pCursor, &res);
+ if( rc!=SQLITE_OK ) goto abort_due_to_error;
+ pC->rowidIsValid = 0;
+ }else{
+ /* res might be negative because the table is empty. Check to
+ ** see if this is the case.
+ */
+ res = sqlite3BtreeEof(pC->pCursor);
+ }
+ }
+ assert( pOp->p2>0 );
+ if( res ){
+ pc = pOp->p2 - 1;
+ }
+ }
+ break;
+}
+
+/* Opcode: Found P1 P2 P3 * *
+**
+** Register P3 holds a blob constructed by MakeRecord. P1 is an index.
+** If an entry that matches the value in register p3 exists in P1 then
+** jump to P2. If the P3 value does not match any entry in P1
+** then fall thru. The P1 cursor is left pointing at the matching entry
+** if it exists.
+**
+** This instruction is used to implement the IN operator where the
+** left-hand side is a SELECT statement. P1 may be a true index, or it
+** may be a temporary index that holds the results of the SELECT
+** statement. This instruction is also used to implement the
+** DISTINCT keyword in SELECT statements.
+**
+** This instruction checks if index P1 contains a record for which
+** the first N serialised values exactly match the N serialised values
+** in the record in register P3, where N is the total number of values in
+** the P3 record (the P3 record is a prefix of the P1 record).
+**
+** See also: NotFound, MoveTo, IsUnique, NotExists
+*/
+/* Opcode: NotFound P1 P2 P3 * *
+**
+** Register P3 holds a blob constructed by MakeRecord. P1 is
+** an index. If no entry exists in P1 that matches the blob then jump
+** to P2. If an entry does existing, fall through. The cursor is left
+** pointing to the entry that matches.
+**
+** See also: Found, MoveTo, NotExists, IsUnique
+*/
+case OP_NotFound: /* jump, in3 */
+case OP_Found: { /* jump, in3 */
+ int i = pOp->p1;
+ int alreadyExists = 0;
+ Cursor *pC;
+ assert( i>=0 && i<p->nCursor );
+ assert( p->apCsr[i]!=0 );
+ if( (pC = p->apCsr[i])->pCursor!=0 ){
+ int res;
+ assert( pC->isTable==0 );
+ assert( pIn3->flags & MEM_Blob );
+ if( pOp->opcode==OP_Found ){
+ pC->pKeyInfo->prefixIsEqual = 1;
+ }
+ rc = sqlite3BtreeMoveto(pC->pCursor, pIn3->z, 0, pIn3->n, 0, &res);
+ pC->pKeyInfo->prefixIsEqual = 0;
+ if( rc!=SQLITE_OK ){
+ break;
+ }
+ alreadyExists = (res==0);
+ pC->deferredMoveto = 0;
+ pC->cacheStatus = CACHE_STALE;
+ }
+ if( pOp->opcode==OP_Found ){
+ if( alreadyExists ) pc = pOp->p2 - 1;
+ }else{
+ if( !alreadyExists ) pc = pOp->p2 - 1;
+ }
+ break;
+}
+
+/* Opcode: IsUnique P1 P2 P3 P4 *
+**
+** The P3 register contains an integer record number. Call this
+** record number R. The P4 register contains an index key created
+** using MakeIdxRec. Call it K.
+**
+** P1 is an index. So it has no data and its key consists of a
+** record generated by OP_MakeRecord where the last field is the
+** rowid of the entry that the index refers to.
+**
+** This instruction asks if there is an entry in P1 where the
+** fields matches K but the rowid is different from R.
+** If there is no such entry, then there is an immediate
+** jump to P2. If any entry does exist where the index string
+** matches K but the record number is not R, then the record
+** number for that entry is written into P3 and control
+** falls through to the next instruction.
+**
+** See also: NotFound, NotExists, Found
+*/
+case OP_IsUnique: { /* jump, in3 */
+ int i = pOp->p1;
+ Cursor *pCx;
+ BtCursor *pCrsr;
+ Mem *pK;
+ i64 R;
+
+ /* Pop the value R off the top of the stack
+ */
+ assert( pOp->p4type==P4_INT32 );
+ assert( pOp->p4.i>0 && pOp->p4.i<=p->nMem );
+ pK = &p->aMem[pOp->p4.i];
+ sqlite3VdbeMemIntegerify(pIn3);
+ R = pIn3->u.i;
+ assert( i>=0 && i<p->nCursor );
+ pCx = p->apCsr[i];
+ assert( pCx!=0 );
+ pCrsr = pCx->pCursor;
+ if( pCrsr!=0 ){
+ int res;
+ i64 v; /* The record number on the P1 entry that matches K */
+ char *zKey; /* The value of K */
+ int nKey; /* Number of bytes in K */
+ int len; /* Number of bytes in K without the rowid at the end */
+ int szRowid; /* Size of the rowid column at the end of zKey */
+
+ /* Make sure K is a string and make zKey point to K
+ */
+ assert( pK->flags & MEM_Blob );
+ zKey = pK->z;
+ nKey = pK->n;
+
+ szRowid = sqlite3VdbeIdxRowidLen((u8*)zKey);
+ len = nKey-szRowid;
+
+ /* Search for an entry in P1 where all but the last four bytes match K.
+ ** If there is no such entry, jump immediately to P2.
+ */
+ assert( pCx->deferredMoveto==0 );
+ pCx->cacheStatus = CACHE_STALE;
+ rc = sqlite3BtreeMoveto(pCrsr, zKey, 0, len, 0, &res);
+ if( rc!=SQLITE_OK ){
+ goto abort_due_to_error;
+ }
+ if( res<0 ){
+ rc = sqlite3BtreeNext(pCrsr, &res);
+ if( res ){
+ pc = pOp->p2 - 1;
+ break;
+ }
+ }
+ rc = sqlite3VdbeIdxKeyCompare(pCx, 0, len, (u8*)zKey, &res);
+ if( rc!=SQLITE_OK ) goto abort_due_to_error;
+ if( res>0 ){
+ pc = pOp->p2 - 1;
+ break;
+ }
+
+ /* At this point, pCrsr is pointing to an entry in P1 where all but
+ ** the final entry (the rowid) matches K. Check to see if the
+ ** final rowid column is different from R. If it equals R then jump
+ ** immediately to P2.
+ */
+ rc = sqlite3VdbeIdxRowid(pCrsr, &v);
+ if( rc!=SQLITE_OK ){
+ goto abort_due_to_error;
+ }
+ if( v==R ){
+ pc = pOp->p2 - 1;
+ break;
+ }
+
+ /* The final varint of the key is different from R. Store it back
+ ** into register R3. (The record number of an entry that violates
+ ** a UNIQUE constraint.)
+ */
+ pIn3->u.i = v;
+ assert( pIn3->flags&MEM_Int );
+ }
+ break;
+}
+
+/* Opcode: NotExists P1 P2 P3 * *
+**
+** Use the content of register P3 as a integer key. If a record
+** with that key does not exist in table of P1, then jump to P2.
+** If the record does exist, then fall thru. The cursor is left
+** pointing to the record if it exists.
+**
+** The difference between this operation and NotFound is that this
+** operation assumes the key is an integer and that P1 is a table whereas
+** NotFound assumes key is a blob constructed from MakeRecord and
+** P1 is an index.
+**
+** See also: Found, MoveTo, NotFound, IsUnique
+*/
+case OP_NotExists: { /* jump, in3 */
+ int i = pOp->p1;
+ Cursor *pC;
+ BtCursor *pCrsr;
+ assert( i>=0 && i<p->nCursor );
+ assert( p->apCsr[i]!=0 );
+ if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){
+ int res;
+ u64 iKey;
+ assert( pIn3->flags & MEM_Int );
+ assert( p->apCsr[i]->isTable );
+ iKey = intToKey(pIn3->u.i);
+ rc = sqlite3BtreeMoveto(pCrsr, 0, 0, iKey, 0,&res);
+ pC->lastRowid = pIn3->u.i;
+ pC->rowidIsValid = res==0;
+ pC->nullRow = 0;
+ pC->cacheStatus = CACHE_STALE;
+ /* res might be uninitialized if rc!=SQLITE_OK. But if rc!=SQLITE_OK
+ ** processing is about to abort so we really do not care whether or not
+ ** the following jump is taken. (In other words, do not stress over
+ ** the error that valgrind sometimes shows on the next statement when
+ ** running ioerr.test and similar failure-recovery test scripts.) */
+ if( res!=0 ){
+ pc = pOp->p2 - 1;
+ assert( pC->rowidIsValid==0 );
+ }
+ }
+ break;
+}
+
+/* Opcode: Sequence P1 P2 * * *
+**
+** Find the next available sequence number for cursor P1.
+** Write the sequence number into register P2.
+** The sequence number on the cursor is incremented after this
+** instruction.
+*/
+case OP_Sequence: { /* out2-prerelease */
+ int i = pOp->p1;
+ assert( i>=0 && i<p->nCursor );
+ assert( p->apCsr[i]!=0 );
+ pOut->u.i = p->apCsr[i]->seqCount++;
+ MemSetTypeFlag(pOut, MEM_Int);
+ break;
+}
+
+
+/* Opcode: NewRowid P1 P2 P3 * *
+**
+** Get a new integer record number (a.k.a "rowid") used as the key to a table.
+** The record number is not previously used as a key in the database
+** table that cursor P1 points to. The new record number is written
+** written to register P2.
+**
+** If P3>0 then P3 is a register that holds the largest previously
+** generated record number. No new record numbers are allowed to be less
+** than this value. When this value reaches its maximum, a SQLITE_FULL
+** error is generated. The P3 register is updated with the generated
+** record number. This P3 mechanism is used to help implement the
+** AUTOINCREMENT feature.
+*/
+case OP_NewRowid: { /* out2-prerelease */
+ int i = pOp->p1;
+ i64 v = 0;
+ Cursor *pC;
+ assert( i>=0 && i<p->nCursor );
+ assert( p->apCsr[i]!=0 );
+ if( (pC = p->apCsr[i])->pCursor==0 ){
+ /* The zero initialization above is all that is needed */
+ }else{
+ /* The next rowid or record number (different terms for the same
+ ** thing) is obtained in a two-step algorithm.
+ **
+ ** First we attempt to find the largest existing rowid and add one
+ ** to that. But if the largest existing rowid is already the maximum
+ ** positive integer, we have to fall through to the second
+ ** probabilistic algorithm
+ **
+ ** The second algorithm is to select a rowid at random and see if
+ ** it already exists in the table. If it does not exist, we have
+ ** succeeded. If the random rowid does exist, we select a new one
+ ** and try again, up to 1000 times.
+ **
+ ** For a table with less than 2 billion entries, the probability
+ ** of not finding a unused rowid is about 1.0e-300. This is a
+ ** non-zero probability, but it is still vanishingly small and should
+ ** never cause a problem. You are much, much more likely to have a
+ ** hardware failure than for this algorithm to fail.
+ **
+ ** The analysis in the previous paragraph assumes that you have a good
+ ** source of random numbers. Is a library function like lrand48()
+ ** good enough? Maybe. Maybe not. It's hard to know whether there
+ ** might be subtle bugs is some implementations of lrand48() that
+ ** could cause problems. To avoid uncertainty, SQLite uses its own
+ ** random number generator based on the RC4 algorithm.
+ **
+ ** To promote locality of reference for repetitive inserts, the
+ ** first few attempts at chosing a random rowid pick values just a little
+ ** larger than the previous rowid. This has been shown experimentally
+ ** to double the speed of the COPY operation.
+ */
+ int res, rx=SQLITE_OK, cnt;
+ i64 x;
+ cnt = 0;
+ if( (sqlite3BtreeFlags(pC->pCursor)&(BTREE_INTKEY|BTREE_ZERODATA)) !=
+ BTREE_INTKEY ){
+ rc = SQLITE_CORRUPT_BKPT;
+ goto abort_due_to_error;
+ }
+ assert( (sqlite3BtreeFlags(pC->pCursor) & BTREE_INTKEY)!=0 );
+ assert( (sqlite3BtreeFlags(pC->pCursor) & BTREE_ZERODATA)==0 );
+
+#ifdef SQLITE_32BIT_ROWID
+# define MAX_ROWID 0x7fffffff
+#else
+ /* Some compilers complain about constants of the form 0x7fffffffffffffff.
+ ** Others complain about 0x7ffffffffffffffffLL. The following macro seems
+ ** to provide the constant while making all compilers happy.
+ */
+# define MAX_ROWID ( (((u64)0x7fffffff)<<32) | (u64)0xffffffff )
+#endif
+
+ if( !pC->useRandomRowid ){
+ if( pC->nextRowidValid ){
+ v = pC->nextRowid;
+ }else{
+ rc = sqlite3BtreeLast(pC->pCursor, &res);
+ if( rc!=SQLITE_OK ){
+ goto abort_due_to_error;
+ }
+ if( res ){
+ v = 1;
+ }else{
+ sqlite3BtreeKeySize(pC->pCursor, &v);
+ v = keyToInt(v);
+ if( v==MAX_ROWID ){
+ pC->useRandomRowid = 1;
+ }else{
+ v++;
+ }
+ }
+ }
+
+#ifndef SQLITE_OMIT_AUTOINCREMENT
+ if( pOp->p3 ){
+ Mem *pMem;
+ assert( pOp->p3>0 && pOp->p3<=p->nMem ); /* P3 is a valid memory cell */
+ pMem = &p->aMem[pOp->p3];
+ REGISTER_TRACE(pOp->p3, pMem);
+ sqlite3VdbeMemIntegerify(pMem);
+ assert( (pMem->flags & MEM_Int)!=0 ); /* mem(P3) holds an integer */
+ if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){
+ rc = SQLITE_FULL;
+ goto abort_due_to_error;
+ }
+ if( v<pMem->u.i+1 ){
+ v = pMem->u.i + 1;
+ }
+ pMem->u.i = v;
+ }
+#endif
+
+ if( v<MAX_ROWID ){
+ pC->nextRowidValid = 1;
+ pC->nextRowid = v+1;
+ }else{
+ pC->nextRowidValid = 0;
+ }
+ }
+ if( pC->useRandomRowid ){
+ assert( pOp->p3==0 ); /* SQLITE_FULL must have occurred prior to this */
+ v = db->priorNewRowid;
+ cnt = 0;
+ do{
+ if( cnt==0 && (v&0xffffff)==v ){
+ v++;
+ }else{
+ sqlite3_randomness(sizeof(v), &v);
+ if( cnt<5 ) v &= 0xffffff;
+ }
+ if( v==0 ) continue;
+ x = intToKey(v);
+ rx = sqlite3BtreeMoveto(pC->pCursor, 0, 0, (u64)x, 0, &res);
+ cnt++;
+ }while( cnt<100 && rx==SQLITE_OK && res==0 );
+ db->priorNewRowid = v;
+ if( rx==SQLITE_OK && res==0 ){
+ rc = SQLITE_FULL;
+ goto abort_due_to_error;
+ }
+ }
+ pC->rowidIsValid = 0;
+ pC->deferredMoveto = 0;
+ pC->cacheStatus = CACHE_STALE;
+ }
+ MemSetTypeFlag(pOut, MEM_Int);
+ pOut->u.i = v;
+ break;
+}
+
+/* Opcode: Insert P1 P2 P3 P4 P5
+**
+** Write an entry into the table of cursor P1. A new entry is
+** created if it doesn't already exist or the data for an existing
+** entry is overwritten. The data is the value stored register
+** number P2. The key is stored in register P3. The key must
+** be an integer.
+**
+** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is
+** incremented (otherwise not). If the OPFLAG_LASTROWID flag of P5 is set,
+** then rowid is stored for subsequent return by the
+** sqlite3_last_insert_rowid() function (otherwise it is unmodified).
+**
+** Parameter P4 may point to a string containing the table-name, or
+** may be NULL. If it is not NULL, then the update-hook
+** (sqlite3.xUpdateCallback) is invoked following a successful insert.
+**
+** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically
+** allocated, then ownership of P2 is transferred to the pseudo-cursor
+** and register P2 becomes ephemeral. If the cursor is changed, the
+** value of register P2 will then change. Make sure this does not
+** cause any problems.)
+**
+** This instruction only works on tables. The equivalent instruction
+** for indices is OP_IdxInsert.
+*/
+case OP_Insert: {
+ Mem *pData = &p->aMem[pOp->p2];
+ Mem *pKey = &p->aMem[pOp->p3];
+
+ i64 iKey; /* The integer ROWID or key for the record to be inserted */
+ int i = pOp->p1;
+ Cursor *pC;
+ assert( i>=0 && i<p->nCursor );
+ pC = p->apCsr[i];
+ assert( pC!=0 );
+ assert( pC->pCursor!=0 || pC->pseudoTable );
+ assert( pKey->flags & MEM_Int );
+ assert( pC->isTable );
+ REGISTER_TRACE(pOp->p2, pData);
+ REGISTER_TRACE(pOp->p3, pKey);
+
+ iKey = intToKey(pKey->u.i);
+ if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
+ if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = pKey->u.i;
+ if( pC->nextRowidValid && pKey->u.i>=pC->nextRowid ){
+ pC->nextRowidValid = 0;
+ }
+ if( pData->flags & MEM_Null ){
+ pData->z = 0;
+ pData->n = 0;
+ }else{
+ assert( pData->flags & (MEM_Blob|MEM_Str) );
+ }
+ if( pC->pseudoTable ){
+ if( !pC->ephemPseudoTable ){
+ sqlite3_free(pC->pData);
+ }
+ pC->iKey = iKey;
+ pC->nData = pData->n;
+ if( pData->z==pData->zMalloc || pC->ephemPseudoTable ){
+ pC->pData = pData->z;
+ if( !pC->ephemPseudoTable ){
+ pData->flags &= ~MEM_Dyn;
+ pData->flags |= MEM_Ephem;
+ pData->zMalloc = 0;
+ }
+ }else{
+ pC->pData = sqlite3_malloc( pC->nData+2 );
+ if( !pC->pData ) goto no_mem;
+ memcpy(pC->pData, pData->z, pC->nData);
+ pC->pData[pC->nData] = 0;
+ pC->pData[pC->nData+1] = 0;
+ }
+ pC->nullRow = 0;
+ }else{
+ int nZero;
+ if( pData->flags & MEM_Zero ){
+ nZero = pData->u.i;
+ }else{
+ nZero = 0;
+ }
+ rc = sqlite3BtreeInsert(pC->pCursor, 0, iKey,
+ pData->z, pData->n, nZero,
+ pOp->p5 & OPFLAG_APPEND);
+ }
+
+ pC->rowidIsValid = 0;
+ pC->deferredMoveto = 0;
+ pC->cacheStatus = CACHE_STALE;
+
+ /* Invoke the update-hook if required. */
+ if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){
+ const char *zDb = db->aDb[pC->iDb].zName;
+ const char *zTbl = pOp->p4.z;
+ int op = ((pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT);
+ assert( pC->isTable );
+ db->xUpdateCallback(db->pUpdateArg, op, zDb, zTbl, iKey);
+ assert( pC->iDb>=0 );
+ }
+ break;
+}
+
+/* Opcode: Delete P1 P2 * P4 *
+**
+** Delete the record at which the P1 cursor is currently pointing.
+**
+** The cursor will be left pointing at either the next or the previous
+** record in the table. If it is left pointing at the next record, then
+** the next Next instruction will be a no-op. Hence it is OK to delete
+** a record from within an Next loop.
+**
+** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is
+** incremented (otherwise not).
+**
+** P1 must not be pseudo-table. It has to be a real table with
+** multiple rows.
+**
+** If P4 is not NULL, then it is the name of the table that P1 is
+** pointing to. The update hook will be invoked, if it exists.
+** If P4 is not NULL then the P1 cursor must have been positioned
+** using OP_NotFound prior to invoking this opcode.
+*/
+case OP_Delete: {
+ int i = pOp->p1;
+ i64 iKey;
+ Cursor *pC;
+
+ assert( i>=0 && i<p->nCursor );
+ pC = p->apCsr[i];
+ assert( pC!=0 );
+ assert( pC->pCursor!=0 ); /* Only valid for real tables, no pseudotables */
+
+ /* If the update-hook will be invoked, set iKey to the rowid of the
+ ** row being deleted.
+ */
+ if( db->xUpdateCallback && pOp->p4.z ){
+ assert( pC->isTable );
+ assert( pC->rowidIsValid ); /* lastRowid set by previous OP_NotFound */
+ iKey = pC->lastRowid;
+ }
+
+ rc = sqlite3VdbeCursorMoveto(pC);
+ if( rc ) goto abort_due_to_error;
+ rc = sqlite3BtreeDelete(pC->pCursor);
+ pC->nextRowidValid = 0;
+ pC->cacheStatus = CACHE_STALE;
+
+ /* Invoke the update-hook if required. */
+ if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){
+ const char *zDb = db->aDb[pC->iDb].zName;
+ const char *zTbl = pOp->p4.z;
+ db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, zTbl, iKey);
+ assert( pC->iDb>=0 );
+ }
+ if( pOp->p2 & OPFLAG_NCHANGE ) p->nChange++;
+ break;
+}
+
+/* Opcode: ResetCount P1 * *
+**
+** This opcode resets the VMs internal change counter to 0. If P1 is true,
+** then the value of the change counter is copied to the database handle
+** change counter (returned by subsequent calls to sqlite3_changes())
+** before it is reset. This is used by trigger programs.
+*/
+case OP_ResetCount: {
+ if( pOp->p1 ){
+ sqlite3VdbeSetChanges(db, p->nChange);
+ }
+ p->nChange = 0;
+ break;
+}
+
+/* Opcode: RowData P1 P2 * * *
+**
+** Write into register P2 the complete row data for cursor P1.
+** There is no interpretation of the data.
+** It is just copied onto the P2 register exactly as
+** it is found in the database file.
+**
+** If the P1 cursor must be pointing to a valid row (not a NULL row)
+** of a real table, not a pseudo-table.
+*/
+/* Opcode: RowKey P1 P2 * * *
+**
+** Write into register P2 the complete row key for cursor P1.
+** There is no interpretation of the data.
+** The key is copied onto the P3 register exactly as
+** it is found in the database file.
+**
+** If the P1 cursor must be pointing to a valid row (not a NULL row)
+** of a real table, not a pseudo-table.
+*/
+case OP_RowKey:
+case OP_RowData: {
+ int i = pOp->p1;
+ Cursor *pC;
+ BtCursor *pCrsr;
+ u32 n;
+
+ pOut = &p->aMem[pOp->p2];
+
+ /* Note that RowKey and RowData are really exactly the same instruction */
+ assert( i>=0 && i<p->nCursor );
+ pC = p->apCsr[i];
+ assert( pC->isTable || pOp->opcode==OP_RowKey );
+ assert( pC->isIndex || pOp->opcode==OP_RowData );
+ assert( pC!=0 );
+ assert( pC->nullRow==0 );
+ assert( pC->pseudoTable==0 );
+ assert( pC->pCursor!=0 );
+ pCrsr = pC->pCursor;
+ rc = sqlite3VdbeCursorMoveto(pC);
+ if( rc ) goto abort_due_to_error;
+ if( pC->isIndex ){
+ i64 n64;
+ assert( !pC->isTable );
+ sqlite3BtreeKeySize(pCrsr, &n64);
+ if( n64>db->aLimit[SQLITE_LIMIT_LENGTH] ){
+ goto too_big;
+ }
+ n = n64;
+ }else{
+ sqlite3BtreeDataSize(pCrsr, &n);
+ if( n>db->aLimit[SQLITE_LIMIT_LENGTH] ){
+ goto too_big;
+ }
+ }
+ if( sqlite3VdbeMemGrow(pOut, n, 0) ){
+ goto no_mem;
+ }
+ pOut->n = n;
+ MemSetTypeFlag(pOut, MEM_Blob);
+ if( pC->isIndex ){
+ rc = sqlite3BtreeKey(pCrsr, 0, n, pOut->z);
+ }else{
+ rc = sqlite3BtreeData(pCrsr, 0, n, pOut->z);
+ }
+ pOut->enc = SQLITE_UTF8; /* In case the blob is ever cast to text */
+ UPDATE_MAX_BLOBSIZE(pOut);
+ break;
+}
+
+/* Opcode: Rowid P1 P2 * * *
+**
+** Store in register P2 an integer which is the key of the table entry that
+** P1 is currently point to. If p2==0 then push the integer.
+*/
+case OP_Rowid: { /* out2-prerelease */
+ int i = pOp->p1;
+ Cursor *pC;
+ i64 v;
+
+ assert( i>=0 && i<p->nCursor );
+ pC = p->apCsr[i];
+ assert( pC!=0 );
+ rc = sqlite3VdbeCursorMoveto(pC);
+ if( rc ) goto abort_due_to_error;
+ if( pC->rowidIsValid ){
+ v = pC->lastRowid;
+ }else if( pC->pseudoTable ){
+ v = keyToInt(pC->iKey);
+ }else if( pC->nullRow ){
+ /* Leave the rowid set to a NULL */
+ break;
+ }else{
+ assert( pC->pCursor!=0 );
+ sqlite3BtreeKeySize(pC->pCursor, &v);
+ v = keyToInt(v);
+ }
+ pOut->u.i = v;
+ MemSetTypeFlag(pOut, MEM_Int);
+ break;
+}
+
+/* Opcode: NullRow P1 * * * *
+**
+** Move the cursor P1 to a null row. Any OP_Column operations
+** that occur while the cursor is on the null row will always
+** write a NULL.
+*/
+case OP_NullRow: {
+ int i = pOp->p1;
+ Cursor *pC;
+
+ assert( i>=0 && i<p->nCursor );
+ pC = p->apCsr[i];
+ assert( pC!=0 );
+ pC->nullRow = 1;
+ pC->rowidIsValid = 0;
+ break;
+}
+
+/* Opcode: Last P1 P2 * * *
+**
+** The next use of the Rowid or Column or Next instruction for P1
+** will refer to the last entry in the database table or index.
+** If the table or index is empty and P2>0, then jump immediately to P2.
+** If P2 is 0 or if the table or index is not empty, fall through
+** to the following instruction.
+*/
+case OP_Last: { /* jump */
+ int i = pOp->p1;
+ Cursor *pC;
+ BtCursor *pCrsr;
+ int res;
+
+ assert( i>=0 && i<p->nCursor );
+ pC = p->apCsr[i];
+ assert( pC!=0 );
+ pCrsr = pC->pCursor;
+ assert( pCrsr!=0 );
+ rc = sqlite3BtreeLast(pCrsr, &res);
+ pC->nullRow = res;
+ pC->deferredMoveto = 0;
+ pC->cacheStatus = CACHE_STALE;
+ if( res && pOp->p2>0 ){
+ pc = pOp->p2 - 1;
+ }
+ break;
+}
+
+
+/* Opcode: Sort P1 P2 * * *
+**
+** This opcode does exactly the same thing as OP_Rewind except that
+** it increments an undocumented global variable used for testing.
+**
+** Sorting is accomplished by writing records into a sorting index,
+** then rewinding that index and playing it back from beginning to
+** end. We use the OP_Sort opcode instead of OP_Rewind to do the
+** rewinding so that the global variable will be incremented and
+** regression tests can determine whether or not the optimizer is
+** correctly optimizing out sorts.
+*/
+case OP_Sort: { /* jump */
+#ifdef SQLITE_TEST
+ sqlite3_sort_count++;
+ sqlite3_search_count--;
+#endif
+ /* Fall through into OP_Rewind */
+}
+/* Opcode: Rewind P1 P2 * * *
+**
+** The next use of the Rowid or Column or Next instruction for P1
+** will refer to the first entry in the database table or index.
+** If the table or index is empty and P2>0, then jump immediately to P2.
+** If P2 is 0 or if the table or index is not empty, fall through
+** to the following instruction.
+*/
+case OP_Rewind: { /* jump */
+ int i = pOp->p1;
+ Cursor *pC;
+ BtCursor *pCrsr;
+ int res;
+
+ assert( i>=0 && i<p->nCursor );
+ pC = p->apCsr[i];
+ assert( pC!=0 );
+ if( (pCrsr = pC->pCursor)!=0 ){
+ rc = sqlite3BtreeFirst(pCrsr, &res);
+ pC->atFirst = res==0;
+ pC->deferredMoveto = 0;
+ pC->cacheStatus = CACHE_STALE;
+ }else{
+ res = 1;
+ }
+ pC->nullRow = res;
+ assert( pOp->p2>0 && pOp->p2<p->nOp );
+ if( res ){
+ pc = pOp->p2 - 1;
+ }
+ break;
+}
+
+/* Opcode: Next P1 P2 * * *
+**
+** Advance cursor P1 so that it points to the next key/data pair in its
+** table or index. If there are no more key/value pairs then fall through
+** to the following instruction. But if the cursor advance was successful,
+** jump immediately to P2.
+**
+** The P1 cursor must be for a real table, not a pseudo-table.
+**
+** See also: Prev
+*/
+/* Opcode: Prev P1 P2 * * *
+**
+** Back up cursor P1 so that it points to the previous key/data pair in its
+** table or index. If there is no previous key/value pairs then fall through
+** to the following instruction. But if the cursor backup was successful,
+** jump immediately to P2.
+**
+** The P1 cursor must be for a real table, not a pseudo-table.
+*/
+case OP_Prev: /* jump */
+case OP_Next: { /* jump */
+ Cursor *pC;
+ BtCursor *pCrsr;
+
+ CHECK_FOR_INTERRUPT;
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
+ pC = p->apCsr[pOp->p1];
+ if( pC==0 ){
+ break; /* See ticket #2273 */
+ }
+ pCrsr = pC->pCursor;
+ assert( pCrsr );
+ if( pC->nullRow==0 ){
+ int res = 1;
+ assert( pC->deferredMoveto==0 );
+ rc = pOp->opcode==OP_Next ? sqlite3BtreeNext(pCrsr, &res) :
+ sqlite3BtreePrevious(pCrsr, &res);
+ pC->nullRow = res;
+ pC->cacheStatus = CACHE_STALE;
+ if( res==0 ){
+ pc = pOp->p2 - 1;
+#ifdef SQLITE_TEST
+ sqlite3_search_count++;
+#endif
+ }
+ }
+ pC->rowidIsValid = 0;
+ break;
+}
+
+/* Opcode: IdxInsert P1 P2 P3 * *
+**
+** Register P2 holds a SQL index key made using the
+** MakeIdxRec instructions. This opcode writes that key
+** into the index P1. Data for the entry is nil.
+**
+** P3 is a flag that provides a hint to the b-tree layer that this
+** insert is likely to be an append.
+**
+** This instruction only works for indices. The equivalent instruction
+** for tables is OP_Insert.
+*/
+case OP_IdxInsert: { /* in2 */
+ int i = pOp->p1;
+ Cursor *pC;
+ BtCursor *pCrsr;
+ assert( i>=0 && i<p->nCursor );
+ assert( p->apCsr[i]!=0 );
+ assert( pIn2->flags & MEM_Blob );
+ if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){
+ assert( pC->isTable==0 );
+ rc = ExpandBlob(pIn2);
+ if( rc==SQLITE_OK ){
+ int nKey = pIn2->n;
+ const char *zKey = pIn2->z;
+ rc = sqlite3BtreeInsert(pCrsr, zKey, nKey, "", 0, 0, pOp->p3);
+ assert( pC->deferredMoveto==0 );
+ pC->cacheStatus = CACHE_STALE;
+ }
+ }
+ break;
+}
+
+/* Opcode: IdxDeleteM P1 P2 P3 * *
+**
+** The content of P3 registers starting at register P2 form
+** an unpacked index key. This opcode removes that entry from the
+** index opened by cursor P1.
+*/
+case OP_IdxDelete: {
+ int i = pOp->p1;
+ Cursor *pC;
+ BtCursor *pCrsr;
+ assert( pOp->p3>0 );
+ assert( pOp->p2>0 && pOp->p2+pOp->p3<=p->nMem );
+ assert( i>=0 && i<p->nCursor );
+ assert( p->apCsr[i]!=0 );
+ if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){
+ int res;
+ UnpackedRecord r;
+ r.pKeyInfo = pC->pKeyInfo;
+ r.nField = pOp->p3;
+ r.needFree = 0;
+ r.needDestroy = 0;
+ r.aMem = &p->aMem[pOp->p2];
+ rc = sqlite3BtreeMoveto(pCrsr, 0, &r, 0, 0, &res);
+ if( rc==SQLITE_OK && res==0 ){
+ rc = sqlite3BtreeDelete(pCrsr);
+ }
+ assert( pC->deferredMoveto==0 );
+ pC->cacheStatus = CACHE_STALE;
+ }
+ break;
+}
+
+/* Opcode: IdxRowid P1 P2 * * *
+**
+** Write into register P2 an integer which is the last entry in the record at
+** the end of the index key pointed to by cursor P1. This integer should be
+** the rowid of the table entry to which this index entry points.
+**
+** See also: Rowid, MakeIdxRec.
+*/
+case OP_IdxRowid: { /* out2-prerelease */
+ int i = pOp->p1;
+ BtCursor *pCrsr;
+ Cursor *pC;
+
+ assert( i>=0 && i<p->nCursor );
+ assert( p->apCsr[i]!=0 );
+ if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){
+ i64 rowid;
+
+ assert( pC->deferredMoveto==0 );
+ assert( pC->isTable==0 );
+ if( !pC->nullRow ){
+ rc = sqlite3VdbeIdxRowid(pCrsr, &rowid);
+ if( rc!=SQLITE_OK ){
+ goto abort_due_to_error;
+ }
+ MemSetTypeFlag(pOut, MEM_Int);
+ pOut->u.i = rowid;
+ }
+ }
+ break;
+}
+
+/* Opcode: IdxGE P1 P2 P3 P4 P5
+**
+** The P4 register values beginning with P3 form an unpacked index
+** key that omits the ROWID. Compare this key value against the index
+** that P1 is currently pointing to, ignoring the ROWID on the P1 index.
+**
+** If the P1 index entry is greater than or equal to the key value
+** then jump to P2. Otherwise fall through to the next instruction.
+**
+** If P5 is non-zero then the key value is increased by an epsilon
+** prior to the comparison. This make the opcode work like IdxGT except
+** that if the key from register P3 is a prefix of the key in the cursor,
+** the result is false whereas it would be true with IdxGT.
+*/
+/* Opcode: IdxLT P1 P2 P3 * P5
+**
+** The P4 register values beginning with P3 form an unpacked index
+** key that omits the ROWID. Compare this key value against the index
+** that P1 is currently pointing to, ignoring the ROWID on the P1 index.
+**
+** If the P1 index entry is less than the key value then jump to P2.
+** Otherwise fall through to the next instruction.
+**
+** If P5 is non-zero then the key value is increased by an epsilon prior
+** to the comparison. This makes the opcode work like IdxLE.
+*/
+case OP_IdxLT: /* jump, in3 */
+case OP_IdxGE: { /* jump, in3 */
+ int i= pOp->p1;
+ Cursor *pC;
+
+ assert( i>=0 && i<p->nCursor );
+ assert( p->apCsr[i]!=0 );
+ if( (pC = p->apCsr[i])->pCursor!=0 ){
+ int res;
+ UnpackedRecord r;
+ assert( pC->deferredMoveto==0 );
+ assert( pOp->p5==0 || pOp->p5==1 );
+ assert( pOp->p4type==P4_INT32 );
+ r.pKeyInfo = pC->pKeyInfo;
+ r.nField = pOp->p4.i;
+ r.needFree = 0;
+ r.needDestroy = 0;
+ r.aMem = &p->aMem[pOp->p3];
+ *pC->pIncrKey = pOp->p5;
+ rc = sqlite3VdbeIdxKeyCompare(pC, &r, 0, 0, &res);
+ *pC->pIncrKey = 0;
+ if( pOp->opcode==OP_IdxLT ){
+ res = -res;
+ }else{
+ assert( pOp->opcode==OP_IdxGE );
+ res++;
+ }
+ if( res>0 ){
+ pc = pOp->p2 - 1 ;
+ }
+ }
+ break;
+}
+
+/* Opcode: Destroy P1 P2 P3 * *
+**
+** Delete an entire database table or index whose root page in the database
+** file is given by P1.
+**
+** The table being destroyed is in the main database file if P3==0. If
+** P3==1 then the table to be clear is in the auxiliary database file
+** that is used to store tables create using CREATE TEMPORARY TABLE.
+**
+** If AUTOVACUUM is enabled then it is possible that another root page
+** might be moved into the newly deleted root page in order to keep all
+** root pages contiguous at the beginning of the database. The former
+** value of the root page that moved - its value before the move occurred -
+** is stored in register P2. If no page
+** movement was required (because the table being dropped was already
+** the last one in the database) then a zero is stored in register P2.
+** If AUTOVACUUM is disabled then a zero is stored in register P2.
+**
+** See also: Clear
+*/
+case OP_Destroy: { /* out2-prerelease */
+ int iMoved;
+ int iCnt;
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ Vdbe *pVdbe;
+ iCnt = 0;
+ for(pVdbe=db->pVdbe; pVdbe; pVdbe=pVdbe->pNext){
+ if( pVdbe->magic==VDBE_MAGIC_RUN && pVdbe->inVtabMethod<2 && pVdbe->pc>=0 ){
+ iCnt++;
+ }
+ }
+#else
+ iCnt = db->activeVdbeCnt;
+#endif
+ if( iCnt>1 ){
+ rc = SQLITE_LOCKED;
+ p->errorAction = OE_Abort;
+ }else{
+ int iDb = pOp->p3;
+ assert( iCnt==1 );
+ assert( (p->btreeMask & (1<<iDb))!=0 );
+ rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved);
+ MemSetTypeFlag(pOut, MEM_Int);
+ pOut->u.i = iMoved;
+#ifndef SQLITE_OMIT_AUTOVACUUM
+ if( rc==SQLITE_OK && iMoved!=0 ){
+ sqlite3RootPageMoved(&db->aDb[iDb], iMoved, pOp->p1);
+ }
+#endif
+ }
+ break;
+}
+
+/* Opcode: Clear P1 P2 *
+**
+** Delete all contents of the database table or index whose root page
+** in the database file is given by P1. But, unlike Destroy, do not
+** remove the table or index from the database file.
+**
+** The table being clear is in the main database file if P2==0. If
+** P2==1 then the table to be clear is in the auxiliary database file
+** that is used to store tables create using CREATE TEMPORARY TABLE.
+**
+** See also: Destroy
+*/
+case OP_Clear: {
+ assert( (p->btreeMask & (1<<pOp->p2))!=0 );
+ rc = sqlite3BtreeClearTable(db->aDb[pOp->p2].pBt, pOp->p1);
+ break;
+}
+
+/* Opcode: CreateTable P1 P2 * * *
+**
+** Allocate a new table in the main database file if P1==0 or in the
+** auxiliary database file if P1==1 or in an attached database if
+** P1>1. Write the root page number of the new table into
+** register P2
+**
+** The difference between a table and an index is this: A table must
+** have a 4-byte integer key and can have arbitrary data. An index
+** has an arbitrary key but no data.
+**
+** See also: CreateIndex
+*/
+/* Opcode: CreateIndex P1 P2 * * *
+**
+** Allocate a new index in the main database file if P1==0 or in the
+** auxiliary database file if P1==1 or in an attached database if
+** P1>1. Write the root page number of the new table into
+** register P2.
+**
+** See documentation on OP_CreateTable for additional information.
+*/
+case OP_CreateIndex: /* out2-prerelease */
+case OP_CreateTable: { /* out2-prerelease */
+ int pgno;
+ int flags;
+ Db *pDb;
+ assert( pOp->p1>=0 && pOp->p1<db->nDb );
+ assert( (p->btreeMask & (1<<pOp->p1))!=0 );
+ pDb = &db->aDb[pOp->p1];
+ assert( pDb->pBt!=0 );
+ if( pOp->opcode==OP_CreateTable ){
+ /* flags = BTREE_INTKEY; */
+ flags = BTREE_LEAFDATA|BTREE_INTKEY;
+ }else{
+ flags = BTREE_ZERODATA;
+ }
+ rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, flags);
+ if( rc==SQLITE_OK ){
+ pOut->u.i = pgno;
+ MemSetTypeFlag(pOut, MEM_Int);
+ }
+ break;
+}
+
+/* Opcode: ParseSchema P1 P2 * P4 *
+**
+** Read and parse all entries from the SQLITE_MASTER table of database P1
+** that match the WHERE clause P4. P2 is the "force" flag. Always do
+** the parsing if P2 is true. If P2 is false, then this routine is a
+** no-op if the schema is not currently loaded. In other words, if P2
+** is false, the SQLITE_MASTER table is only parsed if the rest of the
+** schema is already loaded into the symbol table.
+**
+** This opcode invokes the parser to create a new virtual machine,
+** then runs the new virtual machine. It is thus a reentrant opcode.
+*/
+case OP_ParseSchema: {
+ char *zSql;
+ int iDb = pOp->p1;
+ const char *zMaster;
+ InitData initData;
+
+ assert( iDb>=0 && iDb<db->nDb );
+ if( !pOp->p2 && !DbHasProperty(db, iDb, DB_SchemaLoaded) ){
+ break;
+ }
+ zMaster = SCHEMA_TABLE(iDb);
+ initData.db = db;
+ initData.iDb = pOp->p1;
+ initData.pzErrMsg = &p->zErrMsg;
+ zSql = sqlite3MPrintf(db,
+ "SELECT name, rootpage, sql FROM '%q'.%s WHERE %s",
+ db->aDb[iDb].zName, zMaster, pOp->p4.z);
+ if( zSql==0 ) goto no_mem;
+ (void)sqlite3SafetyOff(db);
+ assert( db->init.busy==0 );
+ db->init.busy = 1;
+ assert( !db->mallocFailed );
+ rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
+ if( rc==SQLITE_ABORT ) rc = initData.rc;
+ sqlite3_free(zSql);
+ db->init.busy = 0;
+ (void)sqlite3SafetyOn(db);
+ if( rc==SQLITE_NOMEM ){
+ goto no_mem;
+ }
+ break;
+}
+
+#if !defined(SQLITE_OMIT_ANALYZE) && !defined(SQLITE_OMIT_PARSER)
+/* Opcode: LoadAnalysis P1 * * * *
+**
+** Read the sqlite_stat1 table for database P1 and load the content
+** of that table into the internal index hash table. This will cause
+** the analysis to be used when preparing all subsequent queries.
+*/
+case OP_LoadAnalysis: {
+ int iDb = pOp->p1;
+ assert( iDb>=0 && iDb<db->nDb );
+ rc = sqlite3AnalysisLoad(db, iDb);
+ break;
+}
+#endif /* !defined(SQLITE_OMIT_ANALYZE) && !defined(SQLITE_OMIT_PARSER) */
+
+/* Opcode: DropTable P1 * * P4 *
+**
+** Remove the internal (in-memory) data structures that describe
+** the table named P4 in database P1. This is called after a table
+** is dropped in order to keep the internal representation of the
+** schema consistent with what is on disk.
+*/
+case OP_DropTable: {
+ sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z);
+ break;
+}
+
+/* Opcode: DropIndex P1 * * P4 *
+**
+** Remove the internal (in-memory) data structures that describe
+** the index named P4 in database P1. This is called after an index
+** is dropped in order to keep the internal representation of the
+** schema consistent with what is on disk.
+*/
+case OP_DropIndex: {
+ sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z);
+ break;
+}
+
+/* Opcode: DropTrigger P1 * * P4 *
+**
+** Remove the internal (in-memory) data structures that describe
+** the trigger named P4 in database P1. This is called after a trigger
+** is dropped in order to keep the internal representation of the
+** schema consistent with what is on disk.
+*/
+case OP_DropTrigger: {
+ sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z);
+ break;
+}
+
+
+#ifndef SQLITE_OMIT_INTEGRITY_CHECK
+/* Opcode: IntegrityCk P1 P2 P3 * P5
+**
+** Do an analysis of the currently open database. Store in
+** register P1 the text of an error message describing any problems.
+** If no problems are found, store a NULL in register P1.
+**
+** The register P3 contains the maximum number of allowed errors.
+** At most reg(P3) errors will be reported.
+** In other words, the analysis stops as soon as reg(P1) errors are
+** seen. Reg(P1) is updated with the number of errors remaining.
+**
+** The root page numbers of all tables in the database are integer
+** stored in reg(P1), reg(P1+1), reg(P1+2), .... There are P2 tables
+** total.
+**
+** If P5 is not zero, the check is done on the auxiliary database
+** file, not the main database file.
+**
+** This opcode is used to implement the integrity_check pragma.
+*/
+case OP_IntegrityCk: {
+ int nRoot; /* Number of tables to check. (Number of root pages.) */
+ int *aRoot; /* Array of rootpage numbers for tables to be checked */
+ int j; /* Loop counter */
+ int nErr; /* Number of errors reported */
+ char *z; /* Text of the error report */
+ Mem *pnErr; /* Register keeping track of errors remaining */
+
+ nRoot = pOp->p2;
+ assert( nRoot>0 );
+ aRoot = sqlite3_malloc( sizeof(int)*(nRoot+1) );
+ if( aRoot==0 ) goto no_mem;
+ assert( pOp->p3>0 && pOp->p3<=p->nMem );
+ pnErr = &p->aMem[pOp->p3];
+ assert( (pnErr->flags & MEM_Int)!=0 );
+ assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 );
+ pIn1 = &p->aMem[pOp->p1];
+ for(j=0; j<nRoot; j++){
+ aRoot[j] = sqlite3VdbeIntValue(&pIn1[j]);
+ }
+ aRoot[j] = 0;
+ assert( pOp->p5<db->nDb );
+ assert( (p->btreeMask & (1<<pOp->p5))!=0 );
+ z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p5].pBt, aRoot, nRoot,
+ pnErr->u.i, &nErr);
+ pnErr->u.i -= nErr;
+ sqlite3VdbeMemSetNull(pIn1);
+ if( nErr==0 ){
+ assert( z==0 );
+ }else{
+ sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free);
+ }
+ UPDATE_MAX_BLOBSIZE(pIn1);
+ sqlite3VdbeChangeEncoding(pIn1, encoding);
+ sqlite3_free(aRoot);
+ break;
+}
+#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
+
+/* Opcode: FifoWrite P1 * * * *
+**
+** Write the integer from register P1 into the Fifo.
+*/
+case OP_FifoWrite: { /* in1 */
+ if( sqlite3VdbeFifoPush(&p->sFifo, sqlite3VdbeIntValue(pIn1))==SQLITE_NOMEM ){
+ goto no_mem;
+ }
+ break;
+}
+
+/* Opcode: FifoRead P1 P2 * * *
+**
+** Attempt to read a single integer from the Fifo. Store that
+** integer in register P1.
+**
+** If the Fifo is empty jump to P2.
+*/
+case OP_FifoRead: { /* jump */
+ CHECK_FOR_INTERRUPT;
+ assert( pOp->p1>0 && pOp->p1<=p->nMem );
+ pOut = &p->aMem[pOp->p1];
+ MemSetTypeFlag(pOut, MEM_Int);
+ if( sqlite3VdbeFifoPop(&p->sFifo, &pOut->u.i)==SQLITE_DONE ){
+ pc = pOp->p2 - 1;
+ }
+ break;
+}
+
+#ifndef SQLITE_OMIT_TRIGGER
+/* Opcode: ContextPush * * *
+**
+** Save the current Vdbe context such that it can be restored by a ContextPop
+** opcode. The context stores the last insert row id, the last statement change
+** count, and the current statement change count.
+*/
+case OP_ContextPush: {
+ int i = p->contextStackTop++;
+ Context *pContext;
+
+ assert( i>=0 );
+ /* FIX ME: This should be allocated as part of the vdbe at compile-time */
+ if( i>=p->contextStackDepth ){
+ p->contextStackDepth = i+1;
+ p->contextStack = sqlite3DbReallocOrFree(db, p->contextStack,
+ sizeof(Context)*(i+1));
+ if( p->contextStack==0 ) goto no_mem;
+ }
+ pContext = &p->contextStack[i];
+ pContext->lastRowid = db->lastRowid;
+ pContext->nChange = p->nChange;
+ pContext->sFifo = p->sFifo;
+ sqlite3VdbeFifoInit(&p->sFifo);
+ break;
+}
+
+/* Opcode: ContextPop * * *
+**
+** Restore the Vdbe context to the state it was in when contextPush was last
+** executed. The context stores the last insert row id, the last statement
+** change count, and the current statement change count.
+*/
+case OP_ContextPop: {
+ Context *pContext = &p->contextStack[--p->contextStackTop];
+ assert( p->contextStackTop>=0 );
+ db->lastRowid = pContext->lastRowid;
+ p->nChange = pContext->nChange;
+ sqlite3VdbeFifoClear(&p->sFifo);
+ p->sFifo = pContext->sFifo;
+ break;
+}
+#endif /* #ifndef SQLITE_OMIT_TRIGGER */
+
+#ifndef SQLITE_OMIT_AUTOINCREMENT
+/* Opcode: MemMax P1 P2 * * *
+**
+** Set the value of register P1 to the maximum of its current value
+** and the value in register P2.
+**
+** This instruction throws an error if the memory cell is not initially
+** an integer.
+*/
+case OP_MemMax: { /* in1, in2 */
+ sqlite3VdbeMemIntegerify(pIn1);
+ sqlite3VdbeMemIntegerify(pIn2);
+ if( pIn1->u.i<pIn2->u.i){
+ pIn1->u.i = pIn2->u.i;
+ }
+ break;
+}
+#endif /* SQLITE_OMIT_AUTOINCREMENT */
+
+/* Opcode: IfPos P1 P2 * * *
+**
+** If the value of register P1 is 1 or greater, jump to P2.
+**
+** It is illegal to use this instruction on a register that does
+** not contain an integer. An assertion fault will result if you try.
+*/
+case OP_IfPos: { /* jump, in1 */
+ assert( pIn1->flags&MEM_Int );
+ if( pIn1->u.i>0 ){
+ pc = pOp->p2 - 1;
+ }
+ break;
+}
+
+/* Opcode: IfNeg P1 P2 * * *
+**
+** If the value of register P1 is less than zero, jump to P2.
+**
+** It is illegal to use this instruction on a register that does
+** not contain an integer. An assertion fault will result if you try.
+*/
+case OP_IfNeg: { /* jump, in1 */
+ assert( pIn1->flags&MEM_Int );
+ if( pIn1->u.i<0 ){
+ pc = pOp->p2 - 1;
+ }
+ break;
+}
+
+/* Opcode: IfZero P1 P2 * * *
+**
+** If the value of register P1 is exactly 0, jump to P2.
+**
+** It is illegal to use this instruction on a register that does
+** not contain an integer. An assertion fault will result if you try.
+*/
+case OP_IfZero: { /* jump, in1 */
+ assert( pIn1->flags&MEM_Int );
+ if( pIn1->u.i==0 ){
+ pc = pOp->p2 - 1;
+ }
+ break;
+}
+
+/* Opcode: AggStep * P2 P3 P4 P5
+**
+** Execute the step function for an aggregate. The
+** function has P5 arguments. P4 is a pointer to the FuncDef
+** structure that specifies the function. Use register
+** P3 as the accumulator.
+**
+** The P5 arguments are taken from register P2 and its
+** successors.
+*/
+case OP_AggStep: {
+ int n = pOp->p5;
+ int i;
+ Mem *pMem, *pRec;
+ sqlite3_context ctx;
+ sqlite3_value **apVal;
+
+ assert( n>=0 );
+ pRec = &p->aMem[pOp->p2];
+ apVal = p->apArg;
+ assert( apVal || n==0 );
+ for(i=0; i<n; i++, pRec++){
+ apVal[i] = pRec;
+ storeTypeInfo(pRec, encoding);
+ }
+ ctx.pFunc = pOp->p4.pFunc;
+ assert( pOp->p3>0 && pOp->p3<=p->nMem );
+ ctx.pMem = pMem = &p->aMem[pOp->p3];
+ pMem->n++;
+ ctx.s.flags = MEM_Null;
+ ctx.s.z = 0;
+ ctx.s.zMalloc = 0;
+ ctx.s.xDel = 0;
+ ctx.s.db = db;
+ ctx.isError = 0;
+ ctx.pColl = 0;
+ if( ctx.pFunc->needCollSeq ){
+ assert( pOp>p->aOp );
+ assert( pOp[-1].p4type==P4_COLLSEQ );
+ assert( pOp[-1].opcode==OP_CollSeq );
+ ctx.pColl = pOp[-1].p4.pColl;
+ }
+ (ctx.pFunc->xStep)(&ctx, n, apVal);
+ if( ctx.isError ){
+ sqlite3SetString(&p->zErrMsg, sqlite3_value_text(&ctx.s), (char*)0);
+ rc = ctx.isError;
+ }
+ sqlite3VdbeMemRelease(&ctx.s);
+ break;
+}
+
+/* Opcode: AggFinal P1 P2 * P4 *
+**
+** Execute the finalizer function for an aggregate. P1 is
+** the memory location that is the accumulator for the aggregate.
+**
+** P2 is the number of arguments that the step function takes and
+** P4 is a pointer to the FuncDef for this function. The P2
+** argument is not used by this opcode. It is only there to disambiguate
+** functions that can take varying numbers of arguments. The
+** P4 argument is only needed for the degenerate case where
+** the step function was not previously called.
+*/
+case OP_AggFinal: {
+ Mem *pMem;
+ assert( pOp->p1>0 && pOp->p1<=p->nMem );
+ pMem = &p->aMem[pOp->p1];
+ assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 );
+ rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc);
+ if( rc==SQLITE_ERROR ){
+ sqlite3SetString(&p->zErrMsg, sqlite3_value_text(pMem), (char*)0);
+ }
+ sqlite3VdbeChangeEncoding(pMem, encoding);
+ UPDATE_MAX_BLOBSIZE(pMem);
+ if( sqlite3VdbeMemTooBig(pMem) ){
+ goto too_big;
+ }
+ break;
+}
+
+
+#if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH)
+/* Opcode: Vacuum * * * * *
+**
+** Vacuum the entire database. This opcode will cause other virtual
+** machines to be created and run. It may not be called from within
+** a transaction.
+*/
+case OP_Vacuum: {
+ if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
+ rc = sqlite3RunVacuum(&p->zErrMsg, db);
+ if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
+ break;
+}
+#endif
+
+#if !defined(SQLITE_OMIT_AUTOVACUUM)
+/* Opcode: IncrVacuum P1 P2 * * *
+**
+** Perform a single step of the incremental vacuum procedure on
+** the P1 database. If the vacuum has finished, jump to instruction
+** P2. Otherwise, fall through to the next instruction.
+*/
+case OP_IncrVacuum: { /* jump */
+ Btree *pBt;
+
+ assert( pOp->p1>=0 && pOp->p1<db->nDb );
+ assert( (p->btreeMask & (1<<pOp->p1))!=0 );
+ pBt = db->aDb[pOp->p1].pBt;
+ rc = sqlite3BtreeIncrVacuum(pBt);
+ if( rc==SQLITE_DONE ){
+ pc = pOp->p2 - 1;
+ rc = SQLITE_OK;
+ }
+ break;
+}
+#endif
+
+/* Opcode: Expire P1 * * * *
+**
+** Cause precompiled statements to become expired. An expired statement
+** fails with an error code of SQLITE_SCHEMA if it is ever executed
+** (via sqlite3_step()).
+**
+** If P1 is 0, then all SQL statements become expired. If P1 is non-zero,
+** then only the currently executing statement is affected.
+*/
+case OP_Expire: {
+ if( !pOp->p1 ){
+ sqlite3ExpirePreparedStatements(db);
+ }else{
+ p->expired = 1;
+ }
+ break;
+}
+
+#ifndef SQLITE_OMIT_SHARED_CACHE
+/* Opcode: TableLock P1 P2 P3 P4 *
+**
+** Obtain a lock on a particular table. This instruction is only used when
+** the shared-cache feature is enabled.
+**
+** If P1 is the index of the database in sqlite3.aDb[] of the database
+** on which the lock is acquired. A readlock is obtained if P3==0 or
+** a write lock if P3==1.
+**
+** P2 contains the root-page of the table to lock.
+**
+** P4 contains a pointer to the name of the table being locked. This is only
+** used to generate an error message if the lock cannot be obtained.
+*/
+case OP_TableLock: {
+ int p1 = pOp->p1;
+ u8 isWriteLock = pOp->p3;
+ assert( p1>=0 && p1<db->nDb );
+ assert( (p->btreeMask & (1<<p1))!=0 );
+ assert( isWriteLock==0 || isWriteLock==1 );
+ rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock);
+ if( rc==SQLITE_LOCKED ){
+ const char *z = pOp->p4.z;
+ sqlite3SetString(&p->zErrMsg, "database table is locked: ", z, (char*)0);
+ }
+ break;
+}
+#endif /* SQLITE_OMIT_SHARED_CACHE */
+
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+/* Opcode: VBegin * * * P4 *
+**
+** P4 a pointer to an sqlite3_vtab structure. Call the xBegin method
+** for that table.
+*/
+case OP_VBegin: {
+ rc = sqlite3VtabBegin(db, pOp->p4.pVtab);
+ break;
+}
+#endif /* SQLITE_OMIT_VIRTUALTABLE */
+
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+/* Opcode: VCreate P1 * * P4 *
+**
+** P4 is the name of a virtual table in database P1. Call the xCreate method
+** for that table.
+*/
+case OP_VCreate: {
+ rc = sqlite3VtabCallCreate(db, pOp->p1, pOp->p4.z, &p->zErrMsg);
+ break;
+}
+#endif /* SQLITE_OMIT_VIRTUALTABLE */
+
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+/* Opcode: VDestroy P1 * * P4 *
+**
+** P4 is the name of a virtual table in database P1. Call the xDestroy method
+** of that table.
+*/
+case OP_VDestroy: {
+ p->inVtabMethod = 2;
+ rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z);
+ p->inVtabMethod = 0;
+ break;
+}
+#endif /* SQLITE_OMIT_VIRTUALTABLE */
+
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+/* Opcode: VOpen P1 * * P4 *
+**
+** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
+** P1 is a cursor number. This opcode opens a cursor to the virtual
+** table and stores that cursor in P1.
+*/
+case OP_VOpen: {
+ Cursor *pCur = 0;
+ sqlite3_vtab_cursor *pVtabCursor = 0;
+
+ sqlite3_vtab *pVtab = pOp->p4.pVtab;
+ sqlite3_module *pModule = (sqlite3_module *)pVtab->pModule;
+
+ assert(pVtab && pModule);
+ if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
+ rc = pModule->xOpen(pVtab, &pVtabCursor);
+ if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
+ if( SQLITE_OK==rc ){
+ /* Initialise sqlite3_vtab_cursor base class */
+ pVtabCursor->pVtab = pVtab;
+
+ /* Initialise vdbe cursor object */
+ pCur = allocateCursor(p, pOp->p1, &pOp[-1], -1, 0);
+ if( pCur ){
+ pCur->pVtabCursor = pVtabCursor;
+ pCur->pModule = pVtabCursor->pVtab->pModule;
+ }else{
+ db->mallocFailed = 1;
+ pModule->xClose(pVtabCursor);
+ }
+ }
+ break;
+}
+#endif /* SQLITE_OMIT_VIRTUALTABLE */
+
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+/* Opcode: VFilter P1 P2 P3 P4 *
+**
+** P1 is a cursor opened using VOpen. P2 is an address to jump to if
+** the filtered result set is empty.
+**
+** P4 is either NULL or a string that was generated by the xBestIndex
+** method of the module. The interpretation of the P4 string is left
+** to the module implementation.
+**
+** This opcode invokes the xFilter method on the virtual table specified
+** by P1. The integer query plan parameter to xFilter is stored in register
+** P3. Register P3+1 stores the argc parameter to be passed to the
+** xFilter method. Registers P3+2..P3+1+argc are the argc additional
+** parametersneath additional parameters which are passed to
+** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter.
+**
+** A jump is made to P2 if the result set after filtering would be empty.
+*/
+case OP_VFilter: { /* jump */
+ int nArg;
+ int iQuery;
+ const sqlite3_module *pModule;
+ Mem *pQuery = &p->aMem[pOp->p3];
+ Mem *pArgc = &pQuery[1];
+
+ Cursor *pCur = p->apCsr[pOp->p1];
+
+ REGISTER_TRACE(pOp->p3, pQuery);
+ assert( pCur->pVtabCursor );
+ pModule = pCur->pVtabCursor->pVtab->pModule;
+
+ /* Grab the index number and argc parameters */
+ assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int );
+ nArg = pArgc->u.i;
+ iQuery = pQuery->u.i;
+
+ /* Invoke the xFilter method */
+ {
+ int res = 0;
+ int i;
+ Mem **apArg = p->apArg;
+ for(i = 0; i<nArg; i++){
+ apArg[i] = &pArgc[i+1];
+ storeTypeInfo(apArg[i], 0);
+ }
+
+ if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
+ p->inVtabMethod = 1;
+ rc = pModule->xFilter(pCur->pVtabCursor, iQuery, pOp->p4.z, nArg, apArg);
+ p->inVtabMethod = 0;
+ if( rc==SQLITE_OK ){
+ res = pModule->xEof(pCur->pVtabCursor);
+ }
+ if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
+
+ if( res ){
+ pc = pOp->p2 - 1;
+ }
+ }
+ pCur->nullRow = 0;
+
+ break;
+}
+#endif /* SQLITE_OMIT_VIRTUALTABLE */
+
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+/* Opcode: VRowid P1 P2 * * *
+**
+** Store into register P2 the rowid of
+** the virtual-table that the P1 cursor is pointing to.
+*/
+case OP_VRowid: { /* out2-prerelease */
+ const sqlite3_module *pModule;
+ sqlite_int64 iRow;
+ Cursor *pCur = p->apCsr[pOp->p1];
+
+ assert( pCur->pVtabCursor );
+ if( pCur->nullRow ){
+ break;
+ }
+ pModule = pCur->pVtabCursor->pVtab->pModule;
+ assert( pModule->xRowid );
+ if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
+ rc = pModule->xRowid(pCur->pVtabCursor, &iRow);
+ if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
+ MemSetTypeFlag(pOut, MEM_Int);
+ pOut->u.i = iRow;
+ break;
+}
+#endif /* SQLITE_OMIT_VIRTUALTABLE */
+
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+/* Opcode: VColumn P1 P2 P3 * *
+**
+** Store the value of the P2-th column of
+** the row of the virtual-table that the
+** P1 cursor is pointing to into register P3.
+*/
+case OP_VColumn: {
+ const sqlite3_module *pModule;
+ Mem *pDest;
+ sqlite3_context sContext;
+
+ Cursor *pCur = p->apCsr[pOp->p1];
+ assert( pCur->pVtabCursor );
+ assert( pOp->p3>0 && pOp->p3<=p->nMem );
+ pDest = &p->aMem[pOp->p3];
+ if( pCur->nullRow ){
+ sqlite3VdbeMemSetNull(pDest);
+ break;
+ }
+ pModule = pCur->pVtabCursor->pVtab->pModule;
+ assert( pModule->xColumn );
+ memset(&sContext, 0, sizeof(sContext));
+
+ /* The output cell may already have a buffer allocated. Move
+ ** the current contents to sContext.s so in case the user-function
+ ** can use the already allocated buffer instead of allocating a
+ ** new one.
+ */
+ sqlite3VdbeMemMove(&sContext.s, pDest);
+ MemSetTypeFlag(&sContext.s, MEM_Null);
+
+ if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
+ rc = pModule->xColumn(pCur->pVtabCursor, &sContext, pOp->p2);
+
+ /* Copy the result of the function to the P3 register. We
+ ** do this regardless of whether or not an error occured to ensure any
+ ** dynamic allocation in sContext.s (a Mem struct) is released.
+ */
+ sqlite3VdbeChangeEncoding(&sContext.s, encoding);
+ REGISTER_TRACE(pOp->p3, pDest);
+ sqlite3VdbeMemMove(pDest, &sContext.s);
+ UPDATE_MAX_BLOBSIZE(pDest);
+
+ if( sqlite3SafetyOn(db) ){
+ goto abort_due_to_misuse;
+ }
+ if( sqlite3VdbeMemTooBig(pDest) ){
+ goto too_big;
+ }
+ break;
+}
+#endif /* SQLITE_OMIT_VIRTUALTABLE */
+
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+/* Opcode: VNext P1 P2 * * *
+**
+** Advance virtual table P1 to the next row in its result set and
+** jump to instruction P2. Or, if the virtual table has reached
+** the end of its result set, then fall through to the next instruction.
+*/
+case OP_VNext: { /* jump */
+ const sqlite3_module *pModule;
+ int res = 0;
+
+ Cursor *pCur = p->apCsr[pOp->p1];
+ assert( pCur->pVtabCursor );
+ if( pCur->nullRow ){
+ break;
+ }
+ pModule = pCur->pVtabCursor->pVtab->pModule;
+ assert( pModule->xNext );
+
+ /* Invoke the xNext() method of the module. There is no way for the
+ ** underlying implementation to return an error if one occurs during
+ ** xNext(). Instead, if an error occurs, true is returned (indicating that
+ ** data is available) and the error code returned when xColumn or
+ ** some other method is next invoked on the save virtual table cursor.
+ */
+ if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
+ p->inVtabMethod = 1;
+ rc = pModule->xNext(pCur->pVtabCursor);
+ p->inVtabMethod = 0;
+ if( rc==SQLITE_OK ){
+ res = pModule->xEof(pCur->pVtabCursor);
+ }
+ if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
+
+ if( !res ){
+ /* If there is data, jump to P2 */
+ pc = pOp->p2 - 1;
+ }
+ break;
+}
+#endif /* SQLITE_OMIT_VIRTUALTABLE */
+
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+/* Opcode: VRename P1 * * P4 *
+**
+** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
+** This opcode invokes the corresponding xRename method. The value
+** in register P1 is passed as the zName argument to the xRename method.
+*/
+case OP_VRename: {
+ sqlite3_vtab *pVtab = pOp->p4.pVtab;
+ Mem *pName = &p->aMem[pOp->p1];
+ assert( pVtab->pModule->xRename );
+ REGISTER_TRACE(pOp->p1, pName);
+
+ Stringify(pName, encoding);
+
+ if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
+ sqlite3VtabLock(pVtab);
+ rc = pVtab->pModule->xRename(pVtab, pName->z);
+ sqlite3VtabUnlock(db, pVtab);
+ if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
+
+ break;
+}
+#endif
+
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+/* Opcode: VUpdate P1 P2 P3 P4 *
+**
+** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
+** This opcode invokes the corresponding xUpdate method. P2 values
+** are contiguous memory cells starting at P3 to pass to the xUpdate
+** invocation. The value in register (P3+P2-1) corresponds to the
+** p2th element of the argv array passed to xUpdate.
+**
+** The xUpdate method will do a DELETE or an INSERT or both.
+** The argv[0] element (which corresponds to memory cell P3)
+** is the rowid of a row to delete. If argv[0] is NULL then no
+** deletion occurs. The argv[1] element is the rowid of the new
+** row. This can be NULL to have the virtual table select the new
+** rowid for itself. The subsequent elements in the array are
+** the values of columns in the new row.
+**
+** If P2==1 then no insert is performed. argv[0] is the rowid of
+** a row to delete.
+**
+** P1 is a boolean flag. If it is set to true and the xUpdate call
+** is successful, then the value returned by sqlite3_last_insert_rowid()
+** is set to the value of the rowid for the row just inserted.
+*/
+case OP_VUpdate: {
+ sqlite3_vtab *pVtab = pOp->p4.pVtab;
+ sqlite3_module *pModule = (sqlite3_module *)pVtab->pModule;
+ int nArg = pOp->p2;
+ assert( pOp->p4type==P4_VTAB );
+ if( pModule->xUpdate==0 ){
+ sqlite3SetString(&p->zErrMsg, "read-only table", 0);
+ rc = SQLITE_ERROR;
+ }else{
+ int i;
+ sqlite_int64 rowid;
+ Mem **apArg = p->apArg;
+ Mem *pX = &p->aMem[pOp->p3];
+ for(i=0; i<nArg; i++){
+ storeTypeInfo(pX, 0);
+ apArg[i] = pX;
+ pX++;
+ }
+ if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
+ sqlite3VtabLock(pVtab);
+ rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid);
+ sqlite3VtabUnlock(db, pVtab);
+ if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
+ if( pOp->p1 && rc==SQLITE_OK ){
+ assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) );
+ db->lastRowid = rowid;
+ }
+ p->nChange++;
+ }
+ break;
+}
+#endif /* SQLITE_OMIT_VIRTUALTABLE */
+
+#ifndef SQLITE_OMIT_TRACE
+/* Opcode: Trace * * * P4 *
+**
+** If tracing is enabled (by the sqlite3_trace()) interface, then
+** the UTF-8 string contained in P4 is emitted on the trace callback.
+*/
+case OP_Trace: {
+ if( pOp->p4.z ){
+ if( db->xTrace ){
+ db->xTrace(db->pTraceArg, pOp->p4.z);
+ }
+#ifdef SQLITE_DEBUG
+ if( (db->flags & SQLITE_SqlTrace)!=0 ){
+ sqlite3DebugPrintf("SQL-trace: %s\n", pOp->p4.z);
+ }
+#endif /* SQLITE_DEBUG */
+ }
+ break;
+}
+#endif
+
+
+/* Opcode: Noop * * * * *
+**
+** Do nothing. This instruction is often useful as a jump
+** destination.
+*/
+/*
+** The magic Explain opcode are only inserted when explain==2 (which
+** is to say when the EXPLAIN QUERY PLAN syntax is used.)
+** This opcode records information from the optimizer. It is the
+** the same as a no-op. This opcodesnever appears in a real VM program.
+*/
+default: { /* This is really OP_Noop and OP_Explain */
+ break;
+}
+
+/*****************************************************************************
+** The cases of the switch statement above this line should all be indented
+** by 6 spaces. But the left-most 6 spaces have been removed to improve the
+** readability. From this point on down, the normal indentation rules are
+** restored.
+*****************************************************************************/
+ }
+
+#ifdef VDBE_PROFILE
+ {
+ long long elapse = hwtime() - start;
+ pOp->cycles += elapse;
+ pOp->cnt++;
+#if 0
+ fprintf(stdout, "%10lld ", elapse);
+ sqlite3VdbePrintOp(stdout, origPc, &p->aOp[origPc]);
+#endif
+ }
+#endif
+
+ /* The following code adds nothing to the actual functionality
+ ** of the program. It is only here for testing and debugging.
+ ** On the other hand, it does burn CPU cycles every time through
+ ** the evaluator loop. So we can leave it out when NDEBUG is defined.
+ */
+#ifndef NDEBUG
+ assert( pc>=-1 && pc<p->nOp );
+
+#ifdef SQLITE_DEBUG
+ if( p->trace ){
+ if( rc!=0 ) fprintf(p->trace,"rc=%d\n",rc);
+ if( opProperty & OPFLG_OUT2_PRERELEASE ){
+ registerTrace(p->trace, pOp->p2, pOut);
+ }
+ if( opProperty & OPFLG_OUT3 ){
+ registerTrace(p->trace, pOp->p3, pOut);
+ }
+ }
+#endif /* SQLITE_DEBUG */
+#endif /* NDEBUG */
+ } /* The end of the for(;;) loop the loops through opcodes */
+
+ /* If we reach this point, it means that execution is finished with
+ ** an error of some kind.
+ */
+vdbe_error_halt:
+ assert( rc );
+ p->rc = rc;
+ rc = SQLITE_ERROR;
+ sqlite3VdbeHalt(p);
+
+ /* This is the only way out of this procedure. We have to
+ ** release the mutexes on btrees that were acquired at the
+ ** top. */
+vdbe_return:
+ sqlite3BtreeMutexArrayLeave(&p->aMutex);
+ return rc;
+
+ /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH
+ ** is encountered.
+ */
+too_big:
+ sqlite3SetString(&p->zErrMsg, "string or blob too big", (char*)0);
+ rc = SQLITE_TOOBIG;
+ goto vdbe_error_halt;
+
+ /* Jump to here if a malloc() fails.
+ */
+no_mem:
+ db->mallocFailed = 1;
+ sqlite3SetString(&p->zErrMsg, "out of memory", (char*)0);
+ rc = SQLITE_NOMEM;
+ goto vdbe_error_halt;
+
+ /* Jump to here for an SQLITE_MISUSE error.
+ */
+abort_due_to_misuse:
+ rc = SQLITE_MISUSE;
+ /* Fall thru into abort_due_to_error */
+
+ /* Jump to here for any other kind of fatal error. The "rc" variable
+ ** should hold the error number.
+ */
+abort_due_to_error:
+ assert( p->zErrMsg==0 );
+ if( db->mallocFailed ) rc = SQLITE_NOMEM;
+ sqlite3SetString(&p->zErrMsg, sqlite3ErrStr(rc), (char*)0);
+ goto vdbe_error_halt;
+
+ /* Jump to here if the sqlite3_interrupt() API sets the interrupt
+ ** flag.
+ */
+abort_due_to_interrupt:
+ assert( db->u1.isInterrupted );
+ rc = SQLITE_INTERRUPT;
+ p->rc = rc;
+ sqlite3SetString(&p->zErrMsg, sqlite3ErrStr(rc), (char*)0);
+ goto vdbe_error_halt;
+}
+
+/************** End of vdbe.c ************************************************/
+/************** Begin file vdbeblob.c ****************************************/
+/*
+** 2007 May 1
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+**
+** This file contains code used to implement incremental BLOB I/O.
+**
+** $Id: vdbeblob.c,v 1.22 2008/04/24 09:49:55 danielk1977 Exp $
+*/
+
+
+#ifndef SQLITE_OMIT_INCRBLOB
+
+/*
+** Valid sqlite3_blob* handles point to Incrblob structures.
+*/
+typedef struct Incrblob Incrblob;
+struct Incrblob {
+ int flags; /* Copy of "flags" passed to sqlite3_blob_open() */
+ int nByte; /* Size of open blob, in bytes */
+ int iOffset; /* Byte offset of blob in cursor data */
+ BtCursor *pCsr; /* Cursor pointing at blob row */
+ sqlite3_stmt *pStmt; /* Statement holding cursor open */
+ sqlite3 *db; /* The associated database */
+};
+
+/*
+** Open a blob handle.
+*/
+SQLITE_API int sqlite3_blob_open(
+ sqlite3* db, /* The database connection */
+ const char *zDb, /* The attached database containing the blob */
+ const char *zTable, /* The table containing the blob */
+ const char *zColumn, /* The column containing the blob */
+ sqlite_int64 iRow, /* The row containing the glob */
+ int flags, /* True -> read/write access, false -> read-only */
+ sqlite3_blob **ppBlob /* Handle for accessing the blob returned here */
+){
+ int nAttempt = 0;
+ int iCol; /* Index of zColumn in row-record */
+
+ /* This VDBE program seeks a btree cursor to the identified
+ ** db/table/row entry. The reason for using a vdbe program instead
+ ** of writing code to use the b-tree layer directly is that the
+ ** vdbe program will take advantage of the various transaction,
+ ** locking and error handling infrastructure built into the vdbe.
+ **
+ ** After seeking the cursor, the vdbe executes an OP_ResultRow.
+ ** Code external to the Vdbe then "borrows" the b-tree cursor and
+ ** uses it to implement the blob_read(), blob_write() and
+ ** blob_bytes() functions.
+ **
+ ** The sqlite3_blob_close() function finalizes the vdbe program,
+ ** which closes the b-tree cursor and (possibly) commits the
+ ** transaction.
+ */
+ static const VdbeOpList openBlob[] = {
+ {OP_Transaction, 0, 0, 0}, /* 0: Start a transaction */
+ {OP_VerifyCookie, 0, 0, 0}, /* 1: Check the schema cookie */
+
+ /* One of the following two instructions is replaced by an
+ ** OP_Noop before exection.
+ */
+ {OP_SetNumColumns, 0, 0, 0}, /* 2: Num cols for cursor */
+ {OP_OpenRead, 0, 0, 0}, /* 3: Open cursor 0 for reading */
+ {OP_SetNumColumns, 0, 0, 0}, /* 4: Num cols for cursor */
+ {OP_OpenWrite, 0, 0, 0}, /* 5: Open cursor 0 for read/write */
+
+ {OP_Variable, 1, 1, 0}, /* 6: Push the rowid to the stack */
+ {OP_NotExists, 0, 10, 1}, /* 7: Seek the cursor */
+ {OP_Column, 0, 0, 1}, /* 8 */
+ {OP_ResultRow, 1, 0, 0}, /* 9 */
+ {OP_Close, 0, 0, 0}, /* 10 */
+ {OP_Halt, 0, 0, 0}, /* 11 */
+ };
+
+ Vdbe *v = 0;
+ int rc = SQLITE_OK;
+ char zErr[128];
+
+ zErr[0] = 0;
+ sqlite3_mutex_enter(db->mutex);
+ do {
+ Parse sParse;
+ Table *pTab;
+
+ memset(&sParse, 0, sizeof(Parse));
+ sParse.db = db;
+
+ rc = sqlite3SafetyOn(db);
+ if( rc!=SQLITE_OK ){
+ sqlite3_mutex_leave(db->mutex);
+ return rc;
+ }
+
+ sqlite3BtreeEnterAll(db);
+ pTab = sqlite3LocateTable(&sParse, 0, zTable, zDb);
+ if( pTab && IsVirtual(pTab) ){
+ pTab = 0;
+ sqlite3ErrorMsg(&sParse, "cannot open virtual table: %s", zTable);
+ }
+#ifndef SQLITE_OMIT_VIEW
+ if( pTab && pTab->pSelect ){
+ pTab = 0;
+ sqlite3ErrorMsg(&sParse, "cannot open view: %s", zTable);
+ }
+#endif
+ if( !pTab ){
+ if( sParse.zErrMsg ){
+ sqlite3_snprintf(sizeof(zErr), zErr, "%s", sParse.zErrMsg);
+ }
+ sqlite3_free(sParse.zErrMsg);
+ rc = SQLITE_ERROR;
+ (void)sqlite3SafetyOff(db);
+ sqlite3BtreeLeaveAll(db);
+ goto blob_open_out;
+ }
+
+ /* Now search pTab for the exact column. */
+ for(iCol=0; iCol < pTab->nCol; iCol++) {
+ if( sqlite3StrICmp(pTab->aCol[iCol].zName, zColumn)==0 ){
+ break;
+ }
+ }
+ if( iCol==pTab->nCol ){
+ sqlite3_snprintf(sizeof(zErr), zErr, "no such column: \"%s\"", zColumn);
+ rc = SQLITE_ERROR;
+ (void)sqlite3SafetyOff(db);
+ sqlite3BtreeLeaveAll(db);
+ goto blob_open_out;
+ }
+
+ /* If the value is being opened for writing, check that the
+ ** column is not indexed. It is against the rules to open an
+ ** indexed column for writing.
+ */
+ if( flags ){
+ Index *pIdx;
+ for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
+ int j;
+ for(j=0; j<pIdx->nColumn; j++){
+ if( pIdx->aiColumn[j]==iCol ){
+ sqlite3_snprintf(sizeof(zErr), zErr,
+ "cannot open indexed column for writing");
+ rc = SQLITE_ERROR;
+ (void)sqlite3SafetyOff(db);
+ sqlite3BtreeLeaveAll(db);
+ goto blob_open_out;
+ }
+ }
+ }
+ }
+
+ v = sqlite3VdbeCreate(db);
+ if( v ){
+ int iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
+ sqlite3VdbeAddOpList(v, sizeof(openBlob)/sizeof(VdbeOpList), openBlob);
+
+ /* Configure the OP_Transaction */
+ sqlite3VdbeChangeP1(v, 0, iDb);
+ sqlite3VdbeChangeP2(v, 0, (flags ? 1 : 0));
+
+ /* Configure the OP_VerifyCookie */
+ sqlite3VdbeChangeP1(v, 1, iDb);
+ sqlite3VdbeChangeP2(v, 1, pTab->pSchema->schema_cookie);
+
+ /* Make sure a mutex is held on the table to be accessed */
+ sqlite3VdbeUsesBtree(v, iDb);
+
+ /* Remove either the OP_OpenWrite or OpenRead. Set the P2
+ ** parameter of the other to pTab->tnum.
+ */
+ sqlite3VdbeChangeToNoop(v, (flags ? 3 : 5), 1);
+ sqlite3VdbeChangeP2(v, (flags ? 5 : 3), pTab->tnum);
+ sqlite3VdbeChangeP3(v, (flags ? 5 : 3), iDb);
+
+ /* Configure the OP_SetNumColumns. Configure the cursor to
+ ** think that the table has one more column than it really
+ ** does. An OP_Column to retrieve this imaginary column will
+ ** always return an SQL NULL. This is useful because it means
+ ** we can invoke OP_Column to fill in the vdbe cursors type
+ ** and offset cache without causing any IO.
+ */
+ sqlite3VdbeChangeP2(v, flags ? 4 : 2, pTab->nCol+1);
+ if( !db->mallocFailed ){
+ sqlite3VdbeMakeReady(v, 1, 1, 1, 0);
+ }
+ }
+
+ sqlite3BtreeLeaveAll(db);
+ rc = sqlite3SafetyOff(db);
+ if( rc!=SQLITE_OK || db->mallocFailed ){
+ goto blob_open_out;
+ }
+
+ sqlite3_bind_int64((sqlite3_stmt *)v, 1, iRow);
+ rc = sqlite3_step((sqlite3_stmt *)v);
+ if( rc!=SQLITE_ROW ){
+ nAttempt++;
+ rc = sqlite3_finalize((sqlite3_stmt *)v);
+ sqlite3_snprintf(sizeof(zErr), zErr, sqlite3_errmsg(db));
+ v = 0;
+ }
+ } while( nAttempt<5 && rc==SQLITE_SCHEMA );
+
+ if( rc==SQLITE_ROW ){
+ /* The row-record has been opened successfully. Check that the
+ ** column in question contains text or a blob. If it contains
+ ** text, it is up to the caller to get the encoding right.
+ */
+ Incrblob *pBlob;
+ u32 type = v->apCsr[0]->aType[iCol];
+
+ if( type<12 ){
+ sqlite3_snprintf(sizeof(zErr), zErr, "cannot open value of type %s",
+ type==0?"null": type==7?"real": "integer"
+ );
+ rc = SQLITE_ERROR;
+ goto blob_open_out;
+ }
+ pBlob = (Incrblob *)sqlite3DbMallocZero(db, sizeof(Incrblob));
+ if( db->mallocFailed ){
+ sqlite3_free(pBlob);
+ goto blob_open_out;
+ }
+ pBlob->flags = flags;
+ pBlob->pCsr = v->apCsr[0]->pCursor;
+ sqlite3BtreeEnterCursor(pBlob->pCsr);
+ sqlite3BtreeCacheOverflow(pBlob->pCsr);
+ sqlite3BtreeLeaveCursor(pBlob->pCsr);
+ pBlob->pStmt = (sqlite3_stmt *)v;
+ pBlob->iOffset = v->apCsr[0]->aOffset[iCol];
+ pBlob->nByte = sqlite3VdbeSerialTypeLen(type);
+ pBlob->db = db;
+ *ppBlob = (sqlite3_blob *)pBlob;
+ rc = SQLITE_OK;
+ }else if( rc==SQLITE_OK ){
+ sqlite3_snprintf(sizeof(zErr), zErr, "no such rowid: %lld", iRow);
+ rc = SQLITE_ERROR;
+ }
+
+blob_open_out:
+ zErr[sizeof(zErr)-1] = '\0';
+ if( rc!=SQLITE_OK || db->mallocFailed ){
+ sqlite3_finalize((sqlite3_stmt *)v);
+ }
+ sqlite3Error(db, rc, (rc==SQLITE_OK?0:zErr));
+ rc = sqlite3ApiExit(db, rc);
+ sqlite3_mutex_leave(db->mutex);
+ return rc;
+}
+
+/*
+** Close a blob handle that was previously created using
+** sqlite3_blob_open().
+*/
+SQLITE_API int sqlite3_blob_close(sqlite3_blob *pBlob){
+ Incrblob *p = (Incrblob *)pBlob;
+ int rc;
+
+ rc = sqlite3_finalize(p->pStmt);
+ sqlite3_free(p);
+ return rc;
+}
+
+/*
+** Perform a read or write operation on a blob
+*/
+static int blobReadWrite(
+ sqlite3_blob *pBlob,
+ void *z,
+ int n,
+ int iOffset,
+ int (*xCall)(BtCursor*, u32, u32, void*)
+){
+ int rc;
+ Incrblob *p = (Incrblob *)pBlob;
+ Vdbe *v;
+ sqlite3 *db = p->db;
+
+ /* Request is out of range. Return a transient error. */
+ if( (iOffset+n)>p->nByte ){
+ return SQLITE_ERROR;
+ }
+ sqlite3_mutex_enter(db->mutex);
+
+ /* If there is no statement handle, then the blob-handle has
+ ** already been invalidated. Return SQLITE_ABORT in this case.
+ */
+ v = (Vdbe*)p->pStmt;
+ if( v==0 ){
+ rc = SQLITE_ABORT;
+ }else{
+ /* Call either BtreeData() or BtreePutData(). If SQLITE_ABORT is
+ ** returned, clean-up the statement handle.
+ */
+ assert( db == v->db );
+ sqlite3BtreeEnterCursor(p->pCsr);
+ rc = xCall(p->pCsr, iOffset+p->iOffset, n, z);
+ sqlite3BtreeLeaveCursor(p->pCsr);
+ if( rc==SQLITE_ABORT ){
+ sqlite3VdbeFinalize(v);
+ p->pStmt = 0;
+ }else{
+ db->errCode = rc;
+ v->rc = rc;
+ }
+ }
+ rc = sqlite3ApiExit(db, rc);
+ sqlite3_mutex_leave(db->mutex);
+ return rc;
+}
+
+/*
+** Read data from a blob handle.
+*/
+SQLITE_API int sqlite3_blob_read(sqlite3_blob *pBlob, void *z, int n, int iOffset){
+ return blobReadWrite(pBlob, z, n, iOffset, sqlite3BtreeData);
+}
+
+/*
+** Write data to a blob handle.
+*/
+SQLITE_API int sqlite3_blob_write(sqlite3_blob *pBlob, const void *z, int n, int iOffset){
+ return blobReadWrite(pBlob, (void *)z, n, iOffset, sqlite3BtreePutData);
+}
+
+/*
+** Query a blob handle for the size of the data.
+**
+** The Incrblob.nByte field is fixed for the lifetime of the Incrblob
+** so no mutex is required for access.
+*/
+SQLITE_API int sqlite3_blob_bytes(sqlite3_blob *pBlob){
+ Incrblob *p = (Incrblob *)pBlob;
+ return p->nByte;
+}
+
+#endif /* #ifndef SQLITE_OMIT_INCRBLOB */
+
+/************** End of vdbeblob.c ********************************************/
+/************** Begin file journal.c *****************************************/
+/*
+** 2007 August 22
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+**
+** @(#) $Id: journal.c,v 1.8 2008/05/01 18:01:47 drh Exp $
+*/
+
+#ifdef SQLITE_ENABLE_ATOMIC_WRITE
+
+/*
+** This file implements a special kind of sqlite3_file object used
+** by SQLite to create journal files if the atomic-write optimization
+** is enabled.
+**
+** The distinctive characteristic of this sqlite3_file is that the
+** actual on disk file is created lazily. When the file is created,
+** the caller specifies a buffer size for an in-memory buffer to
+** be used to service read() and write() requests. The actual file
+** on disk is not created or populated until either:
+**
+** 1) The in-memory representation grows too large for the allocated
+** buffer, or
+** 2) The xSync() method is called.
+*/
+
+
+
+/*
+** A JournalFile object is a subclass of sqlite3_file used by
+** as an open file handle for journal files.
+*/
+struct JournalFile {
+ sqlite3_io_methods *pMethod; /* I/O methods on journal files */
+ int nBuf; /* Size of zBuf[] in bytes */
+ char *zBuf; /* Space to buffer journal writes */
+ int iSize; /* Amount of zBuf[] currently used */
+ int flags; /* xOpen flags */
+ sqlite3_vfs *pVfs; /* The "real" underlying VFS */
+ sqlite3_file *pReal; /* The "real" underlying file descriptor */
+ const char *zJournal; /* Name of the journal file */
+};
+typedef struct JournalFile JournalFile;
+
+/*
+** If it does not already exists, create and populate the on-disk file
+** for JournalFile p.
+*/
+static int createFile(JournalFile *p){
+ int rc = SQLITE_OK;
+ if( !p->pReal ){
+ sqlite3_file *pReal = (sqlite3_file *)&p[1];
+ rc = sqlite3OsOpen(p->pVfs, p->zJournal, pReal, p->flags, 0);
+ if( rc==SQLITE_OK ){
+ p->pReal = pReal;
+ if( p->iSize>0 ){
+ assert(p->iSize<=p->nBuf);
+ rc = sqlite3OsWrite(p->pReal, p->zBuf, p->iSize, 0);
+ }
+ }
+ }
+ return rc;
+}
+
+/*
+** Close the file.
+*/
+static int jrnlClose(sqlite3_file *pJfd){
+ JournalFile *p = (JournalFile *)pJfd;
+ if( p->pReal ){
+ sqlite3OsClose(p->pReal);
+ }
+ sqlite3_free(p->zBuf);
+ return SQLITE_OK;
+}
+
+/*
+** Read data from the file.
+*/
+static int jrnlRead(
+ sqlite3_file *pJfd, /* The journal file from which to read */
+ void *zBuf, /* Put the results here */
+ int iAmt, /* Number of bytes to read */
+ sqlite_int64 iOfst /* Begin reading at this offset */
+){
+ int rc = SQLITE_OK;
+ JournalFile *p = (JournalFile *)pJfd;
+ if( p->pReal ){
+ rc = sqlite3OsRead(p->pReal, zBuf, iAmt, iOfst);
+ }else{
+ assert( iAmt+iOfst<=p->iSize );
+ memcpy(zBuf, &p->zBuf[iOfst], iAmt);
+ }
+ return rc;
+}
+
+/*
+** Write data to the file.
+*/
+static int jrnlWrite(
+ sqlite3_file *pJfd, /* The journal file into which to write */
+ const void *zBuf, /* Take data to be written from here */
+ int iAmt, /* Number of bytes to write */
+ sqlite_int64 iOfst /* Begin writing at this offset into the file */
+){
+ int rc = SQLITE_OK;
+ JournalFile *p = (JournalFile *)pJfd;
+ if( !p->pReal && (iOfst+iAmt)>p->nBuf ){
+ rc = createFile(p);
+ }
+ if( rc==SQLITE_OK ){
+ if( p->pReal ){
+ rc = sqlite3OsWrite(p->pReal, zBuf, iAmt, iOfst);
+ }else{
+ memcpy(&p->zBuf[iOfst], zBuf, iAmt);
+ if( p->iSize<(iOfst+iAmt) ){
+ p->iSize = (iOfst+iAmt);
+ }
+ }
+ }
+ return rc;
+}
+
+/*
+** Truncate the file.
+*/
+static int jrnlTruncate(sqlite3_file *pJfd, sqlite_int64 size){
+ int rc = SQLITE_OK;
+ JournalFile *p = (JournalFile *)pJfd;
+ if( p->pReal ){
+ rc = sqlite3OsTruncate(p->pReal, size);
+ }else if( size<p->iSize ){
+ p->iSize = size;
+ }
+ return rc;
+}
+
+/*
+** Sync the file.
+*/
+static int jrnlSync(sqlite3_file *pJfd, int flags){
+ int rc;
+ JournalFile *p = (JournalFile *)pJfd;
+ if( p->pReal ){
+ rc = sqlite3OsSync(p->pReal, flags);
+ }else{
+ rc = SQLITE_OK;
+ }
+ return rc;
+}
+
+/*
+** Query the size of the file in bytes.
+*/
+static int jrnlFileSize(sqlite3_file *pJfd, sqlite_int64 *pSize){
+ int rc = SQLITE_OK;
+ JournalFile *p = (JournalFile *)pJfd;
+ if( p->pReal ){
+ rc = sqlite3OsFileSize(p->pReal, pSize);
+ }else{
+ *pSize = (sqlite_int64) p->iSize;
+ }
+ return rc;
+}
+
+/*
+** Table of methods for JournalFile sqlite3_file object.
+*/
+static struct sqlite3_io_methods JournalFileMethods = {
+ 1, /* iVersion */
+ jrnlClose, /* xClose */
+ jrnlRead, /* xRead */
+ jrnlWrite, /* xWrite */
+ jrnlTruncate, /* xTruncate */
+ jrnlSync, /* xSync */
+ jrnlFileSize, /* xFileSize */
+ 0, /* xLock */
+ 0, /* xUnlock */
+ 0, /* xCheckReservedLock */
+ 0, /* xFileControl */
+ 0, /* xSectorSize */
+ 0 /* xDeviceCharacteristics */
+};
+
+/*
+** Open a journal file.
+*/
+SQLITE_PRIVATE int sqlite3JournalOpen(
+ sqlite3_vfs *pVfs, /* The VFS to use for actual file I/O */
+ const char *zName, /* Name of the journal file */
+ sqlite3_file *pJfd, /* Preallocated, blank file handle */
+ int flags, /* Opening flags */
+ int nBuf /* Bytes buffered before opening the file */
+){
+ JournalFile *p = (JournalFile *)pJfd;
+ memset(p, 0, sqlite3JournalSize(pVfs));
+ if( nBuf>0 ){
+ p->zBuf = sqlite3MallocZero(nBuf);
+ if( !p->zBuf ){
+ return SQLITE_NOMEM;
+ }
+ }else{
+ return sqlite3OsOpen(pVfs, zName, pJfd, flags, 0);
+ }
+ p->pMethod = &JournalFileMethods;
+ p->nBuf = nBuf;
+ p->flags = flags;
+ p->zJournal = zName;
+ p->pVfs = pVfs;
+ return SQLITE_OK;
+}
+
+/*
+** If the argument p points to a JournalFile structure, and the underlying
+** file has not yet been created, create it now.
+*/
+SQLITE_PRIVATE int sqlite3JournalCreate(sqlite3_file *p){
+ if( p->pMethods!=&JournalFileMethods ){
+ return SQLITE_OK;
+ }
+ return createFile((JournalFile *)p);
+}
+
+/*
+** Return the number of bytes required to store a JournalFile that uses vfs
+** pVfs to create the underlying on-disk files.
+*/
+SQLITE_PRIVATE int sqlite3JournalSize(sqlite3_vfs *pVfs){
+ return (pVfs->szOsFile+sizeof(JournalFile));
+}
+#endif
+
+/************** End of journal.c *********************************************/
+/************** Begin file expr.c ********************************************/
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains routines used for analyzing expressions and
+** for generating VDBE code that evaluates expressions in SQLite.
+**
+** $Id: expr.c,v 1.371 2008/05/01 17:16:53 drh Exp $
+*/
+
+/*
+** Return the 'affinity' of the expression pExpr if any.
+**
+** If pExpr is a column, a reference to a column via an 'AS' alias,
+** or a sub-select with a column as the return value, then the
+** affinity of that column is returned. Otherwise, 0x00 is returned,
+** indicating no affinity for the expression.
+**
+** i.e. the WHERE clause expresssions in the following statements all
+** have an affinity:
+**
+** CREATE TABLE t1(a);
+** SELECT * FROM t1 WHERE a;
+** SELECT a AS b FROM t1 WHERE b;
+** SELECT * FROM t1 WHERE (select a from t1);
+*/
+SQLITE_PRIVATE char sqlite3ExprAffinity(Expr *pExpr){
+ int op = pExpr->op;
+ if( op==TK_SELECT ){
+ return sqlite3ExprAffinity(pExpr->pSelect->pEList->a[0].pExpr);
+ }
+#ifndef SQLITE_OMIT_CAST
+ if( op==TK_CAST ){
+ return sqlite3AffinityType(&pExpr->token);
+ }
+#endif
+ return pExpr->affinity;
+}
+
+/*
+** Set the collating sequence for expression pExpr to be the collating
+** sequence named by pToken. Return a pointer to the revised expression.
+** The collating sequence is marked as "explicit" using the EP_ExpCollate
+** flag. An explicit collating sequence will override implicit
+** collating sequences.
+*/
+SQLITE_PRIVATE Expr *sqlite3ExprSetColl(Parse *pParse, Expr *pExpr, Token *pName){
+ char *zColl = 0; /* Dequoted name of collation sequence */
+ CollSeq *pColl;
+ zColl = sqlite3NameFromToken(pParse->db, pName);
+ if( pExpr && zColl ){
+ pColl = sqlite3LocateCollSeq(pParse, zColl, -1);
+ if( pColl ){
+ pExpr->pColl = pColl;
+ pExpr->flags |= EP_ExpCollate;
+ }
+ }
+ sqlite3_free(zColl);
+ return pExpr;
+}
+
+/*
+** Return the default collation sequence for the expression pExpr. If
+** there is no default collation type, return 0.
+*/
+SQLITE_PRIVATE CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){
+ CollSeq *pColl = 0;
+ if( pExpr ){
+ int op;
+ pColl = pExpr->pColl;
+ op = pExpr->op;
+ if( (op==TK_CAST || op==TK_UPLUS) && !pColl ){
+ return sqlite3ExprCollSeq(pParse, pExpr->pLeft);
+ }
+ }
+ if( sqlite3CheckCollSeq(pParse, pColl) ){
+ pColl = 0;
+ }
+ return pColl;
+}
+
+/*
+** pExpr is an operand of a comparison operator. aff2 is the
+** type affinity of the other operand. This routine returns the
+** type affinity that should be used for the comparison operator.
+*/
+SQLITE_PRIVATE char sqlite3CompareAffinity(Expr *pExpr, char aff2){
+ char aff1 = sqlite3ExprAffinity(pExpr);
+ if( aff1 && aff2 ){
+ /* Both sides of the comparison are columns. If one has numeric
+ ** affinity, use that. Otherwise use no affinity.
+ */
+ if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
+ return SQLITE_AFF_NUMERIC;
+ }else{
+ return SQLITE_AFF_NONE;
+ }
+ }else if( !aff1 && !aff2 ){
+ /* Neither side of the comparison is a column. Compare the
+ ** results directly.
+ */
+ return SQLITE_AFF_NONE;
+ }else{
+ /* One side is a column, the other is not. Use the columns affinity. */
+ assert( aff1==0 || aff2==0 );
+ return (aff1 + aff2);
+ }
+}
+
+/*
+** pExpr is a comparison operator. Return the type affinity that should
+** be applied to both operands prior to doing the comparison.
+*/
+static char comparisonAffinity(Expr *pExpr){
+ char aff;
+ assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
+ pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
+ pExpr->op==TK_NE );
+ assert( pExpr->pLeft );
+ aff = sqlite3ExprAffinity(pExpr->pLeft);
+ if( pExpr->pRight ){
+ aff = sqlite3CompareAffinity(pExpr->pRight, aff);
+ }
+ else if( pExpr->pSelect ){
+ aff = sqlite3CompareAffinity(pExpr->pSelect->pEList->a[0].pExpr, aff);
+ }
+ else if( !aff ){
+ aff = SQLITE_AFF_NONE;
+ }
+ return aff;
+}
+
+/*
+** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
+** idx_affinity is the affinity of an indexed column. Return true
+** if the index with affinity idx_affinity may be used to implement
+** the comparison in pExpr.
+*/
+SQLITE_PRIVATE int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){
+ char aff = comparisonAffinity(pExpr);
+ switch( aff ){
+ case SQLITE_AFF_NONE:
+ return 1;
+ case SQLITE_AFF_TEXT:
+ return idx_affinity==SQLITE_AFF_TEXT;
+ default:
+ return sqlite3IsNumericAffinity(idx_affinity);
+ }
+}
+
+/*
+** Return the P5 value that should be used for a binary comparison
+** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
+*/
+static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){
+ u8 aff = (char)sqlite3ExprAffinity(pExpr2);
+ aff = sqlite3CompareAffinity(pExpr1, aff) | jumpIfNull;
+ return aff;
+}
+
+/*
+** Return a pointer to the collation sequence that should be used by
+** a binary comparison operator comparing pLeft and pRight.
+**
+** If the left hand expression has a collating sequence type, then it is
+** used. Otherwise the collation sequence for the right hand expression
+** is used, or the default (BINARY) if neither expression has a collating
+** type.
+**
+** Argument pRight (but not pLeft) may be a null pointer. In this case,
+** it is not considered.
+*/
+SQLITE_PRIVATE CollSeq *sqlite3BinaryCompareCollSeq(
+ Parse *pParse,
+ Expr *pLeft,
+ Expr *pRight
+){
+ CollSeq *pColl;
+ assert( pLeft );
+ if( pLeft->flags & EP_ExpCollate ){
+ assert( pLeft->pColl );
+ pColl = pLeft->pColl;
+ }else if( pRight && pRight->flags & EP_ExpCollate ){
+ assert( pRight->pColl );
+ pColl = pRight->pColl;
+ }else{
+ pColl = sqlite3ExprCollSeq(pParse, pLeft);
+ if( !pColl ){
+ pColl = sqlite3ExprCollSeq(pParse, pRight);
+ }
+ }
+ return pColl;
+}
+
+/*
+** Generate the operands for a comparison operation. Before
+** generating the code for each operand, set the EP_AnyAff
+** flag on the expression so that it will be able to used a
+** cached column value that has previously undergone an
+** affinity change.
+*/
+static void codeCompareOperands(
+ Parse *pParse, /* Parsing and code generating context */
+ Expr *pLeft, /* The left operand */
+ int *pRegLeft, /* Register where left operand is stored */
+ int *pFreeLeft, /* Free this register when done */
+ Expr *pRight, /* The right operand */
+ int *pRegRight, /* Register where right operand is stored */
+ int *pFreeRight /* Write temp register for right operand there */
+){
+ while( pLeft->op==TK_UPLUS ) pLeft = pLeft->pLeft;
+ pLeft->flags |= EP_AnyAff;
+ *pRegLeft = sqlite3ExprCodeTemp(pParse, pLeft, pFreeLeft);
+ while( pRight->op==TK_UPLUS ) pRight = pRight->pLeft;
+ pRight->flags |= EP_AnyAff;
+ *pRegRight = sqlite3ExprCodeTemp(pParse, pRight, pFreeRight);
+}
+
+/*
+** Generate code for a comparison operator.
+*/
+static int codeCompare(
+ Parse *pParse, /* The parsing (and code generating) context */
+ Expr *pLeft, /* The left operand */
+ Expr *pRight, /* The right operand */
+ int opcode, /* The comparison opcode */
+ int in1, int in2, /* Register holding operands */
+ int dest, /* Jump here if true. */
+ int jumpIfNull /* If true, jump if either operand is NULL */
+){
+ int p5;
+ int addr;
+ CollSeq *p4;
+
+ p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
+ p5 = binaryCompareP5(pLeft, pRight, jumpIfNull);
+ addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1,
+ (void*)p4, P4_COLLSEQ);
+ sqlite3VdbeChangeP5(pParse->pVdbe, p5);
+ if( p5 & SQLITE_AFF_MASK ){
+ sqlite3ExprCacheAffinityChange(pParse, in1, 1);
+ sqlite3ExprCacheAffinityChange(pParse, in2, 1);
+ }
+ return addr;
+}
+
+/*
+** Construct a new expression node and return a pointer to it. Memory
+** for this node is obtained from sqlite3_malloc(). The calling function
+** is responsible for making sure the node eventually gets freed.
+*/
+SQLITE_PRIVATE Expr *sqlite3Expr(
+ sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */
+ int op, /* Expression opcode */
+ Expr *pLeft, /* Left operand */
+ Expr *pRight, /* Right operand */
+ const Token *pToken /* Argument token */
+){
+ Expr *pNew;
+ pNew = sqlite3DbMallocZero(db, sizeof(Expr));
+ if( pNew==0 ){
+ /* When malloc fails, delete pLeft and pRight. Expressions passed to
+ ** this function must always be allocated with sqlite3Expr() for this
+ ** reason.
+ */
+ sqlite3ExprDelete(pLeft);
+ sqlite3ExprDelete(pRight);
+ return 0;
+ }
+ pNew->op = op;
+ pNew->pLeft = pLeft;
+ pNew->pRight = pRight;
+ pNew->iAgg = -1;
+ if( pToken ){
+ assert( pToken->dyn==0 );
+ pNew->span = pNew->token = *pToken;
+ }else if( pLeft ){
+ if( pRight ){
+ sqlite3ExprSpan(pNew, &pLeft->span, &pRight->span);
+ if( pRight->flags & EP_ExpCollate ){
+ pNew->flags |= EP_ExpCollate;
+ pNew->pColl = pRight->pColl;
+ }
+ }
+ if( pLeft->flags & EP_ExpCollate ){
+ pNew->flags |= EP_ExpCollate;
+ pNew->pColl = pLeft->pColl;
+ }
+ }
+
+ sqlite3ExprSetHeight(pNew);
+ return pNew;
+}
+
+/*
+** Works like sqlite3Expr() except that it takes an extra Parse*
+** argument and notifies the associated connection object if malloc fails.
+*/
+SQLITE_PRIVATE Expr *sqlite3PExpr(
+ Parse *pParse, /* Parsing context */
+ int op, /* Expression opcode */
+ Expr *pLeft, /* Left operand */
+ Expr *pRight, /* Right operand */
+ const Token *pToken /* Argument token */
+){
+ return sqlite3Expr(pParse->db, op, pLeft, pRight, pToken);
+}
+
+/*
+** When doing a nested parse, you can include terms in an expression
+** that look like this: #1 #2 ... These terms refer to registers
+** in the virtual machine. #N is the N-th register.
+**
+** This routine is called by the parser to deal with on of those terms.
+** It immediately generates code to store the value in a memory location.
+** The returns an expression that will code to extract the value from
+** that memory location as needed.
+*/
+SQLITE_PRIVATE Expr *sqlite3RegisterExpr(Parse *pParse, Token *pToken){
+ Vdbe *v = pParse->pVdbe;
+ Expr *p;
+ if( pParse->nested==0 ){
+ sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", pToken);
+ return sqlite3PExpr(pParse, TK_NULL, 0, 0, 0);
+ }
+ if( v==0 ) return 0;
+ p = sqlite3PExpr(pParse, TK_REGISTER, 0, 0, pToken);
+ if( p==0 ){
+ return 0; /* Malloc failed */
+ }
+ p->iTable = atoi((char*)&pToken->z[1]);
+ return p;
+}
+
+/*
+** Join two expressions using an AND operator. If either expression is
+** NULL, then just return the other expression.
+*/
+SQLITE_PRIVATE Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){
+ if( pLeft==0 ){
+ return pRight;
+ }else if( pRight==0 ){
+ return pLeft;
+ }else{
+ return sqlite3Expr(db, TK_AND, pLeft, pRight, 0);
+ }
+}
+
+/*
+** Set the Expr.span field of the given expression to span all
+** text between the two given tokens.
+*/
+SQLITE_PRIVATE void sqlite3ExprSpan(Expr *pExpr, Token *pLeft, Token *pRight){
+ assert( pRight!=0 );
+ assert( pLeft!=0 );
+ if( pExpr && pRight->z && pLeft->z ){
+ assert( pLeft->dyn==0 || pLeft->z[pLeft->n]==0 );
+ if( pLeft->dyn==0 && pRight->dyn==0 ){
+ pExpr->span.z = pLeft->z;
+ pExpr->span.n = pRight->n + (pRight->z - pLeft->z);
+ }else{
+ pExpr->span.z = 0;
+ }
+ }
+}
+
+/*
+** Construct a new expression node for a function with multiple
+** arguments.
+*/
+SQLITE_PRIVATE Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){
+ Expr *pNew;
+ assert( pToken );
+ pNew = sqlite3DbMallocZero(pParse->db, sizeof(Expr) );
+ if( pNew==0 ){
+ sqlite3ExprListDelete(pList); /* Avoid leaking memory when malloc fails */
+ return 0;
+ }
+ pNew->op = TK_FUNCTION;
+ pNew->pList = pList;
+ assert( pToken->dyn==0 );
+ pNew->token = *pToken;
+ pNew->span = pNew->token;
+
+ sqlite3ExprSetHeight(pNew);
+ return pNew;
+}
+
+/*
+** Assign a variable number to an expression that encodes a wildcard
+** in the original SQL statement.
+**
+** Wildcards consisting of a single "?" are assigned the next sequential
+** variable number.
+**
+** Wildcards of the form "?nnn" are assigned the number "nnn". We make
+** sure "nnn" is not too be to avoid a denial of service attack when
+** the SQL statement comes from an external source.
+**
+** Wildcards of the form ":aaa" or "$aaa" are assigned the same number
+** as the previous instance of the same wildcard. Or if this is the first
+** instance of the wildcard, the next sequenial variable number is
+** assigned.
+*/
+SQLITE_PRIVATE void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){
+ Token *pToken;
+ sqlite3 *db = pParse->db;
+
+ if( pExpr==0 ) return;
+ pToken = &pExpr->token;
+ assert( pToken->n>=1 );
+ assert( pToken->z!=0 );
+ assert( pToken->z[0]!=0 );
+ if( pToken->n==1 ){
+ /* Wildcard of the form "?". Assign the next variable number */
+ pExpr->iTable = ++pParse->nVar;
+ }else if( pToken->z[0]=='?' ){
+ /* Wildcard of the form "?nnn". Convert "nnn" to an integer and
+ ** use it as the variable number */
+ int i;
+ pExpr->iTable = i = atoi((char*)&pToken->z[1]);
+ testcase( i==0 );
+ testcase( i==1 );
+ testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 );
+ testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] );
+ if( i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
+ sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
+ db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
+ }
+ if( i>pParse->nVar ){
+ pParse->nVar = i;
+ }
+ }else{
+ /* Wildcards of the form ":aaa" or "$aaa". Reuse the same variable
+ ** number as the prior appearance of the same name, or if the name
+ ** has never appeared before, reuse the same variable number
+ */
+ int i, n;
+ n = pToken->n;
+ for(i=0; i<pParse->nVarExpr; i++){
+ Expr *pE;
+ if( (pE = pParse->apVarExpr[i])!=0
+ && pE->token.n==n
+ && memcmp(pE->token.z, pToken->z, n)==0 ){
+ pExpr->iTable = pE->iTable;
+ break;
+ }
+ }
+ if( i>=pParse->nVarExpr ){
+ pExpr->iTable = ++pParse->nVar;
+ if( pParse->nVarExpr>=pParse->nVarExprAlloc-1 ){
+ pParse->nVarExprAlloc += pParse->nVarExprAlloc + 10;
+ pParse->apVarExpr =
+ sqlite3DbReallocOrFree(
+ db,
+ pParse->apVarExpr,
+ pParse->nVarExprAlloc*sizeof(pParse->apVarExpr[0])
+ );
+ }
+ if( !db->mallocFailed ){
+ assert( pParse->apVarExpr!=0 );
+ pParse->apVarExpr[pParse->nVarExpr++] = pExpr;
+ }
+ }
+ }
+ if( !pParse->nErr && pParse->nVar>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
+ sqlite3ErrorMsg(pParse, "too many SQL variables");
+ }
+}
+
+/*
+** Recursively delete an expression tree.
+*/
+SQLITE_PRIVATE void sqlite3ExprDelete(Expr *p){
+ if( p==0 ) return;
+ if( p->span.dyn ) sqlite3_free((char*)p->span.z);
+ if( p->token.dyn ) sqlite3_free((char*)p->token.z);
+ sqlite3ExprDelete(p->pLeft);
+ sqlite3ExprDelete(p->pRight);
+ sqlite3ExprListDelete(p->pList);
+ sqlite3SelectDelete(p->pSelect);
+ sqlite3_free(p);
+}
+
+/*
+** The Expr.token field might be a string literal that is quoted.
+** If so, remove the quotation marks.
+*/
+SQLITE_PRIVATE void sqlite3DequoteExpr(sqlite3 *db, Expr *p){
+ if( ExprHasAnyProperty(p, EP_Dequoted) ){
+ return;
+ }
+ ExprSetProperty(p, EP_Dequoted);
+ if( p->token.dyn==0 ){
+ sqlite3TokenCopy(db, &p->token, &p->token);
+ }
+ sqlite3Dequote((char*)p->token.z);
+}
+
+
+/*
+** The following group of routines make deep copies of expressions,
+** expression lists, ID lists, and select statements. The copies can
+** be deleted (by being passed to their respective ...Delete() routines)
+** without effecting the originals.
+**
+** The expression list, ID, and source lists return by sqlite3ExprListDup(),
+** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded
+** by subsequent calls to sqlite*ListAppend() routines.
+**
+** Any tables that the SrcList might point to are not duplicated.
+*/
+SQLITE_PRIVATE Expr *sqlite3ExprDup(sqlite3 *db, Expr *p){
+ Expr *pNew;
+ if( p==0 ) return 0;
+ pNew = sqlite3DbMallocRaw(db, sizeof(*p) );
+ if( pNew==0 ) return 0;
+ memcpy(pNew, p, sizeof(*pNew));
+ if( p->token.z!=0 ){
+ pNew->token.z = (u8*)sqlite3DbStrNDup(db, (char*)p->token.z, p->token.n);
+ pNew->token.dyn = 1;
+ }else{
+ assert( pNew->token.z==0 );
+ }
+ pNew->span.z = 0;
+ pNew->pLeft = sqlite3ExprDup(db, p->pLeft);
+ pNew->pRight = sqlite3ExprDup(db, p->pRight);
+ pNew->pList = sqlite3ExprListDup(db, p->pList);
+ pNew->pSelect = sqlite3SelectDup(db, p->pSelect);
+ return pNew;
+}
+SQLITE_PRIVATE void sqlite3TokenCopy(sqlite3 *db, Token *pTo, Token *pFrom){
+ if( pTo->dyn ) sqlite3_free((char*)pTo->z);
+ if( pFrom->z ){
+ pTo->n = pFrom->n;
+ pTo->z = (u8*)sqlite3DbStrNDup(db, (char*)pFrom->z, pFrom->n);
+ pTo->dyn = 1;
+ }else{
+ pTo->z = 0;
+ }
+}
+SQLITE_PRIVATE ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p){
+ ExprList *pNew;
+ struct ExprList_item *pItem, *pOldItem;
+ int i;
+ if( p==0 ) return 0;
+ pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
+ if( pNew==0 ) return 0;
+ pNew->iECursor = 0;
+ pNew->nExpr = pNew->nAlloc = p->nExpr;
+ pNew->a = pItem = sqlite3DbMallocRaw(db, p->nExpr*sizeof(p->a[0]) );
+ if( pItem==0 ){
+ sqlite3_free(pNew);
+ return 0;
+ }
+ pOldItem = p->a;
+ for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
+ Expr *pNewExpr, *pOldExpr;
+ pItem->pExpr = pNewExpr = sqlite3ExprDup(db, pOldExpr = pOldItem->pExpr);
+ if( pOldExpr->span.z!=0 && pNewExpr ){
+ /* Always make a copy of the span for top-level expressions in the
+ ** expression list. The logic in SELECT processing that determines
+ ** the names of columns in the result set needs this information */
+ sqlite3TokenCopy(db, &pNewExpr->span, &pOldExpr->span);
+ }
+ assert( pNewExpr==0 || pNewExpr->span.z!=0
+ || pOldExpr->span.z==0
+ || db->mallocFailed );
+ pItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
+ pItem->sortOrder = pOldItem->sortOrder;
+ pItem->isAgg = pOldItem->isAgg;
+ pItem->done = 0;
+ }
+ return pNew;
+}
+
+/*
+** If cursors, triggers, views and subqueries are all omitted from
+** the build, then none of the following routines, except for
+** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
+** called with a NULL argument.
+*/
+#if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
+ || !defined(SQLITE_OMIT_SUBQUERY)
+SQLITE_PRIVATE SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p){
+ SrcList *pNew;
+ int i;
+ int nByte;
+ if( p==0 ) return 0;
+ nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
+ pNew = sqlite3DbMallocRaw(db, nByte );
+ if( pNew==0 ) return 0;
+ pNew->nSrc = pNew->nAlloc = p->nSrc;
+ for(i=0; i<p->nSrc; i++){
+ struct SrcList_item *pNewItem = &pNew->a[i];
+ struct SrcList_item *pOldItem = &p->a[i];
+ Table *pTab;
+ pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase);
+ pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
+ pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);
+ pNewItem->jointype = pOldItem->jointype;
+ pNewItem->iCursor = pOldItem->iCursor;
+ pNewItem->isPopulated = pOldItem->isPopulated;
+ pTab = pNewItem->pTab = pOldItem->pTab;
+ if( pTab ){
+ pTab->nRef++;
+ }
+ pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect);
+ pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn);
+ pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing);
+ pNewItem->colUsed = pOldItem->colUsed;
+ }
+ return pNew;
+}
+SQLITE_PRIVATE IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){
+ IdList *pNew;
+ int i;
+ if( p==0 ) return 0;
+ pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
+ if( pNew==0 ) return 0;
+ pNew->nId = pNew->nAlloc = p->nId;
+ pNew->a = sqlite3DbMallocRaw(db, p->nId*sizeof(p->a[0]) );
+ if( pNew->a==0 ){
+ sqlite3_free(pNew);
+ return 0;
+ }
+ for(i=0; i<p->nId; i++){
+ struct IdList_item *pNewItem = &pNew->a[i];
+ struct IdList_item *pOldItem = &p->a[i];
+ pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
+ pNewItem->idx = pOldItem->idx;
+ }
+ return pNew;
+}
+SQLITE_PRIVATE Select *sqlite3SelectDup(sqlite3 *db, Select *p){
+ Select *pNew;
+ if( p==0 ) return 0;
+ pNew = sqlite3DbMallocRaw(db, sizeof(*p) );
+ if( pNew==0 ) return 0;
+ pNew->isDistinct = p->isDistinct;
+ pNew->pEList = sqlite3ExprListDup(db, p->pEList);
+ pNew->pSrc = sqlite3SrcListDup(db, p->pSrc);
+ pNew->pWhere = sqlite3ExprDup(db, p->pWhere);
+ pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy);
+ pNew->pHaving = sqlite3ExprDup(db, p->pHaving);
+ pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy);
+ pNew->op = p->op;
+ pNew->pPrior = sqlite3SelectDup(db, p->pPrior);
+ pNew->pLimit = sqlite3ExprDup(db, p->pLimit);
+ pNew->pOffset = sqlite3ExprDup(db, p->pOffset);
+ pNew->iLimit = -1;
+ pNew->iOffset = -1;
+ pNew->isResolved = p->isResolved;
+ pNew->isAgg = p->isAgg;
+ pNew->usesEphm = 0;
+ pNew->disallowOrderBy = 0;
+ pNew->pRightmost = 0;
+ pNew->addrOpenEphm[0] = -1;
+ pNew->addrOpenEphm[1] = -1;
+ pNew->addrOpenEphm[2] = -1;
+ return pNew;
+}
+#else
+SQLITE_PRIVATE Select *sqlite3SelectDup(sqlite3 *db, Select *p){
+ assert( p==0 );
+ return 0;
+}
+#endif
+
+
+/*
+** Add a new element to the end of an expression list. If pList is
+** initially NULL, then create a new expression list.
+*/
+SQLITE_PRIVATE ExprList *sqlite3ExprListAppend(
+ Parse *pParse, /* Parsing context */
+ ExprList *pList, /* List to which to append. Might be NULL */
+ Expr *pExpr, /* Expression to be appended */
+ Token *pName /* AS keyword for the expression */
+){
+ sqlite3 *db = pParse->db;
+ if( pList==0 ){
+ pList = sqlite3DbMallocZero(db, sizeof(ExprList) );
+ if( pList==0 ){
+ goto no_mem;
+ }
+ assert( pList->nAlloc==0 );
+ }
+ if( pList->nAlloc<=pList->nExpr ){
+ struct ExprList_item *a;
+ int n = pList->nAlloc*2 + 4;
+ a = sqlite3DbRealloc(db, pList->a, n*sizeof(pList->a[0]));
+ if( a==0 ){
+ goto no_mem;
+ }
+ pList->a = a;
+ pList->nAlloc = n;
+ }
+ assert( pList->a!=0 );
+ if( pExpr || pName ){
+ struct ExprList_item *pItem = &pList->a[pList->nExpr++];
+ memset(pItem, 0, sizeof(*pItem));
+ pItem->zName = sqlite3NameFromToken(db, pName);
+ pItem->pExpr = pExpr;
+ }
+ return pList;
+
+no_mem:
+ /* Avoid leaking memory if malloc has failed. */
+ sqlite3ExprDelete(pExpr);
+ sqlite3ExprListDelete(pList);
+ return 0;
+}
+
+/*
+** If the expression list pEList contains more than iLimit elements,
+** leave an error message in pParse.
+*/
+SQLITE_PRIVATE void sqlite3ExprListCheckLength(
+ Parse *pParse,
+ ExprList *pEList,
+ const char *zObject
+){
+ int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN];
+ testcase( pEList && pEList->nExpr==mx );
+ testcase( pEList && pEList->nExpr==mx+1 );
+ if( pEList && pEList->nExpr>mx ){
+ sqlite3ErrorMsg(pParse, "too many columns in %s", zObject);
+ }
+}
+
+
+/* The following three functions, heightOfExpr(), heightOfExprList()
+** and heightOfSelect(), are used to determine the maximum height
+** of any expression tree referenced by the structure passed as the
+** first argument.
+**
+** If this maximum height is greater than the current value pointed
+** to by pnHeight, the second parameter, then set *pnHeight to that
+** value.
+*/
+static void heightOfExpr(Expr *p, int *pnHeight){
+ if( p ){
+ if( p->nHeight>*pnHeight ){
+ *pnHeight = p->nHeight;
+ }
+ }
+}
+static void heightOfExprList(ExprList *p, int *pnHeight){
+ if( p ){
+ int i;
+ for(i=0; i<p->nExpr; i++){
+ heightOfExpr(p->a[i].pExpr, pnHeight);
+ }
+ }
+}
+static void heightOfSelect(Select *p, int *pnHeight){
+ if( p ){
+ heightOfExpr(p->pWhere, pnHeight);
+ heightOfExpr(p->pHaving, pnHeight);
+ heightOfExpr(p->pLimit, pnHeight);
+ heightOfExpr(p->pOffset, pnHeight);
+ heightOfExprList(p->pEList, pnHeight);
+ heightOfExprList(p->pGroupBy, pnHeight);
+ heightOfExprList(p->pOrderBy, pnHeight);
+ heightOfSelect(p->pPrior, pnHeight);
+ }
+}
+
+/*
+** Set the Expr.nHeight variable in the structure passed as an
+** argument. An expression with no children, Expr.pList or
+** Expr.pSelect member has a height of 1. Any other expression
+** has a height equal to the maximum height of any other
+** referenced Expr plus one.
+*/
+SQLITE_PRIVATE void sqlite3ExprSetHeight(Expr *p){
+ int nHeight = 0;
+ heightOfExpr(p->pLeft, &nHeight);
+ heightOfExpr(p->pRight, &nHeight);
+ heightOfExprList(p->pList, &nHeight);
+ heightOfSelect(p->pSelect, &nHeight);
+ p->nHeight = nHeight + 1;
+}
+
+/*
+** Return the maximum height of any expression tree referenced
+** by the select statement passed as an argument.
+*/
+SQLITE_PRIVATE int sqlite3SelectExprHeight(Select *p){
+ int nHeight = 0;
+ heightOfSelect(p, &nHeight);
+ return nHeight;
+}
+
+/*
+** Delete an entire expression list.
+*/
+SQLITE_PRIVATE void sqlite3ExprListDelete(ExprList *pList){
+ int i;
+ struct ExprList_item *pItem;
+ if( pList==0 ) return;
+ assert( pList->a!=0 || (pList->nExpr==0 && pList->nAlloc==0) );
+ assert( pList->nExpr<=pList->nAlloc );
+ for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
+ sqlite3ExprDelete(pItem->pExpr);
+ sqlite3_free(pItem->zName);
+ }
+ sqlite3_free(pList->a);
+ sqlite3_free(pList);
+}
+
+/*
+** Walk an expression tree. Call xFunc for each node visited. xFunc
+** is called on the node before xFunc is called on the nodes children.
+**
+** The return value from xFunc determines whether the tree walk continues.
+** 0 means continue walking the tree. 1 means do not walk children
+** of the current node but continue with siblings. 2 means abandon
+** the tree walk completely.
+**
+** The return value from this routine is 1 to abandon the tree walk
+** and 0 to continue.
+**
+** NOTICE: This routine does *not* descend into subqueries.
+*/
+static int walkExprList(ExprList *, int (*)(void *, Expr*), void *);
+static int walkExprTree(Expr *pExpr, int (*xFunc)(void*,Expr*), void *pArg){
+ int rc;
+ if( pExpr==0 ) return 0;
+ rc = (*xFunc)(pArg, pExpr);
+ if( rc==0 ){
+ if( walkExprTree(pExpr->pLeft, xFunc, pArg) ) return 1;
+ if( walkExprTree(pExpr->pRight, xFunc, pArg) ) return 1;
+ if( walkExprList(pExpr->pList, xFunc, pArg) ) return 1;
+ }
+ return rc>1;
+}
+
+/*
+** Call walkExprTree() for every expression in list p.
+*/
+static int walkExprList(ExprList *p, int (*xFunc)(void *, Expr*), void *pArg){
+ int i;
+ struct ExprList_item *pItem;
+ if( !p ) return 0;
+ for(i=p->nExpr, pItem=p->a; i>0; i--, pItem++){
+ if( walkExprTree(pItem->pExpr, xFunc, pArg) ) return 1;
+ }
+ return 0;
+}
+
+/*
+** Call walkExprTree() for every expression in Select p, not including
+** expressions that are part of sub-selects in any FROM clause or the LIMIT
+** or OFFSET expressions..
+*/
+static int walkSelectExpr(Select *p, int (*xFunc)(void *, Expr*), void *pArg){
+ walkExprList(p->pEList, xFunc, pArg);
+ walkExprTree(p->pWhere, xFunc, pArg);
+ walkExprList(p->pGroupBy, xFunc, pArg);
+ walkExprTree(p->pHaving, xFunc, pArg);
+ walkExprList(p->pOrderBy, xFunc, pArg);
+ if( p->pPrior ){
+ walkSelectExpr(p->pPrior, xFunc, pArg);
+ }
+ return 0;
+}
+
+
+/*
+** This routine is designed as an xFunc for walkExprTree().
+**
+** pArg is really a pointer to an integer. If we can tell by looking
+** at pExpr that the expression that contains pExpr is not a constant
+** expression, then set *pArg to 0 and return 2 to abandon the tree walk.
+** If pExpr does does not disqualify the expression from being a constant
+** then do nothing.
+**
+** After walking the whole tree, if no nodes are found that disqualify
+** the expression as constant, then we assume the whole expression
+** is constant. See sqlite3ExprIsConstant() for additional information.
+*/
+static int exprNodeIsConstant(void *pArg, Expr *pExpr){
+ int *pN = (int*)pArg;
+
+ /* If *pArg is 3 then any term of the expression that comes from
+ ** the ON or USING clauses of a join disqualifies the expression
+ ** from being considered constant. */
+ if( (*pN)==3 && ExprHasAnyProperty(pExpr, EP_FromJoin) ){
+ *pN = 0;
+ return 2;
+ }
+
+ switch( pExpr->op ){
+ /* Consider functions to be constant if all their arguments are constant
+ ** and *pArg==2 */
+ case TK_FUNCTION:
+ if( (*pN)==2 ) return 0;
+ /* Fall through */
+ case TK_ID:
+ case TK_COLUMN:
+ case TK_DOT:
+ case TK_AGG_FUNCTION:
+ case TK_AGG_COLUMN:
+#ifndef SQLITE_OMIT_SUBQUERY
+ case TK_SELECT:
+ case TK_EXISTS:
+ testcase( pExpr->op==TK_SELECT );
+ testcase( pExpr->op==TK_EXISTS );
+#endif
+ testcase( pExpr->op==TK_ID );
+ testcase( pExpr->op==TK_COLUMN );
+ testcase( pExpr->op==TK_DOT );
+ testcase( pExpr->op==TK_AGG_FUNCTION );
+ testcase( pExpr->op==TK_AGG_COLUMN );
+ *pN = 0;
+ return 2;
+ case TK_IN:
+ if( pExpr->pSelect ){
+ *pN = 0;
+ return 2;
+ }
+ default:
+ return 0;
+ }
+}
+
+/*
+** Walk an expression tree. Return 1 if the expression is constant
+** and 0 if it involves variables or function calls.
+**
+** For the purposes of this function, a double-quoted string (ex: "abc")
+** is considered a variable but a single-quoted string (ex: 'abc') is
+** a constant.
+*/
+SQLITE_PRIVATE int sqlite3ExprIsConstant(Expr *p){
+ int isConst = 1;
+ walkExprTree(p, exprNodeIsConstant, &isConst);
+ return isConst;
+}
+
+/*
+** Walk an expression tree. Return 1 if the expression is constant
+** that does no originate from the ON or USING clauses of a join.
+** Return 0 if it involves variables or function calls or terms from
+** an ON or USING clause.
+*/
+SQLITE_PRIVATE int sqlite3ExprIsConstantNotJoin(Expr *p){
+ int isConst = 3;
+ walkExprTree(p, exprNodeIsConstant, &isConst);
+ return isConst!=0;
+}
+
+/*
+** Walk an expression tree. Return 1 if the expression is constant
+** or a function call with constant arguments. Return and 0 if there
+** are any variables.
+**
+** For the purposes of this function, a double-quoted string (ex: "abc")
+** is considered a variable but a single-quoted string (ex: 'abc') is
+** a constant.
+*/
+SQLITE_PRIVATE int sqlite3ExprIsConstantOrFunction(Expr *p){
+ int isConst = 2;
+ walkExprTree(p, exprNodeIsConstant, &isConst);
+ return isConst!=0;
+}
+
+/*
+** If the expression p codes a constant integer that is small enough
+** to fit in a 32-bit integer, return 1 and put the value of the integer
+** in *pValue. If the expression is not an integer or if it is too big
+** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
+*/
+SQLITE_PRIVATE int sqlite3ExprIsInteger(Expr *p, int *pValue){
+ switch( p->op ){
+ case TK_INTEGER: {
+ if( sqlite3GetInt32((char*)p->token.z, pValue) ){
+ return 1;
+ }
+ break;
+ }
+ case TK_UPLUS: {
+ return sqlite3ExprIsInteger(p->pLeft, pValue);
+ }
+ case TK_UMINUS: {
+ int v;
+ if( sqlite3ExprIsInteger(p->pLeft, &v) ){
+ *pValue = -v;
+ return 1;
+ }
+ break;
+ }
+ default: break;
+ }
+ return 0;
+}
+
+/*
+** Return TRUE if the given string is a row-id column name.
+*/
+SQLITE_PRIVATE int sqlite3IsRowid(const char *z){
+ if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
+ if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
+ if( sqlite3StrICmp(z, "OID")==0 ) return 1;
+ return 0;
+}
+
+/*
+** Given the name of a column of the form X.Y.Z or Y.Z or just Z, look up
+** that name in the set of source tables in pSrcList and make the pExpr
+** expression node refer back to that source column. The following changes
+** are made to pExpr:
+**
+** pExpr->iDb Set the index in db->aDb[] of the database holding
+** the table.
+** pExpr->iTable Set to the cursor number for the table obtained
+** from pSrcList.
+** pExpr->iColumn Set to the column number within the table.
+** pExpr->op Set to TK_COLUMN.
+** pExpr->pLeft Any expression this points to is deleted
+** pExpr->pRight Any expression this points to is deleted.
+**
+** The pDbToken is the name of the database (the "X"). This value may be
+** NULL meaning that name is of the form Y.Z or Z. Any available database
+** can be used. The pTableToken is the name of the table (the "Y"). This
+** value can be NULL if pDbToken is also NULL. If pTableToken is NULL it
+** means that the form of the name is Z and that columns from any table
+** can be used.
+**
+** If the name cannot be resolved unambiguously, leave an error message
+** in pParse and return non-zero. Return zero on success.
+*/
+static int lookupName(
+ Parse *pParse, /* The parsing context */
+ Token *pDbToken, /* Name of the database containing table, or NULL */
+ Token *pTableToken, /* Name of table containing column, or NULL */
+ Token *pColumnToken, /* Name of the column. */
+ NameContext *pNC, /* The name context used to resolve the name */
+ Expr *pExpr /* Make this EXPR node point to the selected column */
+){
+ char *zDb = 0; /* Name of the database. The "X" in X.Y.Z */
+ char *zTab = 0; /* Name of the table. The "Y" in X.Y.Z or Y.Z */
+ char *zCol = 0; /* Name of the column. The "Z" */
+ int i, j; /* Loop counters */
+ int cnt = 0; /* Number of matching column names */
+ int cntTab = 0; /* Number of matching table names */
+ sqlite3 *db = pParse->db; /* The database */
+ struct SrcList_item *pItem; /* Use for looping over pSrcList items */
+ struct SrcList_item *pMatch = 0; /* The matching pSrcList item */
+ NameContext *pTopNC = pNC; /* First namecontext in the list */
+ Schema *pSchema = 0; /* Schema of the expression */
+
+ assert( pColumnToken && pColumnToken->z ); /* The Z in X.Y.Z cannot be NULL */
+ zDb = sqlite3NameFromToken(db, pDbToken);
+ zTab = sqlite3NameFromToken(db, pTableToken);
+ zCol = sqlite3NameFromToken(db, pColumnToken);
+ if( db->mallocFailed ){
+ goto lookupname_end;
+ }
+
+ pExpr->iTable = -1;
+ while( pNC && cnt==0 ){
+ ExprList *pEList;
+ SrcList *pSrcList = pNC->pSrcList;
+
+ if( pSrcList ){
+ for(i=0, pItem=pSrcList->a; i<pSrcList->nSrc; i++, pItem++){
+ Table *pTab;
+ int iDb;
+ Column *pCol;
+
+ pTab = pItem->pTab;
+ assert( pTab!=0 );
+ iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
+ assert( pTab->nCol>0 );
+ if( zTab ){
+ if( pItem->zAlias ){
+ char *zTabName = pItem->zAlias;
+ if( sqlite3StrICmp(zTabName, zTab)!=0 ) continue;
+ }else{
+ char *zTabName = pTab->zName;
+ if( zTabName==0 || sqlite3StrICmp(zTabName, zTab)!=0 ) continue;
+ if( zDb!=0 && sqlite3StrICmp(db->aDb[iDb].zName, zDb)!=0 ){
+ continue;
+ }
+ }
+ }
+ if( 0==(cntTab++) ){
+ pExpr->iTable = pItem->iCursor;
+ pSchema = pTab->pSchema;
+ pMatch = pItem;
+ }
+ for(j=0, pCol=pTab->aCol; j<pTab->nCol; j++, pCol++){
+ if( sqlite3StrICmp(pCol->zName, zCol)==0 ){
+ const char *zColl = pTab->aCol[j].zColl;
+ IdList *pUsing;
+ cnt++;
+ pExpr->iTable = pItem->iCursor;
+ pMatch = pItem;
+ pSchema = pTab->pSchema;
+ /* Substitute the rowid (column -1) for the INTEGER PRIMARY KEY */
+ pExpr->iColumn = j==pTab->iPKey ? -1 : j;
+ pExpr->affinity = pTab->aCol[j].affinity;
+ if( (pExpr->flags & EP_ExpCollate)==0 ){
+ pExpr->pColl = sqlite3FindCollSeq(db, ENC(db), zColl,-1, 0);
+ }
+ if( i<pSrcList->nSrc-1 ){
+ if( pItem[1].jointype & JT_NATURAL ){
+ /* If this match occurred in the left table of a natural join,
+ ** then skip the right table to avoid a duplicate match */
+ pItem++;
+ i++;
+ }else if( (pUsing = pItem[1].pUsing)!=0 ){
+ /* If this match occurs on a column that is in the USING clause
+ ** of a join, skip the search of the right table of the join
+ ** to avoid a duplicate match there. */
+ int k;
+ for(k=0; k<pUsing->nId; k++){
+ if( sqlite3StrICmp(pUsing->a[k].zName, zCol)==0 ){
+ pItem++;
+ i++;
+ break;
+ }
+ }
+ }
+ }
+ break;
+ }
+ }
+ }
+ }
+
+#ifndef SQLITE_OMIT_TRIGGER
+ /* If we have not already resolved the name, then maybe
+ ** it is a new.* or old.* trigger argument reference
+ */
+ if( zDb==0 && zTab!=0 && cnt==0 && pParse->trigStack!=0 ){
+ TriggerStack *pTriggerStack = pParse->trigStack;
+ Table *pTab = 0;
+ u32 *piColMask;
+ if( pTriggerStack->newIdx != -1 && sqlite3StrICmp("new", zTab) == 0 ){
+ pExpr->iTable = pTriggerStack->newIdx;
+ assert( pTriggerStack->pTab );
+ pTab = pTriggerStack->pTab;
+ piColMask = &(pTriggerStack->newColMask);
+ }else if( pTriggerStack->oldIdx != -1 && sqlite3StrICmp("old", zTab)==0 ){
+ pExpr->iTable = pTriggerStack->oldIdx;
+ assert( pTriggerStack->pTab );
+ pTab = pTriggerStack->pTab;
+ piColMask = &(pTriggerStack->oldColMask);
+ }
+
+ if( pTab ){
+ int iCol;
+ Column *pCol = pTab->aCol;
+
+ pSchema = pTab->pSchema;
+ cntTab++;
+ for(iCol=0; iCol < pTab->nCol; iCol++, pCol++) {
+ if( sqlite3StrICmp(pCol->zName, zCol)==0 ){
+ const char *zColl = pTab->aCol[iCol].zColl;
+ cnt++;
+ pExpr->iColumn = iCol==pTab->iPKey ? -1 : iCol;
+ pExpr->affinity = pTab->aCol[iCol].affinity;
+ if( (pExpr->flags & EP_ExpCollate)==0 ){
+ pExpr->pColl = sqlite3FindCollSeq(db, ENC(db), zColl,-1, 0);
+ }
+ pExpr->pTab = pTab;
+ if( iCol>=0 ){
+ testcase( iCol==31 );
+ testcase( iCol==32 );
+ *piColMask |= ((u32)1<<iCol) | (iCol>=32?0xffffffff:0);
+ }
+ break;
+ }
+ }
+ }
+ }
+#endif /* !defined(SQLITE_OMIT_TRIGGER) */
+
+ /*
+ ** Perhaps the name is a reference to the ROWID
+ */
+ if( cnt==0 && cntTab==1 && sqlite3IsRowid(zCol) ){
+ cnt = 1;
+ pExpr->iColumn = -1;
+ pExpr->affinity = SQLITE_AFF_INTEGER;
+ }
+
+ /*
+ ** If the input is of the form Z (not Y.Z or X.Y.Z) then the name Z
+ ** might refer to an result-set alias. This happens, for example, when
+ ** we are resolving names in the WHERE clause of the following command:
+ **
+ ** SELECT a+b AS x FROM table WHERE x<10;
+ **
+ ** In cases like this, replace pExpr with a copy of the expression that
+ ** forms the result set entry ("a+b" in the example) and return immediately.
+ ** Note that the expression in the result set should have already been
+ ** resolved by the time the WHERE clause is resolved.
+ */
+ if( cnt==0 && (pEList = pNC->pEList)!=0 && zTab==0 ){
+ for(j=0; j<pEList->nExpr; j++){
+ char *zAs = pEList->a[j].zName;
+ if( zAs!=0 && sqlite3StrICmp(zAs, zCol)==0 ){
+ Expr *pDup, *pOrig;
+ assert( pExpr->pLeft==0 && pExpr->pRight==0 );
+ assert( pExpr->pList==0 );
+ assert( pExpr->pSelect==0 );
+ pOrig = pEList->a[j].pExpr;
+ if( !pNC->allowAgg && ExprHasProperty(pOrig, EP_Agg) ){
+ sqlite3ErrorMsg(pParse, "misuse of aliased aggregate %s", zAs);
+ sqlite3_free(zCol);
+ return 2;
+ }
+ pDup = sqlite3ExprDup(db, pOrig);
+ if( pExpr->flags & EP_ExpCollate ){
+ pDup->pColl = pExpr->pColl;
+ pDup->flags |= EP_ExpCollate;
+ }
+ if( pExpr->span.dyn ) sqlite3_free((char*)pExpr->span.z);
+ if( pExpr->token.dyn ) sqlite3_free((char*)pExpr->token.z);
+ memcpy(pExpr, pDup, sizeof(*pExpr));
+ sqlite3_free(pDup);
+ cnt = 1;
+ pMatch = 0;
+ assert( zTab==0 && zDb==0 );
+ goto lookupname_end_2;
+ }
+ }
+ }
+
+ /* Advance to the next name context. The loop will exit when either
+ ** we have a match (cnt>0) or when we run out of name contexts.
+ */
+ if( cnt==0 ){
+ pNC = pNC->pNext;
+ }
+ }
+
+ /*
+ ** If X and Y are NULL (in other words if only the column name Z is
+ ** supplied) and the value of Z is enclosed in double-quotes, then
+ ** Z is a string literal if it doesn't match any column names. In that
+ ** case, we need to return right away and not make any changes to
+ ** pExpr.
+ **
+ ** Because no reference was made to outer contexts, the pNC->nRef
+ ** fields are not changed in any context.
+ */
+ if( cnt==0 && zTab==0 && pColumnToken->z[0]=='"' ){
+ sqlite3_free(zCol);
+ return 0;
+ }
+
+ /*
+ ** cnt==0 means there was not match. cnt>1 means there were two or
+ ** more matches. Either way, we have an error.
+ */
+ if( cnt!=1 ){
+ const char *zErr;
+ zErr = cnt==0 ? "no such column" : "ambiguous column name";
+ if( zDb ){
+ sqlite3ErrorMsg(pParse, "%s: %s.%s.%s", zErr, zDb, zTab, zCol);
+ }else if( zTab ){
+ sqlite3ErrorMsg(pParse, "%s: %s.%s", zErr, zTab, zCol);
+ }else{
+ sqlite3ErrorMsg(pParse, "%s: %s", zErr, zCol);
+ }
+ pTopNC->nErr++;
+ }
+
+ /* If a column from a table in pSrcList is referenced, then record
+ ** this fact in the pSrcList.a[].colUsed bitmask. Column 0 causes
+ ** bit 0 to be set. Column 1 sets bit 1. And so forth. If the
+ ** column number is greater than the number of bits in the bitmask
+ ** then set the high-order bit of the bitmask.
+ */
+ if( pExpr->iColumn>=0 && pMatch!=0 ){
+ int n = pExpr->iColumn;
+ testcase( n==sizeof(Bitmask)*8-1 );
+ if( n>=sizeof(Bitmask)*8 ){
+ n = sizeof(Bitmask)*8-1;
+ }
+ assert( pMatch->iCursor==pExpr->iTable );
+ pMatch->colUsed |= ((Bitmask)1)<<n;
+ }
+
+lookupname_end:
+ /* Clean up and return
+ */
+ sqlite3_free(zDb);
+ sqlite3_free(zTab);
+ sqlite3ExprDelete(pExpr->pLeft);
+ pExpr->pLeft = 0;
+ sqlite3ExprDelete(pExpr->pRight);
+ pExpr->pRight = 0;
+ pExpr->op = TK_COLUMN;
+lookupname_end_2:
+ sqlite3_free(zCol);
+ if( cnt==1 ){
+ assert( pNC!=0 );
+ sqlite3AuthRead(pParse, pExpr, pSchema, pNC->pSrcList);
+ if( pMatch && !pMatch->pSelect ){
+ pExpr->pTab = pMatch->pTab;
+ }
+ /* Increment the nRef value on all name contexts from TopNC up to
+ ** the point where the name matched. */
+ for(;;){
+ assert( pTopNC!=0 );
+ pTopNC->nRef++;
+ if( pTopNC==pNC ) break;
+ pTopNC = pTopNC->pNext;
+ }
+ return 0;
+ } else {
+ return 1;
+ }
+}
+
+/*
+** This routine is designed as an xFunc for walkExprTree().
+**
+** Resolve symbolic names into TK_COLUMN operators for the current
+** node in the expression tree. Return 0 to continue the search down
+** the tree or 2 to abort the tree walk.
+**
+** This routine also does error checking and name resolution for
+** function names. The operator for aggregate functions is changed
+** to TK_AGG_FUNCTION.
+*/
+static int nameResolverStep(void *pArg, Expr *pExpr){
+ NameContext *pNC = (NameContext*)pArg;
+ Parse *pParse;
+
+ if( pExpr==0 ) return 1;
+ assert( pNC!=0 );
+ pParse = pNC->pParse;
+
+ if( ExprHasAnyProperty(pExpr, EP_Resolved) ) return 1;
+ ExprSetProperty(pExpr, EP_Resolved);
+#ifndef NDEBUG
+ if( pNC->pSrcList && pNC->pSrcList->nAlloc>0 ){
+ SrcList *pSrcList = pNC->pSrcList;
+ int i;
+ for(i=0; i<pNC->pSrcList->nSrc; i++){
+ assert( pSrcList->a[i].iCursor>=0 && pSrcList->a[i].iCursor<pParse->nTab);
+ }
+ }
+#endif
+ switch( pExpr->op ){
+ /* Double-quoted strings (ex: "abc") are used as identifiers if
+ ** possible. Otherwise they remain as strings. Single-quoted
+ ** strings (ex: 'abc') are always string literals.
+ */
+ case TK_STRING: {
+ if( pExpr->token.z[0]=='\'' ) break;
+ /* Fall thru into the TK_ID case if this is a double-quoted string */
+ }
+ /* A lone identifier is the name of a column.
+ */
+ case TK_ID: {
+ lookupName(pParse, 0, 0, &pExpr->token, pNC, pExpr);
+ return 1;
+ }
+
+ /* A table name and column name: ID.ID
+ ** Or a database, table and column: ID.ID.ID
+ */
+ case TK_DOT: {
+ Token *pColumn;
+ Token *pTable;
+ Token *pDb;
+ Expr *pRight;
+
+ /* if( pSrcList==0 ) break; */
+ pRight = pExpr->pRight;
+ if( pRight->op==TK_ID ){
+ pDb = 0;
+ pTable = &pExpr->pLeft->token;
+ pColumn = &pRight->token;
+ }else{
+ assert( pRight->op==TK_DOT );
+ pDb = &pExpr->pLeft->token;
+ pTable = &pRight->pLeft->token;
+ pColumn = &pRight->pRight->token;
+ }
+ lookupName(pParse, pDb, pTable, pColumn, pNC, pExpr);
+ return 1;
+ }
+
+ /* Resolve function names
+ */
+ case TK_CONST_FUNC:
+ case TK_FUNCTION: {
+ ExprList *pList = pExpr->pList; /* The argument list */
+ int n = pList ? pList->nExpr : 0; /* Number of arguments */
+ int no_such_func = 0; /* True if no such function exists */
+ int wrong_num_args = 0; /* True if wrong number of arguments */
+ int is_agg = 0; /* True if is an aggregate function */
+ int i;
+ int auth; /* Authorization to use the function */
+ int nId; /* Number of characters in function name */
+ const char *zId; /* The function name. */
+ FuncDef *pDef; /* Information about the function */
+ int enc = ENC(pParse->db); /* The database encoding */
+
+ zId = (char*)pExpr->token.z;
+ nId = pExpr->token.n;
+ pDef = sqlite3FindFunction(pParse->db, zId, nId, n, enc, 0);
+ if( pDef==0 ){
+ pDef = sqlite3FindFunction(pParse->db, zId, nId, -1, enc, 0);
+ if( pDef==0 ){
+ no_such_func = 1;
+ }else{
+ wrong_num_args = 1;
+ }
+ }else{
+ is_agg = pDef->xFunc==0;
+ }
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ if( pDef ){
+ auth = sqlite3AuthCheck(pParse, SQLITE_FUNCTION, 0, pDef->zName, 0);
+ if( auth!=SQLITE_OK ){
+ if( auth==SQLITE_DENY ){
+ sqlite3ErrorMsg(pParse, "not authorized to use function: %s",
+ pDef->zName);
+ pNC->nErr++;
+ }
+ pExpr->op = TK_NULL;
+ return 1;
+ }
+ }
+#endif
+ if( is_agg && !pNC->allowAgg ){
+ sqlite3ErrorMsg(pParse, "misuse of aggregate function %.*s()", nId,zId);
+ pNC->nErr++;
+ is_agg = 0;
+ }else if( no_such_func ){
+ sqlite3ErrorMsg(pParse, "no such function: %.*s", nId, zId);
+ pNC->nErr++;
+ }else if( wrong_num_args ){
+ sqlite3ErrorMsg(pParse,"wrong number of arguments to function %.*s()",
+ nId, zId);
+ pNC->nErr++;
+ }
+ if( is_agg ){
+ pExpr->op = TK_AGG_FUNCTION;
+ pNC->hasAgg = 1;
+ }
+ if( is_agg ) pNC->allowAgg = 0;
+ for(i=0; pNC->nErr==0 && i<n; i++){
+ walkExprTree(pList->a[i].pExpr, nameResolverStep, pNC);
+ }
+ if( is_agg ) pNC->allowAgg = 1;
+ /* FIX ME: Compute pExpr->affinity based on the expected return
+ ** type of the function
+ */
+ return is_agg;
+ }
+#ifndef SQLITE_OMIT_SUBQUERY
+ case TK_SELECT:
+ case TK_EXISTS:
+#endif
+ case TK_IN: {
+ if( pExpr->pSelect ){
+ int nRef = pNC->nRef;
+#ifndef SQLITE_OMIT_CHECK
+ if( pNC->isCheck ){
+ sqlite3ErrorMsg(pParse,"subqueries prohibited in CHECK constraints");
+ }
+#endif
+ sqlite3SelectResolve(pParse, pExpr->pSelect, pNC);
+ assert( pNC->nRef>=nRef );
+ if( nRef!=pNC->nRef ){
+ ExprSetProperty(pExpr, EP_VarSelect);
+ }
+ }
+ break;
+ }
+#ifndef SQLITE_OMIT_CHECK
+ case TK_VARIABLE: {
+ if( pNC->isCheck ){
+ sqlite3ErrorMsg(pParse,"parameters prohibited in CHECK constraints");
+ }
+ break;
+ }
+#endif
+ }
+ return 0;
+}
+
+/*
+** This routine walks an expression tree and resolves references to
+** table columns. Nodes of the form ID.ID or ID resolve into an
+** index to the table in the table list and a column offset. The
+** Expr.opcode for such nodes is changed to TK_COLUMN. The Expr.iTable
+** value is changed to the index of the referenced table in pTabList
+** plus the "base" value. The base value will ultimately become the
+** VDBE cursor number for a cursor that is pointing into the referenced
+** table. The Expr.iColumn value is changed to the index of the column
+** of the referenced table. The Expr.iColumn value for the special
+** ROWID column is -1. Any INTEGER PRIMARY KEY column is tried as an
+** alias for ROWID.
+**
+** Also resolve function names and check the functions for proper
+** usage. Make sure all function names are recognized and all functions
+** have the correct number of arguments. Leave an error message
+** in pParse->zErrMsg if anything is amiss. Return the number of errors.
+**
+** If the expression contains aggregate functions then set the EP_Agg
+** property on the expression.
+*/
+SQLITE_PRIVATE int sqlite3ExprResolveNames(
+ NameContext *pNC, /* Namespace to resolve expressions in. */
+ Expr *pExpr /* The expression to be analyzed. */
+){
+ int savedHasAgg;
+
+ if( pExpr==0 ) return 0;
+#if SQLITE_MAX_EXPR_DEPTH>0
+ {
+ int mxDepth = pNC->pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH];
+ if( (pExpr->nHeight+pNC->pParse->nHeight)>mxDepth ){
+ sqlite3ErrorMsg(pNC->pParse,
+ "Expression tree is too large (maximum depth %d)", mxDepth
+ );
+ return 1;
+ }
+ pNC->pParse->nHeight += pExpr->nHeight;
+ }
+#endif
+ savedHasAgg = pNC->hasAgg;
+ pNC->hasAgg = 0;
+ walkExprTree(pExpr, nameResolverStep, pNC);
+#if SQLITE_MAX_EXPR_DEPTH>0
+ pNC->pParse->nHeight -= pExpr->nHeight;
+#endif
+ if( pNC->nErr>0 ){
+ ExprSetProperty(pExpr, EP_Error);
+ }
+ if( pNC->hasAgg ){
+ ExprSetProperty(pExpr, EP_Agg);
+ }else if( savedHasAgg ){
+ pNC->hasAgg = 1;
+ }
+ return ExprHasProperty(pExpr, EP_Error);
+}
+
+/*
+** A pointer instance of this structure is used to pass information
+** through walkExprTree into codeSubqueryStep().
+*/
+typedef struct QueryCoder QueryCoder;
+struct QueryCoder {
+ Parse *pParse; /* The parsing context */
+ NameContext *pNC; /* Namespace of first enclosing query */
+};
+
+#ifdef SQLITE_TEST
+ int sqlite3_enable_in_opt = 1;
+#else
+ #define sqlite3_enable_in_opt 1
+#endif
+
+/*
+** Return true if the IN operator optimization is enabled and
+** the SELECT statement p exists and is of the
+** simple form:
+**
+** SELECT <column> FROM <table>
+**
+** If this is the case, it may be possible to use an existing table
+** or index instead of generating an epheremal table.
+*/
+#ifndef SQLITE_OMIT_SUBQUERY
+static int isCandidateForInOpt(Select *p){
+ SrcList *pSrc;
+ ExprList *pEList;
+ Table *pTab;
+ if( !sqlite3_enable_in_opt ) return 0; /* IN optimization must be enabled */
+ if( p==0 ) return 0; /* right-hand side of IN is SELECT */
+ if( p->pPrior ) return 0; /* Not a compound SELECT */
+ if( p->isDistinct ) return 0; /* No DISTINCT keyword */
+ if( p->isAgg ) return 0; /* Contains no aggregate functions */
+ if( p->pGroupBy ) return 0; /* Has no GROUP BY clause */
+ if( p->pLimit ) return 0; /* Has no LIMIT clause */
+ if( p->pOffset ) return 0;
+ if( p->pWhere ) return 0; /* Has no WHERE clause */
+ pSrc = p->pSrc;
+ if( pSrc==0 ) return 0; /* A single table in the FROM clause */
+ if( pSrc->nSrc!=1 ) return 0;
+ if( pSrc->a[0].pSelect ) return 0; /* FROM clause is not a subquery */
+ pTab = pSrc->a[0].pTab;
+ if( pTab==0 ) return 0;
+ if( pTab->pSelect ) return 0; /* FROM clause is not a view */
+ if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */
+ pEList = p->pEList;
+ if( pEList->nExpr!=1 ) return 0; /* One column in the result set */
+ if( pEList->a[0].pExpr->op!=TK_COLUMN ) return 0; /* Result is a column */
+ return 1;
+}
+#endif /* SQLITE_OMIT_SUBQUERY */
+
+/*
+** This function is used by the implementation of the IN (...) operator.
+** It's job is to find or create a b-tree structure that may be used
+** either to test for membership of the (...) set or to iterate through
+** its members, skipping duplicates.
+**
+** The cursor opened on the structure (database table, database index
+** or ephermal table) is stored in pX->iTable before this function returns.
+** The returned value indicates the structure type, as follows:
+**
+** IN_INDEX_ROWID - The cursor was opened on a database table.
+** IN_INDEX_INDEX - The cursor was opened on a database index.
+** IN_INDEX_EPH - The cursor was opened on a specially created and
+** populated epheremal table.
+**
+** An existing structure may only be used if the SELECT is of the simple
+** form:
+**
+** SELECT <column> FROM <table>
+**
+** If the mustBeUnique parameter is false, the structure will be used
+** for fast set membership tests. In this case an epheremal table must
+** be used unless <column> is an INTEGER PRIMARY KEY or an index can
+** be found with <column> as its left-most column.
+**
+** If mustBeUnique is true, then the structure will be used to iterate
+** through the set members, skipping any duplicates. In this case an
+** epheremal table must be used unless the selected <column> is guaranteed
+** to be unique - either because it is an INTEGER PRIMARY KEY or it
+** is unique by virtue of a constraint or implicit index.
+*/
+#ifndef SQLITE_OMIT_SUBQUERY
+SQLITE_PRIVATE int sqlite3FindInIndex(Parse *pParse, Expr *pX, int mustBeUnique){
+ Select *p;
+ int eType = 0;
+ int iTab = pParse->nTab++;
+
+ /* The follwing if(...) expression is true if the SELECT is of the
+ ** simple form:
+ **
+ ** SELECT <column> FROM <table>
+ **
+ ** If this is the case, it may be possible to use an existing table
+ ** or index instead of generating an epheremal table.
+ */
+ p = pX->pSelect;
+ if( isCandidateForInOpt(p) ){
+ sqlite3 *db = pParse->db;
+ Index *pIdx;
+ Expr *pExpr = p->pEList->a[0].pExpr;
+ int iCol = pExpr->iColumn;
+ Vdbe *v = sqlite3GetVdbe(pParse);
+
+ /* This function is only called from two places. In both cases the vdbe
+ ** has already been allocated. So assume sqlite3GetVdbe() is always
+ ** successful here.
+ */
+ assert(v);
+ if( iCol<0 ){
+ int iMem = ++pParse->nMem;
+ int iAddr;
+ Table *pTab = p->pSrc->a[0].pTab;
+ int iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
+ sqlite3VdbeUsesBtree(v, iDb);
+
+ iAddr = sqlite3VdbeAddOp1(v, OP_If, iMem);
+ sqlite3VdbeAddOp2(v, OP_Integer, 1, iMem);
+
+ sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
+ eType = IN_INDEX_ROWID;
+
+ sqlite3VdbeJumpHere(v, iAddr);
+ }else{
+ /* The collation sequence used by the comparison. If an index is to
+ ** be used in place of a temp-table, it must be ordered according
+ ** to this collation sequence.
+ */
+ CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pExpr);
+
+ /* Check that the affinity that will be used to perform the
+ ** comparison is the same as the affinity of the column. If
+ ** it is not, it is not possible to use any index.
+ */
+ Table *pTab = p->pSrc->a[0].pTab;
+ char aff = comparisonAffinity(pX);
+ int affinity_ok = (pTab->aCol[iCol].affinity==aff||aff==SQLITE_AFF_NONE);
+
+ for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){
+ if( (pIdx->aiColumn[0]==iCol)
+ && (pReq==sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], -1, 0))
+ && (!mustBeUnique || (pIdx->nColumn==1 && pIdx->onError!=OE_None))
+ ){
+ int iDb;
+ int iMem = ++pParse->nMem;
+ int iAddr;
+ char *pKey;
+
+ pKey = (char *)sqlite3IndexKeyinfo(pParse, pIdx);
+ iDb = sqlite3SchemaToIndex(db, pIdx->pSchema);
+ sqlite3VdbeUsesBtree(v, iDb);
+
+ iAddr = sqlite3VdbeAddOp1(v, OP_If, iMem);
+ sqlite3VdbeAddOp2(v, OP_Integer, 1, iMem);
+
+ sqlite3VdbeAddOp2(v, OP_SetNumColumns, 0, pIdx->nColumn);
+ sqlite3VdbeAddOp4(v, OP_OpenRead, iTab, pIdx->tnum, iDb,
+ pKey,P4_KEYINFO_HANDOFF);
+ VdbeComment((v, "%s", pIdx->zName));
+ eType = IN_INDEX_INDEX;
+
+ sqlite3VdbeJumpHere(v, iAddr);
+ }
+ }
+ }
+ }
+
+ if( eType==0 ){
+ sqlite3CodeSubselect(pParse, pX);
+ eType = IN_INDEX_EPH;
+ }else{
+ pX->iTable = iTab;
+ }
+ return eType;
+}
+#endif
+
+/*
+** Generate code for scalar subqueries used as an expression
+** and IN operators. Examples:
+**
+** (SELECT a FROM b) -- subquery
+** EXISTS (SELECT a FROM b) -- EXISTS subquery
+** x IN (4,5,11) -- IN operator with list on right-hand side
+** x IN (SELECT a FROM b) -- IN operator with subquery on the right
+**
+** The pExpr parameter describes the expression that contains the IN
+** operator or subquery.
+*/
+#ifndef SQLITE_OMIT_SUBQUERY
+SQLITE_PRIVATE void sqlite3CodeSubselect(Parse *pParse, Expr *pExpr){
+ int testAddr = 0; /* One-time test address */
+ Vdbe *v = sqlite3GetVdbe(pParse);
+ if( v==0 ) return;
+
+
+ /* This code must be run in its entirety every time it is encountered
+ ** if any of the following is true:
+ **
+ ** * The right-hand side is a correlated subquery
+ ** * The right-hand side is an expression list containing variables
+ ** * We are inside a trigger
+ **
+ ** If all of the above are false, then we can run this code just once
+ ** save the results, and reuse the same result on subsequent invocations.
+ */
+ if( !ExprHasAnyProperty(pExpr, EP_VarSelect) && !pParse->trigStack ){
+ int mem = ++pParse->nMem;
+ sqlite3VdbeAddOp1(v, OP_If, mem);
+ testAddr = sqlite3VdbeAddOp2(v, OP_Integer, 1, mem);
+ assert( testAddr>0 || pParse->db->mallocFailed );
+ }
+
+ switch( pExpr->op ){
+ case TK_IN: {
+ char affinity;
+ KeyInfo keyInfo;
+ int addr; /* Address of OP_OpenEphemeral instruction */
+
+ affinity = sqlite3ExprAffinity(pExpr->pLeft);
+
+ /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)'
+ ** expression it is handled the same way. A virtual table is
+ ** filled with single-field index keys representing the results
+ ** from the SELECT or the <exprlist>.
+ **
+ ** If the 'x' expression is a column value, or the SELECT...
+ ** statement returns a column value, then the affinity of that
+ ** column is used to build the index keys. If both 'x' and the
+ ** SELECT... statement are columns, then numeric affinity is used
+ ** if either column has NUMERIC or INTEGER affinity. If neither
+ ** 'x' nor the SELECT... statement are columns, then numeric affinity
+ ** is used.
+ */
+ pExpr->iTable = pParse->nTab++;
+ addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, 1);
+ memset(&keyInfo, 0, sizeof(keyInfo));
+ keyInfo.nField = 1;
+
+ if( pExpr->pSelect ){
+ /* Case 1: expr IN (SELECT ...)
+ **
+ ** Generate code to write the results of the select into the temporary
+ ** table allocated and opened above.
+ */
+ SelectDest dest;
+ ExprList *pEList;
+
+ sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable);
+ dest.affinity = (int)affinity;
+ assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable );
+ if( sqlite3Select(pParse, pExpr->pSelect, &dest, 0, 0, 0, 0) ){
+ return;
+ }
+ pEList = pExpr->pSelect->pEList;
+ if( pEList && pEList->nExpr>0 ){
+ keyInfo.aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft,
+ pEList->a[0].pExpr);
+ }
+ }else if( pExpr->pList ){
+ /* Case 2: expr IN (exprlist)
+ **
+ ** For each expression, build an index key from the evaluation and
+ ** store it in the temporary table. If <expr> is a column, then use
+ ** that columns affinity when building index keys. If <expr> is not
+ ** a column, use numeric affinity.
+ */
+ int i;
+ ExprList *pList = pExpr->pList;
+ struct ExprList_item *pItem;
+ int r1, r2;
+
+ if( !affinity ){
+ affinity = SQLITE_AFF_NONE;
+ }
+ keyInfo.aColl[0] = pExpr->pLeft->pColl;
+
+ /* Loop through each expression in <exprlist>. */
+ r1 = sqlite3GetTempReg(pParse);
+ r2 = sqlite3GetTempReg(pParse);
+ for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
+ Expr *pE2 = pItem->pExpr;
+
+ /* If the expression is not constant then we will need to
+ ** disable the test that was generated above that makes sure
+ ** this code only executes once. Because for a non-constant
+ ** expression we need to rerun this code each time.
+ */
+ if( testAddr && !sqlite3ExprIsConstant(pE2) ){
+ sqlite3VdbeChangeToNoop(v, testAddr-1, 2);
+ testAddr = 0;
+ }
+
+ /* Evaluate the expression and insert it into the temp table */
+ pParse->disableColCache++;
+ sqlite3ExprCode(pParse, pE2, r1);
+ assert( pParse->disableColCache>0 );
+ pParse->disableColCache--;
+ sqlite3VdbeAddOp4(v, OP_MakeRecord, r1, 1, r2, &affinity, 1);
+ sqlite3ExprCacheAffinityChange(pParse, r1, 1);
+ sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2);
+ }
+ sqlite3ReleaseTempReg(pParse, r1);
+ sqlite3ReleaseTempReg(pParse, r2);
+ }
+ sqlite3VdbeChangeP4(v, addr, (void *)&keyInfo, P4_KEYINFO);
+ break;
+ }
+
+ case TK_EXISTS:
+ case TK_SELECT: {
+ /* This has to be a scalar SELECT. Generate code to put the
+ ** value of this select in a memory cell and record the number
+ ** of the memory cell in iColumn.
+ */
+ static const Token one = { (u8*)"1", 0, 1 };
+ Select *pSel;
+ SelectDest dest;
+
+ pSel = pExpr->pSelect;
+ sqlite3SelectDestInit(&dest, 0, ++pParse->nMem);
+ if( pExpr->op==TK_SELECT ){
+ dest.eDest = SRT_Mem;
+ sqlite3VdbeAddOp2(v, OP_Null, 0, dest.iParm);
+ VdbeComment((v, "Init subquery result"));
+ }else{
+ dest.eDest = SRT_Exists;
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iParm);
+ VdbeComment((v, "Init EXISTS result"));
+ }
+ sqlite3ExprDelete(pSel->pLimit);
+ pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, &one);
+ if( sqlite3Select(pParse, pSel, &dest, 0, 0, 0, 0) ){
+ return;
+ }
+ pExpr->iColumn = dest.iParm;
+ break;
+ }
+ }
+
+ if( testAddr ){
+ sqlite3VdbeJumpHere(v, testAddr-1);
+ }
+
+ return;
+}
+#endif /* SQLITE_OMIT_SUBQUERY */
+
+/*
+** Duplicate an 8-byte value
+*/
+static char *dup8bytes(Vdbe *v, const char *in){
+ char *out = sqlite3DbMallocRaw(sqlite3VdbeDb(v), 8);
+ if( out ){
+ memcpy(out, in, 8);
+ }
+ return out;
+}
+
+/*
+** Generate an instruction that will put the floating point
+** value described by z[0..n-1] into register iMem.
+**
+** The z[] string will probably not be zero-terminated. But the
+** z[n] character is guaranteed to be something that does not look
+** like the continuation of the number.
+*/
+static void codeReal(Vdbe *v, const char *z, int n, int negateFlag, int iMem){
+ assert( z || v==0 || sqlite3VdbeDb(v)->mallocFailed );
+ if( z ){
+ double value;
+ char *zV;
+ assert( !isdigit(z[n]) );
+ sqlite3AtoF(z, &value);
+ if( sqlite3IsNaN(value) ){
+ sqlite3VdbeAddOp2(v, OP_Null, 0, iMem);
+ }else{
+ if( negateFlag ) value = -value;
+ zV = dup8bytes(v, (char*)&value);
+ sqlite3VdbeAddOp4(v, OP_Real, 0, iMem, 0, zV, P4_REAL);
+ }
+ }
+}
+
+
+/*
+** Generate an instruction that will put the integer describe by
+** text z[0..n-1] into register iMem.
+**
+** The z[] string will probably not be zero-terminated. But the
+** z[n] character is guaranteed to be something that does not look
+** like the continuation of the number.
+*/
+static void codeInteger(Vdbe *v, const char *z, int n, int negFlag, int iMem){
+ assert( z || v==0 || sqlite3VdbeDb(v)->mallocFailed );
+ if( z ){
+ int i;
+ assert( !isdigit(z[n]) );
+ if( sqlite3GetInt32(z, &i) ){
+ if( negFlag ) i = -i;
+ sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
+ }else if( sqlite3FitsIn64Bits(z, negFlag) ){
+ i64 value;
+ char *zV;
+ sqlite3Atoi64(z, &value);
+ if( negFlag ) value = -value;
+ zV = dup8bytes(v, (char*)&value);
+ sqlite3VdbeAddOp4(v, OP_Int64, 0, iMem, 0, zV, P4_INT64);
+ }else{
+ codeReal(v, z, n, negFlag, iMem);
+ }
+ }
+}
+
+
+/*
+** Generate code that will extract the iColumn-th column from
+** table pTab and store the column value in a register. An effort
+** is made to store the column value in register iReg, but this is
+** not guaranteed. The location of the column value is returned.
+**
+** There must be an open cursor to pTab in iTable when this routine
+** is called. If iColumn<0 then code is generated that extracts the rowid.
+**
+** This routine might attempt to reuse the value of the column that
+** has already been loaded into a register. The value will always
+** be used if it has not undergone any affinity changes. But if
+** an affinity change has occurred, then the cached value will only be
+** used if allowAffChng is true.
+*/
+SQLITE_PRIVATE int sqlite3ExprCodeGetColumn(
+ Parse *pParse, /* Parsing and code generating context */
+ Table *pTab, /* Description of the table we are reading from */
+ int iColumn, /* Index of the table column */
+ int iTable, /* The cursor pointing to the table */
+ int iReg, /* Store results here */
+ int allowAffChng /* True if prior affinity changes are OK */
+){
+ Vdbe *v = pParse->pVdbe;
+ int i;
+ struct yColCache *p;
+
+ for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){
+ if( p->iTable==iTable && p->iColumn==iColumn
+ && (!p->affChange || allowAffChng) ){
+#if 0
+ sqlite3VdbeAddOp0(v, OP_Noop);
+ VdbeComment((v, "OPT: tab%d.col%d -> r%d", iTable, iColumn, p->iReg));
+#endif
+ return p->iReg;
+ }
+ }
+ assert( v!=0 );
+ if( iColumn<0 ){
+ int op = (pTab && IsVirtual(pTab)) ? OP_VRowid : OP_Rowid;
+ sqlite3VdbeAddOp2(v, op, iTable, iReg);
+ }else if( pTab==0 ){
+ sqlite3VdbeAddOp3(v, OP_Column, iTable, iColumn, iReg);
+ }else{
+ int op = IsVirtual(pTab) ? OP_VColumn : OP_Column;
+ sqlite3VdbeAddOp3(v, op, iTable, iColumn, iReg);
+ sqlite3ColumnDefault(v, pTab, iColumn);
+#ifndef SQLITE_OMIT_FLOATING_POINT
+ if( pTab->aCol[iColumn].affinity==SQLITE_AFF_REAL ){
+ sqlite3VdbeAddOp1(v, OP_RealAffinity, iReg);
+ }
+#endif
+ }
+ if( pParse->disableColCache==0 ){
+ i = pParse->iColCache;
+ p = &pParse->aColCache[i];
+ p->iTable = iTable;
+ p->iColumn = iColumn;
+ p->iReg = iReg;
+ p->affChange = 0;
+ i++;
+ if( i>=ArraySize(pParse->aColCache) ) i = 0;
+ if( i>pParse->nColCache ) pParse->nColCache = i;
+ pParse->iColCache = i;
+ }
+ return iReg;
+}
+
+/*
+** Clear all column cache entries associated with the vdbe
+** cursor with cursor number iTable.
+*/
+SQLITE_PRIVATE void sqlite3ExprClearColumnCache(Parse *pParse, int iTable){
+ if( iTable<0 ){
+ pParse->nColCache = 0;
+ pParse->iColCache = 0;
+ }else{
+ int i;
+ for(i=0; i<pParse->nColCache; i++){
+ if( pParse->aColCache[i].iTable==iTable ){
+ testcase( i==pParse->nColCache-1 );
+ pParse->aColCache[i] = pParse->aColCache[--pParse->nColCache];
+ pParse->iColCache = pParse->nColCache;
+ }
+ }
+ }
+}
+
+/*
+** Record the fact that an affinity change has occurred on iCount
+** registers starting with iStart.
+*/
+SQLITE_PRIVATE void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){
+ int iEnd = iStart + iCount - 1;
+ int i;
+ for(i=0; i<pParse->nColCache; i++){
+ int r = pParse->aColCache[i].iReg;
+ if( r>=iStart && r<=iEnd ){
+ pParse->aColCache[i].affChange = 1;
+ }
+ }
+}
+
+/*
+** Generate code to moves content from one register to another.
+** Keep the column cache up-to-date.
+*/
+SQLITE_PRIVATE void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo){
+ int i;
+ if( iFrom==iTo ) return;
+ sqlite3VdbeAddOp2(pParse->pVdbe, OP_Move, iFrom, iTo);
+ for(i=0; i<pParse->nColCache; i++){
+ if( pParse->aColCache[i].iReg==iFrom ){
+ pParse->aColCache[i].iReg = iTo;
+ }
+ }
+}
+
+/*
+** Return true if any register in the range iFrom..iTo (inclusive)
+** is used as part of the column cache.
+*/
+static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){
+ int i;
+ for(i=0; i<pParse->nColCache; i++){
+ int r = pParse->aColCache[i].iReg;
+ if( r>=iFrom && r<=iTo ) return 1;
+ }
+ return 0;
+}
+
+/*
+** Theres is a value in register iCurrent. We ultimately want
+** the value to be in register iTarget. It might be that
+** iCurrent and iTarget are the same register.
+**
+** We are going to modify the value, so we need to make sure it
+** is not a cached register. If iCurrent is a cached register,
+** then try to move the value over to iTarget. If iTarget is a
+** cached register, then clear the corresponding cache line.
+**
+** Return the register that the value ends up in.
+*/
+SQLITE_PRIVATE int sqlite3ExprWritableRegister(Parse *pParse, int iCurrent, int iTarget){
+ int i;
+ assert( pParse->pVdbe!=0 );
+ if( !usedAsColumnCache(pParse, iCurrent, iCurrent) ){
+ return iCurrent;
+ }
+ if( iCurrent!=iTarget ){
+ sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, iCurrent, iTarget);
+ }
+ for(i=0; i<pParse->nColCache; i++){
+ if( pParse->aColCache[i].iReg==iTarget ){
+ pParse->aColCache[i] = pParse->aColCache[--pParse->nColCache];
+ pParse->iColCache = pParse->nColCache;
+ }
+ }
+ return iTarget;
+}
+
+/*
+** If the last instruction coded is an ephemeral copy of any of
+** the registers in the nReg registers beginning with iReg, then
+** convert the last instruction from OP_SCopy to OP_Copy.
+*/
+SQLITE_PRIVATE void sqlite3ExprHardCopy(Parse *pParse, int iReg, int nReg){
+ int addr;
+ VdbeOp *pOp;
+ Vdbe *v;
+
+ v = pParse->pVdbe;
+ addr = sqlite3VdbeCurrentAddr(v);
+ pOp = sqlite3VdbeGetOp(v, addr-1);
+ assert( pOp || pParse->db->mallocFailed );
+ if( pOp && pOp->opcode==OP_SCopy && pOp->p1>=iReg && pOp->p1<iReg+nReg ){
+ pOp->opcode = OP_Copy;
+ }
+}
+
+/*
+** Generate code into the current Vdbe to evaluate the given
+** expression. Attempt to store the results in register "target".
+** Return the register where results are stored.
+**
+** With this routine, there is no guaranteed that results will
+** be stored in target. The result might be stored in some other
+** register if it is convenient to do so. The calling function
+** must check the return code and move the results to the desired
+** register.
+*/
+SQLITE_PRIVATE int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
+ Vdbe *v = pParse->pVdbe; /* The VM under construction */
+ int op; /* The opcode being coded */
+ int inReg = target; /* Results stored in register inReg */
+ int regFree1 = 0; /* If non-zero free this temporary register */
+ int regFree2 = 0; /* If non-zero free this temporary register */
+ int r1, r2, r3, r4; /* Various register numbers */
+
+ assert( v!=0 || pParse->db->mallocFailed );
+ assert( target>0 && target<=pParse->nMem );
+ if( v==0 ) return 0;
+
+ if( pExpr==0 ){
+ op = TK_NULL;
+ }else{
+ op = pExpr->op;
+ }
+ switch( op ){
+ case TK_AGG_COLUMN: {
+ AggInfo *pAggInfo = pExpr->pAggInfo;
+ struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg];
+ if( !pAggInfo->directMode ){
+ assert( pCol->iMem>0 );
+ inReg = pCol->iMem;
+ break;
+ }else if( pAggInfo->useSortingIdx ){
+ sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdx,
+ pCol->iSorterColumn, target);
+ break;
+ }
+ /* Otherwise, fall thru into the TK_COLUMN case */
+ }
+ case TK_COLUMN: {
+ if( pExpr->iTable<0 ){
+ /* This only happens when coding check constraints */
+ assert( pParse->ckBase>0 );
+ inReg = pExpr->iColumn + pParse->ckBase;
+ }else{
+ testcase( (pExpr->flags & EP_AnyAff)!=0 );
+ inReg = sqlite3ExprCodeGetColumn(pParse, pExpr->pTab,
+ pExpr->iColumn, pExpr->iTable, target,
+ pExpr->flags & EP_AnyAff);
+ }
+ break;
+ }
+ case TK_INTEGER: {
+ codeInteger(v, (char*)pExpr->token.z, pExpr->token.n, 0, target);
+ break;
+ }
+ case TK_FLOAT: {
+ codeReal(v, (char*)pExpr->token.z, pExpr->token.n, 0, target);
+ break;
+ }
+ case TK_STRING: {
+ sqlite3DequoteExpr(pParse->db, pExpr);
+ sqlite3VdbeAddOp4(v,OP_String8, 0, target, 0,
+ (char*)pExpr->token.z, pExpr->token.n);
+ break;
+ }
+ case TK_NULL: {
+ sqlite3VdbeAddOp2(v, OP_Null, 0, target);
+ break;
+ }
+#ifndef SQLITE_OMIT_BLOB_LITERAL
+ case TK_BLOB: {
+ int n;
+ const char *z;
+ char *zBlob;
+ assert( pExpr->token.n>=3 );
+ assert( pExpr->token.z[0]=='x' || pExpr->token.z[0]=='X' );
+ assert( pExpr->token.z[1]=='\'' );
+ assert( pExpr->token.z[pExpr->token.n-1]=='\'' );
+ n = pExpr->token.n - 3;
+ z = (char*)pExpr->token.z + 2;
+ zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n);
+ sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC);
+ break;
+ }
+#endif
+ case TK_VARIABLE: {
+ sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iTable, target);
+ if( pExpr->token.n>1 ){
+ sqlite3VdbeChangeP4(v, -1, (char*)pExpr->token.z, pExpr->token.n);
+ }
+ break;
+ }
+ case TK_REGISTER: {
+ inReg = pExpr->iTable;
+ break;
+ }
+#ifndef SQLITE_OMIT_CAST
+ case TK_CAST: {
+ /* Expressions of the form: CAST(pLeft AS token) */
+ int aff, to_op;
+ inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
+ aff = sqlite3AffinityType(&pExpr->token);
+ to_op = aff - SQLITE_AFF_TEXT + OP_ToText;
+ assert( to_op==OP_ToText || aff!=SQLITE_AFF_TEXT );
+ assert( to_op==OP_ToBlob || aff!=SQLITE_AFF_NONE );
+ assert( to_op==OP_ToNumeric || aff!=SQLITE_AFF_NUMERIC );
+ assert( to_op==OP_ToInt || aff!=SQLITE_AFF_INTEGER );
+ assert( to_op==OP_ToReal || aff!=SQLITE_AFF_REAL );
+ testcase( to_op==OP_ToText );
+ testcase( to_op==OP_ToBlob );
+ testcase( to_op==OP_ToNumeric );
+ testcase( to_op==OP_ToInt );
+ testcase( to_op==OP_ToReal );
+ sqlite3VdbeAddOp1(v, to_op, inReg);
+ testcase( usedAsColumnCache(pParse, inReg, inReg) );
+ sqlite3ExprCacheAffinityChange(pParse, inReg, 1);
+ break;
+ }
+#endif /* SQLITE_OMIT_CAST */
+ case TK_LT:
+ case TK_LE:
+ case TK_GT:
+ case TK_GE:
+ case TK_NE:
+ case TK_EQ: {
+ assert( TK_LT==OP_Lt );
+ assert( TK_LE==OP_Le );
+ assert( TK_GT==OP_Gt );
+ assert( TK_GE==OP_Ge );
+ assert( TK_EQ==OP_Eq );
+ assert( TK_NE==OP_Ne );
+ testcase( op==TK_LT );
+ testcase( op==TK_LE );
+ testcase( op==TK_GT );
+ testcase( op==TK_GE );
+ testcase( op==TK_EQ );
+ testcase( op==TK_NE );
+ codeCompareOperands(pParse, pExpr->pLeft, &r1, &regFree1,
+ pExpr->pRight, &r2, &regFree2);
+ codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
+ r1, r2, inReg, SQLITE_STOREP2);
+ testcase( regFree1==0 );
+ testcase( regFree2==0 );
+ break;
+ }
+ case TK_AND:
+ case TK_OR:
+ case TK_PLUS:
+ case TK_STAR:
+ case TK_MINUS:
+ case TK_REM:
+ case TK_BITAND:
+ case TK_BITOR:
+ case TK_SLASH:
+ case TK_LSHIFT:
+ case TK_RSHIFT:
+ case TK_CONCAT: {
+ assert( TK_AND==OP_And );
+ assert( TK_OR==OP_Or );
+ assert( TK_PLUS==OP_Add );
+ assert( TK_MINUS==OP_Subtract );
+ assert( TK_REM==OP_Remainder );
+ assert( TK_BITAND==OP_BitAnd );
+ assert( TK_BITOR==OP_BitOr );
+ assert( TK_SLASH==OP_Divide );
+ assert( TK_LSHIFT==OP_ShiftLeft );
+ assert( TK_RSHIFT==OP_ShiftRight );
+ assert( TK_CONCAT==OP_Concat );
+ testcase( op==TK_AND );
+ testcase( op==TK_OR );
+ testcase( op==TK_PLUS );
+ testcase( op==TK_MINUS );
+ testcase( op==TK_REM );
+ testcase( op==TK_BITAND );
+ testcase( op==TK_BITOR );
+ testcase( op==TK_SLASH );
+ testcase( op==TK_LSHIFT );
+ testcase( op==TK_RSHIFT );
+ testcase( op==TK_CONCAT );
+ r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
+ r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
+ sqlite3VdbeAddOp3(v, op, r2, r1, target);
+ testcase( regFree1==0 );
+ testcase( regFree2==0 );
+ break;
+ }
+ case TK_UMINUS: {
+ Expr *pLeft = pExpr->pLeft;
+ assert( pLeft );
+ if( pLeft->op==TK_FLOAT || pLeft->op==TK_INTEGER ){
+ Token *p = &pLeft->token;
+ if( pLeft->op==TK_FLOAT ){
+ codeReal(v, (char*)p->z, p->n, 1, target);
+ }else{
+ codeInteger(v, (char*)p->z, p->n, 1, target);
+ }
+ }else{
+ regFree1 = r1 = sqlite3GetTempReg(pParse);
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, r1);
+ r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree2);
+ sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target);
+ testcase( regFree2==0 );
+ }
+ inReg = target;
+ break;
+ }
+ case TK_BITNOT:
+ case TK_NOT: {
+ assert( TK_BITNOT==OP_BitNot );
+ assert( TK_NOT==OP_Not );
+ testcase( op==TK_BITNOT );
+ testcase( op==TK_NOT );
+ inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
+ testcase( inReg==target );
+ testcase( usedAsColumnCache(pParse, inReg, inReg) );
+ inReg = sqlite3ExprWritableRegister(pParse, inReg, target);
+ sqlite3VdbeAddOp1(v, op, inReg);
+ break;
+ }
+ case TK_ISNULL:
+ case TK_NOTNULL: {
+ int addr;
+ assert( TK_ISNULL==OP_IsNull );
+ assert( TK_NOTNULL==OP_NotNull );
+ testcase( op==TK_ISNULL );
+ testcase( op==TK_NOTNULL );
+ sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
+ r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
+ testcase( regFree1==0 );
+ addr = sqlite3VdbeAddOp1(v, op, r1);
+ sqlite3VdbeAddOp2(v, OP_AddImm, target, -1);
+ sqlite3VdbeJumpHere(v, addr);
+ break;
+ }
+ case TK_AGG_FUNCTION: {
+ AggInfo *pInfo = pExpr->pAggInfo;
+ if( pInfo==0 ){
+ sqlite3ErrorMsg(pParse, "misuse of aggregate: %T",
+ &pExpr->span);
+ }else{
+ inReg = pInfo->aFunc[pExpr->iAgg].iMem;
+ }
+ break;
+ }
+ case TK_CONST_FUNC:
+ case TK_FUNCTION: {
+ ExprList *pList = pExpr->pList;
+ int nExpr = pList ? pList->nExpr : 0;
+ FuncDef *pDef;
+ int nId;
+ const char *zId;
+ int constMask = 0;
+ int i;
+ sqlite3 *db = pParse->db;
+ u8 enc = ENC(db);
+ CollSeq *pColl = 0;
+
+ testcase( op==TK_CONST_FUNC );
+ testcase( op==TK_FUNCTION );
+ zId = (char*)pExpr->token.z;
+ nId = pExpr->token.n;
+ pDef = sqlite3FindFunction(pParse->db, zId, nId, nExpr, enc, 0);
+ assert( pDef!=0 );
+ if( pList ){
+ nExpr = pList->nExpr;
+ r1 = sqlite3GetTempRange(pParse, nExpr);
+ sqlite3ExprCodeExprList(pParse, pList, r1, 1);
+ }else{
+ nExpr = r1 = 0;
+ }
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ /* Possibly overload the function if the first argument is
+ ** a virtual table column.
+ **
+ ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
+ ** second argument, not the first, as the argument to test to
+ ** see if it is a column in a virtual table. This is done because
+ ** the left operand of infix functions (the operand we want to
+ ** control overloading) ends up as the second argument to the
+ ** function. The expression "A glob B" is equivalent to
+ ** "glob(B,A). We want to use the A in "A glob B" to test
+ ** for function overloading. But we use the B term in "glob(B,A)".
+ */
+ if( nExpr>=2 && (pExpr->flags & EP_InfixFunc) ){
+ pDef = sqlite3VtabOverloadFunction(db, pDef, nExpr, pList->a[1].pExpr);
+ }else if( nExpr>0 ){
+ pDef = sqlite3VtabOverloadFunction(db, pDef, nExpr, pList->a[0].pExpr);
+ }
+#endif
+ for(i=0; i<nExpr && i<32; i++){
+ if( sqlite3ExprIsConstant(pList->a[i].pExpr) ){
+ constMask |= (1<<i);
+ }
+ if( pDef->needCollSeq && !pColl ){
+ pColl = sqlite3ExprCollSeq(pParse, pList->a[i].pExpr);
+ }
+ }
+ if( pDef->needCollSeq ){
+ if( !pColl ) pColl = pParse->db->pDfltColl;
+ sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
+ }
+ sqlite3VdbeAddOp4(v, OP_Function, constMask, r1, target,
+ (char*)pDef, P4_FUNCDEF);
+ sqlite3VdbeChangeP5(v, nExpr);
+ if( nExpr ){
+ sqlite3ReleaseTempRange(pParse, r1, nExpr);
+ }
+ sqlite3ExprCacheAffinityChange(pParse, r1, nExpr);
+ break;
+ }
+#ifndef SQLITE_OMIT_SUBQUERY
+ case TK_EXISTS:
+ case TK_SELECT: {
+ testcase( op==TK_EXISTS );
+ testcase( op==TK_SELECT );
+ if( pExpr->iColumn==0 ){
+ sqlite3CodeSubselect(pParse, pExpr);
+ }
+ inReg = pExpr->iColumn;
+ break;
+ }
+ case TK_IN: {
+ int j1, j2, j3, j4, j5;
+ char affinity;
+ int eType;
+
+ eType = sqlite3FindInIndex(pParse, pExpr, 0);
+
+ /* Figure out the affinity to use to create a key from the results
+ ** of the expression. affinityStr stores a static string suitable for
+ ** P4 of OP_MakeRecord.
+ */
+ affinity = comparisonAffinity(pExpr);
+
+ sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
+
+ /* Code the <expr> from "<expr> IN (...)". The temporary table
+ ** pExpr->iTable contains the values that make up the (...) set.
+ */
+ r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
+ testcase( regFree1==0 );
+ j1 = sqlite3VdbeAddOp1(v, OP_NotNull, r1);
+ sqlite3VdbeAddOp2(v, OP_Null, 0, target);
+ j2 = sqlite3VdbeAddOp0(v, OP_Goto);
+ sqlite3VdbeJumpHere(v, j1);
+ if( eType==IN_INDEX_ROWID ){
+ j3 = sqlite3VdbeAddOp1(v, OP_MustBeInt, r1);
+ j4 = sqlite3VdbeAddOp3(v, OP_NotExists, pExpr->iTable, 0, r1);
+ j5 = sqlite3VdbeAddOp0(v, OP_Goto);
+ sqlite3VdbeJumpHere(v, j3);
+ sqlite3VdbeJumpHere(v, j4);
+ }else{
+ r2 = regFree2 = sqlite3GetTempReg(pParse);
+ sqlite3VdbeAddOp4(v, OP_MakeRecord, r1, 1, r2, &affinity, 1);
+ sqlite3ExprCacheAffinityChange(pParse, r1, 1);
+ j5 = sqlite3VdbeAddOp3(v, OP_Found, pExpr->iTable, 0, r2);
+ }
+ sqlite3VdbeAddOp2(v, OP_AddImm, target, -1);
+ sqlite3VdbeJumpHere(v, j2);
+ sqlite3VdbeJumpHere(v, j5);
+ break;
+ }
+#endif
+ /*
+ ** x BETWEEN y AND z
+ **
+ ** This is equivalent to
+ **
+ ** x>=y AND x<=z
+ **
+ ** X is stored in pExpr->pLeft.
+ ** Y is stored in pExpr->pList->a[0].pExpr.
+ ** Z is stored in pExpr->pList->a[1].pExpr.
+ */
+ case TK_BETWEEN: {
+ Expr *pLeft = pExpr->pLeft;
+ struct ExprList_item *pLItem = pExpr->pList->a;
+ Expr *pRight = pLItem->pExpr;
+
+ codeCompareOperands(pParse, pLeft, &r1, &regFree1,
+ pRight, &r2, &regFree2);
+ testcase( regFree1==0 );
+ testcase( regFree2==0 );
+ r3 = sqlite3GetTempReg(pParse);
+ r4 = sqlite3GetTempReg(pParse);
+ codeCompare(pParse, pLeft, pRight, OP_Ge,
+ r1, r2, r3, SQLITE_STOREP2);
+ pLItem++;
+ pRight = pLItem->pExpr;
+ sqlite3ReleaseTempReg(pParse, regFree2);
+ r2 = sqlite3ExprCodeTemp(pParse, pRight, &regFree2);
+ testcase( regFree2==0 );
+ codeCompare(pParse, pLeft, pRight, OP_Le, r1, r2, r4, SQLITE_STOREP2);
+ sqlite3VdbeAddOp3(v, OP_And, r3, r4, target);
+ sqlite3ReleaseTempReg(pParse, r3);
+ sqlite3ReleaseTempReg(pParse, r4);
+ break;
+ }
+ case TK_UPLUS: {
+ inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
+ break;
+ }
+
+ /*
+ ** Form A:
+ ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
+ **
+ ** Form B:
+ ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
+ **
+ ** Form A is can be transformed into the equivalent form B as follows:
+ ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ...
+ ** WHEN x=eN THEN rN ELSE y END
+ **
+ ** X (if it exists) is in pExpr->pLeft.
+ ** Y is in pExpr->pRight. The Y is also optional. If there is no
+ ** ELSE clause and no other term matches, then the result of the
+ ** exprssion is NULL.
+ ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1].
+ **
+ ** The result of the expression is the Ri for the first matching Ei,
+ ** or if there is no matching Ei, the ELSE term Y, or if there is
+ ** no ELSE term, NULL.
+ */
+ case TK_CASE: {
+ int endLabel; /* GOTO label for end of CASE stmt */
+ int nextCase; /* GOTO label for next WHEN clause */
+ int nExpr; /* 2x number of WHEN terms */
+ int i; /* Loop counter */
+ ExprList *pEList; /* List of WHEN terms */
+ struct ExprList_item *aListelem; /* Array of WHEN terms */
+ Expr opCompare; /* The X==Ei expression */
+ Expr cacheX; /* Cached expression X */
+ Expr *pX; /* The X expression */
+ Expr *pTest; /* X==Ei (form A) or just Ei (form B) */
+
+ assert(pExpr->pList);
+ assert((pExpr->pList->nExpr % 2) == 0);
+ assert(pExpr->pList->nExpr > 0);
+ pEList = pExpr->pList;
+ aListelem = pEList->a;
+ nExpr = pEList->nExpr;
+ endLabel = sqlite3VdbeMakeLabel(v);
+ if( (pX = pExpr->pLeft)!=0 ){
+ cacheX = *pX;
+ testcase( pX->op==TK_COLUMN || pX->op==TK_REGISTER );
+ cacheX.iTable = sqlite3ExprCodeTemp(pParse, pX, &regFree1);
+ testcase( regFree1==0 );
+ cacheX.op = TK_REGISTER;
+ cacheX.iColumn = 0;
+ opCompare.op = TK_EQ;
+ opCompare.pLeft = &cacheX;
+ pTest = &opCompare;
+ }
+ pParse->disableColCache++;
+ for(i=0; i<nExpr; i=i+2){
+ if( pX ){
+ opCompare.pRight = aListelem[i].pExpr;
+ }else{
+ pTest = aListelem[i].pExpr;
+ }
+ nextCase = sqlite3VdbeMakeLabel(v);
+ testcase( pTest->op==TK_COLUMN || pTest->op==TK_REGISTER );
+ sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL);
+ testcase( aListelem[i+1].pExpr->op==TK_COLUMN );
+ testcase( aListelem[i+1].pExpr->op==TK_REGISTER );
+ sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target);
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, endLabel);
+ sqlite3VdbeResolveLabel(v, nextCase);
+ }
+ if( pExpr->pRight ){
+ sqlite3ExprCode(pParse, pExpr->pRight, target);
+ }else{
+ sqlite3VdbeAddOp2(v, OP_Null, 0, target);
+ }
+ sqlite3VdbeResolveLabel(v, endLabel);
+ assert( pParse->disableColCache>0 );
+ pParse->disableColCache--;
+ break;
+ }
+#ifndef SQLITE_OMIT_TRIGGER
+ case TK_RAISE: {
+ if( !pParse->trigStack ){
+ sqlite3ErrorMsg(pParse,
+ "RAISE() may only be used within a trigger-program");
+ return 0;
+ }
+ if( pExpr->iColumn!=OE_Ignore ){
+ assert( pExpr->iColumn==OE_Rollback ||
+ pExpr->iColumn == OE_Abort ||
+ pExpr->iColumn == OE_Fail );
+ sqlite3DequoteExpr(pParse->db, pExpr);
+ sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, pExpr->iColumn, 0,
+ (char*)pExpr->token.z, pExpr->token.n);
+ } else {
+ assert( pExpr->iColumn == OE_Ignore );
+ sqlite3VdbeAddOp2(v, OP_ContextPop, 0, 0);
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, pParse->trigStack->ignoreJump);
+ VdbeComment((v, "raise(IGNORE)"));
+ }
+ break;
+ }
+#endif
+ }
+ sqlite3ReleaseTempReg(pParse, regFree1);
+ sqlite3ReleaseTempReg(pParse, regFree2);
+ return inReg;
+}
+
+/*
+** Generate code to evaluate an expression and store the results
+** into a register. Return the register number where the results
+** are stored.
+**
+** If the register is a temporary register that can be deallocated,
+** then write its number into *pReg. If the result register is not
+** a temporary, then set *pReg to zero.
+*/
+SQLITE_PRIVATE int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){
+ int r1 = sqlite3GetTempReg(pParse);
+ int r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
+ if( r2==r1 ){
+ *pReg = r1;
+ }else{
+ sqlite3ReleaseTempReg(pParse, r1);
+ *pReg = 0;
+ }
+ return r2;
+}
+
+/*
+** Generate code that will evaluate expression pExpr and store the
+** results in register target. The results are guaranteed to appear
+** in register target.
+*/
+SQLITE_PRIVATE int sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){
+ int inReg;
+
+ assert( target>0 && target<=pParse->nMem );
+ inReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
+ assert( pParse->pVdbe || pParse->db->mallocFailed );
+ if( inReg!=target && pParse->pVdbe ){
+ sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target);
+ }
+ return target;
+}
+
+/*
+** Generate code that evalutes the given expression and puts the result
+** in register target.
+**
+** Also make a copy of the expression results into another "cache" register
+** and modify the expression so that the next time it is evaluated,
+** the result is a copy of the cache register.
+**
+** This routine is used for expressions that are used multiple
+** times. They are evaluated once and the results of the expression
+** are reused.
+*/
+SQLITE_PRIVATE int sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){
+ Vdbe *v = pParse->pVdbe;
+ int inReg;
+ inReg = sqlite3ExprCode(pParse, pExpr, target);
+ assert( target>0 );
+ if( pExpr->op!=TK_REGISTER ){
+ int iMem;
+ iMem = ++pParse->nMem;
+ sqlite3VdbeAddOp2(v, OP_Copy, inReg, iMem);
+ pExpr->iTable = iMem;
+ pExpr->iColumn = pExpr->op;
+ pExpr->op = TK_REGISTER;
+ }
+ return inReg;
+}
+
+/*
+** Return TRUE if pExpr is an constant expression that is appropriate
+** for factoring out of a loop. Appropriate expressions are:
+**
+** * Any expression that evaluates to two or more opcodes.
+**
+** * Any OP_Integer, OP_Real, OP_String, OP_Blob, OP_Null,
+** or OP_Variable that does not need to be placed in a
+** specific register.
+**
+** There is no point in factoring out single-instruction constant
+** expressions that need to be placed in a particular register.
+** We could factor them out, but then we would end up adding an
+** OP_SCopy instruction to move the value into the correct register
+** later. We might as well just use the original instruction and
+** avoid the OP_SCopy.
+*/
+static int isAppropriateForFactoring(Expr *p){
+ if( !sqlite3ExprIsConstantNotJoin(p) ){
+ return 0; /* Only constant expressions are appropriate for factoring */
+ }
+ if( (p->flags & EP_FixedDest)==0 ){
+ return 1; /* Any constant without a fixed destination is appropriate */
+ }
+ while( p->op==TK_UPLUS ) p = p->pLeft;
+ switch( p->op ){
+#ifndef SQLITE_OMIT_BLOB_LITERAL
+ case TK_BLOB:
+#endif
+ case TK_VARIABLE:
+ case TK_INTEGER:
+ case TK_FLOAT:
+ case TK_NULL:
+ case TK_STRING: {
+ testcase( p->op==TK_BLOB );
+ testcase( p->op==TK_VARIABLE );
+ testcase( p->op==TK_INTEGER );
+ testcase( p->op==TK_FLOAT );
+ testcase( p->op==TK_NULL );
+ testcase( p->op==TK_STRING );
+ /* Single-instruction constants with a fixed destination are
+ ** better done in-line. If we factor them, they will just end
+ ** up generating an OP_SCopy to move the value to the destination
+ ** register. */
+ return 0;
+ }
+ case TK_UMINUS: {
+ if( p->pLeft->op==TK_FLOAT || p->pLeft->op==TK_INTEGER ){
+ return 0;
+ }
+ break;
+ }
+ default: {
+ break;
+ }
+ }
+ return 1;
+}
+
+/*
+** If pExpr is a constant expression that is appropriate for
+** factoring out of a loop, then evaluate the expression
+** into a register and convert the expression into a TK_REGISTER
+** expression.
+*/
+static int evalConstExpr(void *pArg, Expr *pExpr){
+ Parse *pParse = (Parse*)pArg;
+ switch( pExpr->op ){
+ case TK_REGISTER: {
+ return 1;
+ }
+ case TK_FUNCTION:
+ case TK_AGG_FUNCTION:
+ case TK_CONST_FUNC: {
+ /* The arguments to a function have a fixed destination.
+ ** Mark them this way to avoid generated unneeded OP_SCopy
+ ** instructions.
+ */
+ ExprList *pList = pExpr->pList;
+ if( pList ){
+ int i = pList->nExpr;
+ struct ExprList_item *pItem = pList->a;
+ for(; i>0; i--, pItem++){
+ if( pItem->pExpr ) pItem->pExpr->flags |= EP_FixedDest;
+ }
+ }
+ break;
+ }
+ }
+ if( isAppropriateForFactoring(pExpr) ){
+ int r1 = ++pParse->nMem;
+ int r2;
+ r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
+ if( r1!=r2 ) sqlite3ReleaseTempReg(pParse, r1);
+ pExpr->iColumn = pExpr->op;
+ pExpr->op = TK_REGISTER;
+ pExpr->iTable = r2;
+ return 1;
+ }
+ return 0;
+}
+
+/*
+** Preevaluate constant subexpressions within pExpr and store the
+** results in registers. Modify pExpr so that the constant subexpresions
+** are TK_REGISTER opcodes that refer to the precomputed values.
+*/
+SQLITE_PRIVATE void sqlite3ExprCodeConstants(Parse *pParse, Expr *pExpr){
+ walkExprTree(pExpr, evalConstExpr, pParse);
+}
+
+
+/*
+** Generate code that pushes the value of every element of the given
+** expression list into a sequence of registers beginning at target.
+**
+** Return the number of elements evaluated.
+*/
+SQLITE_PRIVATE int sqlite3ExprCodeExprList(
+ Parse *pParse, /* Parsing context */
+ ExprList *pList, /* The expression list to be coded */
+ int target, /* Where to write results */
+ int doHardCopy /* Call sqlite3ExprHardCopy on each element if true */
+){
+ struct ExprList_item *pItem;
+ int i, n;
+ assert( pList!=0 || pParse->db->mallocFailed );
+ if( pList==0 ){
+ return 0;
+ }
+ assert( target>0 );
+ n = pList->nExpr;
+ for(pItem=pList->a, i=0; i<n; i++, pItem++){
+ sqlite3ExprCode(pParse, pItem->pExpr, target+i);
+ if( doHardCopy ) sqlite3ExprHardCopy(pParse, target, n);
+ }
+ return n;
+}
+
+/*
+** Generate code for a boolean expression such that a jump is made
+** to the label "dest" if the expression is true but execution
+** continues straight thru if the expression is false.
+**
+** If the expression evaluates to NULL (neither true nor false), then
+** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL.
+**
+** This code depends on the fact that certain token values (ex: TK_EQ)
+** are the same as opcode values (ex: OP_Eq) that implement the corresponding
+** operation. Special comments in vdbe.c and the mkopcodeh.awk script in
+** the make process cause these values to align. Assert()s in the code
+** below verify that the numbers are aligned correctly.
+*/
+SQLITE_PRIVATE void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
+ Vdbe *v = pParse->pVdbe;
+ int op = 0;
+ int regFree1 = 0;
+ int regFree2 = 0;
+ int r1, r2;
+
+ assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
+ if( v==0 || pExpr==0 ) return;
+ op = pExpr->op;
+ switch( op ){
+ case TK_AND: {
+ int d2 = sqlite3VdbeMakeLabel(v);
+ testcase( jumpIfNull==0 );
+ testcase( pParse->disableColCache==0 );
+ sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL);
+ pParse->disableColCache++;
+ sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
+ assert( pParse->disableColCache>0 );
+ pParse->disableColCache--;
+ sqlite3VdbeResolveLabel(v, d2);
+ break;
+ }
+ case TK_OR: {
+ testcase( jumpIfNull==0 );
+ testcase( pParse->disableColCache==0 );
+ sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
+ pParse->disableColCache++;
+ sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
+ assert( pParse->disableColCache>0 );
+ pParse->disableColCache--;
+ break;
+ }
+ case TK_NOT: {
+ testcase( jumpIfNull==0 );
+ sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
+ break;
+ }
+ case TK_LT:
+ case TK_LE:
+ case TK_GT:
+ case TK_GE:
+ case TK_NE:
+ case TK_EQ: {
+ assert( TK_LT==OP_Lt );
+ assert( TK_LE==OP_Le );
+ assert( TK_GT==OP_Gt );
+ assert( TK_GE==OP_Ge );
+ assert( TK_EQ==OP_Eq );
+ assert( TK_NE==OP_Ne );
+ testcase( op==TK_LT );
+ testcase( op==TK_LE );
+ testcase( op==TK_GT );
+ testcase( op==TK_GE );
+ testcase( op==TK_EQ );
+ testcase( op==TK_NE );
+ testcase( jumpIfNull==0 );
+ codeCompareOperands(pParse, pExpr->pLeft, &r1, &regFree1,
+ pExpr->pRight, &r2, &regFree2);
+ codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
+ r1, r2, dest, jumpIfNull);
+ testcase( regFree1==0 );
+ testcase( regFree2==0 );
+ break;
+ }
+ case TK_ISNULL:
+ case TK_NOTNULL: {
+ assert( TK_ISNULL==OP_IsNull );
+ assert( TK_NOTNULL==OP_NotNull );
+ testcase( op==TK_ISNULL );
+ testcase( op==TK_NOTNULL );
+ r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
+ sqlite3VdbeAddOp2(v, op, r1, dest);
+ testcase( regFree1==0 );
+ break;
+ }
+ case TK_BETWEEN: {
+ /* x BETWEEN y AND z
+ **
+ ** Is equivalent to
+ **
+ ** x>=y AND x<=z
+ **
+ ** Code it as such, taking care to do the common subexpression
+ ** elementation of x.
+ */
+ Expr exprAnd;
+ Expr compLeft;
+ Expr compRight;
+ Expr exprX;
+
+ exprX = *pExpr->pLeft;
+ exprAnd.op = TK_AND;
+ exprAnd.pLeft = &compLeft;
+ exprAnd.pRight = &compRight;
+ compLeft.op = TK_GE;
+ compLeft.pLeft = &exprX;
+ compLeft.pRight = pExpr->pList->a[0].pExpr;
+ compRight.op = TK_LE;
+ compRight.pLeft = &exprX;
+ compRight.pRight = pExpr->pList->a[1].pExpr;
+ exprX.iTable = sqlite3ExprCodeTemp(pParse, &exprX, &regFree1);
+ testcase( regFree1==0 );
+ exprX.op = TK_REGISTER;
+ testcase( jumpIfNull==0 );
+ sqlite3ExprIfTrue(pParse, &exprAnd, dest, jumpIfNull);
+ break;
+ }
+ default: {
+ r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
+ sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0);
+ testcase( regFree1==0 );
+ testcase( jumpIfNull==0 );
+ break;
+ }
+ }
+ sqlite3ReleaseTempReg(pParse, regFree1);
+ sqlite3ReleaseTempReg(pParse, regFree2);
+}
+
+/*
+** Generate code for a boolean expression such that a jump is made
+** to the label "dest" if the expression is false but execution
+** continues straight thru if the expression is true.
+**
+** If the expression evaluates to NULL (neither true nor false) then
+** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull
+** is 0.
+*/
+SQLITE_PRIVATE void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
+ Vdbe *v = pParse->pVdbe;
+ int op = 0;
+ int regFree1 = 0;
+ int regFree2 = 0;
+ int r1, r2;
+
+ assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
+ if( v==0 || pExpr==0 ) return;
+
+ /* The value of pExpr->op and op are related as follows:
+ **
+ ** pExpr->op op
+ ** --------- ----------
+ ** TK_ISNULL OP_NotNull
+ ** TK_NOTNULL OP_IsNull
+ ** TK_NE OP_Eq
+ ** TK_EQ OP_Ne
+ ** TK_GT OP_Le
+ ** TK_LE OP_Gt
+ ** TK_GE OP_Lt
+ ** TK_LT OP_Ge
+ **
+ ** For other values of pExpr->op, op is undefined and unused.
+ ** The value of TK_ and OP_ constants are arranged such that we
+ ** can compute the mapping above using the following expression.
+ ** Assert()s verify that the computation is correct.
+ */
+ op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1);
+
+ /* Verify correct alignment of TK_ and OP_ constants
+ */
+ assert( pExpr->op!=TK_ISNULL || op==OP_NotNull );
+ assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull );
+ assert( pExpr->op!=TK_NE || op==OP_Eq );
+ assert( pExpr->op!=TK_EQ || op==OP_Ne );
+ assert( pExpr->op!=TK_LT || op==OP_Ge );
+ assert( pExpr->op!=TK_LE || op==OP_Gt );
+ assert( pExpr->op!=TK_GT || op==OP_Le );
+ assert( pExpr->op!=TK_GE || op==OP_Lt );
+
+ switch( pExpr->op ){
+ case TK_AND: {
+ testcase( jumpIfNull==0 );
+ testcase( pParse->disableColCache==0 );
+ sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
+ pParse->disableColCache++;
+ sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
+ assert( pParse->disableColCache>0 );
+ pParse->disableColCache--;
+ break;
+ }
+ case TK_OR: {
+ int d2 = sqlite3VdbeMakeLabel(v);
+ testcase( jumpIfNull==0 );
+ testcase( pParse->disableColCache==0 );
+ sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL);
+ pParse->disableColCache++;
+ sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
+ assert( pParse->disableColCache>0 );
+ pParse->disableColCache--;
+ sqlite3VdbeResolveLabel(v, d2);
+ break;
+ }
+ case TK_NOT: {
+ sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
+ break;
+ }
+ case TK_LT:
+ case TK_LE:
+ case TK_GT:
+ case TK_GE:
+ case TK_NE:
+ case TK_EQ: {
+ testcase( op==TK_LT );
+ testcase( op==TK_LE );
+ testcase( op==TK_GT );
+ testcase( op==TK_GE );
+ testcase( op==TK_EQ );
+ testcase( op==TK_NE );
+ testcase( jumpIfNull==0 );
+ codeCompareOperands(pParse, pExpr->pLeft, &r1, &regFree1,
+ pExpr->pRight, &r2, &regFree2);
+ codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
+ r1, r2, dest, jumpIfNull);
+ testcase( regFree1==0 );
+ testcase( regFree2==0 );
+ break;
+ }
+ case TK_ISNULL:
+ case TK_NOTNULL: {
+ testcase( op==TK_ISNULL );
+ testcase( op==TK_NOTNULL );
+ r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
+ sqlite3VdbeAddOp2(v, op, r1, dest);
+ testcase( regFree1==0 );
+ break;
+ }
+ case TK_BETWEEN: {
+ /* x BETWEEN y AND z
+ **
+ ** Is equivalent to
+ **
+ ** x>=y AND x<=z
+ **
+ ** Code it as such, taking care to do the common subexpression
+ ** elementation of x.
+ */
+ Expr exprAnd;
+ Expr compLeft;
+ Expr compRight;
+ Expr exprX;
+
+ exprX = *pExpr->pLeft;
+ exprAnd.op = TK_AND;
+ exprAnd.pLeft = &compLeft;
+ exprAnd.pRight = &compRight;
+ compLeft.op = TK_GE;
+ compLeft.pLeft = &exprX;
+ compLeft.pRight = pExpr->pList->a[0].pExpr;
+ compRight.op = TK_LE;
+ compRight.pLeft = &exprX;
+ compRight.pRight = pExpr->pList->a[1].pExpr;
+ exprX.iTable = sqlite3ExprCodeTemp(pParse, &exprX, &regFree1);
+ testcase( regFree1==0 );
+ exprX.op = TK_REGISTER;
+ testcase( jumpIfNull==0 );
+ sqlite3ExprIfFalse(pParse, &exprAnd, dest, jumpIfNull);
+ break;
+ }
+ default: {
+ r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
+ sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0);
+ testcase( regFree1==0 );
+ testcase( jumpIfNull==0 );
+ break;
+ }
+ }
+ sqlite3ReleaseTempReg(pParse, regFree1);
+ sqlite3ReleaseTempReg(pParse, regFree2);
+}
+
+/*
+** Do a deep comparison of two expression trees. Return TRUE (non-zero)
+** if they are identical and return FALSE if they differ in any way.
+**
+** Sometimes this routine will return FALSE even if the two expressions
+** really are equivalent. If we cannot prove that the expressions are
+** identical, we return FALSE just to be safe. So if this routine
+** returns false, then you do not really know for certain if the two
+** expressions are the same. But if you get a TRUE return, then you
+** can be sure the expressions are the same. In the places where
+** this routine is used, it does not hurt to get an extra FALSE - that
+** just might result in some slightly slower code. But returning
+** an incorrect TRUE could lead to a malfunction.
+*/
+SQLITE_PRIVATE int sqlite3ExprCompare(Expr *pA, Expr *pB){
+ int i;
+ if( pA==0||pB==0 ){
+ return pB==pA;
+ }
+ if( pA->op!=pB->op ) return 0;
+ if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 0;
+ if( !sqlite3ExprCompare(pA->pLeft, pB->pLeft) ) return 0;
+ if( !sqlite3ExprCompare(pA->pRight, pB->pRight) ) return 0;
+ if( pA->pList ){
+ if( pB->pList==0 ) return 0;
+ if( pA->pList->nExpr!=pB->pList->nExpr ) return 0;
+ for(i=0; i<pA->pList->nExpr; i++){
+ if( !sqlite3ExprCompare(pA->pList->a[i].pExpr, pB->pList->a[i].pExpr) ){
+ return 0;
+ }
+ }
+ }else if( pB->pList ){
+ return 0;
+ }
+ if( pA->pSelect || pB->pSelect ) return 0;
+ if( pA->iTable!=pB->iTable || pA->iColumn!=pB->iColumn ) return 0;
+ if( pA->op!=TK_COLUMN && pA->token.z ){
+ if( pB->token.z==0 ) return 0;
+ if( pB->token.n!=pA->token.n ) return 0;
+ if( sqlite3StrNICmp((char*)pA->token.z,(char*)pB->token.z,pB->token.n)!=0 ){
+ return 0;
+ }
+ }
+ return 1;
+}
+
+
+/*
+** Add a new element to the pAggInfo->aCol[] array. Return the index of
+** the new element. Return a negative number if malloc fails.
+*/
+static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
+ int i;
+ pInfo->aCol = sqlite3ArrayAllocate(
+ db,
+ pInfo->aCol,
+ sizeof(pInfo->aCol[0]),
+ 3,
+ &pInfo->nColumn,
+ &pInfo->nColumnAlloc,
+ &i
+ );
+ return i;
+}
+
+/*
+** Add a new element to the pAggInfo->aFunc[] array. Return the index of
+** the new element. Return a negative number if malloc fails.
+*/
+static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){
+ int i;
+ pInfo->aFunc = sqlite3ArrayAllocate(
+ db,
+ pInfo->aFunc,
+ sizeof(pInfo->aFunc[0]),
+ 3,
+ &pInfo->nFunc,
+ &pInfo->nFuncAlloc,
+ &i
+ );
+ return i;
+}
+
+/*
+** This is an xFunc for walkExprTree() used to implement
+** sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates
+** for additional information.
+**
+** This routine analyzes the aggregate function at pExpr.
+*/
+static int analyzeAggregate(void *pArg, Expr *pExpr){
+ int i;
+ NameContext *pNC = (NameContext *)pArg;
+ Parse *pParse = pNC->pParse;
+ SrcList *pSrcList = pNC->pSrcList;
+ AggInfo *pAggInfo = pNC->pAggInfo;
+
+ switch( pExpr->op ){
+ case TK_AGG_COLUMN:
+ case TK_COLUMN: {
+ /* Check to see if the column is in one of the tables in the FROM
+ ** clause of the aggregate query */
+ if( pSrcList ){
+ struct SrcList_item *pItem = pSrcList->a;
+ for(i=0; i<pSrcList->nSrc; i++, pItem++){
+ struct AggInfo_col *pCol;
+ if( pExpr->iTable==pItem->iCursor ){
+ /* If we reach this point, it means that pExpr refers to a table
+ ** that is in the FROM clause of the aggregate query.
+ **
+ ** Make an entry for the column in pAggInfo->aCol[] if there
+ ** is not an entry there already.
+ */
+ int k;
+ pCol = pAggInfo->aCol;
+ for(k=0; k<pAggInfo->nColumn; k++, pCol++){
+ if( pCol->iTable==pExpr->iTable &&
+ pCol->iColumn==pExpr->iColumn ){
+ break;
+ }
+ }
+ if( (k>=pAggInfo->nColumn)
+ && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0
+ ){
+ pCol = &pAggInfo->aCol[k];
+ pCol->pTab = pExpr->pTab;
+ pCol->iTable = pExpr->iTable;
+ pCol->iColumn = pExpr->iColumn;
+ pCol->iMem = ++pParse->nMem;
+ pCol->iSorterColumn = -1;
+ pCol->pExpr = pExpr;
+ if( pAggInfo->pGroupBy ){
+ int j, n;
+ ExprList *pGB = pAggInfo->pGroupBy;
+ struct ExprList_item *pTerm = pGB->a;
+ n = pGB->nExpr;
+ for(j=0; j<n; j++, pTerm++){
+ Expr *pE = pTerm->pExpr;
+ if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable &&
+ pE->iColumn==pExpr->iColumn ){
+ pCol->iSorterColumn = j;
+ break;
+ }
+ }
+ }
+ if( pCol->iSorterColumn<0 ){
+ pCol->iSorterColumn = pAggInfo->nSortingColumn++;
+ }
+ }
+ /* There is now an entry for pExpr in pAggInfo->aCol[] (either
+ ** because it was there before or because we just created it).
+ ** Convert the pExpr to be a TK_AGG_COLUMN referring to that
+ ** pAggInfo->aCol[] entry.
+ */
+ pExpr->pAggInfo = pAggInfo;
+ pExpr->op = TK_AGG_COLUMN;
+ pExpr->iAgg = k;
+ break;
+ } /* endif pExpr->iTable==pItem->iCursor */
+ } /* end loop over pSrcList */
+ }
+ return 1;
+ }
+ case TK_AGG_FUNCTION: {
+ /* The pNC->nDepth==0 test causes aggregate functions in subqueries
+ ** to be ignored */
+ if( pNC->nDepth==0 ){
+ /* Check to see if pExpr is a duplicate of another aggregate
+ ** function that is already in the pAggInfo structure
+ */
+ struct AggInfo_func *pItem = pAggInfo->aFunc;
+ for(i=0; i<pAggInfo->nFunc; i++, pItem++){
+ if( sqlite3ExprCompare(pItem->pExpr, pExpr) ){
+ break;
+ }
+ }
+ if( i>=pAggInfo->nFunc ){
+ /* pExpr is original. Make a new entry in pAggInfo->aFunc[]
+ */
+ u8 enc = ENC(pParse->db);
+ i = addAggInfoFunc(pParse->db, pAggInfo);
+ if( i>=0 ){
+ pItem = &pAggInfo->aFunc[i];
+ pItem->pExpr = pExpr;
+ pItem->iMem = ++pParse->nMem;
+ pItem->pFunc = sqlite3FindFunction(pParse->db,
+ (char*)pExpr->token.z, pExpr->token.n,
+ pExpr->pList ? pExpr->pList->nExpr : 0, enc, 0);
+ if( pExpr->flags & EP_Distinct ){
+ pItem->iDistinct = pParse->nTab++;
+ }else{
+ pItem->iDistinct = -1;
+ }
+ }
+ }
+ /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
+ */
+ pExpr->iAgg = i;
+ pExpr->pAggInfo = pAggInfo;
+ return 1;
+ }
+ }
+ }
+
+ /* Recursively walk subqueries looking for TK_COLUMN nodes that need
+ ** to be changed to TK_AGG_COLUMN. But increment nDepth so that
+ ** TK_AGG_FUNCTION nodes in subqueries will be unchanged.
+ */
+ if( pExpr->pSelect ){
+ pNC->nDepth++;
+ walkSelectExpr(pExpr->pSelect, analyzeAggregate, pNC);
+ pNC->nDepth--;
+ }
+ return 0;
+}
+
+/*
+** Analyze the given expression looking for aggregate functions and
+** for variables that need to be added to the pParse->aAgg[] array.
+** Make additional entries to the pParse->aAgg[] array as necessary.
+**
+** This routine should only be called after the expression has been
+** analyzed by sqlite3ExprResolveNames().
+*/
+SQLITE_PRIVATE void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
+ walkExprTree(pExpr, analyzeAggregate, pNC);
+}
+
+/*
+** Call sqlite3ExprAnalyzeAggregates() for every expression in an
+** expression list. Return the number of errors.
+**
+** If an error is found, the analysis is cut short.
+*/
+SQLITE_PRIVATE void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
+ struct ExprList_item *pItem;
+ int i;
+ if( pList ){
+ for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
+ sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
+ }
+ }
+}
+
+/*
+** Allocate or deallocate temporary use registers during code generation.
+*/
+SQLITE_PRIVATE int sqlite3GetTempReg(Parse *pParse){
+ int i, r;
+ if( pParse->nTempReg==0 ){
+ return ++pParse->nMem;
+ }
+ for(i=0; i<pParse->nTempReg; i++){
+ r = pParse->aTempReg[i];
+ if( usedAsColumnCache(pParse, r, r) ) continue;
+ }
+ if( i>=pParse->nTempReg ){
+ return ++pParse->nMem;
+ }
+ while( i<pParse->nTempReg-1 ){
+ pParse->aTempReg[i] = pParse->aTempReg[i+1];
+ }
+ pParse->nTempReg--;
+ return r;
+}
+SQLITE_PRIVATE void sqlite3ReleaseTempReg(Parse *pParse, int iReg){
+ if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){
+ pParse->aTempReg[pParse->nTempReg++] = iReg;
+ }
+}
+
+/*
+** Allocate or deallocate a block of nReg consecutive registers
+*/
+SQLITE_PRIVATE int sqlite3GetTempRange(Parse *pParse, int nReg){
+ int i, n;
+ i = pParse->iRangeReg;
+ n = pParse->nRangeReg;
+ if( nReg<=n && !usedAsColumnCache(pParse, i, i+n-1) ){
+ pParse->iRangeReg += nReg;
+ pParse->nRangeReg -= nReg;
+ }else{
+ i = pParse->nMem+1;
+ pParse->nMem += nReg;
+ }
+ return i;
+}
+SQLITE_PRIVATE void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){
+ if( nReg>pParse->nRangeReg ){
+ pParse->nRangeReg = nReg;
+ pParse->iRangeReg = iReg;
+ }
+}
+
+/************** End of expr.c ************************************************/
+/************** Begin file alter.c *******************************************/
+/*
+** 2005 February 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains C code routines that used to generate VDBE code
+** that implements the ALTER TABLE command.
+**
+** $Id: alter.c,v 1.44 2008/05/09 14:17:52 drh Exp $
+*/
+
+/*
+** The code in this file only exists if we are not omitting the
+** ALTER TABLE logic from the build.
+*/
+#ifndef SQLITE_OMIT_ALTERTABLE
+
+
+/*
+** This function is used by SQL generated to implement the
+** ALTER TABLE command. The first argument is the text of a CREATE TABLE or
+** CREATE INDEX command. The second is a table name. The table name in
+** the CREATE TABLE or CREATE INDEX statement is replaced with the third
+** argument and the result returned. Examples:
+**
+** sqlite_rename_table('CREATE TABLE abc(a, b, c)', 'def')
+** -> 'CREATE TABLE def(a, b, c)'
+**
+** sqlite_rename_table('CREATE INDEX i ON abc(a)', 'def')
+** -> 'CREATE INDEX i ON def(a, b, c)'
+*/
+static void renameTableFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ unsigned char const *zSql = sqlite3_value_text(argv[0]);
+ unsigned char const *zTableName = sqlite3_value_text(argv[1]);
+
+ int token;
+ Token tname;
+ unsigned char const *zCsr = zSql;
+ int len = 0;
+ char *zRet;
+
+ sqlite3 *db = sqlite3_context_db_handle(context);
+
+ /* The principle used to locate the table name in the CREATE TABLE
+ ** statement is that the table name is the first non-space token that
+ ** is immediately followed by a left parenthesis - TK_LP - or "USING" TK_USING.
+ */
+ if( zSql ){
+ do {
+ if( !*zCsr ){
+ /* Ran out of input before finding an opening bracket. Return NULL. */
+ return;
+ }
+
+ /* Store the token that zCsr points to in tname. */
+ tname.z = zCsr;
+ tname.n = len;
+
+ /* Advance zCsr to the next token. Store that token type in 'token',
+ ** and its length in 'len' (to be used next iteration of this loop).
+ */
+ do {
+ zCsr += len;
+ len = sqlite3GetToken(zCsr, &token);
+ } while( token==TK_SPACE || token==TK_COMMENT );
+ assert( len>0 );
+ } while( token!=TK_LP && token!=TK_USING );
+
+ zRet = sqlite3MPrintf(db, "%.*s\"%w\"%s", tname.z - zSql, zSql,
+ zTableName, tname.z+tname.n);
+ sqlite3_result_text(context, zRet, -1, sqlite3_free);
+ }
+}
+
+#ifndef SQLITE_OMIT_TRIGGER
+/* This function is used by SQL generated to implement the
+** ALTER TABLE command. The first argument is the text of a CREATE TRIGGER
+** statement. The second is a table name. The table name in the CREATE
+** TRIGGER statement is replaced with the third argument and the result
+** returned. This is analagous to renameTableFunc() above, except for CREATE
+** TRIGGER, not CREATE INDEX and CREATE TABLE.
+*/
+static void renameTriggerFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ unsigned char const *zSql = sqlite3_value_text(argv[0]);
+ unsigned char const *zTableName = sqlite3_value_text(argv[1]);
+
+ int token;
+ Token tname;
+ int dist = 3;
+ unsigned char const *zCsr = zSql;
+ int len = 0;
+ char *zRet;
+
+ sqlite3 *db = sqlite3_context_db_handle(context);
+
+ /* The principle used to locate the table name in the CREATE TRIGGER
+ ** statement is that the table name is the first token that is immediatedly
+ ** preceded by either TK_ON or TK_DOT and immediatedly followed by one
+ ** of TK_WHEN, TK_BEGIN or TK_FOR.
+ */
+ if( zSql ){
+ do {
+
+ if( !*zCsr ){
+ /* Ran out of input before finding the table name. Return NULL. */
+ return;
+ }
+
+ /* Store the token that zCsr points to in tname. */
+ tname.z = zCsr;
+ tname.n = len;
+
+ /* Advance zCsr to the next token. Store that token type in 'token',
+ ** and its length in 'len' (to be used next iteration of this loop).
+ */
+ do {
+ zCsr += len;
+ len = sqlite3GetToken(zCsr, &token);
+ }while( token==TK_SPACE );
+ assert( len>0 );
+
+ /* Variable 'dist' stores the number of tokens read since the most
+ ** recent TK_DOT or TK_ON. This means that when a WHEN, FOR or BEGIN
+ ** token is read and 'dist' equals 2, the condition stated above
+ ** to be met.
+ **
+ ** Note that ON cannot be a database, table or column name, so
+ ** there is no need to worry about syntax like
+ ** "CREATE TRIGGER ... ON ON.ON BEGIN ..." etc.
+ */
+ dist++;
+ if( token==TK_DOT || token==TK_ON ){
+ dist = 0;
+ }
+ } while( dist!=2 || (token!=TK_WHEN && token!=TK_FOR && token!=TK_BEGIN) );
+
+ /* Variable tname now contains the token that is the old table-name
+ ** in the CREATE TRIGGER statement.
+ */
+ zRet = sqlite3MPrintf(db, "%.*s\"%w\"%s", tname.z - zSql, zSql,
+ zTableName, tname.z+tname.n);
+ sqlite3_result_text(context, zRet, -1, sqlite3_free);
+ }
+}
+#endif /* !SQLITE_OMIT_TRIGGER */
+
+/*
+** Register built-in functions used to help implement ALTER TABLE
+*/
+SQLITE_PRIVATE void sqlite3AlterFunctions(sqlite3 *db){
+ static const struct {
+ char *zName;
+ signed char nArg;
+ void (*xFunc)(sqlite3_context*,int,sqlite3_value **);
+ } aFuncs[] = {
+ { "sqlite_rename_table", 2, renameTableFunc},
+#ifndef SQLITE_OMIT_TRIGGER
+ { "sqlite_rename_trigger", 2, renameTriggerFunc},
+#endif
+ };
+ int i;
+
+ for(i=0; i<sizeof(aFuncs)/sizeof(aFuncs[0]); i++){
+ sqlite3CreateFunc(db, aFuncs[i].zName, aFuncs[i].nArg,
+ SQLITE_UTF8, 0, aFuncs[i].xFunc, 0, 0);
+ }
+}
+
+/*
+** Generate the text of a WHERE expression which can be used to select all
+** temporary triggers on table pTab from the sqlite_temp_master table. If
+** table pTab has no temporary triggers, or is itself stored in the
+** temporary database, NULL is returned.
+*/
+static char *whereTempTriggers(Parse *pParse, Table *pTab){
+ Trigger *pTrig;
+ char *zWhere = 0;
+ char *tmp = 0;
+ const Schema *pTempSchema = pParse->db->aDb[1].pSchema; /* Temp db schema */
+
+ /* If the table is not located in the temp-db (in which case NULL is
+ ** returned, loop through the tables list of triggers. For each trigger
+ ** that is not part of the temp-db schema, add a clause to the WHERE
+ ** expression being built up in zWhere.
+ */
+ if( pTab->pSchema!=pTempSchema ){
+ sqlite3 *db = pParse->db;
+ for( pTrig=pTab->pTrigger; pTrig; pTrig=pTrig->pNext ){
+ if( pTrig->pSchema==pTempSchema ){
+ if( !zWhere ){
+ zWhere = sqlite3MPrintf(db, "name=%Q", pTrig->name);
+ }else{
+ tmp = zWhere;
+ zWhere = sqlite3MPrintf(db, "%s OR name=%Q", zWhere, pTrig->name);
+ sqlite3_free(tmp);
+ }
+ }
+ }
+ }
+ return zWhere;
+}
+
+/*
+** Generate code to drop and reload the internal representation of table
+** pTab from the database, including triggers and temporary triggers.
+** Argument zName is the name of the table in the database schema at
+** the time the generated code is executed. This can be different from
+** pTab->zName if this function is being called to code part of an
+** "ALTER TABLE RENAME TO" statement.
+*/
+static void reloadTableSchema(Parse *pParse, Table *pTab, const char *zName){
+ Vdbe *v;
+ char *zWhere;
+ int iDb; /* Index of database containing pTab */
+#ifndef SQLITE_OMIT_TRIGGER
+ Trigger *pTrig;
+#endif
+
+ v = sqlite3GetVdbe(pParse);
+ if( !v ) return;
+ assert( sqlite3BtreeHoldsAllMutexes(pParse->db) );
+ iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
+ assert( iDb>=0 );
+
+#ifndef SQLITE_OMIT_TRIGGER
+ /* Drop any table triggers from the internal schema. */
+ for(pTrig=pTab->pTrigger; pTrig; pTrig=pTrig->pNext){
+ int iTrigDb = sqlite3SchemaToIndex(pParse->db, pTrig->pSchema);
+ assert( iTrigDb==iDb || iTrigDb==1 );
+ sqlite3VdbeAddOp4(v, OP_DropTrigger, iTrigDb, 0, 0, pTrig->name, 0);
+ }
+#endif
+
+ /* Drop the table and index from the internal schema */
+ sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0);
+
+ /* Reload the table, index and permanent trigger schemas. */
+ zWhere = sqlite3MPrintf(pParse->db, "tbl_name=%Q", zName);
+ if( !zWhere ) return;
+ sqlite3VdbeAddOp4(v, OP_ParseSchema, iDb, 0, 0, zWhere, P4_DYNAMIC);
+
+#ifndef SQLITE_OMIT_TRIGGER
+ /* Now, if the table is not stored in the temp database, reload any temp
+ ** triggers. Don't use IN(...) in case SQLITE_OMIT_SUBQUERY is defined.
+ */
+ if( (zWhere=whereTempTriggers(pParse, pTab))!=0 ){
+ sqlite3VdbeAddOp4(v, OP_ParseSchema, 1, 0, 0, zWhere, P4_DYNAMIC);
+ }
+#endif
+}
+
+/*
+** Generate code to implement the "ALTER TABLE xxx RENAME TO yyy"
+** command.
+*/
+SQLITE_PRIVATE void sqlite3AlterRenameTable(
+ Parse *pParse, /* Parser context. */
+ SrcList *pSrc, /* The table to rename. */
+ Token *pName /* The new table name. */
+){
+ int iDb; /* Database that contains the table */
+ char *zDb; /* Name of database iDb */
+ Table *pTab; /* Table being renamed */
+ char *zName = 0; /* NULL-terminated version of pName */
+ sqlite3 *db = pParse->db; /* Database connection */
+ int nTabName; /* Number of UTF-8 characters in zTabName */
+ const char *zTabName; /* Original name of the table */
+ Vdbe *v;
+#ifndef SQLITE_OMIT_TRIGGER
+ char *zWhere = 0; /* Where clause to locate temp triggers */
+#endif
+ int isVirtualRename = 0; /* True if this is a v-table with an xRename() */
+
+ if( db->mallocFailed ) goto exit_rename_table;
+ assert( pSrc->nSrc==1 );
+ assert( sqlite3BtreeHoldsAllMutexes(pParse->db) );
+
+ pTab = sqlite3LocateTable(pParse, 0, pSrc->a[0].zName, pSrc->a[0].zDatabase);
+ if( !pTab ) goto exit_rename_table;
+ iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
+ zDb = db->aDb[iDb].zName;
+
+ /* Get a NULL terminated version of the new table name. */
+ zName = sqlite3NameFromToken(db, pName);
+ if( !zName ) goto exit_rename_table;
+
+ /* Check that a table or index named 'zName' does not already exist
+ ** in database iDb. If so, this is an error.
+ */
+ if( sqlite3FindTable(db, zName, zDb) || sqlite3FindIndex(db, zName, zDb) ){
+ sqlite3ErrorMsg(pParse,
+ "there is already another table or index with this name: %s", zName);
+ goto exit_rename_table;
+ }
+
+ /* Make sure it is not a system table being altered, or a reserved name
+ ** that the table is being renamed to.
+ */
+ if( strlen(pTab->zName)>6 && 0==sqlite3StrNICmp(pTab->zName, "sqlite_", 7) ){
+ sqlite3ErrorMsg(pParse, "table %s may not be altered", pTab->zName);
+ goto exit_rename_table;
+ }
+ if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
+ goto exit_rename_table;
+ }
+
+#ifndef SQLITE_OMIT_VIEW
+ if( pTab->pSelect ){
+ sqlite3ErrorMsg(pParse, "view %s may not be altered", pTab->zName);
+ goto exit_rename_table;
+ }
+#endif
+
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ /* Invoke the authorization callback. */
+ if( sqlite3AuthCheck(pParse, SQLITE_ALTER_TABLE, zDb, pTab->zName, 0) ){
+ goto exit_rename_table;
+ }
+#endif
+
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ if( sqlite3ViewGetColumnNames(pParse, pTab) ){
+ goto exit_rename_table;
+ }
+ if( IsVirtual(pTab) && pTab->pMod->pModule->xRename ){
+ isVirtualRename = 1;
+ }
+#endif
+
+ /* Begin a transaction and code the VerifyCookie for database iDb.
+ ** Then modify the schema cookie (since the ALTER TABLE modifies the
+ ** schema). Open a statement transaction if the table is a virtual
+ ** table.
+ */
+ v = sqlite3GetVdbe(pParse);
+ if( v==0 ){
+ goto exit_rename_table;
+ }
+ sqlite3BeginWriteOperation(pParse, isVirtualRename, iDb);
+ sqlite3ChangeCookie(pParse, iDb);
+
+ /* If this is a virtual table, invoke the xRename() function if
+ ** one is defined. The xRename() callback will modify the names
+ ** of any resources used by the v-table implementation (including other
+ ** SQLite tables) that are identified by the name of the virtual table.
+ */
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ if( isVirtualRename ){
+ int i = ++pParse->nMem;
+ sqlite3VdbeAddOp4(v, OP_String8, 0, i, 0, zName, 0);
+ sqlite3VdbeAddOp4(v, OP_VRename, i, 0, 0,(const char*)pTab->pVtab, P4_VTAB);
+ }
+#endif
+
+ /* figure out how many UTF-8 characters are in zName */
+ zTabName = pTab->zName;
+ nTabName = sqlite3Utf8CharLen(zTabName, -1);
+
+ /* Modify the sqlite_master table to use the new table name. */
+ sqlite3NestedParse(pParse,
+ "UPDATE %Q.%s SET "
+#ifdef SQLITE_OMIT_TRIGGER
+ "sql = sqlite_rename_table(sql, %Q), "
+#else
+ "sql = CASE "
+ "WHEN type = 'trigger' THEN sqlite_rename_trigger(sql, %Q)"
+ "ELSE sqlite_rename_table(sql, %Q) END, "
+#endif
+ "tbl_name = %Q, "
+ "name = CASE "
+ "WHEN type='table' THEN %Q "
+ "WHEN name LIKE 'sqlite_autoindex%%' AND type='index' THEN "
+ "'sqlite_autoindex_' || %Q || substr(name,%d+18) "
+ "ELSE name END "
+ "WHERE tbl_name=%Q AND "
+ "(type='table' OR type='index' OR type='trigger');",
+ zDb, SCHEMA_TABLE(iDb), zName, zName, zName,
+#ifndef SQLITE_OMIT_TRIGGER
+ zName,
+#endif
+ zName, nTabName, zTabName
+ );
+
+#ifndef SQLITE_OMIT_AUTOINCREMENT
+ /* If the sqlite_sequence table exists in this database, then update
+ ** it with the new table name.
+ */
+ if( sqlite3FindTable(db, "sqlite_sequence", zDb) ){
+ sqlite3NestedParse(pParse,
+ "UPDATE \"%w\".sqlite_sequence set name = %Q WHERE name = %Q",
+ zDb, zName, pTab->zName);
+ }
+#endif
+
+#ifndef SQLITE_OMIT_TRIGGER
+ /* If there are TEMP triggers on this table, modify the sqlite_temp_master
+ ** table. Don't do this if the table being ALTERed is itself located in
+ ** the temp database.
+ */
+ if( (zWhere=whereTempTriggers(pParse, pTab))!=0 ){
+ sqlite3NestedParse(pParse,
+ "UPDATE sqlite_temp_master SET "
+ "sql = sqlite_rename_trigger(sql, %Q), "
+ "tbl_name = %Q "
+ "WHERE %s;", zName, zName, zWhere);
+ sqlite3_free(zWhere);
+ }
+#endif
+
+ /* Drop and reload the internal table schema. */
+ reloadTableSchema(pParse, pTab, zName);
+
+exit_rename_table:
+ sqlite3SrcListDelete(pSrc);
+ sqlite3_free(zName);
+}
+
+
+/*
+** This function is called after an "ALTER TABLE ... ADD" statement
+** has been parsed. Argument pColDef contains the text of the new
+** column definition.
+**
+** The Table structure pParse->pNewTable was extended to include
+** the new column during parsing.
+*/
+SQLITE_PRIVATE void sqlite3AlterFinishAddColumn(Parse *pParse, Token *pColDef){
+ Table *pNew; /* Copy of pParse->pNewTable */
+ Table *pTab; /* Table being altered */
+ int iDb; /* Database number */
+ const char *zDb; /* Database name */
+ const char *zTab; /* Table name */
+ char *zCol; /* Null-terminated column definition */
+ Column *pCol; /* The new column */
+ Expr *pDflt; /* Default value for the new column */
+ sqlite3 *db; /* The database connection; */
+
+ if( pParse->nErr ) return;
+ pNew = pParse->pNewTable;
+ assert( pNew );
+
+ db = pParse->db;
+ assert( sqlite3BtreeHoldsAllMutexes(db) );
+ iDb = sqlite3SchemaToIndex(db, pNew->pSchema);
+ zDb = db->aDb[iDb].zName;
+ zTab = pNew->zName;
+ pCol = &pNew->aCol[pNew->nCol-1];
+ pDflt = pCol->pDflt;
+ pTab = sqlite3FindTable(db, zTab, zDb);
+ assert( pTab );
+
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ /* Invoke the authorization callback. */
+ if( sqlite3AuthCheck(pParse, SQLITE_ALTER_TABLE, zDb, pTab->zName, 0) ){
+ return;
+ }
+#endif
+
+ /* If the default value for the new column was specified with a
+ ** literal NULL, then set pDflt to 0. This simplifies checking
+ ** for an SQL NULL default below.
+ */
+ if( pDflt && pDflt->op==TK_NULL ){
+ pDflt = 0;
+ }
+
+ /* Check that the new column is not specified as PRIMARY KEY or UNIQUE.
+ ** If there is a NOT NULL constraint, then the default value for the
+ ** column must not be NULL.
+ */
+ if( pCol->isPrimKey ){
+ sqlite3ErrorMsg(pParse, "Cannot add a PRIMARY KEY column");
+ return;
+ }
+ if( pNew->pIndex ){
+ sqlite3ErrorMsg(pParse, "Cannot add a UNIQUE column");
+ return;
+ }
+ if( pCol->notNull && !pDflt ){
+ sqlite3ErrorMsg(pParse,
+ "Cannot add a NOT NULL column with default value NULL");
+ return;
+ }
+
+ /* Ensure the default expression is something that sqlite3ValueFromExpr()
+ ** can handle (i.e. not CURRENT_TIME etc.)
+ */
+ if( pDflt ){
+ sqlite3_value *pVal;
+ if( sqlite3ValueFromExpr(db, pDflt, SQLITE_UTF8, SQLITE_AFF_NONE, &pVal) ){
+ db->mallocFailed = 1;
+ return;
+ }
+ if( !pVal ){
+ sqlite3ErrorMsg(pParse, "Cannot add a column with non-constant default");
+ return;
+ }
+ sqlite3ValueFree(pVal);
+ }
+
+ /* Modify the CREATE TABLE statement. */
+ zCol = sqlite3DbStrNDup(db, (char*)pColDef->z, pColDef->n);
+ if( zCol ){
+ char *zEnd = &zCol[pColDef->n-1];
+ while( (zEnd>zCol && *zEnd==';') || isspace(*(unsigned char *)zEnd) ){
+ *zEnd-- = '\0';
+ }
+ sqlite3NestedParse(pParse,
+ "UPDATE \"%w\".%s SET "
+ "sql = substr(sql,1,%d) || ', ' || %Q || substr(sql,%d) "
+ "WHERE type = 'table' AND name = %Q",
+ zDb, SCHEMA_TABLE(iDb), pNew->addColOffset, zCol, pNew->addColOffset+1,
+ zTab
+ );
+ sqlite3_free(zCol);
+ }
+
+ /* If the default value of the new column is NULL, then set the file
+ ** format to 2. If the default value of the new column is not NULL,
+ ** the file format becomes 3.
+ */
+ sqlite3MinimumFileFormat(pParse, iDb, pDflt ? 3 : 2);
+
+ /* Reload the schema of the modified table. */
+ reloadTableSchema(pParse, pTab, pTab->zName);
+}
+
+/*
+** This function is called by the parser after the table-name in
+** an "ALTER TABLE <table-name> ADD" statement is parsed. Argument
+** pSrc is the full-name of the table being altered.
+**
+** This routine makes a (partial) copy of the Table structure
+** for the table being altered and sets Parse.pNewTable to point
+** to it. Routines called by the parser as the column definition
+** is parsed (i.e. sqlite3AddColumn()) add the new Column data to
+** the copy. The copy of the Table structure is deleted by tokenize.c
+** after parsing is finished.
+**
+** Routine sqlite3AlterFinishAddColumn() will be called to complete
+** coding the "ALTER TABLE ... ADD" statement.
+*/
+SQLITE_PRIVATE void sqlite3AlterBeginAddColumn(Parse *pParse, SrcList *pSrc){
+ Table *pNew;
+ Table *pTab;
+ Vdbe *v;
+ int iDb;
+ int i;
+ int nAlloc;
+ sqlite3 *db = pParse->db;
+
+ /* Look up the table being altered. */
+ assert( pParse->pNewTable==0 );
+ assert( sqlite3BtreeHoldsAllMutexes(db) );
+ if( db->mallocFailed ) goto exit_begin_add_column;
+ pTab = sqlite3LocateTable(pParse, 0, pSrc->a[0].zName, pSrc->a[0].zDatabase);
+ if( !pTab ) goto exit_begin_add_column;
+
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ if( IsVirtual(pTab) ){
+ sqlite3ErrorMsg(pParse, "virtual tables may not be altered");
+ goto exit_begin_add_column;
+ }
+#endif
+
+ /* Make sure this is not an attempt to ALTER a view. */
+ if( pTab->pSelect ){
+ sqlite3ErrorMsg(pParse, "Cannot add a column to a view");
+ goto exit_begin_add_column;
+ }
+
+ assert( pTab->addColOffset>0 );
+ iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
+
+ /* Put a copy of the Table struct in Parse.pNewTable for the
+ ** sqlite3AddColumn() function and friends to modify.
+ */
+ pNew = (Table*)sqlite3DbMallocZero(db, sizeof(Table));
+ if( !pNew ) goto exit_begin_add_column;
+ pParse->pNewTable = pNew;
+ pNew->nRef = 1;
+ pNew->nCol = pTab->nCol;
+ assert( pNew->nCol>0 );
+ nAlloc = (((pNew->nCol-1)/8)*8)+8;
+ assert( nAlloc>=pNew->nCol && nAlloc%8==0 && nAlloc-pNew->nCol<8 );
+ pNew->aCol = (Column*)sqlite3DbMallocZero(db, sizeof(Column)*nAlloc);
+ pNew->zName = sqlite3DbStrDup(db, pTab->zName);
+ if( !pNew->aCol || !pNew->zName ){
+ db->mallocFailed = 1;
+ goto exit_begin_add_column;
+ }
+ memcpy(pNew->aCol, pTab->aCol, sizeof(Column)*pNew->nCol);
+ for(i=0; i<pNew->nCol; i++){
+ Column *pCol = &pNew->aCol[i];
+ pCol->zName = sqlite3DbStrDup(db, pCol->zName);
+ pCol->zColl = 0;
+ pCol->zType = 0;
+ pCol->pDflt = 0;
+ }
+ pNew->pSchema = db->aDb[iDb].pSchema;
+ pNew->addColOffset = pTab->addColOffset;
+ pNew->nRef = 1;
+
+ /* Begin a transaction and increment the schema cookie. */
+ sqlite3BeginWriteOperation(pParse, 0, iDb);
+ v = sqlite3GetVdbe(pParse);
+ if( !v ) goto exit_begin_add_column;
+ sqlite3ChangeCookie(pParse, iDb);
+
+exit_begin_add_column:
+ sqlite3SrcListDelete(pSrc);
+ return;
+}
+#endif /* SQLITE_ALTER_TABLE */
+
+/************** End of alter.c ***********************************************/
+/************** Begin file analyze.c *****************************************/
+/*
+** 2005 July 8
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains code associated with the ANALYZE command.
+**
+** @(#) $Id: analyze.c,v 1.42 2008/03/25 09:47:35 danielk1977 Exp $
+*/
+#ifndef SQLITE_OMIT_ANALYZE
+
+/*
+** This routine generates code that opens the sqlite_stat1 table on cursor
+** iStatCur.
+**
+** If the sqlite_stat1 tables does not previously exist, it is created.
+** If it does previously exist, all entires associated with table zWhere
+** are removed. If zWhere==0 then all entries are removed.
+*/
+static void openStatTable(
+ Parse *pParse, /* Parsing context */
+ int iDb, /* The database we are looking in */
+ int iStatCur, /* Open the sqlite_stat1 table on this cursor */
+ const char *zWhere /* Delete entries associated with this table */
+){
+ sqlite3 *db = pParse->db;
+ Db *pDb;
+ int iRootPage;
+ int createStat1 = 0;
+ Table *pStat;
+ Vdbe *v = sqlite3GetVdbe(pParse);
+
+ if( v==0 ) return;
+ assert( sqlite3BtreeHoldsAllMutexes(db) );
+ assert( sqlite3VdbeDb(v)==db );
+ pDb = &db->aDb[iDb];
+ if( (pStat = sqlite3FindTable(db, "sqlite_stat1", pDb->zName))==0 ){
+ /* The sqlite_stat1 tables does not exist. Create it.
+ ** Note that a side-effect of the CREATE TABLE statement is to leave
+ ** the rootpage of the new table in register pParse->regRoot. This is
+ ** important because the OpenWrite opcode below will be needing it. */
+ sqlite3NestedParse(pParse,
+ "CREATE TABLE %Q.sqlite_stat1(tbl,idx,stat)",
+ pDb->zName
+ );
+ iRootPage = pParse->regRoot;
+ createStat1 = 1; /* Cause rootpage to be taken from top of stack */
+ }else if( zWhere ){
+ /* The sqlite_stat1 table exists. Delete all entries associated with
+ ** the table zWhere. */
+ sqlite3NestedParse(pParse,
+ "DELETE FROM %Q.sqlite_stat1 WHERE tbl=%Q",
+ pDb->zName, zWhere
+ );
+ iRootPage = pStat->tnum;
+ }else{
+ /* The sqlite_stat1 table already exists. Delete all rows. */
+ iRootPage = pStat->tnum;
+ sqlite3VdbeAddOp2(v, OP_Clear, pStat->tnum, iDb);
+ }
+
+ /* Open the sqlite_stat1 table for writing. Unless it was created
+ ** by this vdbe program, lock it for writing at the shared-cache level.
+ ** If this vdbe did create the sqlite_stat1 table, then it must have
+ ** already obtained a schema-lock, making the write-lock redundant.
+ */
+ if( !createStat1 ){
+ sqlite3TableLock(pParse, iDb, iRootPage, 1, "sqlite_stat1");
+ }
+ sqlite3VdbeAddOp2(v, OP_SetNumColumns, 0, 3);
+ sqlite3VdbeAddOp3(v, OP_OpenWrite, iStatCur, iRootPage, iDb);
+ sqlite3VdbeChangeP5(v, createStat1);
+}
+
+/*
+** Generate code to do an analysis of all indices associated with
+** a single table.
+*/
+static void analyzeOneTable(
+ Parse *pParse, /* Parser context */
+ Table *pTab, /* Table whose indices are to be analyzed */
+ int iStatCur, /* Cursor that writes to the sqlite_stat1 table */
+ int iMem /* Available memory locations begin here */
+){
+ Index *pIdx; /* An index to being analyzed */
+ int iIdxCur; /* Cursor number for index being analyzed */
+ int nCol; /* Number of columns in the index */
+ Vdbe *v; /* The virtual machine being built up */
+ int i; /* Loop counter */
+ int topOfLoop; /* The top of the loop */
+ int endOfLoop; /* The end of the loop */
+ int addr; /* The address of an instruction */
+ int iDb; /* Index of database containing pTab */
+
+ v = sqlite3GetVdbe(pParse);
+ if( v==0 || pTab==0 || pTab->pIndex==0 ){
+ /* Do no analysis for tables that have no indices */
+ return;
+ }
+ assert( sqlite3BtreeHoldsAllMutexes(pParse->db) );
+ iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
+ assert( iDb>=0 );
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ if( sqlite3AuthCheck(pParse, SQLITE_ANALYZE, pTab->zName, 0,
+ pParse->db->aDb[iDb].zName ) ){
+ return;
+ }
+#endif
+
+ /* Establish a read-lock on the table at the shared-cache level. */
+ sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
+
+ iIdxCur = pParse->nTab;
+ for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
+ KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx);
+ int regFields; /* Register block for building records */
+ int regRec; /* Register holding completed record */
+ int regTemp; /* Temporary use register */
+ int regCol; /* Content of a column from the table being analyzed */
+ int regRowid; /* Rowid for the inserted record */
+ int regF2;
+
+ /* Open a cursor to the index to be analyzed
+ */
+ assert( iDb==sqlite3SchemaToIndex(pParse->db, pIdx->pSchema) );
+ nCol = pIdx->nColumn;
+ sqlite3VdbeAddOp2(v, OP_SetNumColumns, 0, nCol+1);
+ sqlite3VdbeAddOp4(v, OP_OpenRead, iIdxCur, pIdx->tnum, iDb,
+ (char *)pKey, P4_KEYINFO_HANDOFF);
+ VdbeComment((v, "%s", pIdx->zName));
+ regFields = iMem+nCol*2;
+ regTemp = regRowid = regCol = regFields+3;
+ regRec = regCol+1;
+ if( regRec>pParse->nMem ){
+ pParse->nMem = regRec;
+ }
+
+ /* Memory cells are used as follows:
+ **
+ ** mem[iMem]: The total number of rows in the table.
+ ** mem[iMem+1]: Number of distinct values in column 1
+ ** ...
+ ** mem[iMem+nCol]: Number of distinct values in column N
+ ** mem[iMem+nCol+1] Last observed value of column 1
+ ** ...
+ ** mem[iMem+nCol+nCol]: Last observed value of column N
+ **
+ ** Cells iMem through iMem+nCol are initialized to 0. The others
+ ** are initialized to NULL.
+ */
+ for(i=0; i<=nCol; i++){
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, iMem+i);
+ }
+ for(i=0; i<nCol; i++){
+ sqlite3VdbeAddOp2(v, OP_Null, 0, iMem+nCol+i+1);
+ }
+
+ /* Do the analysis.
+ */
+ endOfLoop = sqlite3VdbeMakeLabel(v);
+ sqlite3VdbeAddOp2(v, OP_Rewind, iIdxCur, endOfLoop);
+ topOfLoop = sqlite3VdbeCurrentAddr(v);
+ sqlite3VdbeAddOp2(v, OP_AddImm, iMem, 1);
+ for(i=0; i<nCol; i++){
+ sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, regCol);
+ sqlite3VdbeAddOp3(v, OP_Ne, regCol, 0, iMem+nCol+i+1);
+ /**** TODO: add collating sequence *****/
+ sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL);
+ }
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, endOfLoop);
+ for(i=0; i<nCol; i++){
+ sqlite3VdbeJumpHere(v, topOfLoop + 2*(i + 1));
+ sqlite3VdbeAddOp2(v, OP_AddImm, iMem+i+1, 1);
+ sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, iMem+nCol+i+1);
+ }
+ sqlite3VdbeResolveLabel(v, endOfLoop);
+ sqlite3VdbeAddOp2(v, OP_Next, iIdxCur, topOfLoop);
+ sqlite3VdbeAddOp1(v, OP_Close, iIdxCur);
+
+ /* Store the results.
+ **
+ ** The result is a single row of the sqlite_stat1 table. The first
+ ** two columns are the names of the table and index. The third column
+ ** is a string composed of a list of integer statistics about the
+ ** index. The first integer in the list is the total number of entires
+ ** in the index. There is one additional integer in the list for each
+ ** column of the table. This additional integer is a guess of how many
+ ** rows of the table the index will select. If D is the count of distinct
+ ** values and K is the total number of rows, then the integer is computed
+ ** as:
+ **
+ ** I = (K+D-1)/D
+ **
+ ** If K==0 then no entry is made into the sqlite_stat1 table.
+ ** If K>0 then it is always the case the D>0 so division by zero
+ ** is never possible.
+ */
+ addr = sqlite3VdbeAddOp1(v, OP_IfNot, iMem);
+ sqlite3VdbeAddOp4(v, OP_String8, 0, regFields, 0, pTab->zName, 0);
+ sqlite3VdbeAddOp4(v, OP_String8, 0, regFields+1, 0, pIdx->zName, 0);
+ regF2 = regFields+2;
+ sqlite3VdbeAddOp2(v, OP_SCopy, iMem, regF2);
+ for(i=0; i<nCol; i++){
+ sqlite3VdbeAddOp4(v, OP_String8, 0, regTemp, 0, " ", 0);
+ sqlite3VdbeAddOp3(v, OP_Concat, regTemp, regF2, regF2);
+ sqlite3VdbeAddOp3(v, OP_Add, iMem, iMem+i+1, regTemp);
+ sqlite3VdbeAddOp2(v, OP_AddImm, regTemp, -1);
+ sqlite3VdbeAddOp3(v, OP_Divide, iMem+i+1, regTemp, regTemp);
+ sqlite3VdbeAddOp1(v, OP_ToInt, regTemp);
+ sqlite3VdbeAddOp3(v, OP_Concat, regTemp, regF2, regF2);
+ }
+ sqlite3VdbeAddOp4(v, OP_MakeRecord, regFields, 3, regRec, "aaa", 0);
+ sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regRowid);
+ sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regRec, regRowid);
+ sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
+ sqlite3VdbeJumpHere(v, addr);
+ }
+}
+
+/*
+** Generate code that will cause the most recent index analysis to
+** be laoded into internal hash tables where is can be used.
+*/
+static void loadAnalysis(Parse *pParse, int iDb){
+ Vdbe *v = sqlite3GetVdbe(pParse);
+ if( v ){
+ sqlite3VdbeAddOp1(v, OP_LoadAnalysis, iDb);
+ }
+}
+
+/*
+** Generate code that will do an analysis of an entire database
+*/
+static void analyzeDatabase(Parse *pParse, int iDb){
+ sqlite3 *db = pParse->db;
+ Schema *pSchema = db->aDb[iDb].pSchema; /* Schema of database iDb */
+ HashElem *k;
+ int iStatCur;
+ int iMem;
+
+ sqlite3BeginWriteOperation(pParse, 0, iDb);
+ iStatCur = pParse->nTab++;
+ openStatTable(pParse, iDb, iStatCur, 0);
+ iMem = pParse->nMem+1;
+ for(k=sqliteHashFirst(&pSchema->tblHash); k; k=sqliteHashNext(k)){
+ Table *pTab = (Table*)sqliteHashData(k);
+ analyzeOneTable(pParse, pTab, iStatCur, iMem);
+ }
+ loadAnalysis(pParse, iDb);
+}
+
+/*
+** Generate code that will do an analysis of a single table in
+** a database.
+*/
+static void analyzeTable(Parse *pParse, Table *pTab){
+ int iDb;
+ int iStatCur;
+
+ assert( pTab!=0 );
+ assert( sqlite3BtreeHoldsAllMutexes(pParse->db) );
+ iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
+ sqlite3BeginWriteOperation(pParse, 0, iDb);
+ iStatCur = pParse->nTab++;
+ openStatTable(pParse, iDb, iStatCur, pTab->zName);
+ analyzeOneTable(pParse, pTab, iStatCur, pParse->nMem+1);
+ loadAnalysis(pParse, iDb);
+}
+
+/*
+** Generate code for the ANALYZE command. The parser calls this routine
+** when it recognizes an ANALYZE command.
+**
+** ANALYZE -- 1
+** ANALYZE <database> -- 2
+** ANALYZE ?<database>.?<tablename> -- 3
+**
+** Form 1 causes all indices in all attached databases to be analyzed.
+** Form 2 analyzes all indices the single database named.
+** Form 3 analyzes all indices associated with the named table.
+*/
+SQLITE_PRIVATE void sqlite3Analyze(Parse *pParse, Token *pName1, Token *pName2){
+ sqlite3 *db = pParse->db;
+ int iDb;
+ int i;
+ char *z, *zDb;
+ Table *pTab;
+ Token *pTableName;
+
+ /* Read the database schema. If an error occurs, leave an error message
+ ** and code in pParse and return NULL. */
+ assert( sqlite3BtreeHoldsAllMutexes(pParse->db) );
+ if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
+ return;
+ }
+
+ if( pName1==0 ){
+ /* Form 1: Analyze everything */
+ for(i=0; i<db->nDb; i++){
+ if( i==1 ) continue; /* Do not analyze the TEMP database */
+ analyzeDatabase(pParse, i);
+ }
+ }else if( pName2==0 || pName2->n==0 ){
+ /* Form 2: Analyze the database or table named */
+ iDb = sqlite3FindDb(db, pName1);
+ if( iDb>=0 ){
+ analyzeDatabase(pParse, iDb);
+ }else{
+ z = sqlite3NameFromToken(db, pName1);
+ if( z ){
+ pTab = sqlite3LocateTable(pParse, 0, z, 0);
+ sqlite3_free(z);
+ if( pTab ){
+ analyzeTable(pParse, pTab);
+ }
+ }
+ }
+ }else{
+ /* Form 3: Analyze the fully qualified table name */
+ iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pTableName);
+ if( iDb>=0 ){
+ zDb = db->aDb[iDb].zName;
+ z = sqlite3NameFromToken(db, pTableName);
+ if( z ){
+ pTab = sqlite3LocateTable(pParse, 0, z, zDb);
+ sqlite3_free(z);
+ if( pTab ){
+ analyzeTable(pParse, pTab);
+ }
+ }
+ }
+ }
+}
+
+/*
+** Used to pass information from the analyzer reader through to the
+** callback routine.
+*/
+typedef struct analysisInfo analysisInfo;
+struct analysisInfo {
+ sqlite3 *db;
+ const char *zDatabase;
+};
+
+/*
+** This callback is invoked once for each index when reading the
+** sqlite_stat1 table.
+**
+** argv[0] = name of the index
+** argv[1] = results of analysis - on integer for each column
+*/
+static int analysisLoader(void *pData, int argc, char **argv, char **azNotUsed){
+ analysisInfo *pInfo = (analysisInfo*)pData;
+ Index *pIndex;
+ int i, c;
+ unsigned int v;
+ const char *z;
+
+ assert( argc==2 );
+ if( argv==0 || argv[0]==0 || argv[1]==0 ){
+ return 0;
+ }
+ pIndex = sqlite3FindIndex(pInfo->db, argv[0], pInfo->zDatabase);
+ if( pIndex==0 ){
+ return 0;
+ }
+ z = argv[1];
+ for(i=0; *z && i<=pIndex->nColumn; i++){
+ v = 0;
+ while( (c=z[0])>='0' && c<='9' ){
+ v = v*10 + c - '0';
+ z++;
+ }
+ pIndex->aiRowEst[i] = v;
+ if( *z==' ' ) z++;
+ }
+ return 0;
+}
+
+/*
+** Load the content of the sqlite_stat1 table into the index hash tables.
+*/
+SQLITE_PRIVATE int sqlite3AnalysisLoad(sqlite3 *db, int iDb){
+ analysisInfo sInfo;
+ HashElem *i;
+ char *zSql;
+ int rc;
+
+ assert( iDb>=0 && iDb<db->nDb );
+ assert( db->aDb[iDb].pBt!=0 );
+ assert( sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) );
+
+ /* Clear any prior statistics */
+ for(i=sqliteHashFirst(&db->aDb[iDb].pSchema->idxHash);i;i=sqliteHashNext(i)){
+ Index *pIdx = sqliteHashData(i);
+ sqlite3DefaultRowEst(pIdx);
+ }
+
+ /* Check to make sure the sqlite_stat1 table existss */
+ sInfo.db = db;
+ sInfo.zDatabase = db->aDb[iDb].zName;
+ if( sqlite3FindTable(db, "sqlite_stat1", sInfo.zDatabase)==0 ){
+ return SQLITE_ERROR;
+ }
+
+
+ /* Load new statistics out of the sqlite_stat1 table */
+ zSql = sqlite3MPrintf(db, "SELECT idx, stat FROM %Q.sqlite_stat1",
+ sInfo.zDatabase);
+ (void)sqlite3SafetyOff(db);
+ rc = sqlite3_exec(db, zSql, analysisLoader, &sInfo, 0);
+ (void)sqlite3SafetyOn(db);
+ sqlite3_free(zSql);
+ return rc;
+}
+
+
+#endif /* SQLITE_OMIT_ANALYZE */
+
+/************** End of analyze.c *********************************************/
+/************** Begin file attach.c ******************************************/
+/*
+** 2003 April 6
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains code used to implement the ATTACH and DETACH commands.
+**
+** $Id: attach.c,v 1.75 2008/04/17 17:02:01 drh Exp $
+*/
+
+#ifndef SQLITE_OMIT_ATTACH
+/*
+** Resolve an expression that was part of an ATTACH or DETACH statement. This
+** is slightly different from resolving a normal SQL expression, because simple
+** identifiers are treated as strings, not possible column names or aliases.
+**
+** i.e. if the parser sees:
+**
+** ATTACH DATABASE abc AS def
+**
+** it treats the two expressions as literal strings 'abc' and 'def' instead of
+** looking for columns of the same name.
+**
+** This only applies to the root node of pExpr, so the statement:
+**
+** ATTACH DATABASE abc||def AS 'db2'
+**
+** will fail because neither abc or def can be resolved.
+*/
+static int resolveAttachExpr(NameContext *pName, Expr *pExpr)
+{
+ int rc = SQLITE_OK;
+ if( pExpr ){
+ if( pExpr->op!=TK_ID ){
+ rc = sqlite3ExprResolveNames(pName, pExpr);
+ if( rc==SQLITE_OK && !sqlite3ExprIsConstant(pExpr) ){
+ sqlite3ErrorMsg(pName->pParse, "invalid name: \"%T\"", &pExpr->span);
+ return SQLITE_ERROR;
+ }
+ }else{
+ pExpr->op = TK_STRING;
+ }
+ }
+ return rc;
+}
+
+/*
+** An SQL user-function registered to do the work of an ATTACH statement. The
+** three arguments to the function come directly from an attach statement:
+**
+** ATTACH DATABASE x AS y KEY z
+**
+** SELECT sqlite_attach(x, y, z)
+**
+** If the optional "KEY z" syntax is omitted, an SQL NULL is passed as the
+** third argument.
+*/
+static void attachFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ int i;
+ int rc = 0;
+ sqlite3 *db = sqlite3_context_db_handle(context);
+ const char *zName;
+ const char *zFile;
+ Db *aNew;
+ char *zErrDyn = 0;
+ char zErr[128];
+
+ zFile = (const char *)sqlite3_value_text(argv[0]);
+ zName = (const char *)sqlite3_value_text(argv[1]);
+ if( zFile==0 ) zFile = "";
+ if( zName==0 ) zName = "";
+
+ /* Check for the following errors:
+ **
+ ** * Too many attached databases,
+ ** * Transaction currently open
+ ** * Specified database name already being used.
+ */
+ if( db->nDb>=db->aLimit[SQLITE_LIMIT_ATTACHED]+2 ){
+ sqlite3_snprintf(
+ sizeof(zErr), zErr, "too many attached databases - max %d",
+ db->aLimit[SQLITE_LIMIT_ATTACHED]
+ );
+ goto attach_error;
+ }
+ if( !db->autoCommit ){
+ sqlite3_snprintf(sizeof(zErr), zErr,
+ "cannot ATTACH database within transaction");
+ goto attach_error;
+ }
+ for(i=0; i<db->nDb; i++){
+ char *z = db->aDb[i].zName;
+ if( z && zName && sqlite3StrICmp(z, zName)==0 ){
+ sqlite3_snprintf(sizeof(zErr), zErr,
+ "database %s is already in use", zName);
+ goto attach_error;
+ }
+ }
+
+ /* Allocate the new entry in the db->aDb[] array and initialise the schema
+ ** hash tables.
+ */
+ if( db->aDb==db->aDbStatic ){
+ aNew = sqlite3_malloc( sizeof(db->aDb[0])*3 );
+ if( aNew==0 ){
+ db->mallocFailed = 1;
+ return;
+ }
+ memcpy(aNew, db->aDb, sizeof(db->aDb[0])*2);
+ }else{
+ aNew = sqlite3_realloc(db->aDb, sizeof(db->aDb[0])*(db->nDb+1) );
+ if( aNew==0 ){
+ db->mallocFailed = 1;
+ return;
+ }
+ }
+ db->aDb = aNew;
+ aNew = &db->aDb[db->nDb++];
+ memset(aNew, 0, sizeof(*aNew));
+
+ /* Open the database file. If the btree is successfully opened, use
+ ** it to obtain the database schema. At this point the schema may
+ ** or may not be initialised.
+ */
+ rc = sqlite3BtreeFactory(db, zFile, 0, SQLITE_DEFAULT_CACHE_SIZE,
+ db->openFlags | SQLITE_OPEN_MAIN_DB,
+ &aNew->pBt);
+ if( rc==SQLITE_OK ){
+ Pager *pPager;
+ aNew->pSchema = sqlite3SchemaGet(db, aNew->pBt);
+ if( !aNew->pSchema ){
+ rc = SQLITE_NOMEM;
+ }else if( aNew->pSchema->file_format && aNew->pSchema->enc!=ENC(db) ){
+ sqlite3_snprintf(sizeof(zErr), zErr,
+ "attached databases must use the same text encoding as main database");
+ goto attach_error;
+ }
+ pPager = sqlite3BtreePager(aNew->pBt);
+ sqlite3PagerLockingMode(pPager, db->dfltLockMode);
+ sqlite3PagerJournalMode(pPager, db->dfltJournalMode);
+ }
+ aNew->zName = sqlite3DbStrDup(db, zName);
+ aNew->safety_level = 3;
+
+#if SQLITE_HAS_CODEC
+ {
+ extern int sqlite3CodecAttach(sqlite3*, int, const void*, int);
+ extern void sqlite3CodecGetKey(sqlite3*, int, void**, int*);
+ int nKey;
+ char *zKey;
+ int t = sqlite3_value_type(argv[2]);
+ switch( t ){
+ case SQLITE_INTEGER:
+ case SQLITE_FLOAT:
+ zErrDyn = sqlite3DbStrDup(db, "Invalid key value");
+ rc = SQLITE_ERROR;
+ break;
+
+ case SQLITE_TEXT:
+ case SQLITE_BLOB:
+ nKey = sqlite3_value_bytes(argv[2]);
+ zKey = (char *)sqlite3_value_blob(argv[2]);
+ sqlite3CodecAttach(db, db->nDb-1, zKey, nKey);
+ break;
+
+ case SQLITE_NULL:
+ /* No key specified. Use the key from the main database */
+ sqlite3CodecGetKey(db, 0, (void**)&zKey, &nKey);
+ sqlite3CodecAttach(db, db->nDb-1, zKey, nKey);
+ break;
+ }
+ }
+#endif
+
+ /* If the file was opened successfully, read the schema for the new database.
+ ** If this fails, or if opening the file failed, then close the file and
+ ** remove the entry from the db->aDb[] array. i.e. put everything back the way
+ ** we found it.
+ */
+ if( rc==SQLITE_OK ){
+ (void)sqlite3SafetyOn(db);
+ sqlite3BtreeEnterAll(db);
+ rc = sqlite3Init(db, &zErrDyn);
+ sqlite3BtreeLeaveAll(db);
+ (void)sqlite3SafetyOff(db);
+ }
+ if( rc ){
+ int iDb = db->nDb - 1;
+ assert( iDb>=2 );
+ if( db->aDb[iDb].pBt ){
+ sqlite3BtreeClose(db->aDb[iDb].pBt);
+ db->aDb[iDb].pBt = 0;
+ db->aDb[iDb].pSchema = 0;
+ }
+ sqlite3ResetInternalSchema(db, 0);
+ db->nDb = iDb;
+ if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ){
+ db->mallocFailed = 1;
+ sqlite3_snprintf(sizeof(zErr),zErr, "out of memory");
+ }else{
+ sqlite3_snprintf(sizeof(zErr),zErr, "unable to open database: %s", zFile);
+ }
+ goto attach_error;
+ }
+
+ return;
+
+attach_error:
+ /* Return an error if we get here */
+ if( zErrDyn ){
+ sqlite3_result_error(context, zErrDyn, -1);
+ sqlite3_free(zErrDyn);
+ }else{
+ zErr[sizeof(zErr)-1] = 0;
+ sqlite3_result_error(context, zErr, -1);
+ }
+ if( rc ) sqlite3_result_error_code(context, rc);
+}
+
+/*
+** An SQL user-function registered to do the work of an DETACH statement. The
+** three arguments to the function come directly from a detach statement:
+**
+** DETACH DATABASE x
+**
+** SELECT sqlite_detach(x)
+*/
+static void detachFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ const char *zName = (const char *)sqlite3_value_text(argv[0]);
+ sqlite3 *db = sqlite3_context_db_handle(context);
+ int i;
+ Db *pDb = 0;
+ char zErr[128];
+
+ if( zName==0 ) zName = "";
+ for(i=0; i<db->nDb; i++){
+ pDb = &db->aDb[i];
+ if( pDb->pBt==0 ) continue;
+ if( sqlite3StrICmp(pDb->zName, zName)==0 ) break;
+ }
+
+ if( i>=db->nDb ){
+ sqlite3_snprintf(sizeof(zErr),zErr, "no such database: %s", zName);
+ goto detach_error;
+ }
+ if( i<2 ){
+ sqlite3_snprintf(sizeof(zErr),zErr, "cannot detach database %s", zName);
+ goto detach_error;
+ }
+ if( !db->autoCommit ){
+ sqlite3_snprintf(sizeof(zErr), zErr,
+ "cannot DETACH database within transaction");
+ goto detach_error;
+ }
+ if( sqlite3BtreeIsInReadTrans(pDb->pBt) ){
+ sqlite3_snprintf(sizeof(zErr),zErr, "database %s is locked", zName);
+ goto detach_error;
+ }
+
+ sqlite3BtreeClose(pDb->pBt);
+ pDb->pBt = 0;
+ pDb->pSchema = 0;
+ sqlite3ResetInternalSchema(db, 0);
+ return;
+
+detach_error:
+ sqlite3_result_error(context, zErr, -1);
+}
+
+/*
+** This procedure generates VDBE code for a single invocation of either the
+** sqlite_detach() or sqlite_attach() SQL user functions.
+*/
+static void codeAttach(
+ Parse *pParse, /* The parser context */
+ int type, /* Either SQLITE_ATTACH or SQLITE_DETACH */
+ const char *zFunc, /* Either "sqlite_attach" or "sqlite_detach */
+ int nFunc, /* Number of args to pass to zFunc */
+ Expr *pAuthArg, /* Expression to pass to authorization callback */
+ Expr *pFilename, /* Name of database file */
+ Expr *pDbname, /* Name of the database to use internally */
+ Expr *pKey /* Database key for encryption extension */
+){
+ int rc;
+ NameContext sName;
+ Vdbe *v;
+ FuncDef *pFunc;
+ sqlite3* db = pParse->db;
+ int regArgs;
+
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ assert( db->mallocFailed || pAuthArg );
+ if( pAuthArg ){
+ char *zAuthArg = sqlite3NameFromToken(db, &pAuthArg->span);
+ if( !zAuthArg ){
+ goto attach_end;
+ }
+ rc = sqlite3AuthCheck(pParse, type, zAuthArg, 0, 0);
+ sqlite3_free(zAuthArg);
+ if(rc!=SQLITE_OK ){
+ goto attach_end;
+ }
+ }
+#endif /* SQLITE_OMIT_AUTHORIZATION */
+
+ memset(&sName, 0, sizeof(NameContext));
+ sName.pParse = pParse;
+
+ if(
+ SQLITE_OK!=(rc = resolveAttachExpr(&sName, pFilename)) ||
+ SQLITE_OK!=(rc = resolveAttachExpr(&sName, pDbname)) ||
+ SQLITE_OK!=(rc = resolveAttachExpr(&sName, pKey))
+ ){
+ pParse->nErr++;
+ goto attach_end;
+ }
+
+ v = sqlite3GetVdbe(pParse);
+ regArgs = sqlite3GetTempRange(pParse, 4);
+ sqlite3ExprCode(pParse, pFilename, regArgs);
+ sqlite3ExprCode(pParse, pDbname, regArgs+1);
+ sqlite3ExprCode(pParse, pKey, regArgs+2);
+
+ assert( v || db->mallocFailed );
+ if( v ){
+ sqlite3VdbeAddOp3(v, OP_Function, 0, regArgs+3-nFunc, regArgs+3);
+ sqlite3VdbeChangeP5(v, nFunc);
+ pFunc = sqlite3FindFunction(db, zFunc, strlen(zFunc), nFunc, SQLITE_UTF8,0);
+ sqlite3VdbeChangeP4(v, -1, (char *)pFunc, P4_FUNCDEF);
+
+ /* Code an OP_Expire. For an ATTACH statement, set P1 to true (expire this
+ ** statement only). For DETACH, set it to false (expire all existing
+ ** statements).
+ */
+ sqlite3VdbeAddOp1(v, OP_Expire, (type==SQLITE_ATTACH));
+ }
+
+attach_end:
+ sqlite3ExprDelete(pFilename);
+ sqlite3ExprDelete(pDbname);
+ sqlite3ExprDelete(pKey);
+}
+
+/*
+** Called by the parser to compile a DETACH statement.
+**
+** DETACH pDbname
+*/
+SQLITE_PRIVATE void sqlite3Detach(Parse *pParse, Expr *pDbname){
+ codeAttach(pParse, SQLITE_DETACH, "sqlite_detach", 1, pDbname, 0, 0, pDbname);
+}
+
+/*
+** Called by the parser to compile an ATTACH statement.
+**
+** ATTACH p AS pDbname KEY pKey
+*/
+SQLITE_PRIVATE void sqlite3Attach(Parse *pParse, Expr *p, Expr *pDbname, Expr *pKey){
+ codeAttach(pParse, SQLITE_ATTACH, "sqlite_attach", 3, p, p, pDbname, pKey);
+}
+#endif /* SQLITE_OMIT_ATTACH */
+
+/*
+** Register the functions sqlite_attach and sqlite_detach.
+*/
+SQLITE_PRIVATE void sqlite3AttachFunctions(sqlite3 *db){
+#ifndef SQLITE_OMIT_ATTACH
+ static const int enc = SQLITE_UTF8;
+ sqlite3CreateFunc(db, "sqlite_attach", 3, enc, 0, attachFunc, 0, 0);
+ sqlite3CreateFunc(db, "sqlite_detach", 1, enc, 0, detachFunc, 0, 0);
+#endif
+}
+
+/*
+** Initialize a DbFixer structure. This routine must be called prior
+** to passing the structure to one of the sqliteFixAAAA() routines below.
+**
+** The return value indicates whether or not fixation is required. TRUE
+** means we do need to fix the database references, FALSE means we do not.
+*/
+SQLITE_PRIVATE int sqlite3FixInit(
+ DbFixer *pFix, /* The fixer to be initialized */
+ Parse *pParse, /* Error messages will be written here */
+ int iDb, /* This is the database that must be used */
+ const char *zType, /* "view", "trigger", or "index" */
+ const Token *pName /* Name of the view, trigger, or index */
+){
+ sqlite3 *db;
+
+ if( iDb<0 || iDb==1 ) return 0;
+ db = pParse->db;
+ assert( db->nDb>iDb );
+ pFix->pParse = pParse;
+ pFix->zDb = db->aDb[iDb].zName;
+ pFix->zType = zType;
+ pFix->pName = pName;
+ return 1;
+}
+
+/*
+** The following set of routines walk through the parse tree and assign
+** a specific database to all table references where the database name
+** was left unspecified in the original SQL statement. The pFix structure
+** must have been initialized by a prior call to sqlite3FixInit().
+**
+** These routines are used to make sure that an index, trigger, or
+** view in one database does not refer to objects in a different database.
+** (Exception: indices, triggers, and views in the TEMP database are
+** allowed to refer to anything.) If a reference is explicitly made
+** to an object in a different database, an error message is added to
+** pParse->zErrMsg and these routines return non-zero. If everything
+** checks out, these routines return 0.
+*/
+SQLITE_PRIVATE int sqlite3FixSrcList(
+ DbFixer *pFix, /* Context of the fixation */
+ SrcList *pList /* The Source list to check and modify */
+){
+ int i;
+ const char *zDb;
+ struct SrcList_item *pItem;
+
+ if( pList==0 ) return 0;
+ zDb = pFix->zDb;
+ for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){
+ if( pItem->zDatabase==0 ){
+ pItem->zDatabase = sqlite3DbStrDup(pFix->pParse->db, zDb);
+ }else if( sqlite3StrICmp(pItem->zDatabase,zDb)!=0 ){
+ sqlite3ErrorMsg(pFix->pParse,
+ "%s %T cannot reference objects in database %s",
+ pFix->zType, pFix->pName, pItem->zDatabase);
+ return 1;
+ }
+#if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER)
+ if( sqlite3FixSelect(pFix, pItem->pSelect) ) return 1;
+ if( sqlite3FixExpr(pFix, pItem->pOn) ) return 1;
+#endif
+ }
+ return 0;
+}
+#if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER)
+SQLITE_PRIVATE int sqlite3FixSelect(
+ DbFixer *pFix, /* Context of the fixation */
+ Select *pSelect /* The SELECT statement to be fixed to one database */
+){
+ while( pSelect ){
+ if( sqlite3FixExprList(pFix, pSelect->pEList) ){
+ return 1;
+ }
+ if( sqlite3FixSrcList(pFix, pSelect->pSrc) ){
+ return 1;
+ }
+ if( sqlite3FixExpr(pFix, pSelect->pWhere) ){
+ return 1;
+ }
+ if( sqlite3FixExpr(pFix, pSelect->pHaving) ){
+ return 1;
+ }
+ pSelect = pSelect->pPrior;
+ }
+ return 0;
+}
+SQLITE_PRIVATE int sqlite3FixExpr(
+ DbFixer *pFix, /* Context of the fixation */
+ Expr *pExpr /* The expression to be fixed to one database */
+){
+ while( pExpr ){
+ if( sqlite3FixSelect(pFix, pExpr->pSelect) ){
+ return 1;
+ }
+ if( sqlite3FixExprList(pFix, pExpr->pList) ){
+ return 1;
+ }
+ if( sqlite3FixExpr(pFix, pExpr->pRight) ){
+ return 1;
+ }
+ pExpr = pExpr->pLeft;
+ }
+ return 0;
+}
+SQLITE_PRIVATE int sqlite3FixExprList(
+ DbFixer *pFix, /* Context of the fixation */
+ ExprList *pList /* The expression to be fixed to one database */
+){
+ int i;
+ struct ExprList_item *pItem;
+ if( pList==0 ) return 0;
+ for(i=0, pItem=pList->a; i<pList->nExpr; i++, pItem++){
+ if( sqlite3FixExpr(pFix, pItem->pExpr) ){
+ return 1;
+ }
+ }
+ return 0;
+}
+#endif
+
+#ifndef SQLITE_OMIT_TRIGGER
+SQLITE_PRIVATE int sqlite3FixTriggerStep(
+ DbFixer *pFix, /* Context of the fixation */
+ TriggerStep *pStep /* The trigger step be fixed to one database */
+){
+ while( pStep ){
+ if( sqlite3FixSelect(pFix, pStep->pSelect) ){
+ return 1;
+ }
+ if( sqlite3FixExpr(pFix, pStep->pWhere) ){
+ return 1;
+ }
+ if( sqlite3FixExprList(pFix, pStep->pExprList) ){
+ return 1;
+ }
+ pStep = pStep->pNext;
+ }
+ return 0;
+}
+#endif
+
+/************** End of attach.c **********************************************/
+/************** Begin file auth.c ********************************************/
+/*
+** 2003 January 11
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains code used to implement the sqlite3_set_authorizer()
+** API. This facility is an optional feature of the library. Embedded
+** systems that do not need this facility may omit it by recompiling
+** the library with -DSQLITE_OMIT_AUTHORIZATION=1
+**
+** $Id: auth.c,v 1.29 2007/09/18 15:55:07 drh Exp $
+*/
+
+/*
+** All of the code in this file may be omitted by defining a single
+** macro.
+*/
+#ifndef SQLITE_OMIT_AUTHORIZATION
+
+/*
+** Set or clear the access authorization function.
+**
+** The access authorization function is be called during the compilation
+** phase to verify that the user has read and/or write access permission on
+** various fields of the database. The first argument to the auth function
+** is a copy of the 3rd argument to this routine. The second argument
+** to the auth function is one of these constants:
+**
+** SQLITE_CREATE_INDEX
+** SQLITE_CREATE_TABLE
+** SQLITE_CREATE_TEMP_INDEX
+** SQLITE_CREATE_TEMP_TABLE
+** SQLITE_CREATE_TEMP_TRIGGER
+** SQLITE_CREATE_TEMP_VIEW
+** SQLITE_CREATE_TRIGGER
+** SQLITE_CREATE_VIEW
+** SQLITE_DELETE
+** SQLITE_DROP_INDEX
+** SQLITE_DROP_TABLE
+** SQLITE_DROP_TEMP_INDEX
+** SQLITE_DROP_TEMP_TABLE
+** SQLITE_DROP_TEMP_TRIGGER
+** SQLITE_DROP_TEMP_VIEW
+** SQLITE_DROP_TRIGGER
+** SQLITE_DROP_VIEW
+** SQLITE_INSERT
+** SQLITE_PRAGMA
+** SQLITE_READ
+** SQLITE_SELECT
+** SQLITE_TRANSACTION
+** SQLITE_UPDATE
+**
+** The third and fourth arguments to the auth function are the name of
+** the table and the column that are being accessed. The auth function
+** should return either SQLITE_OK, SQLITE_DENY, or SQLITE_IGNORE. If
+** SQLITE_OK is returned, it means that access is allowed. SQLITE_DENY
+** means that the SQL statement will never-run - the sqlite3_exec() call
+** will return with an error. SQLITE_IGNORE means that the SQL statement
+** should run but attempts to read the specified column will return NULL
+** and attempts to write the column will be ignored.
+**
+** Setting the auth function to NULL disables this hook. The default
+** setting of the auth function is NULL.
+*/
+SQLITE_API int sqlite3_set_authorizer(
+ sqlite3 *db,
+ int (*xAuth)(void*,int,const char*,const char*,const char*,const char*),
+ void *pArg
+){
+ sqlite3_mutex_enter(db->mutex);
+ db->xAuth = xAuth;
+ db->pAuthArg = pArg;
+ sqlite3ExpirePreparedStatements(db);
+ sqlite3_mutex_leave(db->mutex);
+ return SQLITE_OK;
+}
+
+/*
+** Write an error message into pParse->zErrMsg that explains that the
+** user-supplied authorization function returned an illegal value.
+*/
+static void sqliteAuthBadReturnCode(Parse *pParse, int rc){
+ sqlite3ErrorMsg(pParse, "illegal return value (%d) from the "
+ "authorization function - should be SQLITE_OK, SQLITE_IGNORE, "
+ "or SQLITE_DENY", rc);
+ pParse->rc = SQLITE_ERROR;
+}
+
+/*
+** The pExpr should be a TK_COLUMN expression. The table referred to
+** is in pTabList or else it is the NEW or OLD table of a trigger.
+** Check to see if it is OK to read this particular column.
+**
+** If the auth function returns SQLITE_IGNORE, change the TK_COLUMN
+** instruction into a TK_NULL. If the auth function returns SQLITE_DENY,
+** then generate an error.
+*/
+SQLITE_PRIVATE void sqlite3AuthRead(
+ Parse *pParse, /* The parser context */
+ Expr *pExpr, /* The expression to check authorization on */
+ Schema *pSchema, /* The schema of the expression */
+ SrcList *pTabList /* All table that pExpr might refer to */
+){
+ sqlite3 *db = pParse->db;
+ int rc;
+ Table *pTab = 0; /* The table being read */
+ const char *zCol; /* Name of the column of the table */
+ int iSrc; /* Index in pTabList->a[] of table being read */
+ const char *zDBase; /* Name of database being accessed */
+ TriggerStack *pStack; /* The stack of current triggers */
+ int iDb; /* The index of the database the expression refers to */
+
+ if( db->xAuth==0 ) return;
+ if( pExpr->op!=TK_COLUMN ) return;
+ iDb = sqlite3SchemaToIndex(pParse->db, pSchema);
+ if( iDb<0 ){
+ /* An attempt to read a column out of a subquery or other
+ ** temporary table. */
+ return;
+ }
+ for(iSrc=0; pTabList && iSrc<pTabList->nSrc; iSrc++){
+ if( pExpr->iTable==pTabList->a[iSrc].iCursor ) break;
+ }
+ if( iSrc>=0 && pTabList && iSrc<pTabList->nSrc ){
+ pTab = pTabList->a[iSrc].pTab;
+ }else if( (pStack = pParse->trigStack)!=0 ){
+ /* This must be an attempt to read the NEW or OLD pseudo-tables
+ ** of a trigger.
+ */
+ assert( pExpr->iTable==pStack->newIdx || pExpr->iTable==pStack->oldIdx );
+ pTab = pStack->pTab;
+ }
+ if( pTab==0 ) return;
+ if( pExpr->iColumn>=0 ){
+ assert( pExpr->iColumn<pTab->nCol );
+ zCol = pTab->aCol[pExpr->iColumn].zName;
+ }else if( pTab->iPKey>=0 ){
+ assert( pTab->iPKey<pTab->nCol );
+ zCol = pTab->aCol[pTab->iPKey].zName;
+ }else{
+ zCol = "ROWID";
+ }
+ assert( iDb>=0 && iDb<db->nDb );
+ zDBase = db->aDb[iDb].zName;
+ rc = db->xAuth(db->pAuthArg, SQLITE_READ, pTab->zName, zCol, zDBase,
+ pParse->zAuthContext);
+ if( rc==SQLITE_IGNORE ){
+ pExpr->op = TK_NULL;
+ }else if( rc==SQLITE_DENY ){
+ if( db->nDb>2 || iDb!=0 ){
+ sqlite3ErrorMsg(pParse, "access to %s.%s.%s is prohibited",
+ zDBase, pTab->zName, zCol);
+ }else{
+ sqlite3ErrorMsg(pParse, "access to %s.%s is prohibited",pTab->zName,zCol);
+ }
+ pParse->rc = SQLITE_AUTH;
+ }else if( rc!=SQLITE_OK ){
+ sqliteAuthBadReturnCode(pParse, rc);
+ }
+}
+
+/*
+** Do an authorization check using the code and arguments given. Return
+** either SQLITE_OK (zero) or SQLITE_IGNORE or SQLITE_DENY. If SQLITE_DENY
+** is returned, then the error count and error message in pParse are
+** modified appropriately.
+*/
+SQLITE_PRIVATE int sqlite3AuthCheck(
+ Parse *pParse,
+ int code,
+ const char *zArg1,
+ const char *zArg2,
+ const char *zArg3
+){
+ sqlite3 *db = pParse->db;
+ int rc;
+
+ /* Don't do any authorization checks if the database is initialising
+ ** or if the parser is being invoked from within sqlite3_declare_vtab.
+ */
+ if( db->init.busy || IN_DECLARE_VTAB ){
+ return SQLITE_OK;
+ }
+
+ if( db->xAuth==0 ){
+ return SQLITE_OK;
+ }
+ rc = db->xAuth(db->pAuthArg, code, zArg1, zArg2, zArg3, pParse->zAuthContext);
+ if( rc==SQLITE_DENY ){
+ sqlite3ErrorMsg(pParse, "not authorized");
+ pParse->rc = SQLITE_AUTH;
+ }else if( rc!=SQLITE_OK && rc!=SQLITE_IGNORE ){
+ rc = SQLITE_DENY;
+ sqliteAuthBadReturnCode(pParse, rc);
+ }
+ return rc;
+}
+
+/*
+** Push an authorization context. After this routine is called, the
+** zArg3 argument to authorization callbacks will be zContext until
+** popped. Or if pParse==0, this routine is a no-op.
+*/
+SQLITE_PRIVATE void sqlite3AuthContextPush(
+ Parse *pParse,
+ AuthContext *pContext,
+ const char *zContext
+){
+ pContext->pParse = pParse;
+ if( pParse ){
+ pContext->zAuthContext = pParse->zAuthContext;
+ pParse->zAuthContext = zContext;
+ }
+}
+
+/*
+** Pop an authorization context that was previously pushed
+** by sqlite3AuthContextPush
+*/
+SQLITE_PRIVATE void sqlite3AuthContextPop(AuthContext *pContext){
+ if( pContext->pParse ){
+ pContext->pParse->zAuthContext = pContext->zAuthContext;
+ pContext->pParse = 0;
+ }
+}
+
+#endif /* SQLITE_OMIT_AUTHORIZATION */
+
+/************** End of auth.c ************************************************/
+/************** Begin file build.c *******************************************/
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains C code routines that are called by the SQLite parser
+** when syntax rules are reduced. The routines in this file handle the
+** following kinds of SQL syntax:
+**
+** CREATE TABLE
+** DROP TABLE
+** CREATE INDEX
+** DROP INDEX
+** creating ID lists
+** BEGIN TRANSACTION
+** COMMIT
+** ROLLBACK
+**
+** $Id: build.c,v 1.484 2008/05/01 17:16:53 drh Exp $
+*/
+
+/*
+** This routine is called when a new SQL statement is beginning to
+** be parsed. Initialize the pParse structure as needed.
+*/
+SQLITE_PRIVATE void sqlite3BeginParse(Parse *pParse, int explainFlag){
+ pParse->explain = explainFlag;
+ pParse->nVar = 0;
+}
+
+#ifndef SQLITE_OMIT_SHARED_CACHE
+/*
+** The TableLock structure is only used by the sqlite3TableLock() and
+** codeTableLocks() functions.
+*/
+struct TableLock {
+ int iDb; /* The database containing the table to be locked */
+ int iTab; /* The root page of the table to be locked */
+ u8 isWriteLock; /* True for write lock. False for a read lock */
+ const char *zName; /* Name of the table */
+};
+
+/*
+** Record the fact that we want to lock a table at run-time.
+**
+** The table to be locked has root page iTab and is found in database iDb.
+** A read or a write lock can be taken depending on isWritelock.
+**
+** This routine just records the fact that the lock is desired. The
+** code to make the lock occur is generated by a later call to
+** codeTableLocks() which occurs during sqlite3FinishCoding().
+*/
+SQLITE_PRIVATE void sqlite3TableLock(
+ Parse *pParse, /* Parsing context */
+ int iDb, /* Index of the database containing the table to lock */
+ int iTab, /* Root page number of the table to be locked */
+ u8 isWriteLock, /* True for a write lock */
+ const char *zName /* Name of the table to be locked */
+){
+ int i;
+ int nBytes;
+ TableLock *p;
+
+ if( iDb<0 ){
+ return;
+ }
+
+ for(i=0; i<pParse->nTableLock; i++){
+ p = &pParse->aTableLock[i];
+ if( p->iDb==iDb && p->iTab==iTab ){
+ p->isWriteLock = (p->isWriteLock || isWriteLock);
+ return;
+ }
+ }
+
+ nBytes = sizeof(TableLock) * (pParse->nTableLock+1);
+ pParse->aTableLock =
+ sqlite3DbReallocOrFree(pParse->db, pParse->aTableLock, nBytes);
+ if( pParse->aTableLock ){
+ p = &pParse->aTableLock[pParse->nTableLock++];
+ p->iDb = iDb;
+ p->iTab = iTab;
+ p->isWriteLock = isWriteLock;
+ p->zName = zName;
+ }else{
+ pParse->nTableLock = 0;
+ pParse->db->mallocFailed = 1;
+ }
+}
+
+/*
+** Code an OP_TableLock instruction for each table locked by the
+** statement (configured by calls to sqlite3TableLock()).
+*/
+static void codeTableLocks(Parse *pParse){
+ int i;
+ Vdbe *pVdbe;
+
+ if( 0==(pVdbe = sqlite3GetVdbe(pParse)) ){
+ return;
+ }
+
+ for(i=0; i<pParse->nTableLock; i++){
+ TableLock *p = &pParse->aTableLock[i];
+ int p1 = p->iDb;
+ sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock,
+ p->zName, P4_STATIC);
+ }
+}
+#else
+ #define codeTableLocks(x)
+#endif
+
+/*
+** This routine is called after a single SQL statement has been
+** parsed and a VDBE program to execute that statement has been
+** prepared. This routine puts the finishing touches on the
+** VDBE program and resets the pParse structure for the next
+** parse.
+**
+** Note that if an error occurred, it might be the case that
+** no VDBE code was generated.
+*/
+SQLITE_PRIVATE void sqlite3FinishCoding(Parse *pParse){
+ sqlite3 *db;
+ Vdbe *v;
+
+ db = pParse->db;
+ if( db->mallocFailed ) return;
+ if( pParse->nested ) return;
+ if( pParse->nErr ) return;
+ if( !pParse->pVdbe ){
+ if( pParse->rc==SQLITE_OK && pParse->nErr ){
+ pParse->rc = SQLITE_ERROR;
+ return;
+ }
+ }
+
+ /* Begin by generating some termination code at the end of the
+ ** vdbe program
+ */
+ v = sqlite3GetVdbe(pParse);
+ if( v ){
+ sqlite3VdbeAddOp0(v, OP_Halt);
+
+ /* The cookie mask contains one bit for each database file open.
+ ** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are
+ ** set for each database that is used. Generate code to start a
+ ** transaction on each used database and to verify the schema cookie
+ ** on each used database.
+ */
+ if( pParse->cookieGoto>0 ){
+ u32 mask;
+ int iDb;
+ sqlite3VdbeJumpHere(v, pParse->cookieGoto-1);
+ for(iDb=0, mask=1; iDb<db->nDb; mask<<=1, iDb++){
+ if( (mask & pParse->cookieMask)==0 ) continue;
+ sqlite3VdbeUsesBtree(v, iDb);
+ sqlite3VdbeAddOp2(v,OP_Transaction, iDb, (mask & pParse->writeMask)!=0);
+ sqlite3VdbeAddOp2(v,OP_VerifyCookie, iDb, pParse->cookieValue[iDb]);
+ }
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ {
+ int i;
+ for(i=0; i<pParse->nVtabLock; i++){
+ char *vtab = (char *)pParse->apVtabLock[i]->pVtab;
+ sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB);
+ }
+ pParse->nVtabLock = 0;
+ }
+#endif
+
+ /* Once all the cookies have been verified and transactions opened,
+ ** obtain the required table-locks. This is a no-op unless the
+ ** shared-cache feature is enabled.
+ */
+ codeTableLocks(pParse);
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, pParse->cookieGoto);
+ }
+
+#ifndef SQLITE_OMIT_TRACE
+ if( !db->init.busy ){
+ /* Change the P4 argument of the first opcode (which will always be
+ ** an OP_Trace) to be the complete text of the current SQL statement.
+ */
+ VdbeOp *pOp = sqlite3VdbeGetOp(v, 0);
+ if( pOp && pOp->opcode==OP_Trace ){
+ sqlite3VdbeChangeP4(v, 0, pParse->zSql, pParse->zTail-pParse->zSql);
+ }
+ }
+#endif /* SQLITE_OMIT_TRACE */
+ }
+
+
+ /* Get the VDBE program ready for execution
+ */
+ if( v && pParse->nErr==0 && !db->mallocFailed ){
+#ifdef SQLITE_DEBUG
+ FILE *trace = (db->flags & SQLITE_VdbeTrace)!=0 ? stdout : 0;
+ sqlite3VdbeTrace(v, trace);
+#endif
+ assert( pParse->disableColCache==0 ); /* Disables and re-enables match */
+ sqlite3VdbeMakeReady(v, pParse->nVar, pParse->nMem+3,
+ pParse->nTab+3, pParse->explain);
+ pParse->rc = SQLITE_DONE;
+ pParse->colNamesSet = 0;
+ }else if( pParse->rc==SQLITE_OK ){
+ pParse->rc = SQLITE_ERROR;
+ }
+ pParse->nTab = 0;
+ pParse->nMem = 0;
+ pParse->nSet = 0;
+ pParse->nVar = 0;
+ pParse->cookieMask = 0;
+ pParse->cookieGoto = 0;
+}
+
+/*
+** Run the parser and code generator recursively in order to generate
+** code for the SQL statement given onto the end of the pParse context
+** currently under construction. When the parser is run recursively
+** this way, the final OP_Halt is not appended and other initialization
+** and finalization steps are omitted because those are handling by the
+** outermost parser.
+**
+** Not everything is nestable. This facility is designed to permit
+** INSERT, UPDATE, and DELETE operations against SQLITE_MASTER. Use
+** care if you decide to try to use this routine for some other purposes.
+*/
+SQLITE_PRIVATE void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){
+ va_list ap;
+ char *zSql;
+# define SAVE_SZ (sizeof(Parse) - offsetof(Parse,nVar))
+ char saveBuf[SAVE_SZ];
+
+ if( pParse->nErr ) return;
+ assert( pParse->nested<10 ); /* Nesting should only be of limited depth */
+ va_start(ap, zFormat);
+ zSql = sqlite3VMPrintf(pParse->db, zFormat, ap);
+ va_end(ap);
+ if( zSql==0 ){
+ pParse->db->mallocFailed = 1;
+ return; /* A malloc must have failed */
+ }
+ pParse->nested++;
+ memcpy(saveBuf, &pParse->nVar, SAVE_SZ);
+ memset(&pParse->nVar, 0, SAVE_SZ);
+ sqlite3RunParser(pParse, zSql, 0);
+ sqlite3_free(zSql);
+ memcpy(&pParse->nVar, saveBuf, SAVE_SZ);
+ pParse->nested--;
+}
+
+/*
+** Locate the in-memory structure that describes a particular database
+** table given the name of that table and (optionally) the name of the
+** database containing the table. Return NULL if not found.
+**
+** If zDatabase is 0, all databases are searched for the table and the
+** first matching table is returned. (No checking for duplicate table
+** names is done.) The search order is TEMP first, then MAIN, then any
+** auxiliary databases added using the ATTACH command.
+**
+** See also sqlite3LocateTable().
+*/
+SQLITE_PRIVATE Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){
+ Table *p = 0;
+ int i;
+ assert( zName!=0 );
+ for(i=OMIT_TEMPDB; i<db->nDb; i++){
+ int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */
+ if( zDatabase!=0 && sqlite3StrICmp(zDatabase, db->aDb[j].zName) ) continue;
+ p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName, strlen(zName)+1);
+ if( p ) break;
+ }
+ return p;
+}
+
+/*
+** Locate the in-memory structure that describes a particular database
+** table given the name of that table and (optionally) the name of the
+** database containing the table. Return NULL if not found. Also leave an
+** error message in pParse->zErrMsg.
+**
+** The difference between this routine and sqlite3FindTable() is that this
+** routine leaves an error message in pParse->zErrMsg where
+** sqlite3FindTable() does not.
+*/
+SQLITE_PRIVATE Table *sqlite3LocateTable(
+ Parse *pParse, /* context in which to report errors */
+ int isView, /* True if looking for a VIEW rather than a TABLE */
+ const char *zName, /* Name of the table we are looking for */
+ const char *zDbase /* Name of the database. Might be NULL */
+){
+ Table *p;
+
+ /* Read the database schema. If an error occurs, leave an error message
+ ** and code in pParse and return NULL. */
+ if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
+ return 0;
+ }
+
+ p = sqlite3FindTable(pParse->db, zName, zDbase);
+ if( p==0 ){
+ const char *zMsg = isView ? "no such view" : "no such table";
+ if( zDbase ){
+ sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName);
+ }else{
+ sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName);
+ }
+ pParse->checkSchema = 1;
+ }
+ return p;
+}
+
+/*
+** Locate the in-memory structure that describes
+** a particular index given the name of that index
+** and the name of the database that contains the index.
+** Return NULL if not found.
+**
+** If zDatabase is 0, all databases are searched for the
+** table and the first matching index is returned. (No checking
+** for duplicate index names is done.) The search order is
+** TEMP first, then MAIN, then any auxiliary databases added
+** using the ATTACH command.
+*/
+SQLITE_PRIVATE Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){
+ Index *p = 0;
+ int i;
+ for(i=OMIT_TEMPDB; i<db->nDb; i++){
+ int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */
+ Schema *pSchema = db->aDb[j].pSchema;
+ if( zDb && sqlite3StrICmp(zDb, db->aDb[j].zName) ) continue;
+ assert( pSchema || (j==1 && !db->aDb[1].pBt) );
+ if( pSchema ){
+ p = sqlite3HashFind(&pSchema->idxHash, zName, strlen(zName)+1);
+ }
+ if( p ) break;
+ }
+ return p;
+}
+
+/*
+** Reclaim the memory used by an index
+*/
+static void freeIndex(Index *p){
+ sqlite3_free(p->zColAff);
+ sqlite3_free(p);
+}
+
+/*
+** Remove the given index from the index hash table, and free
+** its memory structures.
+**
+** The index is removed from the database hash tables but
+** it is not unlinked from the Table that it indexes.
+** Unlinking from the Table must be done by the calling function.
+*/
+static void sqliteDeleteIndex(Index *p){
+ Index *pOld;
+ const char *zName = p->zName;
+
+ pOld = sqlite3HashInsert(&p->pSchema->idxHash, zName, strlen( zName)+1, 0);
+ assert( pOld==0 || pOld==p );
+ freeIndex(p);
+}
+
+/*
+** For the index called zIdxName which is found in the database iDb,
+** unlike that index from its Table then remove the index from
+** the index hash table and free all memory structures associated
+** with the index.
+*/
+SQLITE_PRIVATE void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){
+ Index *pIndex;
+ int len;
+ Hash *pHash = &db->aDb[iDb].pSchema->idxHash;
+
+ len = strlen(zIdxName);
+ pIndex = sqlite3HashInsert(pHash, zIdxName, len+1, 0);
+ if( pIndex ){
+ if( pIndex->pTable->pIndex==pIndex ){
+ pIndex->pTable->pIndex = pIndex->pNext;
+ }else{
+ Index *p;
+ for(p=pIndex->pTable->pIndex; p && p->pNext!=pIndex; p=p->pNext){}
+ if( p && p->pNext==pIndex ){
+ p->pNext = pIndex->pNext;
+ }
+ }
+ freeIndex(pIndex);
+ }
+ db->flags |= SQLITE_InternChanges;
+}
+
+/*
+** Erase all schema information from the in-memory hash tables of
+** a single database. This routine is called to reclaim memory
+** before the database closes. It is also called during a rollback
+** if there were schema changes during the transaction or if a
+** schema-cookie mismatch occurs.
+**
+** If iDb<=0 then reset the internal schema tables for all database
+** files. If iDb>=2 then reset the internal schema for only the
+** single file indicated.
+*/
+SQLITE_PRIVATE void sqlite3ResetInternalSchema(sqlite3 *db, int iDb){
+ int i, j;
+ assert( iDb>=0 && iDb<db->nDb );
+
+ if( iDb==0 ){
+ sqlite3BtreeEnterAll(db);
+ }
+ for(i=iDb; i<db->nDb; i++){
+ Db *pDb = &db->aDb[i];
+ if( pDb->pSchema ){
+ assert(i==1 || (pDb->pBt && sqlite3BtreeHoldsMutex(pDb->pBt)));
+ sqlite3SchemaFree(pDb->pSchema);
+ }
+ if( iDb>0 ) return;
+ }
+ assert( iDb==0 );
+ db->flags &= ~SQLITE_InternChanges;
+ sqlite3BtreeLeaveAll(db);
+
+ /* If one or more of the auxiliary database files has been closed,
+ ** then remove them from the auxiliary database list. We take the
+ ** opportunity to do this here since we have just deleted all of the
+ ** schema hash tables and therefore do not have to make any changes
+ ** to any of those tables.
+ */
+ for(i=0; i<db->nDb; i++){
+ struct Db *pDb = &db->aDb[i];
+ if( pDb->pBt==0 ){
+ if( pDb->pAux && pDb->xFreeAux ) pDb->xFreeAux(pDb->pAux);
+ pDb->pAux = 0;
+ }
+ }
+ for(i=j=2; i<db->nDb; i++){
+ struct Db *pDb = &db->aDb[i];
+ if( pDb->pBt==0 ){
+ sqlite3_free(pDb->zName);
+ pDb->zName = 0;
+ continue;
+ }
+ if( j<i ){
+ db->aDb[j] = db->aDb[i];
+ }
+ j++;
+ }
+ memset(&db->aDb[j], 0, (db->nDb-j)*sizeof(db->aDb[j]));
+ db->nDb = j;
+ if( db->nDb<=2 && db->aDb!=db->aDbStatic ){
+ memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0]));
+ sqlite3_free(db->aDb);
+ db->aDb = db->aDbStatic;
+ }
+}
+
+/*
+** This routine is called when a commit occurs.
+*/
+SQLITE_PRIVATE void sqlite3CommitInternalChanges(sqlite3 *db){
+ db->flags &= ~SQLITE_InternChanges;
+}
+
+/*
+** Clear the column names from a table or view.
+*/
+static void sqliteResetColumnNames(Table *pTable){
+ int i;
+ Column *pCol;
+ assert( pTable!=0 );
+ if( (pCol = pTable->aCol)!=0 ){
+ for(i=0; i<pTable->nCol; i++, pCol++){
+ sqlite3_free(pCol->zName);
+ sqlite3ExprDelete(pCol->pDflt);
+ sqlite3_free(pCol->zType);
+ sqlite3_free(pCol->zColl);
+ }
+ sqlite3_free(pTable->aCol);
+ }
+ pTable->aCol = 0;
+ pTable->nCol = 0;
+}
+
+/*
+** Remove the memory data structures associated with the given
+** Table. No changes are made to disk by this routine.
+**
+** This routine just deletes the data structure. It does not unlink
+** the table data structure from the hash table. Nor does it remove
+** foreign keys from the sqlite.aFKey hash table. But it does destroy
+** memory structures of the indices and foreign keys associated with
+** the table.
+*/
+SQLITE_PRIVATE void sqlite3DeleteTable(Table *pTable){
+ Index *pIndex, *pNext;
+ FKey *pFKey, *pNextFKey;
+
+ if( pTable==0 ) return;
+
+ /* Do not delete the table until the reference count reaches zero. */
+ pTable->nRef--;
+ if( pTable->nRef>0 ){
+ return;
+ }
+ assert( pTable->nRef==0 );
+
+ /* Delete all indices associated with this table
+ */
+ for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){
+ pNext = pIndex->pNext;
+ assert( pIndex->pSchema==pTable->pSchema );
+ sqliteDeleteIndex(pIndex);
+ }
+
+#ifndef SQLITE_OMIT_FOREIGN_KEY
+ /* Delete all foreign keys associated with this table. The keys
+ ** should have already been unlinked from the pSchema->aFKey hash table
+ */
+ for(pFKey=pTable->pFKey; pFKey; pFKey=pNextFKey){
+ pNextFKey = pFKey->pNextFrom;
+ assert( sqlite3HashFind(&pTable->pSchema->aFKey,
+ pFKey->zTo, strlen(pFKey->zTo)+1)!=pFKey );
+ sqlite3_free(pFKey);
+ }
+#endif
+
+ /* Delete the Table structure itself.
+ */
+ sqliteResetColumnNames(pTable);
+ sqlite3_free(pTable->zName);
+ sqlite3_free(pTable->zColAff);
+ sqlite3SelectDelete(pTable->pSelect);
+#ifndef SQLITE_OMIT_CHECK
+ sqlite3ExprDelete(pTable->pCheck);
+#endif
+ sqlite3VtabClear(pTable);
+ sqlite3_free(pTable);
+}
+
+/*
+** Unlink the given table from the hash tables and the delete the
+** table structure with all its indices and foreign keys.
+*/
+SQLITE_PRIVATE void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){
+ Table *p;
+ FKey *pF1, *pF2;
+ Db *pDb;
+
+ assert( db!=0 );
+ assert( iDb>=0 && iDb<db->nDb );
+ assert( zTabName && zTabName[0] );
+ pDb = &db->aDb[iDb];
+ p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, strlen(zTabName)+1,0);
+ if( p ){
+#ifndef SQLITE_OMIT_FOREIGN_KEY
+ for(pF1=p->pFKey; pF1; pF1=pF1->pNextFrom){
+ int nTo = strlen(pF1->zTo) + 1;
+ pF2 = sqlite3HashFind(&pDb->pSchema->aFKey, pF1->zTo, nTo);
+ if( pF2==pF1 ){
+ sqlite3HashInsert(&pDb->pSchema->aFKey, pF1->zTo, nTo, pF1->pNextTo);
+ }else{
+ while( pF2 && pF2->pNextTo!=pF1 ){ pF2=pF2->pNextTo; }
+ if( pF2 ){
+ pF2->pNextTo = pF1->pNextTo;
+ }
+ }
+ }
+#endif
+ sqlite3DeleteTable(p);
+ }
+ db->flags |= SQLITE_InternChanges;
+}
+
+/*
+** Given a token, return a string that consists of the text of that
+** token with any quotations removed. Space to hold the returned string
+** is obtained from sqliteMalloc() and must be freed by the calling
+** function.
+**
+** Tokens are often just pointers into the original SQL text and so
+** are not \000 terminated and are not persistent. The returned string
+** is \000 terminated and is persistent.
+*/
+SQLITE_PRIVATE char *sqlite3NameFromToken(sqlite3 *db, Token *pName){
+ char *zName;
+ if( pName ){
+ zName = sqlite3DbStrNDup(db, (char*)pName->z, pName->n);
+ sqlite3Dequote(zName);
+ }else{
+ zName = 0;
+ }
+ return zName;
+}
+
+/*
+** Open the sqlite_master table stored in database number iDb for
+** writing. The table is opened using cursor 0.
+*/
+SQLITE_PRIVATE void sqlite3OpenMasterTable(Parse *p, int iDb){
+ Vdbe *v = sqlite3GetVdbe(p);
+ sqlite3TableLock(p, iDb, MASTER_ROOT, 1, SCHEMA_TABLE(iDb));
+ sqlite3VdbeAddOp2(v, OP_SetNumColumns, 0, 5);/* sqlite_master has 5 columns */
+ sqlite3VdbeAddOp3(v, OP_OpenWrite, 0, MASTER_ROOT, iDb);
+}
+
+/*
+** The token *pName contains the name of a database (either "main" or
+** "temp" or the name of an attached db). This routine returns the
+** index of the named database in db->aDb[], or -1 if the named db
+** does not exist.
+*/
+SQLITE_PRIVATE int sqlite3FindDb(sqlite3 *db, Token *pName){
+ int i = -1; /* Database number */
+ int n; /* Number of characters in the name */
+ Db *pDb; /* A database whose name space is being searched */
+ char *zName; /* Name we are searching for */
+
+ zName = sqlite3NameFromToken(db, pName);
+ if( zName ){
+ n = strlen(zName);
+ for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){
+ if( (!OMIT_TEMPDB || i!=1 ) && n==strlen(pDb->zName) &&
+ 0==sqlite3StrICmp(pDb->zName, zName) ){
+ break;
+ }
+ }
+ sqlite3_free(zName);
+ }
+ return i;
+}
+
+/* The table or view or trigger name is passed to this routine via tokens
+** pName1 and pName2. If the table name was fully qualified, for example:
+**
+** CREATE TABLE xxx.yyy (...);
+**
+** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
+** the table name is not fully qualified, i.e.:
+**
+** CREATE TABLE yyy(...);
+**
+** Then pName1 is set to "yyy" and pName2 is "".
+**
+** This routine sets the *ppUnqual pointer to point at the token (pName1 or
+** pName2) that stores the unqualified table name. The index of the
+** database "xxx" is returned.
+*/
+SQLITE_PRIVATE int sqlite3TwoPartName(
+ Parse *pParse, /* Parsing and code generating context */
+ Token *pName1, /* The "xxx" in the name "xxx.yyy" or "xxx" */
+ Token *pName2, /* The "yyy" in the name "xxx.yyy" */
+ Token **pUnqual /* Write the unqualified object name here */
+){
+ int iDb; /* Database holding the object */
+ sqlite3 *db = pParse->db;
+
+ if( pName2 && pName2->n>0 ){
+ assert( !db->init.busy );
+ *pUnqual = pName2;
+ iDb = sqlite3FindDb(db, pName1);
+ if( iDb<0 ){
+ sqlite3ErrorMsg(pParse, "unknown database %T", pName1);
+ pParse->nErr++;
+ return -1;
+ }
+ }else{
+ assert( db->init.iDb==0 || db->init.busy );
+ iDb = db->init.iDb;
+ *pUnqual = pName1;
+ }
+ return iDb;
+}
+
+/*
+** This routine is used to check if the UTF-8 string zName is a legal
+** unqualified name for a new schema object (table, index, view or
+** trigger). All names are legal except those that begin with the string
+** "sqlite_" (in upper, lower or mixed case). This portion of the namespace
+** is reserved for internal use.
+*/
+SQLITE_PRIVATE int sqlite3CheckObjectName(Parse *pParse, const char *zName){
+ if( !pParse->db->init.busy && pParse->nested==0
+ && (pParse->db->flags & SQLITE_WriteSchema)==0
+ && 0==sqlite3StrNICmp(zName, "sqlite_", 7) ){
+ sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", zName);
+ return SQLITE_ERROR;
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Begin constructing a new table representation in memory. This is
+** the first of several action routines that get called in response
+** to a CREATE TABLE statement. In particular, this routine is called
+** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp
+** flag is true if the table should be stored in the auxiliary database
+** file instead of in the main database file. This is normally the case
+** when the "TEMP" or "TEMPORARY" keyword occurs in between
+** CREATE and TABLE.
+**
+** The new table record is initialized and put in pParse->pNewTable.
+** As more of the CREATE TABLE statement is parsed, additional action
+** routines will be called to add more information to this record.
+** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine
+** is called to complete the construction of the new table record.
+*/
+SQLITE_PRIVATE void sqlite3StartTable(
+ Parse *pParse, /* Parser context */
+ Token *pName1, /* First part of the name of the table or view */
+ Token *pName2, /* Second part of the name of the table or view */
+ int isTemp, /* True if this is a TEMP table */
+ int isView, /* True if this is a VIEW */
+ int isVirtual, /* True if this is a VIRTUAL table */
+ int noErr /* Do nothing if table already exists */
+){
+ Table *pTable;
+ char *zName = 0; /* The name of the new table */
+ sqlite3 *db = pParse->db;
+ Vdbe *v;
+ int iDb; /* Database number to create the table in */
+ Token *pName; /* Unqualified name of the table to create */
+
+ /* The table or view name to create is passed to this routine via tokens
+ ** pName1 and pName2. If the table name was fully qualified, for example:
+ **
+ ** CREATE TABLE xxx.yyy (...);
+ **
+ ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
+ ** the table name is not fully qualified, i.e.:
+ **
+ ** CREATE TABLE yyy(...);
+ **
+ ** Then pName1 is set to "yyy" and pName2 is "".
+ **
+ ** The call below sets the pName pointer to point at the token (pName1 or
+ ** pName2) that stores the unqualified table name. The variable iDb is
+ ** set to the index of the database that the table or view is to be
+ ** created in.
+ */
+ iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
+ if( iDb<0 ) return;
+ if( !OMIT_TEMPDB && isTemp && iDb>1 ){
+ /* If creating a temp table, the name may not be qualified */
+ sqlite3ErrorMsg(pParse, "temporary table name must be unqualified");
+ return;
+ }
+ if( !OMIT_TEMPDB && isTemp ) iDb = 1;
+
+ pParse->sNameToken = *pName;
+ zName = sqlite3NameFromToken(db, pName);
+ if( zName==0 ) return;
+ if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
+ goto begin_table_error;
+ }
+ if( db->init.iDb==1 ) isTemp = 1;
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ assert( (isTemp & 1)==isTemp );
+ {
+ int code;
+ char *zDb = db->aDb[iDb].zName;
+ if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){
+ goto begin_table_error;
+ }
+ if( isView ){
+ if( !OMIT_TEMPDB && isTemp ){
+ code = SQLITE_CREATE_TEMP_VIEW;
+ }else{
+ code = SQLITE_CREATE_VIEW;
+ }
+ }else{
+ if( !OMIT_TEMPDB && isTemp ){
+ code = SQLITE_CREATE_TEMP_TABLE;
+ }else{
+ code = SQLITE_CREATE_TABLE;
+ }
+ }
+ if( !isVirtual && sqlite3AuthCheck(pParse, code, zName, 0, zDb) ){
+ goto begin_table_error;
+ }
+ }
+#endif
+
+ /* Make sure the new table name does not collide with an existing
+ ** index or table name in the same database. Issue an error message if
+ ** it does. The exception is if the statement being parsed was passed
+ ** to an sqlite3_declare_vtab() call. In that case only the column names
+ ** and types will be used, so there is no need to test for namespace
+ ** collisions.
+ */
+ if( !IN_DECLARE_VTAB ){
+ if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
+ goto begin_table_error;
+ }
+ pTable = sqlite3FindTable(db, zName, db->aDb[iDb].zName);
+ if( pTable ){
+ if( !noErr ){
+ sqlite3ErrorMsg(pParse, "table %T already exists", pName);
+ }
+ goto begin_table_error;
+ }
+ if( sqlite3FindIndex(db, zName, 0)!=0 && (iDb==0 || !db->init.busy) ){
+ sqlite3ErrorMsg(pParse, "there is already an index named %s", zName);
+ goto begin_table_error;
+ }
+ }
+
+ pTable = sqlite3DbMallocZero(db, sizeof(Table));
+ if( pTable==0 ){
+ db->mallocFailed = 1;
+ pParse->rc = SQLITE_NOMEM;
+ pParse->nErr++;
+ goto begin_table_error;
+ }
+ pTable->zName = zName;
+ pTable->iPKey = -1;
+ pTable->pSchema = db->aDb[iDb].pSchema;
+ pTable->nRef = 1;
+ if( pParse->pNewTable ) sqlite3DeleteTable(pParse->pNewTable);
+ pParse->pNewTable = pTable;
+
+ /* If this is the magic sqlite_sequence table used by autoincrement,
+ ** then record a pointer to this table in the main database structure
+ ** so that INSERT can find the table easily.
+ */
+#ifndef SQLITE_OMIT_AUTOINCREMENT
+ if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){
+ pTable->pSchema->pSeqTab = pTable;
+ }
+#endif
+
+ /* Begin generating the code that will insert the table record into
+ ** the SQLITE_MASTER table. Note in particular that we must go ahead
+ ** and allocate the record number for the table entry now. Before any
+ ** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause
+ ** indices to be created and the table record must come before the
+ ** indices. Hence, the record number for the table must be allocated
+ ** now.
+ */
+ if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){
+ int j1;
+ int fileFormat;
+ int reg1, reg2, reg3;
+ sqlite3BeginWriteOperation(pParse, 0, iDb);
+
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ if( isVirtual ){
+ sqlite3VdbeAddOp0(v, OP_VBegin);
+ }
+#endif
+
+ /* If the file format and encoding in the database have not been set,
+ ** set them now.
+ */
+ reg1 = pParse->regRowid = ++pParse->nMem;
+ reg2 = pParse->regRoot = ++pParse->nMem;
+ reg3 = ++pParse->nMem;
+ sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, 1); /* file_format */
+ sqlite3VdbeUsesBtree(v, iDb);
+ j1 = sqlite3VdbeAddOp1(v, OP_If, reg3);
+ fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ?
+ 1 : SQLITE_MAX_FILE_FORMAT;
+ sqlite3VdbeAddOp2(v, OP_Integer, fileFormat, reg3);
+ sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, 1, reg3);
+ sqlite3VdbeAddOp2(v, OP_Integer, ENC(db), reg3);
+ sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, 4, reg3);
+ sqlite3VdbeJumpHere(v, j1);
+
+ /* This just creates a place-holder record in the sqlite_master table.
+ ** The record created does not contain anything yet. It will be replaced
+ ** by the real entry in code generated at sqlite3EndTable().
+ **
+ ** The rowid for the new entry is left on the top of the stack.
+ ** The rowid value is needed by the code that sqlite3EndTable will
+ ** generate.
+ */
+#if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
+ if( isView || isVirtual ){
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2);
+ }else
+#endif
+ {
+ sqlite3VdbeAddOp2(v, OP_CreateTable, iDb, reg2);
+ }
+ sqlite3OpenMasterTable(pParse, iDb);
+ sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1);
+ sqlite3VdbeAddOp2(v, OP_Null, 0, reg3);
+ sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1);
+ sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
+ sqlite3VdbeAddOp0(v, OP_Close);
+ }
+
+ /* Normal (non-error) return. */
+ return;
+
+ /* If an error occurs, we jump here */
+begin_table_error:
+ sqlite3_free(zName);
+ return;
+}
+
+/*
+** This macro is used to compare two strings in a case-insensitive manner.
+** It is slightly faster than calling sqlite3StrICmp() directly, but
+** produces larger code.
+**
+** WARNING: This macro is not compatible with the strcmp() family. It
+** returns true if the two strings are equal, otherwise false.
+*/
+#define STRICMP(x, y) (\
+sqlite3UpperToLower[*(unsigned char *)(x)]== \
+sqlite3UpperToLower[*(unsigned char *)(y)] \
+&& sqlite3StrICmp((x)+1,(y)+1)==0 )
+
+/*
+** Add a new column to the table currently being constructed.
+**
+** The parser calls this routine once for each column declaration
+** in a CREATE TABLE statement. sqlite3StartTable() gets called
+** first to get things going. Then this routine is called for each
+** column.
+*/
+SQLITE_PRIVATE void sqlite3AddColumn(Parse *pParse, Token *pName){
+ Table *p;
+ int i;
+ char *z;
+ Column *pCol;
+ sqlite3 *db = pParse->db;
+ if( (p = pParse->pNewTable)==0 ) return;
+#if SQLITE_MAX_COLUMN
+ if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){
+ sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName);
+ return;
+ }
+#endif
+ z = sqlite3NameFromToken(pParse->db, pName);
+ if( z==0 ) return;
+ for(i=0; i<p->nCol; i++){
+ if( STRICMP(z, p->aCol[i].zName) ){
+ sqlite3ErrorMsg(pParse, "duplicate column name: %s", z);
+ sqlite3_free(z);
+ return;
+ }
+ }
+ if( (p->nCol & 0x7)==0 ){
+ Column *aNew;
+ aNew = sqlite3DbRealloc(pParse->db,p->aCol,(p->nCol+8)*sizeof(p->aCol[0]));
+ if( aNew==0 ){
+ sqlite3_free(z);
+ return;
+ }
+ p->aCol = aNew;
+ }
+ pCol = &p->aCol[p->nCol];
+ memset(pCol, 0, sizeof(p->aCol[0]));
+ pCol->zName = z;
+
+ /* If there is no type specified, columns have the default affinity
+ ** 'NONE'. If there is a type specified, then sqlite3AddColumnType() will
+ ** be called next to set pCol->affinity correctly.
+ */
+ pCol->affinity = SQLITE_AFF_NONE;
+ p->nCol++;
+}
+
+/*
+** This routine is called by the parser while in the middle of
+** parsing a CREATE TABLE statement. A "NOT NULL" constraint has
+** been seen on a column. This routine sets the notNull flag on
+** the column currently under construction.
+*/
+SQLITE_PRIVATE void sqlite3AddNotNull(Parse *pParse, int onError){
+ Table *p;
+ int i;
+ if( (p = pParse->pNewTable)==0 ) return;
+ i = p->nCol-1;
+ if( i>=0 ) p->aCol[i].notNull = onError;
+}
+
+/*
+** Scan the column type name zType (length nType) and return the
+** associated affinity type.
+**
+** This routine does a case-independent search of zType for the
+** substrings in the following table. If one of the substrings is
+** found, the corresponding affinity is returned. If zType contains
+** more than one of the substrings, entries toward the top of
+** the table take priority. For example, if zType is 'BLOBINT',
+** SQLITE_AFF_INTEGER is returned.
+**
+** Substring | Affinity
+** --------------------------------
+** 'INT' | SQLITE_AFF_INTEGER
+** 'CHAR' | SQLITE_AFF_TEXT
+** 'CLOB' | SQLITE_AFF_TEXT
+** 'TEXT' | SQLITE_AFF_TEXT
+** 'BLOB' | SQLITE_AFF_NONE
+** 'REAL' | SQLITE_AFF_REAL
+** 'FLOA' | SQLITE_AFF_REAL
+** 'DOUB' | SQLITE_AFF_REAL
+**
+** If none of the substrings in the above table are found,
+** SQLITE_AFF_NUMERIC is returned.
+*/
+SQLITE_PRIVATE char sqlite3AffinityType(const Token *pType){
+ u32 h = 0;
+ char aff = SQLITE_AFF_NUMERIC;
+ const unsigned char *zIn = pType->z;
+ const unsigned char *zEnd = &pType->z[pType->n];
+
+ while( zIn!=zEnd ){
+ h = (h<<8) + sqlite3UpperToLower[*zIn];
+ zIn++;
+ if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){ /* CHAR */
+ aff = SQLITE_AFF_TEXT;
+ }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){ /* CLOB */
+ aff = SQLITE_AFF_TEXT;
+ }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){ /* TEXT */
+ aff = SQLITE_AFF_TEXT;
+ }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b') /* BLOB */
+ && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){
+ aff = SQLITE_AFF_NONE;
+#ifndef SQLITE_OMIT_FLOATING_POINT
+ }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l') /* REAL */
+ && aff==SQLITE_AFF_NUMERIC ){
+ aff = SQLITE_AFF_REAL;
+ }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a') /* FLOA */
+ && aff==SQLITE_AFF_NUMERIC ){
+ aff = SQLITE_AFF_REAL;
+ }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b') /* DOUB */
+ && aff==SQLITE_AFF_NUMERIC ){
+ aff = SQLITE_AFF_REAL;
+#endif
+ }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){ /* INT */
+ aff = SQLITE_AFF_INTEGER;
+ break;
+ }
+ }
+
+ return aff;
+}
+
+/*
+** This routine is called by the parser while in the middle of
+** parsing a CREATE TABLE statement. The pFirst token is the first
+** token in the sequence of tokens that describe the type of the
+** column currently under construction. pLast is the last token
+** in the sequence. Use this information to construct a string
+** that contains the typename of the column and store that string
+** in zType.
+*/
+SQLITE_PRIVATE void sqlite3AddColumnType(Parse *pParse, Token *pType){
+ Table *p;
+ int i;
+ Column *pCol;
+
+ if( (p = pParse->pNewTable)==0 ) return;
+ i = p->nCol-1;
+ if( i<0 ) return;
+ pCol = &p->aCol[i];
+ sqlite3_free(pCol->zType);
+ pCol->zType = sqlite3NameFromToken(pParse->db, pType);
+ pCol->affinity = sqlite3AffinityType(pType);
+}
+
+/*
+** The expression is the default value for the most recently added column
+** of the table currently under construction.
+**
+** Default value expressions must be constant. Raise an exception if this
+** is not the case.
+**
+** This routine is called by the parser while in the middle of
+** parsing a CREATE TABLE statement.
+*/
+SQLITE_PRIVATE void sqlite3AddDefaultValue(Parse *pParse, Expr *pExpr){
+ Table *p;
+ Column *pCol;
+ if( (p = pParse->pNewTable)!=0 ){
+ pCol = &(p->aCol[p->nCol-1]);
+ if( !sqlite3ExprIsConstantOrFunction(pExpr) ){
+ sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant",
+ pCol->zName);
+ }else{
+ Expr *pCopy;
+ sqlite3 *db = pParse->db;
+ sqlite3ExprDelete(pCol->pDflt);
+ pCol->pDflt = pCopy = sqlite3ExprDup(db, pExpr);
+ if( pCopy ){
+ sqlite3TokenCopy(db, &pCopy->span, &pExpr->span);
+ }
+ }
+ }
+ sqlite3ExprDelete(pExpr);
+}
+
+/*
+** Designate the PRIMARY KEY for the table. pList is a list of names
+** of columns that form the primary key. If pList is NULL, then the
+** most recently added column of the table is the primary key.
+**
+** A table can have at most one primary key. If the table already has
+** a primary key (and this is the second primary key) then create an
+** error.
+**
+** If the PRIMARY KEY is on a single column whose datatype is INTEGER,
+** then we will try to use that column as the rowid. Set the Table.iPKey
+** field of the table under construction to be the index of the
+** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is
+** no INTEGER PRIMARY KEY.
+**
+** If the key is not an INTEGER PRIMARY KEY, then create a unique
+** index for the key. No index is created for INTEGER PRIMARY KEYs.
+*/
+SQLITE_PRIVATE void sqlite3AddPrimaryKey(
+ Parse *pParse, /* Parsing context */
+ ExprList *pList, /* List of field names to be indexed */
+ int onError, /* What to do with a uniqueness conflict */
+ int autoInc, /* True if the AUTOINCREMENT keyword is present */
+ int sortOrder /* SQLITE_SO_ASC or SQLITE_SO_DESC */
+){
+ Table *pTab = pParse->pNewTable;
+ char *zType = 0;
+ int iCol = -1, i;
+ if( pTab==0 || IN_DECLARE_VTAB ) goto primary_key_exit;
+ if( pTab->hasPrimKey ){
+ sqlite3ErrorMsg(pParse,
+ "table \"%s\" has more than one primary key", pTab->zName);
+ goto primary_key_exit;
+ }
+ pTab->hasPrimKey = 1;
+ if( pList==0 ){
+ iCol = pTab->nCol - 1;
+ pTab->aCol[iCol].isPrimKey = 1;
+ }else{
+ for(i=0; i<pList->nExpr; i++){
+ for(iCol=0; iCol<pTab->nCol; iCol++){
+ if( sqlite3StrICmp(pList->a[i].zName, pTab->aCol[iCol].zName)==0 ){
+ break;
+ }
+ }
+ if( iCol<pTab->nCol ){
+ pTab->aCol[iCol].isPrimKey = 1;
+ }
+ }
+ if( pList->nExpr>1 ) iCol = -1;
+ }
+ if( iCol>=0 && iCol<pTab->nCol ){
+ zType = pTab->aCol[iCol].zType;
+ }
+ if( zType && sqlite3StrICmp(zType, "INTEGER")==0
+ && sortOrder==SQLITE_SO_ASC ){
+ pTab->iPKey = iCol;
+ pTab->keyConf = onError;
+ pTab->autoInc = autoInc;
+ }else if( autoInc ){
+#ifndef SQLITE_OMIT_AUTOINCREMENT
+ sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an "
+ "INTEGER PRIMARY KEY");
+#endif
+ }else{
+ sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0, 0, sortOrder, 0);
+ pList = 0;
+ }
+
+primary_key_exit:
+ sqlite3ExprListDelete(pList);
+ return;
+}
+
+/*
+** Add a new CHECK constraint to the table currently under construction.
+*/
+SQLITE_PRIVATE void sqlite3AddCheckConstraint(
+ Parse *pParse, /* Parsing context */
+ Expr *pCheckExpr /* The check expression */
+){
+#ifndef SQLITE_OMIT_CHECK
+ Table *pTab = pParse->pNewTable;
+ sqlite3 *db = pParse->db;
+ if( pTab && !IN_DECLARE_VTAB ){
+ /* The CHECK expression must be duplicated so that tokens refer
+ ** to malloced space and not the (ephemeral) text of the CREATE TABLE
+ ** statement */
+ pTab->pCheck = sqlite3ExprAnd(db, pTab->pCheck,
+ sqlite3ExprDup(db, pCheckExpr));
+ }
+#endif
+ sqlite3ExprDelete(pCheckExpr);
+}
+
+/*
+** Set the collation function of the most recently parsed table column
+** to the CollSeq given.
+*/
+SQLITE_PRIVATE void sqlite3AddCollateType(Parse *pParse, Token *pToken){
+ Table *p;
+ int i;
+ char *zColl; /* Dequoted name of collation sequence */
+
+ if( (p = pParse->pNewTable)==0 ) return;
+ i = p->nCol-1;
+
+ zColl = sqlite3NameFromToken(pParse->db, pToken);
+ if( !zColl ) return;
+
+ if( sqlite3LocateCollSeq(pParse, zColl, -1) ){
+ Index *pIdx;
+ p->aCol[i].zColl = zColl;
+
+ /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>",
+ ** then an index may have been created on this column before the
+ ** collation type was added. Correct this if it is the case.
+ */
+ for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
+ assert( pIdx->nColumn==1 );
+ if( pIdx->aiColumn[0]==i ){
+ pIdx->azColl[0] = p->aCol[i].zColl;
+ }
+ }
+ }else{
+ sqlite3_free(zColl);
+ }
+}
+
+/*
+** This function returns the collation sequence for database native text
+** encoding identified by the string zName, length nName.
+**
+** If the requested collation sequence is not available, or not available
+** in the database native encoding, the collation factory is invoked to
+** request it. If the collation factory does not supply such a sequence,
+** and the sequence is available in another text encoding, then that is
+** returned instead.
+**
+** If no versions of the requested collations sequence are available, or
+** another error occurs, NULL is returned and an error message written into
+** pParse.
+**
+** This routine is a wrapper around sqlite3FindCollSeq(). This routine
+** invokes the collation factory if the named collation cannot be found
+** and generates an error message.
+*/
+SQLITE_PRIVATE CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName, int nName){
+ sqlite3 *db = pParse->db;
+ u8 enc = ENC(db);
+ u8 initbusy = db->init.busy;
+ CollSeq *pColl;
+
+ pColl = sqlite3FindCollSeq(db, enc, zName, nName, initbusy);
+ if( !initbusy && (!pColl || !pColl->xCmp) ){
+ pColl = sqlite3GetCollSeq(db, pColl, zName, nName);
+ if( !pColl ){
+ if( nName<0 ){
+ nName = strlen(zName);
+ }
+ sqlite3ErrorMsg(pParse, "no such collation sequence: %.*s", nName, zName);
+ pColl = 0;
+ }
+ }
+
+ return pColl;
+}
+
+
+/*
+** Generate code that will increment the schema cookie.
+**
+** The schema cookie is used to determine when the schema for the
+** database changes. After each schema change, the cookie value
+** changes. When a process first reads the schema it records the
+** cookie. Thereafter, whenever it goes to access the database,
+** it checks the cookie to make sure the schema has not changed
+** since it was last read.
+**
+** This plan is not completely bullet-proof. It is possible for
+** the schema to change multiple times and for the cookie to be
+** set back to prior value. But schema changes are infrequent
+** and the probability of hitting the same cookie value is only
+** 1 chance in 2^32. So we're safe enough.
+*/
+SQLITE_PRIVATE void sqlite3ChangeCookie(Parse *pParse, int iDb){
+ int r1 = sqlite3GetTempReg(pParse);
+ sqlite3 *db = pParse->db;
+ Vdbe *v = pParse->pVdbe;
+ sqlite3VdbeAddOp2(v, OP_Integer, db->aDb[iDb].pSchema->schema_cookie+1, r1);
+ sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, 0, r1);
+ sqlite3ReleaseTempReg(pParse, r1);
+}
+
+/*
+** Measure the number of characters needed to output the given
+** identifier. The number returned includes any quotes used
+** but does not include the null terminator.
+**
+** The estimate is conservative. It might be larger that what is
+** really needed.
+*/
+static int identLength(const char *z){
+ int n;
+ for(n=0; *z; n++, z++){
+ if( *z=='"' ){ n++; }
+ }
+ return n + 2;
+}
+
+/*
+** Write an identifier onto the end of the given string. Add
+** quote characters as needed.
+*/
+static void identPut(char *z, int *pIdx, char *zSignedIdent){
+ unsigned char *zIdent = (unsigned char*)zSignedIdent;
+ int i, j, needQuote;
+ i = *pIdx;
+ for(j=0; zIdent[j]; j++){
+ if( !isalnum(zIdent[j]) && zIdent[j]!='_' ) break;
+ }
+ needQuote = zIdent[j]!=0 || isdigit(zIdent[0])
+ || sqlite3KeywordCode(zIdent, j)!=TK_ID;
+ if( needQuote ) z[i++] = '"';
+ for(j=0; zIdent[j]; j++){
+ z[i++] = zIdent[j];
+ if( zIdent[j]=='"' ) z[i++] = '"';
+ }
+ if( needQuote ) z[i++] = '"';
+ z[i] = 0;
+ *pIdx = i;
+}
+
+/*
+** Generate a CREATE TABLE statement appropriate for the given
+** table. Memory to hold the text of the statement is obtained
+** from sqliteMalloc() and must be freed by the calling function.
+*/
+static char *createTableStmt(sqlite3 *db, Table *p, int isTemp){
+ int i, k, n;
+ char *zStmt;
+ char *zSep, *zSep2, *zEnd, *z;
+ Column *pCol;
+ n = 0;
+ for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){
+ n += identLength(pCol->zName);
+ z = pCol->zType;
+ if( z ){
+ n += (strlen(z) + 1);
+ }
+ }
+ n += identLength(p->zName);
+ if( n<50 ){
+ zSep = "";
+ zSep2 = ",";
+ zEnd = ")";
+ }else{
+ zSep = "\n ";
+ zSep2 = ",\n ";
+ zEnd = "\n)";
+ }
+ n += 35 + 6*p->nCol;
+ zStmt = sqlite3_malloc( n );
+ if( zStmt==0 ){
+ db->mallocFailed = 1;
+ return 0;
+ }
+ sqlite3_snprintf(n, zStmt,
+ !OMIT_TEMPDB&&isTemp ? "CREATE TEMP TABLE ":"CREATE TABLE ");
+ k = strlen(zStmt);
+ identPut(zStmt, &k, p->zName);
+ zStmt[k++] = '(';
+ for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){
+ sqlite3_snprintf(n-k, &zStmt[k], zSep);
+ k += strlen(&zStmt[k]);
+ zSep = zSep2;
+ identPut(zStmt, &k, pCol->zName);
+ if( (z = pCol->zType)!=0 ){
+ zStmt[k++] = ' ';
+ assert( strlen(z)+k+1<=n );
+ sqlite3_snprintf(n-k, &zStmt[k], "%s", z);
+ k += strlen(z);
+ }
+ }
+ sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd);
+ return zStmt;
+}
+
+/*
+** This routine is called to report the final ")" that terminates
+** a CREATE TABLE statement.
+**
+** The table structure that other action routines have been building
+** is added to the internal hash tables, assuming no errors have
+** occurred.
+**
+** An entry for the table is made in the master table on disk, unless
+** this is a temporary table or db->init.busy==1. When db->init.busy==1
+** it means we are reading the sqlite_master table because we just
+** connected to the database or because the sqlite_master table has
+** recently changed, so the entry for this table already exists in
+** the sqlite_master table. We do not want to create it again.
+**
+** If the pSelect argument is not NULL, it means that this routine
+** was called to create a table generated from a
+** "CREATE TABLE ... AS SELECT ..." statement. The column names of
+** the new table will match the result set of the SELECT.
+*/
+SQLITE_PRIVATE void sqlite3EndTable(
+ Parse *pParse, /* Parse context */
+ Token *pCons, /* The ',' token after the last column defn. */
+ Token *pEnd, /* The final ')' token in the CREATE TABLE */
+ Select *pSelect /* Select from a "CREATE ... AS SELECT" */
+){
+ Table *p;
+ sqlite3 *db = pParse->db;
+ int iDb;
+
+ if( (pEnd==0 && pSelect==0) || pParse->nErr || db->mallocFailed ) {
+ return;
+ }
+ p = pParse->pNewTable;
+ if( p==0 ) return;
+
+ assert( !db->init.busy || !pSelect );
+
+ iDb = sqlite3SchemaToIndex(db, p->pSchema);
+
+#ifndef SQLITE_OMIT_CHECK
+ /* Resolve names in all CHECK constraint expressions.
+ */
+ if( p->pCheck ){
+ SrcList sSrc; /* Fake SrcList for pParse->pNewTable */
+ NameContext sNC; /* Name context for pParse->pNewTable */
+
+ memset(&sNC, 0, sizeof(sNC));
+ memset(&sSrc, 0, sizeof(sSrc));
+ sSrc.nSrc = 1;
+ sSrc.a[0].zName = p->zName;
+ sSrc.a[0].pTab = p;
+ sSrc.a[0].iCursor = -1;
+ sNC.pParse = pParse;
+ sNC.pSrcList = &sSrc;
+ sNC.isCheck = 1;
+ if( sqlite3ExprResolveNames(&sNC, p->pCheck) ){
+ return;
+ }
+ }
+#endif /* !defined(SQLITE_OMIT_CHECK) */
+
+ /* If the db->init.busy is 1 it means we are reading the SQL off the
+ ** "sqlite_master" or "sqlite_temp_master" table on the disk.
+ ** So do not write to the disk again. Extract the root page number
+ ** for the table from the db->init.newTnum field. (The page number
+ ** should have been put there by the sqliteOpenCb routine.)
+ */
+ if( db->init.busy ){
+ p->tnum = db->init.newTnum;
+ }
+
+ /* If not initializing, then create a record for the new table
+ ** in the SQLITE_MASTER table of the database. The record number
+ ** for the new table entry should already be on the stack.
+ **
+ ** If this is a TEMPORARY table, write the entry into the auxiliary
+ ** file instead of into the main database file.
+ */
+ if( !db->init.busy ){
+ int n;
+ Vdbe *v;
+ char *zType; /* "view" or "table" */
+ char *zType2; /* "VIEW" or "TABLE" */
+ char *zStmt; /* Text of the CREATE TABLE or CREATE VIEW statement */
+
+ v = sqlite3GetVdbe(pParse);
+ if( v==0 ) return;
+
+ sqlite3VdbeAddOp1(v, OP_Close, 0);
+
+ /* Create the rootpage for the new table and push it onto the stack.
+ ** A view has no rootpage, so just push a zero onto the stack for
+ ** views. Initialize zType at the same time.
+ */
+ if( p->pSelect==0 ){
+ /* A regular table */
+ zType = "table";
+ zType2 = "TABLE";
+#ifndef SQLITE_OMIT_VIEW
+ }else{
+ /* A view */
+ zType = "view";
+ zType2 = "VIEW";
+#endif
+ }
+
+ /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT
+ ** statement to populate the new table. The root-page number for the
+ ** new table is on the top of the vdbe stack.
+ **
+ ** Once the SELECT has been coded by sqlite3Select(), it is in a
+ ** suitable state to query for the column names and types to be used
+ ** by the new table.
+ **
+ ** A shared-cache write-lock is not required to write to the new table,
+ ** as a schema-lock must have already been obtained to create it. Since
+ ** a schema-lock excludes all other database users, the write-lock would
+ ** be redundant.
+ */
+ if( pSelect ){
+ SelectDest dest;
+ Table *pSelTab;
+
+ sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb);
+ sqlite3VdbeChangeP5(v, 1);
+ pParse->nTab = 2;
+ sqlite3SelectDestInit(&dest, SRT_Table, 1);
+ sqlite3Select(pParse, pSelect, &dest, 0, 0, 0, 0);
+ sqlite3VdbeAddOp1(v, OP_Close, 1);
+ if( pParse->nErr==0 ){
+ pSelTab = sqlite3ResultSetOfSelect(pParse, 0, pSelect);
+ if( pSelTab==0 ) return;
+ assert( p->aCol==0 );
+ p->nCol = pSelTab->nCol;
+ p->aCol = pSelTab->aCol;
+ pSelTab->nCol = 0;
+ pSelTab->aCol = 0;
+ sqlite3DeleteTable(pSelTab);
+ }
+ }
+
+ /* Compute the complete text of the CREATE statement */
+ if( pSelect ){
+ zStmt = createTableStmt(db, p, p->pSchema==db->aDb[1].pSchema);
+ }else{
+ n = pEnd->z - pParse->sNameToken.z + 1;
+ zStmt = sqlite3MPrintf(db,
+ "CREATE %s %.*s", zType2, n, pParse->sNameToken.z
+ );
+ }
+
+ /* A slot for the record has already been allocated in the
+ ** SQLITE_MASTER table. We just need to update that slot with all
+ ** the information we've collected. The rowid for the preallocated
+ ** slot is the 2nd item on the stack. The top of the stack is the
+ ** root page for the new table (or a 0 if this is a view).
+ */
+ sqlite3NestedParse(pParse,
+ "UPDATE %Q.%s "
+ "SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q "
+ "WHERE rowid=#%d",
+ db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
+ zType,
+ p->zName,
+ p->zName,
+ pParse->regRoot,
+ zStmt,
+ pParse->regRowid
+ );
+ sqlite3_free(zStmt);
+ sqlite3ChangeCookie(pParse, iDb);
+
+#ifndef SQLITE_OMIT_AUTOINCREMENT
+ /* Check to see if we need to create an sqlite_sequence table for
+ ** keeping track of autoincrement keys.
+ */
+ if( p->autoInc ){
+ Db *pDb = &db->aDb[iDb];
+ if( pDb->pSchema->pSeqTab==0 ){
+ sqlite3NestedParse(pParse,
+ "CREATE TABLE %Q.sqlite_sequence(name,seq)",
+ pDb->zName
+ );
+ }
+ }
+#endif
+
+ /* Reparse everything to update our internal data structures */
+ sqlite3VdbeAddOp4(v, OP_ParseSchema, iDb, 0, 0,
+ sqlite3MPrintf(db, "tbl_name='%q'",p->zName), P4_DYNAMIC);
+ }
+
+
+ /* Add the table to the in-memory representation of the database.
+ */
+ if( db->init.busy && pParse->nErr==0 ){
+ Table *pOld;
+ FKey *pFKey;
+ Schema *pSchema = p->pSchema;
+ pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, strlen(p->zName)+1,p);
+ if( pOld ){
+ assert( p==pOld ); /* Malloc must have failed inside HashInsert() */
+ db->mallocFailed = 1;
+ return;
+ }
+#ifndef SQLITE_OMIT_FOREIGN_KEY
+ for(pFKey=p->pFKey; pFKey; pFKey=pFKey->pNextFrom){
+ void *data;
+ int nTo = strlen(pFKey->zTo) + 1;
+ pFKey->pNextTo = sqlite3HashFind(&pSchema->aFKey, pFKey->zTo, nTo);
+ data = sqlite3HashInsert(&pSchema->aFKey, pFKey->zTo, nTo, pFKey);
+ if( data==(void *)pFKey ){
+ db->mallocFailed = 1;
+ }
+ }
+#endif
+ pParse->pNewTable = 0;
+ db->nTable++;
+ db->flags |= SQLITE_InternChanges;
+
+#ifndef SQLITE_OMIT_ALTERTABLE
+ if( !p->pSelect ){
+ const char *zName = (const char *)pParse->sNameToken.z;
+ int nName;
+ assert( !pSelect && pCons && pEnd );
+ if( pCons->z==0 ){
+ pCons = pEnd;
+ }
+ nName = (const char *)pCons->z - zName;
+ p->addColOffset = 13 + sqlite3Utf8CharLen(zName, nName);
+ }
+#endif
+ }
+}
+
+#ifndef SQLITE_OMIT_VIEW
+/*
+** The parser calls this routine in order to create a new VIEW
+*/
+SQLITE_PRIVATE void sqlite3CreateView(
+ Parse *pParse, /* The parsing context */
+ Token *pBegin, /* The CREATE token that begins the statement */
+ Token *pName1, /* The token that holds the name of the view */
+ Token *pName2, /* The token that holds the name of the view */
+ Select *pSelect, /* A SELECT statement that will become the new view */
+ int isTemp, /* TRUE for a TEMPORARY view */
+ int noErr /* Suppress error messages if VIEW already exists */
+){
+ Table *p;
+ int n;
+ const unsigned char *z;
+ Token sEnd;
+ DbFixer sFix;
+ Token *pName;
+ int iDb;
+ sqlite3 *db = pParse->db;
+
+ if( pParse->nVar>0 ){
+ sqlite3ErrorMsg(pParse, "parameters are not allowed in views");
+ sqlite3SelectDelete(pSelect);
+ return;
+ }
+ sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr);
+ p = pParse->pNewTable;
+ if( p==0 || pParse->nErr ){
+ sqlite3SelectDelete(pSelect);
+ return;
+ }
+ sqlite3TwoPartName(pParse, pName1, pName2, &pName);
+ iDb = sqlite3SchemaToIndex(db, p->pSchema);
+ if( sqlite3FixInit(&sFix, pParse, iDb, "view", pName)
+ && sqlite3FixSelect(&sFix, pSelect)
+ ){
+ sqlite3SelectDelete(pSelect);
+ return;
+ }
+
+ /* Make a copy of the entire SELECT statement that defines the view.
+ ** This will force all the Expr.token.z values to be dynamically
+ ** allocated rather than point to the input string - which means that
+ ** they will persist after the current sqlite3_exec() call returns.
+ */
+ p->pSelect = sqlite3SelectDup(db, pSelect);
+ sqlite3SelectDelete(pSelect);
+ if( db->mallocFailed ){
+ return;
+ }
+ if( !db->init.busy ){
+ sqlite3ViewGetColumnNames(pParse, p);
+ }
+
+ /* Locate the end of the CREATE VIEW statement. Make sEnd point to
+ ** the end.
+ */
+ sEnd = pParse->sLastToken;
+ if( sEnd.z[0]!=0 && sEnd.z[0]!=';' ){
+ sEnd.z += sEnd.n;
+ }
+ sEnd.n = 0;
+ n = sEnd.z - pBegin->z;
+ z = (const unsigned char*)pBegin->z;
+ while( n>0 && (z[n-1]==';' || isspace(z[n-1])) ){ n--; }
+ sEnd.z = &z[n-1];
+ sEnd.n = 1;
+
+ /* Use sqlite3EndTable() to add the view to the SQLITE_MASTER table */
+ sqlite3EndTable(pParse, 0, &sEnd, 0);
+ return;
+}
+#endif /* SQLITE_OMIT_VIEW */
+
+#if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
+/*
+** The Table structure pTable is really a VIEW. Fill in the names of
+** the columns of the view in the pTable structure. Return the number
+** of errors. If an error is seen leave an error message in pParse->zErrMsg.
+*/
+SQLITE_PRIVATE int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){
+ Table *pSelTab; /* A fake table from which we get the result set */
+ Select *pSel; /* Copy of the SELECT that implements the view */
+ int nErr = 0; /* Number of errors encountered */
+ int n; /* Temporarily holds the number of cursors assigned */
+ sqlite3 *db = pParse->db; /* Database connection for malloc errors */
+ int (*xAuth)(void*,int,const char*,const char*,const char*,const char*);
+
+ assert( pTable );
+
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ if( sqlite3VtabCallConnect(pParse, pTable) ){
+ return SQLITE_ERROR;
+ }
+ if( IsVirtual(pTable) ) return 0;
+#endif
+
+#ifndef SQLITE_OMIT_VIEW
+ /* A positive nCol means the columns names for this view are
+ ** already known.
+ */
+ if( pTable->nCol>0 ) return 0;
+
+ /* A negative nCol is a special marker meaning that we are currently
+ ** trying to compute the column names. If we enter this routine with
+ ** a negative nCol, it means two or more views form a loop, like this:
+ **
+ ** CREATE VIEW one AS SELECT * FROM two;
+ ** CREATE VIEW two AS SELECT * FROM one;
+ **
+ ** Actually, this error is caught previously and so the following test
+ ** should always fail. But we will leave it in place just to be safe.
+ */
+ if( pTable->nCol<0 ){
+ sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName);
+ return 1;
+ }
+ assert( pTable->nCol>=0 );
+
+ /* If we get this far, it means we need to compute the table names.
+ ** Note that the call to sqlite3ResultSetOfSelect() will expand any
+ ** "*" elements in the results set of the view and will assign cursors
+ ** to the elements of the FROM clause. But we do not want these changes
+ ** to be permanent. So the computation is done on a copy of the SELECT
+ ** statement that defines the view.
+ */
+ assert( pTable->pSelect );
+ pSel = sqlite3SelectDup(db, pTable->pSelect);
+ if( pSel ){
+ n = pParse->nTab;
+ sqlite3SrcListAssignCursors(pParse, pSel->pSrc);
+ pTable->nCol = -1;
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ xAuth = db->xAuth;
+ db->xAuth = 0;
+ pSelTab = sqlite3ResultSetOfSelect(pParse, 0, pSel);
+ db->xAuth = xAuth;
+#else
+ pSelTab = sqlite3ResultSetOfSelect(pParse, 0, pSel);
+#endif
+ pParse->nTab = n;
+ if( pSelTab ){
+ assert( pTable->aCol==0 );
+ pTable->nCol = pSelTab->nCol;
+ pTable->aCol = pSelTab->aCol;
+ pSelTab->nCol = 0;
+ pSelTab->aCol = 0;
+ sqlite3DeleteTable(pSelTab);
+ pTable->pSchema->flags |= DB_UnresetViews;
+ }else{
+ pTable->nCol = 0;
+ nErr++;
+ }
+ sqlite3SelectDelete(pSel);
+ } else {
+ nErr++;
+ }
+#endif /* SQLITE_OMIT_VIEW */
+ return nErr;
+}
+#endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */
+
+#ifndef SQLITE_OMIT_VIEW
+/*
+** Clear the column names from every VIEW in database idx.
+*/
+static void sqliteViewResetAll(sqlite3 *db, int idx){
+ HashElem *i;
+ if( !DbHasProperty(db, idx, DB_UnresetViews) ) return;
+ for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){
+ Table *pTab = sqliteHashData(i);
+ if( pTab->pSelect ){
+ sqliteResetColumnNames(pTab);
+ }
+ }
+ DbClearProperty(db, idx, DB_UnresetViews);
+}
+#else
+# define sqliteViewResetAll(A,B)
+#endif /* SQLITE_OMIT_VIEW */
+
+/*
+** This function is called by the VDBE to adjust the internal schema
+** used by SQLite when the btree layer moves a table root page. The
+** root-page of a table or index in database iDb has changed from iFrom
+** to iTo.
+**
+** Ticket #1728: The symbol table might still contain information
+** on tables and/or indices that are the process of being deleted.
+** If you are unlucky, one of those deleted indices or tables might
+** have the same rootpage number as the real table or index that is
+** being moved. So we cannot stop searching after the first match
+** because the first match might be for one of the deleted indices
+** or tables and not the table/index that is actually being moved.
+** We must continue looping until all tables and indices with
+** rootpage==iFrom have been converted to have a rootpage of iTo
+** in order to be certain that we got the right one.
+*/
+#ifndef SQLITE_OMIT_AUTOVACUUM
+SQLITE_PRIVATE void sqlite3RootPageMoved(Db *pDb, int iFrom, int iTo){
+ HashElem *pElem;
+ Hash *pHash;
+
+ pHash = &pDb->pSchema->tblHash;
+ for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
+ Table *pTab = sqliteHashData(pElem);
+ if( pTab->tnum==iFrom ){
+ pTab->tnum = iTo;
+ }
+ }
+ pHash = &pDb->pSchema->idxHash;
+ for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
+ Index *pIdx = sqliteHashData(pElem);
+ if( pIdx->tnum==iFrom ){
+ pIdx->tnum = iTo;
+ }
+ }
+}
+#endif
+
+/*
+** Write code to erase the table with root-page iTable from database iDb.
+** Also write code to modify the sqlite_master table and internal schema
+** if a root-page of another table is moved by the btree-layer whilst
+** erasing iTable (this can happen with an auto-vacuum database).
+*/
+static void destroyRootPage(Parse *pParse, int iTable, int iDb){
+ Vdbe *v = sqlite3GetVdbe(pParse);
+ int r1 = sqlite3GetTempReg(pParse);
+ sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb);
+#ifndef SQLITE_OMIT_AUTOVACUUM
+ /* OP_Destroy stores an in integer r1. If this integer
+ ** is non-zero, then it is the root page number of a table moved to
+ ** location iTable. The following code modifies the sqlite_master table to
+ ** reflect this.
+ **
+ ** The "#%d" in the SQL is a special constant that means whatever value
+ ** is on the top of the stack. See sqlite3RegisterExpr().
+ */
+ sqlite3NestedParse(pParse,
+ "UPDATE %Q.%s SET rootpage=%d WHERE #%d AND rootpage=#%d",
+ pParse->db->aDb[iDb].zName, SCHEMA_TABLE(iDb), iTable, r1, r1);
+#endif
+ sqlite3ReleaseTempReg(pParse, r1);
+}
+
+/*
+** Write VDBE code to erase table pTab and all associated indices on disk.
+** Code to update the sqlite_master tables and internal schema definitions
+** in case a root-page belonging to another table is moved by the btree layer
+** is also added (this can happen with an auto-vacuum database).
+*/
+static void destroyTable(Parse *pParse, Table *pTab){
+#ifdef SQLITE_OMIT_AUTOVACUUM
+ Index *pIdx;
+ int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
+ destroyRootPage(pParse, pTab->tnum, iDb);
+ for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
+ destroyRootPage(pParse, pIdx->tnum, iDb);
+ }
+#else
+ /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM
+ ** is not defined), then it is important to call OP_Destroy on the
+ ** table and index root-pages in order, starting with the numerically
+ ** largest root-page number. This guarantees that none of the root-pages
+ ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the
+ ** following were coded:
+ **
+ ** OP_Destroy 4 0
+ ** ...
+ ** OP_Destroy 5 0
+ **
+ ** and root page 5 happened to be the largest root-page number in the
+ ** database, then root page 5 would be moved to page 4 by the
+ ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit
+ ** a free-list page.
+ */
+ int iTab = pTab->tnum;
+ int iDestroyed = 0;
+
+ while( 1 ){
+ Index *pIdx;
+ int iLargest = 0;
+
+ if( iDestroyed==0 || iTab<iDestroyed ){
+ iLargest = iTab;
+ }
+ for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
+ int iIdx = pIdx->tnum;
+ assert( pIdx->pSchema==pTab->pSchema );
+ if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){
+ iLargest = iIdx;
+ }
+ }
+ if( iLargest==0 ){
+ return;
+ }else{
+ int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
+ destroyRootPage(pParse, iLargest, iDb);
+ iDestroyed = iLargest;
+ }
+ }
+#endif
+}
+
+/*
+** This routine is called to do the work of a DROP TABLE statement.
+** pName is the name of the table to be dropped.
+*/
+SQLITE_PRIVATE void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){
+ Table *pTab;
+ Vdbe *v;
+ sqlite3 *db = pParse->db;
+ int iDb;
+
+ if( pParse->nErr || db->mallocFailed ){
+ goto exit_drop_table;
+ }
+ assert( pName->nSrc==1 );
+ pTab = sqlite3LocateTable(pParse, isView,
+ pName->a[0].zName, pName->a[0].zDatabase);
+
+ if( pTab==0 ){
+ if( noErr ){
+ sqlite3ErrorClear(pParse);
+ }
+ goto exit_drop_table;
+ }
+ iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
+ assert( iDb>=0 && iDb<db->nDb );
+
+ /* If pTab is a virtual table, call ViewGetColumnNames() to ensure
+ ** it is initialized.
+ */
+ if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){
+ goto exit_drop_table;
+ }
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ {
+ int code;
+ const char *zTab = SCHEMA_TABLE(iDb);
+ const char *zDb = db->aDb[iDb].zName;
+ const char *zArg2 = 0;
+ if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){
+ goto exit_drop_table;
+ }
+ if( isView ){
+ if( !OMIT_TEMPDB && iDb==1 ){
+ code = SQLITE_DROP_TEMP_VIEW;
+ }else{
+ code = SQLITE_DROP_VIEW;
+ }
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ }else if( IsVirtual(pTab) ){
+ code = SQLITE_DROP_VTABLE;
+ zArg2 = pTab->pMod->zName;
+#endif
+ }else{
+ if( !OMIT_TEMPDB && iDb==1 ){
+ code = SQLITE_DROP_TEMP_TABLE;
+ }else{
+ code = SQLITE_DROP_TABLE;
+ }
+ }
+ if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){
+ goto exit_drop_table;
+ }
+ if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){
+ goto exit_drop_table;
+ }
+ }
+#endif
+ if( pTab->readOnly || pTab==db->aDb[iDb].pSchema->pSeqTab ){
+ sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName);
+ goto exit_drop_table;
+ }
+
+#ifndef SQLITE_OMIT_VIEW
+ /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used
+ ** on a table.
+ */
+ if( isView && pTab->pSelect==0 ){
+ sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName);
+ goto exit_drop_table;
+ }
+ if( !isView && pTab->pSelect ){
+ sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName);
+ goto exit_drop_table;
+ }
+#endif
+
+ /* Generate code to remove the table from the master table
+ ** on disk.
+ */
+ v = sqlite3GetVdbe(pParse);
+ if( v ){
+ Trigger *pTrigger;
+ Db *pDb = &db->aDb[iDb];
+ sqlite3BeginWriteOperation(pParse, 1, iDb);
+
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ if( IsVirtual(pTab) ){
+ Vdbe *v = sqlite3GetVdbe(pParse);
+ if( v ){
+ sqlite3VdbeAddOp0(v, OP_VBegin);
+ }
+ }
+#endif
+
+ /* Drop all triggers associated with the table being dropped. Code
+ ** is generated to remove entries from sqlite_master and/or
+ ** sqlite_temp_master if required.
+ */
+ pTrigger = pTab->pTrigger;
+ while( pTrigger ){
+ assert( pTrigger->pSchema==pTab->pSchema ||
+ pTrigger->pSchema==db->aDb[1].pSchema );
+ sqlite3DropTriggerPtr(pParse, pTrigger);
+ pTrigger = pTrigger->pNext;
+ }
+
+#ifndef SQLITE_OMIT_AUTOINCREMENT
+ /* Remove any entries of the sqlite_sequence table associated with
+ ** the table being dropped. This is done before the table is dropped
+ ** at the btree level, in case the sqlite_sequence table needs to
+ ** move as a result of the drop (can happen in auto-vacuum mode).
+ */
+ if( pTab->autoInc ){
+ sqlite3NestedParse(pParse,
+ "DELETE FROM %s.sqlite_sequence WHERE name=%Q",
+ pDb->zName, pTab->zName
+ );
+ }
+#endif
+
+ /* Drop all SQLITE_MASTER table and index entries that refer to the
+ ** table. The program name loops through the master table and deletes
+ ** every row that refers to a table of the same name as the one being
+ ** dropped. Triggers are handled seperately because a trigger can be
+ ** created in the temp database that refers to a table in another
+ ** database.
+ */
+ sqlite3NestedParse(pParse,
+ "DELETE FROM %Q.%s WHERE tbl_name=%Q and type!='trigger'",
+ pDb->zName, SCHEMA_TABLE(iDb), pTab->zName);
+
+ /* Drop any statistics from the sqlite_stat1 table, if it exists */
+ if( sqlite3FindTable(db, "sqlite_stat1", db->aDb[iDb].zName) ){
+ sqlite3NestedParse(pParse,
+ "DELETE FROM %Q.sqlite_stat1 WHERE tbl=%Q", pDb->zName, pTab->zName
+ );
+ }
+
+ if( !isView && !IsVirtual(pTab) ){
+ destroyTable(pParse, pTab);
+ }
+
+ /* Remove the table entry from SQLite's internal schema and modify
+ ** the schema cookie.
+ */
+ if( IsVirtual(pTab) ){
+ sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0);
+ }
+ sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0);
+ sqlite3ChangeCookie(pParse, iDb);
+ }
+ sqliteViewResetAll(db, iDb);
+
+exit_drop_table:
+ sqlite3SrcListDelete(pName);
+}
+
+/*
+** This routine is called to create a new foreign key on the table
+** currently under construction. pFromCol determines which columns
+** in the current table point to the foreign key. If pFromCol==0 then
+** connect the key to the last column inserted. pTo is the name of
+** the table referred to. pToCol is a list of tables in the other
+** pTo table that the foreign key points to. flags contains all
+** information about the conflict resolution algorithms specified
+** in the ON DELETE, ON UPDATE and ON INSERT clauses.
+**
+** An FKey structure is created and added to the table currently
+** under construction in the pParse->pNewTable field. The new FKey
+** is not linked into db->aFKey at this point - that does not happen
+** until sqlite3EndTable().
+**
+** The foreign key is set for IMMEDIATE processing. A subsequent call
+** to sqlite3DeferForeignKey() might change this to DEFERRED.
+*/
+SQLITE_PRIVATE void sqlite3CreateForeignKey(
+ Parse *pParse, /* Parsing context */
+ ExprList *pFromCol, /* Columns in this table that point to other table */
+ Token *pTo, /* Name of the other table */
+ ExprList *pToCol, /* Columns in the other table */
+ int flags /* Conflict resolution algorithms. */
+){
+#ifndef SQLITE_OMIT_FOREIGN_KEY
+ FKey *pFKey = 0;
+ Table *p = pParse->pNewTable;
+ int nByte;
+ int i;
+ int nCol;
+ char *z;
+
+ assert( pTo!=0 );
+ if( p==0 || pParse->nErr || IN_DECLARE_VTAB ) goto fk_end;
+ if( pFromCol==0 ){
+ int iCol = p->nCol-1;
+ if( iCol<0 ) goto fk_end;
+ if( pToCol && pToCol->nExpr!=1 ){
+ sqlite3ErrorMsg(pParse, "foreign key on %s"
+ " should reference only one column of table %T",
+ p->aCol[iCol].zName, pTo);
+ goto fk_end;
+ }
+ nCol = 1;
+ }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){
+ sqlite3ErrorMsg(pParse,
+ "number of columns in foreign key does not match the number of "
+ "columns in the referenced table");
+ goto fk_end;
+ }else{
+ nCol = pFromCol->nExpr;
+ }
+ nByte = sizeof(*pFKey) + nCol*sizeof(pFKey->aCol[0]) + pTo->n + 1;
+ if( pToCol ){
+ for(i=0; i<pToCol->nExpr; i++){
+ nByte += strlen(pToCol->a[i].zName) + 1;
+ }
+ }
+ pFKey = sqlite3DbMallocZero(pParse->db, nByte );
+ if( pFKey==0 ){
+ goto fk_end;
+ }
+ pFKey->pFrom = p;
+ pFKey->pNextFrom = p->pFKey;
+ z = (char*)&pFKey[1];
+ pFKey->aCol = (struct sColMap*)z;
+ z += sizeof(struct sColMap)*nCol;
+ pFKey->zTo = z;
+ memcpy(z, pTo->z, pTo->n);
+ z[pTo->n] = 0;
+ z += pTo->n+1;
+ pFKey->pNextTo = 0;
+ pFKey->nCol = nCol;
+ if( pFromCol==0 ){
+ pFKey->aCol[0].iFrom = p->nCol-1;
+ }else{
+ for(i=0; i<nCol; i++){
+ int j;
+ for(j=0; j<p->nCol; j++){
+ if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){
+ pFKey->aCol[i].iFrom = j;
+ break;
+ }
+ }
+ if( j>=p->nCol ){
+ sqlite3ErrorMsg(pParse,
+ "unknown column \"%s\" in foreign key definition",
+ pFromCol->a[i].zName);
+ goto fk_end;
+ }
+ }
+ }
+ if( pToCol ){
+ for(i=0; i<nCol; i++){
+ int n = strlen(pToCol->a[i].zName);
+ pFKey->aCol[i].zCol = z;
+ memcpy(z, pToCol->a[i].zName, n);
+ z[n] = 0;
+ z += n+1;
+ }
+ }
+ pFKey->isDeferred = 0;
+ pFKey->deleteConf = flags & 0xff;
+ pFKey->updateConf = (flags >> 8 ) & 0xff;
+ pFKey->insertConf = (flags >> 16 ) & 0xff;
+
+ /* Link the foreign key to the table as the last step.
+ */
+ p->pFKey = pFKey;
+ pFKey = 0;
+
+fk_end:
+ sqlite3_free(pFKey);
+#endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */
+ sqlite3ExprListDelete(pFromCol);
+ sqlite3ExprListDelete(pToCol);
+}
+
+/*
+** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED
+** clause is seen as part of a foreign key definition. The isDeferred
+** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE.
+** The behavior of the most recently created foreign key is adjusted
+** accordingly.
+*/
+SQLITE_PRIVATE void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){
+#ifndef SQLITE_OMIT_FOREIGN_KEY
+ Table *pTab;
+ FKey *pFKey;
+ if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return;
+ pFKey->isDeferred = isDeferred;
+#endif
+}
+
+/*
+** Generate code that will erase and refill index *pIdx. This is
+** used to initialize a newly created index or to recompute the
+** content of an index in response to a REINDEX command.
+**
+** if memRootPage is not negative, it means that the index is newly
+** created. The register specified by memRootPage contains the
+** root page number of the index. If memRootPage is negative, then
+** the index already exists and must be cleared before being refilled and
+** the root page number of the index is taken from pIndex->tnum.
+*/
+static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){
+ Table *pTab = pIndex->pTable; /* The table that is indexed */
+ int iTab = pParse->nTab; /* Btree cursor used for pTab */
+ int iIdx = pParse->nTab+1; /* Btree cursor used for pIndex */
+ int addr1; /* Address of top of loop */
+ int tnum; /* Root page of index */
+ Vdbe *v; /* Generate code into this virtual machine */
+ KeyInfo *pKey; /* KeyInfo for index */
+ int regIdxKey; /* Registers containing the index key */
+ int regRecord; /* Register holding assemblied index record */
+ sqlite3 *db = pParse->db; /* The database connection */
+ int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
+
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0,
+ db->aDb[iDb].zName ) ){
+ return;
+ }
+#endif
+
+ /* Require a write-lock on the table to perform this operation */
+ sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName);
+
+ v = sqlite3GetVdbe(pParse);
+ if( v==0 ) return;
+ if( memRootPage>=0 ){
+ tnum = memRootPage;
+ }else{
+ tnum = pIndex->tnum;
+ sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb);
+ }
+ pKey = sqlite3IndexKeyinfo(pParse, pIndex);
+ sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb,
+ (char *)pKey, P4_KEYINFO_HANDOFF);
+ if( memRootPage>=0 ){
+ sqlite3VdbeChangeP5(v, 1);
+ }
+ sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
+ addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0);
+ regRecord = sqlite3GetTempReg(pParse);
+ regIdxKey = sqlite3GenerateIndexKey(pParse, pIndex, iTab, regRecord, 1);
+ if( pIndex->onError!=OE_None ){
+ int j1, j2;
+ int regRowid;
+
+ regRowid = regIdxKey + pIndex->nColumn;
+ j1 = sqlite3VdbeAddOp3(v, OP_IsNull, regIdxKey, 0, pIndex->nColumn);
+ j2 = sqlite3VdbeAddOp4(v, OP_IsUnique, iIdx,
+ 0, regRowid, (char*)regRecord, P4_INT32);
+ sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, OE_Abort, 0,
+ "indexed columns are not unique", P4_STATIC);
+ sqlite3VdbeJumpHere(v, j1);
+ sqlite3VdbeJumpHere(v, j2);
+ }
+ sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdx, regRecord);
+ sqlite3ReleaseTempReg(pParse, regRecord);
+ sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1);
+ sqlite3VdbeJumpHere(v, addr1);
+ sqlite3VdbeAddOp1(v, OP_Close, iTab);
+ sqlite3VdbeAddOp1(v, OP_Close, iIdx);
+}
+
+/*
+** Create a new index for an SQL table. pName1.pName2 is the name of the index
+** and pTblList is the name of the table that is to be indexed. Both will
+** be NULL for a primary key or an index that is created to satisfy a
+** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable
+** as the table to be indexed. pParse->pNewTable is a table that is
+** currently being constructed by a CREATE TABLE statement.
+**
+** pList is a list of columns to be indexed. pList will be NULL if this
+** is a primary key or unique-constraint on the most recent column added
+** to the table currently under construction.
+*/
+SQLITE_PRIVATE void sqlite3CreateIndex(
+ Parse *pParse, /* All information about this parse */
+ Token *pName1, /* First part of index name. May be NULL */
+ Token *pName2, /* Second part of index name. May be NULL */
+ SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */
+ ExprList *pList, /* A list of columns to be indexed */
+ int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
+ Token *pStart, /* The CREATE token that begins this statement */
+ Token *pEnd, /* The ")" that closes the CREATE INDEX statement */
+ int sortOrder, /* Sort order of primary key when pList==NULL */
+ int ifNotExist /* Omit error if index already exists */
+){
+ Table *pTab = 0; /* Table to be indexed */
+ Index *pIndex = 0; /* The index to be created */
+ char *zName = 0; /* Name of the index */
+ int nName; /* Number of characters in zName */
+ int i, j;
+ Token nullId; /* Fake token for an empty ID list */
+ DbFixer sFix; /* For assigning database names to pTable */
+ int sortOrderMask; /* 1 to honor DESC in index. 0 to ignore. */
+ sqlite3 *db = pParse->db;
+ Db *pDb; /* The specific table containing the indexed database */
+ int iDb; /* Index of the database that is being written */
+ Token *pName = 0; /* Unqualified name of the index to create */
+ struct ExprList_item *pListItem; /* For looping over pList */
+ int nCol;
+ int nExtra = 0;
+ char *zExtra;
+
+ if( pParse->nErr || db->mallocFailed || IN_DECLARE_VTAB ){
+ goto exit_create_index;
+ }
+
+ /*
+ ** Find the table that is to be indexed. Return early if not found.
+ */
+ if( pTblName!=0 ){
+
+ /* Use the two-part index name to determine the database
+ ** to search for the table. 'Fix' the table name to this db
+ ** before looking up the table.
+ */
+ assert( pName1 && pName2 );
+ iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
+ if( iDb<0 ) goto exit_create_index;
+
+#ifndef SQLITE_OMIT_TEMPDB
+ /* If the index name was unqualified, check if the the table
+ ** is a temp table. If so, set the database to 1. Do not do this
+ ** if initialising a database schema.
+ */
+ if( !db->init.busy ){
+ pTab = sqlite3SrcListLookup(pParse, pTblName);
+ if( pName2 && pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){
+ iDb = 1;
+ }
+ }
+#endif
+
+ if( sqlite3FixInit(&sFix, pParse, iDb, "index", pName) &&
+ sqlite3FixSrcList(&sFix, pTblName)
+ ){
+ /* Because the parser constructs pTblName from a single identifier,
+ ** sqlite3FixSrcList can never fail. */
+ assert(0);
+ }
+ pTab = sqlite3LocateTable(pParse, 0, pTblName->a[0].zName,
+ pTblName->a[0].zDatabase);
+ if( !pTab ) goto exit_create_index;
+ assert( db->aDb[iDb].pSchema==pTab->pSchema );
+ }else{
+ assert( pName==0 );
+ pTab = pParse->pNewTable;
+ if( !pTab ) goto exit_create_index;
+ iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
+ }
+ pDb = &db->aDb[iDb];
+
+ if( pTab==0 || pParse->nErr ) goto exit_create_index;
+ if( pTab->readOnly ){
+ sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName);
+ goto exit_create_index;
+ }
+#ifndef SQLITE_OMIT_VIEW
+ if( pTab->pSelect ){
+ sqlite3ErrorMsg(pParse, "views may not be indexed");
+ goto exit_create_index;
+ }
+#endif
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ if( IsVirtual(pTab) ){
+ sqlite3ErrorMsg(pParse, "virtual tables may not be indexed");
+ goto exit_create_index;
+ }
+#endif
+
+ /*
+ ** Find the name of the index. Make sure there is not already another
+ ** index or table with the same name.
+ **
+ ** Exception: If we are reading the names of permanent indices from the
+ ** sqlite_master table (because some other process changed the schema) and
+ ** one of the index names collides with the name of a temporary table or
+ ** index, then we will continue to process this index.
+ **
+ ** If pName==0 it means that we are
+ ** dealing with a primary key or UNIQUE constraint. We have to invent our
+ ** own name.
+ */
+ if( pName ){
+ zName = sqlite3NameFromToken(db, pName);
+ if( SQLITE_OK!=sqlite3ReadSchema(pParse) ) goto exit_create_index;
+ if( zName==0 ) goto exit_create_index;
+ if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
+ goto exit_create_index;
+ }
+ if( !db->init.busy ){
+ if( SQLITE_OK!=sqlite3ReadSchema(pParse) ) goto exit_create_index;
+ if( sqlite3FindTable(db, zName, 0)!=0 ){
+ sqlite3ErrorMsg(pParse, "there is already a table named %s", zName);
+ goto exit_create_index;
+ }
+ }
+ if( sqlite3FindIndex(db, zName, pDb->zName)!=0 ){
+ if( !ifNotExist ){
+ sqlite3ErrorMsg(pParse, "index %s already exists", zName);
+ }
+ goto exit_create_index;
+ }
+ }else{
+ char zBuf[30];
+ int n;
+ Index *pLoop;
+ for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){}
+ sqlite3_snprintf(sizeof(zBuf),zBuf,"_%d",n);
+ zName = 0;
+ sqlite3SetString(&zName, "sqlite_autoindex_", pTab->zName, zBuf, (char*)0);
+ if( zName==0 ){
+ db->mallocFailed = 1;
+ goto exit_create_index;
+ }
+ }
+
+ /* Check for authorization to create an index.
+ */
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ {
+ const char *zDb = pDb->zName;
+ if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){
+ goto exit_create_index;
+ }
+ i = SQLITE_CREATE_INDEX;
+ if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX;
+ if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){
+ goto exit_create_index;
+ }
+ }
+#endif
+
+ /* If pList==0, it means this routine was called to make a primary
+ ** key out of the last column added to the table under construction.
+ ** So create a fake list to simulate this.
+ */
+ if( pList==0 ){
+ nullId.z = (u8*)pTab->aCol[pTab->nCol-1].zName;
+ nullId.n = strlen((char*)nullId.z);
+ pList = sqlite3ExprListAppend(pParse, 0, 0, &nullId);
+ if( pList==0 ) goto exit_create_index;
+ pList->a[0].sortOrder = sortOrder;
+ }
+
+ /* Figure out how many bytes of space are required to store explicitly
+ ** specified collation sequence names.
+ */
+ for(i=0; i<pList->nExpr; i++){
+ Expr *pExpr = pList->a[i].pExpr;
+ if( pExpr ){
+ nExtra += (1 + strlen(pExpr->pColl->zName));
+ }
+ }
+
+ /*
+ ** Allocate the index structure.
+ */
+ nName = strlen(zName);
+ nCol = pList->nExpr;
+ pIndex = sqlite3DbMallocZero(db,
+ sizeof(Index) + /* Index structure */
+ sizeof(int)*nCol + /* Index.aiColumn */
+ sizeof(int)*(nCol+1) + /* Index.aiRowEst */
+ sizeof(char *)*nCol + /* Index.azColl */
+ sizeof(u8)*nCol + /* Index.aSortOrder */
+ nName + 1 + /* Index.zName */
+ nExtra /* Collation sequence names */
+ );
+ if( db->mallocFailed ){
+ goto exit_create_index;
+ }
+ pIndex->azColl = (char**)(&pIndex[1]);
+ pIndex->aiColumn = (int *)(&pIndex->azColl[nCol]);
+ pIndex->aiRowEst = (unsigned *)(&pIndex->aiColumn[nCol]);
+ pIndex->aSortOrder = (u8 *)(&pIndex->aiRowEst[nCol+1]);
+ pIndex->zName = (char *)(&pIndex->aSortOrder[nCol]);
+ zExtra = (char *)(&pIndex->zName[nName+1]);
+ memcpy(pIndex->zName, zName, nName+1);
+ pIndex->pTable = pTab;
+ pIndex->nColumn = pList->nExpr;
+ pIndex->onError = onError;
+ pIndex->autoIndex = pName==0;
+ pIndex->pSchema = db->aDb[iDb].pSchema;
+
+ /* Check to see if we should honor DESC requests on index columns
+ */
+ if( pDb->pSchema->file_format>=4 ){
+ sortOrderMask = -1; /* Honor DESC */
+ }else{
+ sortOrderMask = 0; /* Ignore DESC */
+ }
+
+ /* Scan the names of the columns of the table to be indexed and
+ ** load the column indices into the Index structure. Report an error
+ ** if any column is not found.
+ */
+ for(i=0, pListItem=pList->a; i<pList->nExpr; i++, pListItem++){
+ const char *zColName = pListItem->zName;
+ Column *pTabCol;
+ int requestedSortOrder;
+ char *zColl; /* Collation sequence name */
+
+ for(j=0, pTabCol=pTab->aCol; j<pTab->nCol; j++, pTabCol++){
+ if( sqlite3StrICmp(zColName, pTabCol->zName)==0 ) break;
+ }
+ if( j>=pTab->nCol ){
+ sqlite3ErrorMsg(pParse, "table %s has no column named %s",
+ pTab->zName, zColName);
+ goto exit_create_index;
+ }
+ /* TODO: Add a test to make sure that the same column is not named
+ ** more than once within the same index. Only the first instance of
+ ** the column will ever be used by the optimizer. Note that using the
+ ** same column more than once cannot be an error because that would
+ ** break backwards compatibility - it needs to be a warning.
+ */
+ pIndex->aiColumn[i] = j;
+ if( pListItem->pExpr ){
+ assert( pListItem->pExpr->pColl );
+ zColl = zExtra;
+ sqlite3_snprintf(nExtra, zExtra, "%s", pListItem->pExpr->pColl->zName);
+ zExtra += (strlen(zColl) + 1);
+ }else{
+ zColl = pTab->aCol[j].zColl;
+ if( !zColl ){
+ zColl = db->pDfltColl->zName;
+ }
+ }
+ if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl, -1) ){
+ goto exit_create_index;
+ }
+ pIndex->azColl[i] = zColl;
+ requestedSortOrder = pListItem->sortOrder & sortOrderMask;
+ pIndex->aSortOrder[i] = requestedSortOrder;
+ }
+ sqlite3DefaultRowEst(pIndex);
+
+ if( pTab==pParse->pNewTable ){
+ /* This routine has been called to create an automatic index as a
+ ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or
+ ** a PRIMARY KEY or UNIQUE clause following the column definitions.
+ ** i.e. one of:
+ **
+ ** CREATE TABLE t(x PRIMARY KEY, y);
+ ** CREATE TABLE t(x, y, UNIQUE(x, y));
+ **
+ ** Either way, check to see if the table already has such an index. If
+ ** so, don't bother creating this one. This only applies to
+ ** automatically created indices. Users can do as they wish with
+ ** explicit indices.
+ */
+ Index *pIdx;
+ for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
+ int k;
+ assert( pIdx->onError!=OE_None );
+ assert( pIdx->autoIndex );
+ assert( pIndex->onError!=OE_None );
+
+ if( pIdx->nColumn!=pIndex->nColumn ) continue;
+ for(k=0; k<pIdx->nColumn; k++){
+ const char *z1 = pIdx->azColl[k];
+ const char *z2 = pIndex->azColl[k];
+ if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break;
+ if( pIdx->aSortOrder[k]!=pIndex->aSortOrder[k] ) break;
+ if( z1!=z2 && sqlite3StrICmp(z1, z2) ) break;
+ }
+ if( k==pIdx->nColumn ){
+ if( pIdx->onError!=pIndex->onError ){
+ /* This constraint creates the same index as a previous
+ ** constraint specified somewhere in the CREATE TABLE statement.
+ ** However the ON CONFLICT clauses are different. If both this
+ ** constraint and the previous equivalent constraint have explicit
+ ** ON CONFLICT clauses this is an error. Otherwise, use the
+ ** explicitly specified behaviour for the index.
+ */
+ if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){
+ sqlite3ErrorMsg(pParse,
+ "conflicting ON CONFLICT clauses specified", 0);
+ }
+ if( pIdx->onError==OE_Default ){
+ pIdx->onError = pIndex->onError;
+ }
+ }
+ goto exit_create_index;
+ }
+ }
+ }
+
+ /* Link the new Index structure to its table and to the other
+ ** in-memory database structures.
+ */
+ if( db->init.busy ){
+ Index *p;
+ p = sqlite3HashInsert(&pIndex->pSchema->idxHash,
+ pIndex->zName, strlen(pIndex->zName)+1, pIndex);
+ if( p ){
+ assert( p==pIndex ); /* Malloc must have failed */
+ db->mallocFailed = 1;
+ goto exit_create_index;
+ }
+ db->flags |= SQLITE_InternChanges;
+ if( pTblName!=0 ){
+ pIndex->tnum = db->init.newTnum;
+ }
+ }
+
+ /* If the db->init.busy is 0 then create the index on disk. This
+ ** involves writing the index into the master table and filling in the
+ ** index with the current table contents.
+ **
+ ** The db->init.busy is 0 when the user first enters a CREATE INDEX
+ ** command. db->init.busy is 1 when a database is opened and
+ ** CREATE INDEX statements are read out of the master table. In
+ ** the latter case the index already exists on disk, which is why
+ ** we don't want to recreate it.
+ **
+ ** If pTblName==0 it means this index is generated as a primary key
+ ** or UNIQUE constraint of a CREATE TABLE statement. Since the table
+ ** has just been created, it contains no data and the index initialization
+ ** step can be skipped.
+ */
+ else if( db->init.busy==0 ){
+ Vdbe *v;
+ char *zStmt;
+ int iMem = ++pParse->nMem;
+
+ v = sqlite3GetVdbe(pParse);
+ if( v==0 ) goto exit_create_index;
+
+
+ /* Create the rootpage for the index
+ */
+ sqlite3BeginWriteOperation(pParse, 1, iDb);
+ sqlite3VdbeAddOp2(v, OP_CreateIndex, iDb, iMem);
+
+ /* Gather the complete text of the CREATE INDEX statement into
+ ** the zStmt variable
+ */
+ if( pStart && pEnd ){
+ /* A named index with an explicit CREATE INDEX statement */
+ zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s",
+ onError==OE_None ? "" : " UNIQUE",
+ pEnd->z - pName->z + 1,
+ pName->z);
+ }else{
+ /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */
+ /* zStmt = sqlite3MPrintf(""); */
+ zStmt = 0;
+ }
+
+ /* Add an entry in sqlite_master for this index
+ */
+ sqlite3NestedParse(pParse,
+ "INSERT INTO %Q.%s VALUES('index',%Q,%Q,#%d,%Q);",
+ db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
+ pIndex->zName,
+ pTab->zName,
+ iMem,
+ zStmt
+ );
+ sqlite3_free(zStmt);
+
+ /* Fill the index with data and reparse the schema. Code an OP_Expire
+ ** to invalidate all pre-compiled statements.
+ */
+ if( pTblName ){
+ sqlite3RefillIndex(pParse, pIndex, iMem);
+ sqlite3ChangeCookie(pParse, iDb);
+ sqlite3VdbeAddOp4(v, OP_ParseSchema, iDb, 0, 0,
+ sqlite3MPrintf(db, "name='%q'", pIndex->zName), P4_DYNAMIC);
+ sqlite3VdbeAddOp1(v, OP_Expire, 0);
+ }
+ }
+
+ /* When adding an index to the list of indices for a table, make
+ ** sure all indices labeled OE_Replace come after all those labeled
+ ** OE_Ignore. This is necessary for the correct operation of UPDATE
+ ** and INSERT.
+ */
+ if( db->init.busy || pTblName==0 ){
+ if( onError!=OE_Replace || pTab->pIndex==0
+ || pTab->pIndex->onError==OE_Replace){
+ pIndex->pNext = pTab->pIndex;
+ pTab->pIndex = pIndex;
+ }else{
+ Index *pOther = pTab->pIndex;
+ while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){
+ pOther = pOther->pNext;
+ }
+ pIndex->pNext = pOther->pNext;
+ pOther->pNext = pIndex;
+ }
+ pIndex = 0;
+ }
+
+ /* Clean up before exiting */
+exit_create_index:
+ if( pIndex ){
+ freeIndex(pIndex);
+ }
+ sqlite3ExprListDelete(pList);
+ sqlite3SrcListDelete(pTblName);
+ sqlite3_free(zName);
+ return;
+}
+
+/*
+** Generate code to make sure the file format number is at least minFormat.
+** The generated code will increase the file format number if necessary.
+*/
+SQLITE_PRIVATE void sqlite3MinimumFileFormat(Parse *pParse, int iDb, int minFormat){
+ Vdbe *v;
+ v = sqlite3GetVdbe(pParse);
+ if( v ){
+ int r1 = sqlite3GetTempReg(pParse);
+ int r2 = sqlite3GetTempReg(pParse);
+ int j1;
+ sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, r1, 1);
+ sqlite3VdbeUsesBtree(v, iDb);
+ sqlite3VdbeAddOp2(v, OP_Integer, minFormat, r2);
+ j1 = sqlite3VdbeAddOp3(v, OP_Ge, r2, 0, r1);
+ sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, 1, r2);
+ sqlite3VdbeJumpHere(v, j1);
+ sqlite3ReleaseTempReg(pParse, r1);
+ sqlite3ReleaseTempReg(pParse, r2);
+ }
+}
+
+/*
+** Fill the Index.aiRowEst[] array with default information - information
+** to be used when we have not run the ANALYZE command.
+**
+** aiRowEst[0] is suppose to contain the number of elements in the index.
+** Since we do not know, guess 1 million. aiRowEst[1] is an estimate of the
+** number of rows in the table that match any particular value of the
+** first column of the index. aiRowEst[2] is an estimate of the number
+** of rows that match any particular combiniation of the first 2 columns
+** of the index. And so forth. It must always be the case that
+*
+** aiRowEst[N]<=aiRowEst[N-1]
+** aiRowEst[N]>=1
+**
+** Apart from that, we have little to go on besides intuition as to
+** how aiRowEst[] should be initialized. The numbers generated here
+** are based on typical values found in actual indices.
+*/
+SQLITE_PRIVATE void sqlite3DefaultRowEst(Index *pIdx){
+ unsigned *a = pIdx->aiRowEst;
+ int i;
+ assert( a!=0 );
+ a[0] = 1000000;
+ for(i=pIdx->nColumn; i>=5; i--){
+ a[i] = 5;
+ }
+ while( i>=1 ){
+ a[i] = 11 - i;
+ i--;
+ }
+ if( pIdx->onError!=OE_None ){
+ a[pIdx->nColumn] = 1;
+ }
+}
+
+/*
+** This routine will drop an existing named index. This routine
+** implements the DROP INDEX statement.
+*/
+SQLITE_PRIVATE void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){
+ Index *pIndex;
+ Vdbe *v;
+ sqlite3 *db = pParse->db;
+ int iDb;
+
+ if( pParse->nErr || db->mallocFailed ){
+ goto exit_drop_index;
+ }
+ assert( pName->nSrc==1 );
+ if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
+ goto exit_drop_index;
+ }
+ pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase);
+ if( pIndex==0 ){
+ if( !ifExists ){
+ sqlite3ErrorMsg(pParse, "no such index: %S", pName, 0);
+ }
+ pParse->checkSchema = 1;
+ goto exit_drop_index;
+ }
+ if( pIndex->autoIndex ){
+ sqlite3ErrorMsg(pParse, "index associated with UNIQUE "
+ "or PRIMARY KEY constraint cannot be dropped", 0);
+ goto exit_drop_index;
+ }
+ iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ {
+ int code = SQLITE_DROP_INDEX;
+ Table *pTab = pIndex->pTable;
+ const char *zDb = db->aDb[iDb].zName;
+ const char *zTab = SCHEMA_TABLE(iDb);
+ if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){
+ goto exit_drop_index;
+ }
+ if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX;
+ if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){
+ goto exit_drop_index;
+ }
+ }
+#endif
+
+ /* Generate code to remove the index and from the master table */
+ v = sqlite3GetVdbe(pParse);
+ if( v ){
+ sqlite3BeginWriteOperation(pParse, 1, iDb);
+ sqlite3NestedParse(pParse,
+ "DELETE FROM %Q.%s WHERE name=%Q",
+ db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
+ pIndex->zName
+ );
+ if( sqlite3FindTable(db, "sqlite_stat1", db->aDb[iDb].zName) ){
+ sqlite3NestedParse(pParse,
+ "DELETE FROM %Q.sqlite_stat1 WHERE idx=%Q",
+ db->aDb[iDb].zName, pIndex->zName
+ );
+ }
+ sqlite3ChangeCookie(pParse, iDb);
+ destroyRootPage(pParse, pIndex->tnum, iDb);
+ sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0);
+ }
+
+exit_drop_index:
+ sqlite3SrcListDelete(pName);
+}
+
+/*
+** pArray is a pointer to an array of objects. Each object in the
+** array is szEntry bytes in size. This routine allocates a new
+** object on the end of the array.
+**
+** *pnEntry is the number of entries already in use. *pnAlloc is
+** the previously allocated size of the array. initSize is the
+** suggested initial array size allocation.
+**
+** The index of the new entry is returned in *pIdx.
+**
+** This routine returns a pointer to the array of objects. This
+** might be the same as the pArray parameter or it might be a different
+** pointer if the array was resized.
+*/
+SQLITE_PRIVATE void *sqlite3ArrayAllocate(
+ sqlite3 *db, /* Connection to notify of malloc failures */
+ void *pArray, /* Array of objects. Might be reallocated */
+ int szEntry, /* Size of each object in the array */
+ int initSize, /* Suggested initial allocation, in elements */
+ int *pnEntry, /* Number of objects currently in use */
+ int *pnAlloc, /* Current size of the allocation, in elements */
+ int *pIdx /* Write the index of a new slot here */
+){
+ char *z;
+ if( *pnEntry >= *pnAlloc ){
+ void *pNew;
+ int newSize;
+ newSize = (*pnAlloc)*2 + initSize;
+ pNew = sqlite3DbRealloc(db, pArray, newSize*szEntry);
+ if( pNew==0 ){
+ *pIdx = -1;
+ return pArray;
+ }
+ *pnAlloc = newSize;
+ pArray = pNew;
+ }
+ z = (char*)pArray;
+ memset(&z[*pnEntry * szEntry], 0, szEntry);
+ *pIdx = *pnEntry;
+ ++*pnEntry;
+ return pArray;
+}
+
+/*
+** Append a new element to the given IdList. Create a new IdList if
+** need be.
+**
+** A new IdList is returned, or NULL if malloc() fails.
+*/
+SQLITE_PRIVATE IdList *sqlite3IdListAppend(sqlite3 *db, IdList *pList, Token *pToken){
+ int i;
+ if( pList==0 ){
+ pList = sqlite3DbMallocZero(db, sizeof(IdList) );
+ if( pList==0 ) return 0;
+ pList->nAlloc = 0;
+ }
+ pList->a = sqlite3ArrayAllocate(
+ db,
+ pList->a,
+ sizeof(pList->a[0]),
+ 5,
+ &pList->nId,
+ &pList->nAlloc,
+ &i
+ );
+ if( i<0 ){
+ sqlite3IdListDelete(pList);
+ return 0;
+ }
+ pList->a[i].zName = sqlite3NameFromToken(db, pToken);
+ return pList;
+}
+
+/*
+** Delete an IdList.
+*/
+SQLITE_PRIVATE void sqlite3IdListDelete(IdList *pList){
+ int i;
+ if( pList==0 ) return;
+ for(i=0; i<pList->nId; i++){
+ sqlite3_free(pList->a[i].zName);
+ }
+ sqlite3_free(pList->a);
+ sqlite3_free(pList);
+}
+
+/*
+** Return the index in pList of the identifier named zId. Return -1
+** if not found.
+*/
+SQLITE_PRIVATE int sqlite3IdListIndex(IdList *pList, const char *zName){
+ int i;
+ if( pList==0 ) return -1;
+ for(i=0; i<pList->nId; i++){
+ if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i;
+ }
+ return -1;
+}
+
+/*
+** Append a new table name to the given SrcList. Create a new SrcList if
+** need be. A new entry is created in the SrcList even if pToken is NULL.
+**
+** A new SrcList is returned, or NULL if malloc() fails.
+**
+** If pDatabase is not null, it means that the table has an optional
+** database name prefix. Like this: "database.table". The pDatabase
+** points to the table name and the pTable points to the database name.
+** The SrcList.a[].zName field is filled with the table name which might
+** come from pTable (if pDatabase is NULL) or from pDatabase.
+** SrcList.a[].zDatabase is filled with the database name from pTable,
+** or with NULL if no database is specified.
+**
+** In other words, if call like this:
+**
+** sqlite3SrcListAppend(D,A,B,0);
+**
+** Then B is a table name and the database name is unspecified. If called
+** like this:
+**
+** sqlite3SrcListAppend(D,A,B,C);
+**
+** Then C is the table name and B is the database name.
+*/
+SQLITE_PRIVATE SrcList *sqlite3SrcListAppend(
+ sqlite3 *db, /* Connection to notify of malloc failures */
+ SrcList *pList, /* Append to this SrcList. NULL creates a new SrcList */
+ Token *pTable, /* Table to append */
+ Token *pDatabase /* Database of the table */
+){
+ struct SrcList_item *pItem;
+ if( pList==0 ){
+ pList = sqlite3DbMallocZero(db, sizeof(SrcList) );
+ if( pList==0 ) return 0;
+ pList->nAlloc = 1;
+ }
+ if( pList->nSrc>=pList->nAlloc ){
+ SrcList *pNew;
+ pList->nAlloc *= 2;
+ pNew = sqlite3DbRealloc(db, pList,
+ sizeof(*pList) + (pList->nAlloc-1)*sizeof(pList->a[0]) );
+ if( pNew==0 ){
+ sqlite3SrcListDelete(pList);
+ return 0;
+ }
+ pList = pNew;
+ }
+ pItem = &pList->a[pList->nSrc];
+ memset(pItem, 0, sizeof(pList->a[0]));
+ if( pDatabase && pDatabase->z==0 ){
+ pDatabase = 0;
+ }
+ if( pDatabase && pTable ){
+ Token *pTemp = pDatabase;
+ pDatabase = pTable;
+ pTable = pTemp;
+ }
+ pItem->zName = sqlite3NameFromToken(db, pTable);
+ pItem->zDatabase = sqlite3NameFromToken(db, pDatabase);
+ pItem->iCursor = -1;
+ pItem->isPopulated = 0;
+ pList->nSrc++;
+ return pList;
+}
+
+/*
+** Assign cursors to all tables in a SrcList
+*/
+SQLITE_PRIVATE void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){
+ int i;
+ struct SrcList_item *pItem;
+ assert(pList || pParse->db->mallocFailed );
+ if( pList ){
+ for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){
+ if( pItem->iCursor>=0 ) break;
+ pItem->iCursor = pParse->nTab++;
+ if( pItem->pSelect ){
+ sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc);
+ }
+ }
+ }
+}
+
+/*
+** Delete an entire SrcList including all its substructure.
+*/
+SQLITE_PRIVATE void sqlite3SrcListDelete(SrcList *pList){
+ int i;
+ struct SrcList_item *pItem;
+ if( pList==0 ) return;
+ for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){
+ sqlite3_free(pItem->zDatabase);
+ sqlite3_free(pItem->zName);
+ sqlite3_free(pItem->zAlias);
+ sqlite3DeleteTable(pItem->pTab);
+ sqlite3SelectDelete(pItem->pSelect);
+ sqlite3ExprDelete(pItem->pOn);
+ sqlite3IdListDelete(pItem->pUsing);
+ }
+ sqlite3_free(pList);
+}
+
+/*
+** This routine is called by the parser to add a new term to the
+** end of a growing FROM clause. The "p" parameter is the part of
+** the FROM clause that has already been constructed. "p" is NULL
+** if this is the first term of the FROM clause. pTable and pDatabase
+** are the name of the table and database named in the FROM clause term.
+** pDatabase is NULL if the database name qualifier is missing - the
+** usual case. If the term has a alias, then pAlias points to the
+** alias token. If the term is a subquery, then pSubquery is the
+** SELECT statement that the subquery encodes. The pTable and
+** pDatabase parameters are NULL for subqueries. The pOn and pUsing
+** parameters are the content of the ON and USING clauses.
+**
+** Return a new SrcList which encodes is the FROM with the new
+** term added.
+*/
+SQLITE_PRIVATE SrcList *sqlite3SrcListAppendFromTerm(
+ Parse *pParse, /* Parsing context */
+ SrcList *p, /* The left part of the FROM clause already seen */
+ Token *pTable, /* Name of the table to add to the FROM clause */
+ Token *pDatabase, /* Name of the database containing pTable */
+ Token *pAlias, /* The right-hand side of the AS subexpression */
+ Select *pSubquery, /* A subquery used in place of a table name */
+ Expr *pOn, /* The ON clause of a join */
+ IdList *pUsing /* The USING clause of a join */
+){
+ struct SrcList_item *pItem;
+ sqlite3 *db = pParse->db;
+ p = sqlite3SrcListAppend(db, p, pTable, pDatabase);
+ if( p==0 || p->nSrc==0 ){
+ sqlite3ExprDelete(pOn);
+ sqlite3IdListDelete(pUsing);
+ sqlite3SelectDelete(pSubquery);
+ return p;
+ }
+ pItem = &p->a[p->nSrc-1];
+ if( pAlias && pAlias->n ){
+ pItem->zAlias = sqlite3NameFromToken(db, pAlias);
+ }
+ pItem->pSelect = pSubquery;
+ pItem->pOn = pOn;
+ pItem->pUsing = pUsing;
+ return p;
+}
+
+/*
+** When building up a FROM clause in the parser, the join operator
+** is initially attached to the left operand. But the code generator
+** expects the join operator to be on the right operand. This routine
+** Shifts all join operators from left to right for an entire FROM
+** clause.
+**
+** Example: Suppose the join is like this:
+**
+** A natural cross join B
+**
+** The operator is "natural cross join". The A and B operands are stored
+** in p->a[0] and p->a[1], respectively. The parser initially stores the
+** operator with A. This routine shifts that operator over to B.
+*/
+SQLITE_PRIVATE void sqlite3SrcListShiftJoinType(SrcList *p){
+ if( p && p->a ){
+ int i;
+ for(i=p->nSrc-1; i>0; i--){
+ p->a[i].jointype = p->a[i-1].jointype;
+ }
+ p->a[0].jointype = 0;
+ }
+}
+
+/*
+** Begin a transaction
+*/
+SQLITE_PRIVATE void sqlite3BeginTransaction(Parse *pParse, int type){
+ sqlite3 *db;
+ Vdbe *v;
+ int i;
+
+ if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return;
+ if( pParse->nErr || db->mallocFailed ) return;
+ if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ) return;
+
+ v = sqlite3GetVdbe(pParse);
+ if( !v ) return;
+ if( type!=TK_DEFERRED ){
+ for(i=0; i<db->nDb; i++){
+ sqlite3VdbeAddOp2(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1);
+ sqlite3VdbeUsesBtree(v, i);
+ }
+ }
+ sqlite3VdbeAddOp2(v, OP_AutoCommit, 0, 0);
+}
+
+/*
+** Commit a transaction
+*/
+SQLITE_PRIVATE void sqlite3CommitTransaction(Parse *pParse){
+ sqlite3 *db;
+ Vdbe *v;
+
+ if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return;
+ if( pParse->nErr || db->mallocFailed ) return;
+ if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "COMMIT", 0, 0) ) return;
+
+ v = sqlite3GetVdbe(pParse);
+ if( v ){
+ sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 0);
+ }
+}
+
+/*
+** Rollback a transaction
+*/
+SQLITE_PRIVATE void sqlite3RollbackTransaction(Parse *pParse){
+ sqlite3 *db;
+ Vdbe *v;
+
+ if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return;
+ if( pParse->nErr || db->mallocFailed ) return;
+ if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "ROLLBACK", 0, 0) ) return;
+
+ v = sqlite3GetVdbe(pParse);
+ if( v ){
+ sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 1);
+ }
+}
+
+/*
+** Make sure the TEMP database is open and available for use. Return
+** the number of errors. Leave any error messages in the pParse structure.
+*/
+SQLITE_PRIVATE int sqlite3OpenTempDatabase(Parse *pParse){
+ sqlite3 *db = pParse->db;
+ if( db->aDb[1].pBt==0 && !pParse->explain ){
+ int rc;
+ static const int flags =
+ SQLITE_OPEN_READWRITE |
+ SQLITE_OPEN_CREATE |
+ SQLITE_OPEN_EXCLUSIVE |
+ SQLITE_OPEN_DELETEONCLOSE |
+ SQLITE_OPEN_TEMP_DB;
+
+ rc = sqlite3BtreeFactory(db, 0, 0, SQLITE_DEFAULT_CACHE_SIZE, flags,
+ &db->aDb[1].pBt);
+ if( rc!=SQLITE_OK ){
+ sqlite3ErrorMsg(pParse, "unable to open a temporary database "
+ "file for storing temporary tables");
+ pParse->rc = rc;
+ return 1;
+ }
+ assert( (db->flags & SQLITE_InTrans)==0 || db->autoCommit );
+ assert( db->aDb[1].pSchema );
+ sqlite3PagerJournalMode(sqlite3BtreePager(db->aDb[1].pBt),
+ db->dfltJournalMode);
+ }
+ return 0;
+}
+
+/*
+** Generate VDBE code that will verify the schema cookie and start
+** a read-transaction for all named database files.
+**
+** It is important that all schema cookies be verified and all
+** read transactions be started before anything else happens in
+** the VDBE program. But this routine can be called after much other
+** code has been generated. So here is what we do:
+**
+** The first time this routine is called, we code an OP_Goto that
+** will jump to a subroutine at the end of the program. Then we
+** record every database that needs its schema verified in the
+** pParse->cookieMask field. Later, after all other code has been
+** generated, the subroutine that does the cookie verifications and
+** starts the transactions will be coded and the OP_Goto P2 value
+** will be made to point to that subroutine. The generation of the
+** cookie verification subroutine code happens in sqlite3FinishCoding().
+**
+** If iDb<0 then code the OP_Goto only - don't set flag to verify the
+** schema on any databases. This can be used to position the OP_Goto
+** early in the code, before we know if any database tables will be used.
+*/
+SQLITE_PRIVATE void sqlite3CodeVerifySchema(Parse *pParse, int iDb){
+ sqlite3 *db;
+ Vdbe *v;
+ int mask;
+
+ v = sqlite3GetVdbe(pParse);
+ if( v==0 ) return; /* This only happens if there was a prior error */
+ db = pParse->db;
+ if( pParse->cookieGoto==0 ){
+ pParse->cookieGoto = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0)+1;
+ }
+ if( iDb>=0 ){
+ assert( iDb<db->nDb );
+ assert( db->aDb[iDb].pBt!=0 || iDb==1 );
+ assert( iDb<SQLITE_MAX_ATTACHED+2 );
+ mask = 1<<iDb;
+ if( (pParse->cookieMask & mask)==0 ){
+ pParse->cookieMask |= mask;
+ pParse->cookieValue[iDb] = db->aDb[iDb].pSchema->schema_cookie;
+ if( !OMIT_TEMPDB && iDb==1 ){
+ sqlite3OpenTempDatabase(pParse);
+ }
+ }
+ }
+}
+
+/*
+** Generate VDBE code that prepares for doing an operation that
+** might change the database.
+**
+** This routine starts a new transaction if we are not already within
+** a transaction. If we are already within a transaction, then a checkpoint
+** is set if the setStatement parameter is true. A checkpoint should
+** be set for operations that might fail (due to a constraint) part of
+** the way through and which will need to undo some writes without having to
+** rollback the whole transaction. For operations where all constraints
+** can be checked before any changes are made to the database, it is never
+** necessary to undo a write and the checkpoint should not be set.
+**
+** Only database iDb and the temp database are made writable by this call.
+** If iDb==0, then the main and temp databases are made writable. If
+** iDb==1 then only the temp database is made writable. If iDb>1 then the
+** specified auxiliary database and the temp database are made writable.
+*/
+SQLITE_PRIVATE void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){
+ Vdbe *v = sqlite3GetVdbe(pParse);
+ if( v==0 ) return;
+ sqlite3CodeVerifySchema(pParse, iDb);
+ pParse->writeMask |= 1<<iDb;
+ if( setStatement && pParse->nested==0 ){
+ sqlite3VdbeAddOp1(v, OP_Statement, iDb);
+ }
+ if( (OMIT_TEMPDB || iDb!=1) && pParse->db->aDb[1].pBt!=0 ){
+ sqlite3BeginWriteOperation(pParse, setStatement, 1);
+ }
+}
+
+/*
+** Check to see if pIndex uses the collating sequence pColl. Return
+** true if it does and false if it does not.
+*/
+#ifndef SQLITE_OMIT_REINDEX
+static int collationMatch(const char *zColl, Index *pIndex){
+ int i;
+ for(i=0; i<pIndex->nColumn; i++){
+ const char *z = pIndex->azColl[i];
+ if( z==zColl || (z && zColl && 0==sqlite3StrICmp(z, zColl)) ){
+ return 1;
+ }
+ }
+ return 0;
+}
+#endif
+
+/*
+** Recompute all indices of pTab that use the collating sequence pColl.
+** If pColl==0 then recompute all indices of pTab.
+*/
+#ifndef SQLITE_OMIT_REINDEX
+static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){
+ Index *pIndex; /* An index associated with pTab */
+
+ for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
+ if( zColl==0 || collationMatch(zColl, pIndex) ){
+ int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
+ sqlite3BeginWriteOperation(pParse, 0, iDb);
+ sqlite3RefillIndex(pParse, pIndex, -1);
+ }
+ }
+}
+#endif
+
+/*
+** Recompute all indices of all tables in all databases where the
+** indices use the collating sequence pColl. If pColl==0 then recompute
+** all indices everywhere.
+*/
+#ifndef SQLITE_OMIT_REINDEX
+static void reindexDatabases(Parse *pParse, char const *zColl){
+ Db *pDb; /* A single database */
+ int iDb; /* The database index number */
+ sqlite3 *db = pParse->db; /* The database connection */
+ HashElem *k; /* For looping over tables in pDb */
+ Table *pTab; /* A table in the database */
+
+ for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){
+ assert( pDb!=0 );
+ for(k=sqliteHashFirst(&pDb->pSchema->tblHash); k; k=sqliteHashNext(k)){
+ pTab = (Table*)sqliteHashData(k);
+ reindexTable(pParse, pTab, zColl);
+ }
+ }
+}
+#endif
+
+/*
+** Generate code for the REINDEX command.
+**
+** REINDEX -- 1
+** REINDEX <collation> -- 2
+** REINDEX ?<database>.?<tablename> -- 3
+** REINDEX ?<database>.?<indexname> -- 4
+**
+** Form 1 causes all indices in all attached databases to be rebuilt.
+** Form 2 rebuilds all indices in all databases that use the named
+** collating function. Forms 3 and 4 rebuild the named index or all
+** indices associated with the named table.
+*/
+#ifndef SQLITE_OMIT_REINDEX
+SQLITE_PRIVATE void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){
+ CollSeq *pColl; /* Collating sequence to be reindexed, or NULL */
+ char *z; /* Name of a table or index */
+ const char *zDb; /* Name of the database */
+ Table *pTab; /* A table in the database */
+ Index *pIndex; /* An index associated with pTab */
+ int iDb; /* The database index number */
+ sqlite3 *db = pParse->db; /* The database connection */
+ Token *pObjName; /* Name of the table or index to be reindexed */
+
+ /* Read the database schema. If an error occurs, leave an error message
+ ** and code in pParse and return NULL. */
+ if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
+ return;
+ }
+
+ if( pName1==0 || pName1->z==0 ){
+ reindexDatabases(pParse, 0);
+ return;
+ }else if( pName2==0 || pName2->z==0 ){
+ char *zColl;
+ assert( pName1->z );
+ zColl = sqlite3NameFromToken(pParse->db, pName1);
+ if( !zColl ) return;
+ pColl = sqlite3FindCollSeq(db, ENC(db), zColl, -1, 0);
+ if( pColl ){
+ if( zColl ){
+ reindexDatabases(pParse, zColl);
+ sqlite3_free(zColl);
+ }
+ return;
+ }
+ sqlite3_free(zColl);
+ }
+ iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName);
+ if( iDb<0 ) return;
+ z = sqlite3NameFromToken(db, pObjName);
+ if( z==0 ) return;
+ zDb = db->aDb[iDb].zName;
+ pTab = sqlite3FindTable(db, z, zDb);
+ if( pTab ){
+ reindexTable(pParse, pTab, 0);
+ sqlite3_free(z);
+ return;
+ }
+ pIndex = sqlite3FindIndex(db, z, zDb);
+ sqlite3_free(z);
+ if( pIndex ){
+ sqlite3BeginWriteOperation(pParse, 0, iDb);
+ sqlite3RefillIndex(pParse, pIndex, -1);
+ return;
+ }
+ sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed");
+}
+#endif
+
+/*
+** Return a dynamicly allocated KeyInfo structure that can be used
+** with OP_OpenRead or OP_OpenWrite to access database index pIdx.
+**
+** If successful, a pointer to the new structure is returned. In this case
+** the caller is responsible for calling sqlite3_free() on the returned
+** pointer. If an error occurs (out of memory or missing collation
+** sequence), NULL is returned and the state of pParse updated to reflect
+** the error.
+*/
+SQLITE_PRIVATE KeyInfo *sqlite3IndexKeyinfo(Parse *pParse, Index *pIdx){
+ int i;
+ int nCol = pIdx->nColumn;
+ int nBytes = sizeof(KeyInfo) + (nCol-1)*sizeof(CollSeq*) + nCol;
+ KeyInfo *pKey = (KeyInfo *)sqlite3DbMallocZero(pParse->db, nBytes);
+
+ if( pKey ){
+ pKey->db = pParse->db;
+ pKey->aSortOrder = (u8 *)&(pKey->aColl[nCol]);
+ assert( &pKey->aSortOrder[nCol]==&(((u8 *)pKey)[nBytes]) );
+ for(i=0; i<nCol; i++){
+ char *zColl = pIdx->azColl[i];
+ assert( zColl );
+ pKey->aColl[i] = sqlite3LocateCollSeq(pParse, zColl, -1);
+ pKey->aSortOrder[i] = pIdx->aSortOrder[i];
+ }
+ pKey->nField = nCol;
+ }
+
+ if( pParse->nErr ){
+ sqlite3_free(pKey);
+ pKey = 0;
+ }
+ return pKey;
+}
+
+/************** End of build.c ***********************************************/
+/************** Begin file callback.c ****************************************/
+/*
+** 2005 May 23
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+**
+** This file contains functions used to access the internal hash tables
+** of user defined functions and collation sequences.
+**
+** $Id: callback.c,v 1.23 2007/08/29 12:31:26 danielk1977 Exp $
+*/
+
+
+/*
+** Invoke the 'collation needed' callback to request a collation sequence
+** in the database text encoding of name zName, length nName.
+** If the collation sequence
+*/
+static void callCollNeeded(sqlite3 *db, const char *zName, int nName){
+ assert( !db->xCollNeeded || !db->xCollNeeded16 );
+ if( nName<0 ) nName = strlen(zName);
+ if( db->xCollNeeded ){
+ char *zExternal = sqlite3DbStrNDup(db, zName, nName);
+ if( !zExternal ) return;
+ db->xCollNeeded(db->pCollNeededArg, db, (int)ENC(db), zExternal);
+ sqlite3_free(zExternal);
+ }
+#ifndef SQLITE_OMIT_UTF16
+ if( db->xCollNeeded16 ){
+ char const *zExternal;
+ sqlite3_value *pTmp = sqlite3ValueNew(db);
+ sqlite3ValueSetStr(pTmp, nName, zName, SQLITE_UTF8, SQLITE_STATIC);
+ zExternal = sqlite3ValueText(pTmp, SQLITE_UTF16NATIVE);
+ if( zExternal ){
+ db->xCollNeeded16(db->pCollNeededArg, db, (int)ENC(db), zExternal);
+ }
+ sqlite3ValueFree(pTmp);
+ }
+#endif
+}
+
+/*
+** This routine is called if the collation factory fails to deliver a
+** collation function in the best encoding but there may be other versions
+** of this collation function (for other text encodings) available. Use one
+** of these instead if they exist. Avoid a UTF-8 <-> UTF-16 conversion if
+** possible.
+*/
+static int synthCollSeq(sqlite3 *db, CollSeq *pColl){
+ CollSeq *pColl2;
+ char *z = pColl->zName;
+ int n = strlen(z);
+ int i;
+ static const u8 aEnc[] = { SQLITE_UTF16BE, SQLITE_UTF16LE, SQLITE_UTF8 };
+ for(i=0; i<3; i++){
+ pColl2 = sqlite3FindCollSeq(db, aEnc[i], z, n, 0);
+ if( pColl2->xCmp!=0 ){
+ memcpy(pColl, pColl2, sizeof(CollSeq));
+ pColl->xDel = 0; /* Do not copy the destructor */
+ return SQLITE_OK;
+ }
+ }
+ return SQLITE_ERROR;
+}
+
+/*
+** This function is responsible for invoking the collation factory callback
+** or substituting a collation sequence of a different encoding when the
+** requested collation sequence is not available in the database native
+** encoding.
+**
+** If it is not NULL, then pColl must point to the database native encoding
+** collation sequence with name zName, length nName.
+**
+** The return value is either the collation sequence to be used in database
+** db for collation type name zName, length nName, or NULL, if no collation
+** sequence can be found.
+*/
+SQLITE_PRIVATE CollSeq *sqlite3GetCollSeq(
+ sqlite3* db,
+ CollSeq *pColl,
+ const char *zName,
+ int nName
+){
+ CollSeq *p;
+
+ p = pColl;
+ if( !p ){
+ p = sqlite3FindCollSeq(db, ENC(db), zName, nName, 0);
+ }
+ if( !p || !p->xCmp ){
+ /* No collation sequence of this type for this encoding is registered.
+ ** Call the collation factory to see if it can supply us with one.
+ */
+ callCollNeeded(db, zName, nName);
+ p = sqlite3FindCollSeq(db, ENC(db), zName, nName, 0);
+ }
+ if( p && !p->xCmp && synthCollSeq(db, p) ){
+ p = 0;
+ }
+ assert( !p || p->xCmp );
+ return p;
+}
+
+/*
+** This routine is called on a collation sequence before it is used to
+** check that it is defined. An undefined collation sequence exists when
+** a database is loaded that contains references to collation sequences
+** that have not been defined by sqlite3_create_collation() etc.
+**
+** If required, this routine calls the 'collation needed' callback to
+** request a definition of the collating sequence. If this doesn't work,
+** an equivalent collating sequence that uses a text encoding different
+** from the main database is substituted, if one is available.
+*/
+SQLITE_PRIVATE int sqlite3CheckCollSeq(Parse *pParse, CollSeq *pColl){
+ if( pColl ){
+ const char *zName = pColl->zName;
+ CollSeq *p = sqlite3GetCollSeq(pParse->db, pColl, zName, -1);
+ if( !p ){
+ if( pParse->nErr==0 ){
+ sqlite3ErrorMsg(pParse, "no such collation sequence: %s", zName);
+ }
+ pParse->nErr++;
+ return SQLITE_ERROR;
+ }
+ assert( p==pColl );
+ }
+ return SQLITE_OK;
+}
+
+
+
+/*
+** Locate and return an entry from the db.aCollSeq hash table. If the entry
+** specified by zName and nName is not found and parameter 'create' is
+** true, then create a new entry. Otherwise return NULL.
+**
+** Each pointer stored in the sqlite3.aCollSeq hash table contains an
+** array of three CollSeq structures. The first is the collation sequence
+** prefferred for UTF-8, the second UTF-16le, and the third UTF-16be.
+**
+** Stored immediately after the three collation sequences is a copy of
+** the collation sequence name. A pointer to this string is stored in
+** each collation sequence structure.
+*/
+static CollSeq *findCollSeqEntry(
+ sqlite3 *db,
+ const char *zName,
+ int nName,
+ int create
+){
+ CollSeq *pColl;
+ if( nName<0 ) nName = strlen(zName);
+ pColl = sqlite3HashFind(&db->aCollSeq, zName, nName);
+
+ if( 0==pColl && create ){
+ pColl = sqlite3DbMallocZero(db, 3*sizeof(*pColl) + nName + 1 );
+ if( pColl ){
+ CollSeq *pDel = 0;
+ pColl[0].zName = (char*)&pColl[3];
+ pColl[0].enc = SQLITE_UTF8;
+ pColl[1].zName = (char*)&pColl[3];
+ pColl[1].enc = SQLITE_UTF16LE;
+ pColl[2].zName = (char*)&pColl[3];
+ pColl[2].enc = SQLITE_UTF16BE;
+ memcpy(pColl[0].zName, zName, nName);
+ pColl[0].zName[nName] = 0;
+ pDel = sqlite3HashInsert(&db->aCollSeq, pColl[0].zName, nName, pColl);
+
+ /* If a malloc() failure occured in sqlite3HashInsert(), it will
+ ** return the pColl pointer to be deleted (because it wasn't added
+ ** to the hash table).
+ */
+ assert( pDel==0 || pDel==pColl );
+ if( pDel!=0 ){
+ db->mallocFailed = 1;
+ sqlite3_free(pDel);
+ pColl = 0;
+ }
+ }
+ }
+ return pColl;
+}
+
+/*
+** Parameter zName points to a UTF-8 encoded string nName bytes long.
+** Return the CollSeq* pointer for the collation sequence named zName
+** for the encoding 'enc' from the database 'db'.
+**
+** If the entry specified is not found and 'create' is true, then create a
+** new entry. Otherwise return NULL.
+**
+** A separate function sqlite3LocateCollSeq() is a wrapper around
+** this routine. sqlite3LocateCollSeq() invokes the collation factory
+** if necessary and generates an error message if the collating sequence
+** cannot be found.
+*/
+SQLITE_PRIVATE CollSeq *sqlite3FindCollSeq(
+ sqlite3 *db,
+ u8 enc,
+ const char *zName,
+ int nName,
+ int create
+){
+ CollSeq *pColl;
+ if( zName ){
+ pColl = findCollSeqEntry(db, zName, nName, create);
+ }else{
+ pColl = db->pDfltColl;
+ }
+ assert( SQLITE_UTF8==1 && SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 );
+ assert( enc>=SQLITE_UTF8 && enc<=SQLITE_UTF16BE );
+ if( pColl ) pColl += enc-1;
+ return pColl;
+}
+
+/*
+** Locate a user function given a name, a number of arguments and a flag
+** indicating whether the function prefers UTF-16 over UTF-8. Return a
+** pointer to the FuncDef structure that defines that function, or return
+** NULL if the function does not exist.
+**
+** If the createFlag argument is true, then a new (blank) FuncDef
+** structure is created and liked into the "db" structure if a
+** no matching function previously existed. When createFlag is true
+** and the nArg parameter is -1, then only a function that accepts
+** any number of arguments will be returned.
+**
+** If createFlag is false and nArg is -1, then the first valid
+** function found is returned. A function is valid if either xFunc
+** or xStep is non-zero.
+**
+** If createFlag is false, then a function with the required name and
+** number of arguments may be returned even if the eTextRep flag does not
+** match that requested.
+*/
+SQLITE_PRIVATE FuncDef *sqlite3FindFunction(
+ sqlite3 *db, /* An open database */
+ const char *zName, /* Name of the function. Not null-terminated */
+ int nName, /* Number of characters in the name */
+ int nArg, /* Number of arguments. -1 means any number */
+ u8 enc, /* Preferred text encoding */
+ int createFlag /* Create new entry if true and does not otherwise exist */
+){
+ FuncDef *p; /* Iterator variable */
+ FuncDef *pFirst; /* First function with this name */
+ FuncDef *pBest = 0; /* Best match found so far */
+ int bestmatch = 0;
+
+
+ assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE );
+ if( nArg<-1 ) nArg = -1;
+
+ pFirst = (FuncDef*)sqlite3HashFind(&db->aFunc, zName, nName);
+ for(p=pFirst; p; p=p->pNext){
+ /* During the search for the best function definition, bestmatch is set
+ ** as follows to indicate the quality of the match with the definition
+ ** pointed to by pBest:
+ **
+ ** 0: pBest is NULL. No match has been found.
+ ** 1: A variable arguments function that prefers UTF-8 when a UTF-16
+ ** encoding is requested, or vice versa.
+ ** 2: A variable arguments function that uses UTF-16BE when UTF-16LE is
+ ** requested, or vice versa.
+ ** 3: A variable arguments function using the same text encoding.
+ ** 4: A function with the exact number of arguments requested that
+ ** prefers UTF-8 when a UTF-16 encoding is requested, or vice versa.
+ ** 5: A function with the exact number of arguments requested that
+ ** prefers UTF-16LE when UTF-16BE is requested, or vice versa.
+ ** 6: An exact match.
+ **
+ ** A larger value of 'matchqual' indicates a more desirable match.
+ */
+ if( p->nArg==-1 || p->nArg==nArg || nArg==-1 ){
+ int match = 1; /* Quality of this match */
+ if( p->nArg==nArg || nArg==-1 ){
+ match = 4;
+ }
+ if( enc==p->iPrefEnc ){
+ match += 2;
+ }
+ else if( (enc==SQLITE_UTF16LE && p->iPrefEnc==SQLITE_UTF16BE) ||
+ (enc==SQLITE_UTF16BE && p->iPrefEnc==SQLITE_UTF16LE) ){
+ match += 1;
+ }
+
+ if( match>bestmatch ){
+ pBest = p;
+ bestmatch = match;
+ }
+ }
+ }
+
+ /* If the createFlag parameter is true, and the seach did not reveal an
+ ** exact match for the name, number of arguments and encoding, then add a
+ ** new entry to the hash table and return it.
+ */
+ if( createFlag && bestmatch<6 &&
+ (pBest = sqlite3DbMallocZero(db, sizeof(*pBest)+nName))!=0 ){
+ pBest->nArg = nArg;
+ pBest->pNext = pFirst;
+ pBest->iPrefEnc = enc;
+ memcpy(pBest->zName, zName, nName);
+ pBest->zName[nName] = 0;
+ if( pBest==sqlite3HashInsert(&db->aFunc,pBest->zName,nName,(void*)pBest) ){
+ db->mallocFailed = 1;
+ sqlite3_free(pBest);
+ return 0;
+ }
+ }
+
+ if( pBest && (pBest->xStep || pBest->xFunc || createFlag) ){
+ return pBest;
+ }
+ return 0;
+}
+
+/*
+** Free all resources held by the schema structure. The void* argument points
+** at a Schema struct. This function does not call sqlite3_free() on the
+** pointer itself, it just cleans up subsiduary resources (i.e. the contents
+** of the schema hash tables).
+*/
+SQLITE_PRIVATE void sqlite3SchemaFree(void *p){
+ Hash temp1;
+ Hash temp2;
+ HashElem *pElem;
+ Schema *pSchema = (Schema *)p;
+
+ temp1 = pSchema->tblHash;
+ temp2 = pSchema->trigHash;
+ sqlite3HashInit(&pSchema->trigHash, SQLITE_HASH_STRING, 0);
+ sqlite3HashClear(&pSchema->aFKey);
+ sqlite3HashClear(&pSchema->idxHash);
+ for(pElem=sqliteHashFirst(&temp2); pElem; pElem=sqliteHashNext(pElem)){
+ sqlite3DeleteTrigger((Trigger*)sqliteHashData(pElem));
+ }
+ sqlite3HashClear(&temp2);
+ sqlite3HashInit(&pSchema->tblHash, SQLITE_HASH_STRING, 0);
+ for(pElem=sqliteHashFirst(&temp1); pElem; pElem=sqliteHashNext(pElem)){
+ Table *pTab = sqliteHashData(pElem);
+ sqlite3DeleteTable(pTab);
+ }
+ sqlite3HashClear(&temp1);
+ pSchema->pSeqTab = 0;
+ pSchema->flags &= ~DB_SchemaLoaded;
+}
+
+/*
+** Find and return the schema associated with a BTree. Create
+** a new one if necessary.
+*/
+SQLITE_PRIVATE Schema *sqlite3SchemaGet(sqlite3 *db, Btree *pBt){
+ Schema * p;
+ if( pBt ){
+ p = (Schema *)sqlite3BtreeSchema(pBt, sizeof(Schema), sqlite3SchemaFree);
+ }else{
+ p = (Schema *)sqlite3MallocZero(sizeof(Schema));
+ }
+ if( !p ){
+ db->mallocFailed = 1;
+ }else if ( 0==p->file_format ){
+ sqlite3HashInit(&p->tblHash, SQLITE_HASH_STRING, 0);
+ sqlite3HashInit(&p->idxHash, SQLITE_HASH_STRING, 0);
+ sqlite3HashInit(&p->trigHash, SQLITE_HASH_STRING, 0);
+ sqlite3HashInit(&p->aFKey, SQLITE_HASH_STRING, 1);
+ p->enc = SQLITE_UTF8;
+ }
+ return p;
+}
+
+/************** End of callback.c ********************************************/
+/************** Begin file delete.c ******************************************/
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains C code routines that are called by the parser
+** in order to generate code for DELETE FROM statements.
+**
+** $Id: delete.c,v 1.169 2008/04/28 18:46:43 drh Exp $
+*/
+
+/*
+** Look up every table that is named in pSrc. If any table is not found,
+** add an error message to pParse->zErrMsg and return NULL. If all tables
+** are found, return a pointer to the last table.
+*/
+SQLITE_PRIVATE Table *sqlite3SrcListLookup(Parse *pParse, SrcList *pSrc){
+ Table *pTab = 0;
+ int i;
+ struct SrcList_item *pItem;
+ for(i=0, pItem=pSrc->a; i<pSrc->nSrc; i++, pItem++){
+ pTab = sqlite3LocateTable(pParse, 0, pItem->zName, pItem->zDatabase);
+ sqlite3DeleteTable(pItem->pTab);
+ pItem->pTab = pTab;
+ if( pTab ){
+ pTab->nRef++;
+ }
+ }
+ return pTab;
+}
+
+/*
+** Check to make sure the given table is writable. If it is not
+** writable, generate an error message and return 1. If it is
+** writable return 0;
+*/
+SQLITE_PRIVATE int sqlite3IsReadOnly(Parse *pParse, Table *pTab, int viewOk){
+ if( (pTab->readOnly && (pParse->db->flags & SQLITE_WriteSchema)==0
+ && pParse->nested==0)
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ || (pTab->pMod && pTab->pMod->pModule->xUpdate==0)
+#endif
+ ){
+ sqlite3ErrorMsg(pParse, "table %s may not be modified", pTab->zName);
+ return 1;
+ }
+#ifndef SQLITE_OMIT_VIEW
+ if( !viewOk && pTab->pSelect ){
+ sqlite3ErrorMsg(pParse,"cannot modify %s because it is a view",pTab->zName);
+ return 1;
+ }
+#endif
+ return 0;
+}
+
+/*
+** Generate code that will open a table for reading.
+*/
+SQLITE_PRIVATE void sqlite3OpenTable(
+ Parse *p, /* Generate code into this VDBE */
+ int iCur, /* The cursor number of the table */
+ int iDb, /* The database index in sqlite3.aDb[] */
+ Table *pTab, /* The table to be opened */
+ int opcode /* OP_OpenRead or OP_OpenWrite */
+){
+ Vdbe *v;
+ if( IsVirtual(pTab) ) return;
+ v = sqlite3GetVdbe(p);
+ assert( opcode==OP_OpenWrite || opcode==OP_OpenRead );
+ sqlite3TableLock(p, iDb, pTab->tnum, (opcode==OP_OpenWrite), pTab->zName);
+ sqlite3VdbeAddOp2(v, OP_SetNumColumns, 0, pTab->nCol);
+ sqlite3VdbeAddOp3(v, opcode, iCur, pTab->tnum, iDb);
+ VdbeComment((v, "%s", pTab->zName));
+}
+
+
+#if !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER)
+/*
+** Evaluate a view and store its result in an ephemeral table. The
+** pWhere argument is an optional WHERE clause that restricts the
+** set of rows in the view that are to be added to the ephemeral table.
+*/
+SQLITE_PRIVATE void sqlite3MaterializeView(
+ Parse *pParse, /* Parsing context */
+ Select *pView, /* View definition */
+ Expr *pWhere, /* Optional WHERE clause to be added */
+ int iCur /* Cursor number for ephemerial table */
+){
+ SelectDest dest;
+ Select *pDup;
+ sqlite3 *db = pParse->db;
+
+ pDup = sqlite3SelectDup(db, pView);
+ if( pWhere ){
+ SrcList *pFrom;
+
+ pWhere = sqlite3ExprDup(db, pWhere);
+ pFrom = sqlite3SrcListAppendFromTerm(pParse, 0, 0, 0, 0, pDup, 0, 0);
+ pDup = sqlite3SelectNew(pParse, 0, pFrom, pWhere, 0, 0, 0, 0, 0, 0);
+ }
+ sqlite3SelectDestInit(&dest, SRT_EphemTab, iCur);
+ sqlite3Select(pParse, pDup, &dest, 0, 0, 0, 0);
+ sqlite3SelectDelete(pDup);
+}
+#endif /* !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER) */
+
+
+/*
+** Generate code for a DELETE FROM statement.
+**
+** DELETE FROM table_wxyz WHERE a<5 AND b NOT NULL;
+** \________/ \________________/
+** pTabList pWhere
+*/
+SQLITE_PRIVATE void sqlite3DeleteFrom(
+ Parse *pParse, /* The parser context */
+ SrcList *pTabList, /* The table from which we should delete things */
+ Expr *pWhere /* The WHERE clause. May be null */
+){
+ Vdbe *v; /* The virtual database engine */
+ Table *pTab; /* The table from which records will be deleted */
+ const char *zDb; /* Name of database holding pTab */
+ int end, addr = 0; /* A couple addresses of generated code */
+ int i; /* Loop counter */
+ WhereInfo *pWInfo; /* Information about the WHERE clause */
+ Index *pIdx; /* For looping over indices of the table */
+ int iCur; /* VDBE Cursor number for pTab */
+ sqlite3 *db; /* Main database structure */
+ AuthContext sContext; /* Authorization context */
+ int oldIdx = -1; /* Cursor for the OLD table of AFTER triggers */
+ NameContext sNC; /* Name context to resolve expressions in */
+ int iDb; /* Database number */
+ int memCnt = 0; /* Memory cell used for change counting */
+
+#ifndef SQLITE_OMIT_TRIGGER
+ int isView; /* True if attempting to delete from a view */
+ int triggers_exist = 0; /* True if any triggers exist */
+#endif
+ int iBeginAfterTrigger; /* Address of after trigger program */
+ int iEndAfterTrigger; /* Exit of after trigger program */
+ int iBeginBeforeTrigger; /* Address of before trigger program */
+ int iEndBeforeTrigger; /* Exit of before trigger program */
+ u32 old_col_mask = 0; /* Mask of OLD.* columns in use */
+
+ sContext.pParse = 0;
+ db = pParse->db;
+ if( pParse->nErr || db->mallocFailed ){
+ goto delete_from_cleanup;
+ }
+ assert( pTabList->nSrc==1 );
+
+ /* Locate the table which we want to delete. This table has to be
+ ** put in an SrcList structure because some of the subroutines we
+ ** will be calling are designed to work with multiple tables and expect
+ ** an SrcList* parameter instead of just a Table* parameter.
+ */
+ pTab = sqlite3SrcListLookup(pParse, pTabList);
+ if( pTab==0 ) goto delete_from_cleanup;
+
+ /* Figure out if we have any triggers and if the table being
+ ** deleted from is a view
+ */
+#ifndef SQLITE_OMIT_TRIGGER
+ triggers_exist = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0);
+ isView = pTab->pSelect!=0;
+#else
+# define triggers_exist 0
+# define isView 0
+#endif
+#ifdef SQLITE_OMIT_VIEW
+# undef isView
+# define isView 0
+#endif
+
+ if( sqlite3IsReadOnly(pParse, pTab, triggers_exist) ){
+ goto delete_from_cleanup;
+ }
+ iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
+ assert( iDb<db->nDb );
+ zDb = db->aDb[iDb].zName;
+ if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){
+ goto delete_from_cleanup;
+ }
+
+ /* If pTab is really a view, make sure it has been initialized.
+ */
+ if( sqlite3ViewGetColumnNames(pParse, pTab) ){
+ goto delete_from_cleanup;
+ }
+
+ /* Allocate a cursor used to store the old.* data for a trigger.
+ */
+ if( triggers_exist ){
+ oldIdx = pParse->nTab++;
+ }
+
+ /* Assign cursor number to the table and all its indices.
+ */
+ assert( pTabList->nSrc==1 );
+ iCur = pTabList->a[0].iCursor = pParse->nTab++;
+ for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
+ pParse->nTab++;
+ }
+
+ /* Start the view context
+ */
+ if( isView ){
+ sqlite3AuthContextPush(pParse, &sContext, pTab->zName);
+ }
+
+ /* Begin generating code.
+ */
+ v = sqlite3GetVdbe(pParse);
+ if( v==0 ){
+ goto delete_from_cleanup;
+ }
+ if( pParse->nested==0 ) sqlite3VdbeCountChanges(v);
+ sqlite3BeginWriteOperation(pParse, triggers_exist, iDb);
+
+ if( triggers_exist ){
+ int orconf = ((pParse->trigStack)?pParse->trigStack->orconf:OE_Default);
+ int iGoto = sqlite3VdbeAddOp0(v, OP_Goto);
+ addr = sqlite3VdbeMakeLabel(v);
+
+ iBeginBeforeTrigger = sqlite3VdbeCurrentAddr(v);
+ (void)sqlite3CodeRowTrigger(pParse, TK_DELETE, 0, TRIGGER_BEFORE, pTab,
+ -1, oldIdx, orconf, addr, &old_col_mask, 0);
+ iEndBeforeTrigger = sqlite3VdbeAddOp0(v, OP_Goto);
+
+ iBeginAfterTrigger = sqlite3VdbeCurrentAddr(v);
+ (void)sqlite3CodeRowTrigger(pParse, TK_DELETE, 0, TRIGGER_AFTER, pTab, -1,
+ oldIdx, orconf, addr, &old_col_mask, 0);
+ iEndAfterTrigger = sqlite3VdbeAddOp0(v, OP_Goto);
+
+ sqlite3VdbeJumpHere(v, iGoto);
+ }
+
+ /* If we are trying to delete from a view, realize that view into
+ ** a ephemeral table.
+ */
+ if( isView ){
+ sqlite3MaterializeView(pParse, pTab->pSelect, pWhere, iCur);
+ }
+
+ /* Resolve the column names in the WHERE clause.
+ */
+ memset(&sNC, 0, sizeof(sNC));
+ sNC.pParse = pParse;
+ sNC.pSrcList = pTabList;
+ if( sqlite3ExprResolveNames(&sNC, pWhere) ){
+ goto delete_from_cleanup;
+ }
+
+ /* Initialize the counter of the number of rows deleted, if
+ ** we are counting rows.
+ */
+ if( db->flags & SQLITE_CountRows ){
+ memCnt = ++pParse->nMem;
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, memCnt);
+ }
+
+ /* Special case: A DELETE without a WHERE clause deletes everything.
+ ** It is easier just to erase the whole table. Note, however, that
+ ** this means that the row change count will be incorrect.
+ */
+ if( pWhere==0 && !triggers_exist && !IsVirtual(pTab) ){
+ if( db->flags & SQLITE_CountRows ){
+ /* If counting rows deleted, just count the total number of
+ ** entries in the table. */
+ int addr2;
+ if( !isView ){
+ sqlite3OpenTable(pParse, iCur, iDb, pTab, OP_OpenRead);
+ }
+ sqlite3VdbeAddOp2(v, OP_Rewind, iCur, sqlite3VdbeCurrentAddr(v)+2);
+ addr2 = sqlite3VdbeAddOp2(v, OP_AddImm, memCnt, 1);
+ sqlite3VdbeAddOp2(v, OP_Next, iCur, addr2);
+ sqlite3VdbeAddOp1(v, OP_Close, iCur);
+ }
+ if( !isView ){
+ sqlite3VdbeAddOp2(v, OP_Clear, pTab->tnum, iDb);
+ if( !pParse->nested ){
+ sqlite3VdbeChangeP4(v, -1, pTab->zName, P4_STATIC);
+ }
+ for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
+ assert( pIdx->pSchema==pTab->pSchema );
+ sqlite3VdbeAddOp2(v, OP_Clear, pIdx->tnum, iDb);
+ }
+ }
+ }
+ /* The usual case: There is a WHERE clause so we have to scan through
+ ** the table and pick which records to delete.
+ */
+ else{
+ int iRowid = ++pParse->nMem; /* Used for storing rowid values. */
+
+ /* Begin the database scan
+ */
+ pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, 0, 0);
+ if( pWInfo==0 ) goto delete_from_cleanup;
+
+ /* Remember the rowid of every item to be deleted.
+ */
+ sqlite3VdbeAddOp2(v, IsVirtual(pTab) ? OP_VRowid : OP_Rowid, iCur, iRowid);
+ sqlite3VdbeAddOp1(v, OP_FifoWrite, iRowid);
+ if( db->flags & SQLITE_CountRows ){
+ sqlite3VdbeAddOp2(v, OP_AddImm, memCnt, 1);
+ }
+
+ /* End the database scan loop.
+ */
+ sqlite3WhereEnd(pWInfo);
+
+ /* Open the pseudo-table used to store OLD if there are triggers.
+ */
+ if( triggers_exist ){
+ sqlite3VdbeAddOp2(v, OP_SetNumColumns, 0, pTab->nCol);
+ sqlite3VdbeAddOp1(v, OP_OpenPseudo, oldIdx);
+ }
+
+ /* Delete every item whose key was written to the list during the
+ ** database scan. We have to delete items after the scan is complete
+ ** because deleting an item can change the scan order.
+ */
+ end = sqlite3VdbeMakeLabel(v);
+
+ if( !isView ){
+ /* Open cursors for the table we are deleting from and
+ ** all its indices.
+ */
+ sqlite3OpenTableAndIndices(pParse, pTab, iCur, OP_OpenWrite);
+ }
+
+ /* This is the beginning of the delete loop. If a trigger encounters
+ ** an IGNORE constraint, it jumps back to here.
+ */
+ if( triggers_exist ){
+ sqlite3VdbeResolveLabel(v, addr);
+ }
+ addr = sqlite3VdbeAddOp2(v, OP_FifoRead, iRowid, end);
+
+ if( triggers_exist ){
+ int iData = ++pParse->nMem; /* For storing row data of OLD table */
+
+ /* If the record is no longer present in the table, jump to the
+ ** next iteration of the loop through the contents of the fifo.
+ */
+ sqlite3VdbeAddOp3(v, OP_NotExists, iCur, addr, iRowid);
+
+ /* Populate the OLD.* pseudo-table */
+ if( old_col_mask ){
+ sqlite3VdbeAddOp2(v, OP_RowData, iCur, iData);
+ }else{
+ sqlite3VdbeAddOp2(v, OP_Null, 0, iData);
+ }
+ sqlite3VdbeAddOp3(v, OP_Insert, oldIdx, iData, iRowid);
+
+ /* Jump back and run the BEFORE triggers */
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, iBeginBeforeTrigger);
+ sqlite3VdbeJumpHere(v, iEndBeforeTrigger);
+ }
+
+ if( !isView ){
+ /* Delete the row */
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ if( IsVirtual(pTab) ){
+ const char *pVtab = (const char *)pTab->pVtab;
+ sqlite3VtabMakeWritable(pParse, pTab);
+ sqlite3VdbeAddOp4(v, OP_VUpdate, 0, 1, iRowid, pVtab, P4_VTAB);
+ }else
+#endif
+ {
+ sqlite3GenerateRowDelete(pParse, pTab, iCur, iRowid, pParse->nested==0);
+ }
+ }
+
+ /* If there are row triggers, close all cursors then invoke
+ ** the AFTER triggers
+ */
+ if( triggers_exist ){
+ /* Jump back and run the AFTER triggers */
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, iBeginAfterTrigger);
+ sqlite3VdbeJumpHere(v, iEndAfterTrigger);
+ }
+
+ /* End of the delete loop */
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, addr);
+ sqlite3VdbeResolveLabel(v, end);
+
+ /* Close the cursors after the loop if there are no row triggers */
+ if( !isView && !IsVirtual(pTab) ){
+ for(i=1, pIdx=pTab->pIndex; pIdx; i++, pIdx=pIdx->pNext){
+ sqlite3VdbeAddOp2(v, OP_Close, iCur + i, pIdx->tnum);
+ }
+ sqlite3VdbeAddOp1(v, OP_Close, iCur);
+ }
+ }
+
+ /*
+ ** Return the number of rows that were deleted. If this routine is
+ ** generating code because of a call to sqlite3NestedParse(), do not
+ ** invoke the callback function.
+ */
+ if( db->flags & SQLITE_CountRows && pParse->nested==0 && !pParse->trigStack ){
+ sqlite3VdbeAddOp2(v, OP_ResultRow, memCnt, 1);
+ sqlite3VdbeSetNumCols(v, 1);
+ sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows deleted", P4_STATIC);
+ }
+
+delete_from_cleanup:
+ sqlite3AuthContextPop(&sContext);
+ sqlite3SrcListDelete(pTabList);
+ sqlite3ExprDelete(pWhere);
+ return;
+}
+
+/*
+** This routine generates VDBE code that causes a single row of a
+** single table to be deleted.
+**
+** The VDBE must be in a particular state when this routine is called.
+** These are the requirements:
+**
+** 1. A read/write cursor pointing to pTab, the table containing the row
+** to be deleted, must be opened as cursor number "base".
+**
+** 2. Read/write cursors for all indices of pTab must be open as
+** cursor number base+i for the i-th index.
+**
+** 3. The record number of the row to be deleted must be stored in
+** memory cell iRowid.
+**
+** This routine pops the top of the stack to remove the record number
+** and then generates code to remove both the table record and all index
+** entries that point to that record.
+*/
+SQLITE_PRIVATE void sqlite3GenerateRowDelete(
+ Parse *pParse, /* Parsing context */
+ Table *pTab, /* Table containing the row to be deleted */
+ int iCur, /* Cursor number for the table */
+ int iRowid, /* Memory cell that contains the rowid to delete */
+ int count /* Increment the row change counter */
+){
+ int addr;
+ Vdbe *v;
+
+ v = pParse->pVdbe;
+ addr = sqlite3VdbeAddOp3(v, OP_NotExists, iCur, 0, iRowid);
+ sqlite3GenerateRowIndexDelete(pParse, pTab, iCur, 0);
+ sqlite3VdbeAddOp2(v, OP_Delete, iCur, (count?OPFLAG_NCHANGE:0));
+ if( count ){
+ sqlite3VdbeChangeP4(v, -1, pTab->zName, P4_STATIC);
+ }
+ sqlite3VdbeJumpHere(v, addr);
+}
+
+/*
+** This routine generates VDBE code that causes the deletion of all
+** index entries associated with a single row of a single table.
+**
+** The VDBE must be in a particular state when this routine is called.
+** These are the requirements:
+**
+** 1. A read/write cursor pointing to pTab, the table containing the row
+** to be deleted, must be opened as cursor number "iCur".
+**
+** 2. Read/write cursors for all indices of pTab must be open as
+** cursor number iCur+i for the i-th index.
+**
+** 3. The "iCur" cursor must be pointing to the row that is to be
+** deleted.
+*/
+SQLITE_PRIVATE void sqlite3GenerateRowIndexDelete(
+ Parse *pParse, /* Parsing and code generating context */
+ Table *pTab, /* Table containing the row to be deleted */
+ int iCur, /* Cursor number for the table */
+ int *aRegIdx /* Only delete if aRegIdx!=0 && aRegIdx[i]>0 */
+){
+ int i;
+ Index *pIdx;
+ int r1;
+
+ for(i=1, pIdx=pTab->pIndex; pIdx; i++, pIdx=pIdx->pNext){
+ if( aRegIdx!=0 && aRegIdx[i-1]==0 ) continue;
+ r1 = sqlite3GenerateIndexKey(pParse, pIdx, iCur, 0, 0);
+ sqlite3VdbeAddOp3(pParse->pVdbe, OP_IdxDelete, iCur+i, r1,pIdx->nColumn+1);
+ }
+}
+
+/*
+** Generate code that will assemble an index key and put it in register
+** regOut. The key with be for index pIdx which is an index on pTab.
+** iCur is the index of a cursor open on the pTab table and pointing to
+** the entry that needs indexing.
+**
+** Return a register number which is the first in a block of
+** registers that holds the elements of the index key. The
+** block of registers has already been deallocated by the time
+** this routine returns.
+*/
+SQLITE_PRIVATE int sqlite3GenerateIndexKey(
+ Parse *pParse, /* Parsing context */
+ Index *pIdx, /* The index for which to generate a key */
+ int iCur, /* Cursor number for the pIdx->pTable table */
+ int regOut, /* Write the new index key to this register */
+ int doMakeRec /* Run the OP_MakeRecord instruction if true */
+){
+ Vdbe *v = pParse->pVdbe;
+ int j;
+ Table *pTab = pIdx->pTable;
+ int regBase;
+ int nCol;
+
+ nCol = pIdx->nColumn;
+ regBase = sqlite3GetTempRange(pParse, nCol+1);
+ sqlite3VdbeAddOp2(v, OP_Rowid, iCur, regBase+nCol);
+ for(j=0; j<nCol; j++){
+ int idx = pIdx->aiColumn[j];
+ if( idx==pTab->iPKey ){
+ sqlite3VdbeAddOp2(v, OP_SCopy, regBase+nCol, regBase+j);
+ }else{
+ sqlite3VdbeAddOp3(v, OP_Column, iCur, idx, regBase+j);
+ sqlite3ColumnDefault(v, pTab, idx);
+ }
+ }
+ if( doMakeRec ){
+ sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol+1, regOut);
+ sqlite3IndexAffinityStr(v, pIdx);
+ sqlite3ExprCacheAffinityChange(pParse, regBase, nCol+1);
+ }
+ sqlite3ReleaseTempRange(pParse, regBase, nCol+1);
+ return regBase;
+}
+
+/* Make sure "isView" gets undefined in case this file becomes part of
+** the amalgamation - so that subsequent files do not see isView as a
+** macro. */
+#undef isView
+
+/************** End of delete.c **********************************************/
+/************** Begin file func.c ********************************************/
+/*
+** 2002 February 23
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains the C functions that implement various SQL
+** functions of SQLite.
+**
+** There is only one exported symbol in this file - the function
+** sqliteRegisterBuildinFunctions() found at the bottom of the file.
+** All other code has file scope.
+**
+** $Id: func.c,v 1.192 2008/04/27 18:40:12 drh Exp $
+*/
+
+
+/*
+** Return the collating function associated with a function.
+*/
+static CollSeq *sqlite3GetFuncCollSeq(sqlite3_context *context){
+ return context->pColl;
+}
+
+/*
+** Implementation of the non-aggregate min() and max() functions
+*/
+static void minmaxFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ int i;
+ int mask; /* 0 for min() or 0xffffffff for max() */
+ int iBest;
+ CollSeq *pColl;
+
+ if( argc==0 ) return;
+ mask = sqlite3_user_data(context)==0 ? 0 : -1;
+ pColl = sqlite3GetFuncCollSeq(context);
+ assert( pColl );
+ assert( mask==-1 || mask==0 );
+ iBest = 0;
+ if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
+ for(i=1; i<argc; i++){
+ if( sqlite3_value_type(argv[i])==SQLITE_NULL ) return;
+ if( (sqlite3MemCompare(argv[iBest], argv[i], pColl)^mask)>=0 ){
+ iBest = i;
+ }
+ }
+ sqlite3_result_value(context, argv[iBest]);
+}
+
+/*
+** Return the type of the argument.
+*/
+static void typeofFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ const char *z = 0;
+ switch( sqlite3_value_type(argv[0]) ){
+ case SQLITE_NULL: z = "null"; break;
+ case SQLITE_INTEGER: z = "integer"; break;
+ case SQLITE_TEXT: z = "text"; break;
+ case SQLITE_FLOAT: z = "real"; break;
+ case SQLITE_BLOB: z = "blob"; break;
+ }
+ sqlite3_result_text(context, z, -1, SQLITE_STATIC);
+}
+
+
+/*
+** Implementation of the length() function
+*/
+static void lengthFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ int len;
+
+ assert( argc==1 );
+ switch( sqlite3_value_type(argv[0]) ){
+ case SQLITE_BLOB:
+ case SQLITE_INTEGER:
+ case SQLITE_FLOAT: {
+ sqlite3_result_int(context, sqlite3_value_bytes(argv[0]));
+ break;
+ }
+ case SQLITE_TEXT: {
+ const unsigned char *z = sqlite3_value_text(argv[0]);
+ if( z==0 ) return;
+ len = 0;
+ while( *z ){
+ len++;
+ SQLITE_SKIP_UTF8(z);
+ }
+ sqlite3_result_int(context, len);
+ break;
+ }
+ default: {
+ sqlite3_result_null(context);
+ break;
+ }
+ }
+}
+
+/*
+** Implementation of the abs() function
+*/
+static void absFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
+ assert( argc==1 );
+ switch( sqlite3_value_type(argv[0]) ){
+ case SQLITE_INTEGER: {
+ i64 iVal = sqlite3_value_int64(argv[0]);
+ if( iVal<0 ){
+ if( (iVal<<1)==0 ){
+ sqlite3_result_error(context, "integer overflow", -1);
+ return;
+ }
+ iVal = -iVal;
+ }
+ sqlite3_result_int64(context, iVal);
+ break;
+ }
+ case SQLITE_NULL: {
+ sqlite3_result_null(context);
+ break;
+ }
+ default: {
+ double rVal = sqlite3_value_double(argv[0]);
+ if( rVal<0 ) rVal = -rVal;
+ sqlite3_result_double(context, rVal);
+ break;
+ }
+ }
+}
+
+/*
+** Implementation of the substr() function.
+**
+** substr(x,p1,p2) returns p2 characters of x[] beginning with p1.
+** p1 is 1-indexed. So substr(x,1,1) returns the first character
+** of x. If x is text, then we actually count UTF-8 characters.
+** If x is a blob, then we count bytes.
+**
+** If p1 is negative, then we begin abs(p1) from the end of x[].
+*/
+static void substrFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ const unsigned char *z;
+ const unsigned char *z2;
+ int len;
+ int p0type;
+ i64 p1, p2;
+
+ assert( argc==3 || argc==2 );
+ p0type = sqlite3_value_type(argv[0]);
+ if( p0type==SQLITE_BLOB ){
+ len = sqlite3_value_bytes(argv[0]);
+ z = sqlite3_value_blob(argv[0]);
+ if( z==0 ) return;
+ assert( len==sqlite3_value_bytes(argv[0]) );
+ }else{
+ z = sqlite3_value_text(argv[0]);
+ if( z==0 ) return;
+ len = 0;
+ for(z2=z; *z2; len++){
+ SQLITE_SKIP_UTF8(z2);
+ }
+ }
+ p1 = sqlite3_value_int(argv[1]);
+ if( argc==3 ){
+ p2 = sqlite3_value_int(argv[2]);
+ }else{
+ p2 = sqlite3_context_db_handle(context)->aLimit[SQLITE_LIMIT_LENGTH];
+ }
+ if( p1<0 ){
+ p1 += len;
+ if( p1<0 ){
+ p2 += p1;
+ p1 = 0;
+ }
+ }else if( p1>0 ){
+ p1--;
+ }
+ if( p1+p2>len ){
+ p2 = len-p1;
+ }
+ if( p0type!=SQLITE_BLOB ){
+ while( *z && p1 ){
+ SQLITE_SKIP_UTF8(z);
+ p1--;
+ }
+ for(z2=z; *z2 && p2; p2--){
+ SQLITE_SKIP_UTF8(z2);
+ }
+ sqlite3_result_text(context, (char*)z, z2-z, SQLITE_TRANSIENT);
+ }else{
+ if( p2<0 ) p2 = 0;
+ sqlite3_result_blob(context, (char*)&z[p1], p2, SQLITE_TRANSIENT);
+ }
+}
+
+/*
+** Implementation of the round() function
+*/
+static void roundFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
+ int n = 0;
+ double r;
+ char zBuf[500]; /* larger than the %f representation of the largest double */
+ assert( argc==1 || argc==2 );
+ if( argc==2 ){
+ if( SQLITE_NULL==sqlite3_value_type(argv[1]) ) return;
+ n = sqlite3_value_int(argv[1]);
+ if( n>30 ) n = 30;
+ if( n<0 ) n = 0;
+ }
+ if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
+ r = sqlite3_value_double(argv[0]);
+ sqlite3_snprintf(sizeof(zBuf),zBuf,"%.*f",n,r);
+ sqlite3AtoF(zBuf, &r);
+ sqlite3_result_double(context, r);
+}
+
+/*
+** Allocate nByte bytes of space using sqlite3_malloc(). If the
+** allocation fails, call sqlite3_result_error_nomem() to notify
+** the database handle that malloc() has failed.
+*/
+static void *contextMalloc(sqlite3_context *context, i64 nByte){
+ char *z;
+ if( nByte>sqlite3_context_db_handle(context)->aLimit[SQLITE_LIMIT_LENGTH] ){
+ sqlite3_result_error_toobig(context);
+ z = 0;
+ }else{
+ z = sqlite3_malloc(nByte);
+ if( !z && nByte>0 ){
+ sqlite3_result_error_nomem(context);
+ }
+ }
+ return z;
+}
+
+/*
+** Implementation of the upper() and lower() SQL functions.
+*/
+static void upperFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
+ char *z1;
+ const char *z2;
+ int i, n;
+ if( argc<1 || SQLITE_NULL==sqlite3_value_type(argv[0]) ) return;
+ z2 = (char*)sqlite3_value_text(argv[0]);
+ n = sqlite3_value_bytes(argv[0]);
+ /* Verify that the call to _bytes() does not invalidate the _text() pointer */
+ assert( z2==(char*)sqlite3_value_text(argv[0]) );
+ if( z2 ){
+ z1 = contextMalloc(context, ((i64)n)+1);
+ if( z1 ){
+ memcpy(z1, z2, n+1);
+ for(i=0; z1[i]; i++){
+ z1[i] = toupper(z1[i]);
+ }
+ sqlite3_result_text(context, z1, -1, sqlite3_free);
+ }
+ }
+}
+static void lowerFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
+ char *z1;
+ const char *z2;
+ int i, n;
+ if( argc<1 || SQLITE_NULL==sqlite3_value_type(argv[0]) ) return;
+ z2 = (char*)sqlite3_value_text(argv[0]);
+ n = sqlite3_value_bytes(argv[0]);
+ /* Verify that the call to _bytes() does not invalidate the _text() pointer */
+ assert( z2==(char*)sqlite3_value_text(argv[0]) );
+ if( z2 ){
+ z1 = contextMalloc(context, ((i64)n)+1);
+ if( z1 ){
+ memcpy(z1, z2, n+1);
+ for(i=0; z1[i]; i++){
+ z1[i] = tolower(z1[i]);
+ }
+ sqlite3_result_text(context, z1, -1, sqlite3_free);
+ }
+ }
+}
+
+/*
+** Implementation of the IFNULL(), NVL(), and COALESCE() functions.
+** All three do the same thing. They return the first non-NULL
+** argument.
+*/
+static void ifnullFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ int i;
+ for(i=0; i<argc; i++){
+ if( SQLITE_NULL!=sqlite3_value_type(argv[i]) ){
+ sqlite3_result_value(context, argv[i]);
+ break;
+ }
+ }
+}
+
+/*
+** Implementation of random(). Return a random integer.
+*/
+static void randomFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ sqlite_int64 r;
+ sqlite3_randomness(sizeof(r), &r);
+ if( (r<<1)==0 ) r = 0; /* Prevent 0x8000.... as the result so that we */
+ /* can always do abs() of the result */
+ sqlite3_result_int64(context, r);
+}
+
+/*
+** Implementation of randomblob(N). Return a random blob
+** that is N bytes long.
+*/
+static void randomBlob(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ int n;
+ unsigned char *p;
+ assert( argc==1 );
+ n = sqlite3_value_int(argv[0]);
+ if( n<1 ){
+ n = 1;
+ }
+ p = contextMalloc(context, n);
+ if( p ){
+ sqlite3_randomness(n, p);
+ sqlite3_result_blob(context, (char*)p, n, sqlite3_free);
+ }
+}
+
+/*
+** Implementation of the last_insert_rowid() SQL function. The return
+** value is the same as the sqlite3_last_insert_rowid() API function.
+*/
+static void last_insert_rowid(
+ sqlite3_context *context,
+ int arg,
+ sqlite3_value **argv
+){
+ sqlite3 *db = sqlite3_context_db_handle(context);
+ sqlite3_result_int64(context, sqlite3_last_insert_rowid(db));
+}
+
+/*
+** Implementation of the changes() SQL function. The return value is the
+** same as the sqlite3_changes() API function.
+*/
+static void changes(
+ sqlite3_context *context,
+ int arg,
+ sqlite3_value **argv
+){
+ sqlite3 *db = sqlite3_context_db_handle(context);
+ sqlite3_result_int(context, sqlite3_changes(db));
+}
+
+/*
+** Implementation of the total_changes() SQL function. The return value is
+** the same as the sqlite3_total_changes() API function.
+*/
+static void total_changes(
+ sqlite3_context *context,
+ int arg,
+ sqlite3_value **argv
+){
+ sqlite3 *db = sqlite3_context_db_handle(context);
+ sqlite3_result_int(context, sqlite3_total_changes(db));
+}
+
+/*
+** A structure defining how to do GLOB-style comparisons.
+*/
+struct compareInfo {
+ u8 matchAll;
+ u8 matchOne;
+ u8 matchSet;
+ u8 noCase;
+};
+
+/*
+** For LIKE and GLOB matching on EBCDIC machines, assume that every
+** character is exactly one byte in size. Also, all characters are
+** able to participate in upper-case-to-lower-case mappings in EBCDIC
+** whereas only characters less than 0x80 do in ASCII.
+*/
+#if defined(SQLITE_EBCDIC)
+# define sqlite3Utf8Read(A,B,C) (*(A++))
+# define GlogUpperToLower(A) A = sqlite3UpperToLower[A]
+#else
+# define GlogUpperToLower(A) if( A<0x80 ){ A = sqlite3UpperToLower[A]; }
+#endif
+
+static const struct compareInfo globInfo = { '*', '?', '[', 0 };
+/* The correct SQL-92 behavior is for the LIKE operator to ignore
+** case. Thus 'a' LIKE 'A' would be true. */
+static const struct compareInfo likeInfoNorm = { '%', '_', 0, 1 };
+/* If SQLITE_CASE_SENSITIVE_LIKE is defined, then the LIKE operator
+** is case sensitive causing 'a' LIKE 'A' to be false */
+static const struct compareInfo likeInfoAlt = { '%', '_', 0, 0 };
+
+/*
+** Compare two UTF-8 strings for equality where the first string can
+** potentially be a "glob" expression. Return true (1) if they
+** are the same and false (0) if they are different.
+**
+** Globbing rules:
+**
+** '*' Matches any sequence of zero or more characters.
+**
+** '?' Matches exactly one character.
+**
+** [...] Matches one character from the enclosed list of
+** characters.
+**
+** [^...] Matches one character not in the enclosed list.
+**
+** With the [...] and [^...] matching, a ']' character can be included
+** in the list by making it the first character after '[' or '^'. A
+** range of characters can be specified using '-'. Example:
+** "[a-z]" matches any single lower-case letter. To match a '-', make
+** it the last character in the list.
+**
+** This routine is usually quick, but can be N**2 in the worst case.
+**
+** Hints: to match '*' or '?', put them in "[]". Like this:
+**
+** abc[*]xyz Matches "abc*xyz" only
+*/
+static int patternCompare(
+ const u8 *zPattern, /* The glob pattern */
+ const u8 *zString, /* The string to compare against the glob */
+ const struct compareInfo *pInfo, /* Information about how to do the compare */
+ const int esc /* The escape character */
+){
+ int c, c2;
+ int invert;
+ int seen;
+ u8 matchOne = pInfo->matchOne;
+ u8 matchAll = pInfo->matchAll;
+ u8 matchSet = pInfo->matchSet;
+ u8 noCase = pInfo->noCase;
+ int prevEscape = 0; /* True if the previous character was 'escape' */
+
+ while( (c = sqlite3Utf8Read(zPattern,0,&zPattern))!=0 ){
+ if( !prevEscape && c==matchAll ){
+ while( (c=sqlite3Utf8Read(zPattern,0,&zPattern)) == matchAll
+ || c == matchOne ){
+ if( c==matchOne && sqlite3Utf8Read(zString, 0, &zString)==0 ){
+ return 0;
+ }
+ }
+ if( c==0 ){
+ return 1;
+ }else if( c==esc ){
+ c = sqlite3Utf8Read(zPattern, 0, &zPattern);
+ if( c==0 ){
+ return 0;
+ }
+ }else if( c==matchSet ){
+ assert( esc==0 ); /* This is GLOB, not LIKE */
+ assert( matchSet<0x80 ); /* '[' is a single-byte character */
+ while( *zString && patternCompare(&zPattern[-1],zString,pInfo,esc)==0 ){
+ SQLITE_SKIP_UTF8(zString);
+ }
+ return *zString!=0;
+ }
+ while( (c2 = sqlite3Utf8Read(zString,0,&zString))!=0 ){
+ if( noCase ){
+ GlogUpperToLower(c2);
+ GlogUpperToLower(c);
+ while( c2 != 0 && c2 != c ){
+ c2 = sqlite3Utf8Read(zString, 0, &zString);
+ GlogUpperToLower(c2);
+ }
+ }else{
+ while( c2 != 0 && c2 != c ){
+ c2 = sqlite3Utf8Read(zString, 0, &zString);
+ }
+ }
+ if( c2==0 ) return 0;
+ if( patternCompare(zPattern,zString,pInfo,esc) ) return 1;
+ }
+ return 0;
+ }else if( !prevEscape && c==matchOne ){
+ if( sqlite3Utf8Read(zString, 0, &zString)==0 ){
+ return 0;
+ }
+ }else if( c==matchSet ){
+ int prior_c = 0;
+ assert( esc==0 ); /* This only occurs for GLOB, not LIKE */
+ seen = 0;
+ invert = 0;
+ c = sqlite3Utf8Read(zString, 0, &zString);
+ if( c==0 ) return 0;
+ c2 = sqlite3Utf8Read(zPattern, 0, &zPattern);
+ if( c2=='^' ){
+ invert = 1;
+ c2 = sqlite3Utf8Read(zPattern, 0, &zPattern);
+ }
+ if( c2==']' ){
+ if( c==']' ) seen = 1;
+ c2 = sqlite3Utf8Read(zPattern, 0, &zPattern);
+ }
+ while( c2 && c2!=']' ){
+ if( c2=='-' && zPattern[0]!=']' && zPattern[0]!=0 && prior_c>0 ){
+ c2 = sqlite3Utf8Read(zPattern, 0, &zPattern);
+ if( c>=prior_c && c<=c2 ) seen = 1;
+ prior_c = 0;
+ }else{
+ if( c==c2 ){
+ seen = 1;
+ }
+ prior_c = c2;
+ }
+ c2 = sqlite3Utf8Read(zPattern, 0, &zPattern);
+ }
+ if( c2==0 || (seen ^ invert)==0 ){
+ return 0;
+ }
+ }else if( esc==c && !prevEscape ){
+ prevEscape = 1;
+ }else{
+ c2 = sqlite3Utf8Read(zString, 0, &zString);
+ if( noCase ){
+ GlogUpperToLower(c);
+ GlogUpperToLower(c2);
+ }
+ if( c!=c2 ){
+ return 0;
+ }
+ prevEscape = 0;
+ }
+ }
+ return *zString==0;
+}
+
+/*
+** Count the number of times that the LIKE operator (or GLOB which is
+** just a variation of LIKE) gets called. This is used for testing
+** only.
+*/
+#ifdef SQLITE_TEST
+SQLITE_API int sqlite3_like_count = 0;
+#endif
+
+
+/*
+** Implementation of the like() SQL function. This function implements
+** the build-in LIKE operator. The first argument to the function is the
+** pattern and the second argument is the string. So, the SQL statements:
+**
+** A LIKE B
+**
+** is implemented as like(B,A).
+**
+** This same function (with a different compareInfo structure) computes
+** the GLOB operator.
+*/
+static void likeFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ const unsigned char *zA, *zB;
+ int escape = 0;
+ sqlite3 *db = sqlite3_context_db_handle(context);
+
+ zB = sqlite3_value_text(argv[0]);
+ zA = sqlite3_value_text(argv[1]);
+
+ /* Limit the length of the LIKE or GLOB pattern to avoid problems
+ ** of deep recursion and N*N behavior in patternCompare().
+ */
+ if( sqlite3_value_bytes(argv[0]) >
+ db->aLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH] ){
+ sqlite3_result_error(context, "LIKE or GLOB pattern too complex", -1);
+ return;
+ }
+ assert( zB==sqlite3_value_text(argv[0]) ); /* Encoding did not change */
+
+ if( argc==3 ){
+ /* The escape character string must consist of a single UTF-8 character.
+ ** Otherwise, return an error.
+ */
+ const unsigned char *zEsc = sqlite3_value_text(argv[2]);
+ if( zEsc==0 ) return;
+ if( sqlite3Utf8CharLen((char*)zEsc, -1)!=1 ){
+ sqlite3_result_error(context,
+ "ESCAPE expression must be a single character", -1);
+ return;
+ }
+ escape = sqlite3Utf8Read(zEsc, 0, &zEsc);
+ }
+ if( zA && zB ){
+ struct compareInfo *pInfo = sqlite3_user_data(context);
+#ifdef SQLITE_TEST
+ sqlite3_like_count++;
+#endif
+
+ sqlite3_result_int(context, patternCompare(zB, zA, pInfo, escape));
+ }
+}
+
+/*
+** Implementation of the NULLIF(x,y) function. The result is the first
+** argument if the arguments are different. The result is NULL if the
+** arguments are equal to each other.
+*/
+static void nullifFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ CollSeq *pColl = sqlite3GetFuncCollSeq(context);
+ if( sqlite3MemCompare(argv[0], argv[1], pColl)!=0 ){
+ sqlite3_result_value(context, argv[0]);
+ }
+}
+
+/*
+** Implementation of the VERSION(*) function. The result is the version
+** of the SQLite library that is running.
+*/
+static void versionFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ sqlite3_result_text(context, sqlite3_version, -1, SQLITE_STATIC);
+}
+
+/* Array for converting from half-bytes (nybbles) into ASCII hex
+** digits. */
+static const char hexdigits[] = {
+ '0', '1', '2', '3', '4', '5', '6', '7',
+ '8', '9', 'A', 'B', 'C', 'D', 'E', 'F'
+};
+
+/*
+** EXPERIMENTAL - This is not an official function. The interface may
+** change. This function may disappear. Do not write code that depends
+** on this function.
+**
+** Implementation of the QUOTE() function. This function takes a single
+** argument. If the argument is numeric, the return value is the same as
+** the argument. If the argument is NULL, the return value is the string
+** "NULL". Otherwise, the argument is enclosed in single quotes with
+** single-quote escapes.
+*/
+static void quoteFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
+ if( argc<1 ) return;
+ switch( sqlite3_value_type(argv[0]) ){
+ case SQLITE_NULL: {
+ sqlite3_result_text(context, "NULL", 4, SQLITE_STATIC);
+ break;
+ }
+ case SQLITE_INTEGER:
+ case SQLITE_FLOAT: {
+ sqlite3_result_value(context, argv[0]);
+ break;
+ }
+ case SQLITE_BLOB: {
+ char *zText = 0;
+ char const *zBlob = sqlite3_value_blob(argv[0]);
+ int nBlob = sqlite3_value_bytes(argv[0]);
+ assert( zBlob==sqlite3_value_blob(argv[0]) ); /* No encoding change */
+ zText = (char *)contextMalloc(context, (2*(i64)nBlob)+4);
+ if( zText ){
+ int i;
+ for(i=0; i<nBlob; i++){
+ zText[(i*2)+2] = hexdigits[(zBlob[i]>>4)&0x0F];
+ zText[(i*2)+3] = hexdigits[(zBlob[i])&0x0F];
+ }
+ zText[(nBlob*2)+2] = '\'';
+ zText[(nBlob*2)+3] = '\0';
+ zText[0] = 'X';
+ zText[1] = '\'';
+ sqlite3_result_text(context, zText, -1, SQLITE_TRANSIENT);
+ sqlite3_free(zText);
+ }
+ break;
+ }
+ case SQLITE_TEXT: {
+ int i,j;
+ u64 n;
+ const unsigned char *zArg = sqlite3_value_text(argv[0]);
+ char *z;
+
+ if( zArg==0 ) return;
+ for(i=0, n=0; zArg[i]; i++){ if( zArg[i]=='\'' ) n++; }
+ z = contextMalloc(context, ((i64)i)+((i64)n)+3);
+ if( z ){
+ z[0] = '\'';
+ for(i=0, j=1; zArg[i]; i++){
+ z[j++] = zArg[i];
+ if( zArg[i]=='\'' ){
+ z[j++] = '\'';
+ }
+ }
+ z[j++] = '\'';
+ z[j] = 0;
+ sqlite3_result_text(context, z, j, sqlite3_free);
+ }
+ }
+ }
+}
+
+/*
+** The hex() function. Interpret the argument as a blob. Return
+** a hexadecimal rendering as text.
+*/
+static void hexFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ int i, n;
+ const unsigned char *pBlob;
+ char *zHex, *z;
+ assert( argc==1 );
+ pBlob = sqlite3_value_blob(argv[0]);
+ n = sqlite3_value_bytes(argv[0]);
+ assert( pBlob==sqlite3_value_blob(argv[0]) ); /* No encoding change */
+ z = zHex = contextMalloc(context, ((i64)n)*2 + 1);
+ if( zHex ){
+ for(i=0; i<n; i++, pBlob++){
+ unsigned char c = *pBlob;
+ *(z++) = hexdigits[(c>>4)&0xf];
+ *(z++) = hexdigits[c&0xf];
+ }
+ *z = 0;
+ sqlite3_result_text(context, zHex, n*2, sqlite3_free);
+ }
+}
+
+/*
+** The zeroblob(N) function returns a zero-filled blob of size N bytes.
+*/
+static void zeroblobFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ i64 n;
+ assert( argc==1 );
+ n = sqlite3_value_int64(argv[0]);
+ if( n>SQLITE_MAX_LENGTH ){
+ sqlite3_result_error_toobig(context);
+ }else{
+ sqlite3_result_zeroblob(context, n);
+ }
+}
+
+/*
+** The replace() function. Three arguments are all strings: call
+** them A, B, and C. The result is also a string which is derived
+** from A by replacing every occurance of B with C. The match
+** must be exact. Collating sequences are not used.
+*/
+static void replaceFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ const unsigned char *zStr; /* The input string A */
+ const unsigned char *zPattern; /* The pattern string B */
+ const unsigned char *zRep; /* The replacement string C */
+ unsigned char *zOut; /* The output */
+ int nStr; /* Size of zStr */
+ int nPattern; /* Size of zPattern */
+ int nRep; /* Size of zRep */
+ i64 nOut; /* Maximum size of zOut */
+ int loopLimit; /* Last zStr[] that might match zPattern[] */
+ int i, j; /* Loop counters */
+
+ assert( argc==3 );
+ zStr = sqlite3_value_text(argv[0]);
+ if( zStr==0 ) return;
+ nStr = sqlite3_value_bytes(argv[0]);
+ assert( zStr==sqlite3_value_text(argv[0]) ); /* No encoding change */
+ zPattern = sqlite3_value_text(argv[1]);
+ if( zPattern==0 || zPattern[0]==0 ) return;
+ nPattern = sqlite3_value_bytes(argv[1]);
+ assert( zPattern==sqlite3_value_text(argv[1]) ); /* No encoding change */
+ zRep = sqlite3_value_text(argv[2]);
+ if( zRep==0 ) return;
+ nRep = sqlite3_value_bytes(argv[2]);
+ assert( zRep==sqlite3_value_text(argv[2]) );
+ nOut = nStr + 1;
+ assert( nOut<SQLITE_MAX_LENGTH );
+ zOut = contextMalloc(context, (i64)nOut);
+ if( zOut==0 ){
+ return;
+ }
+ loopLimit = nStr - nPattern;
+ for(i=j=0; i<=loopLimit; i++){
+ if( zStr[i]!=zPattern[0] || memcmp(&zStr[i], zPattern, nPattern) ){
+ zOut[j++] = zStr[i];
+ }else{
+ u8 *zOld;
+ sqlite3 *db = sqlite3_context_db_handle(context);
+ nOut += nRep - nPattern;
+ if( nOut>=db->aLimit[SQLITE_LIMIT_LENGTH] ){
+ sqlite3_result_error_toobig(context);
+ sqlite3_free(zOut);
+ return;
+ }
+ zOld = zOut;
+ zOut = sqlite3_realloc(zOut, (int)nOut);
+ if( zOut==0 ){
+ sqlite3_result_error_nomem(context);
+ sqlite3_free(zOld);
+ return;
+ }
+ memcpy(&zOut[j], zRep, nRep);
+ j += nRep;
+ i += nPattern-1;
+ }
+ }
+ assert( j+nStr-i+1==nOut );
+ memcpy(&zOut[j], &zStr[i], nStr-i);
+ j += nStr - i;
+ assert( j<=nOut );
+ zOut[j] = 0;
+ sqlite3_result_text(context, (char*)zOut, j, sqlite3_free);
+}
+
+/*
+** Implementation of the TRIM(), LTRIM(), and RTRIM() functions.
+** The userdata is 0x1 for left trim, 0x2 for right trim, 0x3 for both.
+*/
+static void trimFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ const unsigned char *zIn; /* Input string */
+ const unsigned char *zCharSet; /* Set of characters to trim */
+ int nIn; /* Number of bytes in input */
+ int flags; /* 1: trimleft 2: trimright 3: trim */
+ int i; /* Loop counter */
+ unsigned char *aLen; /* Length of each character in zCharSet */
+ unsigned char **azChar; /* Individual characters in zCharSet */
+ int nChar; /* Number of characters in zCharSet */
+
+ if( sqlite3_value_type(argv[0])==SQLITE_NULL ){
+ return;
+ }
+ zIn = sqlite3_value_text(argv[0]);
+ if( zIn==0 ) return;
+ nIn = sqlite3_value_bytes(argv[0]);
+ assert( zIn==sqlite3_value_text(argv[0]) );
+ if( argc==1 ){
+ static const unsigned char lenOne[] = { 1 };
+ static const unsigned char *azOne[] = { (u8*)" " };
+ nChar = 1;
+ aLen = (u8*)lenOne;
+ azChar = (unsigned char **)azOne;
+ zCharSet = 0;
+ }else if( (zCharSet = sqlite3_value_text(argv[1]))==0 ){
+ return;
+ }else{
+ const unsigned char *z;
+ for(z=zCharSet, nChar=0; *z; nChar++){
+ SQLITE_SKIP_UTF8(z);
+ }
+ if( nChar>0 ){
+ azChar = contextMalloc(context, ((i64)nChar)*(sizeof(char*)+1));
+ if( azChar==0 ){
+ return;
+ }
+ aLen = (unsigned char*)&azChar[nChar];
+ for(z=zCharSet, nChar=0; *z; nChar++){
+ azChar[nChar] = (unsigned char *)z;
+ SQLITE_SKIP_UTF8(z);
+ aLen[nChar] = z - azChar[nChar];
+ }
+ }
+ }
+ if( nChar>0 ){
+ flags = (int)sqlite3_user_data(context);
+ if( flags & 1 ){
+ while( nIn>0 ){
+ int len;
+ for(i=0; i<nChar; i++){
+ len = aLen[i];
+ if( memcmp(zIn, azChar[i], len)==0 ) break;
+ }
+ if( i>=nChar ) break;
+ zIn += len;
+ nIn -= len;
+ }
+ }
+ if( flags & 2 ){
+ while( nIn>0 ){
+ int len;
+ for(i=0; i<nChar; i++){
+ len = aLen[i];
+ if( len<=nIn && memcmp(&zIn[nIn-len],azChar[i],len)==0 ) break;
+ }
+ if( i>=nChar ) break;
+ nIn -= len;
+ }
+ }
+ if( zCharSet ){
+ sqlite3_free(azChar);
+ }
+ }
+ sqlite3_result_text(context, (char*)zIn, nIn, SQLITE_TRANSIENT);
+}
+
+#ifdef SQLITE_SOUNDEX
+/*
+** Compute the soundex encoding of a word.
+*/
+static void soundexFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ char zResult[8];
+ const u8 *zIn;
+ int i, j;
+ static const unsigned char iCode[] = {
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 1, 2, 3, 0, 1, 2, 0, 0, 2, 2, 4, 5, 5, 0,
+ 1, 2, 6, 2, 3, 0, 1, 0, 2, 0, 2, 0, 0, 0, 0, 0,
+ 0, 0, 1, 2, 3, 0, 1, 2, 0, 0, 2, 2, 4, 5, 5, 0,
+ 1, 2, 6, 2, 3, 0, 1, 0, 2, 0, 2, 0, 0, 0, 0, 0,
+ };
+ assert( argc==1 );
+ zIn = (u8*)sqlite3_value_text(argv[0]);
+ if( zIn==0 ) zIn = (u8*)"";
+ for(i=0; zIn[i] && !isalpha(zIn[i]); i++){}
+ if( zIn[i] ){
+ u8 prevcode = iCode[zIn[i]&0x7f];
+ zResult[0] = toupper(zIn[i]);
+ for(j=1; j<4 && zIn[i]; i++){
+ int code = iCode[zIn[i]&0x7f];
+ if( code>0 ){
+ if( code!=prevcode ){
+ prevcode = code;
+ zResult[j++] = code + '0';
+ }
+ }else{
+ prevcode = 0;
+ }
+ }
+ while( j<4 ){
+ zResult[j++] = '0';
+ }
+ zResult[j] = 0;
+ sqlite3_result_text(context, zResult, 4, SQLITE_TRANSIENT);
+ }else{
+ sqlite3_result_text(context, "?000", 4, SQLITE_STATIC);
+ }
+}
+#endif
+
+#ifndef SQLITE_OMIT_LOAD_EXTENSION
+/*
+** A function that loads a shared-library extension then returns NULL.
+*/
+static void loadExt(sqlite3_context *context, int argc, sqlite3_value **argv){
+ const char *zFile = (const char *)sqlite3_value_text(argv[0]);
+ const char *zProc;
+ sqlite3 *db = sqlite3_context_db_handle(context);
+ char *zErrMsg = 0;
+
+ if( argc==2 ){
+ zProc = (const char *)sqlite3_value_text(argv[1]);
+ }else{
+ zProc = 0;
+ }
+ if( zFile && sqlite3_load_extension(db, zFile, zProc, &zErrMsg) ){
+ sqlite3_result_error(context, zErrMsg, -1);
+ sqlite3_free(zErrMsg);
+ }
+}
+#endif
+
+
+/*
+** An instance of the following structure holds the context of a
+** sum() or avg() aggregate computation.
+*/
+typedef struct SumCtx SumCtx;
+struct SumCtx {
+ double rSum; /* Floating point sum */
+ i64 iSum; /* Integer sum */
+ i64 cnt; /* Number of elements summed */
+ u8 overflow; /* True if integer overflow seen */
+ u8 approx; /* True if non-integer value was input to the sum */
+};
+
+/*
+** Routines used to compute the sum, average, and total.
+**
+** The SUM() function follows the (broken) SQL standard which means
+** that it returns NULL if it sums over no inputs. TOTAL returns
+** 0.0 in that case. In addition, TOTAL always returns a float where
+** SUM might return an integer if it never encounters a floating point
+** value. TOTAL never fails, but SUM might through an exception if
+** it overflows an integer.
+*/
+static void sumStep(sqlite3_context *context, int argc, sqlite3_value **argv){
+ SumCtx *p;
+ int type;
+ assert( argc==1 );
+ p = sqlite3_aggregate_context(context, sizeof(*p));
+ type = sqlite3_value_numeric_type(argv[0]);
+ if( p && type!=SQLITE_NULL ){
+ p->cnt++;
+ if( type==SQLITE_INTEGER ){
+ i64 v = sqlite3_value_int64(argv[0]);
+ p->rSum += v;
+ if( (p->approx|p->overflow)==0 ){
+ i64 iNewSum = p->iSum + v;
+ int s1 = p->iSum >> (sizeof(i64)*8-1);
+ int s2 = v >> (sizeof(i64)*8-1);
+ int s3 = iNewSum >> (sizeof(i64)*8-1);
+ p->overflow = (s1&s2&~s3) | (~s1&~s2&s3);
+ p->iSum = iNewSum;
+ }
+ }else{
+ p->rSum += sqlite3_value_double(argv[0]);
+ p->approx = 1;
+ }
+ }
+}
+static void sumFinalize(sqlite3_context *context){
+ SumCtx *p;
+ p = sqlite3_aggregate_context(context, 0);
+ if( p && p->cnt>0 ){
+ if( p->overflow ){
+ sqlite3_result_error(context,"integer overflow",-1);
+ }else if( p->approx ){
+ sqlite3_result_double(context, p->rSum);
+ }else{
+ sqlite3_result_int64(context, p->iSum);
+ }
+ }
+}
+static void avgFinalize(sqlite3_context *context){
+ SumCtx *p;
+ p = sqlite3_aggregate_context(context, 0);
+ if( p && p->cnt>0 ){
+ sqlite3_result_double(context, p->rSum/(double)p->cnt);
+ }
+}
+static void totalFinalize(sqlite3_context *context){
+ SumCtx *p;
+ p = sqlite3_aggregate_context(context, 0);
+ sqlite3_result_double(context, p ? p->rSum : 0.0);
+}
+
+/*
+** The following structure keeps track of state information for the
+** count() aggregate function.
+*/
+typedef struct CountCtx CountCtx;
+struct CountCtx {
+ i64 n;
+};
+
+/*
+** Routines to implement the count() aggregate function.
+*/
+static void countStep(sqlite3_context *context, int argc, sqlite3_value **argv){
+ CountCtx *p;
+ p = sqlite3_aggregate_context(context, sizeof(*p));
+ if( (argc==0 || SQLITE_NULL!=sqlite3_value_type(argv[0])) && p ){
+ p->n++;
+ }
+}
+static void countFinalize(sqlite3_context *context){
+ CountCtx *p;
+ p = sqlite3_aggregate_context(context, 0);
+ sqlite3_result_int64(context, p ? p->n : 0);
+}
+
+/*
+** Routines to implement min() and max() aggregate functions.
+*/
+static void minmaxStep(sqlite3_context *context, int argc, sqlite3_value **argv){
+ Mem *pArg = (Mem *)argv[0];
+ Mem *pBest;
+
+ if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
+ pBest = (Mem *)sqlite3_aggregate_context(context, sizeof(*pBest));
+ if( !pBest ) return;
+
+ if( pBest->flags ){
+ int max;
+ int cmp;
+ CollSeq *pColl = sqlite3GetFuncCollSeq(context);
+ /* This step function is used for both the min() and max() aggregates,
+ ** the only difference between the two being that the sense of the
+ ** comparison is inverted. For the max() aggregate, the
+ ** sqlite3_user_data() function returns (void *)-1. For min() it
+ ** returns (void *)db, where db is the sqlite3* database pointer.
+ ** Therefore the next statement sets variable 'max' to 1 for the max()
+ ** aggregate, or 0 for min().
+ */
+ max = sqlite3_user_data(context)!=0;
+ cmp = sqlite3MemCompare(pBest, pArg, pColl);
+ if( (max && cmp<0) || (!max && cmp>0) ){
+ sqlite3VdbeMemCopy(pBest, pArg);
+ }
+ }else{
+ sqlite3VdbeMemCopy(pBest, pArg);
+ }
+}
+static void minMaxFinalize(sqlite3_context *context){
+ sqlite3_value *pRes;
+ pRes = (sqlite3_value *)sqlite3_aggregate_context(context, 0);
+ if( pRes ){
+ if( pRes->flags ){
+ sqlite3_result_value(context, pRes);
+ }
+ sqlite3VdbeMemRelease(pRes);
+ }
+}
+
+/*
+** group_concat(EXPR, ?SEPARATOR?)
+*/
+static void groupConcatStep(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ const char *zVal;
+ StrAccum *pAccum;
+ const char *zSep;
+ int nVal, nSep;
+ if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
+ pAccum = (StrAccum*)sqlite3_aggregate_context(context, sizeof(*pAccum));
+
+ if( pAccum ){
+ sqlite3 *db = sqlite3_context_db_handle(context);
+ pAccum->useMalloc = 1;
+ pAccum->mxAlloc = db->aLimit[SQLITE_LIMIT_LENGTH];
+ if( pAccum->nChar ){
+ if( argc==2 ){
+ zSep = (char*)sqlite3_value_text(argv[1]);
+ nSep = sqlite3_value_bytes(argv[1]);
+ }else{
+ zSep = ",";
+ nSep = 1;
+ }
+ sqlite3StrAccumAppend(pAccum, zSep, nSep);
+ }
+ zVal = (char*)sqlite3_value_text(argv[0]);
+ nVal = sqlite3_value_bytes(argv[0]);
+ sqlite3StrAccumAppend(pAccum, zVal, nVal);
+ }
+}
+static void groupConcatFinalize(sqlite3_context *context){
+ StrAccum *pAccum;
+ pAccum = sqlite3_aggregate_context(context, 0);
+ if( pAccum ){
+ if( pAccum->tooBig ){
+ sqlite3_result_error_toobig(context);
+ }else if( pAccum->mallocFailed ){
+ sqlite3_result_error_nomem(context);
+ }else{
+ sqlite3_result_text(context, sqlite3StrAccumFinish(pAccum), -1,
+ sqlite3_free);
+ }
+ }
+}
+
+/*
+** This function registered all of the above C functions as SQL
+** functions. This should be the only routine in this file with
+** external linkage.
+*/
+SQLITE_PRIVATE void sqlite3RegisterBuiltinFunctions(sqlite3 *db){
+ static const struct {
+ char *zName;
+ signed char nArg;
+ u8 argType; /* 1: 0, 2: 1, 3: 2,... N: N-1. */
+ u8 eTextRep; /* 1: UTF-16. 0: UTF-8 */
+ u8 needCollSeq;
+ void (*xFunc)(sqlite3_context*,int,sqlite3_value **);
+ } aFuncs[] = {
+ { "min", -1, 0, SQLITE_UTF8, 1, minmaxFunc },
+ { "min", 0, 0, SQLITE_UTF8, 1, 0 },
+ { "max", -1, 1, SQLITE_UTF8, 1, minmaxFunc },
+ { "max", 0, 1, SQLITE_UTF8, 1, 0 },
+ { "typeof", 1, 0, SQLITE_UTF8, 0, typeofFunc },
+ { "length", 1, 0, SQLITE_UTF8, 0, lengthFunc },
+ { "substr", 2, 0, SQLITE_UTF8, 0, substrFunc },
+ { "substr", 3, 0, SQLITE_UTF8, 0, substrFunc },
+ { "abs", 1, 0, SQLITE_UTF8, 0, absFunc },
+ { "round", 1, 0, SQLITE_UTF8, 0, roundFunc },
+ { "round", 2, 0, SQLITE_UTF8, 0, roundFunc },
+ { "upper", 1, 0, SQLITE_UTF8, 0, upperFunc },
+ { "lower", 1, 0, SQLITE_UTF8, 0, lowerFunc },
+ { "coalesce", -1, 0, SQLITE_UTF8, 0, ifnullFunc },
+ { "coalesce", 0, 0, SQLITE_UTF8, 0, 0 },
+ { "coalesce", 1, 0, SQLITE_UTF8, 0, 0 },
+ { "hex", 1, 0, SQLITE_UTF8, 0, hexFunc },
+ { "ifnull", 2, 0, SQLITE_UTF8, 1, ifnullFunc },
+ { "random", -1, 0, SQLITE_UTF8, 0, randomFunc },
+ { "randomblob", 1, 0, SQLITE_UTF8, 0, randomBlob },
+ { "nullif", 2, 0, SQLITE_UTF8, 1, nullifFunc },
+ { "sqlite_version", 0, 0, SQLITE_UTF8, 0, versionFunc},
+ { "quote", 1, 0, SQLITE_UTF8, 0, quoteFunc },
+ { "last_insert_rowid", 0, 0, SQLITE_UTF8, 0, last_insert_rowid },
+ { "changes", 0, 0, SQLITE_UTF8, 0, changes },
+ { "total_changes", 0, 0, SQLITE_UTF8, 0, total_changes },
+ { "replace", 3, 0, SQLITE_UTF8, 0, replaceFunc },
+ { "ltrim", 1, 1, SQLITE_UTF8, 0, trimFunc },
+ { "ltrim", 2, 1, SQLITE_UTF8, 0, trimFunc },
+ { "rtrim", 1, 2, SQLITE_UTF8, 0, trimFunc },
+ { "rtrim", 2, 2, SQLITE_UTF8, 0, trimFunc },
+ { "trim", 1, 3, SQLITE_UTF8, 0, trimFunc },
+ { "trim", 2, 3, SQLITE_UTF8, 0, trimFunc },
+ { "zeroblob", 1, 0, SQLITE_UTF8, 0, zeroblobFunc },
+#ifdef SQLITE_SOUNDEX
+ { "soundex", 1, 0, SQLITE_UTF8, 0, soundexFunc},
+#endif
+#ifndef SQLITE_OMIT_LOAD_EXTENSION
+ { "load_extension", 1, 0, SQLITE_UTF8, 0, loadExt },
+ { "load_extension", 2, 0, SQLITE_UTF8, 0, loadExt },
+#endif
+ };
+ static const struct {
+ char *zName;
+ signed char nArg;
+ u8 argType;
+ u8 needCollSeq;
+ void (*xStep)(sqlite3_context*,int,sqlite3_value**);
+ void (*xFinalize)(sqlite3_context*);
+ } aAggs[] = {
+ { "min", 1, 0, 1, minmaxStep, minMaxFinalize },
+ { "max", 1, 1, 1, minmaxStep, minMaxFinalize },
+ { "sum", 1, 0, 0, sumStep, sumFinalize },
+ { "total", 1, 0, 0, sumStep, totalFinalize },
+ { "avg", 1, 0, 0, sumStep, avgFinalize },
+ { "count", 0, 0, 0, countStep, countFinalize },
+ { "count", 1, 0, 0, countStep, countFinalize },
+ { "group_concat", 1, 0, 0, groupConcatStep, groupConcatFinalize },
+ { "group_concat", 2, 0, 0, groupConcatStep, groupConcatFinalize },
+ };
+ int i;
+
+ for(i=0; i<sizeof(aFuncs)/sizeof(aFuncs[0]); i++){
+ void *pArg;
+ u8 argType = aFuncs[i].argType;
+ pArg = (void*)(int)argType;
+ sqlite3CreateFunc(db, aFuncs[i].zName, aFuncs[i].nArg,
+ aFuncs[i].eTextRep, pArg, aFuncs[i].xFunc, 0, 0);
+ if( aFuncs[i].needCollSeq ){
+ FuncDef *pFunc = sqlite3FindFunction(db, aFuncs[i].zName,
+ strlen(aFuncs[i].zName), aFuncs[i].nArg, aFuncs[i].eTextRep, 0);
+ if( pFunc && aFuncs[i].needCollSeq ){
+ pFunc->needCollSeq = 1;
+ }
+ }
+ }
+#ifndef SQLITE_OMIT_ALTERTABLE
+ sqlite3AlterFunctions(db);
+#endif
+#ifndef SQLITE_OMIT_PARSER
+ sqlite3AttachFunctions(db);
+#endif
+ for(i=0; i<sizeof(aAggs)/sizeof(aAggs[0]); i++){
+ void *pArg = (void*)(int)aAggs[i].argType;
+ sqlite3CreateFunc(db, aAggs[i].zName, aAggs[i].nArg, SQLITE_UTF8,
+ pArg, 0, aAggs[i].xStep, aAggs[i].xFinalize);
+ if( aAggs[i].needCollSeq ){
+ FuncDef *pFunc = sqlite3FindFunction( db, aAggs[i].zName,
+ strlen(aAggs[i].zName), aAggs[i].nArg, SQLITE_UTF8, 0);
+ if( pFunc && aAggs[i].needCollSeq ){
+ pFunc->needCollSeq = 1;
+ }
+ }
+ }
+ sqlite3RegisterDateTimeFunctions(db);
+ if( !db->mallocFailed ){
+ int rc = sqlite3_overload_function(db, "MATCH", 2);
+ assert( rc==SQLITE_NOMEM || rc==SQLITE_OK );
+ if( rc==SQLITE_NOMEM ){
+ db->mallocFailed = 1;
+ }
+ }
+#ifdef SQLITE_SSE
+ (void)sqlite3SseFunctions(db);
+#endif
+#ifdef SQLITE_CASE_SENSITIVE_LIKE
+ sqlite3RegisterLikeFunctions(db, 1);
+#else
+ sqlite3RegisterLikeFunctions(db, 0);
+#endif
+}
+
+/*
+** Set the LIKEOPT flag on the 2-argument function with the given name.
+*/
+static void setLikeOptFlag(sqlite3 *db, const char *zName, int flagVal){
+ FuncDef *pDef;
+ pDef = sqlite3FindFunction(db, zName, strlen(zName), 2, SQLITE_UTF8, 0);
+ if( pDef ){
+ pDef->flags = flagVal;
+ }
+}
+
+/*
+** Register the built-in LIKE and GLOB functions. The caseSensitive
+** parameter determines whether or not the LIKE operator is case
+** sensitive. GLOB is always case sensitive.
+*/
+SQLITE_PRIVATE void sqlite3RegisterLikeFunctions(sqlite3 *db, int caseSensitive){
+ struct compareInfo *pInfo;
+ if( caseSensitive ){
+ pInfo = (struct compareInfo*)&likeInfoAlt;
+ }else{
+ pInfo = (struct compareInfo*)&likeInfoNorm;
+ }
+ sqlite3CreateFunc(db, "like", 2, SQLITE_UTF8, pInfo, likeFunc, 0, 0);
+ sqlite3CreateFunc(db, "like", 3, SQLITE_UTF8, pInfo, likeFunc, 0, 0);
+ sqlite3CreateFunc(db, "glob", 2, SQLITE_UTF8,
+ (struct compareInfo*)&globInfo, likeFunc, 0,0);
+ setLikeOptFlag(db, "glob", SQLITE_FUNC_LIKE | SQLITE_FUNC_CASE);
+ setLikeOptFlag(db, "like",
+ caseSensitive ? (SQLITE_FUNC_LIKE | SQLITE_FUNC_CASE) : SQLITE_FUNC_LIKE);
+}
+
+/*
+** pExpr points to an expression which implements a function. If
+** it is appropriate to apply the LIKE optimization to that function
+** then set aWc[0] through aWc[2] to the wildcard characters and
+** return TRUE. If the function is not a LIKE-style function then
+** return FALSE.
+*/
+SQLITE_PRIVATE int sqlite3IsLikeFunction(sqlite3 *db, Expr *pExpr, int *pIsNocase, char *aWc){
+ FuncDef *pDef;
+ if( pExpr->op!=TK_FUNCTION || !pExpr->pList ){
+ return 0;
+ }
+ if( pExpr->pList->nExpr!=2 ){
+ return 0;
+ }
+ pDef = sqlite3FindFunction(db, (char*)pExpr->token.z, pExpr->token.n, 2,
+ SQLITE_UTF8, 0);
+ if( pDef==0 || (pDef->flags & SQLITE_FUNC_LIKE)==0 ){
+ return 0;
+ }
+
+ /* The memcpy() statement assumes that the wildcard characters are
+ ** the first three statements in the compareInfo structure. The
+ ** asserts() that follow verify that assumption
+ */
+ memcpy(aWc, pDef->pUserData, 3);
+ assert( (char*)&likeInfoAlt == (char*)&likeInfoAlt.matchAll );
+ assert( &((char*)&likeInfoAlt)[1] == (char*)&likeInfoAlt.matchOne );
+ assert( &((char*)&likeInfoAlt)[2] == (char*)&likeInfoAlt.matchSet );
+ *pIsNocase = (pDef->flags & SQLITE_FUNC_CASE)==0;
+ return 1;
+}
+
+/************** End of func.c ************************************************/
+/************** Begin file insert.c ******************************************/
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains C code routines that are called by the parser
+** to handle INSERT statements in SQLite.
+**
+** $Id: insert.c,v 1.238 2008/04/28 18:46:43 drh Exp $
+*/
+
+/*
+** Set P4 of the most recently inserted opcode to a column affinity
+** string for index pIdx. A column affinity string has one character
+** for each column in the table, according to the affinity of the column:
+**
+** Character Column affinity
+** ------------------------------
+** 'a' TEXT
+** 'b' NONE
+** 'c' NUMERIC
+** 'd' INTEGER
+** 'e' REAL
+**
+** An extra 'b' is appended to the end of the string to cover the
+** rowid that appears as the last column in every index.
+*/
+SQLITE_PRIVATE void sqlite3IndexAffinityStr(Vdbe *v, Index *pIdx){
+ if( !pIdx->zColAff ){
+ /* The first time a column affinity string for a particular index is
+ ** required, it is allocated and populated here. It is then stored as
+ ** a member of the Index structure for subsequent use.
+ **
+ ** The column affinity string will eventually be deleted by
+ ** sqliteDeleteIndex() when the Index structure itself is cleaned
+ ** up.
+ */
+ int n;
+ Table *pTab = pIdx->pTable;
+ sqlite3 *db = sqlite3VdbeDb(v);
+ pIdx->zColAff = (char *)sqlite3DbMallocRaw(db, pIdx->nColumn+2);
+ if( !pIdx->zColAff ){
+ return;
+ }
+ for(n=0; n<pIdx->nColumn; n++){
+ pIdx->zColAff[n] = pTab->aCol[pIdx->aiColumn[n]].affinity;
+ }
+ pIdx->zColAff[n++] = SQLITE_AFF_NONE;
+ pIdx->zColAff[n] = 0;
+ }
+
+ sqlite3VdbeChangeP4(v, -1, pIdx->zColAff, 0);
+}
+
+/*
+** Set P4 of the most recently inserted opcode to a column affinity
+** string for table pTab. A column affinity string has one character
+** for each column indexed by the index, according to the affinity of the
+** column:
+**
+** Character Column affinity
+** ------------------------------
+** 'a' TEXT
+** 'b' NONE
+** 'c' NUMERIC
+** 'd' INTEGER
+** 'e' REAL
+*/
+SQLITE_PRIVATE void sqlite3TableAffinityStr(Vdbe *v, Table *pTab){
+ /* The first time a column affinity string for a particular table
+ ** is required, it is allocated and populated here. It is then
+ ** stored as a member of the Table structure for subsequent use.
+ **
+ ** The column affinity string will eventually be deleted by
+ ** sqlite3DeleteTable() when the Table structure itself is cleaned up.
+ */
+ if( !pTab->zColAff ){
+ char *zColAff;
+ int i;
+ sqlite3 *db = sqlite3VdbeDb(v);
+
+ zColAff = (char *)sqlite3DbMallocRaw(db, pTab->nCol+1);
+ if( !zColAff ){
+ return;
+ }
+
+ for(i=0; i<pTab->nCol; i++){
+ zColAff[i] = pTab->aCol[i].affinity;
+ }
+ zColAff[pTab->nCol] = '\0';
+
+ pTab->zColAff = zColAff;
+ }
+
+ sqlite3VdbeChangeP4(v, -1, pTab->zColAff, 0);
+}
+
+/*
+** Return non-zero if the table pTab in database iDb or any of its indices
+** have been opened at any point in the VDBE program beginning at location
+** iStartAddr throught the end of the program. This is used to see if
+** a statement of the form "INSERT INTO <iDb, pTab> SELECT ..." can
+** run without using temporary table for the results of the SELECT.
+*/
+static int readsTable(Vdbe *v, int iStartAddr, int iDb, Table *pTab){
+ int i;
+ int iEnd = sqlite3VdbeCurrentAddr(v);
+ for(i=iStartAddr; i<iEnd; i++){
+ VdbeOp *pOp = sqlite3VdbeGetOp(v, i);
+ assert( pOp!=0 );
+ if( pOp->opcode==OP_OpenRead && pOp->p3==iDb ){
+ Index *pIndex;
+ int tnum = pOp->p2;
+ if( tnum==pTab->tnum ){
+ return 1;
+ }
+ for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
+ if( tnum==pIndex->tnum ){
+ return 1;
+ }
+ }
+ }
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ if( pOp->opcode==OP_VOpen && pOp->p4.pVtab==pTab->pVtab ){
+ assert( pOp->p4.pVtab!=0 );
+ assert( pOp->p4type==P4_VTAB );
+ return 1;
+ }
+#endif
+ }
+ return 0;
+}
+
+#ifndef SQLITE_OMIT_AUTOINCREMENT
+/*
+** Write out code to initialize the autoincrement logic. This code
+** looks up the current autoincrement value in the sqlite_sequence
+** table and stores that value in a register. Code generated by
+** autoIncStep() will keep that register holding the largest
+** rowid value. Code generated by autoIncEnd() will write the new
+** largest value of the counter back into the sqlite_sequence table.
+**
+** This routine returns the index of the mem[] cell that contains
+** the maximum rowid counter.
+**
+** Three consecutive registers are allocated by this routine. The
+** first two hold the name of the target table and the maximum rowid
+** inserted into the target table, respectively.
+** The third holds the rowid in sqlite_sequence where we will
+** write back the revised maximum rowid. This routine returns the
+** index of the second of these three registers.
+*/
+static int autoIncBegin(
+ Parse *pParse, /* Parsing context */
+ int iDb, /* Index of the database holding pTab */
+ Table *pTab /* The table we are writing to */
+){
+ int memId = 0; /* Register holding maximum rowid */
+ if( pTab->autoInc ){
+ Vdbe *v = pParse->pVdbe;
+ Db *pDb = &pParse->db->aDb[iDb];
+ int iCur = pParse->nTab;
+ int addr; /* Address of the top of the loop */
+ assert( v );
+ pParse->nMem++; /* Holds name of table */
+ memId = ++pParse->nMem;
+ pParse->nMem++;
+ sqlite3OpenTable(pParse, iCur, iDb, pDb->pSchema->pSeqTab, OP_OpenRead);
+ addr = sqlite3VdbeCurrentAddr(v);
+ sqlite3VdbeAddOp4(v, OP_String8, 0, memId-1, 0, pTab->zName, 0);
+ sqlite3VdbeAddOp2(v, OP_Rewind, iCur, addr+8);
+ sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, memId);
+ sqlite3VdbeAddOp3(v, OP_Ne, memId-1, addr+7, memId);
+ sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL);
+ sqlite3VdbeAddOp2(v, OP_Rowid, iCur, memId+1);
+ sqlite3VdbeAddOp3(v, OP_Column, iCur, 1, memId);
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, addr+8);
+ sqlite3VdbeAddOp2(v, OP_Next, iCur, addr+2);
+ sqlite3VdbeAddOp2(v, OP_Close, iCur, 0);
+ }
+ return memId;
+}
+
+/*
+** Update the maximum rowid for an autoincrement calculation.
+**
+** This routine should be called when the top of the stack holds a
+** new rowid that is about to be inserted. If that new rowid is
+** larger than the maximum rowid in the memId memory cell, then the
+** memory cell is updated. The stack is unchanged.
+*/
+static void autoIncStep(Parse *pParse, int memId, int regRowid){
+ if( memId>0 ){
+ sqlite3VdbeAddOp2(pParse->pVdbe, OP_MemMax, memId, regRowid);
+ }
+}
+
+/*
+** After doing one or more inserts, the maximum rowid is stored
+** in reg[memId]. Generate code to write this value back into the
+** the sqlite_sequence table.
+*/
+static void autoIncEnd(
+ Parse *pParse, /* The parsing context */
+ int iDb, /* Index of the database holding pTab */
+ Table *pTab, /* Table we are inserting into */
+ int memId /* Memory cell holding the maximum rowid */
+){
+ if( pTab->autoInc ){
+ int iCur = pParse->nTab;
+ Vdbe *v = pParse->pVdbe;
+ Db *pDb = &pParse->db->aDb[iDb];
+ int j1;
+ int iRec = ++pParse->nMem; /* Memory cell used for record */
+
+ assert( v );
+ sqlite3OpenTable(pParse, iCur, iDb, pDb->pSchema->pSeqTab, OP_OpenWrite);
+ j1 = sqlite3VdbeAddOp1(v, OP_NotNull, memId+1);
+ sqlite3VdbeAddOp2(v, OP_NewRowid, iCur, memId+1);
+ sqlite3VdbeJumpHere(v, j1);
+ sqlite3VdbeAddOp3(v, OP_MakeRecord, memId-1, 2, iRec);
+ sqlite3VdbeAddOp3(v, OP_Insert, iCur, iRec, memId+1);
+ sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
+ sqlite3VdbeAddOp1(v, OP_Close, iCur);
+ }
+}
+#else
+/*
+** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines
+** above are all no-ops
+*/
+# define autoIncBegin(A,B,C) (0)
+# define autoIncStep(A,B,C)
+# define autoIncEnd(A,B,C,D)
+#endif /* SQLITE_OMIT_AUTOINCREMENT */
+
+
+/* Forward declaration */
+static int xferOptimization(
+ Parse *pParse, /* Parser context */
+ Table *pDest, /* The table we are inserting into */
+ Select *pSelect, /* A SELECT statement to use as the data source */
+ int onError, /* How to handle constraint errors */
+ int iDbDest /* The database of pDest */
+);
+
+/*
+** This routine is call to handle SQL of the following forms:
+**
+** insert into TABLE (IDLIST) values(EXPRLIST)
+** insert into TABLE (IDLIST) select
+**
+** The IDLIST following the table name is always optional. If omitted,
+** then a list of all columns for the table is substituted. The IDLIST
+** appears in the pColumn parameter. pColumn is NULL if IDLIST is omitted.
+**
+** The pList parameter holds EXPRLIST in the first form of the INSERT
+** statement above, and pSelect is NULL. For the second form, pList is
+** NULL and pSelect is a pointer to the select statement used to generate
+** data for the insert.
+**
+** The code generated follows one of four templates. For a simple
+** select with data coming from a VALUES clause, the code executes
+** once straight down through. The template looks like this:
+**
+** open write cursor to <table> and its indices
+** puts VALUES clause expressions onto the stack
+** write the resulting record into <table>
+** cleanup
+**
+** The three remaining templates assume the statement is of the form
+**
+** INSERT INTO <table> SELECT ...
+**
+** If the SELECT clause is of the restricted form "SELECT * FROM <table2>" -
+** in other words if the SELECT pulls all columns from a single table
+** and there is no WHERE or LIMIT or GROUP BY or ORDER BY clauses, and
+** if <table2> and <table1> are distinct tables but have identical
+** schemas, including all the same indices, then a special optimization
+** is invoked that copies raw records from <table2> over to <table1>.
+** See the xferOptimization() function for the implementation of this
+** template. This is the second template.
+**
+** open a write cursor to <table>
+** open read cursor on <table2>
+** transfer all records in <table2> over to <table>
+** close cursors
+** foreach index on <table>
+** open a write cursor on the <table> index
+** open a read cursor on the corresponding <table2> index
+** transfer all records from the read to the write cursors
+** close cursors
+** end foreach
+**
+** The third template is for when the second template does not apply
+** and the SELECT clause does not read from <table> at any time.
+** The generated code follows this template:
+**
+** goto B
+** A: setup for the SELECT
+** loop over the rows in the SELECT
+** gosub C
+** end loop
+** cleanup after the SELECT
+** goto D
+** B: open write cursor to <table> and its indices
+** goto A
+** C: insert the select result into <table>
+** return
+** D: cleanup
+**
+** The fourth template is used if the insert statement takes its
+** values from a SELECT but the data is being inserted into a table
+** that is also read as part of the SELECT. In the third form,
+** we have to use a intermediate table to store the results of
+** the select. The template is like this:
+**
+** goto B
+** A: setup for the SELECT
+** loop over the tables in the SELECT
+** gosub C
+** end loop
+** cleanup after the SELECT
+** goto D
+** C: insert the select result into the intermediate table
+** return
+** B: open a cursor to an intermediate table
+** goto A
+** D: open write cursor to <table> and its indices
+** loop over the intermediate table
+** transfer values form intermediate table into <table>
+** end the loop
+** cleanup
+*/
+SQLITE_PRIVATE void sqlite3Insert(
+ Parse *pParse, /* Parser context */
+ SrcList *pTabList, /* Name of table into which we are inserting */
+ ExprList *pList, /* List of values to be inserted */
+ Select *pSelect, /* A SELECT statement to use as the data source */
+ IdList *pColumn, /* Column names corresponding to IDLIST. */
+ int onError /* How to handle constraint errors */
+){
+ sqlite3 *db; /* The main database structure */
+ Table *pTab; /* The table to insert into. aka TABLE */
+ char *zTab; /* Name of the table into which we are inserting */
+ const char *zDb; /* Name of the database holding this table */
+ int i, j, idx; /* Loop counters */
+ Vdbe *v; /* Generate code into this virtual machine */
+ Index *pIdx; /* For looping over indices of the table */
+ int nColumn; /* Number of columns in the data */
+ int nHidden = 0; /* Number of hidden columns if TABLE is virtual */
+ int baseCur = 0; /* VDBE Cursor number for pTab */
+ int keyColumn = -1; /* Column that is the INTEGER PRIMARY KEY */
+ int endOfLoop; /* Label for the end of the insertion loop */
+ int useTempTable = 0; /* Store SELECT results in intermediate table */
+ int srcTab = 0; /* Data comes from this temporary cursor if >=0 */
+ int iCont=0,iBreak=0; /* Beginning and end of the loop over srcTab */
+ int iSelectLoop = 0; /* Address of code that implements the SELECT */
+ int iCleanup = 0; /* Address of the cleanup code */
+ int iInsertBlock = 0; /* Address of the subroutine used to insert data */
+ int newIdx = -1; /* Cursor for the NEW pseudo-table */
+ int iDb; /* Index of database holding TABLE */
+ Db *pDb; /* The database containing table being inserted into */
+ int appendFlag = 0; /* True if the insert is likely to be an append */
+
+ /* Register allocations */
+ int regFromSelect; /* Base register for data coming from SELECT */
+ int regAutoinc = 0; /* Register holding the AUTOINCREMENT counter */
+ int regRowCount = 0; /* Memory cell used for the row counter */
+ int regIns; /* Block of regs holding rowid+data being inserted */
+ int regRowid; /* registers holding insert rowid */
+ int regData; /* register holding first column to insert */
+ int regRecord; /* Holds the assemblied row record */
+ int *aRegIdx = 0; /* One register allocated to each index */
+
+
+#ifndef SQLITE_OMIT_TRIGGER
+ int isView; /* True if attempting to insert into a view */
+ int triggers_exist = 0; /* True if there are FOR EACH ROW triggers */
+#endif
+
+ db = pParse->db;
+ if( pParse->nErr || db->mallocFailed ){
+ goto insert_cleanup;
+ }
+
+ /* Locate the table into which we will be inserting new information.
+ */
+ assert( pTabList->nSrc==1 );
+ zTab = pTabList->a[0].zName;
+ if( zTab==0 ) goto insert_cleanup;
+ pTab = sqlite3SrcListLookup(pParse, pTabList);
+ if( pTab==0 ){
+ goto insert_cleanup;
+ }
+ iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
+ assert( iDb<db->nDb );
+ pDb = &db->aDb[iDb];
+ zDb = pDb->zName;
+ if( sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0, zDb) ){
+ goto insert_cleanup;
+ }
+
+ /* Figure out if we have any triggers and if the table being
+ ** inserted into is a view
+ */
+#ifndef SQLITE_OMIT_TRIGGER
+ triggers_exist = sqlite3TriggersExist(pParse, pTab, TK_INSERT, 0);
+ isView = pTab->pSelect!=0;
+#else
+# define triggers_exist 0
+# define isView 0
+#endif
+#ifdef SQLITE_OMIT_VIEW
+# undef isView
+# define isView 0
+#endif
+
+ /* Ensure that:
+ * (a) the table is not read-only,
+ * (b) that if it is a view then ON INSERT triggers exist
+ */
+ if( sqlite3IsReadOnly(pParse, pTab, triggers_exist) ){
+ goto insert_cleanup;
+ }
+ assert( pTab!=0 );
+
+ /* If pTab is really a view, make sure it has been initialized.
+ ** ViewGetColumnNames() is a no-op if pTab is not a view (or virtual
+ ** module table).
+ */
+ if( sqlite3ViewGetColumnNames(pParse, pTab) ){
+ goto insert_cleanup;
+ }
+
+ /* Allocate a VDBE
+ */
+ v = sqlite3GetVdbe(pParse);
+ if( v==0 ) goto insert_cleanup;
+ if( pParse->nested==0 ) sqlite3VdbeCountChanges(v);
+ sqlite3BeginWriteOperation(pParse, pSelect || triggers_exist, iDb);
+
+ /* if there are row triggers, allocate a temp table for new.* references. */
+ if( triggers_exist ){
+ newIdx = pParse->nTab++;
+ }
+
+#ifndef SQLITE_OMIT_XFER_OPT
+ /* If the statement is of the form
+ **
+ ** INSERT INTO <table1> SELECT * FROM <table2>;
+ **
+ ** Then special optimizations can be applied that make the transfer
+ ** very fast and which reduce fragmentation of indices.
+ */
+ if( pColumn==0 && xferOptimization(pParse, pTab, pSelect, onError, iDb) ){
+ assert( !triggers_exist );
+ assert( pList==0 );
+ goto insert_cleanup;
+ }
+#endif /* SQLITE_OMIT_XFER_OPT */
+
+ /* If this is an AUTOINCREMENT table, look up the sequence number in the
+ ** sqlite_sequence table and store it in memory cell regAutoinc.
+ */
+ regAutoinc = autoIncBegin(pParse, iDb, pTab);
+
+ /* Figure out how many columns of data are supplied. If the data
+ ** is coming from a SELECT statement, then this step also generates
+ ** all the code to implement the SELECT statement and invoke a subroutine
+ ** to process each row of the result. (Template 2.) If the SELECT
+ ** statement uses the the table that is being inserted into, then the
+ ** subroutine is also coded here. That subroutine stores the SELECT
+ ** results in a temporary table. (Template 3.)
+ */
+ if( pSelect ){
+ /* Data is coming from a SELECT. Generate code to implement that SELECT
+ */
+ SelectDest dest;
+ int rc, iInitCode;
+
+ iInitCode = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0);
+ iSelectLoop = sqlite3VdbeCurrentAddr(v);
+ iInsertBlock = sqlite3VdbeMakeLabel(v);
+ sqlite3SelectDestInit(&dest, SRT_Subroutine, iInsertBlock);
+
+ /* Resolve the expressions in the SELECT statement and execute it. */
+ rc = sqlite3Select(pParse, pSelect, &dest, 0, 0, 0, 0);
+ if( rc || pParse->nErr || db->mallocFailed ){
+ goto insert_cleanup;
+ }
+
+ regFromSelect = dest.iMem;
+ iCleanup = sqlite3VdbeMakeLabel(v);
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, iCleanup);
+ assert( pSelect->pEList );
+ nColumn = pSelect->pEList->nExpr;
+
+ /* Set useTempTable to TRUE if the result of the SELECT statement
+ ** should be written into a temporary table. Set to FALSE if each
+ ** row of the SELECT can be written directly into the result table.
+ **
+ ** A temp table must be used if the table being updated is also one
+ ** of the tables being read by the SELECT statement. Also use a
+ ** temp table in the case of row triggers.
+ */
+ if( triggers_exist || readsTable(v, iSelectLoop, iDb, pTab) ){
+ useTempTable = 1;
+ }
+
+ if( useTempTable ){
+ /* Generate the subroutine that SELECT calls to process each row of
+ ** the result. Store the result in a temporary table
+ */
+ int regRec, regRowid;
+
+ srcTab = pParse->nTab++;
+ regRec = sqlite3GetTempReg(pParse);
+ regRowid = sqlite3GetTempReg(pParse);
+ sqlite3VdbeResolveLabel(v, iInsertBlock);
+ sqlite3VdbeAddOp3(v, OP_MakeRecord, regFromSelect, nColumn, regRec);
+ sqlite3VdbeAddOp2(v, OP_NewRowid, srcTab, regRowid);
+ sqlite3VdbeAddOp3(v, OP_Insert, srcTab, regRec, regRowid);
+ sqlite3VdbeAddOp2(v, OP_Return, 0, 0);
+ sqlite3ReleaseTempReg(pParse, regRec);
+ sqlite3ReleaseTempReg(pParse, regRowid);
+
+ /* The following code runs first because the GOTO at the very top
+ ** of the program jumps to it. Create the temporary table, then jump
+ ** back up and execute the SELECT code above.
+ */
+ sqlite3VdbeJumpHere(v, iInitCode);
+ sqlite3VdbeAddOp2(v, OP_OpenEphemeral, srcTab, nColumn);
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, iSelectLoop);
+ sqlite3VdbeResolveLabel(v, iCleanup);
+ }else{
+ sqlite3VdbeJumpHere(v, iInitCode);
+ }
+ }else{
+ /* This is the case if the data for the INSERT is coming from a VALUES
+ ** clause
+ */
+ NameContext sNC;
+ memset(&sNC, 0, sizeof(sNC));
+ sNC.pParse = pParse;
+ srcTab = -1;
+ assert( useTempTable==0 );
+ nColumn = pList ? pList->nExpr : 0;
+ for(i=0; i<nColumn; i++){
+ if( sqlite3ExprResolveNames(&sNC, pList->a[i].pExpr) ){
+ goto insert_cleanup;
+ }
+ }
+ }
+
+ /* Make sure the number of columns in the source data matches the number
+ ** of columns to be inserted into the table.
+ */
+ if( IsVirtual(pTab) ){
+ for(i=0; i<pTab->nCol; i++){
+ nHidden += (IsHiddenColumn(&pTab->aCol[i]) ? 1 : 0);
+ }
+ }
+ if( pColumn==0 && nColumn && nColumn!=(pTab->nCol-nHidden) ){
+ sqlite3ErrorMsg(pParse,
+ "table %S has %d columns but %d values were supplied",
+ pTabList, 0, pTab->nCol, nColumn);
+ goto insert_cleanup;
+ }
+ if( pColumn!=0 && nColumn!=pColumn->nId ){
+ sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId);
+ goto insert_cleanup;
+ }
+
+ /* If the INSERT statement included an IDLIST term, then make sure
+ ** all elements of the IDLIST really are columns of the table and
+ ** remember the column indices.
+ **
+ ** If the table has an INTEGER PRIMARY KEY column and that column
+ ** is named in the IDLIST, then record in the keyColumn variable
+ ** the index into IDLIST of the primary key column. keyColumn is
+ ** the index of the primary key as it appears in IDLIST, not as
+ ** is appears in the original table. (The index of the primary
+ ** key in the original table is pTab->iPKey.)
+ */
+ if( pColumn ){
+ for(i=0; i<pColumn->nId; i++){
+ pColumn->a[i].idx = -1;
+ }
+ for(i=0; i<pColumn->nId; i++){
+ for(j=0; j<pTab->nCol; j++){
+ if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zName)==0 ){
+ pColumn->a[i].idx = j;
+ if( j==pTab->iPKey ){
+ keyColumn = i;
+ }
+ break;
+ }
+ }
+ if( j>=pTab->nCol ){
+ if( sqlite3IsRowid(pColumn->a[i].zName) ){
+ keyColumn = i;
+ }else{
+ sqlite3ErrorMsg(pParse, "table %S has no column named %s",
+ pTabList, 0, pColumn->a[i].zName);
+ pParse->nErr++;
+ goto insert_cleanup;
+ }
+ }
+ }
+ }
+
+ /* If there is no IDLIST term but the table has an integer primary
+ ** key, the set the keyColumn variable to the primary key column index
+ ** in the original table definition.
+ */
+ if( pColumn==0 && nColumn>0 ){
+ keyColumn = pTab->iPKey;
+ }
+
+ /* Open the temp table for FOR EACH ROW triggers
+ */
+ if( triggers_exist ){
+ sqlite3VdbeAddOp2(v, OP_SetNumColumns, 0, pTab->nCol);
+ sqlite3VdbeAddOp2(v, OP_OpenPseudo, newIdx, 0);
+ }
+
+ /* Initialize the count of rows to be inserted
+ */
+ if( db->flags & SQLITE_CountRows ){
+ regRowCount = ++pParse->nMem;
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount);
+ }
+
+ /* If this is not a view, open the table and and all indices */
+ if( !isView ){
+ int nIdx;
+ int i;
+
+ baseCur = pParse->nTab;
+ nIdx = sqlite3OpenTableAndIndices(pParse, pTab, baseCur, OP_OpenWrite);
+ aRegIdx = sqlite3DbMallocRaw(db, sizeof(int)*(nIdx+1));
+ if( aRegIdx==0 ){
+ goto insert_cleanup;
+ }
+ for(i=0; i<nIdx; i++){
+ aRegIdx[i] = ++pParse->nMem;
+ }
+ }
+
+ /* If the data source is a temporary table, then we have to create
+ ** a loop because there might be multiple rows of data. If the data
+ ** source is a subroutine call from the SELECT statement, then we need
+ ** to launch the SELECT statement processing.
+ */
+ if( useTempTable ){
+ iBreak = sqlite3VdbeMakeLabel(v);
+ sqlite3VdbeAddOp2(v, OP_Rewind, srcTab, iBreak);
+ iCont = sqlite3VdbeCurrentAddr(v);
+ }else if( pSelect ){
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, iSelectLoop);
+ sqlite3VdbeResolveLabel(v, iInsertBlock);
+ }
+
+ /* Allocate registers for holding the rowid of the new row,
+ ** the content of the new row, and the assemblied row record.
+ */
+ regRecord = ++pParse->nMem;
+ regRowid = regIns = pParse->nMem+1;
+ pParse->nMem += pTab->nCol + 1;
+ if( IsVirtual(pTab) ){
+ regRowid++;
+ pParse->nMem++;
+ }
+ regData = regRowid+1;
+
+ /* Run the BEFORE and INSTEAD OF triggers, if there are any
+ */
+ endOfLoop = sqlite3VdbeMakeLabel(v);
+ if( triggers_exist & TRIGGER_BEFORE ){
+ int regRowid;
+ int regCols;
+ int regRec;
+
+ /* build the NEW.* reference row. Note that if there is an INTEGER
+ ** PRIMARY KEY into which a NULL is being inserted, that NULL will be
+ ** translated into a unique ID for the row. But on a BEFORE trigger,
+ ** we do not know what the unique ID will be (because the insert has
+ ** not happened yet) so we substitute a rowid of -1
+ */
+ regRowid = sqlite3GetTempReg(pParse);
+ if( keyColumn<0 ){
+ sqlite3VdbeAddOp2(v, OP_Integer, -1, regRowid);
+ }else if( useTempTable ){
+ sqlite3VdbeAddOp3(v, OP_Column, srcTab, keyColumn, regRowid);
+ }else{
+ int j1;
+ assert( pSelect==0 ); /* Otherwise useTempTable is true */
+ sqlite3ExprCode(pParse, pList->a[keyColumn].pExpr, regRowid);
+ j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid);
+ sqlite3VdbeAddOp2(v, OP_Integer, -1, regRowid);
+ sqlite3VdbeJumpHere(v, j1);
+ sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid);
+ }
+
+ /* Cannot have triggers on a virtual table. If it were possible,
+ ** this block would have to account for hidden column.
+ */
+ assert(!IsVirtual(pTab));
+
+ /* Create the new column data
+ */
+ regCols = sqlite3GetTempRange(pParse, pTab->nCol);
+ for(i=0; i<pTab->nCol; i++){
+ if( pColumn==0 ){
+ j = i;
+ }else{
+ for(j=0; j<pColumn->nId; j++){
+ if( pColumn->a[j].idx==i ) break;
+ }
+ }
+ if( pColumn && j>=pColumn->nId ){
+ sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regCols+i);
+ }else if( useTempTable ){
+ sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, regCols+i);
+ }else{
+ assert( pSelect==0 ); /* Otherwise useTempTable is true */
+ sqlite3ExprCodeAndCache(pParse, pList->a[j].pExpr, regCols+i);
+ }
+ }
+ regRec = sqlite3GetTempReg(pParse);
+ sqlite3VdbeAddOp3(v, OP_MakeRecord, regCols, pTab->nCol, regRec);
+
+ /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger,
+ ** do not attempt any conversions before assembling the record.
+ ** If this is a real table, attempt conversions as required by the
+ ** table column affinities.
+ */
+ if( !isView ){
+ sqlite3TableAffinityStr(v, pTab);
+ }
+ sqlite3VdbeAddOp3(v, OP_Insert, newIdx, regRec, regRowid);
+ sqlite3ReleaseTempReg(pParse, regRec);
+ sqlite3ReleaseTempReg(pParse, regRowid);
+ sqlite3ReleaseTempRange(pParse, regCols, pTab->nCol);
+
+ /* Fire BEFORE or INSTEAD OF triggers */
+ if( sqlite3CodeRowTrigger(pParse, TK_INSERT, 0, TRIGGER_BEFORE, pTab,
+ newIdx, -1, onError, endOfLoop, 0, 0) ){
+ goto insert_cleanup;
+ }
+ }
+
+ /* Push the record number for the new entry onto the stack. The
+ ** record number is a randomly generate integer created by NewRowid
+ ** except when the table has an INTEGER PRIMARY KEY column, in which
+ ** case the record number is the same as that column.
+ */
+ if( !isView ){
+ if( IsVirtual(pTab) ){
+ /* The row that the VUpdate opcode will delete: none */
+ sqlite3VdbeAddOp2(v, OP_Null, 0, regIns);
+ }
+ if( keyColumn>=0 ){
+ if( useTempTable ){
+ sqlite3VdbeAddOp3(v, OP_Column, srcTab, keyColumn, regRowid);
+ }else if( pSelect ){
+ sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+keyColumn, regRowid);
+ }else{
+ VdbeOp *pOp;
+ sqlite3ExprCode(pParse, pList->a[keyColumn].pExpr, regRowid);
+ pOp = sqlite3VdbeGetOp(v, sqlite3VdbeCurrentAddr(v) - 1);
+ if( pOp && pOp->opcode==OP_Null ){
+ appendFlag = 1;
+ pOp->opcode = OP_NewRowid;
+ pOp->p1 = baseCur;
+ pOp->p2 = regRowid;
+ pOp->p3 = regAutoinc;
+ }
+ }
+ /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid
+ ** to generate a unique primary key value.
+ */
+ if( !appendFlag ){
+ int j1;
+ j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid);
+ sqlite3VdbeAddOp3(v, OP_NewRowid, baseCur, regRowid, regAutoinc);
+ sqlite3VdbeJumpHere(v, j1);
+ sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid);
+ }
+ }else if( IsVirtual(pTab) ){
+ sqlite3VdbeAddOp2(v, OP_Null, 0, regRowid);
+ }else{
+ sqlite3VdbeAddOp3(v, OP_NewRowid, baseCur, regRowid, regAutoinc);
+ appendFlag = 1;
+ }
+ autoIncStep(pParse, regAutoinc, regRowid);
+
+ /* Push onto the stack, data for all columns of the new entry, beginning
+ ** with the first column.
+ */
+ nHidden = 0;
+ for(i=0; i<pTab->nCol; i++){
+ int iRegStore = regRowid+1+i;
+ if( i==pTab->iPKey ){
+ /* The value of the INTEGER PRIMARY KEY column is always a NULL.
+ ** Whenever this column is read, the record number will be substituted
+ ** in its place. So will fill this column with a NULL to avoid
+ ** taking up data space with information that will never be used. */
+ sqlite3VdbeAddOp2(v, OP_Null, 0, iRegStore);
+ continue;
+ }
+ if( pColumn==0 ){
+ if( IsHiddenColumn(&pTab->aCol[i]) ){
+ assert( IsVirtual(pTab) );
+ j = -1;
+ nHidden++;
+ }else{
+ j = i - nHidden;
+ }
+ }else{
+ for(j=0; j<pColumn->nId; j++){
+ if( pColumn->a[j].idx==i ) break;
+ }
+ }
+ if( j<0 || nColumn==0 || (pColumn && j>=pColumn->nId) ){
+ sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, iRegStore);
+ }else if( useTempTable ){
+ sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, iRegStore);
+ }else if( pSelect ){
+ sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+j, iRegStore);
+ }else{
+ sqlite3ExprCode(pParse, pList->a[j].pExpr, iRegStore);
+ }
+ }
+
+ /* Generate code to check constraints and generate index keys and
+ ** do the insertion.
+ */
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ if( IsVirtual(pTab) ){
+ sqlite3VtabMakeWritable(pParse, pTab);
+ sqlite3VdbeAddOp4(v, OP_VUpdate, 1, pTab->nCol+2, regIns,
+ (const char*)pTab->pVtab, P4_VTAB);
+ }else
+#endif
+ {
+ sqlite3GenerateConstraintChecks(
+ pParse,
+ pTab,
+ baseCur,
+ regIns,
+ aRegIdx,
+ keyColumn>=0,
+ 0,
+ onError,
+ endOfLoop
+ );
+ sqlite3CompleteInsertion(
+ pParse,
+ pTab,
+ baseCur,
+ regIns,
+ aRegIdx,
+ 0,
+ 0,
+ (triggers_exist & TRIGGER_AFTER)!=0 ? newIdx : -1,
+ appendFlag
+ );
+ }
+ }
+
+ /* Update the count of rows that are inserted
+ */
+ if( (db->flags & SQLITE_CountRows)!=0 ){
+ sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1);
+ }
+
+ if( triggers_exist ){
+ /* Code AFTER triggers */
+ if( sqlite3CodeRowTrigger(pParse, TK_INSERT, 0, TRIGGER_AFTER, pTab,
+ newIdx, -1, onError, endOfLoop, 0, 0) ){
+ goto insert_cleanup;
+ }
+ }
+
+ /* The bottom of the loop, if the data source is a SELECT statement
+ */
+ sqlite3VdbeResolveLabel(v, endOfLoop);
+ if( useTempTable ){
+ sqlite3VdbeAddOp2(v, OP_Next, srcTab, iCont);
+ sqlite3VdbeResolveLabel(v, iBreak);
+ sqlite3VdbeAddOp2(v, OP_Close, srcTab, 0);
+ }else if( pSelect ){
+ sqlite3VdbeAddOp2(v, OP_Return, 0, 0);
+ sqlite3VdbeResolveLabel(v, iCleanup);
+ }
+
+ if( !IsVirtual(pTab) && !isView ){
+ /* Close all tables opened */
+ sqlite3VdbeAddOp2(v, OP_Close, baseCur, 0);
+ for(idx=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, idx++){
+ sqlite3VdbeAddOp2(v, OP_Close, idx+baseCur, 0);
+ }
+ }
+
+ /* Update the sqlite_sequence table by storing the content of the
+ ** counter value in memory regAutoinc back into the sqlite_sequence
+ ** table.
+ */
+ autoIncEnd(pParse, iDb, pTab, regAutoinc);
+
+ /*
+ ** Return the number of rows inserted. If this routine is
+ ** generating code because of a call to sqlite3NestedParse(), do not
+ ** invoke the callback function.
+ */
+ if( db->flags & SQLITE_CountRows && pParse->nested==0 && !pParse->trigStack ){
+ sqlite3VdbeAddOp2(v, OP_ResultRow, regRowCount, 1);
+ sqlite3VdbeSetNumCols(v, 1);
+ sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows inserted", P4_STATIC);
+ }
+
+insert_cleanup:
+ sqlite3SrcListDelete(pTabList);
+ sqlite3ExprListDelete(pList);
+ sqlite3SelectDelete(pSelect);
+ sqlite3IdListDelete(pColumn);
+ sqlite3_free(aRegIdx);
+}
+
+/*
+** Generate code to do constraint checks prior to an INSERT or an UPDATE.
+**
+** The input is a range of consecutive registers as follows:
+**
+** 1. The rowid of the row to be updated before the update. This
+** value is omitted unless we are doing an UPDATE that involves a
+** change to the record number or writing to a virtual table.
+**
+** 2. The rowid of the row after the update.
+**
+** 3. The data in the first column of the entry after the update.
+**
+** i. Data from middle columns...
+**
+** N. The data in the last column of the entry after the update.
+**
+** The regRowid parameter is the index of the register containing (2).
+**
+** The old rowid shown as entry (1) above is omitted unless both isUpdate
+** and rowidChng are 1. isUpdate is true for UPDATEs and false for
+** INSERTs. RowidChng means that the new rowid is explicitly specified by
+** the update or insert statement. If rowidChng is false, it means that
+** the rowid is computed automatically in an insert or that the rowid value
+** is not modified by the update.
+**
+** The code generated by this routine store new index entries into
+** registers identified by aRegIdx[]. No index entry is created for
+** indices where aRegIdx[i]==0. The order of indices in aRegIdx[] is
+** the same as the order of indices on the linked list of indices
+** attached to the table.
+**
+** This routine also generates code to check constraints. NOT NULL,
+** CHECK, and UNIQUE constraints are all checked. If a constraint fails,
+** then the appropriate action is performed. There are five possible
+** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE.
+**
+** Constraint type Action What Happens
+** --------------- ---------- ----------------------------------------
+** any ROLLBACK The current transaction is rolled back and
+** sqlite3_exec() returns immediately with a
+** return code of SQLITE_CONSTRAINT.
+**
+** any ABORT Back out changes from the current command
+** only (do not do a complete rollback) then
+** cause sqlite3_exec() to return immediately
+** with SQLITE_CONSTRAINT.
+**
+** any FAIL Sqlite_exec() returns immediately with a
+** return code of SQLITE_CONSTRAINT. The
+** transaction is not rolled back and any
+** prior changes are retained.
+**
+** any IGNORE The record number and data is popped from
+** the stack and there is an immediate jump
+** to label ignoreDest.
+**
+** NOT NULL REPLACE The NULL value is replace by the default
+** value for that column. If the default value
+** is NULL, the action is the same as ABORT.
+**
+** UNIQUE REPLACE The other row that conflicts with the row
+** being inserted is removed.
+**
+** CHECK REPLACE Illegal. The results in an exception.
+**
+** Which action to take is determined by the overrideError parameter.
+** Or if overrideError==OE_Default, then the pParse->onError parameter
+** is used. Or if pParse->onError==OE_Default then the onError value
+** for the constraint is used.
+**
+** The calling routine must open a read/write cursor for pTab with
+** cursor number "baseCur". All indices of pTab must also have open
+** read/write cursors with cursor number baseCur+i for the i-th cursor.
+** Except, if there is no possibility of a REPLACE action then
+** cursors do not need to be open for indices where aRegIdx[i]==0.
+*/
+SQLITE_PRIVATE void sqlite3GenerateConstraintChecks(
+ Parse *pParse, /* The parser context */
+ Table *pTab, /* the table into which we are inserting */
+ int baseCur, /* Index of a read/write cursor pointing at pTab */
+ int regRowid, /* Index of the range of input registers */
+ int *aRegIdx, /* Register used by each index. 0 for unused indices */
+ int rowidChng, /* True if the rowid might collide with existing entry */
+ int isUpdate, /* True for UPDATE, False for INSERT */
+ int overrideError, /* Override onError to this if not OE_Default */
+ int ignoreDest /* Jump to this label on an OE_Ignore resolution */
+){
+ int i;
+ Vdbe *v;
+ int nCol;
+ int onError;
+ int j1, j2, j3; /* Addresses of jump instructions */
+ int regData; /* Register containing first data column */
+ int iCur;
+ Index *pIdx;
+ int seenReplace = 0;
+ int hasTwoRowids = (isUpdate && rowidChng);
+
+ v = sqlite3GetVdbe(pParse);
+ assert( v!=0 );
+ assert( pTab->pSelect==0 ); /* This table is not a VIEW */
+ nCol = pTab->nCol;
+ regData = regRowid + 1;
+
+
+ /* Test all NOT NULL constraints.
+ */
+ for(i=0; i<nCol; i++){
+ if( i==pTab->iPKey ){
+ continue;
+ }
+ onError = pTab->aCol[i].notNull;
+ if( onError==OE_None ) continue;
+ if( overrideError!=OE_Default ){
+ onError = overrideError;
+ }else if( onError==OE_Default ){
+ onError = OE_Abort;
+ }
+ if( onError==OE_Replace && pTab->aCol[i].pDflt==0 ){
+ onError = OE_Abort;
+ }
+ j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regData+i);
+ assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
+ || onError==OE_Ignore || onError==OE_Replace );
+ switch( onError ){
+ case OE_Rollback:
+ case OE_Abort:
+ case OE_Fail: {
+ char *zMsg = 0;
+ sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_CONSTRAINT, onError);
+ sqlite3SetString(&zMsg, pTab->zName, ".", pTab->aCol[i].zName,
+ " may not be NULL", (char*)0);
+ sqlite3VdbeChangeP4(v, -1, zMsg, P4_DYNAMIC);
+ break;
+ }
+ case OE_Ignore: {
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest);
+ break;
+ }
+ case OE_Replace: {
+ sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regData+i);
+ break;
+ }
+ }
+ sqlite3VdbeJumpHere(v, j1);
+ }
+
+ /* Test all CHECK constraints
+ */
+#ifndef SQLITE_OMIT_CHECK
+ if( pTab->pCheck && (pParse->db->flags & SQLITE_IgnoreChecks)==0 ){
+ int allOk = sqlite3VdbeMakeLabel(v);
+ pParse->ckBase = regData;
+ sqlite3ExprIfTrue(pParse, pTab->pCheck, allOk, SQLITE_JUMPIFNULL);
+ onError = overrideError!=OE_Default ? overrideError : OE_Abort;
+ if( onError==OE_Ignore ){
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest);
+ }else{
+ sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_CONSTRAINT, onError);
+ }
+ sqlite3VdbeResolveLabel(v, allOk);
+ }
+#endif /* !defined(SQLITE_OMIT_CHECK) */
+
+ /* If we have an INTEGER PRIMARY KEY, make sure the primary key
+ ** of the new record does not previously exist. Except, if this
+ ** is an UPDATE and the primary key is not changing, that is OK.
+ */
+ if( rowidChng ){
+ onError = pTab->keyConf;
+ if( overrideError!=OE_Default ){
+ onError = overrideError;
+ }else if( onError==OE_Default ){
+ onError = OE_Abort;
+ }
+
+ if( onError!=OE_Replace || pTab->pIndex ){
+ if( isUpdate ){
+ j2 = sqlite3VdbeAddOp3(v, OP_Eq, regRowid, 0, regRowid-1);
+ }
+ j3 = sqlite3VdbeAddOp3(v, OP_NotExists, baseCur, 0, regRowid);
+ switch( onError ){
+ default: {
+ onError = OE_Abort;
+ /* Fall thru into the next case */
+ }
+ case OE_Rollback:
+ case OE_Abort:
+ case OE_Fail: {
+ sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, onError, 0,
+ "PRIMARY KEY must be unique", P4_STATIC);
+ break;
+ }
+ case OE_Replace: {
+ sqlite3GenerateRowIndexDelete(pParse, pTab, baseCur, 0);
+ seenReplace = 1;
+ break;
+ }
+ case OE_Ignore: {
+ assert( seenReplace==0 );
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest);
+ break;
+ }
+ }
+ sqlite3VdbeJumpHere(v, j3);
+ if( isUpdate ){
+ sqlite3VdbeJumpHere(v, j2);
+ }
+ }
+ }
+
+ /* Test all UNIQUE constraints by creating entries for each UNIQUE
+ ** index and making sure that duplicate entries do not already exist.
+ ** Add the new records to the indices as we go.
+ */
+ for(iCur=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, iCur++){
+ int regIdx;
+ int regR;
+
+ if( aRegIdx[iCur]==0 ) continue; /* Skip unused indices */
+
+ /* Create a key for accessing the index entry */
+ regIdx = sqlite3GetTempRange(pParse, pIdx->nColumn+1);
+ for(i=0; i<pIdx->nColumn; i++){
+ int idx = pIdx->aiColumn[i];
+ if( idx==pTab->iPKey ){
+ sqlite3VdbeAddOp2(v, OP_SCopy, regRowid, regIdx+i);
+ }else{
+ sqlite3VdbeAddOp2(v, OP_SCopy, regData+idx, regIdx+i);
+ }
+ }
+ sqlite3VdbeAddOp2(v, OP_SCopy, regRowid, regIdx+i);
+ sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn+1, aRegIdx[iCur]);
+ sqlite3IndexAffinityStr(v, pIdx);
+ sqlite3ExprCacheAffinityChange(pParse, regIdx, pIdx->nColumn+1);
+ sqlite3ReleaseTempRange(pParse, regIdx, pIdx->nColumn+1);
+
+ /* Find out what action to take in case there is an indexing conflict */
+ onError = pIdx->onError;
+ if( onError==OE_None ) continue; /* pIdx is not a UNIQUE index */
+ if( overrideError!=OE_Default ){
+ onError = overrideError;
+ }else if( onError==OE_Default ){
+ onError = OE_Abort;
+ }
+ if( seenReplace ){
+ if( onError==OE_Ignore ) onError = OE_Replace;
+ else if( onError==OE_Fail ) onError = OE_Abort;
+ }
+
+
+ /* Check to see if the new index entry will be unique */
+ j2 = sqlite3VdbeAddOp3(v, OP_IsNull, regIdx, 0, pIdx->nColumn);
+ regR = sqlite3GetTempReg(pParse);
+ sqlite3VdbeAddOp2(v, OP_SCopy, regRowid-hasTwoRowids, regR);
+ j3 = sqlite3VdbeAddOp4(v, OP_IsUnique, baseCur+iCur+1, 0,
+ regR, (char*)aRegIdx[iCur],
+ P4_INT32);
+
+ /* Generate code that executes if the new index entry is not unique */
+ assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
+ || onError==OE_Ignore || onError==OE_Replace );
+ switch( onError ){
+ case OE_Rollback:
+ case OE_Abort:
+ case OE_Fail: {
+ int j, n1, n2;
+ char zErrMsg[200];
+ sqlite3_snprintf(sizeof(zErrMsg), zErrMsg,
+ pIdx->nColumn>1 ? "columns " : "column ");
+ n1 = strlen(zErrMsg);
+ for(j=0; j<pIdx->nColumn && n1<sizeof(zErrMsg)-30; j++){
+ char *zCol = pTab->aCol[pIdx->aiColumn[j]].zName;
+ n2 = strlen(zCol);
+ if( j>0 ){
+ sqlite3_snprintf(sizeof(zErrMsg)-n1, &zErrMsg[n1], ", ");
+ n1 += 2;
+ }
+ if( n1+n2>sizeof(zErrMsg)-30 ){
+ sqlite3_snprintf(sizeof(zErrMsg)-n1, &zErrMsg[n1], "...");
+ n1 += 3;
+ break;
+ }else{
+ sqlite3_snprintf(sizeof(zErrMsg)-n1, &zErrMsg[n1], "%s", zCol);
+ n1 += n2;
+ }
+ }
+ sqlite3_snprintf(sizeof(zErrMsg)-n1, &zErrMsg[n1],
+ pIdx->nColumn>1 ? " are not unique" : " is not unique");
+ sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, onError, 0, zErrMsg,0);
+ break;
+ }
+ case OE_Ignore: {
+ assert( seenReplace==0 );
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest);
+ break;
+ }
+ case OE_Replace: {
+ sqlite3GenerateRowDelete(pParse, pTab, baseCur, regR, 0);
+ seenReplace = 1;
+ break;
+ }
+ }
+ sqlite3VdbeJumpHere(v, j2);
+ sqlite3VdbeJumpHere(v, j3);
+ sqlite3ReleaseTempReg(pParse, regR);
+ }
+}
+
+/*
+** This routine generates code to finish the INSERT or UPDATE operation
+** that was started by a prior call to sqlite3GenerateConstraintChecks.
+** A consecutive range of registers starting at regRowid contains the
+** rowid and the content to be inserted.
+**
+** The arguments to this routine should be the same as the first six
+** arguments to sqlite3GenerateConstraintChecks.
+*/
+SQLITE_PRIVATE void sqlite3CompleteInsertion(
+ Parse *pParse, /* The parser context */
+ Table *pTab, /* the table into which we are inserting */
+ int baseCur, /* Index of a read/write cursor pointing at pTab */
+ int regRowid, /* Range of content */
+ int *aRegIdx, /* Register used by each index. 0 for unused indices */
+ int rowidChng, /* True if the record number will change */
+ int isUpdate, /* True for UPDATE, False for INSERT */
+ int newIdx, /* Index of NEW table for triggers. -1 if none */
+ int appendBias /* True if this is likely to be an append */
+){
+ int i;
+ Vdbe *v;
+ int nIdx;
+ Index *pIdx;
+ int pik_flags;
+ int regData;
+ int regRec;
+
+ v = sqlite3GetVdbe(pParse);
+ assert( v!=0 );
+ assert( pTab->pSelect==0 ); /* This table is not a VIEW */
+ for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){}
+ for(i=nIdx-1; i>=0; i--){
+ if( aRegIdx[i]==0 ) continue;
+ sqlite3VdbeAddOp2(v, OP_IdxInsert, baseCur+i+1, aRegIdx[i]);
+ }
+ regData = regRowid + 1;
+ regRec = sqlite3GetTempReg(pParse);
+ sqlite3VdbeAddOp3(v, OP_MakeRecord, regData, pTab->nCol, regRec);
+ sqlite3TableAffinityStr(v, pTab);
+ sqlite3ExprCacheAffinityChange(pParse, regData, pTab->nCol);
+#ifndef SQLITE_OMIT_TRIGGER
+ if( newIdx>=0 ){
+ sqlite3VdbeAddOp3(v, OP_Insert, newIdx, regRec, regRowid);
+ }
+#endif
+ if( pParse->nested ){
+ pik_flags = 0;
+ }else{
+ pik_flags = OPFLAG_NCHANGE;
+ pik_flags |= (isUpdate?OPFLAG_ISUPDATE:OPFLAG_LASTROWID);
+ }
+ if( appendBias ){
+ pik_flags |= OPFLAG_APPEND;
+ }
+ sqlite3VdbeAddOp3(v, OP_Insert, baseCur, regRec, regRowid);
+ if( !pParse->nested ){
+ sqlite3VdbeChangeP4(v, -1, pTab->zName, P4_STATIC);
+ }
+ sqlite3VdbeChangeP5(v, pik_flags);
+}
+
+/*
+** Generate code that will open cursors for a table and for all
+** indices of that table. The "baseCur" parameter is the cursor number used
+** for the table. Indices are opened on subsequent cursors.
+**
+** Return the number of indices on the table.
+*/
+SQLITE_PRIVATE int sqlite3OpenTableAndIndices(
+ Parse *pParse, /* Parsing context */
+ Table *pTab, /* Table to be opened */
+ int baseCur, /* Cursor number assigned to the table */
+ int op /* OP_OpenRead or OP_OpenWrite */
+){
+ int i;
+ int iDb;
+ Index *pIdx;
+ Vdbe *v;
+
+ if( IsVirtual(pTab) ) return 0;
+ iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
+ v = sqlite3GetVdbe(pParse);
+ assert( v!=0 );
+ sqlite3OpenTable(pParse, baseCur, iDb, pTab, op);
+ for(i=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
+ KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx);
+ assert( pIdx->pSchema==pTab->pSchema );
+ sqlite3VdbeAddOp4(v, op, i+baseCur, pIdx->tnum, iDb,
+ (char*)pKey, P4_KEYINFO_HANDOFF);
+ VdbeComment((v, "%s", pIdx->zName));
+ }
+ if( pParse->nTab<=baseCur+i ){
+ pParse->nTab = baseCur+i;
+ }
+ return i-1;
+}
+
+
+#ifdef SQLITE_TEST
+/*
+** The following global variable is incremented whenever the
+** transfer optimization is used. This is used for testing
+** purposes only - to make sure the transfer optimization really
+** is happening when it is suppose to.
+*/
+SQLITE_API int sqlite3_xferopt_count;
+#endif /* SQLITE_TEST */
+
+
+#ifndef SQLITE_OMIT_XFER_OPT
+/*
+** Check to collation names to see if they are compatible.
+*/
+static int xferCompatibleCollation(const char *z1, const char *z2){
+ if( z1==0 ){
+ return z2==0;
+ }
+ if( z2==0 ){
+ return 0;
+ }
+ return sqlite3StrICmp(z1, z2)==0;
+}
+
+
+/*
+** Check to see if index pSrc is compatible as a source of data
+** for index pDest in an insert transfer optimization. The rules
+** for a compatible index:
+**
+** * The index is over the same set of columns
+** * The same DESC and ASC markings occurs on all columns
+** * The same onError processing (OE_Abort, OE_Ignore, etc)
+** * The same collating sequence on each column
+*/
+static int xferCompatibleIndex(Index *pDest, Index *pSrc){
+ int i;
+ assert( pDest && pSrc );
+ assert( pDest->pTable!=pSrc->pTable );
+ if( pDest->nColumn!=pSrc->nColumn ){
+ return 0; /* Different number of columns */
+ }
+ if( pDest->onError!=pSrc->onError ){
+ return 0; /* Different conflict resolution strategies */
+ }
+ for(i=0; i<pSrc->nColumn; i++){
+ if( pSrc->aiColumn[i]!=pDest->aiColumn[i] ){
+ return 0; /* Different columns indexed */
+ }
+ if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){
+ return 0; /* Different sort orders */
+ }
+ if( pSrc->azColl[i]!=pDest->azColl[i] ){
+ return 0; /* Different collating sequences */
+ }
+ }
+
+ /* If no test above fails then the indices must be compatible */
+ return 1;
+}
+
+/*
+** Attempt the transfer optimization on INSERTs of the form
+**
+** INSERT INTO tab1 SELECT * FROM tab2;
+**
+** This optimization is only attempted if
+**
+** (1) tab1 and tab2 have identical schemas including all the
+** same indices and constraints
+**
+** (2) tab1 and tab2 are different tables
+**
+** (3) There must be no triggers on tab1
+**
+** (4) The result set of the SELECT statement is "*"
+**
+** (5) The SELECT statement has no WHERE, HAVING, ORDER BY, GROUP BY,
+** or LIMIT clause.
+**
+** (6) The SELECT statement is a simple (not a compound) select that
+** contains only tab2 in its FROM clause
+**
+** This method for implementing the INSERT transfers raw records from
+** tab2 over to tab1. The columns are not decoded. Raw records from
+** the indices of tab2 are transfered to tab1 as well. In so doing,
+** the resulting tab1 has much less fragmentation.
+**
+** This routine returns TRUE if the optimization is attempted. If any
+** of the conditions above fail so that the optimization should not
+** be attempted, then this routine returns FALSE.
+*/
+static int xferOptimization(
+ Parse *pParse, /* Parser context */
+ Table *pDest, /* The table we are inserting into */
+ Select *pSelect, /* A SELECT statement to use as the data source */
+ int onError, /* How to handle constraint errors */
+ int iDbDest /* The database of pDest */
+){
+ ExprList *pEList; /* The result set of the SELECT */
+ Table *pSrc; /* The table in the FROM clause of SELECT */
+ Index *pSrcIdx, *pDestIdx; /* Source and destination indices */
+ struct SrcList_item *pItem; /* An element of pSelect->pSrc */
+ int i; /* Loop counter */
+ int iDbSrc; /* The database of pSrc */
+ int iSrc, iDest; /* Cursors from source and destination */
+ int addr1, addr2; /* Loop addresses */
+ int emptyDestTest; /* Address of test for empty pDest */
+ int emptySrcTest; /* Address of test for empty pSrc */
+ Vdbe *v; /* The VDBE we are building */
+ KeyInfo *pKey; /* Key information for an index */
+ int regAutoinc; /* Memory register used by AUTOINC */
+ int destHasUniqueIdx = 0; /* True if pDest has a UNIQUE index */
+ int regData, regRowid; /* Registers holding data and rowid */
+
+ if( pSelect==0 ){
+ return 0; /* Must be of the form INSERT INTO ... SELECT ... */
+ }
+ if( pDest->pTrigger ){
+ return 0; /* tab1 must not have triggers */
+ }
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ if( pDest->isVirtual ){
+ return 0; /* tab1 must not be a virtual table */
+ }
+#endif
+ if( onError==OE_Default ){
+ onError = OE_Abort;
+ }
+ if( onError!=OE_Abort && onError!=OE_Rollback ){
+ return 0; /* Cannot do OR REPLACE or OR IGNORE or OR FAIL */
+ }
+ assert(pSelect->pSrc); /* allocated even if there is no FROM clause */
+ if( pSelect->pSrc->nSrc!=1 ){
+ return 0; /* FROM clause must have exactly one term */
+ }
+ if( pSelect->pSrc->a[0].pSelect ){
+ return 0; /* FROM clause cannot contain a subquery */
+ }
+ if( pSelect->pWhere ){
+ return 0; /* SELECT may not have a WHERE clause */
+ }
+ if( pSelect->pOrderBy ){
+ return 0; /* SELECT may not have an ORDER BY clause */
+ }
+ /* Do not need to test for a HAVING clause. If HAVING is present but
+ ** there is no ORDER BY, we will get an error. */
+ if( pSelect->pGroupBy ){
+ return 0; /* SELECT may not have a GROUP BY clause */
+ }
+ if( pSelect->pLimit ){
+ return 0; /* SELECT may not have a LIMIT clause */
+ }
+ assert( pSelect->pOffset==0 ); /* Must be so if pLimit==0 */
+ if( pSelect->pPrior ){
+ return 0; /* SELECT may not be a compound query */
+ }
+ if( pSelect->isDistinct ){
+ return 0; /* SELECT may not be DISTINCT */
+ }
+ pEList = pSelect->pEList;
+ assert( pEList!=0 );
+ if( pEList->nExpr!=1 ){
+ return 0; /* The result set must have exactly one column */
+ }
+ assert( pEList->a[0].pExpr );
+ if( pEList->a[0].pExpr->op!=TK_ALL ){
+ return 0; /* The result set must be the special operator "*" */
+ }
+
+ /* At this point we have established that the statement is of the
+ ** correct syntactic form to participate in this optimization. Now
+ ** we have to check the semantics.
+ */
+ pItem = pSelect->pSrc->a;
+ pSrc = sqlite3LocateTable(pParse, 0, pItem->zName, pItem->zDatabase);
+ if( pSrc==0 ){
+ return 0; /* FROM clause does not contain a real table */
+ }
+ if( pSrc==pDest ){
+ return 0; /* tab1 and tab2 may not be the same table */
+ }
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ if( pSrc->isVirtual ){
+ return 0; /* tab2 must not be a virtual table */
+ }
+#endif
+ if( pSrc->pSelect ){
+ return 0; /* tab2 may not be a view */
+ }
+ if( pDest->nCol!=pSrc->nCol ){
+ return 0; /* Number of columns must be the same in tab1 and tab2 */
+ }
+ if( pDest->iPKey!=pSrc->iPKey ){
+ return 0; /* Both tables must have the same INTEGER PRIMARY KEY */
+ }
+ for(i=0; i<pDest->nCol; i++){
+ if( pDest->aCol[i].affinity!=pSrc->aCol[i].affinity ){
+ return 0; /* Affinity must be the same on all columns */
+ }
+ if( !xferCompatibleCollation(pDest->aCol[i].zColl, pSrc->aCol[i].zColl) ){
+ return 0; /* Collating sequence must be the same on all columns */
+ }
+ if( pDest->aCol[i].notNull && !pSrc->aCol[i].notNull ){
+ return 0; /* tab2 must be NOT NULL if tab1 is */
+ }
+ }
+ for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){
+ if( pDestIdx->onError!=OE_None ){
+ destHasUniqueIdx = 1;
+ }
+ for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){
+ if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break;
+ }
+ if( pSrcIdx==0 ){
+ return 0; /* pDestIdx has no corresponding index in pSrc */
+ }
+ }
+#ifndef SQLITE_OMIT_CHECK
+ if( pDest->pCheck && !sqlite3ExprCompare(pSrc->pCheck, pDest->pCheck) ){
+ return 0; /* Tables have different CHECK constraints. Ticket #2252 */
+ }
+#endif
+
+ /* If we get this far, it means either:
+ **
+ ** * We can always do the transfer if the table contains an
+ ** an integer primary key
+ **
+ ** * We can conditionally do the transfer if the destination
+ ** table is empty.
+ */
+#ifdef SQLITE_TEST
+ sqlite3_xferopt_count++;
+#endif
+ iDbSrc = sqlite3SchemaToIndex(pParse->db, pSrc->pSchema);
+ v = sqlite3GetVdbe(pParse);
+ sqlite3CodeVerifySchema(pParse, iDbSrc);
+ iSrc = pParse->nTab++;
+ iDest = pParse->nTab++;
+ regAutoinc = autoIncBegin(pParse, iDbDest, pDest);
+ sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite);
+ if( (pDest->iPKey<0 && pDest->pIndex!=0) || destHasUniqueIdx ){
+ /* If tables do not have an INTEGER PRIMARY KEY and there
+ ** are indices to be copied and the destination is not empty,
+ ** we have to disallow the transfer optimization because the
+ ** the rowids might change which will mess up indexing.
+ **
+ ** Or if the destination has a UNIQUE index and is not empty,
+ ** we also disallow the transfer optimization because we cannot
+ ** insure that all entries in the union of DEST and SRC will be
+ ** unique.
+ */
+ addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iDest, 0);
+ emptyDestTest = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0);
+ sqlite3VdbeJumpHere(v, addr1);
+ }else{
+ emptyDestTest = 0;
+ }
+ sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead);
+ emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0);
+ regData = sqlite3GetTempReg(pParse);
+ regRowid = sqlite3GetTempReg(pParse);
+ if( pDest->iPKey>=0 ){
+ addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
+ addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid);
+ sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, onError, 0,
+ "PRIMARY KEY must be unique", P4_STATIC);
+ sqlite3VdbeJumpHere(v, addr2);
+ autoIncStep(pParse, regAutoinc, regRowid);
+ }else if( pDest->pIndex==0 ){
+ addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid);
+ }else{
+ addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
+ assert( pDest->autoInc==0 );
+ }
+ sqlite3VdbeAddOp2(v, OP_RowData, iSrc, regData);
+ sqlite3VdbeAddOp3(v, OP_Insert, iDest, regData, regRowid);
+ sqlite3VdbeChangeP5(v, OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND);
+ sqlite3VdbeChangeP4(v, -1, pDest->zName, 0);
+ sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1);
+ autoIncEnd(pParse, iDbDest, pDest, regAutoinc);
+ for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){
+ for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){
+ if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break;
+ }
+ assert( pSrcIdx );
+ sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0);
+ sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
+ pKey = sqlite3IndexKeyinfo(pParse, pSrcIdx);
+ sqlite3VdbeAddOp4(v, OP_OpenRead, iSrc, pSrcIdx->tnum, iDbSrc,
+ (char*)pKey, P4_KEYINFO_HANDOFF);
+ VdbeComment((v, "%s", pSrcIdx->zName));
+ pKey = sqlite3IndexKeyinfo(pParse, pDestIdx);
+ sqlite3VdbeAddOp4(v, OP_OpenWrite, iDest, pDestIdx->tnum, iDbDest,
+ (char*)pKey, P4_KEYINFO_HANDOFF);
+ VdbeComment((v, "%s", pDestIdx->zName));
+ addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0);
+ sqlite3VdbeAddOp2(v, OP_RowKey, iSrc, regData);
+ sqlite3VdbeAddOp3(v, OP_IdxInsert, iDest, regData, 1);
+ sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1+1);
+ sqlite3VdbeJumpHere(v, addr1);
+ }
+ sqlite3VdbeJumpHere(v, emptySrcTest);
+ sqlite3ReleaseTempReg(pParse, regRowid);
+ sqlite3ReleaseTempReg(pParse, regData);
+ sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0);
+ sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
+ if( emptyDestTest ){
+ sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_OK, 0);
+ sqlite3VdbeJumpHere(v, emptyDestTest);
+ sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
+ return 0;
+ }else{
+ return 1;
+ }
+}
+#endif /* SQLITE_OMIT_XFER_OPT */
+
+/* Make sure "isView" gets undefined in case this file becomes part of
+** the amalgamation - so that subsequent files do not see isView as a
+** macro. */
+#undef isView
+
+/************** End of insert.c **********************************************/
+/************** Begin file legacy.c ******************************************/
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** Main file for the SQLite library. The routines in this file
+** implement the programmer interface to the library. Routines in
+** other files are for internal use by SQLite and should not be
+** accessed by users of the library.
+**
+** $Id: legacy.c,v 1.24 2008/03/21 18:01:14 drh Exp $
+*/
+
+
+/*
+** Execute SQL code. Return one of the SQLITE_ success/failure
+** codes. Also write an error message into memory obtained from
+** malloc() and make *pzErrMsg point to that message.
+**
+** If the SQL is a query, then for each row in the query result
+** the xCallback() function is called. pArg becomes the first
+** argument to xCallback(). If xCallback=NULL then no callback
+** is invoked, even for queries.
+*/
+SQLITE_API int sqlite3_exec(
+ sqlite3 *db, /* The database on which the SQL executes */
+ const char *zSql, /* The SQL to be executed */
+ sqlite3_callback xCallback, /* Invoke this callback routine */
+ void *pArg, /* First argument to xCallback() */
+ char **pzErrMsg /* Write error messages here */
+){
+ int rc = SQLITE_OK;
+ const char *zLeftover;
+ sqlite3_stmt *pStmt = 0;
+ char **azCols = 0;
+
+ int nRetry = 0;
+ int nCallback;
+
+ if( zSql==0 ) return SQLITE_OK;
+
+ sqlite3_mutex_enter(db->mutex);
+ while( (rc==SQLITE_OK || (rc==SQLITE_SCHEMA && (++nRetry)<2)) && zSql[0] ){
+ int nCol;
+ char **azVals = 0;
+
+ pStmt = 0;
+ rc = sqlite3_prepare(db, zSql, -1, &pStmt, &zLeftover);
+ assert( rc==SQLITE_OK || pStmt==0 );
+ if( rc!=SQLITE_OK ){
+ continue;
+ }
+ if( !pStmt ){
+ /* this happens for a comment or white-space */
+ zSql = zLeftover;
+ continue;
+ }
+
+ nCallback = 0;
+ nCol = sqlite3_column_count(pStmt);
+
+ while( 1 ){
+ int i;
+ rc = sqlite3_step(pStmt);
+
+ /* Invoke the callback function if required */
+ if( xCallback && (SQLITE_ROW==rc ||
+ (SQLITE_DONE==rc && !nCallback && db->flags&SQLITE_NullCallback)) ){
+ if( 0==nCallback ){
+ if( azCols==0 ){
+ azCols = sqlite3DbMallocZero(db, 2*nCol*sizeof(const char*) + 1);
+ if( azCols==0 ){
+ goto exec_out;
+ }
+ }
+ for(i=0; i<nCol; i++){
+ azCols[i] = (char *)sqlite3_column_name(pStmt, i);
+ if( !azCols[i] ){
+ db->mallocFailed = 1;
+ goto exec_out;
+ }
+ }
+ nCallback++;
+ }
+ if( rc==SQLITE_ROW ){
+ azVals = &azCols[nCol];
+ for(i=0; i<nCol; i++){
+ azVals[i] = (char *)sqlite3_column_text(pStmt, i);
+ if( !azVals[i] && sqlite3_column_type(pStmt, i)!=SQLITE_NULL ){
+ db->mallocFailed = 1;
+ goto exec_out;
+ }
+ }
+ }
+ if( xCallback(pArg, nCol, azVals, azCols) ){
+ rc = SQLITE_ABORT;
+ goto exec_out;
+ }
+ }
+
+ if( rc!=SQLITE_ROW ){
+ rc = sqlite3_finalize(pStmt);
+ pStmt = 0;
+ if( rc!=SQLITE_SCHEMA ){
+ nRetry = 0;
+ zSql = zLeftover;
+ while( isspace((unsigned char)zSql[0]) ) zSql++;
+ }
+ break;
+ }
+ }
+
+ sqlite3_free(azCols);
+ azCols = 0;
+ }
+
+exec_out:
+ if( pStmt ) sqlite3_finalize(pStmt);
+ if( azCols ) sqlite3_free(azCols);
+
+ rc = sqlite3ApiExit(db, rc);
+ if( rc!=SQLITE_OK && rc==sqlite3_errcode(db) && pzErrMsg ){
+ int nErrMsg = 1 + strlen(sqlite3_errmsg(db));
+ *pzErrMsg = sqlite3_malloc(nErrMsg);
+ if( *pzErrMsg ){
+ memcpy(*pzErrMsg, sqlite3_errmsg(db), nErrMsg);
+ }
+ }else if( pzErrMsg ){
+ *pzErrMsg = 0;
+ }
+
+ assert( (rc&db->errMask)==rc );
+ sqlite3_mutex_leave(db->mutex);
+ return rc;
+}
+
+/************** End of legacy.c **********************************************/
+/************** Begin file loadext.c *****************************************/
+/*
+** 2006 June 7
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains code used to dynamically load extensions into
+** the SQLite library.
+*/
+
+#ifndef SQLITE_CORE
+ #define SQLITE_CORE 1 /* Disable the API redefinition in sqlite3ext.h */
+#endif
+/************** Include sqlite3ext.h in the middle of loadext.c **************/
+/************** Begin file sqlite3ext.h **************************************/
+/*
+** 2006 June 7
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This header file defines the SQLite interface for use by
+** shared libraries that want to be imported as extensions into
+** an SQLite instance. Shared libraries that intend to be loaded
+** as extensions by SQLite should #include this file instead of
+** sqlite3.h.
+**
+** @(#) $Id: sqlite3ext.h,v 1.21 2008/03/19 21:45:51 drh Exp $
+*/
+#ifndef _SQLITE3EXT_H_
+#define _SQLITE3EXT_H_
+
+typedef struct sqlite3_api_routines sqlite3_api_routines;
+
+/*
+** The following structure holds pointers to all of the SQLite API
+** routines.
+**
+** WARNING: In order to maintain backwards compatibility, add new
+** interfaces to the end of this structure only. If you insert new
+** interfaces in the middle of this structure, then older different
+** versions of SQLite will not be able to load each others' shared
+** libraries!
+*/
+struct sqlite3_api_routines {
+ void * (*aggregate_context)(sqlite3_context*,int nBytes);
+ int (*aggregate_count)(sqlite3_context*);
+ int (*bind_blob)(sqlite3_stmt*,int,const void*,int n,void(*)(void*));
+ int (*bind_double)(sqlite3_stmt*,int,double);
+ int (*bind_int)(sqlite3_stmt*,int,int);
+ int (*bind_int64)(sqlite3_stmt*,int,sqlite_int64);
+ int (*bind_null)(sqlite3_stmt*,int);
+ int (*bind_parameter_count)(sqlite3_stmt*);
+ int (*bind_parameter_index)(sqlite3_stmt*,const char*zName);
+ const char * (*bind_parameter_name)(sqlite3_stmt*,int);
+ int (*bind_text)(sqlite3_stmt*,int,const char*,int n,void(*)(void*));
+ int (*bind_text16)(sqlite3_stmt*,int,const void*,int,void(*)(void*));
+ int (*bind_value)(sqlite3_stmt*,int,const sqlite3_value*);
+ int (*busy_handler)(sqlite3*,int(*)(void*,int),void*);
+ int (*busy_timeout)(sqlite3*,int ms);
+ int (*changes)(sqlite3*);
+ int (*close)(sqlite3*);
+ int (*collation_needed)(sqlite3*,void*,void(*)(void*,sqlite3*,int eTextRep,const char*));
+ int (*collation_needed16)(sqlite3*,void*,void(*)(void*,sqlite3*,int eTextRep,const void*));
+ const void * (*column_blob)(sqlite3_stmt*,int iCol);
+ int (*column_bytes)(sqlite3_stmt*,int iCol);
+ int (*column_bytes16)(sqlite3_stmt*,int iCol);
+ int (*column_count)(sqlite3_stmt*pStmt);
+ const char * (*column_database_name)(sqlite3_stmt*,int);
+ const void * (*column_database_name16)(sqlite3_stmt*,int);
+ const char * (*column_decltype)(sqlite3_stmt*,int i);
+ const void * (*column_decltype16)(sqlite3_stmt*,int);
+ double (*column_double)(sqlite3_stmt*,int iCol);
+ int (*column_int)(sqlite3_stmt*,int iCol);
+ sqlite_int64 (*column_int64)(sqlite3_stmt*,int iCol);
+ const char * (*column_name)(sqlite3_stmt*,int);
+ const void * (*column_name16)(sqlite3_stmt*,int);
+ const char * (*column_origin_name)(sqlite3_stmt*,int);
+ const void * (*column_origin_name16)(sqlite3_stmt*,int);
+ const char * (*column_table_name)(sqlite3_stmt*,int);
+ const void * (*column_table_name16)(sqlite3_stmt*,int);
+ const unsigned char * (*column_text)(sqlite3_stmt*,int iCol);
+ const void * (*column_text16)(sqlite3_stmt*,int iCol);
+ int (*column_type)(sqlite3_stmt*,int iCol);
+ sqlite3_value* (*column_value)(sqlite3_stmt*,int iCol);
+ void * (*commit_hook)(sqlite3*,int(*)(void*),void*);
+ int (*complete)(const char*sql);
+ int (*complete16)(const void*sql);
+ int (*create_collation)(sqlite3*,const char*,int,void*,int(*)(void*,int,const void*,int,const void*));
+ int (*create_collation16)(sqlite3*,const char*,int,void*,int(*)(void*,int,const void*,int,const void*));
+ int (*create_function)(sqlite3*,const char*,int,int,void*,void (*xFunc)(sqlite3_context*,int,sqlite3_value**),void (*xStep)(sqlite3_context*,int,sqlite3_value**),void (*xFinal)(sqlite3_context*));
+ int (*create_function16)(sqlite3*,const void*,int,int,void*,void (*xFunc)(sqlite3_context*,int,sqlite3_value**),void (*xStep)(sqlite3_context*,int,sqlite3_value**),void (*xFinal)(sqlite3_context*));
+ int (*create_module)(sqlite3*,const char*,const sqlite3_module*,void*);
+ int (*data_count)(sqlite3_stmt*pStmt);
+ sqlite3 * (*db_handle)(sqlite3_stmt*);
+ int (*declare_vtab)(sqlite3*,const char*);
+ int (*enable_shared_cache)(int);
+ int (*errcode)(sqlite3*db);
+ const char * (*errmsg)(sqlite3*);
+ const void * (*errmsg16)(sqlite3*);
+ int (*exec)(sqlite3*,const char*,sqlite3_callback,void*,char**);
+ int (*expired)(sqlite3_stmt*);
+ int (*finalize)(sqlite3_stmt*pStmt);
+ void (*free)(void*);
+ void (*free_table)(char**result);
+ int (*get_autocommit)(sqlite3*);
+ void * (*get_auxdata)(sqlite3_context*,int);
+ int (*get_table)(sqlite3*,const char*,char***,int*,int*,char**);
+ int (*global_recover)(void);
+ void (*interruptx)(sqlite3*);
+ sqlite_int64 (*last_insert_rowid)(sqlite3*);
+ const char * (*libversion)(void);
+ int (*libversion_number)(void);
+ void *(*malloc)(int);
+ char * (*mprintf)(const char*,...);
+ int (*open)(const char*,sqlite3**);
+ int (*open16)(const void*,sqlite3**);
+ int (*prepare)(sqlite3*,const char*,int,sqlite3_stmt**,const char**);
+ int (*prepare16)(sqlite3*,const void*,int,sqlite3_stmt**,const void**);
+ void * (*profile)(sqlite3*,void(*)(void*,const char*,sqlite_uint64),void*);
+ void (*progress_handler)(sqlite3*,int,int(*)(void*),void*);
+ void *(*realloc)(void*,int);
+ int (*reset)(sqlite3_stmt*pStmt);
+ void (*result_blob)(sqlite3_context*,const void*,int,void(*)(void*));
+ void (*result_double)(sqlite3_context*,double);
+ void (*result_error)(sqlite3_context*,const char*,int);
+ void (*result_error16)(sqlite3_context*,const void*,int);
+ void (*result_int)(sqlite3_context*,int);
+ void (*result_int64)(sqlite3_context*,sqlite_int64);
+ void (*result_null)(sqlite3_context*);
+ void (*result_text)(sqlite3_context*,const char*,int,void(*)(void*));
+ void (*result_text16)(sqlite3_context*,const void*,int,void(*)(void*));
+ void (*result_text16be)(sqlite3_context*,const void*,int,void(*)(void*));
+ void (*result_text16le)(sqlite3_context*,const void*,int,void(*)(void*));
+ void (*result_value)(sqlite3_context*,sqlite3_value*);
+ void * (*rollback_hook)(sqlite3*,void(*)(void*),void*);
+ int (*set_authorizer)(sqlite3*,int(*)(void*,int,const char*,const char*,const char*,const char*),void*);
+ void (*set_auxdata)(sqlite3_context*,int,void*,void (*)(void*));
+ char * (*snprintf)(int,char*,const char*,...);
+ int (*step)(sqlite3_stmt*);
+ int (*table_column_metadata)(sqlite3*,const char*,const char*,const char*,char const**,char const**,int*,int*,int*);
+ void (*thread_cleanup)(void);
+ int (*total_changes)(sqlite3*);
+ void * (*trace)(sqlite3*,void(*xTrace)(void*,const char*),void*);
+ int (*transfer_bindings)(sqlite3_stmt*,sqlite3_stmt*);
+ void * (*update_hook)(sqlite3*,void(*)(void*,int ,char const*,char const*,sqlite_int64),void*);
+ void * (*user_data)(sqlite3_context*);
+ const void * (*value_blob)(sqlite3_value*);
+ int (*value_bytes)(sqlite3_value*);
+ int (*value_bytes16)(sqlite3_value*);
+ double (*value_double)(sqlite3_value*);
+ int (*value_int)(sqlite3_value*);
+ sqlite_int64 (*value_int64)(sqlite3_value*);
+ int (*value_numeric_type)(sqlite3_value*);
+ const unsigned char * (*value_text)(sqlite3_value*);
+ const void * (*value_text16)(sqlite3_value*);
+ const void * (*value_text16be)(sqlite3_value*);
+ const void * (*value_text16le)(sqlite3_value*);
+ int (*value_type)(sqlite3_value*);
+ char *(*vmprintf)(const char*,va_list);
+ /* Added ??? */
+ int (*overload_function)(sqlite3*, const char *zFuncName, int nArg);
+ /* Added by 3.3.13 */
+ int (*prepare_v2)(sqlite3*,const char*,int,sqlite3_stmt**,const char**);
+ int (*prepare16_v2)(sqlite3*,const void*,int,sqlite3_stmt**,const void**);
+ int (*clear_bindings)(sqlite3_stmt*);
+ /* Added by 3.4.1 */
+ int (*create_module_v2)(sqlite3*,const char*,const sqlite3_module*,void*,void (*xDestroy)(void *));
+ /* Added by 3.5.0 */
+ int (*bind_zeroblob)(sqlite3_stmt*,int,int);
+ int (*blob_bytes)(sqlite3_blob*);
+ int (*blob_close)(sqlite3_blob*);
+ int (*blob_open)(sqlite3*,const char*,const char*,const char*,sqlite3_int64,int,sqlite3_blob**);
+ int (*blob_read)(sqlite3_blob*,void*,int,int);
+ int (*blob_write)(sqlite3_blob*,const void*,int,int);
+ int (*create_collation_v2)(sqlite3*,const char*,int,void*,int(*)(void*,int,const void*,int,const void*),void(*)(void*));
+ int (*file_control)(sqlite3*,const char*,int,void*);
+ sqlite3_int64 (*memory_highwater)(int);
+ sqlite3_int64 (*memory_used)(void);
+ sqlite3_mutex *(*mutex_alloc)(int);
+ void (*mutex_enter)(sqlite3_mutex*);
+ void (*mutex_free)(sqlite3_mutex*);
+ void (*mutex_leave)(sqlite3_mutex*);
+ int (*mutex_try)(sqlite3_mutex*);
+ int (*open_v2)(const char*,sqlite3**,int,const char*);
+ int (*release_memory)(int);
+ void (*result_error_nomem)(sqlite3_context*);
+ void (*result_error_toobig)(sqlite3_context*);
+ int (*sleep)(int);
+ void (*soft_heap_limit)(int);
+ sqlite3_vfs *(*vfs_find)(const char*);
+ int (*vfs_register)(sqlite3_vfs*,int);
+ int (*vfs_unregister)(sqlite3_vfs*);
+ int (*xthreadsafe)(void);
+ void (*result_zeroblob)(sqlite3_context*,int);
+ void (*result_error_code)(sqlite3_context*,int);
+ int (*test_control)(int, ...);
+ void (*randomness)(int,void*);
+ sqlite3 *(*context_db_handle)(sqlite3_context*);
+};
+
+/*
+** The following macros redefine the API routines so that they are
+** redirected throught the global sqlite3_api structure.
+**
+** This header file is also used by the loadext.c source file
+** (part of the main SQLite library - not an extension) so that
+** it can get access to the sqlite3_api_routines structure
+** definition. But the main library does not want to redefine
+** the API. So the redefinition macros are only valid if the
+** SQLITE_CORE macros is undefined.
+*/
+#ifndef SQLITE_CORE
+#define sqlite3_aggregate_context sqlite3_api->aggregate_context
+#define sqlite3_aggregate_count sqlite3_api->aggregate_count
+#define sqlite3_bind_blob sqlite3_api->bind_blob
+#define sqlite3_bind_double sqlite3_api->bind_double
+#define sqlite3_bind_int sqlite3_api->bind_int
+#define sqlite3_bind_int64 sqlite3_api->bind_int64
+#define sqlite3_bind_null sqlite3_api->bind_null
+#define sqlite3_bind_parameter_count sqlite3_api->bind_parameter_count
+#define sqlite3_bind_parameter_index sqlite3_api->bind_parameter_index
+#define sqlite3_bind_parameter_name sqlite3_api->bind_parameter_name
+#define sqlite3_bind_text sqlite3_api->bind_text
+#define sqlite3_bind_text16 sqlite3_api->bind_text16
+#define sqlite3_bind_value sqlite3_api->bind_value
+#define sqlite3_busy_handler sqlite3_api->busy_handler
+#define sqlite3_busy_timeout sqlite3_api->busy_timeout
+#define sqlite3_changes sqlite3_api->changes
+#define sqlite3_close sqlite3_api->close
+#define sqlite3_collation_needed sqlite3_api->collation_needed
+#define sqlite3_collation_needed16 sqlite3_api->collation_needed16
+#define sqlite3_column_blob sqlite3_api->column_blob
+#define sqlite3_column_bytes sqlite3_api->column_bytes
+#define sqlite3_column_bytes16 sqlite3_api->column_bytes16
+#define sqlite3_column_count sqlite3_api->column_count
+#define sqlite3_column_database_name sqlite3_api->column_database_name
+#define sqlite3_column_database_name16 sqlite3_api->column_database_name16
+#define sqlite3_column_decltype sqlite3_api->column_decltype
+#define sqlite3_column_decltype16 sqlite3_api->column_decltype16
+#define sqlite3_column_double sqlite3_api->column_double
+#define sqlite3_column_int sqlite3_api->column_int
+#define sqlite3_column_int64 sqlite3_api->column_int64
+#define sqlite3_column_name sqlite3_api->column_name
+#define sqlite3_column_name16 sqlite3_api->column_name16
+#define sqlite3_column_origin_name sqlite3_api->column_origin_name
+#define sqlite3_column_origin_name16 sqlite3_api->column_origin_name16
+#define sqlite3_column_table_name sqlite3_api->column_table_name
+#define sqlite3_column_table_name16 sqlite3_api->column_table_name16
+#define sqlite3_column_text sqlite3_api->column_text
+#define sqlite3_column_text16 sqlite3_api->column_text16
+#define sqlite3_column_type sqlite3_api->column_type
+#define sqlite3_column_value sqlite3_api->column_value
+#define sqlite3_commit_hook sqlite3_api->commit_hook
+#define sqlite3_complete sqlite3_api->complete
+#define sqlite3_complete16 sqlite3_api->complete16
+#define sqlite3_create_collation sqlite3_api->create_collation
+#define sqlite3_create_collation16 sqlite3_api->create_collation16
+#define sqlite3_create_function sqlite3_api->create_function
+#define sqlite3_create_function16 sqlite3_api->create_function16
+#define sqlite3_create_module sqlite3_api->create_module
+#define sqlite3_create_module_v2 sqlite3_api->create_module_v2
+#define sqlite3_data_count sqlite3_api->data_count
+#define sqlite3_db_handle sqlite3_api->db_handle
+#define sqlite3_declare_vtab sqlite3_api->declare_vtab
+#define sqlite3_enable_shared_cache sqlite3_api->enable_shared_cache
+#define sqlite3_errcode sqlite3_api->errcode
+#define sqlite3_errmsg sqlite3_api->errmsg
+#define sqlite3_errmsg16 sqlite3_api->errmsg16
+#define sqlite3_exec sqlite3_api->exec
+#define sqlite3_expired sqlite3_api->expired
+#define sqlite3_finalize sqlite3_api->finalize
+#define sqlite3_free sqlite3_api->free
+#define sqlite3_free_table sqlite3_api->free_table
+#define sqlite3_get_autocommit sqlite3_api->get_autocommit
+#define sqlite3_get_auxdata sqlite3_api->get_auxdata
+#define sqlite3_get_table sqlite3_api->get_table
+#define sqlite3_global_recover sqlite3_api->global_recover
+#define sqlite3_interrupt sqlite3_api->interruptx
+#define sqlite3_last_insert_rowid sqlite3_api->last_insert_rowid
+#define sqlite3_libversion sqlite3_api->libversion
+#define sqlite3_libversion_number sqlite3_api->libversion_number
+#define sqlite3_malloc sqlite3_api->malloc
+#define sqlite3_mprintf sqlite3_api->mprintf
+#define sqlite3_open sqlite3_api->open
+#define sqlite3_open16 sqlite3_api->open16
+#define sqlite3_prepare sqlite3_api->prepare
+#define sqlite3_prepare16 sqlite3_api->prepare16
+#define sqlite3_prepare_v2 sqlite3_api->prepare_v2
+#define sqlite3_prepare16_v2 sqlite3_api->prepare16_v2
+#define sqlite3_profile sqlite3_api->profile
+#define sqlite3_progress_handler sqlite3_api->progress_handler
+#define sqlite3_realloc sqlite3_api->realloc
+#define sqlite3_reset sqlite3_api->reset
+#define sqlite3_result_blob sqlite3_api->result_blob
+#define sqlite3_result_double sqlite3_api->result_double
+#define sqlite3_result_error sqlite3_api->result_error
+#define sqlite3_result_error16 sqlite3_api->result_error16
+#define sqlite3_result_int sqlite3_api->result_int
+#define sqlite3_result_int64 sqlite3_api->result_int64
+#define sqlite3_result_null sqlite3_api->result_null
+#define sqlite3_result_text sqlite3_api->result_text
+#define sqlite3_result_text16 sqlite3_api->result_text16
+#define sqlite3_result_text16be sqlite3_api->result_text16be
+#define sqlite3_result_text16le sqlite3_api->result_text16le
+#define sqlite3_result_value sqlite3_api->result_value
+#define sqlite3_rollback_hook sqlite3_api->rollback_hook
+#define sqlite3_set_authorizer sqlite3_api->set_authorizer
+#define sqlite3_set_auxdata sqlite3_api->set_auxdata
+#define sqlite3_snprintf sqlite3_api->snprintf
+#define sqlite3_step sqlite3_api->step
+#define sqlite3_table_column_metadata sqlite3_api->table_column_metadata
+#define sqlite3_thread_cleanup sqlite3_api->thread_cleanup
+#define sqlite3_total_changes sqlite3_api->total_changes
+#define sqlite3_trace sqlite3_api->trace
+#define sqlite3_transfer_bindings sqlite3_api->transfer_bindings
+#define sqlite3_update_hook sqlite3_api->update_hook
+#define sqlite3_user_data sqlite3_api->user_data
+#define sqlite3_value_blob sqlite3_api->value_blob
+#define sqlite3_value_bytes sqlite3_api->value_bytes
+#define sqlite3_value_bytes16 sqlite3_api->value_bytes16
+#define sqlite3_value_double sqlite3_api->value_double
+#define sqlite3_value_int sqlite3_api->value_int
+#define sqlite3_value_int64 sqlite3_api->value_int64
+#define sqlite3_value_numeric_type sqlite3_api->value_numeric_type
+#define sqlite3_value_text sqlite3_api->value_text
+#define sqlite3_value_text16 sqlite3_api->value_text16
+#define sqlite3_value_text16be sqlite3_api->value_text16be
+#define sqlite3_value_text16le sqlite3_api->value_text16le
+#define sqlite3_value_type sqlite3_api->value_type
+#define sqlite3_vmprintf sqlite3_api->vmprintf
+#define sqlite3_overload_function sqlite3_api->overload_function
+#define sqlite3_prepare_v2 sqlite3_api->prepare_v2
+#define sqlite3_prepare16_v2 sqlite3_api->prepare16_v2
+#define sqlite3_clear_bindings sqlite3_api->clear_bindings
+#define sqlite3_bind_zeroblob sqlite3_api->bind_zeroblob
+#define sqlite3_blob_bytes sqlite3_api->blob_bytes
+#define sqlite3_blob_close sqlite3_api->blob_close
+#define sqlite3_blob_open sqlite3_api->blob_open
+#define sqlite3_blob_read sqlite3_api->blob_read
+#define sqlite3_blob_write sqlite3_api->blob_write
+#define sqlite3_create_collation_v2 sqlite3_api->create_collation_v2
+#define sqlite3_file_control sqlite3_api->file_control
+#define sqlite3_memory_highwater sqlite3_api->memory_highwater
+#define sqlite3_memory_used sqlite3_api->memory_used
+#define sqlite3_mutex_alloc sqlite3_api->mutex_alloc
+#define sqlite3_mutex_enter sqlite3_api->mutex_enter
+#define sqlite3_mutex_free sqlite3_api->mutex_free
+#define sqlite3_mutex_leave sqlite3_api->mutex_leave
+#define sqlite3_mutex_try sqlite3_api->mutex_try
+#define sqlite3_open_v2 sqlite3_api->open_v2
+#define sqlite3_release_memory sqlite3_api->release_memory
+#define sqlite3_result_error_nomem sqlite3_api->result_error_nomem
+#define sqlite3_result_error_toobig sqlite3_api->result_error_toobig
+#define sqlite3_sleep sqlite3_api->sleep
+#define sqlite3_soft_heap_limit sqlite3_api->soft_heap_limit
+#define sqlite3_vfs_find sqlite3_api->vfs_find
+#define sqlite3_vfs_register sqlite3_api->vfs_register
+#define sqlite3_vfs_unregister sqlite3_api->vfs_unregister
+#define sqlite3_threadsafe sqlite3_api->xthreadsafe
+#define sqlite3_result_zeroblob sqlite3_api->result_zeroblob
+#define sqlite3_result_error_code sqlite3_api->result_error_code
+#define sqlite3_test_control sqlite3_api->test_control
+#define sqlite3_randomness sqlite3_api->randomness
+#define sqlite3_context_db_handle sqlite3_api->context_db_handle
+#endif /* SQLITE_CORE */
+
+#define SQLITE_EXTENSION_INIT1 const sqlite3_api_routines *sqlite3_api;
+#define SQLITE_EXTENSION_INIT2(v) sqlite3_api = v;
+
+#endif /* _SQLITE3EXT_H_ */
+
+/************** End of sqlite3ext.h ******************************************/
+/************** Continuing where we left off in loadext.c ********************/
+
+#ifndef SQLITE_OMIT_LOAD_EXTENSION
+
+/*
+** Some API routines are omitted when various features are
+** excluded from a build of SQLite. Substitute a NULL pointer
+** for any missing APIs.
+*/
+#ifndef SQLITE_ENABLE_COLUMN_METADATA
+# define sqlite3_column_database_name 0
+# define sqlite3_column_database_name16 0
+# define sqlite3_column_table_name 0
+# define sqlite3_column_table_name16 0
+# define sqlite3_column_origin_name 0
+# define sqlite3_column_origin_name16 0
+# define sqlite3_table_column_metadata 0
+#endif
+
+#ifdef SQLITE_OMIT_AUTHORIZATION
+# define sqlite3_set_authorizer 0
+#endif
+
+#ifdef SQLITE_OMIT_UTF16
+# define sqlite3_bind_text16 0
+# define sqlite3_collation_needed16 0
+# define sqlite3_column_decltype16 0
+# define sqlite3_column_name16 0
+# define sqlite3_column_text16 0
+# define sqlite3_complete16 0
+# define sqlite3_create_collation16 0
+# define sqlite3_create_function16 0
+# define sqlite3_errmsg16 0
+# define sqlite3_open16 0
+# define sqlite3_prepare16 0
+# define sqlite3_prepare16_v2 0
+# define sqlite3_result_error16 0
+# define sqlite3_result_text16 0
+# define sqlite3_result_text16be 0
+# define sqlite3_result_text16le 0
+# define sqlite3_value_text16 0
+# define sqlite3_value_text16be 0
+# define sqlite3_value_text16le 0
+# define sqlite3_column_database_name16 0
+# define sqlite3_column_table_name16 0
+# define sqlite3_column_origin_name16 0
+#endif
+
+#ifdef SQLITE_OMIT_COMPLETE
+# define sqlite3_complete 0
+# define sqlite3_complete16 0
+#endif
+
+#ifdef SQLITE_OMIT_PROGRESS_CALLBACK
+# define sqlite3_progress_handler 0
+#endif
+
+#ifdef SQLITE_OMIT_VIRTUALTABLE
+# define sqlite3_create_module 0
+# define sqlite3_create_module_v2 0
+# define sqlite3_declare_vtab 0
+#endif
+
+#ifdef SQLITE_OMIT_SHARED_CACHE
+# define sqlite3_enable_shared_cache 0
+#endif
+
+#ifdef SQLITE_OMIT_TRACE
+# define sqlite3_profile 0
+# define sqlite3_trace 0
+#endif
+
+#ifdef SQLITE_OMIT_GET_TABLE
+# define sqlite3_free_table 0
+# define sqlite3_get_table 0
+#endif
+
+#ifdef SQLITE_OMIT_INCRBLOB
+#define sqlite3_bind_zeroblob 0
+#define sqlite3_blob_bytes 0
+#define sqlite3_blob_close 0
+#define sqlite3_blob_open 0
+#define sqlite3_blob_read 0
+#define sqlite3_blob_write 0
+#endif
+
+/*
+** The following structure contains pointers to all SQLite API routines.
+** A pointer to this structure is passed into extensions when they are
+** loaded so that the extension can make calls back into the SQLite
+** library.
+**
+** When adding new APIs, add them to the bottom of this structure
+** in order to preserve backwards compatibility.
+**
+** Extensions that use newer APIs should first call the
+** sqlite3_libversion_number() to make sure that the API they
+** intend to use is supported by the library. Extensions should
+** also check to make sure that the pointer to the function is
+** not NULL before calling it.
+*/
+static const sqlite3_api_routines sqlite3Apis = {
+ sqlite3_aggregate_context,
+ sqlite3_aggregate_count,
+ sqlite3_bind_blob,
+ sqlite3_bind_double,
+ sqlite3_bind_int,
+ sqlite3_bind_int64,
+ sqlite3_bind_null,
+ sqlite3_bind_parameter_count,
+ sqlite3_bind_parameter_index,
+ sqlite3_bind_parameter_name,
+ sqlite3_bind_text,
+ sqlite3_bind_text16,
+ sqlite3_bind_value,
+ sqlite3_busy_handler,
+ sqlite3_busy_timeout,
+ sqlite3_changes,
+ sqlite3_close,
+ sqlite3_collation_needed,
+ sqlite3_collation_needed16,
+ sqlite3_column_blob,
+ sqlite3_column_bytes,
+ sqlite3_column_bytes16,
+ sqlite3_column_count,
+ sqlite3_column_database_name,
+ sqlite3_column_database_name16,
+ sqlite3_column_decltype,
+ sqlite3_column_decltype16,
+ sqlite3_column_double,
+ sqlite3_column_int,
+ sqlite3_column_int64,
+ sqlite3_column_name,
+ sqlite3_column_name16,
+ sqlite3_column_origin_name,
+ sqlite3_column_origin_name16,
+ sqlite3_column_table_name,
+ sqlite3_column_table_name16,
+ sqlite3_column_text,
+ sqlite3_column_text16,
+ sqlite3_column_type,
+ sqlite3_column_value,
+ sqlite3_commit_hook,
+ sqlite3_complete,
+ sqlite3_complete16,
+ sqlite3_create_collation,
+ sqlite3_create_collation16,
+ sqlite3_create_function,
+ sqlite3_create_function16,
+ sqlite3_create_module,
+ sqlite3_data_count,
+ sqlite3_db_handle,
+ sqlite3_declare_vtab,
+ sqlite3_enable_shared_cache,
+ sqlite3_errcode,
+ sqlite3_errmsg,
+ sqlite3_errmsg16,
+ sqlite3_exec,
+ sqlite3_expired,
+ sqlite3_finalize,
+ sqlite3_free,
+ sqlite3_free_table,
+ sqlite3_get_autocommit,
+ sqlite3_get_auxdata,
+ sqlite3_get_table,
+ 0, /* Was sqlite3_global_recover(), but that function is deprecated */
+ sqlite3_interrupt,
+ sqlite3_last_insert_rowid,
+ sqlite3_libversion,
+ sqlite3_libversion_number,
+ sqlite3_malloc,
+ sqlite3_mprintf,
+ sqlite3_open,
+ sqlite3_open16,
+ sqlite3_prepare,
+ sqlite3_prepare16,
+ sqlite3_profile,
+ sqlite3_progress_handler,
+ sqlite3_realloc,
+ sqlite3_reset,
+ sqlite3_result_blob,
+ sqlite3_result_double,
+ sqlite3_result_error,
+ sqlite3_result_error16,
+ sqlite3_result_int,
+ sqlite3_result_int64,
+ sqlite3_result_null,
+ sqlite3_result_text,
+ sqlite3_result_text16,
+ sqlite3_result_text16be,
+ sqlite3_result_text16le,
+ sqlite3_result_value,
+ sqlite3_rollback_hook,
+ sqlite3_set_authorizer,
+ sqlite3_set_auxdata,
+ sqlite3_snprintf,
+ sqlite3_step,
+ sqlite3_table_column_metadata,
+ sqlite3_thread_cleanup,
+ sqlite3_total_changes,
+ sqlite3_trace,
+ sqlite3_transfer_bindings,
+ sqlite3_update_hook,
+ sqlite3_user_data,
+ sqlite3_value_blob,
+ sqlite3_value_bytes,
+ sqlite3_value_bytes16,
+ sqlite3_value_double,
+ sqlite3_value_int,
+ sqlite3_value_int64,
+ sqlite3_value_numeric_type,
+ sqlite3_value_text,
+ sqlite3_value_text16,
+ sqlite3_value_text16be,
+ sqlite3_value_text16le,
+ sqlite3_value_type,
+ sqlite3_vmprintf,
+ /*
+ ** The original API set ends here. All extensions can call any
+ ** of the APIs above provided that the pointer is not NULL. But
+ ** before calling APIs that follow, extension should check the
+ ** sqlite3_libversion_number() to make sure they are dealing with
+ ** a library that is new enough to support that API.
+ *************************************************************************
+ */
+ sqlite3_overload_function,
+
+ /*
+ ** Added after 3.3.13
+ */
+ sqlite3_prepare_v2,
+ sqlite3_prepare16_v2,
+ sqlite3_clear_bindings,
+
+ /*
+ ** Added for 3.4.1
+ */
+ sqlite3_create_module_v2,
+
+ /*
+ ** Added for 3.5.0
+ */
+ sqlite3_bind_zeroblob,
+ sqlite3_blob_bytes,
+ sqlite3_blob_close,
+ sqlite3_blob_open,
+ sqlite3_blob_read,
+ sqlite3_blob_write,
+ sqlite3_create_collation_v2,
+ sqlite3_file_control,
+ sqlite3_memory_highwater,
+ sqlite3_memory_used,
+#ifdef SQLITE_MUTEX_NOOP
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+#else
+ sqlite3_mutex_alloc,
+ sqlite3_mutex_enter,
+ sqlite3_mutex_free,
+ sqlite3_mutex_leave,
+ sqlite3_mutex_try,
+#endif
+ sqlite3_open_v2,
+ sqlite3_release_memory,
+ sqlite3_result_error_nomem,
+ sqlite3_result_error_toobig,
+ sqlite3_sleep,
+ sqlite3_soft_heap_limit,
+ sqlite3_vfs_find,
+ sqlite3_vfs_register,
+ sqlite3_vfs_unregister,
+
+ /*
+ ** Added for 3.5.8
+ */
+ sqlite3_threadsafe,
+ sqlite3_result_zeroblob,
+ sqlite3_result_error_code,
+ sqlite3_test_control,
+ sqlite3_randomness,
+ sqlite3_context_db_handle,
+};
+
+/*
+** Attempt to load an SQLite extension library contained in the file
+** zFile. The entry point is zProc. zProc may be 0 in which case a
+** default entry point name (sqlite3_extension_init) is used. Use
+** of the default name is recommended.
+**
+** Return SQLITE_OK on success and SQLITE_ERROR if something goes wrong.
+**
+** If an error occurs and pzErrMsg is not 0, then fill *pzErrMsg with
+** error message text. The calling function should free this memory
+** by calling sqlite3_free().
+*/
+static int sqlite3LoadExtension(
+ sqlite3 *db, /* Load the extension into this database connection */
+ const char *zFile, /* Name of the shared library containing extension */
+ const char *zProc, /* Entry point. Use "sqlite3_extension_init" if 0 */
+ char **pzErrMsg /* Put error message here if not 0 */
+){
+ sqlite3_vfs *pVfs = db->pVfs;
+ void *handle;
+ int (*xInit)(sqlite3*,char**,const sqlite3_api_routines*);
+ char *zErrmsg = 0;
+ void **aHandle;
+
+ /* Ticket #1863. To avoid a creating security problems for older
+ ** applications that relink against newer versions of SQLite, the
+ ** ability to run load_extension is turned off by default. One
+ ** must call sqlite3_enable_load_extension() to turn on extension
+ ** loading. Otherwise you get the following error.
+ */
+ if( (db->flags & SQLITE_LoadExtension)==0 ){
+ if( pzErrMsg ){
+ *pzErrMsg = sqlite3_mprintf("not authorized");
+ }
+ return SQLITE_ERROR;
+ }
+
+ if( zProc==0 ){
+ zProc = "sqlite3_extension_init";
+ }
+
+ handle = sqlite3OsDlOpen(pVfs, zFile);
+ if( handle==0 ){
+ if( pzErrMsg ){
+ char zErr[256];
+ zErr[sizeof(zErr)-1] = '\0';
+ sqlite3_snprintf(sizeof(zErr)-1, zErr,
+ "unable to open shared library [%s]", zFile);
+ sqlite3OsDlError(pVfs, sizeof(zErr)-1, zErr);
+ *pzErrMsg = sqlite3DbStrDup(db, zErr);
+ }
+ return SQLITE_ERROR;
+ }
+ xInit = (int(*)(sqlite3*,char**,const sqlite3_api_routines*))
+ sqlite3OsDlSym(pVfs, handle, zProc);
+ if( xInit==0 ){
+ if( pzErrMsg ){
+ char zErr[256];
+ zErr[sizeof(zErr)-1] = '\0';
+ sqlite3_snprintf(sizeof(zErr)-1, zErr,
+ "no entry point [%s] in shared library [%s]", zProc,zFile);
+ sqlite3OsDlError(pVfs, sizeof(zErr)-1, zErr);
+ *pzErrMsg = sqlite3DbStrDup(db, zErr);
+ sqlite3OsDlClose(pVfs, handle);
+ }
+ return SQLITE_ERROR;
+ }else if( xInit(db, &zErrmsg, &sqlite3Apis) ){
+ if( pzErrMsg ){
+ *pzErrMsg = sqlite3_mprintf("error during initialization: %s", zErrmsg);
+ }
+ sqlite3_free(zErrmsg);
+ sqlite3OsDlClose(pVfs, handle);
+ return SQLITE_ERROR;
+ }
+
+ /* Append the new shared library handle to the db->aExtension array. */
+ db->nExtension++;
+ aHandle = sqlite3DbMallocZero(db, sizeof(handle)*db->nExtension);
+ if( aHandle==0 ){
+ return SQLITE_NOMEM;
+ }
+ if( db->nExtension>0 ){
+ memcpy(aHandle, db->aExtension, sizeof(handle)*(db->nExtension-1));
+ }
+ sqlite3_free(db->aExtension);
+ db->aExtension = aHandle;
+
+ db->aExtension[db->nExtension-1] = handle;
+ return SQLITE_OK;
+}
+SQLITE_API int sqlite3_load_extension(
+ sqlite3 *db, /* Load the extension into this database connection */
+ const char *zFile, /* Name of the shared library containing extension */
+ const char *zProc, /* Entry point. Use "sqlite3_extension_init" if 0 */
+ char **pzErrMsg /* Put error message here if not 0 */
+){
+ int rc;
+ sqlite3_mutex_enter(db->mutex);
+ rc = sqlite3LoadExtension(db, zFile, zProc, pzErrMsg);
+ sqlite3_mutex_leave(db->mutex);
+ return rc;
+}
+
+/*
+** Call this routine when the database connection is closing in order
+** to clean up loaded extensions
+*/
+SQLITE_PRIVATE void sqlite3CloseExtensions(sqlite3 *db){
+ int i;
+ assert( sqlite3_mutex_held(db->mutex) );
+ for(i=0; i<db->nExtension; i++){
+ sqlite3OsDlClose(db->pVfs, db->aExtension[i]);
+ }
+ sqlite3_free(db->aExtension);
+}
+
+/*
+** Enable or disable extension loading. Extension loading is disabled by
+** default so as not to open security holes in older applications.
+*/
+SQLITE_API int sqlite3_enable_load_extension(sqlite3 *db, int onoff){
+ sqlite3_mutex_enter(db->mutex);
+ if( onoff ){
+ db->flags |= SQLITE_LoadExtension;
+ }else{
+ db->flags &= ~SQLITE_LoadExtension;
+ }
+ sqlite3_mutex_leave(db->mutex);
+ return SQLITE_OK;
+}
+
+#endif /* SQLITE_OMIT_LOAD_EXTENSION */
+
+/*
+** The auto-extension code added regardless of whether or not extension
+** loading is supported. We need a dummy sqlite3Apis pointer for that
+** code if regular extension loading is not available. This is that
+** dummy pointer.
+*/
+#ifdef SQLITE_OMIT_LOAD_EXTENSION
+static const sqlite3_api_routines sqlite3Apis = { 0 };
+#endif
+
+
+/*
+** The following object holds the list of automatically loaded
+** extensions.
+**
+** This list is shared across threads. The SQLITE_MUTEX_STATIC_MASTER
+** mutex must be held while accessing this list.
+*/
+static struct {
+ int nExt; /* Number of entries in aExt[] */
+ void **aExt; /* Pointers to the extension init functions */
+} autoext = { 0, 0 };
+
+
+/*
+** Register a statically linked extension that is automatically
+** loaded by every new database connection.
+*/
+SQLITE_API int sqlite3_auto_extension(void *xInit){
+ int i;
+ int rc = SQLITE_OK;
+#ifndef SQLITE_MUTEX_NOOP
+ sqlite3_mutex *mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER);
+#endif
+ sqlite3_mutex_enter(mutex);
+ for(i=0; i<autoext.nExt; i++){
+ if( autoext.aExt[i]==xInit ) break;
+ }
+ if( i==autoext.nExt ){
+ int nByte = (autoext.nExt+1)*sizeof(autoext.aExt[0]);
+ void **aNew;
+ aNew = sqlite3_realloc(autoext.aExt, nByte);
+ if( aNew==0 ){
+ rc = SQLITE_NOMEM;
+ }else{
+ autoext.aExt = aNew;
+ autoext.aExt[autoext.nExt] = xInit;
+ autoext.nExt++;
+ }
+ }
+ sqlite3_mutex_leave(mutex);
+ assert( (rc&0xff)==rc );
+ return rc;
+}
+
+/*
+** Reset the automatic extension loading mechanism.
+*/
+SQLITE_API void sqlite3_reset_auto_extension(void){
+#ifndef SQLITE_MUTEX_NOOP
+ sqlite3_mutex *mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER);
+#endif
+ sqlite3_mutex_enter(mutex);
+ sqlite3_free(autoext.aExt);
+ autoext.aExt = 0;
+ autoext.nExt = 0;
+ sqlite3_mutex_leave(mutex);
+}
+
+/*
+** Load all automatic extensions.
+*/
+SQLITE_PRIVATE int sqlite3AutoLoadExtensions(sqlite3 *db){
+ int i;
+ int go = 1;
+ int rc = SQLITE_OK;
+ int (*xInit)(sqlite3*,char**,const sqlite3_api_routines*);
+
+ if( autoext.nExt==0 ){
+ /* Common case: early out without every having to acquire a mutex */
+ return SQLITE_OK;
+ }
+ for(i=0; go; i++){
+ char *zErrmsg = 0;
+#ifndef SQLITE_MUTEX_NOOP
+ sqlite3_mutex *mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER);
+#endif
+ sqlite3_mutex_enter(mutex);
+ if( i>=autoext.nExt ){
+ xInit = 0;
+ go = 0;
+ }else{
+ xInit = (int(*)(sqlite3*,char**,const sqlite3_api_routines*))
+ autoext.aExt[i];
+ }
+ sqlite3_mutex_leave(mutex);
+ if( xInit && xInit(db, &zErrmsg, &sqlite3Apis) ){
+ sqlite3Error(db, SQLITE_ERROR,
+ "automatic extension loading failed: %s", zErrmsg);
+ go = 0;
+ rc = SQLITE_ERROR;
+ sqlite3_free(zErrmsg);
+ }
+ }
+ return rc;
+}
+
+/************** End of loadext.c *********************************************/
+/************** Begin file pragma.c ******************************************/
+/*
+** 2003 April 6
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains code used to implement the PRAGMA command.
+**
+** $Id: pragma.c,v 1.176 2008/04/17 20:59:38 drh Exp $
+*/
+
+/* Ignore this whole file if pragmas are disabled
+*/
+#if !defined(SQLITE_OMIT_PRAGMA) && !defined(SQLITE_OMIT_PARSER)
+
+/*
+** Interpret the given string as a safety level. Return 0 for OFF,
+** 1 for ON or NORMAL and 2 for FULL. Return 1 for an empty or
+** unrecognized string argument.
+**
+** Note that the values returned are one less that the values that
+** should be passed into sqlite3BtreeSetSafetyLevel(). The is done
+** to support legacy SQL code. The safety level used to be boolean
+** and older scripts may have used numbers 0 for OFF and 1 for ON.
+*/
+static int getSafetyLevel(const char *z){
+ /* 123456789 123456789 */
+ static const char zText[] = "onoffalseyestruefull";
+ static const u8 iOffset[] = {0, 1, 2, 4, 9, 12, 16};
+ static const u8 iLength[] = {2, 2, 3, 5, 3, 4, 4};
+ static const u8 iValue[] = {1, 0, 0, 0, 1, 1, 2};
+ int i, n;
+ if( isdigit(*z) ){
+ return atoi(z);
+ }
+ n = strlen(z);
+ for(i=0; i<sizeof(iLength); i++){
+ if( iLength[i]==n && sqlite3StrNICmp(&zText[iOffset[i]],z,n)==0 ){
+ return iValue[i];
+ }
+ }
+ return 1;
+}
+
+/*
+** Interpret the given string as a boolean value.
+*/
+static int getBoolean(const char *z){
+ return getSafetyLevel(z)&1;
+}
+
+/*
+** Interpret the given string as a locking mode value.
+*/
+static int getLockingMode(const char *z){
+ if( z ){
+ if( 0==sqlite3StrICmp(z, "exclusive") ) return PAGER_LOCKINGMODE_EXCLUSIVE;
+ if( 0==sqlite3StrICmp(z, "normal") ) return PAGER_LOCKINGMODE_NORMAL;
+ }
+ return PAGER_LOCKINGMODE_QUERY;
+}
+
+#ifndef SQLITE_OMIT_AUTOVACUUM
+/*
+** Interpret the given string as an auto-vacuum mode value.
+**
+** The following strings, "none", "full" and "incremental" are
+** acceptable, as are their numeric equivalents: 0, 1 and 2 respectively.
+*/
+static int getAutoVacuum(const char *z){
+ int i;
+ if( 0==sqlite3StrICmp(z, "none") ) return BTREE_AUTOVACUUM_NONE;
+ if( 0==sqlite3StrICmp(z, "full") ) return BTREE_AUTOVACUUM_FULL;
+ if( 0==sqlite3StrICmp(z, "incremental") ) return BTREE_AUTOVACUUM_INCR;
+ i = atoi(z);
+ return ((i>=0&&i<=2)?i:0);
+}
+#endif /* ifndef SQLITE_OMIT_AUTOVACUUM */
+
+#ifndef SQLITE_OMIT_PAGER_PRAGMAS
+/*
+** Interpret the given string as a temp db location. Return 1 for file
+** backed temporary databases, 2 for the Red-Black tree in memory database
+** and 0 to use the compile-time default.
+*/
+static int getTempStore(const char *z){
+ if( z[0]>='0' && z[0]<='2' ){
+ return z[0] - '0';
+ }else if( sqlite3StrICmp(z, "file")==0 ){
+ return 1;
+ }else if( sqlite3StrICmp(z, "memory")==0 ){
+ return 2;
+ }else{
+ return 0;
+ }
+}
+#endif /* SQLITE_PAGER_PRAGMAS */
+
+#ifndef SQLITE_OMIT_PAGER_PRAGMAS
+/*
+** Invalidate temp storage, either when the temp storage is changed
+** from default, or when 'file' and the temp_store_directory has changed
+*/
+static int invalidateTempStorage(Parse *pParse){
+ sqlite3 *db = pParse->db;
+ if( db->aDb[1].pBt!=0 ){
+ if( !db->autoCommit ){
+ sqlite3ErrorMsg(pParse, "temporary storage cannot be changed "
+ "from within a transaction");
+ return SQLITE_ERROR;
+ }
+ sqlite3BtreeClose(db->aDb[1].pBt);
+ db->aDb[1].pBt = 0;
+ sqlite3ResetInternalSchema(db, 0);
+ }
+ return SQLITE_OK;
+}
+#endif /* SQLITE_PAGER_PRAGMAS */
+
+#ifndef SQLITE_OMIT_PAGER_PRAGMAS
+/*
+** If the TEMP database is open, close it and mark the database schema
+** as needing reloading. This must be done when using the TEMP_STORE
+** or DEFAULT_TEMP_STORE pragmas.
+*/
+static int changeTempStorage(Parse *pParse, const char *zStorageType){
+ int ts = getTempStore(zStorageType);
+ sqlite3 *db = pParse->db;
+ if( db->temp_store==ts ) return SQLITE_OK;
+ if( invalidateTempStorage( pParse ) != SQLITE_OK ){
+ return SQLITE_ERROR;
+ }
+ db->temp_store = ts;
+ return SQLITE_OK;
+}
+#endif /* SQLITE_PAGER_PRAGMAS */
+
+/*
+** Generate code to return a single integer value.
+*/
+static void returnSingleInt(Parse *pParse, const char *zLabel, int value){
+ Vdbe *v = sqlite3GetVdbe(pParse);
+ int mem = ++pParse->nMem;
+ sqlite3VdbeAddOp2(v, OP_Integer, value, mem);
+ if( pParse->explain==0 ){
+ sqlite3VdbeSetNumCols(v, 1);
+ sqlite3VdbeSetColName(v, 0, COLNAME_NAME, zLabel, P4_STATIC);
+ }
+ sqlite3VdbeAddOp2(v, OP_ResultRow, mem, 1);
+}
+
+#ifndef SQLITE_OMIT_FLAG_PRAGMAS
+/*
+** Check to see if zRight and zLeft refer to a pragma that queries
+** or changes one of the flags in db->flags. Return 1 if so and 0 if not.
+** Also, implement the pragma.
+*/
+static int flagPragma(Parse *pParse, const char *zLeft, const char *zRight){
+ static const struct sPragmaType {
+ const char *zName; /* Name of the pragma */
+ int mask; /* Mask for the db->flags value */
+ } aPragma[] = {
+ { "full_column_names", SQLITE_FullColNames },
+ { "short_column_names", SQLITE_ShortColNames },
+ { "count_changes", SQLITE_CountRows },
+ { "empty_result_callbacks", SQLITE_NullCallback },
+ { "legacy_file_format", SQLITE_LegacyFileFmt },
+ { "fullfsync", SQLITE_FullFSync },
+#ifdef SQLITE_DEBUG
+ { "sql_trace", SQLITE_SqlTrace },
+ { "vdbe_listing", SQLITE_VdbeListing },
+ { "vdbe_trace", SQLITE_VdbeTrace },
+#endif
+#ifndef SQLITE_OMIT_CHECK
+ { "ignore_check_constraints", SQLITE_IgnoreChecks },
+#endif
+ /* The following is VERY experimental */
+ { "writable_schema", SQLITE_WriteSchema|SQLITE_RecoveryMode },
+ { "omit_readlock", SQLITE_NoReadlock },
+
+ /* TODO: Maybe it shouldn't be possible to change the ReadUncommitted
+ ** flag if there are any active statements. */
+ { "read_uncommitted", SQLITE_ReadUncommitted },
+ };
+ int i;
+ const struct sPragmaType *p;
+ for(i=0, p=aPragma; i<sizeof(aPragma)/sizeof(aPragma[0]); i++, p++){
+ if( sqlite3StrICmp(zLeft, p->zName)==0 ){
+ sqlite3 *db = pParse->db;
+ Vdbe *v;
+ v = sqlite3GetVdbe(pParse);
+ if( v ){
+ if( zRight==0 ){
+ returnSingleInt(pParse, p->zName, (db->flags & p->mask)!=0 );
+ }else{
+ if( getBoolean(zRight) ){
+ db->flags |= p->mask;
+ }else{
+ db->flags &= ~p->mask;
+ }
+
+ /* Many of the flag-pragmas modify the code generated by the SQL
+ ** compiler (eg. count_changes). So add an opcode to expire all
+ ** compiled SQL statements after modifying a pragma value.
+ */
+ sqlite3VdbeAddOp2(v, OP_Expire, 0, 0);
+ }
+ }
+
+ return 1;
+ }
+ }
+ return 0;
+}
+#endif /* SQLITE_OMIT_FLAG_PRAGMAS */
+
+/*
+** Process a pragma statement.
+**
+** Pragmas are of this form:
+**
+** PRAGMA [database.]id [= value]
+**
+** The identifier might also be a string. The value is a string, and
+** identifier, or a number. If minusFlag is true, then the value is
+** a number that was preceded by a minus sign.
+**
+** If the left side is "database.id" then pId1 is the database name
+** and pId2 is the id. If the left side is just "id" then pId1 is the
+** id and pId2 is any empty string.
+*/
+SQLITE_PRIVATE void sqlite3Pragma(
+ Parse *pParse,
+ Token *pId1, /* First part of [database.]id field */
+ Token *pId2, /* Second part of [database.]id field, or NULL */
+ Token *pValue, /* Token for <value>, or NULL */
+ int minusFlag /* True if a '-' sign preceded <value> */
+){
+ char *zLeft = 0; /* Nul-terminated UTF-8 string <id> */
+ char *zRight = 0; /* Nul-terminated UTF-8 string <value>, or NULL */
+ const char *zDb = 0; /* The database name */
+ Token *pId; /* Pointer to <id> token */
+ int iDb; /* Database index for <database> */
+ sqlite3 *db = pParse->db;
+ Db *pDb;
+ Vdbe *v = pParse->pVdbe = sqlite3VdbeCreate(db);
+ if( v==0 ) return;
+ pParse->nMem = 2;
+
+ /* Interpret the [database.] part of the pragma statement. iDb is the
+ ** index of the database this pragma is being applied to in db.aDb[]. */
+ iDb = sqlite3TwoPartName(pParse, pId1, pId2, &pId);
+ if( iDb<0 ) return;
+ pDb = &db->aDb[iDb];
+
+ /* If the temp database has been explicitly named as part of the
+ ** pragma, make sure it is open.
+ */
+ if( iDb==1 && sqlite3OpenTempDatabase(pParse) ){
+ return;
+ }
+
+ zLeft = sqlite3NameFromToken(db, pId);
+ if( !zLeft ) return;
+ if( minusFlag ){
+ zRight = sqlite3MPrintf(db, "-%T", pValue);
+ }else{
+ zRight = sqlite3NameFromToken(db, pValue);
+ }
+
+ zDb = ((iDb>0)?pDb->zName:0);
+ if( sqlite3AuthCheck(pParse, SQLITE_PRAGMA, zLeft, zRight, zDb) ){
+ goto pragma_out;
+ }
+
+#ifndef SQLITE_OMIT_PAGER_PRAGMAS
+ /*
+ ** PRAGMA [database.]default_cache_size
+ ** PRAGMA [database.]default_cache_size=N
+ **
+ ** The first form reports the current persistent setting for the
+ ** page cache size. The value returned is the maximum number of
+ ** pages in the page cache. The second form sets both the current
+ ** page cache size value and the persistent page cache size value
+ ** stored in the database file.
+ **
+ ** The default cache size is stored in meta-value 2 of page 1 of the
+ ** database file. The cache size is actually the absolute value of
+ ** this memory location. The sign of meta-value 2 determines the
+ ** synchronous setting. A negative value means synchronous is off
+ ** and a positive value means synchronous is on.
+ */
+ if( sqlite3StrICmp(zLeft,"default_cache_size")==0 ){
+ static const VdbeOpList getCacheSize[] = {
+ { OP_ReadCookie, 0, 1, 2}, /* 0 */
+ { OP_IfPos, 1, 6, 0},
+ { OP_Integer, 0, 2, 0},
+ { OP_Subtract, 1, 2, 1},
+ { OP_IfPos, 1, 6, 0},
+ { OP_Integer, 0, 1, 0}, /* 5 */
+ { OP_ResultRow, 1, 1, 0},
+ };
+ int addr;
+ if( sqlite3ReadSchema(pParse) ) goto pragma_out;
+ sqlite3VdbeUsesBtree(v, iDb);
+ if( !zRight ){
+ sqlite3VdbeSetNumCols(v, 1);
+ sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "cache_size", P4_STATIC);
+ pParse->nMem += 2;
+ addr = sqlite3VdbeAddOpList(v, ArraySize(getCacheSize), getCacheSize);
+ sqlite3VdbeChangeP1(v, addr, iDb);
+ sqlite3VdbeChangeP1(v, addr+5, SQLITE_DEFAULT_CACHE_SIZE);
+ }else{
+ int size = atoi(zRight);
+ if( size<0 ) size = -size;
+ sqlite3BeginWriteOperation(pParse, 0, iDb);
+ sqlite3VdbeAddOp2(v, OP_Integer, size, 1);
+ sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, 2, 2);
+ addr = sqlite3VdbeAddOp2(v, OP_IfPos, 2, 0);
+ sqlite3VdbeAddOp2(v, OP_Integer, -size, 1);
+ sqlite3VdbeJumpHere(v, addr);
+ sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, 2, 1);
+ pDb->pSchema->cache_size = size;
+ sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size);
+ }
+ }else
+
+ /*
+ ** PRAGMA [database.]page_size
+ ** PRAGMA [database.]page_size=N
+ **
+ ** The first form reports the current setting for the
+ ** database page size in bytes. The second form sets the
+ ** database page size value. The value can only be set if
+ ** the database has not yet been created.
+ */
+ if( sqlite3StrICmp(zLeft,"page_size")==0 ){
+ Btree *pBt = pDb->pBt;
+ if( !zRight ){
+ int size = pBt ? sqlite3BtreeGetPageSize(pBt) : 0;
+ returnSingleInt(pParse, "page_size", size);
+ }else{
+ /* Malloc may fail when setting the page-size, as there is an internal
+ ** buffer that the pager module resizes using sqlite3_realloc().
+ */
+ db->nextPagesize = atoi(zRight);
+ if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, -1) ){
+ db->mallocFailed = 1;
+ }
+ }
+ }else
+
+ /*
+ ** PRAGMA [database.]max_page_count
+ ** PRAGMA [database.]max_page_count=N
+ **
+ ** The first form reports the current setting for the
+ ** maximum number of pages in the database file. The
+ ** second form attempts to change this setting. Both
+ ** forms return the current setting.
+ */
+ if( sqlite3StrICmp(zLeft,"max_page_count")==0 ){
+ Btree *pBt = pDb->pBt;
+ int newMax = 0;
+ if( zRight ){
+ newMax = atoi(zRight);
+ }
+ if( pBt ){
+ newMax = sqlite3BtreeMaxPageCount(pBt, newMax);
+ }
+ returnSingleInt(pParse, "max_page_count", newMax);
+ }else
+
+ /*
+ ** PRAGMA [database.]locking_mode
+ ** PRAGMA [database.]locking_mode = (normal|exclusive)
+ */
+ if( sqlite3StrICmp(zLeft,"locking_mode")==0 ){
+ const char *zRet = "normal";
+ int eMode = getLockingMode(zRight);
+
+ if( pId2->n==0 && eMode==PAGER_LOCKINGMODE_QUERY ){
+ /* Simple "PRAGMA locking_mode;" statement. This is a query for
+ ** the current default locking mode (which may be different to
+ ** the locking-mode of the main database).
+ */
+ eMode = db->dfltLockMode;
+ }else{
+ Pager *pPager;
+ if( pId2->n==0 ){
+ /* This indicates that no database name was specified as part
+ ** of the PRAGMA command. In this case the locking-mode must be
+ ** set on all attached databases, as well as the main db file.
+ **
+ ** Also, the sqlite3.dfltLockMode variable is set so that
+ ** any subsequently attached databases also use the specified
+ ** locking mode.
+ */
+ int ii;
+ assert(pDb==&db->aDb[0]);
+ for(ii=2; ii<db->nDb; ii++){
+ pPager = sqlite3BtreePager(db->aDb[ii].pBt);
+ sqlite3PagerLockingMode(pPager, eMode);
+ }
+ db->dfltLockMode = eMode;
+ }
+ pPager = sqlite3BtreePager(pDb->pBt);
+ eMode = sqlite3PagerLockingMode(pPager, eMode);
+ }
+
+ assert(eMode==PAGER_LOCKINGMODE_NORMAL||eMode==PAGER_LOCKINGMODE_EXCLUSIVE);
+ if( eMode==PAGER_LOCKINGMODE_EXCLUSIVE ){
+ zRet = "exclusive";
+ }
+ sqlite3VdbeSetNumCols(v, 1);
+ sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "locking_mode", P4_STATIC);
+ sqlite3VdbeAddOp4(v, OP_String8, 0, 1, 0, zRet, 0);
+ sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1);
+ }else
+
+ /*
+ ** PRAGMA [database.]journal_mode
+ ** PRAGMA [database.]journal_mode = (delete|persist|off)
+ */
+ if( sqlite3StrICmp(zLeft,"journal_mode")==0 ){
+ int eMode;
+ static const char *azModeName[] = {"delete", "persist", "off"};
+
+ if( zRight==0 ){
+ eMode = PAGER_JOURNALMODE_QUERY;
+ }else{
+ int n = strlen(zRight);
+ eMode = 2;
+ while( eMode>=0 && sqlite3StrNICmp(zRight, azModeName[eMode], n)!=0 ){
+ eMode--;
+ }
+ }
+ if( pId2->n==0 && eMode==PAGER_JOURNALMODE_QUERY ){
+ /* Simple "PRAGMA persistent_journal;" statement. This is a query for
+ ** the current default journal mode (which may be different to
+ ** the journal-mode of the main database).
+ */
+ eMode = db->dfltJournalMode;
+ }else{
+ Pager *pPager;
+ if( pId2->n==0 ){
+ /* This indicates that no database name was specified as part
+ ** of the PRAGMA command. In this case the journal-mode must be
+ ** set on all attached databases, as well as the main db file.
+ **
+ ** Also, the sqlite3.dfltJournalMode variable is set so that
+ ** any subsequently attached databases also use the specified
+ ** journal mode.
+ */
+ int ii;
+ assert(pDb==&db->aDb[0]);
+ for(ii=1; ii<db->nDb; ii++){
+ if( db->aDb[ii].pBt ){
+ pPager = sqlite3BtreePager(db->aDb[ii].pBt);
+ sqlite3PagerJournalMode(pPager, eMode);
+ }
+ }
+ db->dfltJournalMode = eMode;
+ }
+ pPager = sqlite3BtreePager(pDb->pBt);
+ eMode = sqlite3PagerJournalMode(pPager, eMode);
+ }
+ assert( eMode==PAGER_JOURNALMODE_DELETE
+ || eMode==PAGER_JOURNALMODE_PERSIST
+ || eMode==PAGER_JOURNALMODE_OFF );
+ sqlite3VdbeSetNumCols(v, 1);
+ sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "journal_mode", P4_STATIC);
+ sqlite3VdbeAddOp4(v, OP_String8, 0, 1, 0,
+ azModeName[eMode], P4_STATIC);
+ sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1);
+ }else
+#endif /* SQLITE_OMIT_PAGER_PRAGMAS */
+
+ /*
+ ** PRAGMA [database.]auto_vacuum
+ ** PRAGMA [database.]auto_vacuum=N
+ **
+ ** Get or set the (boolean) value of the database 'auto-vacuum' parameter.
+ */
+#ifndef SQLITE_OMIT_AUTOVACUUM
+ if( sqlite3StrICmp(zLeft,"auto_vacuum")==0 ){
+ Btree *pBt = pDb->pBt;
+ if( sqlite3ReadSchema(pParse) ){
+ goto pragma_out;
+ }
+ if( !zRight ){
+ int auto_vacuum =
+ pBt ? sqlite3BtreeGetAutoVacuum(pBt) : SQLITE_DEFAULT_AUTOVACUUM;
+ returnSingleInt(pParse, "auto_vacuum", auto_vacuum);
+ }else{
+ int eAuto = getAutoVacuum(zRight);
+ db->nextAutovac = eAuto;
+ if( eAuto>=0 ){
+ /* Call SetAutoVacuum() to set initialize the internal auto and
+ ** incr-vacuum flags. This is required in case this connection
+ ** creates the database file. It is important that it is created
+ ** as an auto-vacuum capable db.
+ */
+ int rc = sqlite3BtreeSetAutoVacuum(pBt, eAuto);
+ if( rc==SQLITE_OK && (eAuto==1 || eAuto==2) ){
+ /* When setting the auto_vacuum mode to either "full" or
+ ** "incremental", write the value of meta[6] in the database
+ ** file. Before writing to meta[6], check that meta[3] indicates
+ ** that this really is an auto-vacuum capable database.
+ */
+ static const VdbeOpList setMeta6[] = {
+ { OP_Transaction, 0, 1, 0}, /* 0 */
+ { OP_ReadCookie, 0, 1, 3}, /* 1 */
+ { OP_If, 1, 0, 0}, /* 2 */
+ { OP_Halt, SQLITE_OK, OE_Abort, 0}, /* 3 */
+ { OP_Integer, 0, 1, 0}, /* 4 */
+ { OP_SetCookie, 0, 6, 1}, /* 5 */
+ };
+ int iAddr;
+ iAddr = sqlite3VdbeAddOpList(v, ArraySize(setMeta6), setMeta6);
+ sqlite3VdbeChangeP1(v, iAddr, iDb);
+ sqlite3VdbeChangeP1(v, iAddr+1, iDb);
+ sqlite3VdbeChangeP2(v, iAddr+2, iAddr+4);
+ sqlite3VdbeChangeP1(v, iAddr+4, eAuto-1);
+ sqlite3VdbeChangeP1(v, iAddr+5, iDb);
+ sqlite3VdbeUsesBtree(v, iDb);
+ }
+ }
+ }
+ }else
+#endif
+
+ /*
+ ** PRAGMA [database.]incremental_vacuum(N)
+ **
+ ** Do N steps of incremental vacuuming on a database.
+ */
+#ifndef SQLITE_OMIT_AUTOVACUUM
+ if( sqlite3StrICmp(zLeft,"incremental_vacuum")==0 ){
+ int iLimit, addr;
+ if( sqlite3ReadSchema(pParse) ){
+ goto pragma_out;
+ }
+ if( zRight==0 || !sqlite3GetInt32(zRight, &iLimit) || iLimit<=0 ){
+ iLimit = 0x7fffffff;
+ }
+ sqlite3BeginWriteOperation(pParse, 0, iDb);
+ sqlite3VdbeAddOp2(v, OP_Integer, iLimit, 1);
+ addr = sqlite3VdbeAddOp1(v, OP_IncrVacuum, iDb);
+ sqlite3VdbeAddOp1(v, OP_ResultRow, 1);
+ sqlite3VdbeAddOp2(v, OP_AddImm, 1, -1);
+ sqlite3VdbeAddOp2(v, OP_IfPos, 1, addr);
+ sqlite3VdbeJumpHere(v, addr);
+ }else
+#endif
+
+#ifndef SQLITE_OMIT_PAGER_PRAGMAS
+ /*
+ ** PRAGMA [database.]cache_size
+ ** PRAGMA [database.]cache_size=N
+ **
+ ** The first form reports the current local setting for the
+ ** page cache size. The local setting can be different from
+ ** the persistent cache size value that is stored in the database
+ ** file itself. The value returned is the maximum number of
+ ** pages in the page cache. The second form sets the local
+ ** page cache size value. It does not change the persistent
+ ** cache size stored on the disk so the cache size will revert
+ ** to its default value when the database is closed and reopened.
+ ** N should be a positive integer.
+ */
+ if( sqlite3StrICmp(zLeft,"cache_size")==0 ){
+ if( sqlite3ReadSchema(pParse) ) goto pragma_out;
+ if( !zRight ){
+ returnSingleInt(pParse, "cache_size", pDb->pSchema->cache_size);
+ }else{
+ int size = atoi(zRight);
+ if( size<0 ) size = -size;
+ pDb->pSchema->cache_size = size;
+ sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size);
+ }
+ }else
+
+ /*
+ ** PRAGMA temp_store
+ ** PRAGMA temp_store = "default"|"memory"|"file"
+ **
+ ** Return or set the local value of the temp_store flag. Changing
+ ** the local value does not make changes to the disk file and the default
+ ** value will be restored the next time the database is opened.
+ **
+ ** Note that it is possible for the library compile-time options to
+ ** override this setting
+ */
+ if( sqlite3StrICmp(zLeft, "temp_store")==0 ){
+ if( !zRight ){
+ returnSingleInt(pParse, "temp_store", db->temp_store);
+ }else{
+ changeTempStorage(pParse, zRight);
+ }
+ }else
+
+ /*
+ ** PRAGMA temp_store_directory
+ ** PRAGMA temp_store_directory = ""|"directory_name"
+ **
+ ** Return or set the local value of the temp_store_directory flag. Changing
+ ** the value sets a specific directory to be used for temporary files.
+ ** Setting to a null string reverts to the default temporary directory search.
+ ** If temporary directory is changed, then invalidateTempStorage.
+ **
+ */
+ if( sqlite3StrICmp(zLeft, "temp_store_directory")==0 ){
+ if( !zRight ){
+ if( sqlite3_temp_directory ){
+ sqlite3VdbeSetNumCols(v, 1);
+ sqlite3VdbeSetColName(v, 0, COLNAME_NAME,
+ "temp_store_directory", P4_STATIC);
+ sqlite3VdbeAddOp4(v, OP_String8, 0, 1, 0, sqlite3_temp_directory, 0);
+ sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1);
+ }
+ }else{
+ if( zRight[0]
+ && sqlite3OsAccess(db->pVfs, zRight, SQLITE_ACCESS_READWRITE)==0
+ ){
+ sqlite3ErrorMsg(pParse, "not a writable directory");
+ goto pragma_out;
+ }
+ if( TEMP_STORE==0
+ || (TEMP_STORE==1 && db->temp_store<=1)
+ || (TEMP_STORE==2 && db->temp_store==1)
+ ){
+ invalidateTempStorage(pParse);
+ }
+ sqlite3_free(sqlite3_temp_directory);
+ if( zRight[0] ){
+ sqlite3_temp_directory = zRight;
+ zRight = 0;
+ }else{
+ sqlite3_temp_directory = 0;
+ }
+ }
+ }else
+
+ /*
+ ** PRAGMA [database.]synchronous
+ ** PRAGMA [database.]synchronous=OFF|ON|NORMAL|FULL
+ **
+ ** Return or set the local value of the synchronous flag. Changing
+ ** the local value does not make changes to the disk file and the
+ ** default value will be restored the next time the database is
+ ** opened.
+ */
+ if( sqlite3StrICmp(zLeft,"synchronous")==0 ){
+ if( sqlite3ReadSchema(pParse) ) goto pragma_out;
+ if( !zRight ){
+ returnSingleInt(pParse, "synchronous", pDb->safety_level-1);
+ }else{
+ if( !db->autoCommit ){
+ sqlite3ErrorMsg(pParse,
+ "Safety level may not be changed inside a transaction");
+ }else{
+ pDb->safety_level = getSafetyLevel(zRight)+1;
+ }
+ }
+ }else
+#endif /* SQLITE_OMIT_PAGER_PRAGMAS */
+
+#ifndef SQLITE_OMIT_FLAG_PRAGMAS
+ if( flagPragma(pParse, zLeft, zRight) ){
+ /* The flagPragma() subroutine also generates any necessary code
+ ** there is nothing more to do here */
+ }else
+#endif /* SQLITE_OMIT_FLAG_PRAGMAS */
+
+#ifndef SQLITE_OMIT_SCHEMA_PRAGMAS
+ /*
+ ** PRAGMA table_info(<table>)
+ **
+ ** Return a single row for each column of the named table. The columns of
+ ** the returned data set are:
+ **
+ ** cid: Column id (numbered from left to right, starting at 0)
+ ** name: Column name
+ ** type: Column declaration type.
+ ** notnull: True if 'NOT NULL' is part of column declaration
+ ** dflt_value: The default value for the column, if any.
+ */
+ if( sqlite3StrICmp(zLeft, "table_info")==0 && zRight ){
+ Table *pTab;
+ if( sqlite3ReadSchema(pParse) ) goto pragma_out;
+ pTab = sqlite3FindTable(db, zRight, zDb);
+ if( pTab ){
+ int i;
+ int nHidden = 0;
+ Column *pCol;
+ sqlite3VdbeSetNumCols(v, 6);
+ pParse->nMem = 6;
+ sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "cid", P4_STATIC);
+ sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "name", P4_STATIC);
+ sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "type", P4_STATIC);
+ sqlite3VdbeSetColName(v, 3, COLNAME_NAME, "notnull", P4_STATIC);
+ sqlite3VdbeSetColName(v, 4, COLNAME_NAME, "dflt_value", P4_STATIC);
+ sqlite3VdbeSetColName(v, 5, COLNAME_NAME, "pk", P4_STATIC);
+ sqlite3ViewGetColumnNames(pParse, pTab);
+ for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){
+ const Token *pDflt;
+ if( IsHiddenColumn(pCol) ){
+ nHidden++;
+ continue;
+ }
+ sqlite3VdbeAddOp2(v, OP_Integer, i-nHidden, 1);
+ sqlite3VdbeAddOp4(v, OP_String8, 0, 2, 0, pCol->zName, 0);
+ sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0,
+ pCol->zType ? pCol->zType : "", 0);
+ sqlite3VdbeAddOp2(v, OP_Integer, pCol->notNull, 4);
+ if( pCol->pDflt && (pDflt = &pCol->pDflt->span)->z ){
+ sqlite3VdbeAddOp4(v, OP_String8, 0, 5, 0, (char*)pDflt->z, pDflt->n);
+ }else{
+ sqlite3VdbeAddOp2(v, OP_Null, 0, 5);
+ }
+ sqlite3VdbeAddOp2(v, OP_Integer, pCol->isPrimKey, 6);
+ sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 6);
+ }
+ }
+ }else
+
+ if( sqlite3StrICmp(zLeft, "index_info")==0 && zRight ){
+ Index *pIdx;
+ Table *pTab;
+ if( sqlite3ReadSchema(pParse) ) goto pragma_out;
+ pIdx = sqlite3FindIndex(db, zRight, zDb);
+ if( pIdx ){
+ int i;
+ pTab = pIdx->pTable;
+ sqlite3VdbeSetNumCols(v, 3);
+ pParse->nMem = 3;
+ sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "seqno", P4_STATIC);
+ sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "cid", P4_STATIC);
+ sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "name", P4_STATIC);
+ for(i=0; i<pIdx->nColumn; i++){
+ int cnum = pIdx->aiColumn[i];
+ sqlite3VdbeAddOp2(v, OP_Integer, i, 1);
+ sqlite3VdbeAddOp2(v, OP_Integer, cnum, 2);
+ assert( pTab->nCol>cnum );
+ sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, pTab->aCol[cnum].zName, 0);
+ sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 3);
+ }
+ }
+ }else
+
+ if( sqlite3StrICmp(zLeft, "index_list")==0 && zRight ){
+ Index *pIdx;
+ Table *pTab;
+ if( sqlite3ReadSchema(pParse) ) goto pragma_out;
+ pTab = sqlite3FindTable(db, zRight, zDb);
+ if( pTab ){
+ v = sqlite3GetVdbe(pParse);
+ pIdx = pTab->pIndex;
+ if( pIdx ){
+ int i = 0;
+ sqlite3VdbeSetNumCols(v, 3);
+ pParse->nMem = 3;
+ sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "seq", P4_STATIC);
+ sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "name", P4_STATIC);
+ sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "unique", P4_STATIC);
+ while(pIdx){
+ sqlite3VdbeAddOp2(v, OP_Integer, i, 1);
+ sqlite3VdbeAddOp4(v, OP_String8, 0, 2, 0, pIdx->zName, 0);
+ sqlite3VdbeAddOp2(v, OP_Integer, pIdx->onError!=OE_None, 3);
+ sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 3);
+ ++i;
+ pIdx = pIdx->pNext;
+ }
+ }
+ }
+ }else
+
+ if( sqlite3StrICmp(zLeft, "database_list")==0 ){
+ int i;
+ if( sqlite3ReadSchema(pParse) ) goto pragma_out;
+ sqlite3VdbeSetNumCols(v, 3);
+ pParse->nMem = 3;
+ sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "seq", P4_STATIC);
+ sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "name", P4_STATIC);
+ sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "file", P4_STATIC);
+ for(i=0; i<db->nDb; i++){
+ if( db->aDb[i].pBt==0 ) continue;
+ assert( db->aDb[i].zName!=0 );
+ sqlite3VdbeAddOp2(v, OP_Integer, i, 1);
+ sqlite3VdbeAddOp4(v, OP_String8, 0, 2, 0, db->aDb[i].zName, 0);
+ sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0,
+ sqlite3BtreeGetFilename(db->aDb[i].pBt), 0);
+ sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 3);
+ }
+ }else
+
+ if( sqlite3StrICmp(zLeft, "collation_list")==0 ){
+ int i = 0;
+ HashElem *p;
+ sqlite3VdbeSetNumCols(v, 2);
+ pParse->nMem = 2;
+ sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "seq", P4_STATIC);
+ sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "name", P4_STATIC);
+ for(p=sqliteHashFirst(&db->aCollSeq); p; p=sqliteHashNext(p)){
+ CollSeq *pColl = (CollSeq *)sqliteHashData(p);
+ sqlite3VdbeAddOp2(v, OP_Integer, i++, 1);
+ sqlite3VdbeAddOp4(v, OP_String8, 0, 2, 0, pColl->zName, 0);
+ sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 2);
+ }
+ }else
+#endif /* SQLITE_OMIT_SCHEMA_PRAGMAS */
+
+#ifndef SQLITE_OMIT_FOREIGN_KEY
+ if( sqlite3StrICmp(zLeft, "foreign_key_list")==0 && zRight ){
+ FKey *pFK;
+ Table *pTab;
+ if( sqlite3ReadSchema(pParse) ) goto pragma_out;
+ pTab = sqlite3FindTable(db, zRight, zDb);
+ if( pTab ){
+ v = sqlite3GetVdbe(pParse);
+ pFK = pTab->pFKey;
+ if( pFK ){
+ int i = 0;
+ sqlite3VdbeSetNumCols(v, 5);
+ pParse->nMem = 5;
+ sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "id", P4_STATIC);
+ sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "seq", P4_STATIC);
+ sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "table", P4_STATIC);
+ sqlite3VdbeSetColName(v, 3, COLNAME_NAME, "from", P4_STATIC);
+ sqlite3VdbeSetColName(v, 4, COLNAME_NAME, "to", P4_STATIC);
+ while(pFK){
+ int j;
+ for(j=0; j<pFK->nCol; j++){
+ char *zCol = pFK->aCol[j].zCol;
+ sqlite3VdbeAddOp2(v, OP_Integer, i, 1);
+ sqlite3VdbeAddOp2(v, OP_Integer, j, 2);
+ sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, pFK->zTo, 0);
+ sqlite3VdbeAddOp4(v, OP_String8, 0, 4, 0,
+ pTab->aCol[pFK->aCol[j].iFrom].zName, 0);
+ sqlite3VdbeAddOp4(v, zCol ? OP_String8 : OP_Null, 0, 5, 0, zCol, 0);
+ sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 5);
+ }
+ ++i;
+ pFK = pFK->pNextFrom;
+ }
+ }
+ }
+ }else
+#endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */
+
+#ifndef NDEBUG
+ if( sqlite3StrICmp(zLeft, "parser_trace")==0 ){
+ if( zRight ){
+ if( getBoolean(zRight) ){
+ sqlite3ParserTrace(stderr, "parser: ");
+ }else{
+ sqlite3ParserTrace(0, 0);
+ }
+ }
+ }else
+#endif
+
+ /* Reinstall the LIKE and GLOB functions. The variant of LIKE
+ ** used will be case sensitive or not depending on the RHS.
+ */
+ if( sqlite3StrICmp(zLeft, "case_sensitive_like")==0 ){
+ if( zRight ){
+ sqlite3RegisterLikeFunctions(db, getBoolean(zRight));
+ }
+ }else
+
+#ifndef SQLITE_INTEGRITY_CHECK_ERROR_MAX
+# define SQLITE_INTEGRITY_CHECK_ERROR_MAX 100
+#endif
+
+#ifndef SQLITE_OMIT_INTEGRITY_CHECK
+ /* Pragma "quick_check" is an experimental reduced version of
+ ** integrity_check designed to detect most database corruption
+ ** without most of the overhead of a full integrity-check.
+ */
+ if( sqlite3StrICmp(zLeft, "integrity_check")==0
+ || sqlite3StrICmp(zLeft, "quick_check")==0
+ ){
+ int i, j, addr, mxErr;
+
+ /* Code that appears at the end of the integrity check. If no error
+ ** messages have been generated, output OK. Otherwise output the
+ ** error message
+ */
+ static const VdbeOpList endCode[] = {
+ { OP_AddImm, 1, 0, 0}, /* 0 */
+ { OP_IfNeg, 1, 0, 0}, /* 1 */
+ { OP_String8, 0, 3, 0}, /* 2 */
+ { OP_ResultRow, 3, 1, 0},
+ };
+
+ int isQuick = (zLeft[0]=='q');
+
+ /* Initialize the VDBE program */
+ if( sqlite3ReadSchema(pParse) ) goto pragma_out;
+ pParse->nMem = 6;
+ sqlite3VdbeSetNumCols(v, 1);
+ sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "integrity_check", P4_STATIC);
+
+ /* Set the maximum error count */
+ mxErr = SQLITE_INTEGRITY_CHECK_ERROR_MAX;
+ if( zRight ){
+ mxErr = atoi(zRight);
+ if( mxErr<=0 ){
+ mxErr = SQLITE_INTEGRITY_CHECK_ERROR_MAX;
+ }
+ }
+ sqlite3VdbeAddOp2(v, OP_Integer, mxErr, 1); /* reg[1] holds errors left */
+
+ /* Do an integrity check on each database file */
+ for(i=0; i<db->nDb; i++){
+ HashElem *x;
+ Hash *pTbls;
+ int cnt = 0;
+
+ if( OMIT_TEMPDB && i==1 ) continue;
+
+ sqlite3CodeVerifySchema(pParse, i);
+ addr = sqlite3VdbeAddOp1(v, OP_IfPos, 1); /* Halt if out of errors */
+ sqlite3VdbeAddOp2(v, OP_Halt, 0, 0);
+ sqlite3VdbeJumpHere(v, addr);
+
+ /* Do an integrity check of the B-Tree
+ **
+ ** Begin by filling registers 2, 3, ... with the root pages numbers
+ ** for all tables and indices in the database.
+ */
+ pTbls = &db->aDb[i].pSchema->tblHash;
+ for(x=sqliteHashFirst(pTbls); x; x=sqliteHashNext(x)){
+ Table *pTab = sqliteHashData(x);
+ Index *pIdx;
+ sqlite3VdbeAddOp2(v, OP_Integer, pTab->tnum, 2+cnt);
+ cnt++;
+ for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
+ sqlite3VdbeAddOp2(v, OP_Integer, pIdx->tnum, 2+cnt);
+ cnt++;
+ }
+ }
+ if( cnt==0 ) continue;
+
+ /* Make sure sufficient number of registers have been allocated */
+ if( pParse->nMem < cnt+4 ){
+ pParse->nMem = cnt+4;
+ }
+
+ /* Do the b-tree integrity checks */
+ sqlite3VdbeAddOp3(v, OP_IntegrityCk, 2, cnt, 1);
+ sqlite3VdbeChangeP5(v, i);
+ addr = sqlite3VdbeAddOp1(v, OP_IsNull, 2);
+ sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0,
+ sqlite3MPrintf(db, "*** in database %s ***\n", db->aDb[i].zName),
+ P4_DYNAMIC);
+ sqlite3VdbeAddOp2(v, OP_Move, 2, 4);
+ sqlite3VdbeAddOp3(v, OP_Concat, 4, 3, 2);
+ sqlite3VdbeAddOp2(v, OP_ResultRow, 2, 1);
+ sqlite3VdbeJumpHere(v, addr);
+
+ /* Make sure all the indices are constructed correctly.
+ */
+ for(x=sqliteHashFirst(pTbls); x && !isQuick; x=sqliteHashNext(x)){
+ Table *pTab = sqliteHashData(x);
+ Index *pIdx;
+ int loopTop;
+
+ if( pTab->pIndex==0 ) continue;
+ addr = sqlite3VdbeAddOp1(v, OP_IfPos, 1); /* Stop if out of errors */
+ sqlite3VdbeAddOp2(v, OP_Halt, 0, 0);
+ sqlite3VdbeJumpHere(v, addr);
+ sqlite3OpenTableAndIndices(pParse, pTab, 1, OP_OpenRead);
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, 2); /* reg(2) will count entries */
+ loopTop = sqlite3VdbeAddOp2(v, OP_Rewind, 1, 0);
+ sqlite3VdbeAddOp2(v, OP_AddImm, 2, 1); /* increment entry count */
+ for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
+ int jmp2;
+ static const VdbeOpList idxErr[] = {
+ { OP_AddImm, 1, -1, 0},
+ { OP_String8, 0, 3, 0}, /* 1 */
+ { OP_Rowid, 1, 4, 0},
+ { OP_String8, 0, 5, 0}, /* 3 */
+ { OP_String8, 0, 6, 0}, /* 4 */
+ { OP_Concat, 4, 3, 3},
+ { OP_Concat, 5, 3, 3},
+ { OP_Concat, 6, 3, 3},
+ { OP_ResultRow, 3, 1, 0},
+ { OP_IfPos, 1, 0, 0}, /* 9 */
+ { OP_Halt, 0, 0, 0},
+ };
+ sqlite3GenerateIndexKey(pParse, pIdx, 1, 3, 1);
+ jmp2 = sqlite3VdbeAddOp3(v, OP_Found, j+2, 0, 3);
+ addr = sqlite3VdbeAddOpList(v, ArraySize(idxErr), idxErr);
+ sqlite3VdbeChangeP4(v, addr+1, "rowid ", P4_STATIC);
+ sqlite3VdbeChangeP4(v, addr+3, " missing from index ", P4_STATIC);
+ sqlite3VdbeChangeP4(v, addr+4, pIdx->zName, P4_STATIC);
+ sqlite3VdbeJumpHere(v, addr+9);
+ sqlite3VdbeJumpHere(v, jmp2);
+ }
+ sqlite3VdbeAddOp2(v, OP_Next, 1, loopTop+1);
+ sqlite3VdbeJumpHere(v, loopTop);
+ for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
+ static const VdbeOpList cntIdx[] = {
+ { OP_Integer, 0, 3, 0},
+ { OP_Rewind, 0, 0, 0}, /* 1 */
+ { OP_AddImm, 3, 1, 0},
+ { OP_Next, 0, 0, 0}, /* 3 */
+ { OP_Eq, 2, 0, 3}, /* 4 */
+ { OP_AddImm, 1, -1, 0},
+ { OP_String8, 0, 2, 0}, /* 6 */
+ { OP_String8, 0, 3, 0}, /* 7 */
+ { OP_Concat, 3, 2, 2},
+ { OP_ResultRow, 2, 1, 0},
+ };
+ if( pIdx->tnum==0 ) continue;
+ addr = sqlite3VdbeAddOp1(v, OP_IfPos, 1);
+ sqlite3VdbeAddOp2(v, OP_Halt, 0, 0);
+ sqlite3VdbeJumpHere(v, addr);
+ addr = sqlite3VdbeAddOpList(v, ArraySize(cntIdx), cntIdx);
+ sqlite3VdbeChangeP1(v, addr+1, j+2);
+ sqlite3VdbeChangeP2(v, addr+1, addr+4);
+ sqlite3VdbeChangeP1(v, addr+3, j+2);
+ sqlite3VdbeChangeP2(v, addr+3, addr+2);
+ sqlite3VdbeJumpHere(v, addr+4);
+ sqlite3VdbeChangeP4(v, addr+6,
+ "wrong # of entries in index ", P4_STATIC);
+ sqlite3VdbeChangeP4(v, addr+7, pIdx->zName, P4_STATIC);
+ }
+ }
+ }
+ addr = sqlite3VdbeAddOpList(v, ArraySize(endCode), endCode);
+ sqlite3VdbeChangeP2(v, addr, -mxErr);
+ sqlite3VdbeJumpHere(v, addr+1);
+ sqlite3VdbeChangeP4(v, addr+2, "ok", P4_STATIC);
+ }else
+#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
+
+#ifndef SQLITE_OMIT_UTF16
+ /*
+ ** PRAGMA encoding
+ ** PRAGMA encoding = "utf-8"|"utf-16"|"utf-16le"|"utf-16be"
+ **
+ ** In its first form, this pragma returns the encoding of the main
+ ** database. If the database is not initialized, it is initialized now.
+ **
+ ** The second form of this pragma is a no-op if the main database file
+ ** has not already been initialized. In this case it sets the default
+ ** encoding that will be used for the main database file if a new file
+ ** is created. If an existing main database file is opened, then the
+ ** default text encoding for the existing database is used.
+ **
+ ** In all cases new databases created using the ATTACH command are
+ ** created to use the same default text encoding as the main database. If
+ ** the main database has not been initialized and/or created when ATTACH
+ ** is executed, this is done before the ATTACH operation.
+ **
+ ** In the second form this pragma sets the text encoding to be used in
+ ** new database files created using this database handle. It is only
+ ** useful if invoked immediately after the main database i
+ */
+ if( sqlite3StrICmp(zLeft, "encoding")==0 ){
+ static const struct EncName {
+ char *zName;
+ u8 enc;
+ } encnames[] = {
+ { "UTF-8", SQLITE_UTF8 },
+ { "UTF8", SQLITE_UTF8 },
+ { "UTF-16le", SQLITE_UTF16LE },
+ { "UTF16le", SQLITE_UTF16LE },
+ { "UTF-16be", SQLITE_UTF16BE },
+ { "UTF16be", SQLITE_UTF16BE },
+ { "UTF-16", 0 }, /* SQLITE_UTF16NATIVE */
+ { "UTF16", 0 }, /* SQLITE_UTF16NATIVE */
+ { 0, 0 }
+ };
+ const struct EncName *pEnc;
+ if( !zRight ){ /* "PRAGMA encoding" */
+ if( sqlite3ReadSchema(pParse) ) goto pragma_out;
+ sqlite3VdbeSetNumCols(v, 1);
+ sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "encoding", P4_STATIC);
+ sqlite3VdbeAddOp2(v, OP_String8, 0, 1);
+ for(pEnc=&encnames[0]; pEnc->zName; pEnc++){
+ if( pEnc->enc==ENC(pParse->db) ){
+ sqlite3VdbeChangeP4(v, -1, pEnc->zName, P4_STATIC);
+ break;
+ }
+ }
+ sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1);
+ }else{ /* "PRAGMA encoding = XXX" */
+ /* Only change the value of sqlite.enc if the database handle is not
+ ** initialized. If the main database exists, the new sqlite.enc value
+ ** will be overwritten when the schema is next loaded. If it does not
+ ** already exists, it will be created to use the new encoding value.
+ */
+ if(
+ !(DbHasProperty(db, 0, DB_SchemaLoaded)) ||
+ DbHasProperty(db, 0, DB_Empty)
+ ){
+ for(pEnc=&encnames[0]; pEnc->zName; pEnc++){
+ if( 0==sqlite3StrICmp(zRight, pEnc->zName) ){
+ ENC(pParse->db) = pEnc->enc ? pEnc->enc : SQLITE_UTF16NATIVE;
+ break;
+ }
+ }
+ if( !pEnc->zName ){
+ sqlite3ErrorMsg(pParse, "unsupported encoding: %s", zRight);
+ }
+ }
+ }
+ }else
+#endif /* SQLITE_OMIT_UTF16 */
+
+#ifndef SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS
+ /*
+ ** PRAGMA [database.]schema_version
+ ** PRAGMA [database.]schema_version = <integer>
+ **
+ ** PRAGMA [database.]user_version
+ ** PRAGMA [database.]user_version = <integer>
+ **
+ ** The pragma's schema_version and user_version are used to set or get
+ ** the value of the schema-version and user-version, respectively. Both
+ ** the schema-version and the user-version are 32-bit signed integers
+ ** stored in the database header.
+ **
+ ** The schema-cookie is usually only manipulated internally by SQLite. It
+ ** is incremented by SQLite whenever the database schema is modified (by
+ ** creating or dropping a table or index). The schema version is used by
+ ** SQLite each time a query is executed to ensure that the internal cache
+ ** of the schema used when compiling the SQL query matches the schema of
+ ** the database against which the compiled query is actually executed.
+ ** Subverting this mechanism by using "PRAGMA schema_version" to modify
+ ** the schema-version is potentially dangerous and may lead to program
+ ** crashes or database corruption. Use with caution!
+ **
+ ** The user-version is not used internally by SQLite. It may be used by
+ ** applications for any purpose.
+ */
+ if( sqlite3StrICmp(zLeft, "schema_version")==0
+ || sqlite3StrICmp(zLeft, "user_version")==0
+ || sqlite3StrICmp(zLeft, "freelist_count")==0
+ ){
+
+ int iCookie; /* Cookie index. 0 for schema-cookie, 6 for user-cookie. */
+ sqlite3VdbeUsesBtree(v, iDb);
+ switch( zLeft[0] ){
+ case 's': case 'S':
+ iCookie = 0;
+ break;
+ case 'f': case 'F':
+ iCookie = 1;
+ iDb = (-1*(iDb+1));
+ assert(iDb<=0);
+ break;
+ default:
+ iCookie = 5;
+ break;
+ }
+
+ if( zRight && iDb>=0 ){
+ /* Write the specified cookie value */
+ static const VdbeOpList setCookie[] = {
+ { OP_Transaction, 0, 1, 0}, /* 0 */
+ { OP_Integer, 0, 1, 0}, /* 1 */
+ { OP_SetCookie, 0, 0, 1}, /* 2 */
+ };
+ int addr = sqlite3VdbeAddOpList(v, ArraySize(setCookie), setCookie);
+ sqlite3VdbeChangeP1(v, addr, iDb);
+ sqlite3VdbeChangeP1(v, addr+1, atoi(zRight));
+ sqlite3VdbeChangeP1(v, addr+2, iDb);
+ sqlite3VdbeChangeP2(v, addr+2, iCookie);
+ }else{
+ /* Read the specified cookie value */
+ static const VdbeOpList readCookie[] = {
+ { OP_ReadCookie, 0, 1, 0}, /* 0 */
+ { OP_ResultRow, 1, 1, 0}
+ };
+ int addr = sqlite3VdbeAddOpList(v, ArraySize(readCookie), readCookie);
+ sqlite3VdbeChangeP1(v, addr, iDb);
+ sqlite3VdbeChangeP3(v, addr, iCookie);
+ sqlite3VdbeSetNumCols(v, 1);
+ sqlite3VdbeSetColName(v, 0, COLNAME_NAME, zLeft, P4_TRANSIENT);
+ }
+ }else
+#endif /* SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS */
+
+#if defined(SQLITE_DEBUG) || defined(SQLITE_TEST)
+ /*
+ ** Report the current state of file logs for all databases
+ */
+ if( sqlite3StrICmp(zLeft, "lock_status")==0 ){
+ static const char *const azLockName[] = {
+ "unlocked", "shared", "reserved", "pending", "exclusive"
+ };
+ int i;
+ Vdbe *v = sqlite3GetVdbe(pParse);
+ sqlite3VdbeSetNumCols(v, 2);
+ pParse->nMem = 2;
+ sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "database", P4_STATIC);
+ sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "status", P4_STATIC);
+ for(i=0; i<db->nDb; i++){
+ Btree *pBt;
+ Pager *pPager;
+ const char *zState = "unknown";
+ int j;
+ if( db->aDb[i].zName==0 ) continue;
+ sqlite3VdbeAddOp4(v, OP_String8, 0, 1, 0, db->aDb[i].zName, P4_STATIC);
+ pBt = db->aDb[i].pBt;
+ if( pBt==0 || (pPager = sqlite3BtreePager(pBt))==0 ){
+ zState = "closed";
+ }else if( sqlite3_file_control(db, i ? db->aDb[i].zName : 0,
+ SQLITE_FCNTL_LOCKSTATE, &j)==SQLITE_OK ){
+ zState = azLockName[j];
+ }
+ sqlite3VdbeAddOp4(v, OP_String8, 0, 2, 0, zState, P4_STATIC);
+ sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 2);
+ }
+ }else
+#endif
+
+#ifdef SQLITE_SSE
+ /*
+ ** Check to see if the sqlite_statements table exists. Create it
+ ** if it does not.
+ */
+ if( sqlite3StrICmp(zLeft, "create_sqlite_statement_table")==0 ){
+ extern int sqlite3CreateStatementsTable(Parse*);
+ sqlite3CreateStatementsTable(pParse);
+ }else
+#endif
+
+#if SQLITE_HAS_CODEC
+ if( sqlite3StrICmp(zLeft, "key")==0 ){
+ sqlite3_key(db, zRight, strlen(zRight));
+ }else
+#endif
+#if SQLITE_HAS_CODEC || defined(SQLITE_ENABLE_CEROD)
+ if( sqlite3StrICmp(zLeft, "activate_extensions")==0 ){
+#if SQLITE_HAS_CODEC
+ if( sqlite3StrNICmp(zRight, "see-", 4)==0 ){
+ extern void sqlite3_activate_see(const char*);
+ sqlite3_activate_see(&zRight[4]);
+ }
+#endif
+#ifdef SQLITE_ENABLE_CEROD
+ if( sqlite3StrNICmp(zRight, "cerod-", 6)==0 ){
+ extern void sqlite3_activate_cerod(const char*);
+ sqlite3_activate_cerod(&zRight[6]);
+ }
+#endif
+ }
+#endif
+
+ {}
+
+ if( v ){
+ /* Code an OP_Expire at the end of each PRAGMA program to cause
+ ** the VDBE implementing the pragma to expire. Most (all?) pragmas
+ ** are only valid for a single execution.
+ */
+ sqlite3VdbeAddOp2(v, OP_Expire, 1, 0);
+
+ /*
+ ** Reset the safety level, in case the fullfsync flag or synchronous
+ ** setting changed.
+ */
+#ifndef SQLITE_OMIT_PAGER_PRAGMAS
+ if( db->autoCommit ){
+ sqlite3BtreeSetSafetyLevel(pDb->pBt, pDb->safety_level,
+ (db->flags&SQLITE_FullFSync)!=0);
+ }
+#endif
+ }
+pragma_out:
+ sqlite3_free(zLeft);
+ sqlite3_free(zRight);
+}
+
+#endif /* SQLITE_OMIT_PRAGMA || SQLITE_OMIT_PARSER */
+
+/************** End of pragma.c **********************************************/
+/************** Begin file prepare.c *****************************************/
+/*
+** 2005 May 25
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains the implementation of the sqlite3_prepare()
+** interface, and routines that contribute to loading the database schema
+** from disk.
+**
+** $Id: prepare.c,v 1.83 2008/04/03 14:36:26 danielk1977 Exp $
+*/
+
+/*
+** Fill the InitData structure with an error message that indicates
+** that the database is corrupt.
+*/
+static void corruptSchema(
+ InitData *pData, /* Initialization context */
+ const char *zObj, /* Object being parsed at the point of error */
+ const char *zExtra /* Error information */
+){
+ if( !pData->db->mallocFailed ){
+ if( zObj==0 ) zObj = "?";
+ sqlite3SetString(pData->pzErrMsg, "malformed database schema (", zObj, ")",
+ zExtra!=0 && zExtra[0]!=0 ? " - " : (char*)0, zExtra, (char*)0);
+ }
+ pData->rc = SQLITE_CORRUPT;
+}
+
+/*
+** This is the callback routine for the code that initializes the
+** database. See sqlite3Init() below for additional information.
+** This routine is also called from the OP_ParseSchema opcode of the VDBE.
+**
+** Each callback contains the following information:
+**
+** argv[0] = name of thing being created
+** argv[1] = root page number for table or index. 0 for trigger or view.
+** argv[2] = SQL text for the CREATE statement.
+**
+*/
+SQLITE_PRIVATE int sqlite3InitCallback(void *pInit, int argc, char **argv, char **azColName){
+ InitData *pData = (InitData*)pInit;
+ sqlite3 *db = pData->db;
+ int iDb = pData->iDb;
+
+ assert( sqlite3_mutex_held(db->mutex) );
+ pData->rc = SQLITE_OK;
+ DbClearProperty(db, iDb, DB_Empty);
+ if( db->mallocFailed ){
+ corruptSchema(pData, argv[0], 0);
+ return SQLITE_NOMEM;
+ }
+
+ assert( argc==3 );
+ if( argv==0 ) return 0; /* Might happen if EMPTY_RESULT_CALLBACKS are on */
+ if( argv[1]==0 ){
+ corruptSchema(pData, argv[0], 0);
+ return 1;
+ }
+ assert( iDb>=0 && iDb<db->nDb );
+ if( argv[2] && argv[2][0] ){
+ /* Call the parser to process a CREATE TABLE, INDEX or VIEW.
+ ** But because db->init.busy is set to 1, no VDBE code is generated
+ ** or executed. All the parser does is build the internal data
+ ** structures that describe the table, index, or view.
+ */
+ char *zErr;
+ int rc;
+ assert( db->init.busy );
+ db->init.iDb = iDb;
+ db->init.newTnum = atoi(argv[1]);
+ rc = sqlite3_exec(db, argv[2], 0, 0, &zErr);
+ db->init.iDb = 0;
+ assert( rc!=SQLITE_OK || zErr==0 );
+ if( SQLITE_OK!=rc ){
+ pData->rc = rc;
+ if( rc==SQLITE_NOMEM ){
+ db->mallocFailed = 1;
+ }else if( rc!=SQLITE_INTERRUPT ){
+ corruptSchema(pData, argv[0], zErr);
+ }
+ sqlite3_free(zErr);
+ return 1;
+ }
+ }else if( argv[0]==0 ){
+ corruptSchema(pData, 0, 0);
+ }else{
+ /* If the SQL column is blank it means this is an index that
+ ** was created to be the PRIMARY KEY or to fulfill a UNIQUE
+ ** constraint for a CREATE TABLE. The index should have already
+ ** been created when we processed the CREATE TABLE. All we have
+ ** to do here is record the root page number for that index.
+ */
+ Index *pIndex;
+ pIndex = sqlite3FindIndex(db, argv[0], db->aDb[iDb].zName);
+ if( pIndex==0 || pIndex->tnum!=0 ){
+ /* This can occur if there exists an index on a TEMP table which
+ ** has the same name as another index on a permanent index. Since
+ ** the permanent table is hidden by the TEMP table, we can also
+ ** safely ignore the index on the permanent table.
+ */
+ /* Do Nothing */;
+ }else{
+ pIndex->tnum = atoi(argv[1]);
+ }
+ }
+ return 0;
+}
+
+/*
+** Attempt to read the database schema and initialize internal
+** data structures for a single database file. The index of the
+** database file is given by iDb. iDb==0 is used for the main
+** database. iDb==1 should never be used. iDb>=2 is used for
+** auxiliary databases. Return one of the SQLITE_ error codes to
+** indicate success or failure.
+*/
+static int sqlite3InitOne(sqlite3 *db, int iDb, char **pzErrMsg){
+ int rc;
+ BtCursor *curMain;
+ int size;
+ Table *pTab;
+ Db *pDb;
+ char const *azArg[4];
+ int meta[10];
+ InitData initData;
+ char const *zMasterSchema;
+ char const *zMasterName = SCHEMA_TABLE(iDb);
+
+ /*
+ ** The master database table has a structure like this
+ */
+ static const char master_schema[] =
+ "CREATE TABLE sqlite_master(\n"
+ " type text,\n"
+ " name text,\n"
+ " tbl_name text,\n"
+ " rootpage integer,\n"
+ " sql text\n"
+ ")"
+ ;
+#ifndef SQLITE_OMIT_TEMPDB
+ static const char temp_master_schema[] =
+ "CREATE TEMP TABLE sqlite_temp_master(\n"
+ " type text,\n"
+ " name text,\n"
+ " tbl_name text,\n"
+ " rootpage integer,\n"
+ " sql text\n"
+ ")"
+ ;
+#else
+ #define temp_master_schema 0
+#endif
+
+ assert( iDb>=0 && iDb<db->nDb );
+ assert( db->aDb[iDb].pSchema );
+ assert( sqlite3_mutex_held(db->mutex) );
+ assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) );
+
+ /* zMasterSchema and zInitScript are set to point at the master schema
+ ** and initialisation script appropriate for the database being
+ ** initialised. zMasterName is the name of the master table.
+ */
+ if( !OMIT_TEMPDB && iDb==1 ){
+ zMasterSchema = temp_master_schema;
+ }else{
+ zMasterSchema = master_schema;
+ }
+ zMasterName = SCHEMA_TABLE(iDb);
+
+ /* Construct the schema tables. */
+ azArg[0] = zMasterName;
+ azArg[1] = "1";
+ azArg[2] = zMasterSchema;
+ azArg[3] = 0;
+ initData.db = db;
+ initData.iDb = iDb;
+ initData.pzErrMsg = pzErrMsg;
+ (void)sqlite3SafetyOff(db);
+ rc = sqlite3InitCallback(&initData, 3, (char **)azArg, 0);
+ (void)sqlite3SafetyOn(db);
+ if( rc ){
+ rc = initData.rc;
+ goto error_out;
+ }
+ pTab = sqlite3FindTable(db, zMasterName, db->aDb[iDb].zName);
+ if( pTab ){
+ pTab->readOnly = 1;
+ }
+
+ /* Create a cursor to hold the database open
+ */
+ pDb = &db->aDb[iDb];
+ if( pDb->pBt==0 ){
+ if( !OMIT_TEMPDB && iDb==1 ){
+ DbSetProperty(db, 1, DB_SchemaLoaded);
+ }
+ return SQLITE_OK;
+ }
+ curMain = sqlite3MallocZero(sqlite3BtreeCursorSize());
+ if( !curMain ){
+ rc = SQLITE_NOMEM;
+ goto error_out;
+ }
+ sqlite3BtreeEnter(pDb->pBt);
+ rc = sqlite3BtreeCursor(pDb->pBt, MASTER_ROOT, 0, 0, curMain);
+ if( rc!=SQLITE_OK && rc!=SQLITE_EMPTY ){
+ sqlite3SetString(pzErrMsg, sqlite3ErrStr(rc), (char*)0);
+ goto leave_error_out;
+ }
+
+ /* Get the database meta information.
+ **
+ ** Meta values are as follows:
+ ** meta[0] Schema cookie. Changes with each schema change.
+ ** meta[1] File format of schema layer.
+ ** meta[2] Size of the page cache.
+ ** meta[3] Use freelist if 0. Autovacuum if greater than zero.
+ ** meta[4] Db text encoding. 1:UTF-8 2:UTF-16LE 3:UTF-16BE
+ ** meta[5] The user cookie. Used by the application.
+ ** meta[6] Incremental-vacuum flag.
+ ** meta[7]
+ ** meta[8]
+ ** meta[9]
+ **
+ ** Note: The #defined SQLITE_UTF* symbols in sqliteInt.h correspond to
+ ** the possible values of meta[4].
+ */
+ if( rc==SQLITE_OK ){
+ int i;
+ for(i=0; rc==SQLITE_OK && i<sizeof(meta)/sizeof(meta[0]); i++){
+ rc = sqlite3BtreeGetMeta(pDb->pBt, i+1, (u32 *)&meta[i]);
+ }
+ if( rc ){
+ sqlite3SetString(pzErrMsg, sqlite3ErrStr(rc), (char*)0);
+ goto leave_error_out;
+ }
+ }else{
+ memset(meta, 0, sizeof(meta));
+ }
+ pDb->pSchema->schema_cookie = meta[0];
+
+ /* If opening a non-empty database, check the text encoding. For the
+ ** main database, set sqlite3.enc to the encoding of the main database.
+ ** For an attached db, it is an error if the encoding is not the same
+ ** as sqlite3.enc.
+ */
+ if( meta[4] ){ /* text encoding */
+ if( iDb==0 ){
+ /* If opening the main database, set ENC(db). */
+ ENC(db) = (u8)meta[4];
+ db->pDfltColl = sqlite3FindCollSeq(db, SQLITE_UTF8, "BINARY", 6, 0);
+ }else{
+ /* If opening an attached database, the encoding much match ENC(db) */
+ if( meta[4]!=ENC(db) ){
+ sqlite3SetString(pzErrMsg, "attached databases must use the same"
+ " text encoding as main database", (char*)0);
+ rc = SQLITE_ERROR;
+ goto leave_error_out;
+ }
+ }
+ }else{
+ DbSetProperty(db, iDb, DB_Empty);
+ }
+ pDb->pSchema->enc = ENC(db);
+
+ size = meta[2];
+ if( size==0 ){ size = SQLITE_DEFAULT_CACHE_SIZE; }
+ if( size<0 ) size = -size;
+ pDb->pSchema->cache_size = size;
+ sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size);
+
+ /*
+ ** file_format==1 Version 3.0.0.
+ ** file_format==2 Version 3.1.3. // ALTER TABLE ADD COLUMN
+ ** file_format==3 Version 3.1.4. // ditto but with non-NULL defaults
+ ** file_format==4 Version 3.3.0. // DESC indices. Boolean constants
+ */
+ pDb->pSchema->file_format = meta[1];
+ if( pDb->pSchema->file_format==0 ){
+ pDb->pSchema->file_format = 1;
+ }
+ if( pDb->pSchema->file_format>SQLITE_MAX_FILE_FORMAT ){
+ sqlite3SetString(pzErrMsg, "unsupported file format", (char*)0);
+ rc = SQLITE_ERROR;
+ goto leave_error_out;
+ }
+
+ /* Ticket #2804: When we open a database in the newer file format,
+ ** clear the legacy_file_format pragma flag so that a VACUUM will
+ ** not downgrade the database and thus invalidate any descending
+ ** indices that the user might have created.
+ */
+ if( iDb==0 && meta[1]>=4 ){
+ db->flags &= ~SQLITE_LegacyFileFmt;
+ }
+
+ /* Read the schema information out of the schema tables
+ */
+ assert( db->init.busy );
+ if( rc==SQLITE_EMPTY ){
+ /* For an empty database, there is nothing to read */
+ rc = SQLITE_OK;
+ }else{
+ char *zSql;
+ zSql = sqlite3MPrintf(db,
+ "SELECT name, rootpage, sql FROM '%q'.%s",
+ db->aDb[iDb].zName, zMasterName);
+ (void)sqlite3SafetyOff(db);
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ {
+ int (*xAuth)(void*,int,const char*,const char*,const char*,const char*);
+ xAuth = db->xAuth;
+ db->xAuth = 0;
+#endif
+ rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ db->xAuth = xAuth;
+ }
+#endif
+ if( rc==SQLITE_ABORT ) rc = initData.rc;
+ (void)sqlite3SafetyOn(db);
+ sqlite3_free(zSql);
+#ifndef SQLITE_OMIT_ANALYZE
+ if( rc==SQLITE_OK ){
+ sqlite3AnalysisLoad(db, iDb);
+ }
+#endif
+ }
+ if( db->mallocFailed ){
+ /* sqlite3SetString(pzErrMsg, "out of memory", (char*)0); */
+ rc = SQLITE_NOMEM;
+ sqlite3ResetInternalSchema(db, 0);
+ }
+ if( rc==SQLITE_OK || (db->flags&SQLITE_RecoveryMode)){
+ /* Black magic: If the SQLITE_RecoveryMode flag is set, then consider
+ ** the schema loaded, even if errors occured. In this situation the
+ ** current sqlite3_prepare() operation will fail, but the following one
+ ** will attempt to compile the supplied statement against whatever subset
+ ** of the schema was loaded before the error occured. The primary
+ ** purpose of this is to allow access to the sqlite_master table
+ ** even when its contents have been corrupted.
+ */
+ DbSetProperty(db, iDb, DB_SchemaLoaded);
+ rc = SQLITE_OK;
+ }
+
+ /* Jump here for an error that occurs after successfully allocating
+ ** curMain and calling sqlite3BtreeEnter(). For an error that occurs
+ ** before that point, jump to error_out.
+ */
+leave_error_out:
+ sqlite3BtreeCloseCursor(curMain);
+ sqlite3_free(curMain);
+ sqlite3BtreeLeave(pDb->pBt);
+
+error_out:
+ if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ){
+ db->mallocFailed = 1;
+ }
+ return rc;
+}
+
+/*
+** Initialize all database files - the main database file, the file
+** used to store temporary tables, and any additional database files
+** created using ATTACH statements. Return a success code. If an
+** error occurs, write an error message into *pzErrMsg.
+**
+** After a database is initialized, the DB_SchemaLoaded bit is set
+** bit is set in the flags field of the Db structure. If the database
+** file was of zero-length, then the DB_Empty flag is also set.
+*/
+SQLITE_PRIVATE int sqlite3Init(sqlite3 *db, char **pzErrMsg){
+ int i, rc;
+ int commit_internal = !(db->flags&SQLITE_InternChanges);
+
+ assert( sqlite3_mutex_held(db->mutex) );
+ if( db->init.busy ) return SQLITE_OK;
+ rc = SQLITE_OK;
+ db->init.busy = 1;
+ for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
+ if( DbHasProperty(db, i, DB_SchemaLoaded) || i==1 ) continue;
+ rc = sqlite3InitOne(db, i, pzErrMsg);
+ if( rc ){
+ sqlite3ResetInternalSchema(db, i);
+ }
+ }
+
+ /* Once all the other databases have been initialised, load the schema
+ ** for the TEMP database. This is loaded last, as the TEMP database
+ ** schema may contain references to objects in other databases.
+ */
+#ifndef SQLITE_OMIT_TEMPDB
+ if( rc==SQLITE_OK && db->nDb>1 && !DbHasProperty(db, 1, DB_SchemaLoaded) ){
+ rc = sqlite3InitOne(db, 1, pzErrMsg);
+ if( rc ){
+ sqlite3ResetInternalSchema(db, 1);
+ }
+ }
+#endif
+
+ db->init.busy = 0;
+ if( rc==SQLITE_OK && commit_internal ){
+ sqlite3CommitInternalChanges(db);
+ }
+
+ return rc;
+}
+
+/*
+** This routine is a no-op if the database schema is already initialised.
+** Otherwise, the schema is loaded. An error code is returned.
+*/
+SQLITE_PRIVATE int sqlite3ReadSchema(Parse *pParse){
+ int rc = SQLITE_OK;
+ sqlite3 *db = pParse->db;
+ assert( sqlite3_mutex_held(db->mutex) );
+ if( !db->init.busy ){
+ rc = sqlite3Init(db, &pParse->zErrMsg);
+ }
+ if( rc!=SQLITE_OK ){
+ pParse->rc = rc;
+ pParse->nErr++;
+ }
+ return rc;
+}
+
+
+/*
+** Check schema cookies in all databases. If any cookie is out
+** of date, return 0. If all schema cookies are current, return 1.
+*/
+static int schemaIsValid(sqlite3 *db){
+ int iDb;
+ int rc;
+ BtCursor *curTemp;
+ int cookie;
+ int allOk = 1;
+
+ curTemp = (BtCursor *)sqlite3_malloc(sqlite3BtreeCursorSize());
+ if( curTemp ){
+ assert( sqlite3_mutex_held(db->mutex) );
+ for(iDb=0; allOk && iDb<db->nDb; iDb++){
+ Btree *pBt;
+ pBt = db->aDb[iDb].pBt;
+ if( pBt==0 ) continue;
+ memset(curTemp, 0, sqlite3BtreeCursorSize());
+ rc = sqlite3BtreeCursor(pBt, MASTER_ROOT, 0, 0, curTemp);
+ if( rc==SQLITE_OK ){
+ rc = sqlite3BtreeGetMeta(pBt, 1, (u32 *)&cookie);
+ if( rc==SQLITE_OK && cookie!=db->aDb[iDb].pSchema->schema_cookie ){
+ allOk = 0;
+ }
+ sqlite3BtreeCloseCursor(curTemp);
+ }
+ if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ){
+ db->mallocFailed = 1;
+ }
+ }
+ sqlite3_free(curTemp);
+ }else{
+ allOk = 0;
+ db->mallocFailed = 1;
+ }
+
+ return allOk;
+}
+
+/*
+** Convert a schema pointer into the iDb index that indicates
+** which database file in db->aDb[] the schema refers to.
+**
+** If the same database is attached more than once, the first
+** attached database is returned.
+*/
+SQLITE_PRIVATE int sqlite3SchemaToIndex(sqlite3 *db, Schema *pSchema){
+ int i = -1000000;
+
+ /* If pSchema is NULL, then return -1000000. This happens when code in
+ ** expr.c is trying to resolve a reference to a transient table (i.e. one
+ ** created by a sub-select). In this case the return value of this
+ ** function should never be used.
+ **
+ ** We return -1000000 instead of the more usual -1 simply because using
+ ** -1000000 as incorrectly using -1000000 index into db->aDb[] is much
+ ** more likely to cause a segfault than -1 (of course there are assert()
+ ** statements too, but it never hurts to play the odds).
+ */
+ assert( sqlite3_mutex_held(db->mutex) );
+ if( pSchema ){
+ for(i=0; i<db->nDb; i++){
+ if( db->aDb[i].pSchema==pSchema ){
+ break;
+ }
+ }
+ assert( i>=0 &&i>=0 && i<db->nDb );
+ }
+ return i;
+}
+
+/*
+** Compile the UTF-8 encoded SQL statement zSql into a statement handle.
+*/
+static int sqlite3Prepare(
+ sqlite3 *db, /* Database handle. */
+ const char *zSql, /* UTF-8 encoded SQL statement. */
+ int nBytes, /* Length of zSql in bytes. */
+ int saveSqlFlag, /* True to copy SQL text into the sqlite3_stmt */
+ sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */
+ const char **pzTail /* OUT: End of parsed string */
+){
+ Parse sParse;
+ char *zErrMsg = 0;
+ int rc = SQLITE_OK;
+ int i;
+
+ assert( ppStmt );
+ *ppStmt = 0;
+ if( sqlite3SafetyOn(db) ){
+ return SQLITE_MISUSE;
+ }
+ assert( !db->mallocFailed );
+ assert( sqlite3_mutex_held(db->mutex) );
+
+ /* If any attached database schemas are locked, do not proceed with
+ ** compilation. Instead return SQLITE_LOCKED immediately.
+ */
+ for(i=0; i<db->nDb; i++) {
+ Btree *pBt = db->aDb[i].pBt;
+ if( pBt ){
+ int rc;
+ rc = sqlite3BtreeSchemaLocked(pBt);
+ if( rc ){
+ const char *zDb = db->aDb[i].zName;
+ sqlite3Error(db, SQLITE_LOCKED, "database schema is locked: %s", zDb);
+ (void)sqlite3SafetyOff(db);
+ return SQLITE_LOCKED;
+ }
+ }
+ }
+
+ memset(&sParse, 0, sizeof(sParse));
+ sParse.db = db;
+ if( nBytes>=0 && zSql[nBytes-1]!=0 ){
+ char *zSqlCopy;
+ int mxLen = db->aLimit[SQLITE_LIMIT_SQL_LENGTH];
+ if( nBytes>mxLen ){
+ sqlite3Error(db, SQLITE_TOOBIG, "statement too long");
+ (void)sqlite3SafetyOff(db);
+ return SQLITE_TOOBIG;
+ }
+ zSqlCopy = sqlite3DbStrNDup(db, zSql, nBytes);
+ if( zSqlCopy ){
+ sqlite3RunParser(&sParse, zSqlCopy, &zErrMsg);
+ sqlite3_free(zSqlCopy);
+ sParse.zTail = &zSql[sParse.zTail-zSqlCopy];
+ }else{
+ sParse.zTail = &zSql[nBytes];
+ }
+ }else{
+ sqlite3RunParser(&sParse, zSql, &zErrMsg);
+ }
+
+ if( db->mallocFailed ){
+ sParse.rc = SQLITE_NOMEM;
+ }
+ if( sParse.rc==SQLITE_DONE ) sParse.rc = SQLITE_OK;
+ if( sParse.checkSchema && !schemaIsValid(db) ){
+ sParse.rc = SQLITE_SCHEMA;
+ }
+ if( sParse.rc==SQLITE_SCHEMA ){
+ sqlite3ResetInternalSchema(db, 0);
+ }
+ if( db->mallocFailed ){
+ sParse.rc = SQLITE_NOMEM;
+ }
+ if( pzTail ){
+ *pzTail = sParse.zTail;
+ }
+ rc = sParse.rc;
+
+#ifndef SQLITE_OMIT_EXPLAIN
+ if( rc==SQLITE_OK && sParse.pVdbe && sParse.explain ){
+ if( sParse.explain==2 ){
+ sqlite3VdbeSetNumCols(sParse.pVdbe, 3);
+ sqlite3VdbeSetColName(sParse.pVdbe, 0, COLNAME_NAME, "order", P4_STATIC);
+ sqlite3VdbeSetColName(sParse.pVdbe, 1, COLNAME_NAME, "from", P4_STATIC);
+ sqlite3VdbeSetColName(sParse.pVdbe, 2, COLNAME_NAME, "detail", P4_STATIC);
+ }else{
+ sqlite3VdbeSetNumCols(sParse.pVdbe, 8);
+ sqlite3VdbeSetColName(sParse.pVdbe, 0, COLNAME_NAME, "addr", P4_STATIC);
+ sqlite3VdbeSetColName(sParse.pVdbe, 1, COLNAME_NAME, "opcode", P4_STATIC);
+ sqlite3VdbeSetColName(sParse.pVdbe, 2, COLNAME_NAME, "p1", P4_STATIC);
+ sqlite3VdbeSetColName(sParse.pVdbe, 3, COLNAME_NAME, "p2", P4_STATIC);
+ sqlite3VdbeSetColName(sParse.pVdbe, 4, COLNAME_NAME, "p3", P4_STATIC);
+ sqlite3VdbeSetColName(sParse.pVdbe, 5, COLNAME_NAME, "p4", P4_STATIC);
+ sqlite3VdbeSetColName(sParse.pVdbe, 6, COLNAME_NAME, "p5", P4_STATIC);
+ sqlite3VdbeSetColName(sParse.pVdbe, 7, COLNAME_NAME, "comment",P4_STATIC);
+ }
+ }
+#endif
+
+ if( sqlite3SafetyOff(db) ){
+ rc = SQLITE_MISUSE;
+ }
+
+ if( saveSqlFlag ){
+ sqlite3VdbeSetSql(sParse.pVdbe, zSql, sParse.zTail - zSql);
+ }
+ if( rc!=SQLITE_OK || db->mallocFailed ){
+ sqlite3_finalize((sqlite3_stmt*)sParse.pVdbe);
+ assert(!(*ppStmt));
+ }else{
+ *ppStmt = (sqlite3_stmt*)sParse.pVdbe;
+ }
+
+ if( zErrMsg ){
+ sqlite3Error(db, rc, "%s", zErrMsg);
+ sqlite3_free(zErrMsg);
+ }else{
+ sqlite3Error(db, rc, 0);
+ }
+
+ rc = sqlite3ApiExit(db, rc);
+ assert( (rc&db->errMask)==rc );
+ return rc;
+}
+static int sqlite3LockAndPrepare(
+ sqlite3 *db, /* Database handle. */
+ const char *zSql, /* UTF-8 encoded SQL statement. */
+ int nBytes, /* Length of zSql in bytes. */
+ int saveSqlFlag, /* True to copy SQL text into the sqlite3_stmt */
+ sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */
+ const char **pzTail /* OUT: End of parsed string */
+){
+ int rc;
+ if( !sqlite3SafetyCheckOk(db) ){
+ return SQLITE_MISUSE;
+ }
+ sqlite3_mutex_enter(db->mutex);
+ sqlite3BtreeEnterAll(db);
+ rc = sqlite3Prepare(db, zSql, nBytes, saveSqlFlag, ppStmt, pzTail);
+ sqlite3BtreeLeaveAll(db);
+ sqlite3_mutex_leave(db->mutex);
+ return rc;
+}
+
+/*
+** Rerun the compilation of a statement after a schema change.
+** Return true if the statement was recompiled successfully.
+** Return false if there is an error of some kind.
+*/
+SQLITE_PRIVATE int sqlite3Reprepare(Vdbe *p){
+ int rc;
+ sqlite3_stmt *pNew;
+ const char *zSql;
+ sqlite3 *db;
+
+ assert( sqlite3_mutex_held(sqlite3VdbeDb(p)->mutex) );
+ zSql = sqlite3_sql((sqlite3_stmt *)p);
+ assert( zSql!=0 ); /* Reprepare only called for prepare_v2() statements */
+ db = sqlite3VdbeDb(p);
+ assert( sqlite3_mutex_held(db->mutex) );
+ rc = sqlite3LockAndPrepare(db, zSql, -1, 0, &pNew, 0);
+ if( rc ){
+ if( rc==SQLITE_NOMEM ){
+ db->mallocFailed = 1;
+ }
+ assert( pNew==0 );
+ return 0;
+ }else{
+ assert( pNew!=0 );
+ }
+ sqlite3VdbeSwap((Vdbe*)pNew, p);
+ sqlite3_transfer_bindings(pNew, (sqlite3_stmt*)p);
+ sqlite3VdbeResetStepResult((Vdbe*)pNew);
+ sqlite3VdbeFinalize((Vdbe*)pNew);
+ return 1;
+}
+
+
+/*
+** Two versions of the official API. Legacy and new use. In the legacy
+** version, the original SQL text is not saved in the prepared statement
+** and so if a schema change occurs, SQLITE_SCHEMA is returned by
+** sqlite3_step(). In the new version, the original SQL text is retained
+** and the statement is automatically recompiled if an schema change
+** occurs.
+*/
+SQLITE_API int sqlite3_prepare(
+ sqlite3 *db, /* Database handle. */
+ const char *zSql, /* UTF-8 encoded SQL statement. */
+ int nBytes, /* Length of zSql in bytes. */
+ sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */
+ const char **pzTail /* OUT: End of parsed string */
+){
+ int rc;
+ rc = sqlite3LockAndPrepare(db,zSql,nBytes,0,ppStmt,pzTail);
+ assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 ); /* VERIFY: F13021 */
+ return rc;
+}
+SQLITE_API int sqlite3_prepare_v2(
+ sqlite3 *db, /* Database handle. */
+ const char *zSql, /* UTF-8 encoded SQL statement. */
+ int nBytes, /* Length of zSql in bytes. */
+ sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */
+ const char **pzTail /* OUT: End of parsed string */
+){
+ int rc;
+ rc = sqlite3LockAndPrepare(db,zSql,nBytes,1,ppStmt,pzTail);
+ assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 ); /* VERIFY: F13021 */
+ return rc;
+}
+
+
+#ifndef SQLITE_OMIT_UTF16
+/*
+** Compile the UTF-16 encoded SQL statement zSql into a statement handle.
+*/
+static int sqlite3Prepare16(
+ sqlite3 *db, /* Database handle. */
+ const void *zSql, /* UTF-8 encoded SQL statement. */
+ int nBytes, /* Length of zSql in bytes. */
+ int saveSqlFlag, /* True to save SQL text into the sqlite3_stmt */
+ sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */
+ const void **pzTail /* OUT: End of parsed string */
+){
+ /* This function currently works by first transforming the UTF-16
+ ** encoded string to UTF-8, then invoking sqlite3_prepare(). The
+ ** tricky bit is figuring out the pointer to return in *pzTail.
+ */
+ char *zSql8;
+ const char *zTail8 = 0;
+ int rc = SQLITE_OK;
+
+ if( !sqlite3SafetyCheckOk(db) ){
+ return SQLITE_MISUSE;
+ }
+ sqlite3_mutex_enter(db->mutex);
+ zSql8 = sqlite3Utf16to8(db, zSql, nBytes);
+ if( zSql8 ){
+ rc = sqlite3LockAndPrepare(db, zSql8, -1, saveSqlFlag, ppStmt, &zTail8);
+ }
+
+ if( zTail8 && pzTail ){
+ /* If sqlite3_prepare returns a tail pointer, we calculate the
+ ** equivalent pointer into the UTF-16 string by counting the unicode
+ ** characters between zSql8 and zTail8, and then returning a pointer
+ ** the same number of characters into the UTF-16 string.
+ */
+ int chars_parsed = sqlite3Utf8CharLen(zSql8, zTail8-zSql8);
+ *pzTail = (u8 *)zSql + sqlite3Utf16ByteLen(zSql, chars_parsed);
+ }
+ sqlite3_free(zSql8);
+ rc = sqlite3ApiExit(db, rc);
+ sqlite3_mutex_leave(db->mutex);
+ return rc;
+}
+
+/*
+** Two versions of the official API. Legacy and new use. In the legacy
+** version, the original SQL text is not saved in the prepared statement
+** and so if a schema change occurs, SQLITE_SCHEMA is returned by
+** sqlite3_step(). In the new version, the original SQL text is retained
+** and the statement is automatically recompiled if an schema change
+** occurs.
+*/
+SQLITE_API int sqlite3_prepare16(
+ sqlite3 *db, /* Database handle. */
+ const void *zSql, /* UTF-8 encoded SQL statement. */
+ int nBytes, /* Length of zSql in bytes. */
+ sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */
+ const void **pzTail /* OUT: End of parsed string */
+){
+ int rc;
+ rc = sqlite3Prepare16(db,zSql,nBytes,0,ppStmt,pzTail);
+ assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 ); /* VERIFY: F13021 */
+ return rc;
+}
+SQLITE_API int sqlite3_prepare16_v2(
+ sqlite3 *db, /* Database handle. */
+ const void *zSql, /* UTF-8 encoded SQL statement. */
+ int nBytes, /* Length of zSql in bytes. */
+ sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */
+ const void **pzTail /* OUT: End of parsed string */
+){
+ int rc;
+ rc = sqlite3Prepare16(db,zSql,nBytes,1,ppStmt,pzTail);
+ assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 ); /* VERIFY: F13021 */
+ return rc;
+}
+
+#endif /* SQLITE_OMIT_UTF16 */
+
+/************** End of prepare.c *********************************************/
+/************** Begin file select.c ******************************************/
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains C code routines that are called by the parser
+** to handle SELECT statements in SQLite.
+**
+** $Id: select.c,v 1.429 2008/05/01 17:03:49 drh Exp $
+*/
+
+
+/*
+** Delete all the content of a Select structure but do not deallocate
+** the select structure itself.
+*/
+static void clearSelect(Select *p){
+ sqlite3ExprListDelete(p->pEList);
+ sqlite3SrcListDelete(p->pSrc);
+ sqlite3ExprDelete(p->pWhere);
+ sqlite3ExprListDelete(p->pGroupBy);
+ sqlite3ExprDelete(p->pHaving);
+ sqlite3ExprListDelete(p->pOrderBy);
+ sqlite3SelectDelete(p->pPrior);
+ sqlite3ExprDelete(p->pLimit);
+ sqlite3ExprDelete(p->pOffset);
+}
+
+/*
+** Initialize a SelectDest structure.
+*/
+SQLITE_PRIVATE void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
+ pDest->eDest = eDest;
+ pDest->iParm = iParm;
+ pDest->affinity = 0;
+ pDest->iMem = 0;
+ pDest->nMem = 0;
+}
+
+
+/*
+** Allocate a new Select structure and return a pointer to that
+** structure.
+*/
+SQLITE_PRIVATE Select *sqlite3SelectNew(
+ Parse *pParse, /* Parsing context */
+ ExprList *pEList, /* which columns to include in the result */
+ SrcList *pSrc, /* the FROM clause -- which tables to scan */
+ Expr *pWhere, /* the WHERE clause */
+ ExprList *pGroupBy, /* the GROUP BY clause */
+ Expr *pHaving, /* the HAVING clause */
+ ExprList *pOrderBy, /* the ORDER BY clause */
+ int isDistinct, /* true if the DISTINCT keyword is present */
+ Expr *pLimit, /* LIMIT value. NULL means not used */
+ Expr *pOffset /* OFFSET value. NULL means no offset */
+){
+ Select *pNew;
+ Select standin;
+ sqlite3 *db = pParse->db;
+ pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
+ assert( !pOffset || pLimit ); /* Can't have OFFSET without LIMIT. */
+ if( pNew==0 ){
+ pNew = &standin;
+ memset(pNew, 0, sizeof(*pNew));
+ }
+ if( pEList==0 ){
+ pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ALL,0,0,0), 0);
+ }
+ pNew->pEList = pEList;
+ pNew->pSrc = pSrc;
+ pNew->pWhere = pWhere;
+ pNew->pGroupBy = pGroupBy;
+ pNew->pHaving = pHaving;
+ pNew->pOrderBy = pOrderBy;
+ pNew->isDistinct = isDistinct;
+ pNew->op = TK_SELECT;
+ assert( pOffset==0 || pLimit!=0 );
+ pNew->pLimit = pLimit;
+ pNew->pOffset = pOffset;
+ pNew->iLimit = -1;
+ pNew->iOffset = -1;
+ pNew->addrOpenEphm[0] = -1;
+ pNew->addrOpenEphm[1] = -1;
+ pNew->addrOpenEphm[2] = -1;
+ if( pNew==&standin) {
+ clearSelect(pNew);
+ pNew = 0;
+ }
+ return pNew;
+}
+
+/*
+** Delete the given Select structure and all of its substructures.
+*/
+SQLITE_PRIVATE void sqlite3SelectDelete(Select *p){
+ if( p ){
+ clearSelect(p);
+ sqlite3_free(p);
+ }
+}
+
+/*
+** Given 1 to 3 identifiers preceeding the JOIN keyword, determine the
+** type of join. Return an integer constant that expresses that type
+** in terms of the following bit values:
+**
+** JT_INNER
+** JT_CROSS
+** JT_OUTER
+** JT_NATURAL
+** JT_LEFT
+** JT_RIGHT
+**
+** A full outer join is the combination of JT_LEFT and JT_RIGHT.
+**
+** If an illegal or unsupported join type is seen, then still return
+** a join type, but put an error in the pParse structure.
+*/
+SQLITE_PRIVATE int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
+ int jointype = 0;
+ Token *apAll[3];
+ Token *p;
+ static const struct {
+ const char zKeyword[8];
+ u8 nChar;
+ u8 code;
+ } keywords[] = {
+ { "natural", 7, JT_NATURAL },
+ { "left", 4, JT_LEFT|JT_OUTER },
+ { "right", 5, JT_RIGHT|JT_OUTER },
+ { "full", 4, JT_LEFT|JT_RIGHT|JT_OUTER },
+ { "outer", 5, JT_OUTER },
+ { "inner", 5, JT_INNER },
+ { "cross", 5, JT_INNER|JT_CROSS },
+ };
+ int i, j;
+ apAll[0] = pA;
+ apAll[1] = pB;
+ apAll[2] = pC;
+ for(i=0; i<3 && apAll[i]; i++){
+ p = apAll[i];
+ for(j=0; j<sizeof(keywords)/sizeof(keywords[0]); j++){
+ if( p->n==keywords[j].nChar
+ && sqlite3StrNICmp((char*)p->z, keywords[j].zKeyword, p->n)==0 ){
+ jointype |= keywords[j].code;
+ break;
+ }
+ }
+ if( j>=sizeof(keywords)/sizeof(keywords[0]) ){
+ jointype |= JT_ERROR;
+ break;
+ }
+ }
+ if(
+ (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
+ (jointype & JT_ERROR)!=0
+ ){
+ const char *zSp1 = " ";
+ const char *zSp2 = " ";
+ if( pB==0 ){ zSp1++; }
+ if( pC==0 ){ zSp2++; }
+ sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
+ "%T%s%T%s%T", pA, zSp1, pB, zSp2, pC);
+ jointype = JT_INNER;
+ }else if( jointype & JT_RIGHT ){
+ sqlite3ErrorMsg(pParse,
+ "RIGHT and FULL OUTER JOINs are not currently supported");
+ jointype = JT_INNER;
+ }
+ return jointype;
+}
+
+/*
+** Return the index of a column in a table. Return -1 if the column
+** is not contained in the table.
+*/
+static int columnIndex(Table *pTab, const char *zCol){
+ int i;
+ for(i=0; i<pTab->nCol; i++){
+ if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i;
+ }
+ return -1;
+}
+
+/*
+** Set the value of a token to a '\000'-terminated string.
+*/
+static void setToken(Token *p, const char *z){
+ p->z = (u8*)z;
+ p->n = z ? strlen(z) : 0;
+ p->dyn = 0;
+}
+
+/*
+** Set the token to the double-quoted and escaped version of the string pointed
+** to by z. For example;
+**
+** {a"bc} -> {"a""bc"}
+*/
+static void setQuotedToken(Parse *pParse, Token *p, const char *z){
+
+ /* Check if the string contains any " characters. If it does, then
+ ** this function will malloc space to create a quoted version of
+ ** the string in. Otherwise, save a call to sqlite3MPrintf() by
+ ** just copying the pointer to the string.
+ */
+ const char *z2 = z;
+ while( *z2 ){
+ if( *z2=='"' ) break;
+ z2++;
+ }
+
+ if( *z2 ){
+ /* String contains " characters - copy and quote the string. */
+ p->z = (u8 *)sqlite3MPrintf(pParse->db, "\"%w\"", z);
+ if( p->z ){
+ p->n = strlen((char *)p->z);
+ p->dyn = 1;
+ }
+ }else{
+ /* String contains no " characters - copy the pointer. */
+ p->z = (u8*)z;
+ p->n = (z2 - z);
+ p->dyn = 0;
+ }
+}
+
+/*
+** Create an expression node for an identifier with the name of zName
+*/
+SQLITE_PRIVATE Expr *sqlite3CreateIdExpr(Parse *pParse, const char *zName){
+ Token dummy;
+ setToken(&dummy, zName);
+ return sqlite3PExpr(pParse, TK_ID, 0, 0, &dummy);
+}
+
+/*
+** Add a term to the WHERE expression in *ppExpr that requires the
+** zCol column to be equal in the two tables pTab1 and pTab2.
+*/
+static void addWhereTerm(
+ Parse *pParse, /* Parsing context */
+ const char *zCol, /* Name of the column */
+ const Table *pTab1, /* First table */
+ const char *zAlias1, /* Alias for first table. May be NULL */
+ const Table *pTab2, /* Second table */
+ const char *zAlias2, /* Alias for second table. May be NULL */
+ int iRightJoinTable, /* VDBE cursor for the right table */
+ Expr **ppExpr, /* Add the equality term to this expression */
+ int isOuterJoin /* True if dealing with an OUTER join */
+){
+ Expr *pE1a, *pE1b, *pE1c;
+ Expr *pE2a, *pE2b, *pE2c;
+ Expr *pE;
+
+ pE1a = sqlite3CreateIdExpr(pParse, zCol);
+ pE2a = sqlite3CreateIdExpr(pParse, zCol);
+ if( zAlias1==0 ){
+ zAlias1 = pTab1->zName;
+ }
+ pE1b = sqlite3CreateIdExpr(pParse, zAlias1);
+ if( zAlias2==0 ){
+ zAlias2 = pTab2->zName;
+ }
+ pE2b = sqlite3CreateIdExpr(pParse, zAlias2);
+ pE1c = sqlite3PExpr(pParse, TK_DOT, pE1b, pE1a, 0);
+ pE2c = sqlite3PExpr(pParse, TK_DOT, pE2b, pE2a, 0);
+ pE = sqlite3PExpr(pParse, TK_EQ, pE1c, pE2c, 0);
+ if( pE && isOuterJoin ){
+ ExprSetProperty(pE, EP_FromJoin);
+ pE->iRightJoinTable = iRightJoinTable;
+ }
+ *ppExpr = sqlite3ExprAnd(pParse->db,*ppExpr, pE);
+}
+
+/*
+** Set the EP_FromJoin property on all terms of the given expression.
+** And set the Expr.iRightJoinTable to iTable for every term in the
+** expression.
+**
+** The EP_FromJoin property is used on terms of an expression to tell
+** the LEFT OUTER JOIN processing logic that this term is part of the
+** join restriction specified in the ON or USING clause and not a part
+** of the more general WHERE clause. These terms are moved over to the
+** WHERE clause during join processing but we need to remember that they
+** originated in the ON or USING clause.
+**
+** The Expr.iRightJoinTable tells the WHERE clause processing that the
+** expression depends on table iRightJoinTable even if that table is not
+** explicitly mentioned in the expression. That information is needed
+** for cases like this:
+**
+** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
+**
+** The where clause needs to defer the handling of the t1.x=5
+** term until after the t2 loop of the join. In that way, a
+** NULL t2 row will be inserted whenever t1.x!=5. If we do not
+** defer the handling of t1.x=5, it will be processed immediately
+** after the t1 loop and rows with t1.x!=5 will never appear in
+** the output, which is incorrect.
+*/
+static void setJoinExpr(Expr *p, int iTable){
+ while( p ){
+ ExprSetProperty(p, EP_FromJoin);
+ p->iRightJoinTable = iTable;
+ setJoinExpr(p->pLeft, iTable);
+ p = p->pRight;
+ }
+}
+
+/*
+** This routine processes the join information for a SELECT statement.
+** ON and USING clauses are converted into extra terms of the WHERE clause.
+** NATURAL joins also create extra WHERE clause terms.
+**
+** The terms of a FROM clause are contained in the Select.pSrc structure.
+** The left most table is the first entry in Select.pSrc. The right-most
+** table is the last entry. The join operator is held in the entry to
+** the left. Thus entry 0 contains the join operator for the join between
+** entries 0 and 1. Any ON or USING clauses associated with the join are
+** also attached to the left entry.
+**
+** This routine returns the number of errors encountered.
+*/
+static int sqliteProcessJoin(Parse *pParse, Select *p){
+ SrcList *pSrc; /* All tables in the FROM clause */
+ int i, j; /* Loop counters */
+ struct SrcList_item *pLeft; /* Left table being joined */
+ struct SrcList_item *pRight; /* Right table being joined */
+
+ pSrc = p->pSrc;
+ pLeft = &pSrc->a[0];
+ pRight = &pLeft[1];
+ for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
+ Table *pLeftTab = pLeft->pTab;
+ Table *pRightTab = pRight->pTab;
+ int isOuter;
+
+ if( pLeftTab==0 || pRightTab==0 ) continue;
+ isOuter = (pRight->jointype & JT_OUTER)!=0;
+
+ /* When the NATURAL keyword is present, add WHERE clause terms for
+ ** every column that the two tables have in common.
+ */
+ if( pRight->jointype & JT_NATURAL ){
+ if( pRight->pOn || pRight->pUsing ){
+ sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
+ "an ON or USING clause", 0);
+ return 1;
+ }
+ for(j=0; j<pLeftTab->nCol; j++){
+ char *zName = pLeftTab->aCol[j].zName;
+ if( columnIndex(pRightTab, zName)>=0 ){
+ addWhereTerm(pParse, zName, pLeftTab, pLeft->zAlias,
+ pRightTab, pRight->zAlias,
+ pRight->iCursor, &p->pWhere, isOuter);
+
+ }
+ }
+ }
+
+ /* Disallow both ON and USING clauses in the same join
+ */
+ if( pRight->pOn && pRight->pUsing ){
+ sqlite3ErrorMsg(pParse, "cannot have both ON and USING "
+ "clauses in the same join");
+ return 1;
+ }
+
+ /* Add the ON clause to the end of the WHERE clause, connected by
+ ** an AND operator.
+ */
+ if( pRight->pOn ){
+ if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor);
+ p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn);
+ pRight->pOn = 0;
+ }
+
+ /* Create extra terms on the WHERE clause for each column named
+ ** in the USING clause. Example: If the two tables to be joined are
+ ** A and B and the USING clause names X, Y, and Z, then add this
+ ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
+ ** Report an error if any column mentioned in the USING clause is
+ ** not contained in both tables to be joined.
+ */
+ if( pRight->pUsing ){
+ IdList *pList = pRight->pUsing;
+ for(j=0; j<pList->nId; j++){
+ char *zName = pList->a[j].zName;
+ if( columnIndex(pLeftTab, zName)<0 || columnIndex(pRightTab, zName)<0 ){
+ sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
+ "not present in both tables", zName);
+ return 1;
+ }
+ addWhereTerm(pParse, zName, pLeftTab, pLeft->zAlias,
+ pRightTab, pRight->zAlias,
+ pRight->iCursor, &p->pWhere, isOuter);
+ }
+ }
+ }
+ return 0;
+}
+
+/*
+** Insert code into "v" that will push the record on the top of the
+** stack into the sorter.
+*/
+static void pushOntoSorter(
+ Parse *pParse, /* Parser context */
+ ExprList *pOrderBy, /* The ORDER BY clause */
+ Select *pSelect, /* The whole SELECT statement */
+ int regData /* Register holding data to be sorted */
+){
+ Vdbe *v = pParse->pVdbe;
+ int nExpr = pOrderBy->nExpr;
+ int regBase = sqlite3GetTempRange(pParse, nExpr+2);
+ int regRecord = sqlite3GetTempReg(pParse);
+ sqlite3ExprCodeExprList(pParse, pOrderBy, regBase, 0);
+ sqlite3VdbeAddOp2(v, OP_Sequence, pOrderBy->iECursor, regBase+nExpr);
+ sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+1);
+ sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nExpr + 2, regRecord);
+ sqlite3VdbeAddOp2(v, OP_IdxInsert, pOrderBy->iECursor, regRecord);
+ sqlite3ReleaseTempReg(pParse, regRecord);
+ sqlite3ReleaseTempRange(pParse, regBase, nExpr+2);
+ if( pSelect->iLimit>=0 ){
+ int addr1, addr2;
+ int iLimit;
+ if( pSelect->pOffset ){
+ iLimit = pSelect->iOffset+1;
+ }else{
+ iLimit = pSelect->iLimit;
+ }
+ addr1 = sqlite3VdbeAddOp1(v, OP_IfZero, iLimit);
+ sqlite3VdbeAddOp2(v, OP_AddImm, iLimit, -1);
+ addr2 = sqlite3VdbeAddOp0(v, OP_Goto);
+ sqlite3VdbeJumpHere(v, addr1);
+ sqlite3VdbeAddOp1(v, OP_Last, pOrderBy->iECursor);
+ sqlite3VdbeAddOp1(v, OP_Delete, pOrderBy->iECursor);
+ sqlite3VdbeJumpHere(v, addr2);
+ pSelect->iLimit = -1;
+ }
+}
+
+/*
+** Add code to implement the OFFSET
+*/
+static void codeOffset(
+ Vdbe *v, /* Generate code into this VM */
+ Select *p, /* The SELECT statement being coded */
+ int iContinue /* Jump here to skip the current record */
+){
+ if( p->iOffset>=0 && iContinue!=0 ){
+ int addr;
+ sqlite3VdbeAddOp2(v, OP_AddImm, p->iOffset, -1);
+ addr = sqlite3VdbeAddOp1(v, OP_IfNeg, p->iOffset);
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, iContinue);
+ VdbeComment((v, "skip OFFSET records"));
+ sqlite3VdbeJumpHere(v, addr);
+ }
+}
+
+/*
+** Add code that will check to make sure the N registers starting at iMem
+** form a distinct entry. iTab is a sorting index that holds previously
+** seen combinations of the N values. A new entry is made in iTab
+** if the current N values are new.
+**
+** A jump to addrRepeat is made and the N+1 values are popped from the
+** stack if the top N elements are not distinct.
+*/
+static void codeDistinct(
+ Parse *pParse, /* Parsing and code generating context */
+ int iTab, /* A sorting index used to test for distinctness */
+ int addrRepeat, /* Jump to here if not distinct */
+ int N, /* Number of elements */
+ int iMem /* First element */
+){
+ Vdbe *v;
+ int r1;
+
+ v = pParse->pVdbe;
+ r1 = sqlite3GetTempReg(pParse);
+ sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1);
+ sqlite3VdbeAddOp3(v, OP_Found, iTab, addrRepeat, r1);
+ sqlite3VdbeAddOp2(v, OP_IdxInsert, iTab, r1);
+ sqlite3ReleaseTempReg(pParse, r1);
+}
+
+/*
+** Generate an error message when a SELECT is used within a subexpression
+** (example: "a IN (SELECT * FROM table)") but it has more than 1 result
+** column. We do this in a subroutine because the error occurs in multiple
+** places.
+*/
+static int checkForMultiColumnSelectError(
+ Parse *pParse, /* Parse context. */
+ SelectDest *pDest, /* Destination of SELECT results */
+ int nExpr /* Number of result columns returned by SELECT */
+){
+ int eDest = pDest->eDest;
+ if( nExpr>1 && (eDest==SRT_Mem || eDest==SRT_Set) ){
+ sqlite3ErrorMsg(pParse, "only a single result allowed for "
+ "a SELECT that is part of an expression");
+ return 1;
+ }else{
+ return 0;
+ }
+}
+
+/*
+** This routine generates the code for the inside of the inner loop
+** of a SELECT.
+**
+** If srcTab and nColumn are both zero, then the pEList expressions
+** are evaluated in order to get the data for this row. If nColumn>0
+** then data is pulled from srcTab and pEList is used only to get the
+** datatypes for each column.
+*/
+static void selectInnerLoop(
+ Parse *pParse, /* The parser context */
+ Select *p, /* The complete select statement being coded */
+ ExprList *pEList, /* List of values being extracted */
+ int srcTab, /* Pull data from this table */
+ int nColumn, /* Number of columns in the source table */
+ ExprList *pOrderBy, /* If not NULL, sort results using this key */
+ int distinct, /* If >=0, make sure results are distinct */
+ SelectDest *pDest, /* How to dispose of the results */
+ int iContinue, /* Jump here to continue with next row */
+ int iBreak, /* Jump here to break out of the inner loop */
+ char *aff /* affinity string if eDest is SRT_Union */
+){
+ Vdbe *v = pParse->pVdbe;
+ int i;
+ int hasDistinct; /* True if the DISTINCT keyword is present */
+ int regResult; /* Start of memory holding result set */
+ int eDest = pDest->eDest; /* How to dispose of results */
+ int iParm = pDest->iParm; /* First argument to disposal method */
+ int nResultCol; /* Number of result columns */
+
+ if( v==0 ) return;
+ assert( pEList!=0 );
+
+ /* If there was a LIMIT clause on the SELECT statement, then do the check
+ ** to see if this row should be output.
+ */
+ hasDistinct = distinct>=0 && pEList->nExpr>0;
+ if( pOrderBy==0 && !hasDistinct ){
+ codeOffset(v, p, iContinue);
+ }
+
+ /* Pull the requested columns.
+ */
+ if( nColumn>0 ){
+ nResultCol = nColumn;
+ }else{
+ nResultCol = pEList->nExpr;
+ }
+ if( pDest->iMem==0 ){
+ pDest->iMem = sqlite3GetTempRange(pParse, nResultCol);
+ pDest->nMem = nResultCol;
+ }else if( pDest->nMem!=nResultCol ){
+ /* This happens when two SELECTs of a compound SELECT have differing
+ ** numbers of result columns. The error message will be generated by
+ ** a higher-level routine. */
+ return;
+ }
+ regResult = pDest->iMem;
+ if( nColumn>0 ){
+ for(i=0; i<nColumn; i++){
+ sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
+ }
+ }else if( eDest!=SRT_Exists ){
+ /* If the destination is an EXISTS(...) expression, the actual
+ ** values returned by the SELECT are not required.
+ */
+ sqlite3ExprCodeExprList(pParse, pEList, regResult, eDest==SRT_Callback);
+ }
+ nColumn = nResultCol;
+
+ /* If the DISTINCT keyword was present on the SELECT statement
+ ** and this row has been seen before, then do not make this row
+ ** part of the result.
+ */
+ if( hasDistinct ){
+ assert( pEList!=0 );
+ assert( pEList->nExpr==nColumn );
+ codeDistinct(pParse, distinct, iContinue, nColumn, regResult);
+ if( pOrderBy==0 ){
+ codeOffset(v, p, iContinue);
+ }
+ }
+
+ if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){
+ return;
+ }
+
+ switch( eDest ){
+ /* In this mode, write each query result to the key of the temporary
+ ** table iParm.
+ */
+#ifndef SQLITE_OMIT_COMPOUND_SELECT
+ case SRT_Union: {
+ int r1;
+ r1 = sqlite3GetTempReg(pParse);
+ sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1);
+ if( aff ){
+ sqlite3VdbeChangeP4(v, -1, aff, P4_STATIC);
+ }
+ sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
+ sqlite3ReleaseTempReg(pParse, r1);
+ break;
+ }
+
+ /* Construct a record from the query result, but instead of
+ ** saving that record, use it as a key to delete elements from
+ ** the temporary table iParm.
+ */
+ case SRT_Except: {
+ sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nColumn);
+ break;
+ }
+#endif
+
+ /* Store the result as data using a unique key.
+ */
+ case SRT_Table:
+ case SRT_EphemTab: {
+ int r1 = sqlite3GetTempReg(pParse);
+ sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1);
+ if( pOrderBy ){
+ pushOntoSorter(pParse, pOrderBy, p, r1);
+ }else{
+ int r2 = sqlite3GetTempReg(pParse);
+ sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
+ sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
+ sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
+ sqlite3ReleaseTempReg(pParse, r2);
+ }
+ sqlite3ReleaseTempReg(pParse, r1);
+ break;
+ }
+
+#ifndef SQLITE_OMIT_SUBQUERY
+ /* If we are creating a set for an "expr IN (SELECT ...)" construct,
+ ** then there should be a single item on the stack. Write this
+ ** item into the set table with bogus data.
+ */
+ case SRT_Set: {
+ int addr2;
+
+ assert( nColumn==1 );
+ addr2 = sqlite3VdbeAddOp1(v, OP_IsNull, regResult);
+ p->affinity = sqlite3CompareAffinity(pEList->a[0].pExpr, pDest->affinity);
+ if( pOrderBy ){
+ /* At first glance you would think we could optimize out the
+ ** ORDER BY in this case since the order of entries in the set
+ ** does not matter. But there might be a LIMIT clause, in which
+ ** case the order does matter */
+ pushOntoSorter(pParse, pOrderBy, p, regResult);
+ }else{
+ int r1 = sqlite3GetTempReg(pParse);
+ sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, 1, r1, &p->affinity, 1);
+ sqlite3ExprCacheAffinityChange(pParse, regResult, 1);
+ sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
+ sqlite3ReleaseTempReg(pParse, r1);
+ }
+ sqlite3VdbeJumpHere(v, addr2);
+ break;
+ }
+
+ /* If any row exist in the result set, record that fact and abort.
+ */
+ case SRT_Exists: {
+ sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
+ /* The LIMIT clause will terminate the loop for us */
+ break;
+ }
+
+ /* If this is a scalar select that is part of an expression, then
+ ** store the results in the appropriate memory cell and break out
+ ** of the scan loop.
+ */
+ case SRT_Mem: {
+ assert( nColumn==1 );
+ if( pOrderBy ){
+ pushOntoSorter(pParse, pOrderBy, p, regResult);
+ }else{
+ sqlite3ExprCodeMove(pParse, regResult, iParm);
+ /* The LIMIT clause will jump out of the loop for us */
+ }
+ break;
+ }
+#endif /* #ifndef SQLITE_OMIT_SUBQUERY */
+
+ /* Send the data to the callback function or to a subroutine. In the
+ ** case of a subroutine, the subroutine itself is responsible for
+ ** popping the data from the stack.
+ */
+ case SRT_Subroutine:
+ case SRT_Callback: {
+ if( pOrderBy ){
+ int r1 = sqlite3GetTempReg(pParse);
+ sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1);
+ pushOntoSorter(pParse, pOrderBy, p, r1);
+ sqlite3ReleaseTempReg(pParse, r1);
+ }else if( eDest==SRT_Subroutine ){
+ sqlite3VdbeAddOp2(v, OP_Gosub, 0, iParm);
+ }else{
+ sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nColumn);
+ sqlite3ExprCacheAffinityChange(pParse, regResult, nColumn);
+ }
+ break;
+ }
+
+#if !defined(SQLITE_OMIT_TRIGGER)
+ /* Discard the results. This is used for SELECT statements inside
+ ** the body of a TRIGGER. The purpose of such selects is to call
+ ** user-defined functions that have side effects. We do not care
+ ** about the actual results of the select.
+ */
+ default: {
+ assert( eDest==SRT_Discard );
+ break;
+ }
+#endif
+ }
+
+ /* Jump to the end of the loop if the LIMIT is reached.
+ */
+ if( p->iLimit>=0 && pOrderBy==0 ){
+ sqlite3VdbeAddOp2(v, OP_AddImm, p->iLimit, -1);
+ sqlite3VdbeAddOp2(v, OP_IfZero, p->iLimit, iBreak);
+ }
+}
+
+/*
+** Given an expression list, generate a KeyInfo structure that records
+** the collating sequence for each expression in that expression list.
+**
+** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
+** KeyInfo structure is appropriate for initializing a virtual index to
+** implement that clause. If the ExprList is the result set of a SELECT
+** then the KeyInfo structure is appropriate for initializing a virtual
+** index to implement a DISTINCT test.
+**
+** Space to hold the KeyInfo structure is obtain from malloc. The calling
+** function is responsible for seeing that this structure is eventually
+** freed. Add the KeyInfo structure to the P4 field of an opcode using
+** P4_KEYINFO_HANDOFF is the usual way of dealing with this.
+*/
+static KeyInfo *keyInfoFromExprList(Parse *pParse, ExprList *pList){
+ sqlite3 *db = pParse->db;
+ int nExpr;
+ KeyInfo *pInfo;
+ struct ExprList_item *pItem;
+ int i;
+
+ nExpr = pList->nExpr;
+ pInfo = sqlite3DbMallocZero(db, sizeof(*pInfo) + nExpr*(sizeof(CollSeq*)+1) );
+ if( pInfo ){
+ pInfo->aSortOrder = (u8*)&pInfo->aColl[nExpr];
+ pInfo->nField = nExpr;
+ pInfo->enc = ENC(db);
+ for(i=0, pItem=pList->a; i<nExpr; i++, pItem++){
+ CollSeq *pColl;
+ pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
+ if( !pColl ){
+ pColl = db->pDfltColl;
+ }
+ pInfo->aColl[i] = pColl;
+ pInfo->aSortOrder[i] = pItem->sortOrder;
+ }
+ }
+ return pInfo;
+}
+
+
+/*
+** If the inner loop was generated using a non-null pOrderBy argument,
+** then the results were placed in a sorter. After the loop is terminated
+** we need to run the sorter and output the results. The following
+** routine generates the code needed to do that.
+*/
+static void generateSortTail(
+ Parse *pParse, /* Parsing context */
+ Select *p, /* The SELECT statement */
+ Vdbe *v, /* Generate code into this VDBE */
+ int nColumn, /* Number of columns of data */
+ SelectDest *pDest /* Write the sorted results here */
+){
+ int brk = sqlite3VdbeMakeLabel(v);
+ int cont = sqlite3VdbeMakeLabel(v);
+ int addr;
+ int iTab;
+ int pseudoTab = 0;
+ ExprList *pOrderBy = p->pOrderBy;
+
+ int eDest = pDest->eDest;
+ int iParm = pDest->iParm;
+
+ int regRow;
+ int regRowid;
+
+ iTab = pOrderBy->iECursor;
+ if( eDest==SRT_Callback || eDest==SRT_Subroutine ){
+ pseudoTab = pParse->nTab++;
+ sqlite3VdbeAddOp2(v, OP_SetNumColumns, 0, nColumn);
+ sqlite3VdbeAddOp2(v, OP_OpenPseudo, pseudoTab, eDest==SRT_Callback);
+ }
+ addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, brk);
+ codeOffset(v, p, cont);
+ regRow = sqlite3GetTempReg(pParse);
+ regRowid = sqlite3GetTempReg(pParse);
+ sqlite3VdbeAddOp3(v, OP_Column, iTab, pOrderBy->nExpr + 1, regRow);
+ switch( eDest ){
+ case SRT_Table:
+ case SRT_EphemTab: {
+ sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
+ sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
+ sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
+ break;
+ }
+#ifndef SQLITE_OMIT_SUBQUERY
+ case SRT_Set: {
+ int j1;
+ assert( nColumn==1 );
+ j1 = sqlite3VdbeAddOp1(v, OP_IsNull, regRow);
+ sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, 1, regRowid, &p->affinity, 1);
+ sqlite3ExprCacheAffinityChange(pParse, regRow, 1);
+ sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, regRowid);
+ sqlite3VdbeJumpHere(v, j1);
+ break;
+ }
+ case SRT_Mem: {
+ assert( nColumn==1 );
+ sqlite3ExprCodeMove(pParse, regRow, iParm);
+ /* The LIMIT clause will terminate the loop for us */
+ break;
+ }
+#endif
+ case SRT_Callback:
+ case SRT_Subroutine: {
+ int i;
+ sqlite3VdbeAddOp2(v, OP_Integer, 1, regRowid);
+ sqlite3VdbeAddOp3(v, OP_Insert, pseudoTab, regRow, regRowid);
+ for(i=0; i<nColumn; i++){
+ assert( regRow!=pDest->iMem+i );
+ sqlite3VdbeAddOp3(v, OP_Column, pseudoTab, i, pDest->iMem+i);
+ }
+ if( eDest==SRT_Callback ){
+ sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iMem, nColumn);
+ sqlite3ExprCacheAffinityChange(pParse, pDest->iMem, nColumn);
+ }else{
+ sqlite3VdbeAddOp2(v, OP_Gosub, 0, iParm);
+ }
+ break;
+ }
+ default: {
+ /* Do nothing */
+ break;
+ }
+ }
+ sqlite3ReleaseTempReg(pParse, regRow);
+ sqlite3ReleaseTempReg(pParse, regRowid);
+
+ /* Jump to the end of the loop when the LIMIT is reached
+ */
+ if( p->iLimit>=0 ){
+ sqlite3VdbeAddOp2(v, OP_AddImm, p->iLimit, -1);
+ sqlite3VdbeAddOp2(v, OP_IfZero, p->iLimit, brk);
+ }
+
+ /* The bottom of the loop
+ */
+ sqlite3VdbeResolveLabel(v, cont);
+ sqlite3VdbeAddOp2(v, OP_Next, iTab, addr);
+ sqlite3VdbeResolveLabel(v, brk);
+ if( eDest==SRT_Callback || eDest==SRT_Subroutine ){
+ sqlite3VdbeAddOp2(v, OP_Close, pseudoTab, 0);
+ }
+
+}
+
+/*
+** Return a pointer to a string containing the 'declaration type' of the
+** expression pExpr. The string may be treated as static by the caller.
+**
+** The declaration type is the exact datatype definition extracted from the
+** original CREATE TABLE statement if the expression is a column. The
+** declaration type for a ROWID field is INTEGER. Exactly when an expression
+** is considered a column can be complex in the presence of subqueries. The
+** result-set expression in all of the following SELECT statements is
+** considered a column by this function.
+**
+** SELECT col FROM tbl;
+** SELECT (SELECT col FROM tbl;
+** SELECT (SELECT col FROM tbl);
+** SELECT abc FROM (SELECT col AS abc FROM tbl);
+**
+** The declaration type for any expression other than a column is NULL.
+*/
+static const char *columnType(
+ NameContext *pNC,
+ Expr *pExpr,
+ const char **pzOriginDb,
+ const char **pzOriginTab,
+ const char **pzOriginCol
+){
+ char const *zType = 0;
+ char const *zOriginDb = 0;
+ char const *zOriginTab = 0;
+ char const *zOriginCol = 0;
+ int j;
+ if( pExpr==0 || pNC->pSrcList==0 ) return 0;
+
+ switch( pExpr->op ){
+ case TK_AGG_COLUMN:
+ case TK_COLUMN: {
+ /* The expression is a column. Locate the table the column is being
+ ** extracted from in NameContext.pSrcList. This table may be real
+ ** database table or a subquery.
+ */
+ Table *pTab = 0; /* Table structure column is extracted from */
+ Select *pS = 0; /* Select the column is extracted from */
+ int iCol = pExpr->iColumn; /* Index of column in pTab */
+ while( pNC && !pTab ){
+ SrcList *pTabList = pNC->pSrcList;
+ for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
+ if( j<pTabList->nSrc ){
+ pTab = pTabList->a[j].pTab;
+ pS = pTabList->a[j].pSelect;
+ }else{
+ pNC = pNC->pNext;
+ }
+ }
+
+ if( pTab==0 ){
+ /* FIX ME:
+ ** This can occurs if you have something like "SELECT new.x;" inside
+ ** a trigger. In other words, if you reference the special "new"
+ ** table in the result set of a select. We do not have a good way
+ ** to find the actual table type, so call it "TEXT". This is really
+ ** something of a bug, but I do not know how to fix it.
+ **
+ ** This code does not produce the correct answer - it just prevents
+ ** a segfault. See ticket #1229.
+ */
+ zType = "TEXT";
+ break;
+ }
+
+ assert( pTab );
+ if( pS ){
+ /* The "table" is actually a sub-select or a view in the FROM clause
+ ** of the SELECT statement. Return the declaration type and origin
+ ** data for the result-set column of the sub-select.
+ */
+ if( iCol>=0 && iCol<pS->pEList->nExpr ){
+ /* If iCol is less than zero, then the expression requests the
+ ** rowid of the sub-select or view. This expression is legal (see
+ ** test case misc2.2.2) - it always evaluates to NULL.
+ */
+ NameContext sNC;
+ Expr *p = pS->pEList->a[iCol].pExpr;
+ sNC.pSrcList = pS->pSrc;
+ sNC.pNext = 0;
+ sNC.pParse = pNC->pParse;
+ zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol);
+ }
+ }else if( pTab->pSchema ){
+ /* A real table */
+ assert( !pS );
+ if( iCol<0 ) iCol = pTab->iPKey;
+ assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
+ if( iCol<0 ){
+ zType = "INTEGER";
+ zOriginCol = "rowid";
+ }else{
+ zType = pTab->aCol[iCol].zType;
+ zOriginCol = pTab->aCol[iCol].zName;
+ }
+ zOriginTab = pTab->zName;
+ if( pNC->pParse ){
+ int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
+ zOriginDb = pNC->pParse->db->aDb[iDb].zName;
+ }
+ }
+ break;
+ }
+#ifndef SQLITE_OMIT_SUBQUERY
+ case TK_SELECT: {
+ /* The expression is a sub-select. Return the declaration type and
+ ** origin info for the single column in the result set of the SELECT
+ ** statement.
+ */
+ NameContext sNC;
+ Select *pS = pExpr->pSelect;
+ Expr *p = pS->pEList->a[0].pExpr;
+ sNC.pSrcList = pS->pSrc;
+ sNC.pNext = pNC;
+ sNC.pParse = pNC->pParse;
+ zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol);
+ break;
+ }
+#endif
+ }
+
+ if( pzOriginDb ){
+ assert( pzOriginTab && pzOriginCol );
+ *pzOriginDb = zOriginDb;
+ *pzOriginTab = zOriginTab;
+ *pzOriginCol = zOriginCol;
+ }
+ return zType;
+}
+
+/*
+** Generate code that will tell the VDBE the declaration types of columns
+** in the result set.
+*/
+static void generateColumnTypes(
+ Parse *pParse, /* Parser context */
+ SrcList *pTabList, /* List of tables */
+ ExprList *pEList /* Expressions defining the result set */
+){
+#ifndef SQLITE_OMIT_DECLTYPE
+ Vdbe *v = pParse->pVdbe;
+ int i;
+ NameContext sNC;
+ sNC.pSrcList = pTabList;
+ sNC.pParse = pParse;
+ for(i=0; i<pEList->nExpr; i++){
+ Expr *p = pEList->a[i].pExpr;
+ const char *zType;
+#ifdef SQLITE_ENABLE_COLUMN_METADATA
+ const char *zOrigDb = 0;
+ const char *zOrigTab = 0;
+ const char *zOrigCol = 0;
+ zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
+
+ /* The vdbe must make its own copy of the column-type and other
+ ** column specific strings, in case the schema is reset before this
+ ** virtual machine is deleted.
+ */
+ sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, P4_TRANSIENT);
+ sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, P4_TRANSIENT);
+ sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, P4_TRANSIENT);
+#else
+ zType = columnType(&sNC, p, 0, 0, 0);
+#endif
+ sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, P4_TRANSIENT);
+ }
+#endif /* SQLITE_OMIT_DECLTYPE */
+}
+
+/*
+** Generate code that will tell the VDBE the names of columns
+** in the result set. This information is used to provide the
+** azCol[] values in the callback.
+*/
+static void generateColumnNames(
+ Parse *pParse, /* Parser context */
+ SrcList *pTabList, /* List of tables */
+ ExprList *pEList /* Expressions defining the result set */
+){
+ Vdbe *v = pParse->pVdbe;
+ int i, j;
+ sqlite3 *db = pParse->db;
+ int fullNames, shortNames;
+
+#ifndef SQLITE_OMIT_EXPLAIN
+ /* If this is an EXPLAIN, skip this step */
+ if( pParse->explain ){
+ return;
+ }
+#endif
+
+ assert( v!=0 );
+ if( pParse->colNamesSet || v==0 || db->mallocFailed ) return;
+ pParse->colNamesSet = 1;
+ fullNames = (db->flags & SQLITE_FullColNames)!=0;
+ shortNames = (db->flags & SQLITE_ShortColNames)!=0;
+ sqlite3VdbeSetNumCols(v, pEList->nExpr);
+ for(i=0; i<pEList->nExpr; i++){
+ Expr *p;
+ p = pEList->a[i].pExpr;
+ if( p==0 ) continue;
+ if( pEList->a[i].zName ){
+ char *zName = pEList->a[i].zName;
+ sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, strlen(zName));
+ continue;
+ }
+ if( p->op==TK_COLUMN && pTabList ){
+ Table *pTab;
+ char *zCol;
+ int iCol = p->iColumn;
+ for(j=0; j<pTabList->nSrc && pTabList->a[j].iCursor!=p->iTable; j++){}
+ assert( j<pTabList->nSrc );
+ pTab = pTabList->a[j].pTab;
+ if( iCol<0 ) iCol = pTab->iPKey;
+ assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
+ if( iCol<0 ){
+ zCol = "rowid";
+ }else{
+ zCol = pTab->aCol[iCol].zName;
+ }
+ if( !shortNames && !fullNames && p->span.z && p->span.z[0] ){
+ sqlite3VdbeSetColName(v, i, COLNAME_NAME, (char*)p->span.z, p->span.n);
+ }else if( fullNames || (!shortNames && pTabList->nSrc>1) ){
+ char *zName = 0;
+ char *zTab;
+
+ zTab = pTabList->a[j].zAlias;
+ if( fullNames || zTab==0 ) zTab = pTab->zName;
+ sqlite3SetString(&zName, zTab, ".", zCol, (char*)0);
+ sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, P4_DYNAMIC);
+ }else{
+ sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, strlen(zCol));
+ }
+ }else if( p->span.z && p->span.z[0] ){
+ sqlite3VdbeSetColName(v, i, COLNAME_NAME, (char*)p->span.z, p->span.n);
+ /* sqlite3VdbeCompressSpace(v, addr); */
+ }else{
+ char zName[30];
+ assert( p->op!=TK_COLUMN || pTabList==0 );
+ sqlite3_snprintf(sizeof(zName), zName, "column%d", i+1);
+ sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, 0);
+ }
+ }
+ generateColumnTypes(pParse, pTabList, pEList);
+}
+
+#ifndef SQLITE_OMIT_COMPOUND_SELECT
+/*
+** Name of the connection operator, used for error messages.
+*/
+static const char *selectOpName(int id){
+ char *z;
+ switch( id ){
+ case TK_ALL: z = "UNION ALL"; break;
+ case TK_INTERSECT: z = "INTERSECT"; break;
+ case TK_EXCEPT: z = "EXCEPT"; break;
+ default: z = "UNION"; break;
+ }
+ return z;
+}
+#endif /* SQLITE_OMIT_COMPOUND_SELECT */
+
+/*
+** Forward declaration
+*/
+static int prepSelectStmt(Parse*, Select*);
+
+/*
+** Given a SELECT statement, generate a Table structure that describes
+** the result set of that SELECT.
+*/
+SQLITE_PRIVATE Table *sqlite3ResultSetOfSelect(Parse *pParse, char *zTabName, Select *pSelect){
+ Table *pTab;
+ int i, j;
+ ExprList *pEList;
+ Column *aCol, *pCol;
+ sqlite3 *db = pParse->db;
+
+ while( pSelect->pPrior ) pSelect = pSelect->pPrior;
+ if( prepSelectStmt(pParse, pSelect) ){
+ return 0;
+ }
+ if( sqlite3SelectResolve(pParse, pSelect, 0) ){
+ return 0;
+ }
+ pTab = sqlite3DbMallocZero(db, sizeof(Table) );
+ if( pTab==0 ){
+ return 0;
+ }
+ pTab->nRef = 1;
+ pTab->zName = zTabName ? sqlite3DbStrDup(db, zTabName) : 0;
+ pEList = pSelect->pEList;
+ pTab->nCol = pEList->nExpr;
+ assert( pTab->nCol>0 );
+ pTab->aCol = aCol = sqlite3DbMallocZero(db, sizeof(pTab->aCol[0])*pTab->nCol);
+ for(i=0, pCol=aCol; i<pTab->nCol; i++, pCol++){
+ Expr *p, *pR;
+ char *zType;
+ char *zName;
+ int nName;
+ CollSeq *pColl;
+ int cnt;
+ NameContext sNC;
+
+ /* Get an appropriate name for the column
+ */
+ p = pEList->a[i].pExpr;
+ assert( p->pRight==0 || p->pRight->token.z==0 || p->pRight->token.z[0]!=0 );
+ if( (zName = pEList->a[i].zName)!=0 ){
+ /* If the column contains an "AS <name>" phrase, use <name> as the name */
+ zName = sqlite3DbStrDup(db, zName);
+ }else if( p->op==TK_DOT
+ && (pR=p->pRight)!=0 && pR->token.z && pR->token.z[0] ){
+ /* For columns of the from A.B use B as the name */
+ zName = sqlite3MPrintf(db, "%T", &pR->token);
+ }else if( p->span.z && p->span.z[0] ){
+ /* Use the original text of the column expression as its name */
+ zName = sqlite3MPrintf(db, "%T", &p->span);
+ }else{
+ /* If all else fails, make up a name */
+ zName = sqlite3MPrintf(db, "column%d", i+1);
+ }
+ if( !zName || db->mallocFailed ){
+ db->mallocFailed = 1;
+ sqlite3_free(zName);
+ sqlite3DeleteTable(pTab);
+ return 0;
+ }
+ sqlite3Dequote(zName);
+
+ /* Make sure the column name is unique. If the name is not unique,
+ ** append a integer to the name so that it becomes unique.
+ */
+ nName = strlen(zName);
+ for(j=cnt=0; j<i; j++){
+ if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){
+ zName[nName] = 0;
+ zName = sqlite3MPrintf(db, "%z:%d", zName, ++cnt);
+ j = -1;
+ if( zName==0 ) break;
+ }
+ }
+ pCol->zName = zName;
+
+ /* Get the typename, type affinity, and collating sequence for the
+ ** column.
+ */
+ memset(&sNC, 0, sizeof(sNC));
+ sNC.pSrcList = pSelect->pSrc;
+ zType = sqlite3DbStrDup(db, columnType(&sNC, p, 0, 0, 0));
+ pCol->zType = zType;
+ pCol->affinity = sqlite3ExprAffinity(p);
+ pColl = sqlite3ExprCollSeq(pParse, p);
+ if( pColl ){
+ pCol->zColl = sqlite3DbStrDup(db, pColl->zName);
+ }
+ }
+ pTab->iPKey = -1;
+ return pTab;
+}
+
+/*
+** Prepare a SELECT statement for processing by doing the following
+** things:
+**
+** (1) Make sure VDBE cursor numbers have been assigned to every
+** element of the FROM clause.
+**
+** (2) Fill in the pTabList->a[].pTab fields in the SrcList that
+** defines FROM clause. When views appear in the FROM clause,
+** fill pTabList->a[].pSelect with a copy of the SELECT statement
+** that implements the view. A copy is made of the view's SELECT
+** statement so that we can freely modify or delete that statement
+** without worrying about messing up the presistent representation
+** of the view.
+**
+** (3) Add terms to the WHERE clause to accomodate the NATURAL keyword
+** on joins and the ON and USING clause of joins.
+**
+** (4) Scan the list of columns in the result set (pEList) looking
+** for instances of the "*" operator or the TABLE.* operator.
+** If found, expand each "*" to be every column in every table
+** and TABLE.* to be every column in TABLE.
+**
+** Return 0 on success. If there are problems, leave an error message
+** in pParse and return non-zero.
+*/
+static int prepSelectStmt(Parse *pParse, Select *p){
+ int i, j, k, rc;
+ SrcList *pTabList;
+ ExprList *pEList;
+ struct SrcList_item *pFrom;
+ sqlite3 *db = pParse->db;
+
+ if( p==0 || p->pSrc==0 || db->mallocFailed ){
+ return 1;
+ }
+ pTabList = p->pSrc;
+ pEList = p->pEList;
+
+ /* Make sure cursor numbers have been assigned to all entries in
+ ** the FROM clause of the SELECT statement.
+ */
+ sqlite3SrcListAssignCursors(pParse, p->pSrc);
+
+ /* Look up every table named in the FROM clause of the select. If
+ ** an entry of the FROM clause is a subquery instead of a table or view,
+ ** then create a transient table structure to describe the subquery.
+ */
+ for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
+ Table *pTab;
+ if( pFrom->pTab!=0 ){
+ /* This statement has already been prepared. There is no need
+ ** to go further. */
+ assert( i==0 );
+ return 0;
+ }
+ if( pFrom->zName==0 ){
+#ifndef SQLITE_OMIT_SUBQUERY
+ /* A sub-query in the FROM clause of a SELECT */
+ assert( pFrom->pSelect!=0 );
+ if( pFrom->zAlias==0 ){
+ pFrom->zAlias =
+ sqlite3MPrintf(db, "sqlite_subquery_%p_", (void*)pFrom->pSelect);
+ }
+ assert( pFrom->pTab==0 );
+ pFrom->pTab = pTab =
+ sqlite3ResultSetOfSelect(pParse, pFrom->zAlias, pFrom->pSelect);
+ if( pTab==0 ){
+ return 1;
+ }
+ /* The isEphem flag indicates that the Table structure has been
+ ** dynamically allocated and may be freed at any time. In other words,
+ ** pTab is not pointing to a persistent table structure that defines
+ ** part of the schema. */
+ pTab->isEphem = 1;
+#endif
+ }else{
+ /* An ordinary table or view name in the FROM clause */
+ assert( pFrom->pTab==0 );
+ pFrom->pTab = pTab =
+ sqlite3LocateTable(pParse,0,pFrom->zName,pFrom->zDatabase);
+ if( pTab==0 ){
+ return 1;
+ }
+ pTab->nRef++;
+#if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE)
+ if( pTab->pSelect || IsVirtual(pTab) ){
+ /* We reach here if the named table is a really a view */
+ if( sqlite3ViewGetColumnNames(pParse, pTab) ){
+ return 1;
+ }
+ /* If pFrom->pSelect!=0 it means we are dealing with a
+ ** view within a view. The SELECT structure has already been
+ ** copied by the outer view so we can skip the copy step here
+ ** in the inner view.
+ */
+ if( pFrom->pSelect==0 ){
+ pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect);
+ }
+ }
+#endif
+ }
+ }
+
+ /* Process NATURAL keywords, and ON and USING clauses of joins.
+ */
+ if( sqliteProcessJoin(pParse, p) ) return 1;
+
+ /* For every "*" that occurs in the column list, insert the names of
+ ** all columns in all tables. And for every TABLE.* insert the names
+ ** of all columns in TABLE. The parser inserted a special expression
+ ** with the TK_ALL operator for each "*" that it found in the column list.
+ ** The following code just has to locate the TK_ALL expressions and expand
+ ** each one to the list of all columns in all tables.
+ **
+ ** The first loop just checks to see if there are any "*" operators
+ ** that need expanding.
+ */
+ for(k=0; k<pEList->nExpr; k++){
+ Expr *pE = pEList->a[k].pExpr;
+ if( pE->op==TK_ALL ) break;
+ if( pE->op==TK_DOT && pE->pRight && pE->pRight->op==TK_ALL
+ && pE->pLeft && pE->pLeft->op==TK_ID ) break;
+ }
+ rc = 0;
+ if( k<pEList->nExpr ){
+ /*
+ ** If we get here it means the result set contains one or more "*"
+ ** operators that need to be expanded. Loop through each expression
+ ** in the result set and expand them one by one.
+ */
+ struct ExprList_item *a = pEList->a;
+ ExprList *pNew = 0;
+ int flags = pParse->db->flags;
+ int longNames = (flags & SQLITE_FullColNames)!=0 &&
+ (flags & SQLITE_ShortColNames)==0;
+
+ for(k=0; k<pEList->nExpr; k++){
+ Expr *pE = a[k].pExpr;
+ if( pE->op!=TK_ALL &&
+ (pE->op!=TK_DOT || pE->pRight==0 || pE->pRight->op!=TK_ALL) ){
+ /* This particular expression does not need to be expanded.
+ */
+ pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr, 0);
+ if( pNew ){
+ pNew->a[pNew->nExpr-1].zName = a[k].zName;
+ }else{
+ rc = 1;
+ }
+ a[k].pExpr = 0;
+ a[k].zName = 0;
+ }else{
+ /* This expression is a "*" or a "TABLE.*" and needs to be
+ ** expanded. */
+ int tableSeen = 0; /* Set to 1 when TABLE matches */
+ char *zTName; /* text of name of TABLE */
+ if( pE->op==TK_DOT && pE->pLeft ){
+ zTName = sqlite3NameFromToken(db, &pE->pLeft->token);
+ }else{
+ zTName = 0;
+ }
+ for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
+ Table *pTab = pFrom->pTab;
+ char *zTabName = pFrom->zAlias;
+ if( zTabName==0 || zTabName[0]==0 ){
+ zTabName = pTab->zName;
+ }
+ if( zTName && (zTabName==0 || zTabName[0]==0 ||
+ sqlite3StrICmp(zTName, zTabName)!=0) ){
+ continue;
+ }
+ tableSeen = 1;
+ for(j=0; j<pTab->nCol; j++){
+ Expr *pExpr, *pRight;
+ char *zName = pTab->aCol[j].zName;
+
+ /* If a column is marked as 'hidden' (currently only possible
+ ** for virtual tables), do not include it in the expanded
+ ** result-set list.
+ */
+ if( IsHiddenColumn(&pTab->aCol[j]) ){
+ assert(IsVirtual(pTab));
+ continue;
+ }
+
+ if( i>0 ){
+ struct SrcList_item *pLeft = &pTabList->a[i-1];
+ if( (pLeft[1].jointype & JT_NATURAL)!=0 &&
+ columnIndex(pLeft->pTab, zName)>=0 ){
+ /* In a NATURAL join, omit the join columns from the
+ ** table on the right */
+ continue;
+ }
+ if( sqlite3IdListIndex(pLeft[1].pUsing, zName)>=0 ){
+ /* In a join with a USING clause, omit columns in the
+ ** using clause from the table on the right. */
+ continue;
+ }
+ }
+ pRight = sqlite3PExpr(pParse, TK_ID, 0, 0, 0);
+ if( pRight==0 ) break;
+ setQuotedToken(pParse, &pRight->token, zName);
+ if( zTabName && (longNames || pTabList->nSrc>1) ){
+ Expr *pLeft = sqlite3PExpr(pParse, TK_ID, 0, 0, 0);
+ pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0);
+ if( pExpr==0 ) break;
+ setQuotedToken(pParse, &pLeft->token, zTabName);
+ setToken(&pExpr->span,
+ sqlite3MPrintf(db, "%s.%s", zTabName, zName));
+ pExpr->span.dyn = 1;
+ pExpr->token.z = 0;
+ pExpr->token.n = 0;
+ pExpr->token.dyn = 0;
+ }else{
+ pExpr = pRight;
+ pExpr->span = pExpr->token;
+ pExpr->span.dyn = 0;
+ }
+ if( longNames ){
+ pNew = sqlite3ExprListAppend(pParse, pNew, pExpr, &pExpr->span);
+ }else{
+ pNew = sqlite3ExprListAppend(pParse, pNew, pExpr, &pRight->token);
+ }
+ }
+ }
+ if( !tableSeen ){
+ if( zTName ){
+ sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
+ }else{
+ sqlite3ErrorMsg(pParse, "no tables specified");
+ }
+ rc = 1;
+ }
+ sqlite3_free(zTName);
+ }
+ }
+ sqlite3ExprListDelete(pEList);
+ p->pEList = pNew;
+ }
+#if SQLITE_MAX_COLUMN
+ if( p->pEList && p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
+ sqlite3ErrorMsg(pParse, "too many columns in result set");
+ rc = SQLITE_ERROR;
+ }
+#endif
+ if( db->mallocFailed ){
+ rc = SQLITE_NOMEM;
+ }
+ return rc;
+}
+
+/*
+** pE is a pointer to an expression which is a single term in
+** ORDER BY or GROUP BY clause.
+**
+** If pE evaluates to an integer constant i, then return i.
+** This is an indication to the caller that it should sort
+** by the i-th column of the result set.
+**
+** If pE is a well-formed expression and the SELECT statement
+** is not compound, then return 0. This indicates to the
+** caller that it should sort by the value of the ORDER BY
+** expression.
+**
+** If the SELECT is compound, then attempt to match pE against
+** result set columns in the left-most SELECT statement. Return
+** the index i of the matching column, as an indication to the
+** caller that it should sort by the i-th column. If there is
+** no match, return -1 and leave an error message in pParse.
+*/
+static int matchOrderByTermToExprList(
+ Parse *pParse, /* Parsing context for error messages */
+ Select *pSelect, /* The SELECT statement with the ORDER BY clause */
+ Expr *pE, /* The specific ORDER BY term */
+ int idx, /* When ORDER BY term is this */
+ int isCompound, /* True if this is a compound SELECT */
+ u8 *pHasAgg /* True if expression contains aggregate functions */
+){
+ int i; /* Loop counter */
+ ExprList *pEList; /* The columns of the result set */
+ NameContext nc; /* Name context for resolving pE */
+
+
+ /* If the term is an integer constant, return the value of that
+ ** constant */
+ pEList = pSelect->pEList;
+ if( sqlite3ExprIsInteger(pE, &i) ){
+ if( i<=0 ){
+ /* If i is too small, make it too big. That way the calling
+ ** function still sees a value that is out of range, but does
+ ** not confuse the column number with 0 or -1 result code.
+ */
+ i = pEList->nExpr+1;
+ }
+ return i;
+ }
+
+ /* If the term is a simple identifier that try to match that identifier
+ ** against a column name in the result set.
+ */
+ if( pE->op==TK_ID || (pE->op==TK_STRING && pE->token.z[0]!='\'') ){
+ sqlite3 *db = pParse->db;
+ char *zCol = sqlite3NameFromToken(db, &pE->token);
+ if( zCol==0 ){
+ return -1;
+ }
+ for(i=0; i<pEList->nExpr; i++){
+ char *zAs = pEList->a[i].zName;
+ if( zAs!=0 && sqlite3StrICmp(zAs, zCol)==0 ){
+ sqlite3_free(zCol);
+ return i+1;
+ }
+ }
+ sqlite3_free(zCol);
+ }
+
+ /* Resolve all names in the ORDER BY term expression
+ */
+ memset(&nc, 0, sizeof(nc));
+ nc.pParse = pParse;
+ nc.pSrcList = pSelect->pSrc;
+ nc.pEList = pEList;
+ nc.allowAgg = 1;
+ nc.nErr = 0;
+ if( sqlite3ExprResolveNames(&nc, pE) ){
+ if( isCompound ){
+ sqlite3ErrorClear(pParse);
+ return 0;
+ }else{
+ return -1;
+ }
+ }
+ if( nc.hasAgg && pHasAgg ){
+ *pHasAgg = 1;
+ }
+
+ /* For a compound SELECT, we need to try to match the ORDER BY
+ ** expression against an expression in the result set
+ */
+ if( isCompound ){
+ for(i=0; i<pEList->nExpr; i++){
+ if( sqlite3ExprCompare(pEList->a[i].pExpr, pE) ){
+ return i+1;
+ }
+ }
+ }
+ return 0;
+}
+
+
+/*
+** Analyze and ORDER BY or GROUP BY clause in a simple SELECT statement.
+** Return the number of errors seen.
+**
+** Every term of the ORDER BY or GROUP BY clause needs to be an
+** expression. If any expression is an integer constant, then
+** that expression is replaced by the corresponding
+** expression from the result set.
+*/
+static int processOrderGroupBy(
+ Parse *pParse, /* Parsing context. Leave error messages here */
+ Select *pSelect, /* The SELECT statement containing the clause */
+ ExprList *pOrderBy, /* The ORDER BY or GROUP BY clause to be processed */
+ int isOrder, /* 1 for ORDER BY. 0 for GROUP BY */
+ u8 *pHasAgg /* Set to TRUE if any term contains an aggregate */
+){
+ int i;
+ sqlite3 *db = pParse->db;
+ ExprList *pEList;
+
+ if( pOrderBy==0 || pParse->db->mallocFailed ) return 0;
+#if SQLITE_MAX_COLUMN
+ if( pOrderBy->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
+ const char *zType = isOrder ? "ORDER" : "GROUP";
+ sqlite3ErrorMsg(pParse, "too many terms in %s BY clause", zType);
+ return 1;
+ }
+#endif
+ pEList = pSelect->pEList;
+ if( pEList==0 ){
+ return 0;
+ }
+ for(i=0; i<pOrderBy->nExpr; i++){
+ int iCol;
+ Expr *pE = pOrderBy->a[i].pExpr;
+ iCol = matchOrderByTermToExprList(pParse, pSelect, pE, i+1, 0, pHasAgg);
+ if( iCol<0 ){
+ return 1;
+ }
+ if( iCol>pEList->nExpr ){
+ const char *zType = isOrder ? "ORDER" : "GROUP";
+ sqlite3ErrorMsg(pParse,
+ "%r %s BY term out of range - should be "
+ "between 1 and %d", i+1, zType, pEList->nExpr);
+ return 1;
+ }
+ if( iCol>0 ){
+ CollSeq *pColl = pE->pColl;
+ int flags = pE->flags & EP_ExpCollate;
+ sqlite3ExprDelete(pE);
+ pE = sqlite3ExprDup(db, pEList->a[iCol-1].pExpr);
+ pOrderBy->a[i].pExpr = pE;
+ if( pE && pColl && flags ){
+ pE->pColl = pColl;
+ pE->flags |= flags;
+ }
+ }
+ }
+ return 0;
+}
+
+/*
+** Analyze and ORDER BY or GROUP BY clause in a SELECT statement. Return
+** the number of errors seen.
+**
+** The processing depends on whether the SELECT is simple or compound.
+** For a simple SELECT statement, evry term of the ORDER BY or GROUP BY
+** clause needs to be an expression. If any expression is an integer
+** constant, then that expression is replaced by the corresponding
+** expression from the result set.
+**
+** For compound SELECT statements, every expression needs to be of
+** type TK_COLUMN with a iTable value as given in the 4th parameter.
+** If any expression is an integer, that becomes the column number.
+** Otherwise, match the expression against result set columns from
+** the left-most SELECT.
+*/
+static int processCompoundOrderBy(
+ Parse *pParse, /* Parsing context. Leave error messages here */
+ Select *pSelect, /* The SELECT statement containing the ORDER BY */
+ int iTable /* Output table for compound SELECT statements */
+){
+ int i;
+ ExprList *pOrderBy;
+ ExprList *pEList;
+ sqlite3 *db;
+ int moreToDo = 1;
+
+ pOrderBy = pSelect->pOrderBy;
+ if( pOrderBy==0 ) return 0;
+ db = pParse->db;
+#if SQLITE_MAX_COLUMN
+ if( pOrderBy->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
+ sqlite3ErrorMsg(pParse, "too many terms in ORDER BY clause");
+ return 1;
+ }
+#endif
+ for(i=0; i<pOrderBy->nExpr; i++){
+ pOrderBy->a[i].done = 0;
+ }
+ while( pSelect->pPrior ){
+ pSelect = pSelect->pPrior;
+ }
+ while( pSelect && moreToDo ){
+ moreToDo = 0;
+ for(i=0; i<pOrderBy->nExpr; i++){
+ int iCol = -1;
+ Expr *pE, *pDup;
+ if( pOrderBy->a[i].done ) continue;
+ pE = pOrderBy->a[i].pExpr;
+ pDup = sqlite3ExprDup(db, pE);
+ if( !db->mallocFailed ){
+ assert(pDup);
+ iCol = matchOrderByTermToExprList(pParse, pSelect, pDup, i+1, 1, 0);
+ }
+ sqlite3ExprDelete(pDup);
+ if( iCol<0 ){
+ return 1;
+ }
+ pEList = pSelect->pEList;
+ if( pEList==0 ){
+ return 1;
+ }
+ if( iCol>pEList->nExpr ){
+ sqlite3ErrorMsg(pParse,
+ "%r ORDER BY term out of range - should be "
+ "between 1 and %d", i+1, pEList->nExpr);
+ return 1;
+ }
+ if( iCol>0 ){
+ pE->op = TK_COLUMN;
+ pE->iTable = iTable;
+ pE->iAgg = -1;
+ pE->iColumn = iCol-1;
+ pE->pTab = 0;
+ pOrderBy->a[i].done = 1;
+ }else{
+ moreToDo = 1;
+ }
+ }
+ pSelect = pSelect->pNext;
+ }
+ for(i=0; i<pOrderBy->nExpr; i++){
+ if( pOrderBy->a[i].done==0 ){
+ sqlite3ErrorMsg(pParse, "%r ORDER BY term does not match any "
+ "column in the result set", i+1);
+ return 1;
+ }
+ }
+ return 0;
+}
+
+/*
+** Get a VDBE for the given parser context. Create a new one if necessary.
+** If an error occurs, return NULL and leave a message in pParse.
+*/
+SQLITE_PRIVATE Vdbe *sqlite3GetVdbe(Parse *pParse){
+ Vdbe *v = pParse->pVdbe;
+ if( v==0 ){
+ v = pParse->pVdbe = sqlite3VdbeCreate(pParse->db);
+#ifndef SQLITE_OMIT_TRACE
+ if( v ){
+ sqlite3VdbeAddOp0(v, OP_Trace);
+ }
+#endif
+ }
+ return v;
+}
+
+
+/*
+** Compute the iLimit and iOffset fields of the SELECT based on the
+** pLimit and pOffset expressions. pLimit and pOffset hold the expressions
+** that appear in the original SQL statement after the LIMIT and OFFSET
+** keywords. Or NULL if those keywords are omitted. iLimit and iOffset
+** are the integer memory register numbers for counters used to compute
+** the limit and offset. If there is no limit and/or offset, then
+** iLimit and iOffset are negative.
+**
+** This routine changes the values of iLimit and iOffset only if
+** a limit or offset is defined by pLimit and pOffset. iLimit and
+** iOffset should have been preset to appropriate default values
+** (usually but not always -1) prior to calling this routine.
+** Only if pLimit!=0 or pOffset!=0 do the limit registers get
+** redefined. The UNION ALL operator uses this property to force
+** the reuse of the same limit and offset registers across multiple
+** SELECT statements.
+*/
+static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
+ Vdbe *v = 0;
+ int iLimit = 0;
+ int iOffset;
+ int addr1;
+
+ /*
+ ** "LIMIT -1" always shows all rows. There is some
+ ** contraversy about what the correct behavior should be.
+ ** The current implementation interprets "LIMIT 0" to mean
+ ** no rows.
+ */
+ if( p->pLimit ){
+ p->iLimit = iLimit = ++pParse->nMem;
+ v = sqlite3GetVdbe(pParse);
+ if( v==0 ) return;
+ sqlite3ExprCode(pParse, p->pLimit, iLimit);
+ sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit);
+ VdbeComment((v, "LIMIT counter"));
+ sqlite3VdbeAddOp2(v, OP_IfZero, iLimit, iBreak);
+ }
+ if( p->pOffset ){
+ p->iOffset = iOffset = ++pParse->nMem;
+ if( p->pLimit ){
+ pParse->nMem++; /* Allocate an extra register for limit+offset */
+ }
+ v = sqlite3GetVdbe(pParse);
+ if( v==0 ) return;
+ sqlite3ExprCode(pParse, p->pOffset, iOffset);
+ sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset);
+ VdbeComment((v, "OFFSET counter"));
+ addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iOffset);
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, iOffset);
+ sqlite3VdbeJumpHere(v, addr1);
+ if( p->pLimit ){
+ sqlite3VdbeAddOp3(v, OP_Add, iLimit, iOffset, iOffset+1);
+ VdbeComment((v, "LIMIT+OFFSET"));
+ addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iLimit);
+ sqlite3VdbeAddOp2(v, OP_Integer, -1, iOffset+1);
+ sqlite3VdbeJumpHere(v, addr1);
+ }
+ }
+}
+
+/*
+** Allocate a virtual index to use for sorting.
+*/
+static void createSortingIndex(Parse *pParse, Select *p, ExprList *pOrderBy){
+ if( pOrderBy ){
+ int addr;
+ assert( pOrderBy->iECursor==0 );
+ pOrderBy->iECursor = pParse->nTab++;
+ addr = sqlite3VdbeAddOp2(pParse->pVdbe, OP_OpenEphemeral,
+ pOrderBy->iECursor, pOrderBy->nExpr+1);
+ assert( p->addrOpenEphm[2] == -1 );
+ p->addrOpenEphm[2] = addr;
+ }
+}
+
+#ifndef SQLITE_OMIT_COMPOUND_SELECT
+/*
+** Return the appropriate collating sequence for the iCol-th column of
+** the result set for the compound-select statement "p". Return NULL if
+** the column has no default collating sequence.
+**
+** The collating sequence for the compound select is taken from the
+** left-most term of the select that has a collating sequence.
+*/
+static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
+ CollSeq *pRet;
+ if( p->pPrior ){
+ pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
+ }else{
+ pRet = 0;
+ }
+ if( pRet==0 ){
+ pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
+ }
+ return pRet;
+}
+#endif /* SQLITE_OMIT_COMPOUND_SELECT */
+
+#ifndef SQLITE_OMIT_COMPOUND_SELECT
+/*
+** This routine is called to process a query that is really the union
+** or intersection of two or more separate queries.
+**
+** "p" points to the right-most of the two queries. the query on the
+** left is p->pPrior. The left query could also be a compound query
+** in which case this routine will be called recursively.
+**
+** The results of the total query are to be written into a destination
+** of type eDest with parameter iParm.
+**
+** Example 1: Consider a three-way compound SQL statement.
+**
+** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
+**
+** This statement is parsed up as follows:
+**
+** SELECT c FROM t3
+** |
+** `-----> SELECT b FROM t2
+** |
+** `------> SELECT a FROM t1
+**
+** The arrows in the diagram above represent the Select.pPrior pointer.
+** So if this routine is called with p equal to the t3 query, then
+** pPrior will be the t2 query. p->op will be TK_UNION in this case.
+**
+** Notice that because of the way SQLite parses compound SELECTs, the
+** individual selects always group from left to right.
+*/
+static int multiSelect(
+ Parse *pParse, /* Parsing context */
+ Select *p, /* The right-most of SELECTs to be coded */
+ SelectDest *pDest, /* What to do with query results */
+ char *aff /* If eDest is SRT_Union, the affinity string */
+){
+ int rc = SQLITE_OK; /* Success code from a subroutine */
+ Select *pPrior; /* Another SELECT immediately to our left */
+ Vdbe *v; /* Generate code to this VDBE */
+ int nCol; /* Number of columns in the result set */
+ ExprList *pOrderBy; /* The ORDER BY clause on p */
+ int aSetP2[2]; /* Set P2 value of these op to number of columns */
+ int nSetP2 = 0; /* Number of slots in aSetP2[] used */
+ SelectDest dest; /* Alternative data destination */
+
+ dest = *pDest;
+
+ /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only
+ ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
+ */
+ if( p==0 || p->pPrior==0 ){
+ rc = 1;
+ goto multi_select_end;
+ }
+ pPrior = p->pPrior;
+ assert( pPrior->pRightmost!=pPrior );
+ assert( pPrior->pRightmost==p->pRightmost );
+ if( pPrior->pOrderBy ){
+ sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before",
+ selectOpName(p->op));
+ rc = 1;
+ goto multi_select_end;
+ }
+ if( pPrior->pLimit ){
+ sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before",
+ selectOpName(p->op));
+ rc = 1;
+ goto multi_select_end;
+ }
+
+ /* Make sure we have a valid query engine. If not, create a new one.
+ */
+ v = sqlite3GetVdbe(pParse);
+ if( v==0 ){
+ rc = 1;
+ goto multi_select_end;
+ }
+
+ /* Create the destination temporary table if necessary
+ */
+ if( dest.eDest==SRT_EphemTab ){
+ assert( p->pEList );
+ assert( nSetP2<sizeof(aSetP2)/sizeof(aSetP2[0]) );
+ aSetP2[nSetP2++] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iParm, 0);
+ dest.eDest = SRT_Table;
+ }
+
+ /* Generate code for the left and right SELECT statements.
+ */
+ pOrderBy = p->pOrderBy;
+ switch( p->op ){
+ case TK_ALL: {
+ if( pOrderBy==0 ){
+ int addr = 0;
+ assert( !pPrior->pLimit );
+ pPrior->pLimit = p->pLimit;
+ pPrior->pOffset = p->pOffset;
+ rc = sqlite3Select(pParse, pPrior, &dest, 0, 0, 0, aff);
+ p->pLimit = 0;
+ p->pOffset = 0;
+ if( rc ){
+ goto multi_select_end;
+ }
+ p->pPrior = 0;
+ p->iLimit = pPrior->iLimit;
+ p->iOffset = pPrior->iOffset;
+ if( p->iLimit>=0 ){
+ addr = sqlite3VdbeAddOp1(v, OP_IfZero, p->iLimit);
+ VdbeComment((v, "Jump ahead if LIMIT reached"));
+ }
+ rc = sqlite3Select(pParse, p, &dest, 0, 0, 0, aff);
+ p->pPrior = pPrior;
+ if( rc ){
+ goto multi_select_end;
+ }
+ if( addr ){
+ sqlite3VdbeJumpHere(v, addr);
+ }
+ break;
+ }
+ /* For UNION ALL ... ORDER BY fall through to the next case */
+ }
+ case TK_EXCEPT:
+ case TK_UNION: {
+ int unionTab; /* Cursor number of the temporary table holding result */
+ int op = 0; /* One of the SRT_ operations to apply to self */
+ int priorOp; /* The SRT_ operation to apply to prior selects */
+ Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */
+ int addr;
+ SelectDest uniondest;
+
+ priorOp = p->op==TK_ALL ? SRT_Table : SRT_Union;
+ if( dest.eDest==priorOp && pOrderBy==0 && !p->pLimit && !p->pOffset ){
+ /* We can reuse a temporary table generated by a SELECT to our
+ ** right.
+ */
+ unionTab = dest.iParm;
+ }else{
+ /* We will need to create our own temporary table to hold the
+ ** intermediate results.
+ */
+ unionTab = pParse->nTab++;
+ if( processCompoundOrderBy(pParse, p, unionTab) ){
+ rc = 1;
+ goto multi_select_end;
+ }
+ addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
+ if( priorOp==SRT_Table ){
+ assert( nSetP2<sizeof(aSetP2)/sizeof(aSetP2[0]) );
+ aSetP2[nSetP2++] = addr;
+ }else{
+ assert( p->addrOpenEphm[0] == -1 );
+ p->addrOpenEphm[0] = addr;
+ p->pRightmost->usesEphm = 1;
+ }
+ createSortingIndex(pParse, p, pOrderBy);
+ assert( p->pEList );
+ }
+
+ /* Code the SELECT statements to our left
+ */
+ assert( !pPrior->pOrderBy );
+ sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
+ rc = sqlite3Select(pParse, pPrior, &uniondest, 0, 0, 0, aff);
+ if( rc ){
+ goto multi_select_end;
+ }
+
+ /* Code the current SELECT statement
+ */
+ switch( p->op ){
+ case TK_EXCEPT: op = SRT_Except; break;
+ case TK_UNION: op = SRT_Union; break;
+ case TK_ALL: op = SRT_Table; break;
+ }
+ p->pPrior = 0;
+ p->pOrderBy = 0;
+ p->disallowOrderBy = pOrderBy!=0;
+ pLimit = p->pLimit;
+ p->pLimit = 0;
+ pOffset = p->pOffset;
+ p->pOffset = 0;
+ uniondest.eDest = op;
+ rc = sqlite3Select(pParse, p, &uniondest, 0, 0, 0, aff);
+ /* Query flattening in sqlite3Select() might refill p->pOrderBy.
+ ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */
+ sqlite3ExprListDelete(p->pOrderBy);
+ p->pPrior = pPrior;
+ p->pOrderBy = pOrderBy;
+ sqlite3ExprDelete(p->pLimit);
+ p->pLimit = pLimit;
+ p->pOffset = pOffset;
+ p->iLimit = -1;
+ p->iOffset = -1;
+ if( rc ){
+ goto multi_select_end;
+ }
+
+
+ /* Convert the data in the temporary table into whatever form
+ ** it is that we currently need.
+ */
+ if( dest.eDest!=priorOp || unionTab!=dest.iParm ){
+ int iCont, iBreak, iStart;
+ assert( p->pEList );
+ if( dest.eDest==SRT_Callback ){
+ Select *pFirst = p;
+ while( pFirst->pPrior ) pFirst = pFirst->pPrior;
+ generateColumnNames(pParse, 0, pFirst->pEList);
+ }
+ iBreak = sqlite3VdbeMakeLabel(v);
+ iCont = sqlite3VdbeMakeLabel(v);
+ computeLimitRegisters(pParse, p, iBreak);
+ sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak);
+ iStart = sqlite3VdbeCurrentAddr(v);
+ selectInnerLoop(pParse, p, p->pEList, unionTab, p->pEList->nExpr,
+ pOrderBy, -1, &dest, iCont, iBreak, 0);
+ sqlite3VdbeResolveLabel(v, iCont);
+ sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart);
+ sqlite3VdbeResolveLabel(v, iBreak);
+ sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
+ }
+ break;
+ }
+ case TK_INTERSECT: {
+ int tab1, tab2;
+ int iCont, iBreak, iStart;
+ Expr *pLimit, *pOffset;
+ int addr;
+ SelectDest intersectdest;
+ int r1;
+
+ /* INTERSECT is different from the others since it requires
+ ** two temporary tables. Hence it has its own case. Begin
+ ** by allocating the tables we will need.
+ */
+ tab1 = pParse->nTab++;
+ tab2 = pParse->nTab++;
+ if( processCompoundOrderBy(pParse, p, tab1) ){
+ rc = 1;
+ goto multi_select_end;
+ }
+ createSortingIndex(pParse, p, pOrderBy);
+
+ addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
+ assert( p->addrOpenEphm[0] == -1 );
+ p->addrOpenEphm[0] = addr;
+ p->pRightmost->usesEphm = 1;
+ assert( p->pEList );
+
+ /* Code the SELECTs to our left into temporary table "tab1".
+ */
+ sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
+ rc = sqlite3Select(pParse, pPrior, &intersectdest, 0, 0, 0, aff);
+ if( rc ){
+ goto multi_select_end;
+ }
+
+ /* Code the current SELECT into temporary table "tab2"
+ */
+ addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
+ assert( p->addrOpenEphm[1] == -1 );
+ p->addrOpenEphm[1] = addr;
+ p->pPrior = 0;
+ pLimit = p->pLimit;
+ p->pLimit = 0;
+ pOffset = p->pOffset;
+ p->pOffset = 0;
+ intersectdest.iParm = tab2;
+ rc = sqlite3Select(pParse, p, &intersectdest, 0, 0, 0, aff);
+ p->pPrior = pPrior;
+ sqlite3ExprDelete(p->pLimit);
+ p->pLimit = pLimit;
+ p->pOffset = pOffset;
+ if( rc ){
+ goto multi_select_end;
+ }
+
+ /* Generate code to take the intersection of the two temporary
+ ** tables.
+ */
+ assert( p->pEList );
+ if( dest.eDest==SRT_Callback ){
+ Select *pFirst = p;
+ while( pFirst->pPrior ) pFirst = pFirst->pPrior;
+ generateColumnNames(pParse, 0, pFirst->pEList);
+ }
+ iBreak = sqlite3VdbeMakeLabel(v);
+ iCont = sqlite3VdbeMakeLabel(v);
+ computeLimitRegisters(pParse, p, iBreak);
+ sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak);
+ r1 = sqlite3GetTempReg(pParse);
+ iStart = sqlite3VdbeAddOp2(v, OP_RowKey, tab1, r1);
+ sqlite3VdbeAddOp3(v, OP_NotFound, tab2, iCont, r1);
+ sqlite3ReleaseTempReg(pParse, r1);
+ selectInnerLoop(pParse, p, p->pEList, tab1, p->pEList->nExpr,
+ pOrderBy, -1, &dest, iCont, iBreak, 0);
+ sqlite3VdbeResolveLabel(v, iCont);
+ sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart);
+ sqlite3VdbeResolveLabel(v, iBreak);
+ sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
+ sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
+ break;
+ }
+ }
+
+ /* Make sure all SELECTs in the statement have the same number of elements
+ ** in their result sets.
+ */
+ assert( p->pEList && pPrior->pEList );
+ if( p->pEList->nExpr!=pPrior->pEList->nExpr ){
+ sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
+ " do not have the same number of result columns", selectOpName(p->op));
+ rc = 1;
+ goto multi_select_end;
+ }
+
+ /* Set the number of columns in temporary tables
+ */
+ nCol = p->pEList->nExpr;
+ while( nSetP2 ){
+ sqlite3VdbeChangeP2(v, aSetP2[--nSetP2], nCol);
+ }
+
+ /* Compute collating sequences used by either the ORDER BY clause or
+ ** by any temporary tables needed to implement the compound select.
+ ** Attach the KeyInfo structure to all temporary tables. Invoke the
+ ** ORDER BY processing if there is an ORDER BY clause.
+ **
+ ** This section is run by the right-most SELECT statement only.
+ ** SELECT statements to the left always skip this part. The right-most
+ ** SELECT might also skip this part if it has no ORDER BY clause and
+ ** no temp tables are required.
+ */
+ if( pOrderBy || p->usesEphm ){
+ int i; /* Loop counter */
+ KeyInfo *pKeyInfo; /* Collating sequence for the result set */
+ Select *pLoop; /* For looping through SELECT statements */
+ int nKeyCol; /* Number of entries in pKeyInfo->aCol[] */
+ CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */
+ CollSeq **aCopy; /* A copy of pKeyInfo->aColl[] */
+
+ assert( p->pRightmost==p );
+ nKeyCol = nCol + (pOrderBy ? pOrderBy->nExpr : 0);
+ pKeyInfo = sqlite3DbMallocZero(pParse->db,
+ sizeof(*pKeyInfo)+nKeyCol*(sizeof(CollSeq*) + 1));
+ if( !pKeyInfo ){
+ rc = SQLITE_NOMEM;
+ goto multi_select_end;
+ }
+
+ pKeyInfo->enc = ENC(pParse->db);
+ pKeyInfo->nField = nCol;
+
+ for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
+ *apColl = multiSelectCollSeq(pParse, p, i);
+ if( 0==*apColl ){
+ *apColl = pParse->db->pDfltColl;
+ }
+ }
+
+ for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
+ for(i=0; i<2; i++){
+ int addr = pLoop->addrOpenEphm[i];
+ if( addr<0 ){
+ /* If [0] is unused then [1] is also unused. So we can
+ ** always safely abort as soon as the first unused slot is found */
+ assert( pLoop->addrOpenEphm[1]<0 );
+ break;
+ }
+ sqlite3VdbeChangeP2(v, addr, nCol);
+ sqlite3VdbeChangeP4(v, addr, (char*)pKeyInfo, P4_KEYINFO);
+ pLoop->addrOpenEphm[i] = -1;
+ }
+ }
+
+ if( pOrderBy ){
+ struct ExprList_item *pOTerm = pOrderBy->a;
+ int nOrderByExpr = pOrderBy->nExpr;
+ int addr;
+ u8 *pSortOrder;
+
+ /* Reuse the same pKeyInfo for the ORDER BY as was used above for
+ ** the compound select statements. Except we have to change out the
+ ** pKeyInfo->aColl[] values. Some of the aColl[] values will be
+ ** reused when constructing the pKeyInfo for the ORDER BY, so make
+ ** a copy. Sufficient space to hold both the nCol entries for
+ ** the compound select and the nOrderbyExpr entries for the ORDER BY
+ ** was allocated above. But we need to move the compound select
+ ** entries out of the way before constructing the ORDER BY entries.
+ ** Move the compound select entries into aCopy[] where they can be
+ ** accessed and reused when constructing the ORDER BY entries.
+ ** Because nCol might be greater than or less than nOrderByExpr
+ ** we have to use memmove() when doing the copy.
+ */
+ aCopy = &pKeyInfo->aColl[nOrderByExpr];
+ pSortOrder = pKeyInfo->aSortOrder = (u8*)&aCopy[nCol];
+ memmove(aCopy, pKeyInfo->aColl, nCol*sizeof(CollSeq*));
+
+ apColl = pKeyInfo->aColl;
+ for(i=0; i<nOrderByExpr; i++, pOTerm++, apColl++, pSortOrder++){
+ Expr *pExpr = pOTerm->pExpr;
+ if( (pExpr->flags & EP_ExpCollate) ){
+ assert( pExpr->pColl!=0 );
+ *apColl = pExpr->pColl;
+ }else{
+ *apColl = aCopy[pExpr->iColumn];
+ }
+ *pSortOrder = pOTerm->sortOrder;
+ }
+ assert( p->pRightmost==p );
+ assert( p->addrOpenEphm[2]>=0 );
+ addr = p->addrOpenEphm[2];
+ sqlite3VdbeChangeP2(v, addr, p->pOrderBy->nExpr+2);
+ pKeyInfo->nField = nOrderByExpr;
+ sqlite3VdbeChangeP4(v, addr, (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
+ pKeyInfo = 0;
+ generateSortTail(pParse, p, v, p->pEList->nExpr, &dest);
+ }
+
+ sqlite3_free(pKeyInfo);
+ }
+
+multi_select_end:
+ pDest->iMem = dest.iMem;
+ pDest->nMem = dest.nMem;
+ return rc;
+}
+#endif /* SQLITE_OMIT_COMPOUND_SELECT */
+
+#ifndef SQLITE_OMIT_VIEW
+/* Forward Declarations */
+static void substExprList(sqlite3*, ExprList*, int, ExprList*);
+static void substSelect(sqlite3*, Select *, int, ExprList *);
+
+/*
+** Scan through the expression pExpr. Replace every reference to
+** a column in table number iTable with a copy of the iColumn-th
+** entry in pEList. (But leave references to the ROWID column
+** unchanged.)
+**
+** This routine is part of the flattening procedure. A subquery
+** whose result set is defined by pEList appears as entry in the
+** FROM clause of a SELECT such that the VDBE cursor assigned to that
+** FORM clause entry is iTable. This routine make the necessary
+** changes to pExpr so that it refers directly to the source table
+** of the subquery rather the result set of the subquery.
+*/
+static void substExpr(
+ sqlite3 *db, /* Report malloc errors to this connection */
+ Expr *pExpr, /* Expr in which substitution occurs */
+ int iTable, /* Table to be substituted */
+ ExprList *pEList /* Substitute expressions */
+){
+ if( pExpr==0 ) return;
+ if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){
+ if( pExpr->iColumn<0 ){
+ pExpr->op = TK_NULL;
+ }else{
+ Expr *pNew;
+ assert( pEList!=0 && pExpr->iColumn<pEList->nExpr );
+ assert( pExpr->pLeft==0 && pExpr->pRight==0 && pExpr->pList==0 );
+ pNew = pEList->a[pExpr->iColumn].pExpr;
+ assert( pNew!=0 );
+ pExpr->op = pNew->op;
+ assert( pExpr->pLeft==0 );
+ pExpr->pLeft = sqlite3ExprDup(db, pNew->pLeft);
+ assert( pExpr->pRight==0 );
+ pExpr->pRight = sqlite3ExprDup(db, pNew->pRight);
+ assert( pExpr->pList==0 );
+ pExpr->pList = sqlite3ExprListDup(db, pNew->pList);
+ pExpr->iTable = pNew->iTable;
+ pExpr->pTab = pNew->pTab;
+ pExpr->iColumn = pNew->iColumn;
+ pExpr->iAgg = pNew->iAgg;
+ sqlite3TokenCopy(db, &pExpr->token, &pNew->token);
+ sqlite3TokenCopy(db, &pExpr->span, &pNew->span);
+ pExpr->pSelect = sqlite3SelectDup(db, pNew->pSelect);
+ pExpr->flags = pNew->flags;
+ }
+ }else{
+ substExpr(db, pExpr->pLeft, iTable, pEList);
+ substExpr(db, pExpr->pRight, iTable, pEList);
+ substSelect(db, pExpr->pSelect, iTable, pEList);
+ substExprList(db, pExpr->pList, iTable, pEList);
+ }
+}
+static void substExprList(
+ sqlite3 *db, /* Report malloc errors here */
+ ExprList *pList, /* List to scan and in which to make substitutes */
+ int iTable, /* Table to be substituted */
+ ExprList *pEList /* Substitute values */
+){
+ int i;
+ if( pList==0 ) return;
+ for(i=0; i<pList->nExpr; i++){
+ substExpr(db, pList->a[i].pExpr, iTable, pEList);
+ }
+}
+static void substSelect(
+ sqlite3 *db, /* Report malloc errors here */
+ Select *p, /* SELECT statement in which to make substitutions */
+ int iTable, /* Table to be replaced */
+ ExprList *pEList /* Substitute values */
+){
+ if( !p ) return;
+ substExprList(db, p->pEList, iTable, pEList);
+ substExprList(db, p->pGroupBy, iTable, pEList);
+ substExprList(db, p->pOrderBy, iTable, pEList);
+ substExpr(db, p->pHaving, iTable, pEList);
+ substExpr(db, p->pWhere, iTable, pEList);
+ substSelect(db, p->pPrior, iTable, pEList);
+}
+#endif /* !defined(SQLITE_OMIT_VIEW) */
+
+#ifndef SQLITE_OMIT_VIEW
+/*
+** This routine attempts to flatten subqueries in order to speed
+** execution. It returns 1 if it makes changes and 0 if no flattening
+** occurs.
+**
+** To understand the concept of flattening, consider the following
+** query:
+**
+** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
+**
+** The default way of implementing this query is to execute the
+** subquery first and store the results in a temporary table, then
+** run the outer query on that temporary table. This requires two
+** passes over the data. Furthermore, because the temporary table
+** has no indices, the WHERE clause on the outer query cannot be
+** optimized.
+**
+** This routine attempts to rewrite queries such as the above into
+** a single flat select, like this:
+**
+** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
+**
+** The code generated for this simpification gives the same result
+** but only has to scan the data once. And because indices might
+** exist on the table t1, a complete scan of the data might be
+** avoided.
+**
+** Flattening is only attempted if all of the following are true:
+**
+** (1) The subquery and the outer query do not both use aggregates.
+**
+** (2) The subquery is not an aggregate or the outer query is not a join.
+**
+** (3) The subquery is not the right operand of a left outer join, or
+** the subquery is not itself a join. (Ticket #306)
+**
+** (4) The subquery is not DISTINCT or the outer query is not a join.
+**
+** (5) The subquery is not DISTINCT or the outer query does not use
+** aggregates.
+**
+** (6) The subquery does not use aggregates or the outer query is not
+** DISTINCT.
+**
+** (7) The subquery has a FROM clause.
+**
+** (8) The subquery does not use LIMIT or the outer query is not a join.
+**
+** (9) The subquery does not use LIMIT or the outer query does not use
+** aggregates.
+**
+** (10) The subquery does not use aggregates or the outer query does not
+** use LIMIT.
+**
+** (11) The subquery and the outer query do not both have ORDER BY clauses.
+**
+** (12) The subquery is not the right term of a LEFT OUTER JOIN or the
+** subquery has no WHERE clause. (added by ticket #350)
+**
+** (13) The subquery and outer query do not both use LIMIT
+**
+** (14) The subquery does not use OFFSET
+**
+** (15) The outer query is not part of a compound select or the
+** subquery does not have both an ORDER BY and a LIMIT clause.
+** (See ticket #2339)
+**
+** (16) The outer query is not an aggregate or the subquery does
+** not contain ORDER BY. (Ticket #2942) This used to not matter
+** until we introduced the group_concat() function.
+**
+** In this routine, the "p" parameter is a pointer to the outer query.
+** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query
+** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates.
+**
+** If flattening is not attempted, this routine is a no-op and returns 0.
+** If flattening is attempted this routine returns 1.
+**
+** All of the expression analysis must occur on both the outer query and
+** the subquery before this routine runs.
+*/
+static int flattenSubquery(
+ sqlite3 *db, /* Database connection */
+ Select *p, /* The parent or outer SELECT statement */
+ int iFrom, /* Index in p->pSrc->a[] of the inner subquery */
+ int isAgg, /* True if outer SELECT uses aggregate functions */
+ int subqueryIsAgg /* True if the subquery uses aggregate functions */
+){
+ Select *pSub; /* The inner query or "subquery" */
+ SrcList *pSrc; /* The FROM clause of the outer query */
+ SrcList *pSubSrc; /* The FROM clause of the subquery */
+ ExprList *pList; /* The result set of the outer query */
+ int iParent; /* VDBE cursor number of the pSub result set temp table */
+ int i; /* Loop counter */
+ Expr *pWhere; /* The WHERE clause */
+ struct SrcList_item *pSubitem; /* The subquery */
+
+ /* Check to see if flattening is permitted. Return 0 if not.
+ */
+ if( p==0 ) return 0;
+ pSrc = p->pSrc;
+ assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
+ pSubitem = &pSrc->a[iFrom];
+ pSub = pSubitem->pSelect;
+ assert( pSub!=0 );
+ if( isAgg && subqueryIsAgg ) return 0; /* Restriction (1) */
+ if( subqueryIsAgg && pSrc->nSrc>1 ) return 0; /* Restriction (2) */
+ pSubSrc = pSub->pSrc;
+ assert( pSubSrc );
+ /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
+ ** not arbitrary expresssions, we allowed some combining of LIMIT and OFFSET
+ ** because they could be computed at compile-time. But when LIMIT and OFFSET
+ ** became arbitrary expressions, we were forced to add restrictions (13)
+ ** and (14). */
+ if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */
+ if( pSub->pOffset ) return 0; /* Restriction (14) */
+ if( p->pRightmost && pSub->pLimit && pSub->pOrderBy ){
+ return 0; /* Restriction (15) */
+ }
+ if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */
+ if( (pSub->isDistinct || pSub->pLimit)
+ && (pSrc->nSrc>1 || isAgg) ){ /* Restrictions (4)(5)(8)(9) */
+ return 0;
+ }
+ if( p->isDistinct && subqueryIsAgg ) return 0; /* Restriction (6) */
+ if( (p->disallowOrderBy || p->pOrderBy) && pSub->pOrderBy ){
+ return 0; /* Restriction (11) */
+ }
+ if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */
+
+ /* Restriction 3: If the subquery is a join, make sure the subquery is
+ ** not used as the right operand of an outer join. Examples of why this
+ ** is not allowed:
+ **
+ ** t1 LEFT OUTER JOIN (t2 JOIN t3)
+ **
+ ** If we flatten the above, we would get
+ **
+ ** (t1 LEFT OUTER JOIN t2) JOIN t3
+ **
+ ** which is not at all the same thing.
+ */
+ if( pSubSrc->nSrc>1 && (pSubitem->jointype & JT_OUTER)!=0 ){
+ return 0;
+ }
+
+ /* Restriction 12: If the subquery is the right operand of a left outer
+ ** join, make sure the subquery has no WHERE clause.
+ ** An examples of why this is not allowed:
+ **
+ ** t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0)
+ **
+ ** If we flatten the above, we would get
+ **
+ ** (t1 LEFT OUTER JOIN t2) WHERE t2.x>0
+ **
+ ** But the t2.x>0 test will always fail on a NULL row of t2, which
+ ** effectively converts the OUTER JOIN into an INNER JOIN.
+ */
+ if( (pSubitem->jointype & JT_OUTER)!=0 && pSub->pWhere!=0 ){
+ return 0;
+ }
+
+ /* If we reach this point, it means flattening is permitted for the
+ ** iFrom-th entry of the FROM clause in the outer query.
+ */
+
+ /* Move all of the FROM elements of the subquery into the
+ ** the FROM clause of the outer query. Before doing this, remember
+ ** the cursor number for the original outer query FROM element in
+ ** iParent. The iParent cursor will never be used. Subsequent code
+ ** will scan expressions looking for iParent references and replace
+ ** those references with expressions that resolve to the subquery FROM
+ ** elements we are now copying in.
+ */
+ iParent = pSubitem->iCursor;
+ {
+ int nSubSrc = pSubSrc->nSrc;
+ int jointype = pSubitem->jointype;
+
+ sqlite3DeleteTable(pSubitem->pTab);
+ sqlite3_free(pSubitem->zDatabase);
+ sqlite3_free(pSubitem->zName);
+ sqlite3_free(pSubitem->zAlias);
+ pSubitem->pTab = 0;
+ pSubitem->zDatabase = 0;
+ pSubitem->zName = 0;
+ pSubitem->zAlias = 0;
+ if( nSubSrc>1 ){
+ int extra = nSubSrc - 1;
+ for(i=1; i<nSubSrc; i++){
+ pSrc = sqlite3SrcListAppend(db, pSrc, 0, 0);
+ if( pSrc==0 ){
+ p->pSrc = 0;
+ return 1;
+ }
+ }
+ p->pSrc = pSrc;
+ for(i=pSrc->nSrc-1; i-extra>=iFrom; i--){
+ pSrc->a[i] = pSrc->a[i-extra];
+ }
+ }
+ for(i=0; i<nSubSrc; i++){
+ pSrc->a[i+iFrom] = pSubSrc->a[i];
+ memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
+ }
+ pSrc->a[iFrom].jointype = jointype;
+ }
+
+ /* Now begin substituting subquery result set expressions for
+ ** references to the iParent in the outer query.
+ **
+ ** Example:
+ **
+ ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
+ ** \ \_____________ subquery __________/ /
+ ** \_____________________ outer query ______________________________/
+ **
+ ** We look at every expression in the outer query and every place we see
+ ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
+ */
+ pList = p->pEList;
+ for(i=0; i<pList->nExpr; i++){
+ Expr *pExpr;
+ if( pList->a[i].zName==0 && (pExpr = pList->a[i].pExpr)->span.z!=0 ){
+ pList->a[i].zName =
+ sqlite3DbStrNDup(db, (char*)pExpr->span.z, pExpr->span.n);
+ }
+ }
+ substExprList(db, p->pEList, iParent, pSub->pEList);
+ if( isAgg ){
+ substExprList(db, p->pGroupBy, iParent, pSub->pEList);
+ substExpr(db, p->pHaving, iParent, pSub->pEList);
+ }
+ if( pSub->pOrderBy ){
+ assert( p->pOrderBy==0 );
+ p->pOrderBy = pSub->pOrderBy;
+ pSub->pOrderBy = 0;
+ }else if( p->pOrderBy ){
+ substExprList(db, p->pOrderBy, iParent, pSub->pEList);
+ }
+ if( pSub->pWhere ){
+ pWhere = sqlite3ExprDup(db, pSub->pWhere);
+ }else{
+ pWhere = 0;
+ }
+ if( subqueryIsAgg ){
+ assert( p->pHaving==0 );
+ p->pHaving = p->pWhere;
+ p->pWhere = pWhere;
+ substExpr(db, p->pHaving, iParent, pSub->pEList);
+ p->pHaving = sqlite3ExprAnd(db, p->pHaving,
+ sqlite3ExprDup(db, pSub->pHaving));
+ assert( p->pGroupBy==0 );
+ p->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy);
+ }else{
+ substExpr(db, p->pWhere, iParent, pSub->pEList);
+ p->pWhere = sqlite3ExprAnd(db, p->pWhere, pWhere);
+ }
+
+ /* The flattened query is distinct if either the inner or the
+ ** outer query is distinct.
+ */
+ p->isDistinct = p->isDistinct || pSub->isDistinct;
+
+ /*
+ ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
+ **
+ ** One is tempted to try to add a and b to combine the limits. But this
+ ** does not work if either limit is negative.
+ */
+ if( pSub->pLimit ){
+ p->pLimit = pSub->pLimit;
+ pSub->pLimit = 0;
+ }
+
+ /* Finially, delete what is left of the subquery and return
+ ** success.
+ */
+ sqlite3SelectDelete(pSub);
+ return 1;
+}
+#endif /* SQLITE_OMIT_VIEW */
+
+/*
+** Analyze the SELECT statement passed as an argument to see if it
+** is a min() or max() query. Return WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX if
+** it is, or 0 otherwise. At present, a query is considered to be
+** a min()/max() query if:
+**
+** 1. There is a single object in the FROM clause.
+**
+** 2. There is a single expression in the result set, and it is
+** either min(x) or max(x), where x is a column reference.
+*/
+static int minMaxQuery(Parse *pParse, Select *p){
+ Expr *pExpr;
+ ExprList *pEList = p->pEList;
+
+ if( pEList->nExpr!=1 ) return WHERE_ORDERBY_NORMAL;
+ pExpr = pEList->a[0].pExpr;
+ pEList = pExpr->pList;
+ if( pExpr->op!=TK_AGG_FUNCTION || pEList==0 || pEList->nExpr!=1 ) return 0;
+ if( pEList->a[0].pExpr->op!=TK_AGG_COLUMN ) return WHERE_ORDERBY_NORMAL;
+ if( pExpr->token.n!=3 ) return WHERE_ORDERBY_NORMAL;
+ if( sqlite3StrNICmp((char*)pExpr->token.z,"min",3)==0 ){
+ return WHERE_ORDERBY_MIN;
+ }else if( sqlite3StrNICmp((char*)pExpr->token.z,"max",3)==0 ){
+ return WHERE_ORDERBY_MAX;
+ }
+ return WHERE_ORDERBY_NORMAL;
+}
+
+/*
+** This routine resolves any names used in the result set of the
+** supplied SELECT statement. If the SELECT statement being resolved
+** is a sub-select, then pOuterNC is a pointer to the NameContext
+** of the parent SELECT.
+*/
+SQLITE_PRIVATE int sqlite3SelectResolve(
+ Parse *pParse, /* The parser context */
+ Select *p, /* The SELECT statement being coded. */
+ NameContext *pOuterNC /* The outer name context. May be NULL. */
+){
+ ExprList *pEList; /* Result set. */
+ int i; /* For-loop variable used in multiple places */
+ NameContext sNC; /* Local name-context */
+ ExprList *pGroupBy; /* The group by clause */
+
+ /* If this routine has run before, return immediately. */
+ if( p->isResolved ){
+ assert( !pOuterNC );
+ return SQLITE_OK;
+ }
+ p->isResolved = 1;
+
+ /* If there have already been errors, do nothing. */
+ if( pParse->nErr>0 ){
+ return SQLITE_ERROR;
+ }
+
+ /* Prepare the select statement. This call will allocate all cursors
+ ** required to handle the tables and subqueries in the FROM clause.
+ */
+ if( prepSelectStmt(pParse, p) ){
+ return SQLITE_ERROR;
+ }
+
+ /* Resolve the expressions in the LIMIT and OFFSET clauses. These
+ ** are not allowed to refer to any names, so pass an empty NameContext.
+ */
+ memset(&sNC, 0, sizeof(sNC));
+ sNC.pParse = pParse;
+ if( sqlite3ExprResolveNames(&sNC, p->pLimit) ||
+ sqlite3ExprResolveNames(&sNC, p->pOffset) ){
+ return SQLITE_ERROR;
+ }
+
+ /* Set up the local name-context to pass to ExprResolveNames() to
+ ** resolve the expression-list.
+ */
+ sNC.allowAgg = 1;
+ sNC.pSrcList = p->pSrc;
+ sNC.pNext = pOuterNC;
+
+ /* Resolve names in the result set. */
+ pEList = p->pEList;
+ if( !pEList ) return SQLITE_ERROR;
+ for(i=0; i<pEList->nExpr; i++){
+ Expr *pX = pEList->a[i].pExpr;
+ if( sqlite3ExprResolveNames(&sNC, pX) ){
+ return SQLITE_ERROR;
+ }
+ }
+
+ /* If there are no aggregate functions in the result-set, and no GROUP BY
+ ** expression, do not allow aggregates in any of the other expressions.
+ */
+ assert( !p->isAgg );
+ pGroupBy = p->pGroupBy;
+ if( pGroupBy || sNC.hasAgg ){
+ p->isAgg = 1;
+ }else{
+ sNC.allowAgg = 0;
+ }
+
+ /* If a HAVING clause is present, then there must be a GROUP BY clause.
+ */
+ if( p->pHaving && !pGroupBy ){
+ sqlite3ErrorMsg(pParse, "a GROUP BY clause is required before HAVING");
+ return SQLITE_ERROR;
+ }
+
+ /* Add the expression list to the name-context before parsing the
+ ** other expressions in the SELECT statement. This is so that
+ ** expressions in the WHERE clause (etc.) can refer to expressions by
+ ** aliases in the result set.
+ **
+ ** Minor point: If this is the case, then the expression will be
+ ** re-evaluated for each reference to it.
+ */
+ sNC.pEList = p->pEList;
+ if( sqlite3ExprResolveNames(&sNC, p->pWhere) ||
+ sqlite3ExprResolveNames(&sNC, p->pHaving) ){
+ return SQLITE_ERROR;
+ }
+ if( p->pPrior==0 ){
+ if( processOrderGroupBy(pParse, p, p->pOrderBy, 1, &sNC.hasAgg) ){
+ return SQLITE_ERROR;
+ }
+ }
+ if( processOrderGroupBy(pParse, p, pGroupBy, 0, &sNC.hasAgg) ){
+ return SQLITE_ERROR;
+ }
+
+ if( pParse->db->mallocFailed ){
+ return SQLITE_NOMEM;
+ }
+
+ /* Make sure the GROUP BY clause does not contain aggregate functions.
+ */
+ if( pGroupBy ){
+ struct ExprList_item *pItem;
+
+ for(i=0, pItem=pGroupBy->a; i<pGroupBy->nExpr; i++, pItem++){
+ if( ExprHasProperty(pItem->pExpr, EP_Agg) ){
+ sqlite3ErrorMsg(pParse, "aggregate functions are not allowed in "
+ "the GROUP BY clause");
+ return SQLITE_ERROR;
+ }
+ }
+ }
+
+ /* If this is one SELECT of a compound, be sure to resolve names
+ ** in the other SELECTs.
+ */
+ if( p->pPrior ){
+ return sqlite3SelectResolve(pParse, p->pPrior, pOuterNC);
+ }else{
+ return SQLITE_OK;
+ }
+}
+
+/*
+** Reset the aggregate accumulator.
+**
+** The aggregate accumulator is a set of memory cells that hold
+** intermediate results while calculating an aggregate. This
+** routine simply stores NULLs in all of those memory cells.
+*/
+static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
+ Vdbe *v = pParse->pVdbe;
+ int i;
+ struct AggInfo_func *pFunc;
+ if( pAggInfo->nFunc+pAggInfo->nColumn==0 ){
+ return;
+ }
+ for(i=0; i<pAggInfo->nColumn; i++){
+ sqlite3VdbeAddOp2(v, OP_Null, 0, pAggInfo->aCol[i].iMem);
+ }
+ for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
+ sqlite3VdbeAddOp2(v, OP_Null, 0, pFunc->iMem);
+ if( pFunc->iDistinct>=0 ){
+ Expr *pE = pFunc->pExpr;
+ if( pE->pList==0 || pE->pList->nExpr!=1 ){
+ sqlite3ErrorMsg(pParse, "DISTINCT in aggregate must be followed "
+ "by an expression");
+ pFunc->iDistinct = -1;
+ }else{
+ KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->pList);
+ sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0,
+ (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
+ }
+ }
+ }
+}
+
+/*
+** Invoke the OP_AggFinalize opcode for every aggregate function
+** in the AggInfo structure.
+*/
+static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
+ Vdbe *v = pParse->pVdbe;
+ int i;
+ struct AggInfo_func *pF;
+ for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
+ ExprList *pList = pF->pExpr->pList;
+ sqlite3VdbeAddOp4(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, 0,
+ (void*)pF->pFunc, P4_FUNCDEF);
+ }
+}
+
+/*
+** Update the accumulator memory cells for an aggregate based on
+** the current cursor position.
+*/
+static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){
+ Vdbe *v = pParse->pVdbe;
+ int i;
+ struct AggInfo_func *pF;
+ struct AggInfo_col *pC;
+
+ pAggInfo->directMode = 1;
+ for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
+ int nArg;
+ int addrNext = 0;
+ int regAgg;
+ ExprList *pList = pF->pExpr->pList;
+ if( pList ){
+ nArg = pList->nExpr;
+ regAgg = sqlite3GetTempRange(pParse, nArg);
+ sqlite3ExprCodeExprList(pParse, pList, regAgg, 0);
+ }else{
+ nArg = 0;
+ regAgg = 0;
+ }
+ if( pF->iDistinct>=0 ){
+ addrNext = sqlite3VdbeMakeLabel(v);
+ assert( nArg==1 );
+ codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg);
+ }
+ if( pF->pFunc->needCollSeq ){
+ CollSeq *pColl = 0;
+ struct ExprList_item *pItem;
+ int j;
+ assert( pList!=0 ); /* pList!=0 if pF->pFunc->needCollSeq is true */
+ for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
+ pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
+ }
+ if( !pColl ){
+ pColl = pParse->db->pDfltColl;
+ }
+ sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
+ }
+ sqlite3VdbeAddOp4(v, OP_AggStep, 0, regAgg, pF->iMem,
+ (void*)pF->pFunc, P4_FUNCDEF);
+ sqlite3VdbeChangeP5(v, nArg);
+ sqlite3ReleaseTempRange(pParse, regAgg, nArg);
+ sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg);
+ if( addrNext ){
+ sqlite3VdbeResolveLabel(v, addrNext);
+ }
+ }
+ for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
+ sqlite3ExprCode(pParse, pC->pExpr, pC->iMem);
+ }
+ pAggInfo->directMode = 0;
+}
+
+#if 0
+/*
+** This function is used when a SELECT statement is used to create a
+** temporary table for iterating through when running an INSTEAD OF
+** UPDATE or INSTEAD OF DELETE trigger.
+**
+** If possible, the SELECT statement is modified so that NULL values
+** are stored in the temporary table for all columns for which the
+** corresponding bit in argument mask is not set. If mask takes the
+** special value 0xffffffff, then all columns are populated.
+*/
+SQLITE_PRIVATE void sqlite3SelectMask(Parse *pParse, Select *p, u32 mask){
+ if( p && !p->pPrior && !p->isDistinct && mask!=0xffffffff ){
+ ExprList *pEList;
+ int i;
+ sqlite3SelectResolve(pParse, p, 0);
+ pEList = p->pEList;
+ for(i=0; pEList && i<pEList->nExpr && i<32; i++){
+ if( !(mask&((u32)1<<i)) ){
+ sqlite3ExprDelete(pEList->a[i].pExpr);
+ pEList->a[i].pExpr = sqlite3Expr(pParse->db, TK_NULL, 0, 0, 0);
+ }
+ }
+ }
+}
+#endif
+
+/*
+** Generate code for the given SELECT statement.
+**
+** The results are distributed in various ways depending on the
+** contents of the SelectDest structure pointed to by argument pDest
+** as follows:
+**
+** pDest->eDest Result
+** ------------ -------------------------------------------
+** SRT_Callback Invoke the callback for each row of the result.
+**
+** SRT_Mem Store first result in memory cell pDest->iParm
+**
+** SRT_Set Store non-null results as keys of table pDest->iParm.
+** Apply the affinity pDest->affinity before storing them.
+**
+** SRT_Union Store results as a key in a temporary table pDest->iParm.
+**
+** SRT_Except Remove results from the temporary table pDest->iParm.
+**
+** SRT_Table Store results in temporary table pDest->iParm
+**
+** SRT_EphemTab Create an temporary table pDest->iParm and store
+** the result there. The cursor is left open after
+** returning.
+**
+** SRT_Subroutine For each row returned, push the results onto the
+** vdbe stack and call the subroutine (via OP_Gosub)
+** at address pDest->iParm.
+**
+** SRT_Exists Store a 1 in memory cell pDest->iParm if the result
+** set is not empty.
+**
+** SRT_Discard Throw the results away.
+**
+** See the selectInnerLoop() function for a canonical listing of the
+** allowed values of eDest and their meanings.
+**
+** This routine returns the number of errors. If any errors are
+** encountered, then an appropriate error message is left in
+** pParse->zErrMsg.
+**
+** This routine does NOT free the Select structure passed in. The
+** calling function needs to do that.
+**
+** The pParent, parentTab, and *pParentAgg fields are filled in if this
+** SELECT is a subquery. This routine may try to combine this SELECT
+** with its parent to form a single flat query. In so doing, it might
+** change the parent query from a non-aggregate to an aggregate query.
+** For that reason, the pParentAgg flag is passed as a pointer, so it
+** can be changed.
+**
+** Example 1: The meaning of the pParent parameter.
+**
+** SELECT * FROM t1 JOIN (SELECT x, count(*) FROM t2) JOIN t3;
+** \ \_______ subquery _______/ /
+** \ /
+** \____________________ outer query ___________________/
+**
+** This routine is called for the outer query first. For that call,
+** pParent will be NULL. During the processing of the outer query, this
+** routine is called recursively to handle the subquery. For the recursive
+** call, pParent will point to the outer query. Because the subquery is
+** the second element in a three-way join, the parentTab parameter will
+** be 1 (the 2nd value of a 0-indexed array.)
+*/
+SQLITE_PRIVATE int sqlite3Select(
+ Parse *pParse, /* The parser context */
+ Select *p, /* The SELECT statement being coded. */
+ SelectDest *pDest, /* What to do with the query results */
+ Select *pParent, /* Another SELECT for which this is a sub-query */
+ int parentTab, /* Index in pParent->pSrc of this query */
+ int *pParentAgg, /* True if pParent uses aggregate functions */
+ char *aff /* If eDest is SRT_Union, the affinity string */
+){
+ int i, j; /* Loop counters */
+ WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */
+ Vdbe *v; /* The virtual machine under construction */
+ int isAgg; /* True for select lists like "count(*)" */
+ ExprList *pEList; /* List of columns to extract. */
+ SrcList *pTabList; /* List of tables to select from */
+ Expr *pWhere; /* The WHERE clause. May be NULL */
+ ExprList *pOrderBy; /* The ORDER BY clause. May be NULL */
+ ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */
+ Expr *pHaving; /* The HAVING clause. May be NULL */
+ int isDistinct; /* True if the DISTINCT keyword is present */
+ int distinct; /* Table to use for the distinct set */
+ int rc = 1; /* Value to return from this function */
+ int addrSortIndex; /* Address of an OP_OpenEphemeral instruction */
+ AggInfo sAggInfo; /* Information used by aggregate queries */
+ int iEnd; /* Address of the end of the query */
+ sqlite3 *db; /* The database connection */
+
+ db = pParse->db;
+ if( p==0 || db->mallocFailed || pParse->nErr ){
+ return 1;
+ }
+ if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
+ memset(&sAggInfo, 0, sizeof(sAggInfo));
+
+ pOrderBy = p->pOrderBy;
+ if( IgnorableOrderby(pDest) ){
+ p->pOrderBy = 0;
+
+ /* In these cases the DISTINCT operator makes no difference to the
+ ** results, so remove it if it were specified.
+ */
+ assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union ||
+ pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard);
+ p->isDistinct = 0;
+ }
+ if( sqlite3SelectResolve(pParse, p, 0) ){
+ goto select_end;
+ }
+ p->pOrderBy = pOrderBy;
+
+#ifndef SQLITE_OMIT_COMPOUND_SELECT
+ /* If there is are a sequence of queries, do the earlier ones first.
+ */
+ if( p->pPrior ){
+ if( p->pRightmost==0 ){
+ Select *pLoop, *pRight = 0;
+ int cnt = 0;
+ int mxSelect;
+ for(pLoop=p; pLoop; pLoop=pLoop->pPrior, cnt++){
+ pLoop->pRightmost = p;
+ pLoop->pNext = pRight;
+ pRight = pLoop;
+ }
+ mxSelect = db->aLimit[SQLITE_LIMIT_COMPOUND_SELECT];
+ if( mxSelect && cnt>mxSelect ){
+ sqlite3ErrorMsg(pParse, "too many terms in compound SELECT");
+ return 1;
+ }
+ }
+ return multiSelect(pParse, p, pDest, aff);
+ }
+#endif
+
+ /* Make local copies of the parameters for this query.
+ */
+ pTabList = p->pSrc;
+ pWhere = p->pWhere;
+ pGroupBy = p->pGroupBy;
+ pHaving = p->pHaving;
+ isAgg = p->isAgg;
+ isDistinct = p->isDistinct;
+ pEList = p->pEList;
+ if( pEList==0 ) goto select_end;
+
+ /*
+ ** Do not even attempt to generate any code if we have already seen
+ ** errors before this routine starts.
+ */
+ if( pParse->nErr>0 ) goto select_end;
+
+ /* If writing to memory or generating a set
+ ** only a single column may be output.
+ */
+#ifndef SQLITE_OMIT_SUBQUERY
+ if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){
+ goto select_end;
+ }
+#endif
+
+ /* ORDER BY is ignored for some destinations.
+ */
+ if( IgnorableOrderby(pDest) ){
+ pOrderBy = 0;
+ }
+
+ /* Begin generating code.
+ */
+ v = sqlite3GetVdbe(pParse);
+ if( v==0 ) goto select_end;
+
+ /* Generate code for all sub-queries in the FROM clause
+ */
+#if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
+ for(i=0; i<pTabList->nSrc; i++){
+ const char *zSavedAuthContext = 0;
+ int needRestoreContext;
+ struct SrcList_item *pItem = &pTabList->a[i];
+ SelectDest dest;
+
+ if( pItem->pSelect==0 || pItem->isPopulated ) continue;
+ if( pItem->zName!=0 ){
+ zSavedAuthContext = pParse->zAuthContext;
+ pParse->zAuthContext = pItem->zName;
+ needRestoreContext = 1;
+ }else{
+ needRestoreContext = 0;
+ }
+ /* Increment Parse.nHeight by the height of the largest expression
+ ** tree refered to by this, the parent select. The child select
+ ** may contain expression trees of at most
+ ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
+ ** more conservative than necessary, but much easier than enforcing
+ ** an exact limit.
+ */
+ pParse->nHeight += sqlite3SelectExprHeight(p);
+ sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
+ sqlite3Select(pParse, pItem->pSelect, &dest, p, i, &isAgg, 0);
+ if( db->mallocFailed ){
+ goto select_end;
+ }
+ pParse->nHeight -= sqlite3SelectExprHeight(p);
+ if( needRestoreContext ){
+ pParse->zAuthContext = zSavedAuthContext;
+ }
+ pTabList = p->pSrc;
+ pWhere = p->pWhere;
+ if( !IgnorableOrderby(pDest) ){
+ pOrderBy = p->pOrderBy;
+ }
+ pGroupBy = p->pGroupBy;
+ pHaving = p->pHaving;
+ isDistinct = p->isDistinct;
+ }
+#endif
+
+ /* Check to see if this is a subquery that can be "flattened" into its parent.
+ ** If flattening is a possiblity, do so and return immediately.
+ */
+#ifndef SQLITE_OMIT_VIEW
+ if( pParent && pParentAgg &&
+ flattenSubquery(db, pParent, parentTab, *pParentAgg, isAgg) ){
+ if( isAgg ) *pParentAgg = 1;
+ goto select_end;
+ }
+#endif
+
+ /* If possible, rewrite the query to use GROUP BY instead of DISTINCT.
+ ** GROUP BY may use an index, DISTINCT never does.
+ */
+ if( p->isDistinct && !p->isAgg && !p->pGroupBy ){
+ p->pGroupBy = sqlite3ExprListDup(db, p->pEList);
+ pGroupBy = p->pGroupBy;
+ p->isDistinct = 0;
+ isDistinct = 0;
+ }
+
+ /* If there is an ORDER BY clause, then this sorting
+ ** index might end up being unused if the data can be
+ ** extracted in pre-sorted order. If that is the case, then the
+ ** OP_OpenEphemeral instruction will be changed to an OP_Noop once
+ ** we figure out that the sorting index is not needed. The addrSortIndex
+ ** variable is used to facilitate that change.
+ */
+ if( pOrderBy ){
+ KeyInfo *pKeyInfo;
+ pKeyInfo = keyInfoFromExprList(pParse, pOrderBy);
+ pOrderBy->iECursor = pParse->nTab++;
+ p->addrOpenEphm[2] = addrSortIndex =
+ sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
+ pOrderBy->iECursor, pOrderBy->nExpr+2, 0,
+ (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
+ }else{
+ addrSortIndex = -1;
+ }
+
+ /* If the output is destined for a temporary table, open that table.
+ */
+ if( pDest->eDest==SRT_EphemTab ){
+ sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iParm, pEList->nExpr);
+ }
+
+ /* Set the limiter.
+ */
+ iEnd = sqlite3VdbeMakeLabel(v);
+ computeLimitRegisters(pParse, p, iEnd);
+
+ /* Open a virtual index to use for the distinct set.
+ */
+ if( isDistinct ){
+ KeyInfo *pKeyInfo;
+ assert( isAgg || pGroupBy );
+ distinct = pParse->nTab++;
+ pKeyInfo = keyInfoFromExprList(pParse, p->pEList);
+ sqlite3VdbeAddOp4(v, OP_OpenEphemeral, distinct, 0, 0,
+ (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
+ }else{
+ distinct = -1;
+ }
+
+ /* Aggregate and non-aggregate queries are handled differently */
+ if( !isAgg && pGroupBy==0 ){
+ /* This case is for non-aggregate queries
+ ** Begin the database scan
+ */
+ pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pOrderBy, 0);
+ if( pWInfo==0 ) goto select_end;
+
+ /* If sorting index that was created by a prior OP_OpenEphemeral
+ ** instruction ended up not being needed, then change the OP_OpenEphemeral
+ ** into an OP_Noop.
+ */
+ if( addrSortIndex>=0 && pOrderBy==0 ){
+ sqlite3VdbeChangeToNoop(v, addrSortIndex, 1);
+ p->addrOpenEphm[2] = -1;
+ }
+
+ /* Use the standard inner loop
+ */
+ assert(!isDistinct);
+ selectInnerLoop(pParse, p, pEList, 0, 0, pOrderBy, -1, pDest,
+ pWInfo->iContinue, pWInfo->iBreak, aff);
+
+ /* End the database scan loop.
+ */
+ sqlite3WhereEnd(pWInfo);
+ }else{
+ /* This is the processing for aggregate queries */
+ NameContext sNC; /* Name context for processing aggregate information */
+ int iAMem; /* First Mem address for storing current GROUP BY */
+ int iBMem; /* First Mem address for previous GROUP BY */
+ int iUseFlag; /* Mem address holding flag indicating that at least
+ ** one row of the input to the aggregator has been
+ ** processed */
+ int iAbortFlag; /* Mem address which causes query abort if positive */
+ int groupBySort; /* Rows come from source in GROUP BY order */
+
+
+ /* The following variables hold addresses or labels for parts of the
+ ** virtual machine program we are putting together */
+ int addrOutputRow; /* Start of subroutine that outputs a result row */
+ int addrSetAbort; /* Set the abort flag and return */
+ int addrInitializeLoop; /* Start of code that initializes the input loop */
+ int addrTopOfLoop; /* Top of the input loop */
+ int addrGroupByChange; /* Code that runs when any GROUP BY term changes */
+ int addrProcessRow; /* Code to process a single input row */
+ int addrEnd; /* End of all processing */
+ int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */
+ int addrReset; /* Subroutine for resetting the accumulator */
+
+ addrEnd = sqlite3VdbeMakeLabel(v);
+
+ /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
+ ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
+ ** SELECT statement.
+ */
+ memset(&sNC, 0, sizeof(sNC));
+ sNC.pParse = pParse;
+ sNC.pSrcList = pTabList;
+ sNC.pAggInfo = &sAggInfo;
+ sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr+1 : 0;
+ sAggInfo.pGroupBy = pGroupBy;
+ sqlite3ExprAnalyzeAggList(&sNC, pEList);
+ sqlite3ExprAnalyzeAggList(&sNC, pOrderBy);
+ if( pHaving ){
+ sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
+ }
+ sAggInfo.nAccumulator = sAggInfo.nColumn;
+ for(i=0; i<sAggInfo.nFunc; i++){
+ sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->pList);
+ }
+ if( db->mallocFailed ) goto select_end;
+
+ /* Processing for aggregates with GROUP BY is very different and
+ ** much more complex than aggregates without a GROUP BY.
+ */
+ if( pGroupBy ){
+ KeyInfo *pKeyInfo; /* Keying information for the group by clause */
+
+ /* Create labels that we will be needing
+ */
+
+ addrInitializeLoop = sqlite3VdbeMakeLabel(v);
+ addrGroupByChange = sqlite3VdbeMakeLabel(v);
+ addrProcessRow = sqlite3VdbeMakeLabel(v);
+
+ /* If there is a GROUP BY clause we might need a sorting index to
+ ** implement it. Allocate that sorting index now. If it turns out
+ ** that we do not need it after all, the OpenEphemeral instruction
+ ** will be converted into a Noop.
+ */
+ sAggInfo.sortingIdx = pParse->nTab++;
+ pKeyInfo = keyInfoFromExprList(pParse, pGroupBy);
+ addrSortingIdx = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
+ sAggInfo.sortingIdx, sAggInfo.nSortingColumn,
+ 0, (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
+
+ /* Initialize memory locations used by GROUP BY aggregate processing
+ */
+ iUseFlag = ++pParse->nMem;
+ iAbortFlag = ++pParse->nMem;
+ iAMem = pParse->nMem + 1;
+ pParse->nMem += pGroupBy->nExpr;
+ iBMem = pParse->nMem + 1;
+ pParse->nMem += pGroupBy->nExpr;
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag);
+ VdbeComment((v, "clear abort flag"));
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag);
+ VdbeComment((v, "indicate accumulator empty"));
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, addrInitializeLoop);
+
+ /* Generate a subroutine that outputs a single row of the result
+ ** set. This subroutine first looks at the iUseFlag. If iUseFlag
+ ** is less than or equal to zero, the subroutine is a no-op. If
+ ** the processing calls for the query to abort, this subroutine
+ ** increments the iAbortFlag memory location before returning in
+ ** order to signal the caller to abort.
+ */
+ addrSetAbort = sqlite3VdbeCurrentAddr(v);
+ sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
+ VdbeComment((v, "set abort flag"));
+ sqlite3VdbeAddOp2(v, OP_Return, 0, 0);
+ addrOutputRow = sqlite3VdbeCurrentAddr(v);
+ sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2);
+ VdbeComment((v, "Groupby result generator entry point"));
+ sqlite3VdbeAddOp2(v, OP_Return, 0, 0);
+ finalizeAggFunctions(pParse, &sAggInfo);
+ if( pHaving ){
+ sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
+ }
+ selectInnerLoop(pParse, p, p->pEList, 0, 0, pOrderBy,
+ distinct, pDest,
+ addrOutputRow+1, addrSetAbort, aff);
+ sqlite3VdbeAddOp2(v, OP_Return, 0, 0);
+ VdbeComment((v, "end groupby result generator"));
+
+ /* Generate a subroutine that will reset the group-by accumulator
+ */
+ addrReset = sqlite3VdbeCurrentAddr(v);
+ resetAccumulator(pParse, &sAggInfo);
+ sqlite3VdbeAddOp2(v, OP_Return, 0, 0);
+
+ /* Begin a loop that will extract all source rows in GROUP BY order.
+ ** This might involve two separate loops with an OP_Sort in between, or
+ ** it might be a single loop that uses an index to extract information
+ ** in the right order to begin with.
+ */
+ sqlite3VdbeResolveLabel(v, addrInitializeLoop);
+ sqlite3VdbeAddOp2(v, OP_Gosub, 0, addrReset);
+ pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pGroupBy, 0);
+ if( pWInfo==0 ) goto select_end;
+ if( pGroupBy==0 ){
+ /* The optimizer is able to deliver rows in group by order so
+ ** we do not have to sort. The OP_OpenEphemeral table will be
+ ** cancelled later because we still need to use the pKeyInfo
+ */
+ pGroupBy = p->pGroupBy;
+ groupBySort = 0;
+ }else{
+ /* Rows are coming out in undetermined order. We have to push
+ ** each row into a sorting index, terminate the first loop,
+ ** then loop over the sorting index in order to get the output
+ ** in sorted order
+ */
+ int regBase;
+ int regRecord;
+ int nCol;
+ int nGroupBy;
+
+ groupBySort = 1;
+ nGroupBy = pGroupBy->nExpr;
+ nCol = nGroupBy + 1;
+ j = nGroupBy+1;
+ for(i=0; i<sAggInfo.nColumn; i++){
+ if( sAggInfo.aCol[i].iSorterColumn>=j ){
+ nCol++;
+ j++;
+ }
+ }
+ regBase = sqlite3GetTempRange(pParse, nCol);
+ sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0);
+ sqlite3VdbeAddOp2(v, OP_Sequence, sAggInfo.sortingIdx,regBase+nGroupBy);
+ j = nGroupBy+1;
+ for(i=0; i<sAggInfo.nColumn; i++){
+ struct AggInfo_col *pCol = &sAggInfo.aCol[i];
+ if( pCol->iSorterColumn>=j ){
+ int r1 = j + regBase;
+ int r2 = sqlite3ExprCodeGetColumn(pParse,
+ pCol->pTab, pCol->iColumn, pCol->iTable, r1, 0);
+ if( r1!=r2 ){
+ sqlite3VdbeAddOp2(v, OP_SCopy, r2, r1);
+ }
+ j++;
+ }
+ }
+ regRecord = sqlite3GetTempReg(pParse);
+ sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
+ sqlite3VdbeAddOp2(v, OP_IdxInsert, sAggInfo.sortingIdx, regRecord);
+ sqlite3ReleaseTempReg(pParse, regRecord);
+ sqlite3ReleaseTempRange(pParse, regBase, nCol);
+ sqlite3WhereEnd(pWInfo);
+ sqlite3VdbeAddOp2(v, OP_Sort, sAggInfo.sortingIdx, addrEnd);
+ VdbeComment((v, "GROUP BY sort"));
+ sAggInfo.useSortingIdx = 1;
+ }
+
+ /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
+ ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
+ ** Then compare the current GROUP BY terms against the GROUP BY terms
+ ** from the previous row currently stored in a0, a1, a2...
+ */
+ addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
+ for(j=0; j<pGroupBy->nExpr; j++){
+ if( groupBySort ){
+ sqlite3VdbeAddOp3(v, OP_Column, sAggInfo.sortingIdx, j, iBMem+j);
+ }else{
+ sAggInfo.directMode = 1;
+ sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
+ }
+ }
+ for(j=pGroupBy->nExpr-1; j>=0; j--){
+ if( j==0 ){
+ sqlite3VdbeAddOp3(v, OP_Eq, iAMem+j, addrProcessRow, iBMem+j);
+ }else{
+ sqlite3VdbeAddOp3(v, OP_Ne, iAMem+j, addrGroupByChange, iBMem+j);
+ }
+ sqlite3VdbeChangeP4(v, -1, (void*)pKeyInfo->aColl[j], P4_COLLSEQ);
+ sqlite3VdbeChangeP5(v, SQLITE_NULLEQUAL);
+ }
+
+ /* Generate code that runs whenever the GROUP BY changes.
+ ** Change in the GROUP BY are detected by the previous code
+ ** block. If there were no changes, this block is skipped.
+ **
+ ** This code copies current group by terms in b0,b1,b2,...
+ ** over to a0,a1,a2. It then calls the output subroutine
+ ** and resets the aggregate accumulator registers in preparation
+ ** for the next GROUP BY batch.
+ */
+ sqlite3VdbeResolveLabel(v, addrGroupByChange);
+ for(j=0; j<pGroupBy->nExpr; j++){
+ sqlite3ExprCodeMove(pParse, iBMem+j, iAMem+j);
+ }
+ sqlite3VdbeAddOp2(v, OP_Gosub, 0, addrOutputRow);
+ VdbeComment((v, "output one row"));
+ sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd);
+ VdbeComment((v, "check abort flag"));
+ sqlite3VdbeAddOp2(v, OP_Gosub, 0, addrReset);
+ VdbeComment((v, "reset accumulator"));
+
+ /* Update the aggregate accumulators based on the content of
+ ** the current row
+ */
+ sqlite3VdbeResolveLabel(v, addrProcessRow);
+ updateAccumulator(pParse, &sAggInfo);
+ sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
+ VdbeComment((v, "indicate data in accumulator"));
+
+ /* End of the loop
+ */
+ if( groupBySort ){
+ sqlite3VdbeAddOp2(v, OP_Next, sAggInfo.sortingIdx, addrTopOfLoop);
+ }else{
+ sqlite3WhereEnd(pWInfo);
+ sqlite3VdbeChangeToNoop(v, addrSortingIdx, 1);
+ }
+
+ /* Output the final row of result
+ */
+ sqlite3VdbeAddOp2(v, OP_Gosub, 0, addrOutputRow);
+ VdbeComment((v, "output final row"));
+
+ } /* endif pGroupBy */
+ else {
+ ExprList *pMinMax = 0;
+ ExprList *pDel = 0;
+ u8 flag;
+
+ /* Check if the query is of one of the following forms:
+ **
+ ** SELECT min(x) FROM ...
+ ** SELECT max(x) FROM ...
+ **
+ ** If it is, then ask the code in where.c to attempt to sort results
+ ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause.
+ ** If where.c is able to produce results sorted in this order, then
+ ** add vdbe code to break out of the processing loop after the
+ ** first iteration (since the first iteration of the loop is
+ ** guaranteed to operate on the row with the minimum or maximum
+ ** value of x, the only row required).
+ **
+ ** A special flag must be passed to sqlite3WhereBegin() to slightly
+ ** modify behaviour as follows:
+ **
+ ** + If the query is a "SELECT min(x)", then the loop coded by
+ ** where.c should not iterate over any values with a NULL value
+ ** for x.
+ **
+ ** + The optimizer code in where.c (the thing that decides which
+ ** index or indices to use) should place a different priority on
+ ** satisfying the 'ORDER BY' clause than it does in other cases.
+ ** Refer to code and comments in where.c for details.
+ */
+ flag = minMaxQuery(pParse, p);
+ if( flag ){
+ pDel = pMinMax = sqlite3ExprListDup(db, p->pEList->a[0].pExpr->pList);
+ if( pMinMax && !db->mallocFailed ){
+ pMinMax->a[0].sortOrder = ((flag==WHERE_ORDERBY_MIN)?0:1);
+ pMinMax->a[0].pExpr->op = TK_COLUMN;
+ }
+ }
+
+ /* This case runs if the aggregate has no GROUP BY clause. The
+ ** processing is much simpler since there is only a single row
+ ** of output.
+ */
+ resetAccumulator(pParse, &sAggInfo);
+ pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pMinMax, flag);
+ if( pWInfo==0 ){
+ sqlite3ExprListDelete(pDel);
+ goto select_end;
+ }
+ updateAccumulator(pParse, &sAggInfo);
+ if( !pMinMax && flag ){
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, pWInfo->iBreak);
+ VdbeComment((v, "%s() by index", (flag==WHERE_ORDERBY_MIN?"min":"max")));
+ }
+ sqlite3WhereEnd(pWInfo);
+ finalizeAggFunctions(pParse, &sAggInfo);
+ pOrderBy = 0;
+ if( pHaving ){
+ sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
+ }
+ selectInnerLoop(pParse, p, p->pEList, 0, 0, 0, -1,
+ pDest, addrEnd, addrEnd, aff);
+
+ sqlite3ExprListDelete(pDel);
+ }
+ sqlite3VdbeResolveLabel(v, addrEnd);
+
+ } /* endif aggregate query */
+
+ /* If there is an ORDER BY clause, then we need to sort the results
+ ** and send them to the callback one by one.
+ */
+ if( pOrderBy ){
+ generateSortTail(pParse, p, v, pEList->nExpr, pDest);
+ }
+
+#ifndef SQLITE_OMIT_SUBQUERY
+ /* If this was a subquery, we have now converted the subquery into a
+ ** temporary table. So set the SrcList_item.isPopulated flag to prevent
+ ** this subquery from being evaluated again and to force the use of
+ ** the temporary table.
+ */
+ if( pParent ){
+ assert( pParent->pSrc->nSrc>parentTab );
+ assert( pParent->pSrc->a[parentTab].pSelect==p );
+ pParent->pSrc->a[parentTab].isPopulated = 1;
+ }
+#endif
+
+ /* Jump here to skip this query
+ */
+ sqlite3VdbeResolveLabel(v, iEnd);
+
+ /* The SELECT was successfully coded. Set the return code to 0
+ ** to indicate no errors.
+ */
+ rc = 0;
+
+ /* Control jumps to here if an error is encountered above, or upon
+ ** successful coding of the SELECT.
+ */
+select_end:
+
+ /* Identify column names if we will be using them in a callback. This
+ ** step is skipped if the output is going to some other destination.
+ */
+ if( rc==SQLITE_OK && pDest->eDest==SRT_Callback ){
+ generateColumnNames(pParse, pTabList, pEList);
+ }
+
+ sqlite3_free(sAggInfo.aCol);
+ sqlite3_free(sAggInfo.aFunc);
+ return rc;
+}
+
+#if defined(SQLITE_DEBUG)
+/*
+*******************************************************************************
+** The following code is used for testing and debugging only. The code
+** that follows does not appear in normal builds.
+**
+** These routines are used to print out the content of all or part of a
+** parse structures such as Select or Expr. Such printouts are useful
+** for helping to understand what is happening inside the code generator
+** during the execution of complex SELECT statements.
+**
+** These routine are not called anywhere from within the normal
+** code base. Then are intended to be called from within the debugger
+** or from temporary "printf" statements inserted for debugging.
+*/
+SQLITE_PRIVATE void sqlite3PrintExpr(Expr *p){
+ if( p->token.z && p->token.n>0 ){
+ sqlite3DebugPrintf("(%.*s", p->token.n, p->token.z);
+ }else{
+ sqlite3DebugPrintf("(%d", p->op);
+ }
+ if( p->pLeft ){
+ sqlite3DebugPrintf(" ");
+ sqlite3PrintExpr(p->pLeft);
+ }
+ if( p->pRight ){
+ sqlite3DebugPrintf(" ");
+ sqlite3PrintExpr(p->pRight);
+ }
+ sqlite3DebugPrintf(")");
+}
+SQLITE_PRIVATE void sqlite3PrintExprList(ExprList *pList){
+ int i;
+ for(i=0; i<pList->nExpr; i++){
+ sqlite3PrintExpr(pList->a[i].pExpr);
+ if( i<pList->nExpr-1 ){
+ sqlite3DebugPrintf(", ");
+ }
+ }
+}
+SQLITE_PRIVATE void sqlite3PrintSelect(Select *p, int indent){
+ sqlite3DebugPrintf("%*sSELECT(%p) ", indent, "", p);
+ sqlite3PrintExprList(p->pEList);
+ sqlite3DebugPrintf("\n");
+ if( p->pSrc ){
+ char *zPrefix;
+ int i;
+ zPrefix = "FROM";
+ for(i=0; i<p->pSrc->nSrc; i++){
+ struct SrcList_item *pItem = &p->pSrc->a[i];
+ sqlite3DebugPrintf("%*s ", indent+6, zPrefix);
+ zPrefix = "";
+ if( pItem->pSelect ){
+ sqlite3DebugPrintf("(\n");
+ sqlite3PrintSelect(pItem->pSelect, indent+10);
+ sqlite3DebugPrintf("%*s)", indent+8, "");
+ }else if( pItem->zName ){
+ sqlite3DebugPrintf("%s", pItem->zName);
+ }
+ if( pItem->pTab ){
+ sqlite3DebugPrintf("(table: %s)", pItem->pTab->zName);
+ }
+ if( pItem->zAlias ){
+ sqlite3DebugPrintf(" AS %s", pItem->zAlias);
+ }
+ if( i<p->pSrc->nSrc-1 ){
+ sqlite3DebugPrintf(",");
+ }
+ sqlite3DebugPrintf("\n");
+ }
+ }
+ if( p->pWhere ){
+ sqlite3DebugPrintf("%*s WHERE ", indent, "");
+ sqlite3PrintExpr(p->pWhere);
+ sqlite3DebugPrintf("\n");
+ }
+ if( p->pGroupBy ){
+ sqlite3DebugPrintf("%*s GROUP BY ", indent, "");
+ sqlite3PrintExprList(p->pGroupBy);
+ sqlite3DebugPrintf("\n");
+ }
+ if( p->pHaving ){
+ sqlite3DebugPrintf("%*s HAVING ", indent, "");
+ sqlite3PrintExpr(p->pHaving);
+ sqlite3DebugPrintf("\n");
+ }
+ if( p->pOrderBy ){
+ sqlite3DebugPrintf("%*s ORDER BY ", indent, "");
+ sqlite3PrintExprList(p->pOrderBy);
+ sqlite3DebugPrintf("\n");
+ }
+}
+/* End of the structure debug printing code
+*****************************************************************************/
+#endif /* defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */
+
+/************** End of select.c **********************************************/
+/************** Begin file table.c *******************************************/
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains the sqlite3_get_table() and sqlite3_free_table()
+** interface routines. These are just wrappers around the main
+** interface routine of sqlite3_exec().
+**
+** These routines are in a separate files so that they will not be linked
+** if they are not used.
+*/
+
+#ifndef SQLITE_OMIT_GET_TABLE
+
+/*
+** This structure is used to pass data from sqlite3_get_table() through
+** to the callback function is uses to build the result.
+*/
+typedef struct TabResult {
+ char **azResult;
+ char *zErrMsg;
+ int nResult;
+ int nAlloc;
+ int nRow;
+ int nColumn;
+ int nData;
+ int rc;
+} TabResult;
+
+/*
+** This routine is called once for each row in the result table. Its job
+** is to fill in the TabResult structure appropriately, allocating new
+** memory as necessary.
+*/
+static int sqlite3_get_table_cb(void *pArg, int nCol, char **argv, char **colv){
+ TabResult *p = (TabResult*)pArg;
+ int need;
+ int i;
+ char *z;
+
+ /* Make sure there is enough space in p->azResult to hold everything
+ ** we need to remember from this invocation of the callback.
+ */
+ if( p->nRow==0 && argv!=0 ){
+ need = nCol*2;
+ }else{
+ need = nCol;
+ }
+ if( p->nData + need >= p->nAlloc ){
+ char **azNew;
+ p->nAlloc = p->nAlloc*2 + need + 1;
+ azNew = sqlite3_realloc( p->azResult, sizeof(char*)*p->nAlloc );
+ if( azNew==0 ) goto malloc_failed;
+ p->azResult = azNew;
+ }
+
+ /* If this is the first row, then generate an extra row containing
+ ** the names of all columns.
+ */
+ if( p->nRow==0 ){
+ p->nColumn = nCol;
+ for(i=0; i<nCol; i++){
+ z = sqlite3_mprintf("%s", colv[i]);
+ if( z==0 ) goto malloc_failed;
+ p->azResult[p->nData++] = z;
+ }
+ }else if( p->nColumn!=nCol ){
+ sqlite3_free(p->zErrMsg);
+ p->zErrMsg = sqlite3_mprintf(
+ "sqlite3_get_table() called with two or more incompatible queries"
+ );
+ p->rc = SQLITE_ERROR;
+ return 1;
+ }
+
+ /* Copy over the row data
+ */
+ if( argv!=0 ){
+ for(i=0; i<nCol; i++){
+ if( argv[i]==0 ){
+ z = 0;
+ }else{
+ int n = strlen(argv[i])+1;
+ z = sqlite3_malloc( n );
+ if( z==0 ) goto malloc_failed;
+ memcpy(z, argv[i], n);
+ }
+ p->azResult[p->nData++] = z;
+ }
+ p->nRow++;
+ }
+ return 0;
+
+malloc_failed:
+ p->rc = SQLITE_NOMEM;
+ return 1;
+}
+
+/*
+** Query the database. But instead of invoking a callback for each row,
+** malloc() for space to hold the result and return the entire results
+** at the conclusion of the call.
+**
+** The result that is written to ***pazResult is held in memory obtained
+** from malloc(). But the caller cannot free this memory directly.
+** Instead, the entire table should be passed to sqlite3_free_table() when
+** the calling procedure is finished using it.
+*/
+SQLITE_API int sqlite3_get_table(
+ sqlite3 *db, /* The database on which the SQL executes */
+ const char *zSql, /* The SQL to be executed */
+ char ***pazResult, /* Write the result table here */
+ int *pnRow, /* Write the number of rows in the result here */
+ int *pnColumn, /* Write the number of columns of result here */
+ char **pzErrMsg /* Write error messages here */
+){
+ int rc;
+ TabResult res;
+
+ *pazResult = 0;
+ if( pnColumn ) *pnColumn = 0;
+ if( pnRow ) *pnRow = 0;
+ res.zErrMsg = 0;
+ res.nResult = 0;
+ res.nRow = 0;
+ res.nColumn = 0;
+ res.nData = 1;
+ res.nAlloc = 20;
+ res.rc = SQLITE_OK;
+ res.azResult = sqlite3_malloc(sizeof(char*)*res.nAlloc );
+ if( res.azResult==0 ){
+ db->errCode = SQLITE_NOMEM;
+ return SQLITE_NOMEM;
+ }
+ res.azResult[0] = 0;
+ rc = sqlite3_exec(db, zSql, sqlite3_get_table_cb, &res, pzErrMsg);
+ assert( sizeof(res.azResult[0])>= sizeof(res.nData) );
+ res.azResult[0] = (char*)res.nData;
+ if( (rc&0xff)==SQLITE_ABORT ){
+ sqlite3_free_table(&res.azResult[1]);
+ if( res.zErrMsg ){
+ if( pzErrMsg ){
+ sqlite3_free(*pzErrMsg);
+ *pzErrMsg = sqlite3_mprintf("%s",res.zErrMsg);
+ }
+ sqlite3_free(res.zErrMsg);
+ }
+ db->errCode = res.rc; /* Assume 32-bit assignment is atomic */
+ return res.rc;
+ }
+ sqlite3_free(res.zErrMsg);
+ if( rc!=SQLITE_OK ){
+ sqlite3_free_table(&res.azResult[1]);
+ return rc;
+ }
+ if( res.nAlloc>res.nData ){
+ char **azNew;
+ azNew = sqlite3_realloc( res.azResult, sizeof(char*)*(res.nData+1) );
+ if( azNew==0 ){
+ sqlite3_free_table(&res.azResult[1]);
+ db->errCode = SQLITE_NOMEM;
+ return SQLITE_NOMEM;
+ }
+ res.nAlloc = res.nData+1;
+ res.azResult = azNew;
+ }
+ *pazResult = &res.azResult[1];
+ if( pnColumn ) *pnColumn = res.nColumn;
+ if( pnRow ) *pnRow = res.nRow;
+ return rc;
+}
+
+/*
+** This routine frees the space the sqlite3_get_table() malloced.
+*/
+SQLITE_API void sqlite3_free_table(
+ char **azResult /* Result returned from from sqlite3_get_table() */
+){
+ if( azResult ){
+ int i, n;
+ azResult--;
+ assert( azResult!=0 );
+ n = (int)azResult[0];
+ for(i=1; i<n; i++){ if( azResult[i] ) sqlite3_free(azResult[i]); }
+ sqlite3_free(azResult);
+ }
+}
+
+#endif /* SQLITE_OMIT_GET_TABLE */
+
+/************** End of table.c ***********************************************/
+/************** Begin file trigger.c *****************************************/
+/*
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+*
+*/
+
+#ifndef SQLITE_OMIT_TRIGGER
+/*
+** Delete a linked list of TriggerStep structures.
+*/
+SQLITE_PRIVATE void sqlite3DeleteTriggerStep(TriggerStep *pTriggerStep){
+ while( pTriggerStep ){
+ TriggerStep * pTmp = pTriggerStep;
+ pTriggerStep = pTriggerStep->pNext;
+
+ if( pTmp->target.dyn ) sqlite3_free((char*)pTmp->target.z);
+ sqlite3ExprDelete(pTmp->pWhere);
+ sqlite3ExprListDelete(pTmp->pExprList);
+ sqlite3SelectDelete(pTmp->pSelect);
+ sqlite3IdListDelete(pTmp->pIdList);
+
+ sqlite3_free(pTmp);
+ }
+}
+
+/*
+** This is called by the parser when it sees a CREATE TRIGGER statement
+** up to the point of the BEGIN before the trigger actions. A Trigger
+** structure is generated based on the information available and stored
+** in pParse->pNewTrigger. After the trigger actions have been parsed, the
+** sqlite3FinishTrigger() function is called to complete the trigger
+** construction process.
+*/
+SQLITE_PRIVATE void sqlite3BeginTrigger(
+ Parse *pParse, /* The parse context of the CREATE TRIGGER statement */
+ Token *pName1, /* The name of the trigger */
+ Token *pName2, /* The name of the trigger */
+ int tr_tm, /* One of TK_BEFORE, TK_AFTER, TK_INSTEAD */
+ int op, /* One of TK_INSERT, TK_UPDATE, TK_DELETE */
+ IdList *pColumns, /* column list if this is an UPDATE OF trigger */
+ SrcList *pTableName,/* The name of the table/view the trigger applies to */
+ Expr *pWhen, /* WHEN clause */
+ int isTemp, /* True if the TEMPORARY keyword is present */
+ int noErr /* Suppress errors if the trigger already exists */
+){
+ Trigger *pTrigger = 0;
+ Table *pTab;
+ char *zName = 0; /* Name of the trigger */
+ sqlite3 *db = pParse->db;
+ int iDb; /* The database to store the trigger in */
+ Token *pName; /* The unqualified db name */
+ DbFixer sFix;
+ int iTabDb;
+
+ assert( pName1!=0 ); /* pName1->z might be NULL, but not pName1 itself */
+ assert( pName2!=0 );
+ if( isTemp ){
+ /* If TEMP was specified, then the trigger name may not be qualified. */
+ if( pName2->n>0 ){
+ sqlite3ErrorMsg(pParse, "temporary trigger may not have qualified name");
+ goto trigger_cleanup;
+ }
+ iDb = 1;
+ pName = pName1;
+ }else{
+ /* Figure out the db that the the trigger will be created in */
+ iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
+ if( iDb<0 ){
+ goto trigger_cleanup;
+ }
+ }
+
+ /* If the trigger name was unqualified, and the table is a temp table,
+ ** then set iDb to 1 to create the trigger in the temporary database.
+ ** If sqlite3SrcListLookup() returns 0, indicating the table does not
+ ** exist, the error is caught by the block below.
+ */
+ if( !pTableName || db->mallocFailed ){
+ goto trigger_cleanup;
+ }
+ pTab = sqlite3SrcListLookup(pParse, pTableName);
+ if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){
+ iDb = 1;
+ }
+
+ /* Ensure the table name matches database name and that the table exists */
+ if( db->mallocFailed ) goto trigger_cleanup;
+ assert( pTableName->nSrc==1 );
+ if( sqlite3FixInit(&sFix, pParse, iDb, "trigger", pName) &&
+ sqlite3FixSrcList(&sFix, pTableName) ){
+ goto trigger_cleanup;
+ }
+ pTab = sqlite3SrcListLookup(pParse, pTableName);
+ if( !pTab ){
+ /* The table does not exist. */
+ goto trigger_cleanup;
+ }
+ if( IsVirtual(pTab) ){
+ sqlite3ErrorMsg(pParse, "cannot create triggers on virtual tables");
+ goto trigger_cleanup;
+ }
+
+ /* Check that the trigger name is not reserved and that no trigger of the
+ ** specified name exists */
+ zName = sqlite3NameFromToken(db, pName);
+ if( !zName || SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
+ goto trigger_cleanup;
+ }
+ if( sqlite3HashFind(&(db->aDb[iDb].pSchema->trigHash), zName,strlen(zName)) ){
+ if( !noErr ){
+ sqlite3ErrorMsg(pParse, "trigger %T already exists", pName);
+ }
+ goto trigger_cleanup;
+ }
+
+ /* Do not create a trigger on a system table */
+ if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 ){
+ sqlite3ErrorMsg(pParse, "cannot create trigger on system table");
+ pParse->nErr++;
+ goto trigger_cleanup;
+ }
+
+ /* INSTEAD of triggers are only for views and views only support INSTEAD
+ ** of triggers.
+ */
+ if( pTab->pSelect && tr_tm!=TK_INSTEAD ){
+ sqlite3ErrorMsg(pParse, "cannot create %s trigger on view: %S",
+ (tr_tm == TK_BEFORE)?"BEFORE":"AFTER", pTableName, 0);
+ goto trigger_cleanup;
+ }
+ if( !pTab->pSelect && tr_tm==TK_INSTEAD ){
+ sqlite3ErrorMsg(pParse, "cannot create INSTEAD OF"
+ " trigger on table: %S", pTableName, 0);
+ goto trigger_cleanup;
+ }
+ iTabDb = sqlite3SchemaToIndex(db, pTab->pSchema);
+
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ {
+ int code = SQLITE_CREATE_TRIGGER;
+ const char *zDb = db->aDb[iTabDb].zName;
+ const char *zDbTrig = isTemp ? db->aDb[1].zName : zDb;
+ if( iTabDb==1 || isTemp ) code = SQLITE_CREATE_TEMP_TRIGGER;
+ if( sqlite3AuthCheck(pParse, code, zName, pTab->zName, zDbTrig) ){
+ goto trigger_cleanup;
+ }
+ if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iTabDb),0,zDb)){
+ goto trigger_cleanup;
+ }
+ }
+#endif
+
+ /* INSTEAD OF triggers can only appear on views and BEFORE triggers
+ ** cannot appear on views. So we might as well translate every
+ ** INSTEAD OF trigger into a BEFORE trigger. It simplifies code
+ ** elsewhere.
+ */
+ if (tr_tm == TK_INSTEAD){
+ tr_tm = TK_BEFORE;
+ }
+
+ /* Build the Trigger object */
+ pTrigger = (Trigger*)sqlite3DbMallocZero(db, sizeof(Trigger));
+ if( pTrigger==0 ) goto trigger_cleanup;
+ pTrigger->name = zName;
+ zName = 0;
+ pTrigger->table = sqlite3DbStrDup(db, pTableName->a[0].zName);
+ pTrigger->pSchema = db->aDb[iDb].pSchema;
+ pTrigger->pTabSchema = pTab->pSchema;
+ pTrigger->op = op;
+ pTrigger->tr_tm = tr_tm==TK_BEFORE ? TRIGGER_BEFORE : TRIGGER_AFTER;
+ pTrigger->pWhen = sqlite3ExprDup(db, pWhen);
+ pTrigger->pColumns = sqlite3IdListDup(db, pColumns);
+ sqlite3TokenCopy(db, &pTrigger->nameToken,pName);
+ assert( pParse->pNewTrigger==0 );
+ pParse->pNewTrigger = pTrigger;
+
+trigger_cleanup:
+ sqlite3_free(zName);
+ sqlite3SrcListDelete(pTableName);
+ sqlite3IdListDelete(pColumns);
+ sqlite3ExprDelete(pWhen);
+ if( !pParse->pNewTrigger ){
+ sqlite3DeleteTrigger(pTrigger);
+ }else{
+ assert( pParse->pNewTrigger==pTrigger );
+ }
+}
+
+/*
+** This routine is called after all of the trigger actions have been parsed
+** in order to complete the process of building the trigger.
+*/
+SQLITE_PRIVATE void sqlite3FinishTrigger(
+ Parse *pParse, /* Parser context */
+ TriggerStep *pStepList, /* The triggered program */
+ Token *pAll /* Token that describes the complete CREATE TRIGGER */
+){
+ Trigger *pTrig = 0; /* The trigger whose construction is finishing up */
+ sqlite3 *db = pParse->db; /* The database */
+ DbFixer sFix;
+ int iDb; /* Database containing the trigger */
+
+ pTrig = pParse->pNewTrigger;
+ pParse->pNewTrigger = 0;
+ if( pParse->nErr || !pTrig ) goto triggerfinish_cleanup;
+ iDb = sqlite3SchemaToIndex(pParse->db, pTrig->pSchema);
+ pTrig->step_list = pStepList;
+ while( pStepList ){
+ pStepList->pTrig = pTrig;
+ pStepList = pStepList->pNext;
+ }
+ if( sqlite3FixInit(&sFix, pParse, iDb, "trigger", &pTrig->nameToken)
+ && sqlite3FixTriggerStep(&sFix, pTrig->step_list) ){
+ goto triggerfinish_cleanup;
+ }
+
+ /* if we are not initializing, and this trigger is not on a TEMP table,
+ ** build the sqlite_master entry
+ */
+ if( !db->init.busy ){
+ Vdbe *v;
+ char *z;
+
+ /* Make an entry in the sqlite_master table */
+ v = sqlite3GetVdbe(pParse);
+ if( v==0 ) goto triggerfinish_cleanup;
+ sqlite3BeginWriteOperation(pParse, 0, iDb);
+ z = sqlite3DbStrNDup(db, (char*)pAll->z, pAll->n);
+ sqlite3NestedParse(pParse,
+ "INSERT INTO %Q.%s VALUES('trigger',%Q,%Q,0,'CREATE TRIGGER %q')",
+ db->aDb[iDb].zName, SCHEMA_TABLE(iDb), pTrig->name,
+ pTrig->table, z);
+ sqlite3_free(z);
+ sqlite3ChangeCookie(pParse, iDb);
+ sqlite3VdbeAddOp4(v, OP_ParseSchema, iDb, 0, 0, sqlite3MPrintf(
+ db, "type='trigger' AND name='%q'", pTrig->name), P4_DYNAMIC
+ );
+ }
+
+ if( db->init.busy ){
+ int n;
+ Table *pTab;
+ Trigger *pDel;
+ pDel = sqlite3HashInsert(&db->aDb[iDb].pSchema->trigHash,
+ pTrig->name, strlen(pTrig->name), pTrig);
+ if( pDel ){
+ assert( pDel==pTrig );
+ db->mallocFailed = 1;
+ goto triggerfinish_cleanup;
+ }
+ n = strlen(pTrig->table) + 1;
+ pTab = sqlite3HashFind(&pTrig->pTabSchema->tblHash, pTrig->table, n);
+ assert( pTab!=0 );
+ pTrig->pNext = pTab->pTrigger;
+ pTab->pTrigger = pTrig;
+ pTrig = 0;
+ }
+
+triggerfinish_cleanup:
+ sqlite3DeleteTrigger(pTrig);
+ assert( !pParse->pNewTrigger );
+ sqlite3DeleteTriggerStep(pStepList);
+}
+
+/*
+** Make a copy of all components of the given trigger step. This has
+** the effect of copying all Expr.token.z values into memory obtained
+** from sqlite3_malloc(). As initially created, the Expr.token.z values
+** all point to the input string that was fed to the parser. But that
+** string is ephemeral - it will go away as soon as the sqlite3_exec()
+** call that started the parser exits. This routine makes a persistent
+** copy of all the Expr.token.z strings so that the TriggerStep structure
+** will be valid even after the sqlite3_exec() call returns.
+*/
+static void sqlitePersistTriggerStep(sqlite3 *db, TriggerStep *p){
+ if( p->target.z ){
+ p->target.z = (u8*)sqlite3DbStrNDup(db, (char*)p->target.z, p->target.n);
+ p->target.dyn = 1;
+ }
+ if( p->pSelect ){
+ Select *pNew = sqlite3SelectDup(db, p->pSelect);
+ sqlite3SelectDelete(p->pSelect);
+ p->pSelect = pNew;
+ }
+ if( p->pWhere ){
+ Expr *pNew = sqlite3ExprDup(db, p->pWhere);
+ sqlite3ExprDelete(p->pWhere);
+ p->pWhere = pNew;
+ }
+ if( p->pExprList ){
+ ExprList *pNew = sqlite3ExprListDup(db, p->pExprList);
+ sqlite3ExprListDelete(p->pExprList);
+ p->pExprList = pNew;
+ }
+ if( p->pIdList ){
+ IdList *pNew = sqlite3IdListDup(db, p->pIdList);
+ sqlite3IdListDelete(p->pIdList);
+ p->pIdList = pNew;
+ }
+}
+
+/*
+** Turn a SELECT statement (that the pSelect parameter points to) into
+** a trigger step. Return a pointer to a TriggerStep structure.
+**
+** The parser calls this routine when it finds a SELECT statement in
+** body of a TRIGGER.
+*/
+SQLITE_PRIVATE TriggerStep *sqlite3TriggerSelectStep(sqlite3 *db, Select *pSelect){
+ TriggerStep *pTriggerStep = sqlite3DbMallocZero(db, sizeof(TriggerStep));
+ if( pTriggerStep==0 ) {
+ sqlite3SelectDelete(pSelect);
+ return 0;
+ }
+
+ pTriggerStep->op = TK_SELECT;
+ pTriggerStep->pSelect = pSelect;
+ pTriggerStep->orconf = OE_Default;
+ sqlitePersistTriggerStep(db, pTriggerStep);
+
+ return pTriggerStep;
+}
+
+/*
+** Build a trigger step out of an INSERT statement. Return a pointer
+** to the new trigger step.
+**
+** The parser calls this routine when it sees an INSERT inside the
+** body of a trigger.
+*/
+SQLITE_PRIVATE TriggerStep *sqlite3TriggerInsertStep(
+ sqlite3 *db, /* The database connection */
+ Token *pTableName, /* Name of the table into which we insert */
+ IdList *pColumn, /* List of columns in pTableName to insert into */
+ ExprList *pEList, /* The VALUE clause: a list of values to be inserted */
+ Select *pSelect, /* A SELECT statement that supplies values */
+ int orconf /* The conflict algorithm (OE_Abort, OE_Replace, etc.) */
+){
+ TriggerStep *pTriggerStep;
+
+ assert(pEList == 0 || pSelect == 0);
+ assert(pEList != 0 || pSelect != 0 || db->mallocFailed);
+
+ pTriggerStep = sqlite3DbMallocZero(db, sizeof(TriggerStep));
+ if( pTriggerStep ){
+ pTriggerStep->op = TK_INSERT;
+ pTriggerStep->pSelect = pSelect;
+ pTriggerStep->target = *pTableName;
+ pTriggerStep->pIdList = pColumn;
+ pTriggerStep->pExprList = pEList;
+ pTriggerStep->orconf = orconf;
+ sqlitePersistTriggerStep(db, pTriggerStep);
+ }else{
+ sqlite3IdListDelete(pColumn);
+ sqlite3ExprListDelete(pEList);
+ sqlite3SelectDelete(pSelect);
+ }
+
+ return pTriggerStep;
+}
+
+/*
+** Construct a trigger step that implements an UPDATE statement and return
+** a pointer to that trigger step. The parser calls this routine when it
+** sees an UPDATE statement inside the body of a CREATE TRIGGER.
+*/
+SQLITE_PRIVATE TriggerStep *sqlite3TriggerUpdateStep(
+ sqlite3 *db, /* The database connection */
+ Token *pTableName, /* Name of the table to be updated */
+ ExprList *pEList, /* The SET clause: list of column and new values */
+ Expr *pWhere, /* The WHERE clause */
+ int orconf /* The conflict algorithm. (OE_Abort, OE_Ignore, etc) */
+){
+ TriggerStep *pTriggerStep = sqlite3DbMallocZero(db, sizeof(TriggerStep));
+ if( pTriggerStep==0 ){
+ sqlite3ExprListDelete(pEList);
+ sqlite3ExprDelete(pWhere);
+ return 0;
+ }
+
+ pTriggerStep->op = TK_UPDATE;
+ pTriggerStep->target = *pTableName;
+ pTriggerStep->pExprList = pEList;
+ pTriggerStep->pWhere = pWhere;
+ pTriggerStep->orconf = orconf;
+ sqlitePersistTriggerStep(db, pTriggerStep);
+
+ return pTriggerStep;
+}
+
+/*
+** Construct a trigger step that implements a DELETE statement and return
+** a pointer to that trigger step. The parser calls this routine when it
+** sees a DELETE statement inside the body of a CREATE TRIGGER.
+*/
+SQLITE_PRIVATE TriggerStep *sqlite3TriggerDeleteStep(
+ sqlite3 *db, /* Database connection */
+ Token *pTableName, /* The table from which rows are deleted */
+ Expr *pWhere /* The WHERE clause */
+){
+ TriggerStep *pTriggerStep = sqlite3DbMallocZero(db, sizeof(TriggerStep));
+ if( pTriggerStep==0 ){
+ sqlite3ExprDelete(pWhere);
+ return 0;
+ }
+
+ pTriggerStep->op = TK_DELETE;
+ pTriggerStep->target = *pTableName;
+ pTriggerStep->pWhere = pWhere;
+ pTriggerStep->orconf = OE_Default;
+ sqlitePersistTriggerStep(db, pTriggerStep);
+
+ return pTriggerStep;
+}
+
+/*
+** Recursively delete a Trigger structure
+*/
+SQLITE_PRIVATE void sqlite3DeleteTrigger(Trigger *pTrigger){
+ if( pTrigger==0 ) return;
+ sqlite3DeleteTriggerStep(pTrigger->step_list);
+ sqlite3_free(pTrigger->name);
+ sqlite3_free(pTrigger->table);
+ sqlite3ExprDelete(pTrigger->pWhen);
+ sqlite3IdListDelete(pTrigger->pColumns);
+ if( pTrigger->nameToken.dyn ) sqlite3_free((char*)pTrigger->nameToken.z);
+ sqlite3_free(pTrigger);
+}
+
+/*
+** This function is called to drop a trigger from the database schema.
+**
+** This may be called directly from the parser and therefore identifies
+** the trigger by name. The sqlite3DropTriggerPtr() routine does the
+** same job as this routine except it takes a pointer to the trigger
+** instead of the trigger name.
+**/
+SQLITE_PRIVATE void sqlite3DropTrigger(Parse *pParse, SrcList *pName, int noErr){
+ Trigger *pTrigger = 0;
+ int i;
+ const char *zDb;
+ const char *zName;
+ int nName;
+ sqlite3 *db = pParse->db;
+
+ if( db->mallocFailed ) goto drop_trigger_cleanup;
+ if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
+ goto drop_trigger_cleanup;
+ }
+
+ assert( pName->nSrc==1 );
+ zDb = pName->a[0].zDatabase;
+ zName = pName->a[0].zName;
+ nName = strlen(zName);
+ for(i=OMIT_TEMPDB; i<db->nDb; i++){
+ int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */
+ if( zDb && sqlite3StrICmp(db->aDb[j].zName, zDb) ) continue;
+ pTrigger = sqlite3HashFind(&(db->aDb[j].pSchema->trigHash), zName, nName);
+ if( pTrigger ) break;
+ }
+ if( !pTrigger ){
+ if( !noErr ){
+ sqlite3ErrorMsg(pParse, "no such trigger: %S", pName, 0);
+ }
+ goto drop_trigger_cleanup;
+ }
+ sqlite3DropTriggerPtr(pParse, pTrigger);
+
+drop_trigger_cleanup:
+ sqlite3SrcListDelete(pName);
+}
+
+/*
+** Return a pointer to the Table structure for the table that a trigger
+** is set on.
+*/
+static Table *tableOfTrigger(Trigger *pTrigger){
+ int n = strlen(pTrigger->table) + 1;
+ return sqlite3HashFind(&pTrigger->pTabSchema->tblHash, pTrigger->table, n);
+}
+
+
+/*
+** Drop a trigger given a pointer to that trigger.
+*/
+SQLITE_PRIVATE void sqlite3DropTriggerPtr(Parse *pParse, Trigger *pTrigger){
+ Table *pTable;
+ Vdbe *v;
+ sqlite3 *db = pParse->db;
+ int iDb;
+
+ iDb = sqlite3SchemaToIndex(pParse->db, pTrigger->pSchema);
+ assert( iDb>=0 && iDb<db->nDb );
+ pTable = tableOfTrigger(pTrigger);
+ assert( pTable );
+ assert( pTable->pSchema==pTrigger->pSchema || iDb==1 );
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ {
+ int code = SQLITE_DROP_TRIGGER;
+ const char *zDb = db->aDb[iDb].zName;
+ const char *zTab = SCHEMA_TABLE(iDb);
+ if( iDb==1 ) code = SQLITE_DROP_TEMP_TRIGGER;
+ if( sqlite3AuthCheck(pParse, code, pTrigger->name, pTable->zName, zDb) ||
+ sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){
+ return;
+ }
+ }
+#endif
+
+ /* Generate code to destroy the database record of the trigger.
+ */
+ assert( pTable!=0 );
+ if( (v = sqlite3GetVdbe(pParse))!=0 ){
+ int base;
+ static const VdbeOpList dropTrigger[] = {
+ { OP_Rewind, 0, ADDR(9), 0},
+ { OP_String8, 0, 1, 0}, /* 1 */
+ { OP_Column, 0, 1, 2},
+ { OP_Ne, 2, ADDR(8), 1},
+ { OP_String8, 0, 1, 0}, /* 4: "trigger" */
+ { OP_Column, 0, 0, 2},
+ { OP_Ne, 2, ADDR(8), 1},
+ { OP_Delete, 0, 0, 0},
+ { OP_Next, 0, ADDR(1), 0}, /* 8 */
+ };
+
+ sqlite3BeginWriteOperation(pParse, 0, iDb);
+ sqlite3OpenMasterTable(pParse, iDb);
+ base = sqlite3VdbeAddOpList(v, ArraySize(dropTrigger), dropTrigger);
+ sqlite3VdbeChangeP4(v, base+1, pTrigger->name, 0);
+ sqlite3VdbeChangeP4(v, base+4, "trigger", P4_STATIC);
+ sqlite3ChangeCookie(pParse, iDb);
+ sqlite3VdbeAddOp2(v, OP_Close, 0, 0);
+ sqlite3VdbeAddOp4(v, OP_DropTrigger, iDb, 0, 0, pTrigger->name, 0);
+ }
+}
+
+/*
+** Remove a trigger from the hash tables of the sqlite* pointer.
+*/
+SQLITE_PRIVATE void sqlite3UnlinkAndDeleteTrigger(sqlite3 *db, int iDb, const char *zName){
+ Trigger *pTrigger;
+ int nName = strlen(zName);
+ pTrigger = sqlite3HashInsert(&(db->aDb[iDb].pSchema->trigHash),
+ zName, nName, 0);
+ if( pTrigger ){
+ Table *pTable = tableOfTrigger(pTrigger);
+ assert( pTable!=0 );
+ if( pTable->pTrigger == pTrigger ){
+ pTable->pTrigger = pTrigger->pNext;
+ }else{
+ Trigger *cc = pTable->pTrigger;
+ while( cc ){
+ if( cc->pNext == pTrigger ){
+ cc->pNext = cc->pNext->pNext;
+ break;
+ }
+ cc = cc->pNext;
+ }
+ assert(cc);
+ }
+ sqlite3DeleteTrigger(pTrigger);
+ db->flags |= SQLITE_InternChanges;
+ }
+}
+
+/*
+** pEList is the SET clause of an UPDATE statement. Each entry
+** in pEList is of the format <id>=<expr>. If any of the entries
+** in pEList have an <id> which matches an identifier in pIdList,
+** then return TRUE. If pIdList==NULL, then it is considered a
+** wildcard that matches anything. Likewise if pEList==NULL then
+** it matches anything so always return true. Return false only
+** if there is no match.
+*/
+static int checkColumnOverLap(IdList *pIdList, ExprList *pEList){
+ int e;
+ if( !pIdList || !pEList ) return 1;
+ for(e=0; e<pEList->nExpr; e++){
+ if( sqlite3IdListIndex(pIdList, pEList->a[e].zName)>=0 ) return 1;
+ }
+ return 0;
+}
+
+/*
+** Return a bit vector to indicate what kind of triggers exist for operation
+** "op" on table pTab. If pChanges is not NULL then it is a list of columns
+** that are being updated. Triggers only match if the ON clause of the
+** trigger definition overlaps the set of columns being updated.
+**
+** The returned bit vector is some combination of TRIGGER_BEFORE and
+** TRIGGER_AFTER.
+*/
+SQLITE_PRIVATE int sqlite3TriggersExist(
+ Parse *pParse, /* Used to check for recursive triggers */
+ Table *pTab, /* The table the contains the triggers */
+ int op, /* one of TK_DELETE, TK_INSERT, TK_UPDATE */
+ ExprList *pChanges /* Columns that change in an UPDATE statement */
+){
+ Trigger *pTrigger;
+ int mask = 0;
+
+ pTrigger = IsVirtual(pTab) ? 0 : pTab->pTrigger;
+ while( pTrigger ){
+ if( pTrigger->op==op && checkColumnOverLap(pTrigger->pColumns, pChanges) ){
+ mask |= pTrigger->tr_tm;
+ }
+ pTrigger = pTrigger->pNext;
+ }
+ return mask;
+}
+
+/*
+** Convert the pStep->target token into a SrcList and return a pointer
+** to that SrcList.
+**
+** This routine adds a specific database name, if needed, to the target when
+** forming the SrcList. This prevents a trigger in one database from
+** referring to a target in another database. An exception is when the
+** trigger is in TEMP in which case it can refer to any other database it
+** wants.
+*/
+static SrcList *targetSrcList(
+ Parse *pParse, /* The parsing context */
+ TriggerStep *pStep /* The trigger containing the target token */
+){
+ Token sDb; /* Dummy database name token */
+ int iDb; /* Index of the database to use */
+ SrcList *pSrc; /* SrcList to be returned */
+
+ iDb = sqlite3SchemaToIndex(pParse->db, pStep->pTrig->pSchema);
+ if( iDb==0 || iDb>=2 ){
+ assert( iDb<pParse->db->nDb );
+ sDb.z = (u8*)pParse->db->aDb[iDb].zName;
+ sDb.n = strlen((char*)sDb.z);
+ pSrc = sqlite3SrcListAppend(pParse->db, 0, &sDb, &pStep->target);
+ } else {
+ pSrc = sqlite3SrcListAppend(pParse->db, 0, &pStep->target, 0);
+ }
+ return pSrc;
+}
+
+/*
+** Generate VDBE code for zero or more statements inside the body of a
+** trigger.
+*/
+static int codeTriggerProgram(
+ Parse *pParse, /* The parser context */
+ TriggerStep *pStepList, /* List of statements inside the trigger body */
+ int orconfin /* Conflict algorithm. (OE_Abort, etc) */
+){
+ TriggerStep * pTriggerStep = pStepList;
+ int orconf;
+ Vdbe *v = pParse->pVdbe;
+ sqlite3 *db = pParse->db;
+
+ assert( pTriggerStep!=0 );
+ assert( v!=0 );
+ sqlite3VdbeAddOp2(v, OP_ContextPush, 0, 0);
+ VdbeComment((v, "begin trigger %s", pStepList->pTrig->name));
+ while( pTriggerStep ){
+ orconf = (orconfin == OE_Default)?pTriggerStep->orconf:orconfin;
+ pParse->trigStack->orconf = orconf;
+ switch( pTriggerStep->op ){
+ case TK_SELECT: {
+ Select *ss = sqlite3SelectDup(db, pTriggerStep->pSelect);
+ if( ss ){
+ SelectDest dest;
+
+ sqlite3SelectDestInit(&dest, SRT_Discard, 0);
+ sqlite3SelectResolve(pParse, ss, 0);
+ sqlite3Select(pParse, ss, &dest, 0, 0, 0, 0);
+ sqlite3SelectDelete(ss);
+ }
+ break;
+ }
+ case TK_UPDATE: {
+ SrcList *pSrc;
+ pSrc = targetSrcList(pParse, pTriggerStep);
+ sqlite3VdbeAddOp2(v, OP_ResetCount, 0, 0);
+ sqlite3Update(pParse, pSrc,
+ sqlite3ExprListDup(db, pTriggerStep->pExprList),
+ sqlite3ExprDup(db, pTriggerStep->pWhere), orconf);
+ sqlite3VdbeAddOp2(v, OP_ResetCount, 1, 0);
+ break;
+ }
+ case TK_INSERT: {
+ SrcList *pSrc;
+ pSrc = targetSrcList(pParse, pTriggerStep);
+ sqlite3VdbeAddOp2(v, OP_ResetCount, 0, 0);
+ sqlite3Insert(pParse, pSrc,
+ sqlite3ExprListDup(db, pTriggerStep->pExprList),
+ sqlite3SelectDup(db, pTriggerStep->pSelect),
+ sqlite3IdListDup(db, pTriggerStep->pIdList), orconf);
+ sqlite3VdbeAddOp2(v, OP_ResetCount, 1, 0);
+ break;
+ }
+ case TK_DELETE: {
+ SrcList *pSrc;
+ sqlite3VdbeAddOp2(v, OP_ResetCount, 0, 0);
+ pSrc = targetSrcList(pParse, pTriggerStep);
+ sqlite3DeleteFrom(pParse, pSrc,
+ sqlite3ExprDup(db, pTriggerStep->pWhere));
+ sqlite3VdbeAddOp2(v, OP_ResetCount, 1, 0);
+ break;
+ }
+ default:
+ assert(0);
+ }
+ pTriggerStep = pTriggerStep->pNext;
+ }
+ sqlite3VdbeAddOp2(v, OP_ContextPop, 0, 0);
+ VdbeComment((v, "end trigger %s", pStepList->pTrig->name));
+
+ return 0;
+}
+
+/*
+** This is called to code FOR EACH ROW triggers.
+**
+** When the code that this function generates is executed, the following
+** must be true:
+**
+** 1. No cursors may be open in the main database. (But newIdx and oldIdx
+** can be indices of cursors in temporary tables. See below.)
+**
+** 2. If the triggers being coded are ON INSERT or ON UPDATE triggers, then
+** a temporary vdbe cursor (index newIdx) must be open and pointing at
+** a row containing values to be substituted for new.* expressions in the
+** trigger program(s).
+**
+** 3. If the triggers being coded are ON DELETE or ON UPDATE triggers, then
+** a temporary vdbe cursor (index oldIdx) must be open and pointing at
+** a row containing values to be substituted for old.* expressions in the
+** trigger program(s).
+**
+** If they are not NULL, the piOldColMask and piNewColMask output variables
+** are set to values that describe the columns used by the trigger program
+** in the OLD.* and NEW.* tables respectively. If column N of the
+** pseudo-table is read at least once, the corresponding bit of the output
+** mask is set. If a column with an index greater than 32 is read, the
+** output mask is set to the special value 0xffffffff.
+**
+*/
+SQLITE_PRIVATE int sqlite3CodeRowTrigger(
+ Parse *pParse, /* Parse context */
+ int op, /* One of TK_UPDATE, TK_INSERT, TK_DELETE */
+ ExprList *pChanges, /* Changes list for any UPDATE OF triggers */
+ int tr_tm, /* One of TRIGGER_BEFORE, TRIGGER_AFTER */
+ Table *pTab, /* The table to code triggers from */
+ int newIdx, /* The indice of the "new" row to access */
+ int oldIdx, /* The indice of the "old" row to access */
+ int orconf, /* ON CONFLICT policy */
+ int ignoreJump, /* Instruction to jump to for RAISE(IGNORE) */
+ u32 *piOldColMask, /* OUT: Mask of columns used from the OLD.* table */
+ u32 *piNewColMask /* OUT: Mask of columns used from the NEW.* table */
+){
+ Trigger *p;
+ sqlite3 *db = pParse->db;
+ TriggerStack trigStackEntry;
+
+ trigStackEntry.oldColMask = 0;
+ trigStackEntry.newColMask = 0;
+
+ assert(op == TK_UPDATE || op == TK_INSERT || op == TK_DELETE);
+ assert(tr_tm == TRIGGER_BEFORE || tr_tm == TRIGGER_AFTER );
+
+ assert(newIdx != -1 || oldIdx != -1);
+
+ for(p=pTab->pTrigger; p; p=p->pNext){
+ int fire_this = 0;
+
+ /* Determine whether we should code this trigger */
+ if(
+ p->op==op &&
+ p->tr_tm==tr_tm &&
+ (p->pSchema==p->pTabSchema || p->pSchema==db->aDb[1].pSchema) &&
+ (op!=TK_UPDATE||!p->pColumns||checkColumnOverLap(p->pColumns,pChanges))
+ ){
+ TriggerStack *pS; /* Pointer to trigger-stack entry */
+ for(pS=pParse->trigStack; pS && p!=pS->pTrigger; pS=pS->pNext){}
+ if( !pS ){
+ fire_this = 1;
+ }
+#if 0 /* Give no warning for recursive triggers. Just do not do them */
+ else{
+ sqlite3ErrorMsg(pParse, "recursive triggers not supported (%s)",
+ p->name);
+ return SQLITE_ERROR;
+ }
+#endif
+ }
+
+ if( fire_this ){
+ int endTrigger;
+ Expr * whenExpr;
+ AuthContext sContext;
+ NameContext sNC;
+
+#ifndef SQLITE_OMIT_TRACE
+ sqlite3VdbeAddOp4(pParse->pVdbe, OP_Trace, 0, 0, 0,
+ sqlite3MPrintf(db, "-- TRIGGER %s", p->name),
+ P4_DYNAMIC);
+#endif
+ memset(&sNC, 0, sizeof(sNC));
+ sNC.pParse = pParse;
+
+ /* Push an entry on to the trigger stack */
+ trigStackEntry.pTrigger = p;
+ trigStackEntry.newIdx = newIdx;
+ trigStackEntry.oldIdx = oldIdx;
+ trigStackEntry.pTab = pTab;
+ trigStackEntry.pNext = pParse->trigStack;
+ trigStackEntry.ignoreJump = ignoreJump;
+ pParse->trigStack = &trigStackEntry;
+ sqlite3AuthContextPush(pParse, &sContext, p->name);
+
+ /* code the WHEN clause */
+ endTrigger = sqlite3VdbeMakeLabel(pParse->pVdbe);
+ whenExpr = sqlite3ExprDup(db, p->pWhen);
+ if( db->mallocFailed || sqlite3ExprResolveNames(&sNC, whenExpr) ){
+ pParse->trigStack = trigStackEntry.pNext;
+ sqlite3ExprDelete(whenExpr);
+ return 1;
+ }
+ sqlite3ExprIfFalse(pParse, whenExpr, endTrigger, SQLITE_JUMPIFNULL);
+ sqlite3ExprDelete(whenExpr);
+
+ codeTriggerProgram(pParse, p->step_list, orconf);
+
+ /* Pop the entry off the trigger stack */
+ pParse->trigStack = trigStackEntry.pNext;
+ sqlite3AuthContextPop(&sContext);
+
+ sqlite3VdbeResolveLabel(pParse->pVdbe, endTrigger);
+ }
+ }
+ if( piOldColMask ) *piOldColMask |= trigStackEntry.oldColMask;
+ if( piNewColMask ) *piNewColMask |= trigStackEntry.newColMask;
+ return 0;
+}
+#endif /* !defined(SQLITE_OMIT_TRIGGER) */
+
+/************** End of trigger.c *********************************************/
+/************** Begin file update.c ******************************************/
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains C code routines that are called by the parser
+** to handle UPDATE statements.
+**
+** $Id: update.c,v 1.178 2008/04/28 18:46:43 drh Exp $
+*/
+
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+/* Forward declaration */
+static void updateVirtualTable(
+ Parse *pParse, /* The parsing context */
+ SrcList *pSrc, /* The virtual table to be modified */
+ Table *pTab, /* The virtual table */
+ ExprList *pChanges, /* The columns to change in the UPDATE statement */
+ Expr *pRowidExpr, /* Expression used to recompute the rowid */
+ int *aXRef, /* Mapping from columns of pTab to entries in pChanges */
+ Expr *pWhere /* WHERE clause of the UPDATE statement */
+);
+#endif /* SQLITE_OMIT_VIRTUALTABLE */
+
+/*
+** The most recently coded instruction was an OP_Column to retrieve the
+** i-th column of table pTab. This routine sets the P4 parameter of the
+** OP_Column to the default value, if any.
+**
+** The default value of a column is specified by a DEFAULT clause in the
+** column definition. This was either supplied by the user when the table
+** was created, or added later to the table definition by an ALTER TABLE
+** command. If the latter, then the row-records in the table btree on disk
+** may not contain a value for the column and the default value, taken
+** from the P4 parameter of the OP_Column instruction, is returned instead.
+** If the former, then all row-records are guaranteed to include a value
+** for the column and the P4 value is not required.
+**
+** Column definitions created by an ALTER TABLE command may only have
+** literal default values specified: a number, null or a string. (If a more
+** complicated default expression value was provided, it is evaluated
+** when the ALTER TABLE is executed and one of the literal values written
+** into the sqlite_master table.)
+**
+** Therefore, the P4 parameter is only required if the default value for
+** the column is a literal number, string or null. The sqlite3ValueFromExpr()
+** function is capable of transforming these types of expressions into
+** sqlite3_value objects.
+*/
+SQLITE_PRIVATE void sqlite3ColumnDefault(Vdbe *v, Table *pTab, int i){
+ if( pTab && !pTab->pSelect ){
+ sqlite3_value *pValue;
+ u8 enc = ENC(sqlite3VdbeDb(v));
+ Column *pCol = &pTab->aCol[i];
+ VdbeComment((v, "%s.%s", pTab->zName, pCol->zName));
+ assert( i<pTab->nCol );
+ sqlite3ValueFromExpr(sqlite3VdbeDb(v), pCol->pDflt, enc,
+ pCol->affinity, &pValue);
+ if( pValue ){
+ sqlite3VdbeChangeP4(v, -1, (const char *)pValue, P4_MEM);
+ }
+ }
+}
+
+/*
+** Process an UPDATE statement.
+**
+** UPDATE OR IGNORE table_wxyz SET a=b, c=d WHERE e<5 AND f NOT NULL;
+** \_______/ \________/ \______/ \________________/
+* onError pTabList pChanges pWhere
+*/
+SQLITE_PRIVATE void sqlite3Update(
+ Parse *pParse, /* The parser context */
+ SrcList *pTabList, /* The table in which we should change things */
+ ExprList *pChanges, /* Things to be changed */
+ Expr *pWhere, /* The WHERE clause. May be null */
+ int onError /* How to handle constraint errors */
+){
+ int i, j; /* Loop counters */
+ Table *pTab; /* The table to be updated */
+ int addr = 0; /* VDBE instruction address of the start of the loop */
+ WhereInfo *pWInfo; /* Information about the WHERE clause */
+ Vdbe *v; /* The virtual database engine */
+ Index *pIdx; /* For looping over indices */
+ int nIdx; /* Number of indices that need updating */
+ int iCur; /* VDBE Cursor number of pTab */
+ sqlite3 *db; /* The database structure */
+ int *aRegIdx = 0; /* One register assigned to each index to be updated */
+ int *aXRef = 0; /* aXRef[i] is the index in pChanges->a[] of the
+ ** an expression for the i-th column of the table.
+ ** aXRef[i]==-1 if the i-th column is not changed. */
+ int chngRowid; /* True if the record number is being changed */
+ Expr *pRowidExpr = 0; /* Expression defining the new record number */
+ int openAll = 0; /* True if all indices need to be opened */
+ AuthContext sContext; /* The authorization context */
+ NameContext sNC; /* The name-context to resolve expressions in */
+ int iDb; /* Database containing the table being updated */
+ int j1; /* Addresses of jump instructions */
+ int okOnePass; /* True for one-pass algorithm without the FIFO */
+
+#ifndef SQLITE_OMIT_TRIGGER
+ int isView; /* Trying to update a view */
+ int triggers_exist = 0; /* True if any row triggers exist */
+#endif
+ int iBeginAfterTrigger; /* Address of after trigger program */
+ int iEndAfterTrigger; /* Exit of after trigger program */
+ int iBeginBeforeTrigger; /* Address of before trigger program */
+ int iEndBeforeTrigger; /* Exit of before trigger program */
+ u32 old_col_mask = 0; /* Mask of OLD.* columns in use */
+ u32 new_col_mask = 0; /* Mask of NEW.* columns in use */
+
+ int newIdx = -1; /* index of trigger "new" temp table */
+ int oldIdx = -1; /* index of trigger "old" temp table */
+
+ /* Register Allocations */
+ int regRowCount = 0; /* A count of rows changed */
+ int regOldRowid; /* The old rowid */
+ int regNewRowid; /* The new rowid */
+ int regData; /* New data for the row */
+
+ sContext.pParse = 0;
+ db = pParse->db;
+ if( pParse->nErr || db->mallocFailed ){
+ goto update_cleanup;
+ }
+ assert( pTabList->nSrc==1 );
+
+ /* Locate the table which we want to update.
+ */
+ pTab = sqlite3SrcListLookup(pParse, pTabList);
+ if( pTab==0 ) goto update_cleanup;
+ iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
+
+ /* Figure out if we have any triggers and if the table being
+ ** updated is a view
+ */
+#ifndef SQLITE_OMIT_TRIGGER
+ triggers_exist = sqlite3TriggersExist(pParse, pTab, TK_UPDATE, pChanges);
+ isView = pTab->pSelect!=0;
+#else
+# define triggers_exist 0
+# define isView 0
+#endif
+#ifdef SQLITE_OMIT_VIEW
+# undef isView
+# define isView 0
+#endif
+
+ if( sqlite3IsReadOnly(pParse, pTab, triggers_exist) ){
+ goto update_cleanup;
+ }
+ if( sqlite3ViewGetColumnNames(pParse, pTab) ){
+ goto update_cleanup;
+ }
+ aXRef = sqlite3DbMallocRaw(db, sizeof(int) * pTab->nCol );
+ if( aXRef==0 ) goto update_cleanup;
+ for(i=0; i<pTab->nCol; i++) aXRef[i] = -1;
+
+ /* If there are FOR EACH ROW triggers, allocate cursors for the
+ ** special OLD and NEW tables
+ */
+ if( triggers_exist ){
+ newIdx = pParse->nTab++;
+ oldIdx = pParse->nTab++;
+ }
+
+ /* Allocate a cursors for the main database table and for all indices.
+ ** The index cursors might not be used, but if they are used they
+ ** need to occur right after the database cursor. So go ahead and
+ ** allocate enough space, just in case.
+ */
+ pTabList->a[0].iCursor = iCur = pParse->nTab++;
+ for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
+ pParse->nTab++;
+ }
+
+ /* Initialize the name-context */
+ memset(&sNC, 0, sizeof(sNC));
+ sNC.pParse = pParse;
+ sNC.pSrcList = pTabList;
+
+ /* Resolve the column names in all the expressions of the
+ ** of the UPDATE statement. Also find the column index
+ ** for each column to be updated in the pChanges array. For each
+ ** column to be updated, make sure we have authorization to change
+ ** that column.
+ */
+ chngRowid = 0;
+ for(i=0; i<pChanges->nExpr; i++){
+ if( sqlite3ExprResolveNames(&sNC, pChanges->a[i].pExpr) ){
+ goto update_cleanup;
+ }
+ for(j=0; j<pTab->nCol; j++){
+ if( sqlite3StrICmp(pTab->aCol[j].zName, pChanges->a[i].zName)==0 ){
+ if( j==pTab->iPKey ){
+ chngRowid = 1;
+ pRowidExpr = pChanges->a[i].pExpr;
+ }
+ aXRef[j] = i;
+ break;
+ }
+ }
+ if( j>=pTab->nCol ){
+ if( sqlite3IsRowid(pChanges->a[i].zName) ){
+ chngRowid = 1;
+ pRowidExpr = pChanges->a[i].pExpr;
+ }else{
+ sqlite3ErrorMsg(pParse, "no such column: %s", pChanges->a[i].zName);
+ goto update_cleanup;
+ }
+ }
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ {
+ int rc;
+ rc = sqlite3AuthCheck(pParse, SQLITE_UPDATE, pTab->zName,
+ pTab->aCol[j].zName, db->aDb[iDb].zName);
+ if( rc==SQLITE_DENY ){
+ goto update_cleanup;
+ }else if( rc==SQLITE_IGNORE ){
+ aXRef[j] = -1;
+ }
+ }
+#endif
+ }
+
+ /* Allocate memory for the array aRegIdx[]. There is one entry in the
+ ** array for each index associated with table being updated. Fill in
+ ** the value with a register number for indices that are to be used
+ ** and with zero for unused indices.
+ */
+ for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){}
+ if( nIdx>0 ){
+ aRegIdx = sqlite3DbMallocRaw(db, sizeof(Index*) * nIdx );
+ if( aRegIdx==0 ) goto update_cleanup;
+ }
+ for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
+ int reg;
+ if( chngRowid ){
+ reg = ++pParse->nMem;
+ }else{
+ reg = 0;
+ for(i=0; i<pIdx->nColumn; i++){
+ if( aXRef[pIdx->aiColumn[i]]>=0 ){
+ reg = ++pParse->nMem;
+ break;
+ }
+ }
+ }
+ aRegIdx[j] = reg;
+ }
+
+ /* Allocate a block of register used to store the change record
+ ** sent to sqlite3GenerateConstraintChecks(). There are either
+ ** one or two registers for holding the rowid. One rowid register
+ ** is used if chngRowid is false and two are used if chngRowid is
+ ** true. Following these are pTab->nCol register holding column
+ ** data.
+ */
+ regOldRowid = regNewRowid = pParse->nMem + 1;
+ pParse->nMem += pTab->nCol + 1;
+ if( chngRowid ){
+ regNewRowid++;
+ pParse->nMem++;
+ }
+ regData = regNewRowid+1;
+
+
+ /* Begin generating code.
+ */
+ v = sqlite3GetVdbe(pParse);
+ if( v==0 ) goto update_cleanup;
+ if( pParse->nested==0 ) sqlite3VdbeCountChanges(v);
+ sqlite3BeginWriteOperation(pParse, 1, iDb);
+
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ /* Virtual tables must be handled separately */
+ if( IsVirtual(pTab) ){
+ updateVirtualTable(pParse, pTabList, pTab, pChanges, pRowidExpr, aXRef,
+ pWhere);
+ pWhere = 0;
+ pTabList = 0;
+ goto update_cleanup;
+ }
+#endif
+
+ /* Start the view context
+ */
+ if( isView ){
+ sqlite3AuthContextPush(pParse, &sContext, pTab->zName);
+ }
+
+ /* Generate the code for triggers.
+ */
+ if( triggers_exist ){
+ int iGoto;
+
+ /* Create pseudo-tables for NEW and OLD
+ */
+ sqlite3VdbeAddOp2(v, OP_SetNumColumns, 0, pTab->nCol);
+ sqlite3VdbeAddOp2(v, OP_OpenPseudo, oldIdx, 0);
+ sqlite3VdbeAddOp2(v, OP_SetNumColumns, 0, pTab->nCol);
+ sqlite3VdbeAddOp2(v, OP_OpenPseudo, newIdx, 0);
+
+ iGoto = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0);
+ addr = sqlite3VdbeMakeLabel(v);
+ iBeginBeforeTrigger = sqlite3VdbeCurrentAddr(v);
+ if( sqlite3CodeRowTrigger(pParse, TK_UPDATE, pChanges, TRIGGER_BEFORE, pTab,
+ newIdx, oldIdx, onError, addr, &old_col_mask, &new_col_mask) ){
+ goto update_cleanup;
+ }
+ iEndBeforeTrigger = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0);
+ iBeginAfterTrigger = sqlite3VdbeCurrentAddr(v);
+ if( sqlite3CodeRowTrigger(pParse, TK_UPDATE, pChanges, TRIGGER_AFTER, pTab,
+ newIdx, oldIdx, onError, addr, &old_col_mask, &new_col_mask) ){
+ goto update_cleanup;
+ }
+ iEndAfterTrigger = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0);
+ sqlite3VdbeJumpHere(v, iGoto);
+ }
+
+ /* If we are trying to update a view, realize that view into
+ ** a ephemeral table.
+ */
+ if( isView ){
+ sqlite3MaterializeView(pParse, pTab->pSelect, pWhere, iCur);
+ }
+
+ /* Resolve the column names in all the expressions in the
+ ** WHERE clause.
+ */
+ if( sqlite3ExprResolveNames(&sNC, pWhere) ){
+ goto update_cleanup;
+ }
+
+ /* Begin the database scan
+ */
+ sqlite3VdbeAddOp2(v, OP_Null, 0, regOldRowid);
+ pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, 0,
+ WHERE_ONEPASS_DESIRED);
+ if( pWInfo==0 ) goto update_cleanup;
+ okOnePass = pWInfo->okOnePass;
+
+ /* Remember the rowid of every item to be updated.
+ */
+ sqlite3VdbeAddOp2(v, IsVirtual(pTab)?OP_VRowid:OP_Rowid, iCur, regOldRowid);
+ if( !okOnePass ) sqlite3VdbeAddOp2(v, OP_FifoWrite, regOldRowid, 0);
+
+ /* End the database scan loop.
+ */
+ sqlite3WhereEnd(pWInfo);
+
+ /* Initialize the count of updated rows
+ */
+ if( db->flags & SQLITE_CountRows && !pParse->trigStack ){
+ regRowCount = ++pParse->nMem;
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount);
+ }
+
+ if( !isView && !IsVirtual(pTab) ){
+ /*
+ ** Open every index that needs updating. Note that if any
+ ** index could potentially invoke a REPLACE conflict resolution
+ ** action, then we need to open all indices because we might need
+ ** to be deleting some records.
+ */
+ if( !okOnePass ) sqlite3OpenTable(pParse, iCur, iDb, pTab, OP_OpenWrite);
+ if( onError==OE_Replace ){
+ openAll = 1;
+ }else{
+ openAll = 0;
+ for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
+ if( pIdx->onError==OE_Replace ){
+ openAll = 1;
+ break;
+ }
+ }
+ }
+ for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
+ if( openAll || aRegIdx[i]>0 ){
+ KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx);
+ sqlite3VdbeAddOp4(v, OP_OpenWrite, iCur+i+1, pIdx->tnum, iDb,
+ (char*)pKey, P4_KEYINFO_HANDOFF);
+ assert( pParse->nTab>iCur+i+1 );
+ }
+ }
+ }
+
+ /* Jump back to this point if a trigger encounters an IGNORE constraint. */
+ if( triggers_exist ){
+ sqlite3VdbeResolveLabel(v, addr);
+ }
+
+ /* Top of the update loop */
+ if( okOnePass ){
+ int a1 = sqlite3VdbeAddOp1(v, OP_NotNull, regOldRowid);
+ addr = sqlite3VdbeAddOp0(v, OP_Goto);
+ sqlite3VdbeJumpHere(v, a1);
+ }else{
+ addr = sqlite3VdbeAddOp2(v, OP_FifoRead, regOldRowid, 0);
+ }
+
+ if( triggers_exist ){
+ int regRowid;
+ int regRow;
+ int regCols;
+
+ /* Make cursor iCur point to the record that is being updated.
+ */
+ sqlite3VdbeAddOp3(v, OP_NotExists, iCur, addr, regOldRowid);
+
+ /* Generate the OLD table
+ */
+ regRowid = sqlite3GetTempReg(pParse);
+ regRow = sqlite3GetTempReg(pParse);
+ sqlite3VdbeAddOp2(v, OP_Rowid, iCur, regRowid);
+ if( !old_col_mask ){
+ sqlite3VdbeAddOp2(v, OP_Null, 0, regRow);
+ }else{
+ sqlite3VdbeAddOp2(v, OP_RowData, iCur, regRow);
+ }
+ sqlite3VdbeAddOp3(v, OP_Insert, oldIdx, regRow, regRowid);
+
+ /* Generate the NEW table
+ */
+ if( chngRowid ){
+ sqlite3ExprCodeAndCache(pParse, pRowidExpr, regRowid);
+ }else{
+ sqlite3VdbeAddOp2(v, OP_Rowid, iCur, regRowid);
+ }
+ regCols = sqlite3GetTempRange(pParse, pTab->nCol);
+ for(i=0; i<pTab->nCol; i++){
+ if( i==pTab->iPKey ){
+ sqlite3VdbeAddOp2(v, OP_Null, 0, regCols+i);
+ continue;
+ }
+ j = aXRef[i];
+ if( new_col_mask&((u32)1<<i) || new_col_mask==0xffffffff ){
+ if( j<0 ){
+ sqlite3VdbeAddOp3(v, OP_Column, iCur, i, regCols+i);
+ sqlite3ColumnDefault(v, pTab, i);
+ }else{
+ sqlite3ExprCodeAndCache(pParse, pChanges->a[j].pExpr, regCols+i);
+ }
+ }else{
+ sqlite3VdbeAddOp2(v, OP_Null, 0, regCols+i);
+ }
+ }
+ sqlite3VdbeAddOp3(v, OP_MakeRecord, regCols, pTab->nCol, regRow);
+ if( !isView ){
+ sqlite3TableAffinityStr(v, pTab);
+ sqlite3ExprCacheAffinityChange(pParse, regCols, pTab->nCol);
+ }
+ sqlite3ReleaseTempRange(pParse, regCols, pTab->nCol);
+ if( pParse->nErr ) goto update_cleanup;
+ sqlite3VdbeAddOp3(v, OP_Insert, newIdx, regRow, regRowid);
+ sqlite3ReleaseTempReg(pParse, regRowid);
+ sqlite3ReleaseTempReg(pParse, regRow);
+
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, iBeginBeforeTrigger);
+ sqlite3VdbeJumpHere(v, iEndBeforeTrigger);
+ }
+
+ if( !isView && !IsVirtual(pTab) ){
+ /* Loop over every record that needs updating. We have to load
+ ** the old data for each record to be updated because some columns
+ ** might not change and we will need to copy the old value.
+ ** Also, the old data is needed to delete the old index entries.
+ ** So make the cursor point at the old record.
+ */
+ sqlite3VdbeAddOp3(v, OP_NotExists, iCur, addr, regOldRowid);
+
+ /* If the record number will change, push the record number as it
+ ** will be after the update. (The old record number is currently
+ ** on top of the stack.)
+ */
+ if( chngRowid ){
+ sqlite3ExprCode(pParse, pRowidExpr, regNewRowid);
+ sqlite3VdbeAddOp1(v, OP_MustBeInt, regNewRowid);
+ }
+
+ /* Compute new data for this record.
+ */
+ for(i=0; i<pTab->nCol; i++){
+ if( i==pTab->iPKey ){
+ sqlite3VdbeAddOp2(v, OP_Null, 0, regData+i);
+ continue;
+ }
+ j = aXRef[i];
+ if( j<0 ){
+ sqlite3VdbeAddOp3(v, OP_Column, iCur, i, regData+i);
+ sqlite3ColumnDefault(v, pTab, i);
+ }else{
+ sqlite3ExprCode(pParse, pChanges->a[j].pExpr, regData+i);
+ }
+ }
+
+ /* Do constraint checks
+ */
+ sqlite3GenerateConstraintChecks(pParse, pTab, iCur, regNewRowid,
+ aRegIdx, chngRowid, 1,
+ onError, addr);
+
+ /* Delete the old indices for the current record.
+ */
+ j1 = sqlite3VdbeAddOp3(v, OP_NotExists, iCur, 0, regOldRowid);
+ sqlite3GenerateRowIndexDelete(pParse, pTab, iCur, aRegIdx);
+
+ /* If changing the record number, delete the old record.
+ */
+ if( chngRowid ){
+ sqlite3VdbeAddOp2(v, OP_Delete, iCur, 0);
+ }
+ sqlite3VdbeJumpHere(v, j1);
+
+ /* Create the new index entries and the new record.
+ */
+ sqlite3CompleteInsertion(pParse, pTab, iCur, regNewRowid,
+ aRegIdx, chngRowid, 1, -1, 0);
+ }
+
+ /* Increment the row counter
+ */
+ if( db->flags & SQLITE_CountRows && !pParse->trigStack){
+ sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1);
+ }
+
+ /* If there are triggers, close all the cursors after each iteration
+ ** through the loop. The fire the after triggers.
+ */
+ if( triggers_exist ){
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, iBeginAfterTrigger);
+ sqlite3VdbeJumpHere(v, iEndAfterTrigger);
+ }
+
+ /* Repeat the above with the next record to be updated, until
+ ** all record selected by the WHERE clause have been updated.
+ */
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, addr);
+ sqlite3VdbeJumpHere(v, addr);
+
+ /* Close all tables */
+ for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
+ if( openAll || aRegIdx[i]>0 ){
+ sqlite3VdbeAddOp2(v, OP_Close, iCur+i+1, 0);
+ }
+ }
+ sqlite3VdbeAddOp2(v, OP_Close, iCur, 0);
+ if( triggers_exist ){
+ sqlite3VdbeAddOp2(v, OP_Close, newIdx, 0);
+ sqlite3VdbeAddOp2(v, OP_Close, oldIdx, 0);
+ }
+
+ /*
+ ** Return the number of rows that were changed. If this routine is
+ ** generating code because of a call to sqlite3NestedParse(), do not
+ ** invoke the callback function.
+ */
+ if( db->flags & SQLITE_CountRows && !pParse->trigStack && pParse->nested==0 ){
+ sqlite3VdbeAddOp2(v, OP_ResultRow, regRowCount, 1);
+ sqlite3VdbeSetNumCols(v, 1);
+ sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows updated", P4_STATIC);
+ }
+
+update_cleanup:
+ sqlite3AuthContextPop(&sContext);
+ sqlite3_free(aRegIdx);
+ sqlite3_free(aXRef);
+ sqlite3SrcListDelete(pTabList);
+ sqlite3ExprListDelete(pChanges);
+ sqlite3ExprDelete(pWhere);
+ return;
+}
+
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+/*
+** Generate code for an UPDATE of a virtual table.
+**
+** The strategy is that we create an ephemerial table that contains
+** for each row to be changed:
+**
+** (A) The original rowid of that row.
+** (B) The revised rowid for the row. (note1)
+** (C) The content of every column in the row.
+**
+** Then we loop over this ephemeral table and for each row in
+** the ephermeral table call VUpdate.
+**
+** When finished, drop the ephemeral table.
+**
+** (note1) Actually, if we know in advance that (A) is always the same
+** as (B) we only store (A), then duplicate (A) when pulling
+** it out of the ephemeral table before calling VUpdate.
+*/
+static void updateVirtualTable(
+ Parse *pParse, /* The parsing context */
+ SrcList *pSrc, /* The virtual table to be modified */
+ Table *pTab, /* The virtual table */
+ ExprList *pChanges, /* The columns to change in the UPDATE statement */
+ Expr *pRowid, /* Expression used to recompute the rowid */
+ int *aXRef, /* Mapping from columns of pTab to entries in pChanges */
+ Expr *pWhere /* WHERE clause of the UPDATE statement */
+){
+ Vdbe *v = pParse->pVdbe; /* Virtual machine under construction */
+ ExprList *pEList = 0; /* The result set of the SELECT statement */
+ Select *pSelect = 0; /* The SELECT statement */
+ Expr *pExpr; /* Temporary expression */
+ int ephemTab; /* Table holding the result of the SELECT */
+ int i; /* Loop counter */
+ int addr; /* Address of top of loop */
+ int iReg; /* First register in set passed to OP_VUpdate */
+ sqlite3 *db = pParse->db; /* Database connection */
+ const char *pVtab = (const char*)pTab->pVtab;
+ SelectDest dest;
+
+ /* Construct the SELECT statement that will find the new values for
+ ** all updated rows.
+ */
+ pEList = sqlite3ExprListAppend(pParse, 0,
+ sqlite3CreateIdExpr(pParse, "_rowid_"), 0);
+ if( pRowid ){
+ pEList = sqlite3ExprListAppend(pParse, pEList,
+ sqlite3ExprDup(db, pRowid), 0);
+ }
+ assert( pTab->iPKey<0 );
+ for(i=0; i<pTab->nCol; i++){
+ if( aXRef[i]>=0 ){
+ pExpr = sqlite3ExprDup(db, pChanges->a[aXRef[i]].pExpr);
+ }else{
+ pExpr = sqlite3CreateIdExpr(pParse, pTab->aCol[i].zName);
+ }
+ pEList = sqlite3ExprListAppend(pParse, pEList, pExpr, 0);
+ }
+ pSelect = sqlite3SelectNew(pParse, pEList, pSrc, pWhere, 0, 0, 0, 0, 0, 0);
+
+ /* Create the ephemeral table into which the update results will
+ ** be stored.
+ */
+ assert( v );
+ ephemTab = pParse->nTab++;
+ sqlite3VdbeAddOp2(v, OP_OpenEphemeral, ephemTab, pTab->nCol+1+(pRowid!=0));
+
+ /* fill the ephemeral table
+ */
+ sqlite3SelectDestInit(&dest, SRT_Table, ephemTab);
+ sqlite3Select(pParse, pSelect, &dest, 0, 0, 0, 0);
+
+ /* Generate code to scan the ephemeral table and call VUpdate. */
+ iReg = ++pParse->nMem;
+ pParse->nMem += pTab->nCol+1;
+ sqlite3VdbeAddOp2(v, OP_Rewind, ephemTab, 0);
+ addr = sqlite3VdbeCurrentAddr(v);
+ sqlite3VdbeAddOp3(v, OP_Column, ephemTab, 0, iReg);
+ sqlite3VdbeAddOp3(v, OP_Column, ephemTab, (pRowid?1:0), iReg+1);
+ for(i=0; i<pTab->nCol; i++){
+ sqlite3VdbeAddOp3(v, OP_Column, ephemTab, i+1+(pRowid!=0), iReg+2+i);
+ }
+ sqlite3VtabMakeWritable(pParse, pTab);
+ sqlite3VdbeAddOp4(v, OP_VUpdate, 0, pTab->nCol+2, iReg, pVtab, P4_VTAB);
+ sqlite3VdbeAddOp2(v, OP_Next, ephemTab, addr);
+ sqlite3VdbeJumpHere(v, addr-1);
+ sqlite3VdbeAddOp2(v, OP_Close, ephemTab, 0);
+
+ /* Cleanup */
+ sqlite3SelectDelete(pSelect);
+}
+#endif /* SQLITE_OMIT_VIRTUALTABLE */
+
+/* Make sure "isView" gets undefined in case this file becomes part of
+** the amalgamation - so that subsequent files do not see isView as a
+** macro. */
+#undef isView
+
+/************** End of update.c **********************************************/
+/************** Begin file vacuum.c ******************************************/
+/*
+** 2003 April 6
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains code used to implement the VACUUM command.
+**
+** Most of the code in this file may be omitted by defining the
+** SQLITE_OMIT_VACUUM macro.
+**
+** $Id: vacuum.c,v 1.78 2008/04/30 16:38:23 drh Exp $
+*/
+
+#if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH)
+/*
+** Execute zSql on database db. Return an error code.
+*/
+static int execSql(sqlite3 *db, const char *zSql){
+ sqlite3_stmt *pStmt;
+ if( !zSql ){
+ return SQLITE_NOMEM;
+ }
+ if( SQLITE_OK!=sqlite3_prepare(db, zSql, -1, &pStmt, 0) ){
+ return sqlite3_errcode(db);
+ }
+ while( SQLITE_ROW==sqlite3_step(pStmt) ){}
+ return sqlite3_finalize(pStmt);
+}
+
+/*
+** Execute zSql on database db. The statement returns exactly
+** one column. Execute this as SQL on the same database.
+*/
+static int execExecSql(sqlite3 *db, const char *zSql){
+ sqlite3_stmt *pStmt;
+ int rc;
+
+ rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0);
+ if( rc!=SQLITE_OK ) return rc;
+
+ while( SQLITE_ROW==sqlite3_step(pStmt) ){
+ rc = execSql(db, (char*)sqlite3_column_text(pStmt, 0));
+ if( rc!=SQLITE_OK ){
+ sqlite3_finalize(pStmt);
+ return rc;
+ }
+ }
+
+ return sqlite3_finalize(pStmt);
+}
+
+/*
+** The non-standard VACUUM command is used to clean up the database,
+** collapse free space, etc. It is modelled after the VACUUM command
+** in PostgreSQL.
+**
+** In version 1.0.x of SQLite, the VACUUM command would call
+** gdbm_reorganize() on all the database tables. But beginning
+** with 2.0.0, SQLite no longer uses GDBM so this command has
+** become a no-op.
+*/
+SQLITE_PRIVATE void sqlite3Vacuum(Parse *pParse){
+ Vdbe *v = sqlite3GetVdbe(pParse);
+ if( v ){
+ sqlite3VdbeAddOp2(v, OP_Vacuum, 0, 0);
+ }
+ return;
+}
+
+/*
+** This routine implements the OP_Vacuum opcode of the VDBE.
+*/
+SQLITE_PRIVATE int sqlite3RunVacuum(char **pzErrMsg, sqlite3 *db){
+ int rc = SQLITE_OK; /* Return code from service routines */
+ Btree *pMain; /* The database being vacuumed */
+ Btree *pTemp; /* The temporary database we vacuum into */
+ char *zSql = 0; /* SQL statements */
+ int saved_flags; /* Saved value of the db->flags */
+ Db *pDb = 0; /* Database to detach at end of vacuum */
+ int nRes;
+
+ /* Save the current value of the write-schema flag before setting it. */
+ saved_flags = db->flags;
+ db->flags |= SQLITE_WriteSchema | SQLITE_IgnoreChecks;
+
+ if( !db->autoCommit ){
+ sqlite3SetString(pzErrMsg, "cannot VACUUM from within a transaction",
+ (char*)0);
+ rc = SQLITE_ERROR;
+ goto end_of_vacuum;
+ }
+ pMain = db->aDb[0].pBt;
+
+ /* Attach the temporary database as 'vacuum_db'. The synchronous pragma
+ ** can be set to 'off' for this file, as it is not recovered if a crash
+ ** occurs anyway. The integrity of the database is maintained by a
+ ** (possibly synchronous) transaction opened on the main database before
+ ** sqlite3BtreeCopyFile() is called.
+ **
+ ** An optimisation would be to use a non-journaled pager.
+ ** (Later:) I tried setting "PRAGMA vacuum_db.journal_mode=OFF" but
+ ** that actually made the VACUUM run slower. Very little journalling
+ ** actually occurs when doing a vacuum since the vacuum_db is initially
+ ** empty. Only the journal header is written. Apparently it takes more
+ ** time to parse and run the PRAGMA to turn journalling off than it does
+ ** to write the journal header file.
+ */
+ zSql = "ATTACH '' AS vacuum_db;";
+ rc = execSql(db, zSql);
+ if( rc!=SQLITE_OK ) goto end_of_vacuum;
+ pDb = &db->aDb[db->nDb-1];
+ assert( strcmp(db->aDb[db->nDb-1].zName,"vacuum_db")==0 );
+ pTemp = db->aDb[db->nDb-1].pBt;
+
+ nRes = sqlite3BtreeGetReserve(pMain);
+ if( sqlite3BtreeSetPageSize(pTemp, sqlite3BtreeGetPageSize(pMain), nRes)
+ || sqlite3BtreeSetPageSize(pTemp, db->nextPagesize, nRes)
+ || db->mallocFailed
+ ){
+ rc = SQLITE_NOMEM;
+ goto end_of_vacuum;
+ }
+ rc = execSql(db, "PRAGMA vacuum_db.synchronous=OFF");
+ if( rc!=SQLITE_OK ){
+ goto end_of_vacuum;
+ }
+
+#ifndef SQLITE_OMIT_AUTOVACUUM
+ sqlite3BtreeSetAutoVacuum(pTemp, db->nextAutovac>=0 ? db->nextAutovac :
+ sqlite3BtreeGetAutoVacuum(pMain));
+#endif
+
+ /* Begin a transaction */
+ rc = execSql(db, "BEGIN EXCLUSIVE;");
+ if( rc!=SQLITE_OK ) goto end_of_vacuum;
+
+ /* Query the schema of the main database. Create a mirror schema
+ ** in the temporary database.
+ */
+ rc = execExecSql(db,
+ "SELECT 'CREATE TABLE vacuum_db.' || substr(sql,14) "
+ " FROM sqlite_master WHERE type='table' AND name!='sqlite_sequence'"
+ " AND rootpage>0"
+ );
+ if( rc!=SQLITE_OK ) goto end_of_vacuum;
+ rc = execExecSql(db,
+ "SELECT 'CREATE INDEX vacuum_db.' || substr(sql,14)"
+ " FROM sqlite_master WHERE sql LIKE 'CREATE INDEX %' ");
+ if( rc!=SQLITE_OK ) goto end_of_vacuum;
+ rc = execExecSql(db,
+ "SELECT 'CREATE UNIQUE INDEX vacuum_db.' || substr(sql,21) "
+ " FROM sqlite_master WHERE sql LIKE 'CREATE UNIQUE INDEX %'");
+ if( rc!=SQLITE_OK ) goto end_of_vacuum;
+
+ /* Loop through the tables in the main database. For each, do
+ ** an "INSERT INTO vacuum_db.xxx SELECT * FROM xxx;" to copy
+ ** the contents to the temporary database.
+ */
+ rc = execExecSql(db,
+ "SELECT 'INSERT INTO vacuum_db.' || quote(name) "
+ "|| ' SELECT * FROM ' || quote(name) || ';'"
+ "FROM sqlite_master "
+ "WHERE type = 'table' AND name!='sqlite_sequence' "
+ " AND rootpage>0"
+
+ );
+ if( rc!=SQLITE_OK ) goto end_of_vacuum;
+
+ /* Copy over the sequence table
+ */
+ rc = execExecSql(db,
+ "SELECT 'DELETE FROM vacuum_db.' || quote(name) || ';' "
+ "FROM vacuum_db.sqlite_master WHERE name='sqlite_sequence' "
+ );
+ if( rc!=SQLITE_OK ) goto end_of_vacuum;
+ rc = execExecSql(db,
+ "SELECT 'INSERT INTO vacuum_db.' || quote(name) "
+ "|| ' SELECT * FROM ' || quote(name) || ';' "
+ "FROM vacuum_db.sqlite_master WHERE name=='sqlite_sequence';"
+ );
+ if( rc!=SQLITE_OK ) goto end_of_vacuum;
+
+
+ /* Copy the triggers, views, and virtual tables from the main database
+ ** over to the temporary database. None of these objects has any
+ ** associated storage, so all we have to do is copy their entries
+ ** from the SQLITE_MASTER table.
+ */
+ rc = execSql(db,
+ "INSERT INTO vacuum_db.sqlite_master "
+ " SELECT type, name, tbl_name, rootpage, sql"
+ " FROM sqlite_master"
+ " WHERE type='view' OR type='trigger'"
+ " OR (type='table' AND rootpage=0)"
+ );
+ if( rc ) goto end_of_vacuum;
+
+ /* At this point, unless the main db was completely empty, there is now a
+ ** transaction open on the vacuum database, but not on the main database.
+ ** Open a btree level transaction on the main database. This allows a
+ ** call to sqlite3BtreeCopyFile(). The main database btree level
+ ** transaction is then committed, so the SQL level never knows it was
+ ** opened for writing. This way, the SQL transaction used to create the
+ ** temporary database never needs to be committed.
+ */
+ if( rc==SQLITE_OK ){
+ u32 meta;
+ int i;
+
+ /* This array determines which meta meta values are preserved in the
+ ** vacuum. Even entries are the meta value number and odd entries
+ ** are an increment to apply to the meta value after the vacuum.
+ ** The increment is used to increase the schema cookie so that other
+ ** connections to the same database will know to reread the schema.
+ */
+ static const unsigned char aCopy[] = {
+ 1, 1, /* Add one to the old schema cookie */
+ 3, 0, /* Preserve the default page cache size */
+ 5, 0, /* Preserve the default text encoding */
+ 6, 0, /* Preserve the user version */
+ };
+
+ assert( 1==sqlite3BtreeIsInTrans(pTemp) );
+ assert( 1==sqlite3BtreeIsInTrans(pMain) );
+
+ /* Copy Btree meta values */
+ for(i=0; i<sizeof(aCopy)/sizeof(aCopy[0]); i+=2){
+ rc = sqlite3BtreeGetMeta(pMain, aCopy[i], &meta);
+ if( rc!=SQLITE_OK ) goto end_of_vacuum;
+ rc = sqlite3BtreeUpdateMeta(pTemp, aCopy[i], meta+aCopy[i+1]);
+ if( rc!=SQLITE_OK ) goto end_of_vacuum;
+ }
+
+ rc = sqlite3BtreeCopyFile(pMain, pTemp);
+ if( rc!=SQLITE_OK ) goto end_of_vacuum;
+ rc = sqlite3BtreeCommit(pTemp);
+ if( rc!=SQLITE_OK ) goto end_of_vacuum;
+ rc = sqlite3BtreeCommit(pMain);
+ }
+
+ if( rc==SQLITE_OK ){
+ rc = sqlite3BtreeSetPageSize(pMain, sqlite3BtreeGetPageSize(pTemp), nRes);
+ }
+
+end_of_vacuum:
+ /* Restore the original value of db->flags */
+ db->flags = saved_flags;
+
+ /* Currently there is an SQL level transaction open on the vacuum
+ ** database. No locks are held on any other files (since the main file
+ ** was committed at the btree level). So it safe to end the transaction
+ ** by manually setting the autoCommit flag to true and detaching the
+ ** vacuum database. The vacuum_db journal file is deleted when the pager
+ ** is closed by the DETACH.
+ */
+ db->autoCommit = 1;
+
+ if( pDb ){
+ sqlite3BtreeClose(pDb->pBt);
+ pDb->pBt = 0;
+ pDb->pSchema = 0;
+ }
+
+ sqlite3ResetInternalSchema(db, 0);
+
+ return rc;
+}
+#endif /* SQLITE_OMIT_VACUUM && SQLITE_OMIT_ATTACH */
+
+/************** End of vacuum.c **********************************************/
+/************** Begin file vtab.c ********************************************/
+/*
+** 2006 June 10
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains code used to help implement virtual tables.
+**
+** $Id: vtab.c,v 1.69 2008/05/05 13:23:04 drh Exp $
+*/
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+
+static int createModule(
+ sqlite3 *db, /* Database in which module is registered */
+ const char *zName, /* Name assigned to this module */
+ const sqlite3_module *pModule, /* The definition of the module */
+ void *pAux, /* Context pointer for xCreate/xConnect */
+ void (*xDestroy)(void *) /* Module destructor function */
+) {
+ int rc, nName;
+ Module *pMod;
+
+ sqlite3_mutex_enter(db->mutex);
+ nName = strlen(zName);
+ pMod = (Module *)sqlite3DbMallocRaw(db, sizeof(Module) + nName + 1);
+ if( pMod ){
+ char *zCopy = (char *)(&pMod[1]);
+ memcpy(zCopy, zName, nName+1);
+ pMod->zName = zCopy;
+ pMod->pModule = pModule;
+ pMod->pAux = pAux;
+ pMod->xDestroy = xDestroy;
+ pMod = (Module *)sqlite3HashInsert(&db->aModule, zCopy, nName, (void*)pMod);
+ if( pMod && pMod->xDestroy ){
+ pMod->xDestroy(pMod->pAux);
+ }
+ sqlite3_free(pMod);
+ sqlite3ResetInternalSchema(db, 0);
+ }
+ rc = sqlite3ApiExit(db, SQLITE_OK);
+ sqlite3_mutex_leave(db->mutex);
+ return rc;
+}
+
+
+/*
+** External API function used to create a new virtual-table module.
+*/
+SQLITE_API int sqlite3_create_module(
+ sqlite3 *db, /* Database in which module is registered */
+ const char *zName, /* Name assigned to this module */
+ const sqlite3_module *pModule, /* The definition of the module */
+ void *pAux /* Context pointer for xCreate/xConnect */
+){
+ return createModule(db, zName, pModule, pAux, 0);
+}
+
+/*
+** External API function used to create a new virtual-table module.
+*/
+SQLITE_API int sqlite3_create_module_v2(
+ sqlite3 *db, /* Database in which module is registered */
+ const char *zName, /* Name assigned to this module */
+ const sqlite3_module *pModule, /* The definition of the module */
+ void *pAux, /* Context pointer for xCreate/xConnect */
+ void (*xDestroy)(void *) /* Module destructor function */
+){
+ return createModule(db, zName, pModule, pAux, xDestroy);
+}
+
+/*
+** Lock the virtual table so that it cannot be disconnected.
+** Locks nest. Every lock should have a corresponding unlock.
+** If an unlock is omitted, resources leaks will occur.
+**
+** If a disconnect is attempted while a virtual table is locked,
+** the disconnect is deferred until all locks have been removed.
+*/
+SQLITE_PRIVATE void sqlite3VtabLock(sqlite3_vtab *pVtab){
+ pVtab->nRef++;
+}
+
+/*
+** Unlock a virtual table. When the last lock is removed,
+** disconnect the virtual table.
+*/
+SQLITE_PRIVATE void sqlite3VtabUnlock(sqlite3 *db, sqlite3_vtab *pVtab){
+ pVtab->nRef--;
+ assert(db);
+ assert( sqlite3SafetyCheckOk(db) );
+ if( pVtab->nRef==0 ){
+ if( db->magic==SQLITE_MAGIC_BUSY ){
+ (void)sqlite3SafetyOff(db);
+ pVtab->pModule->xDisconnect(pVtab);
+ (void)sqlite3SafetyOn(db);
+ } else {
+ pVtab->pModule->xDisconnect(pVtab);
+ }
+ }
+}
+
+/*
+** Clear any and all virtual-table information from the Table record.
+** This routine is called, for example, just before deleting the Table
+** record.
+*/
+SQLITE_PRIVATE void sqlite3VtabClear(Table *p){
+ sqlite3_vtab *pVtab = p->pVtab;
+ if( pVtab ){
+ assert( p->pMod && p->pMod->pModule );
+ sqlite3VtabUnlock(p->pSchema->db, pVtab);
+ p->pVtab = 0;
+ }
+ if( p->azModuleArg ){
+ int i;
+ for(i=0; i<p->nModuleArg; i++){
+ sqlite3_free(p->azModuleArg[i]);
+ }
+ sqlite3_free(p->azModuleArg);
+ }
+}
+
+/*
+** Add a new module argument to pTable->azModuleArg[].
+** The string is not copied - the pointer is stored. The
+** string will be freed automatically when the table is
+** deleted.
+*/
+static void addModuleArgument(sqlite3 *db, Table *pTable, char *zArg){
+ int i = pTable->nModuleArg++;
+ int nBytes = sizeof(char *)*(1+pTable->nModuleArg);
+ char **azModuleArg;
+ azModuleArg = sqlite3DbRealloc(db, pTable->azModuleArg, nBytes);
+ if( azModuleArg==0 ){
+ int j;
+ for(j=0; j<i; j++){
+ sqlite3_free(pTable->azModuleArg[j]);
+ }
+ sqlite3_free(zArg);
+ sqlite3_free(pTable->azModuleArg);
+ pTable->nModuleArg = 0;
+ }else{
+ azModuleArg[i] = zArg;
+ azModuleArg[i+1] = 0;
+ }
+ pTable->azModuleArg = azModuleArg;
+}
+
+/*
+** The parser calls this routine when it first sees a CREATE VIRTUAL TABLE
+** statement. The module name has been parsed, but the optional list
+** of parameters that follow the module name are still pending.
+*/
+SQLITE_PRIVATE void sqlite3VtabBeginParse(
+ Parse *pParse, /* Parsing context */
+ Token *pName1, /* Name of new table, or database name */
+ Token *pName2, /* Name of new table or NULL */
+ Token *pModuleName /* Name of the module for the virtual table */
+){
+ int iDb; /* The database the table is being created in */
+ Table *pTable; /* The new virtual table */
+ sqlite3 *db; /* Database connection */
+
+ if( pParse->db->flags & SQLITE_SharedCache ){
+ sqlite3ErrorMsg(pParse, "Cannot use virtual tables in shared-cache mode");
+ return;
+ }
+
+ sqlite3StartTable(pParse, pName1, pName2, 0, 0, 1, 0);
+ pTable = pParse->pNewTable;
+ if( pTable==0 || pParse->nErr ) return;
+ assert( 0==pTable->pIndex );
+
+ db = pParse->db;
+ iDb = sqlite3SchemaToIndex(db, pTable->pSchema);
+ assert( iDb>=0 );
+
+ pTable->isVirtual = 1;
+ pTable->nModuleArg = 0;
+ addModuleArgument(db, pTable, sqlite3NameFromToken(db, pModuleName));
+ addModuleArgument(db, pTable, sqlite3DbStrDup(db, db->aDb[iDb].zName));
+ addModuleArgument(db, pTable, sqlite3DbStrDup(db, pTable->zName));
+ pParse->sNameToken.n = pModuleName->z + pModuleName->n - pName1->z;
+
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ /* Creating a virtual table invokes the authorization callback twice.
+ ** The first invocation, to obtain permission to INSERT a row into the
+ ** sqlite_master table, has already been made by sqlite3StartTable().
+ ** The second call, to obtain permission to create the table, is made now.
+ */
+ if( pTable->azModuleArg ){
+ sqlite3AuthCheck(pParse, SQLITE_CREATE_VTABLE, pTable->zName,
+ pTable->azModuleArg[0], pParse->db->aDb[iDb].zName);
+ }
+#endif
+}
+
+/*
+** This routine takes the module argument that has been accumulating
+** in pParse->zArg[] and appends it to the list of arguments on the
+** virtual table currently under construction in pParse->pTable.
+*/
+static void addArgumentToVtab(Parse *pParse){
+ if( pParse->sArg.z && pParse->pNewTable ){
+ const char *z = (const char*)pParse->sArg.z;
+ int n = pParse->sArg.n;
+ sqlite3 *db = pParse->db;
+ addModuleArgument(db, pParse->pNewTable, sqlite3DbStrNDup(db, z, n));
+ }
+}
+
+/*
+** The parser calls this routine after the CREATE VIRTUAL TABLE statement
+** has been completely parsed.
+*/
+SQLITE_PRIVATE void sqlite3VtabFinishParse(Parse *pParse, Token *pEnd){
+ Table *pTab; /* The table being constructed */
+ sqlite3 *db; /* The database connection */
+ char *zModule; /* The module name of the table: USING modulename */
+ Module *pMod = 0;
+
+ addArgumentToVtab(pParse);
+ pParse->sArg.z = 0;
+
+ /* Lookup the module name. */
+ pTab = pParse->pNewTable;
+ if( pTab==0 ) return;
+ db = pParse->db;
+ if( pTab->nModuleArg<1 ) return;
+ zModule = pTab->azModuleArg[0];
+ pMod = (Module *)sqlite3HashFind(&db->aModule, zModule, strlen(zModule));
+ pTab->pMod = pMod;
+
+ /* If the CREATE VIRTUAL TABLE statement is being entered for the
+ ** first time (in other words if the virtual table is actually being
+ ** created now instead of just being read out of sqlite_master) then
+ ** do additional initialization work and store the statement text
+ ** in the sqlite_master table.
+ */
+ if( !db->init.busy ){
+ char *zStmt;
+ char *zWhere;
+ int iDb;
+ Vdbe *v;
+
+ /* Compute the complete text of the CREATE VIRTUAL TABLE statement */
+ if( pEnd ){
+ pParse->sNameToken.n = pEnd->z - pParse->sNameToken.z + pEnd->n;
+ }
+ zStmt = sqlite3MPrintf(db, "CREATE VIRTUAL TABLE %T", &pParse->sNameToken);
+
+ /* A slot for the record has already been allocated in the
+ ** SQLITE_MASTER table. We just need to update that slot with all
+ ** the information we've collected.
+ **
+ ** The VM register number pParse->regRowid holds the rowid of an
+ ** entry in the sqlite_master table tht was created for this vtab
+ ** by sqlite3StartTable().
+ */
+ iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
+ sqlite3NestedParse(pParse,
+ "UPDATE %Q.%s "
+ "SET type='table', name=%Q, tbl_name=%Q, rootpage=0, sql=%Q "
+ "WHERE rowid=#%d",
+ db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
+ pTab->zName,
+ pTab->zName,
+ zStmt,
+ pParse->regRowid
+ );
+ sqlite3_free(zStmt);
+ v = sqlite3GetVdbe(pParse);
+ sqlite3ChangeCookie(pParse, iDb);
+
+ sqlite3VdbeAddOp2(v, OP_Expire, 0, 0);
+ zWhere = sqlite3MPrintf(db, "name='%q'", pTab->zName);
+ sqlite3VdbeAddOp4(v, OP_ParseSchema, iDb, 1, 0, zWhere, P4_DYNAMIC);
+ sqlite3VdbeAddOp4(v, OP_VCreate, iDb, 0, 0,
+ pTab->zName, strlen(pTab->zName) + 1);
+ }
+
+ /* If we are rereading the sqlite_master table create the in-memory
+ ** record of the table. If the module has already been registered,
+ ** also call the xConnect method here.
+ */
+ else {
+ Table *pOld;
+ Schema *pSchema = pTab->pSchema;
+ const char *zName = pTab->zName;
+ int nName = strlen(zName) + 1;
+ pOld = sqlite3HashInsert(&pSchema->tblHash, zName, nName, pTab);
+ if( pOld ){
+ db->mallocFailed = 1;
+ assert( pTab==pOld ); /* Malloc must have failed inside HashInsert() */
+ return;
+ }
+ pSchema->db = pParse->db;
+ pParse->pNewTable = 0;
+ }
+}
+
+/*
+** The parser calls this routine when it sees the first token
+** of an argument to the module name in a CREATE VIRTUAL TABLE statement.
+*/
+SQLITE_PRIVATE void sqlite3VtabArgInit(Parse *pParse){
+ addArgumentToVtab(pParse);
+ pParse->sArg.z = 0;
+ pParse->sArg.n = 0;
+}
+
+/*
+** The parser calls this routine for each token after the first token
+** in an argument to the module name in a CREATE VIRTUAL TABLE statement.
+*/
+SQLITE_PRIVATE void sqlite3VtabArgExtend(Parse *pParse, Token *p){
+ Token *pArg = &pParse->sArg;
+ if( pArg->z==0 ){
+ pArg->z = p->z;
+ pArg->n = p->n;
+ }else{
+ assert(pArg->z < p->z);
+ pArg->n = (p->z + p->n - pArg->z);
+ }
+}
+
+/*
+** Invoke a virtual table constructor (either xCreate or xConnect). The
+** pointer to the function to invoke is passed as the fourth parameter
+** to this procedure.
+*/
+static int vtabCallConstructor(
+ sqlite3 *db,
+ Table *pTab,
+ Module *pMod,
+ int (*xConstruct)(sqlite3*,void*,int,const char*const*,sqlite3_vtab**,char**),
+ char **pzErr
+){
+ int rc;
+ int rc2;
+ sqlite3_vtab *pVtab = 0;
+ const char *const*azArg = (const char *const*)pTab->azModuleArg;
+ int nArg = pTab->nModuleArg;
+ char *zErr = 0;
+ char *zModuleName = sqlite3MPrintf(db, "%s", pTab->zName);
+
+ if( !zModuleName ){
+ return SQLITE_NOMEM;
+ }
+
+ assert( !db->pVTab );
+ assert( xConstruct );
+
+ db->pVTab = pTab;
+ rc = sqlite3SafetyOff(db);
+ assert( rc==SQLITE_OK );
+ rc = xConstruct(db, pMod->pAux, nArg, azArg, &pVtab, &zErr);
+ rc2 = sqlite3SafetyOn(db);
+ if( rc==SQLITE_OK && pVtab ){
+ pVtab->pModule = pMod->pModule;
+ pVtab->nRef = 1;
+ pTab->pVtab = pVtab;
+ }
+
+ if( SQLITE_OK!=rc ){
+ if( zErr==0 ){
+ *pzErr = sqlite3MPrintf(db, "vtable constructor failed: %s", zModuleName);
+ }else {
+ *pzErr = sqlite3MPrintf(db, "%s", zErr);
+ sqlite3_free(zErr);
+ }
+ }else if( db->pVTab ){
+ const char *zFormat = "vtable constructor did not declare schema: %s";
+ *pzErr = sqlite3MPrintf(db, zFormat, pTab->zName);
+ rc = SQLITE_ERROR;
+ }
+ if( rc==SQLITE_OK ){
+ rc = rc2;
+ }
+ db->pVTab = 0;
+ sqlite3_free(zModuleName);
+
+ /* If everything went according to plan, loop through the columns
+ ** of the table to see if any of them contain the token "hidden".
+ ** If so, set the Column.isHidden flag and remove the token from
+ ** the type string.
+ */
+ if( rc==SQLITE_OK ){
+ int iCol;
+ for(iCol=0; iCol<pTab->nCol; iCol++){
+ char *zType = pTab->aCol[iCol].zType;
+ int nType;
+ int i = 0;
+ if( !zType ) continue;
+ nType = strlen(zType);
+ if( sqlite3StrNICmp("hidden", zType, 6) || (zType[6] && zType[6]!=' ') ){
+ for(i=0; i<nType; i++){
+ if( (0==sqlite3StrNICmp(" hidden", &zType[i], 7))
+ && (zType[i+7]=='\0' || zType[i+7]==' ')
+ ){
+ i++;
+ break;
+ }
+ }
+ }
+ if( i<nType ){
+ int j;
+ int nDel = 6 + (zType[i+6] ? 1 : 0);
+ for(j=i; (j+nDel)<=nType; j++){
+ zType[j] = zType[j+nDel];
+ }
+ if( zType[i]=='\0' && i>0 ){
+ assert(zType[i-1]==' ');
+ zType[i-1] = '\0';
+ }
+ pTab->aCol[iCol].isHidden = 1;
+ }
+ }
+ }
+ return rc;
+}
+
+/*
+** This function is invoked by the parser to call the xConnect() method
+** of the virtual table pTab. If an error occurs, an error code is returned
+** and an error left in pParse.
+**
+** This call is a no-op if table pTab is not a virtual table.
+*/
+SQLITE_PRIVATE int sqlite3VtabCallConnect(Parse *pParse, Table *pTab){
+ Module *pMod;
+ int rc = SQLITE_OK;
+
+ if( !pTab || !pTab->isVirtual || pTab->pVtab ){
+ return SQLITE_OK;
+ }
+
+ pMod = pTab->pMod;
+ if( !pMod ){
+ const char *zModule = pTab->azModuleArg[0];
+ sqlite3ErrorMsg(pParse, "no such module: %s", zModule);
+ rc = SQLITE_ERROR;
+ } else {
+ char *zErr = 0;
+ sqlite3 *db = pParse->db;
+ rc = vtabCallConstructor(db, pTab, pMod, pMod->pModule->xConnect, &zErr);
+ if( rc!=SQLITE_OK ){
+ sqlite3ErrorMsg(pParse, "%s", zErr);
+ }
+ sqlite3_free(zErr);
+ }
+
+ return rc;
+}
+
+/*
+** Add the virtual table pVtab to the array sqlite3.aVTrans[].
+*/
+static int addToVTrans(sqlite3 *db, sqlite3_vtab *pVtab){
+ const int ARRAY_INCR = 5;
+
+ /* Grow the sqlite3.aVTrans array if required */
+ if( (db->nVTrans%ARRAY_INCR)==0 ){
+ sqlite3_vtab **aVTrans;
+ int nBytes = sizeof(sqlite3_vtab *) * (db->nVTrans + ARRAY_INCR);
+ aVTrans = sqlite3DbRealloc(db, (void *)db->aVTrans, nBytes);
+ if( !aVTrans ){
+ return SQLITE_NOMEM;
+ }
+ memset(&aVTrans[db->nVTrans], 0, sizeof(sqlite3_vtab *)*ARRAY_INCR);
+ db->aVTrans = aVTrans;
+ }
+
+ /* Add pVtab to the end of sqlite3.aVTrans */
+ db->aVTrans[db->nVTrans++] = pVtab;
+ sqlite3VtabLock(pVtab);
+ return SQLITE_OK;
+}
+
+/*
+** This function is invoked by the vdbe to call the xCreate method
+** of the virtual table named zTab in database iDb.
+**
+** If an error occurs, *pzErr is set to point an an English language
+** description of the error and an SQLITE_XXX error code is returned.
+** In this case the caller must call sqlite3_free() on *pzErr.
+*/
+SQLITE_PRIVATE int sqlite3VtabCallCreate(sqlite3 *db, int iDb, const char *zTab, char **pzErr){
+ int rc = SQLITE_OK;
+ Table *pTab;
+ Module *pMod;
+ const char *zModule;
+
+ pTab = sqlite3FindTable(db, zTab, db->aDb[iDb].zName);
+ assert(pTab && pTab->isVirtual && !pTab->pVtab);
+ pMod = pTab->pMod;
+ zModule = pTab->azModuleArg[0];
+
+ /* If the module has been registered and includes a Create method,
+ ** invoke it now. If the module has not been registered, return an
+ ** error. Otherwise, do nothing.
+ */
+ if( !pMod ){
+ *pzErr = sqlite3MPrintf(db, "no such module: %s", zModule);
+ rc = SQLITE_ERROR;
+ }else{
+ rc = vtabCallConstructor(db, pTab, pMod, pMod->pModule->xCreate, pzErr);
+ }
+
+ if( rc==SQLITE_OK && pTab->pVtab ){
+ rc = addToVTrans(db, pTab->pVtab);
+ }
+
+ return rc;
+}
+
+/*
+** This function is used to set the schema of a virtual table. It is only
+** valid to call this function from within the xCreate() or xConnect() of a
+** virtual table module.
+*/
+SQLITE_API int sqlite3_declare_vtab(sqlite3 *db, const char *zCreateTable){
+ Parse sParse;
+
+ int rc = SQLITE_OK;
+ Table *pTab;
+ char *zErr = 0;
+
+ sqlite3_mutex_enter(db->mutex);
+ pTab = db->pVTab;
+ if( !pTab ){
+ sqlite3Error(db, SQLITE_MISUSE, 0);
+ sqlite3_mutex_leave(db->mutex);
+ return SQLITE_MISUSE;
+ }
+ assert(pTab->isVirtual && pTab->nCol==0 && pTab->aCol==0);
+
+ memset(&sParse, 0, sizeof(Parse));
+ sParse.declareVtab = 1;
+ sParse.db = db;
+
+ if(
+ SQLITE_OK == sqlite3RunParser(&sParse, zCreateTable, &zErr) &&
+ sParse.pNewTable &&
+ !sParse.pNewTable->pSelect &&
+ !sParse.pNewTable->isVirtual
+ ){
+ pTab->aCol = sParse.pNewTable->aCol;
+ pTab->nCol = sParse.pNewTable->nCol;
+ sParse.pNewTable->nCol = 0;
+ sParse.pNewTable->aCol = 0;
+ db->pVTab = 0;
+ } else {
+ sqlite3Error(db, SQLITE_ERROR, zErr);
+ sqlite3_free(zErr);
+ rc = SQLITE_ERROR;
+ }
+ sParse.declareVtab = 0;
+
+ sqlite3_finalize((sqlite3_stmt*)sParse.pVdbe);
+ sqlite3DeleteTable(sParse.pNewTable);
+ sParse.pNewTable = 0;
+
+ assert( (rc&0xff)==rc );
+ rc = sqlite3ApiExit(db, rc);
+ sqlite3_mutex_leave(db->mutex);
+ return rc;
+}
+
+/*
+** This function is invoked by the vdbe to call the xDestroy method
+** of the virtual table named zTab in database iDb. This occurs
+** when a DROP TABLE is mentioned.
+**
+** This call is a no-op if zTab is not a virtual table.
+*/
+SQLITE_PRIVATE int sqlite3VtabCallDestroy(sqlite3 *db, int iDb, const char *zTab)
+{
+ int rc = SQLITE_OK;
+ Table *pTab;
+
+ pTab = sqlite3FindTable(db, zTab, db->aDb[iDb].zName);
+ assert(pTab);
+ if( pTab->pVtab ){
+ int (*xDestroy)(sqlite3_vtab *pVTab) = pTab->pMod->pModule->xDestroy;
+ rc = sqlite3SafetyOff(db);
+ assert( rc==SQLITE_OK );
+ if( xDestroy ){
+ rc = xDestroy(pTab->pVtab);
+ }
+ (void)sqlite3SafetyOn(db);
+ if( rc==SQLITE_OK ){
+ int i;
+ for(i=0; i<db->nVTrans; i++){
+ if( db->aVTrans[i]==pTab->pVtab ){
+ db->aVTrans[i] = db->aVTrans[--db->nVTrans];
+ break;
+ }
+ }
+ pTab->pVtab = 0;
+ }
+ }
+
+ return rc;
+}
+
+/*
+** This function invokes either the xRollback or xCommit method
+** of each of the virtual tables in the sqlite3.aVTrans array. The method
+** called is identified by the second argument, "offset", which is
+** the offset of the method to call in the sqlite3_module structure.
+**
+** The array is cleared after invoking the callbacks.
+*/
+static void callFinaliser(sqlite3 *db, int offset){
+ int i;
+ if( db->aVTrans ){
+ for(i=0; i<db->nVTrans && db->aVTrans[i]; i++){
+ sqlite3_vtab *pVtab = db->aVTrans[i];
+ int (*x)(sqlite3_vtab *);
+ x = *(int (**)(sqlite3_vtab *))((char *)pVtab->pModule + offset);
+ if( x ) x(pVtab);
+ sqlite3VtabUnlock(db, pVtab);
+ }
+ sqlite3_free(db->aVTrans);
+ db->nVTrans = 0;
+ db->aVTrans = 0;
+ }
+}
+
+/*
+** If argument rc2 is not SQLITE_OK, then return it and do nothing.
+** Otherwise, invoke the xSync method of all virtual tables in the
+** sqlite3.aVTrans array. Return the error code for the first error
+** that occurs, or SQLITE_OK if all xSync operations are successful.
+*/
+SQLITE_PRIVATE int sqlite3VtabSync(sqlite3 *db, int rc2){
+ int i;
+ int rc = SQLITE_OK;
+ int rcsafety;
+ sqlite3_vtab **aVTrans = db->aVTrans;
+ if( rc2!=SQLITE_OK ) return rc2;
+
+ rc = sqlite3SafetyOff(db);
+ db->aVTrans = 0;
+ for(i=0; rc==SQLITE_OK && i<db->nVTrans && aVTrans[i]; i++){
+ sqlite3_vtab *pVtab = aVTrans[i];
+ int (*x)(sqlite3_vtab *);
+ x = pVtab->pModule->xSync;
+ if( x ){
+ rc = x(pVtab);
+ }
+ }
+ db->aVTrans = aVTrans;
+ rcsafety = sqlite3SafetyOn(db);
+
+ if( rc==SQLITE_OK ){
+ rc = rcsafety;
+ }
+ return rc;
+}
+
+/*
+** Invoke the xRollback method of all virtual tables in the
+** sqlite3.aVTrans array. Then clear the array itself.
+*/
+SQLITE_PRIVATE int sqlite3VtabRollback(sqlite3 *db){
+ callFinaliser(db, offsetof(sqlite3_module,xRollback));
+ return SQLITE_OK;
+}
+
+/*
+** Invoke the xCommit method of all virtual tables in the
+** sqlite3.aVTrans array. Then clear the array itself.
+*/
+SQLITE_PRIVATE int sqlite3VtabCommit(sqlite3 *db){
+ callFinaliser(db, offsetof(sqlite3_module,xCommit));
+ return SQLITE_OK;
+}
+
+/*
+** If the virtual table pVtab supports the transaction interface
+** (xBegin/xRollback/xCommit and optionally xSync) and a transaction is
+** not currently open, invoke the xBegin method now.
+**
+** If the xBegin call is successful, place the sqlite3_vtab pointer
+** in the sqlite3.aVTrans array.
+*/
+SQLITE_PRIVATE int sqlite3VtabBegin(sqlite3 *db, sqlite3_vtab *pVtab){
+ int rc = SQLITE_OK;
+ const sqlite3_module *pModule;
+
+ /* Special case: If db->aVTrans is NULL and db->nVTrans is greater
+ ** than zero, then this function is being called from within a
+ ** virtual module xSync() callback. It is illegal to write to
+ ** virtual module tables in this case, so return SQLITE_LOCKED.
+ */
+ if( 0==db->aVTrans && db->nVTrans>0 ){
+ return SQLITE_LOCKED;
+ }
+ if( !pVtab ){
+ return SQLITE_OK;
+ }
+ pModule = pVtab->pModule;
+
+ if( pModule->xBegin ){
+ int i;
+
+
+ /* If pVtab is already in the aVTrans array, return early */
+ for(i=0; (i<db->nVTrans) && 0!=db->aVTrans[i]; i++){
+ if( db->aVTrans[i]==pVtab ){
+ return SQLITE_OK;
+ }
+ }
+
+ /* Invoke the xBegin method */
+ rc = pModule->xBegin(pVtab);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+
+ rc = addToVTrans(db, pVtab);
+ }
+ return rc;
+}
+
+/*
+** The first parameter (pDef) is a function implementation. The
+** second parameter (pExpr) is the first argument to this function.
+** If pExpr is a column in a virtual table, then let the virtual
+** table implementation have an opportunity to overload the function.
+**
+** This routine is used to allow virtual table implementations to
+** overload MATCH, LIKE, GLOB, and REGEXP operators.
+**
+** Return either the pDef argument (indicating no change) or a
+** new FuncDef structure that is marked as ephemeral using the
+** SQLITE_FUNC_EPHEM flag.
+*/
+SQLITE_PRIVATE FuncDef *sqlite3VtabOverloadFunction(
+ sqlite3 *db, /* Database connection for reporting malloc problems */
+ FuncDef *pDef, /* Function to possibly overload */
+ int nArg, /* Number of arguments to the function */
+ Expr *pExpr /* First argument to the function */
+){
+ Table *pTab;
+ sqlite3_vtab *pVtab;
+ sqlite3_module *pMod;
+ void (*xFunc)(sqlite3_context*,int,sqlite3_value**);
+ void *pArg;
+ FuncDef *pNew;
+ int rc = 0;
+ char *zLowerName;
+ unsigned char *z;
+
+
+ /* Check to see the left operand is a column in a virtual table */
+ if( pExpr==0 ) return pDef;
+ if( pExpr->op!=TK_COLUMN ) return pDef;
+ pTab = pExpr->pTab;
+ if( pTab==0 ) return pDef;
+ if( !pTab->isVirtual ) return pDef;
+ pVtab = pTab->pVtab;
+ assert( pVtab!=0 );
+ assert( pVtab->pModule!=0 );
+ pMod = (sqlite3_module *)pVtab->pModule;
+ if( pMod->xFindFunction==0 ) return pDef;
+
+ /* Call the xFindFunction method on the virtual table implementation
+ ** to see if the implementation wants to overload this function
+ */
+ zLowerName = sqlite3DbStrDup(db, pDef->zName);
+ if( zLowerName ){
+ for(z=(unsigned char*)zLowerName; *z; z++){
+ *z = sqlite3UpperToLower[*z];
+ }
+ rc = pMod->xFindFunction(pVtab, nArg, zLowerName, &xFunc, &pArg);
+ sqlite3_free(zLowerName);
+ }
+ if( rc==0 ){
+ return pDef;
+ }
+
+ /* Create a new ephemeral function definition for the overloaded
+ ** function */
+ pNew = sqlite3DbMallocZero(db, sizeof(*pNew) + strlen(pDef->zName) );
+ if( pNew==0 ){
+ return pDef;
+ }
+ *pNew = *pDef;
+ memcpy(pNew->zName, pDef->zName, strlen(pDef->zName)+1);
+ pNew->xFunc = xFunc;
+ pNew->pUserData = pArg;
+ pNew->flags |= SQLITE_FUNC_EPHEM;
+ return pNew;
+}
+
+/*
+** Make sure virtual table pTab is contained in the pParse->apVirtualLock[]
+** array so that an OP_VBegin will get generated for it. Add pTab to the
+** array if it is missing. If pTab is already in the array, this routine
+** is a no-op.
+*/
+SQLITE_PRIVATE void sqlite3VtabMakeWritable(Parse *pParse, Table *pTab){
+ int i, n;
+ assert( IsVirtual(pTab) );
+ for(i=0; i<pParse->nVtabLock; i++){
+ if( pTab==pParse->apVtabLock[i] ) return;
+ }
+ n = (pParse->nVtabLock+1)*sizeof(pParse->apVtabLock[0]);
+ pParse->apVtabLock = sqlite3_realloc(pParse->apVtabLock, n);
+ if( pParse->apVtabLock ){
+ pParse->apVtabLock[pParse->nVtabLock++] = pTab;
+ }else{
+ pParse->db->mallocFailed = 1;
+ }
+}
+
+#endif /* SQLITE_OMIT_VIRTUALTABLE */
+
+/************** End of vtab.c ************************************************/
+/************** Begin file where.c *******************************************/
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This module contains C code that generates VDBE code used to process
+** the WHERE clause of SQL statements. This module is reponsible for
+** generating the code that loops through a table looking for applicable
+** rows. Indices are selected and used to speed the search when doing
+** so is applicable. Because this module is responsible for selecting
+** indices, you might also think of this module as the "query optimizer".
+**
+** $Id: where.c,v 1.302 2008/04/19 14:40:44 drh Exp $
+*/
+
+/*
+** The number of bits in a Bitmask. "BMS" means "BitMask Size".
+*/
+#define BMS (sizeof(Bitmask)*8)
+
+/*
+** Trace output macros
+*/
+#if defined(SQLITE_TEST) || defined(SQLITE_DEBUG)
+SQLITE_PRIVATE int sqlite3WhereTrace = 0;
+# define WHERETRACE(X) if(sqlite3WhereTrace) sqlite3DebugPrintf X
+#else
+# define WHERETRACE(X)
+#endif
+
+/* Forward reference
+*/
+typedef struct WhereClause WhereClause;
+typedef struct ExprMaskSet ExprMaskSet;
+
+/*
+** The query generator uses an array of instances of this structure to
+** help it analyze the subexpressions of the WHERE clause. Each WHERE
+** clause subexpression is separated from the others by an AND operator.
+**
+** All WhereTerms are collected into a single WhereClause structure.
+** The following identity holds:
+**
+** WhereTerm.pWC->a[WhereTerm.idx] == WhereTerm
+**
+** When a term is of the form:
+**
+** X <op> <expr>
+**
+** where X is a column name and <op> is one of certain operators,
+** then WhereTerm.leftCursor and WhereTerm.leftColumn record the
+** cursor number and column number for X. WhereTerm.operator records
+** the <op> using a bitmask encoding defined by WO_xxx below. The
+** use of a bitmask encoding for the operator allows us to search
+** quickly for terms that match any of several different operators.
+**
+** prereqRight and prereqAll record sets of cursor numbers,
+** but they do so indirectly. A single ExprMaskSet structure translates
+** cursor number into bits and the translated bit is stored in the prereq
+** fields. The translation is used in order to maximize the number of
+** bits that will fit in a Bitmask. The VDBE cursor numbers might be
+** spread out over the non-negative integers. For example, the cursor
+** numbers might be 3, 8, 9, 10, 20, 23, 41, and 45. The ExprMaskSet
+** translates these sparse cursor numbers into consecutive integers
+** beginning with 0 in order to make the best possible use of the available
+** bits in the Bitmask. So, in the example above, the cursor numbers
+** would be mapped into integers 0 through 7.
+*/
+typedef struct WhereTerm WhereTerm;
+struct WhereTerm {
+ Expr *pExpr; /* Pointer to the subexpression */
+ i16 iParent; /* Disable pWC->a[iParent] when this term disabled */
+ i16 leftCursor; /* Cursor number of X in "X <op> <expr>" */
+ i16 leftColumn; /* Column number of X in "X <op> <expr>" */
+ u16 eOperator; /* A WO_xx value describing <op> */
+ u8 flags; /* Bit flags. See below */
+ u8 nChild; /* Number of children that must disable us */
+ WhereClause *pWC; /* The clause this term is part of */
+ Bitmask prereqRight; /* Bitmask of tables used by pRight */
+ Bitmask prereqAll; /* Bitmask of tables referenced by p */
+};
+
+/*
+** Allowed values of WhereTerm.flags
+*/
+#define TERM_DYNAMIC 0x01 /* Need to call sqlite3ExprDelete(pExpr) */
+#define TERM_VIRTUAL 0x02 /* Added by the optimizer. Do not code */
+#define TERM_CODED 0x04 /* This term is already coded */
+#define TERM_COPIED 0x08 /* Has a child */
+#define TERM_OR_OK 0x10 /* Used during OR-clause processing */
+
+/*
+** An instance of the following structure holds all information about a
+** WHERE clause. Mostly this is a container for one or more WhereTerms.
+*/
+struct WhereClause {
+ Parse *pParse; /* The parser context */
+ ExprMaskSet *pMaskSet; /* Mapping of table indices to bitmasks */
+ int nTerm; /* Number of terms */
+ int nSlot; /* Number of entries in a[] */
+ WhereTerm *a; /* Each a[] describes a term of the WHERE cluase */
+ WhereTerm aStatic[10]; /* Initial static space for a[] */
+};
+
+/*
+** An instance of the following structure keeps track of a mapping
+** between VDBE cursor numbers and bits of the bitmasks in WhereTerm.
+**
+** The VDBE cursor numbers are small integers contained in
+** SrcList_item.iCursor and Expr.iTable fields. For any given WHERE
+** clause, the cursor numbers might not begin with 0 and they might
+** contain gaps in the numbering sequence. But we want to make maximum
+** use of the bits in our bitmasks. This structure provides a mapping
+** from the sparse cursor numbers into consecutive integers beginning
+** with 0.
+**
+** If ExprMaskSet.ix[A]==B it means that The A-th bit of a Bitmask
+** corresponds VDBE cursor number B. The A-th bit of a bitmask is 1<<A.
+**
+** For example, if the WHERE clause expression used these VDBE
+** cursors: 4, 5, 8, 29, 57, 73. Then the ExprMaskSet structure
+** would map those cursor numbers into bits 0 through 5.
+**
+** Note that the mapping is not necessarily ordered. In the example
+** above, the mapping might go like this: 4->3, 5->1, 8->2, 29->0,
+** 57->5, 73->4. Or one of 719 other combinations might be used. It
+** does not really matter. What is important is that sparse cursor
+** numbers all get mapped into bit numbers that begin with 0 and contain
+** no gaps.
+*/
+struct ExprMaskSet {
+ int n; /* Number of assigned cursor values */
+ int ix[sizeof(Bitmask)*8]; /* Cursor assigned to each bit */
+};
+
+
+/*
+** Bitmasks for the operators that indices are able to exploit. An
+** OR-ed combination of these values can be used when searching for
+** terms in the where clause.
+*/
+#define WO_IN 1
+#define WO_EQ 2
+#define WO_LT (WO_EQ<<(TK_LT-TK_EQ))
+#define WO_LE (WO_EQ<<(TK_LE-TK_EQ))
+#define WO_GT (WO_EQ<<(TK_GT-TK_EQ))
+#define WO_GE (WO_EQ<<(TK_GE-TK_EQ))
+#define WO_MATCH 64
+#define WO_ISNULL 128
+
+/*
+** Value for flags returned by bestIndex().
+**
+** The least significant byte is reserved as a mask for WO_ values above.
+** The WhereLevel.flags field is usually set to WO_IN|WO_EQ|WO_ISNULL.
+** But if the table is the right table of a left join, WhereLevel.flags
+** is set to WO_IN|WO_EQ. The WhereLevel.flags field can then be used as
+** the "op" parameter to findTerm when we are resolving equality constraints.
+** ISNULL constraints will then not be used on the right table of a left
+** join. Tickets #2177 and #2189.
+*/
+#define WHERE_ROWID_EQ 0x000100 /* rowid=EXPR or rowid IN (...) */
+#define WHERE_ROWID_RANGE 0x000200 /* rowid<EXPR and/or rowid>EXPR */
+#define WHERE_COLUMN_EQ 0x001000 /* x=EXPR or x IN (...) */
+#define WHERE_COLUMN_RANGE 0x002000 /* x<EXPR and/or x>EXPR */
+#define WHERE_COLUMN_IN 0x004000 /* x IN (...) */
+#define WHERE_TOP_LIMIT 0x010000 /* x<EXPR or x<=EXPR constraint */
+#define WHERE_BTM_LIMIT 0x020000 /* x>EXPR or x>=EXPR constraint */
+#define WHERE_IDX_ONLY 0x080000 /* Use index only - omit table */
+#define WHERE_ORDERBY 0x100000 /* Output will appear in correct order */
+#define WHERE_REVERSE 0x200000 /* Scan in reverse order */
+#define WHERE_UNIQUE 0x400000 /* Selects no more than one row */
+#define WHERE_VIRTUALTABLE 0x800000 /* Use virtual-table processing */
+
+/*
+** Initialize a preallocated WhereClause structure.
+*/
+static void whereClauseInit(
+ WhereClause *pWC, /* The WhereClause to be initialized */
+ Parse *pParse, /* The parsing context */
+ ExprMaskSet *pMaskSet /* Mapping from table indices to bitmasks */
+){
+ pWC->pParse = pParse;
+ pWC->pMaskSet = pMaskSet;
+ pWC->nTerm = 0;
+ pWC->nSlot = ArraySize(pWC->aStatic);
+ pWC->a = pWC->aStatic;
+}
+
+/*
+** Deallocate a WhereClause structure. The WhereClause structure
+** itself is not freed. This routine is the inverse of whereClauseInit().
+*/
+static void whereClauseClear(WhereClause *pWC){
+ int i;
+ WhereTerm *a;
+ for(i=pWC->nTerm-1, a=pWC->a; i>=0; i--, a++){
+ if( a->flags & TERM_DYNAMIC ){
+ sqlite3ExprDelete(a->pExpr);
+ }
+ }
+ if( pWC->a!=pWC->aStatic ){
+ sqlite3_free(pWC->a);
+ }
+}
+
+/*
+** Add a new entries to the WhereClause structure. Increase the allocated
+** space as necessary.
+**
+** If the flags argument includes TERM_DYNAMIC, then responsibility
+** for freeing the expression p is assumed by the WhereClause object.
+**
+** WARNING: This routine might reallocate the space used to store
+** WhereTerms. All pointers to WhereTerms should be invalided after
+** calling this routine. Such pointers may be reinitialized by referencing
+** the pWC->a[] array.
+*/
+static int whereClauseInsert(WhereClause *pWC, Expr *p, int flags){
+ WhereTerm *pTerm;
+ int idx;
+ if( pWC->nTerm>=pWC->nSlot ){
+ WhereTerm *pOld = pWC->a;
+ pWC->a = sqlite3_malloc( sizeof(pWC->a[0])*pWC->nSlot*2 );
+ if( pWC->a==0 ){
+ pWC->pParse->db->mallocFailed = 1;
+ if( flags & TERM_DYNAMIC ){
+ sqlite3ExprDelete(p);
+ }
+ pWC->a = pOld;
+ return 0;
+ }
+ memcpy(pWC->a, pOld, sizeof(pWC->a[0])*pWC->nTerm);
+ if( pOld!=pWC->aStatic ){
+ sqlite3_free(pOld);
+ }
+ pWC->nSlot *= 2;
+ }
+ pTerm = &pWC->a[idx = pWC->nTerm];
+ pWC->nTerm++;
+ pTerm->pExpr = p;
+ pTerm->flags = flags;
+ pTerm->pWC = pWC;
+ pTerm->iParent = -1;
+ return idx;
+}
+
+/*
+** This routine identifies subexpressions in the WHERE clause where
+** each subexpression is separated by the AND operator or some other
+** operator specified in the op parameter. The WhereClause structure
+** is filled with pointers to subexpressions. For example:
+**
+** WHERE a=='hello' AND coalesce(b,11)<10 AND (c+12!=d OR c==22)
+** \________/ \_______________/ \________________/
+** slot[0] slot[1] slot[2]
+**
+** The original WHERE clause in pExpr is unaltered. All this routine
+** does is make slot[] entries point to substructure within pExpr.
+**
+** In the previous sentence and in the diagram, "slot[]" refers to
+** the WhereClause.a[] array. This array grows as needed to contain
+** all terms of the WHERE clause.
+*/
+static void whereSplit(WhereClause *pWC, Expr *pExpr, int op){
+ if( pExpr==0 ) return;
+ if( pExpr->op!=op ){
+ whereClauseInsert(pWC, pExpr, 0);
+ }else{
+ whereSplit(pWC, pExpr->pLeft, op);
+ whereSplit(pWC, pExpr->pRight, op);
+ }
+}
+
+/*
+** Initialize an expression mask set
+*/
+#define initMaskSet(P) memset(P, 0, sizeof(*P))
+
+/*
+** Return the bitmask for the given cursor number. Return 0 if
+** iCursor is not in the set.
+*/
+static Bitmask getMask(ExprMaskSet *pMaskSet, int iCursor){
+ int i;
+ for(i=0; i<pMaskSet->n; i++){
+ if( pMaskSet->ix[i]==iCursor ){
+ return ((Bitmask)1)<<i;
+ }
+ }
+ return 0;
+}
+
+/*
+** Create a new mask for cursor iCursor.
+**
+** There is one cursor per table in the FROM clause. The number of
+** tables in the FROM clause is limited by a test early in the
+** sqlite3WhereBegin() routine. So we know that the pMaskSet->ix[]
+** array will never overflow.
+*/
+static void createMask(ExprMaskSet *pMaskSet, int iCursor){
+ assert( pMaskSet->n < ArraySize(pMaskSet->ix) );
+ pMaskSet->ix[pMaskSet->n++] = iCursor;
+}
+
+/*
+** This routine walks (recursively) an expression tree and generates
+** a bitmask indicating which tables are used in that expression
+** tree.
+**
+** In order for this routine to work, the calling function must have
+** previously invoked sqlite3ExprResolveNames() on the expression. See
+** the header comment on that routine for additional information.
+** The sqlite3ExprResolveNames() routines looks for column names and
+** sets their opcodes to TK_COLUMN and their Expr.iTable fields to
+** the VDBE cursor number of the table. This routine just has to
+** translate the cursor numbers into bitmask values and OR all
+** the bitmasks together.
+*/
+static Bitmask exprListTableUsage(ExprMaskSet*, ExprList*);
+static Bitmask exprSelectTableUsage(ExprMaskSet*, Select*);
+static Bitmask exprTableUsage(ExprMaskSet *pMaskSet, Expr *p){
+ Bitmask mask = 0;
+ if( p==0 ) return 0;
+ if( p->op==TK_COLUMN ){
+ mask = getMask(pMaskSet, p->iTable);
+ return mask;
+ }
+ mask = exprTableUsage(pMaskSet, p->pRight);
+ mask |= exprTableUsage(pMaskSet, p->pLeft);
+ mask |= exprListTableUsage(pMaskSet, p->pList);
+ mask |= exprSelectTableUsage(pMaskSet, p->pSelect);
+ return mask;
+}
+static Bitmask exprListTableUsage(ExprMaskSet *pMaskSet, ExprList *pList){
+ int i;
+ Bitmask mask = 0;
+ if( pList ){
+ for(i=0; i<pList->nExpr; i++){
+ mask |= exprTableUsage(pMaskSet, pList->a[i].pExpr);
+ }
+ }
+ return mask;
+}
+static Bitmask exprSelectTableUsage(ExprMaskSet *pMaskSet, Select *pS){
+ Bitmask mask = 0;
+ while( pS ){
+ mask |= exprListTableUsage(pMaskSet, pS->pEList);
+ mask |= exprListTableUsage(pMaskSet, pS->pGroupBy);
+ mask |= exprListTableUsage(pMaskSet, pS->pOrderBy);
+ mask |= exprTableUsage(pMaskSet, pS->pWhere);
+ mask |= exprTableUsage(pMaskSet, pS->pHaving);
+ pS = pS->pPrior;
+ }
+ return mask;
+}
+
+/*
+** Return TRUE if the given operator is one of the operators that is
+** allowed for an indexable WHERE clause term. The allowed operators are
+** "=", "<", ">", "<=", ">=", and "IN".
+*/
+static int allowedOp(int op){
+ assert( TK_GT>TK_EQ && TK_GT<TK_GE );
+ assert( TK_LT>TK_EQ && TK_LT<TK_GE );
+ assert( TK_LE>TK_EQ && TK_LE<TK_GE );
+ assert( TK_GE==TK_EQ+4 );
+ return op==TK_IN || (op>=TK_EQ && op<=TK_GE) || op==TK_ISNULL;
+}
+
+/*
+** Swap two objects of type T.
+*/
+#define SWAP(TYPE,A,B) {TYPE t=A; A=B; B=t;}
+
+/*
+** Commute a comparision operator. Expressions of the form "X op Y"
+** are converted into "Y op X".
+**
+** If a collation sequence is associated with either the left or right
+** side of the comparison, it remains associated with the same side after
+** the commutation. So "Y collate NOCASE op X" becomes
+** "X collate NOCASE op Y". This is because any collation sequence on
+** the left hand side of a comparison overrides any collation sequence
+** attached to the right. For the same reason the EP_ExpCollate flag
+** is not commuted.
+*/
+static void exprCommute(Expr *pExpr){
+ u16 expRight = (pExpr->pRight->flags & EP_ExpCollate);
+ u16 expLeft = (pExpr->pLeft->flags & EP_ExpCollate);
+ assert( allowedOp(pExpr->op) && pExpr->op!=TK_IN );
+ SWAP(CollSeq*,pExpr->pRight->pColl,pExpr->pLeft->pColl);
+ pExpr->pRight->flags = (pExpr->pRight->flags & ~EP_ExpCollate) | expLeft;
+ pExpr->pLeft->flags = (pExpr->pLeft->flags & ~EP_ExpCollate) | expRight;
+ SWAP(Expr*,pExpr->pRight,pExpr->pLeft);
+ if( pExpr->op>=TK_GT ){
+ assert( TK_LT==TK_GT+2 );
+ assert( TK_GE==TK_LE+2 );
+ assert( TK_GT>TK_EQ );
+ assert( TK_GT<TK_LE );
+ assert( pExpr->op>=TK_GT && pExpr->op<=TK_GE );
+ pExpr->op = ((pExpr->op-TK_GT)^2)+TK_GT;
+ }
+}
+
+/*
+** Translate from TK_xx operator to WO_xx bitmask.
+*/
+static int operatorMask(int op){
+ int c;
+ assert( allowedOp(op) );
+ if( op==TK_IN ){
+ c = WO_IN;
+ }else if( op==TK_ISNULL ){
+ c = WO_ISNULL;
+ }else{
+ c = WO_EQ<<(op-TK_EQ);
+ }
+ assert( op!=TK_ISNULL || c==WO_ISNULL );
+ assert( op!=TK_IN || c==WO_IN );
+ assert( op!=TK_EQ || c==WO_EQ );
+ assert( op!=TK_LT || c==WO_LT );
+ assert( op!=TK_LE || c==WO_LE );
+ assert( op!=TK_GT || c==WO_GT );
+ assert( op!=TK_GE || c==WO_GE );
+ return c;
+}
+
+/*
+** Search for a term in the WHERE clause that is of the form "X <op> <expr>"
+** where X is a reference to the iColumn of table iCur and <op> is one of
+** the WO_xx operator codes specified by the op parameter.
+** Return a pointer to the term. Return 0 if not found.
+*/
+static WhereTerm *findTerm(
+ WhereClause *pWC, /* The WHERE clause to be searched */
+ int iCur, /* Cursor number of LHS */
+ int iColumn, /* Column number of LHS */
+ Bitmask notReady, /* RHS must not overlap with this mask */
+ u16 op, /* Mask of WO_xx values describing operator */
+ Index *pIdx /* Must be compatible with this index, if not NULL */
+){
+ WhereTerm *pTerm;
+ int k;
+ for(pTerm=pWC->a, k=pWC->nTerm; k; k--, pTerm++){
+ if( pTerm->leftCursor==iCur
+ && (pTerm->prereqRight & notReady)==0
+ && pTerm->leftColumn==iColumn
+ && (pTerm->eOperator & op)!=0
+ ){
+ if( iCur>=0 && pIdx && pTerm->eOperator!=WO_ISNULL ){
+ Expr *pX = pTerm->pExpr;
+ CollSeq *pColl;
+ char idxaff;
+ int j;
+ Parse *pParse = pWC->pParse;
+
+ idxaff = pIdx->pTable->aCol[iColumn].affinity;
+ if( !sqlite3IndexAffinityOk(pX, idxaff) ) continue;
+
+ /* Figure out the collation sequence required from an index for
+ ** it to be useful for optimising expression pX. Store this
+ ** value in variable pColl.
+ */
+ assert(pX->pLeft);
+ pColl = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight);
+ if( !pColl ){
+ pColl = pParse->db->pDfltColl;
+ }
+
+ for(j=0; j<pIdx->nColumn && pIdx->aiColumn[j]!=iColumn; j++){}
+ assert( j<pIdx->nColumn );
+ if( sqlite3StrICmp(pColl->zName, pIdx->azColl[j]) ) continue;
+ }
+ return pTerm;
+ }
+ }
+ return 0;
+}
+
+/* Forward reference */
+static void exprAnalyze(SrcList*, WhereClause*, int);
+
+/*
+** Call exprAnalyze on all terms in a WHERE clause.
+**
+**
+*/
+static void exprAnalyzeAll(
+ SrcList *pTabList, /* the FROM clause */
+ WhereClause *pWC /* the WHERE clause to be analyzed */
+){
+ int i;
+ for(i=pWC->nTerm-1; i>=0; i--){
+ exprAnalyze(pTabList, pWC, i);
+ }
+}
+
+#ifndef SQLITE_OMIT_LIKE_OPTIMIZATION
+/*
+** Check to see if the given expression is a LIKE or GLOB operator that
+** can be optimized using inequality constraints. Return TRUE if it is
+** so and false if not.
+**
+** In order for the operator to be optimizible, the RHS must be a string
+** literal that does not begin with a wildcard.
+*/
+static int isLikeOrGlob(
+ sqlite3 *db, /* The database */
+ Expr *pExpr, /* Test this expression */
+ int *pnPattern, /* Number of non-wildcard prefix characters */
+ int *pisComplete, /* True if the only wildcard is % in the last character */
+ int *pnoCase /* True if uppercase is equivalent to lowercase */
+){
+ const char *z;
+ Expr *pRight, *pLeft;
+ ExprList *pList;
+ int c, cnt;
+ char wc[3];
+ CollSeq *pColl;
+
+ if( !sqlite3IsLikeFunction(db, pExpr, pnoCase, wc) ){
+ return 0;
+ }
+#ifdef SQLITE_EBCDIC
+ if( *pnoCase ) return 0;
+#endif
+ pList = pExpr->pList;
+ pRight = pList->a[0].pExpr;
+ if( pRight->op!=TK_STRING
+ && (pRight->op!=TK_REGISTER || pRight->iColumn!=TK_STRING) ){
+ return 0;
+ }
+ pLeft = pList->a[1].pExpr;
+ if( pLeft->op!=TK_COLUMN ){
+ return 0;
+ }
+ pColl = pLeft->pColl;
+ assert( pColl!=0 || pLeft->iColumn==-1 );
+ if( pColl==0 ){
+ /* No collation is defined for the ROWID. Use the default. */
+ pColl = db->pDfltColl;
+ }
+ if( (pColl->type!=SQLITE_COLL_BINARY || *pnoCase) &&
+ (pColl->type!=SQLITE_COLL_NOCASE || !*pnoCase) ){
+ return 0;
+ }
+ sqlite3DequoteExpr(db, pRight);
+ z = (char *)pRight->token.z;
+ cnt = 0;
+ if( z ){
+ while( (c=z[cnt])!=0 && c!=wc[0] && c!=wc[1] && c!=wc[2] ){ cnt++; }
+ }
+ if( cnt==0 || 255==(u8)z[cnt] ){
+ return 0;
+ }
+ *pisComplete = z[cnt]==wc[0] && z[cnt+1]==0;
+ *pnPattern = cnt;
+ return 1;
+}
+#endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */
+
+
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+/*
+** Check to see if the given expression is of the form
+**
+** column MATCH expr
+**
+** If it is then return TRUE. If not, return FALSE.
+*/
+static int isMatchOfColumn(
+ Expr *pExpr /* Test this expression */
+){
+ ExprList *pList;
+
+ if( pExpr->op!=TK_FUNCTION ){
+ return 0;
+ }
+ if( pExpr->token.n!=5 ||
+ sqlite3StrNICmp((const char*)pExpr->token.z,"match",5)!=0 ){
+ return 0;
+ }
+ pList = pExpr->pList;
+ if( pList->nExpr!=2 ){
+ return 0;
+ }
+ if( pList->a[1].pExpr->op != TK_COLUMN ){
+ return 0;
+ }
+ return 1;
+}
+#endif /* SQLITE_OMIT_VIRTUALTABLE */
+
+/*
+** If the pBase expression originated in the ON or USING clause of
+** a join, then transfer the appropriate markings over to derived.
+*/
+static void transferJoinMarkings(Expr *pDerived, Expr *pBase){
+ pDerived->flags |= pBase->flags & EP_FromJoin;
+ pDerived->iRightJoinTable = pBase->iRightJoinTable;
+}
+
+#if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY)
+/*
+** Return TRUE if the given term of an OR clause can be converted
+** into an IN clause. The iCursor and iColumn define the left-hand
+** side of the IN clause.
+**
+** The context is that we have multiple OR-connected equality terms
+** like this:
+**
+** a=<expr1> OR a=<expr2> OR b=<expr3> OR ...
+**
+** The pOrTerm input to this routine corresponds to a single term of
+** this OR clause. In order for the term to be a condidate for
+** conversion to an IN operator, the following must be true:
+**
+** * The left-hand side of the term must be the column which
+** is identified by iCursor and iColumn.
+**
+** * If the right-hand side is also a column, then the affinities
+** of both right and left sides must be such that no type
+** conversions are required on the right. (Ticket #2249)
+**
+** If both of these conditions are true, then return true. Otherwise
+** return false.
+*/
+static int orTermIsOptCandidate(WhereTerm *pOrTerm, int iCursor, int iColumn){
+ int affLeft, affRight;
+ assert( pOrTerm->eOperator==WO_EQ );
+ if( pOrTerm->leftCursor!=iCursor ){
+ return 0;
+ }
+ if( pOrTerm->leftColumn!=iColumn ){
+ return 0;
+ }
+ affRight = sqlite3ExprAffinity(pOrTerm->pExpr->pRight);
+ if( affRight==0 ){
+ return 1;
+ }
+ affLeft = sqlite3ExprAffinity(pOrTerm->pExpr->pLeft);
+ if( affRight!=affLeft ){
+ return 0;
+ }
+ return 1;
+}
+
+/*
+** Return true if the given term of an OR clause can be ignored during
+** a check to make sure all OR terms are candidates for optimization.
+** In other words, return true if a call to the orTermIsOptCandidate()
+** above returned false but it is not necessary to disqualify the
+** optimization.
+**
+** Suppose the original OR phrase was this:
+**
+** a=4 OR a=11 OR a=b
+**
+** During analysis, the third term gets flipped around and duplicate
+** so that we are left with this:
+**
+** a=4 OR a=11 OR a=b OR b=a
+**
+** Since the last two terms are duplicates, only one of them
+** has to qualify in order for the whole phrase to qualify. When
+** this routine is called, we know that pOrTerm did not qualify.
+** This routine merely checks to see if pOrTerm has a duplicate that
+** might qualify. If there is a duplicate that has not yet been
+** disqualified, then return true. If there are no duplicates, or
+** the duplicate has also been disqualifed, return false.
+*/
+static int orTermHasOkDuplicate(WhereClause *pOr, WhereTerm *pOrTerm){
+ if( pOrTerm->flags & TERM_COPIED ){
+ /* This is the original term. The duplicate is to the left had
+ ** has not yet been analyzed and thus has not yet been disqualified. */
+ return 1;
+ }
+ if( (pOrTerm->flags & TERM_VIRTUAL)!=0
+ && (pOr->a[pOrTerm->iParent].flags & TERM_OR_OK)!=0 ){
+ /* This is a duplicate term. The original qualified so this one
+ ** does not have to. */
+ return 1;
+ }
+ /* This is either a singleton term or else it is a duplicate for
+ ** which the original did not qualify. Either way we are done for. */
+ return 0;
+}
+#endif /* !SQLITE_OMIT_OR_OPTIMIZATION && !SQLITE_OMIT_SUBQUERY */
+
+/*
+** The input to this routine is an WhereTerm structure with only the
+** "pExpr" field filled in. The job of this routine is to analyze the
+** subexpression and populate all the other fields of the WhereTerm
+** structure.
+**
+** If the expression is of the form "<expr> <op> X" it gets commuted
+** to the standard form of "X <op> <expr>". If the expression is of
+** the form "X <op> Y" where both X and Y are columns, then the original
+** expression is unchanged and a new virtual expression of the form
+** "Y <op> X" is added to the WHERE clause and analyzed separately.
+*/
+static void exprAnalyze(
+ SrcList *pSrc, /* the FROM clause */
+ WhereClause *pWC, /* the WHERE clause */
+ int idxTerm /* Index of the term to be analyzed */
+){
+ WhereTerm *pTerm;
+ ExprMaskSet *pMaskSet;
+ Expr *pExpr;
+ Bitmask prereqLeft;
+ Bitmask prereqAll;
+ Bitmask extraRight = 0;
+ int nPattern;
+ int isComplete;
+ int noCase;
+ int op;
+ Parse *pParse = pWC->pParse;
+ sqlite3 *db = pParse->db;
+
+ if( db->mallocFailed ){
+ return;
+ }
+ pTerm = &pWC->a[idxTerm];
+ pMaskSet = pWC->pMaskSet;
+ pExpr = pTerm->pExpr;
+ prereqLeft = exprTableUsage(pMaskSet, pExpr->pLeft);
+ op = pExpr->op;
+ if( op==TK_IN ){
+ assert( pExpr->pRight==0 );
+ pTerm->prereqRight = exprListTableUsage(pMaskSet, pExpr->pList)
+ | exprSelectTableUsage(pMaskSet, pExpr->pSelect);
+ }else if( op==TK_ISNULL ){
+ pTerm->prereqRight = 0;
+ }else{
+ pTerm->prereqRight = exprTableUsage(pMaskSet, pExpr->pRight);
+ }
+ prereqAll = exprTableUsage(pMaskSet, pExpr);
+ if( ExprHasProperty(pExpr, EP_FromJoin) ){
+ Bitmask x = getMask(pMaskSet, pExpr->iRightJoinTable);
+ prereqAll |= x;
+ extraRight = x-1; /* ON clause terms may not be used with an index
+ ** on left table of a LEFT JOIN. Ticket #3015 */
+ }
+ pTerm->prereqAll = prereqAll;
+ pTerm->leftCursor = -1;
+ pTerm->iParent = -1;
+ pTerm->eOperator = 0;
+ if( allowedOp(op) && (pTerm->prereqRight & prereqLeft)==0 ){
+ Expr *pLeft = pExpr->pLeft;
+ Expr *pRight = pExpr->pRight;
+ if( pLeft->op==TK_COLUMN ){
+ pTerm->leftCursor = pLeft->iTable;
+ pTerm->leftColumn = pLeft->iColumn;
+ pTerm->eOperator = operatorMask(op);
+ }
+ if( pRight && pRight->op==TK_COLUMN ){
+ WhereTerm *pNew;
+ Expr *pDup;
+ if( pTerm->leftCursor>=0 ){
+ int idxNew;
+ pDup = sqlite3ExprDup(db, pExpr);
+ if( db->mallocFailed ){
+ sqlite3ExprDelete(pDup);
+ return;
+ }
+ idxNew = whereClauseInsert(pWC, pDup, TERM_VIRTUAL|TERM_DYNAMIC);
+ if( idxNew==0 ) return;
+ pNew = &pWC->a[idxNew];
+ pNew->iParent = idxTerm;
+ pTerm = &pWC->a[idxTerm];
+ pTerm->nChild = 1;
+ pTerm->flags |= TERM_COPIED;
+ }else{
+ pDup = pExpr;
+ pNew = pTerm;
+ }
+ exprCommute(pDup);
+ pLeft = pDup->pLeft;
+ pNew->leftCursor = pLeft->iTable;
+ pNew->leftColumn = pLeft->iColumn;
+ pNew->prereqRight = prereqLeft;
+ pNew->prereqAll = prereqAll;
+ pNew->eOperator = operatorMask(pDup->op);
+ }
+ }
+
+#ifndef SQLITE_OMIT_BETWEEN_OPTIMIZATION
+ /* If a term is the BETWEEN operator, create two new virtual terms
+ ** that define the range that the BETWEEN implements.
+ */
+ else if( pExpr->op==TK_BETWEEN ){
+ ExprList *pList = pExpr->pList;
+ int i;
+ static const u8 ops[] = {TK_GE, TK_LE};
+ assert( pList!=0 );
+ assert( pList->nExpr==2 );
+ for(i=0; i<2; i++){
+ Expr *pNewExpr;
+ int idxNew;
+ pNewExpr = sqlite3Expr(db, ops[i], sqlite3ExprDup(db, pExpr->pLeft),
+ sqlite3ExprDup(db, pList->a[i].pExpr), 0);
+ idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC);
+ exprAnalyze(pSrc, pWC, idxNew);
+ pTerm = &pWC->a[idxTerm];
+ pWC->a[idxNew].iParent = idxTerm;
+ }
+ pTerm->nChild = 2;
+ }
+#endif /* SQLITE_OMIT_BETWEEN_OPTIMIZATION */
+
+#if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY)
+ /* Attempt to convert OR-connected terms into an IN operator so that
+ ** they can make use of indices. Example:
+ **
+ ** x = expr1 OR expr2 = x OR x = expr3
+ **
+ ** is converted into
+ **
+ ** x IN (expr1,expr2,expr3)
+ **
+ ** This optimization must be omitted if OMIT_SUBQUERY is defined because
+ ** the compiler for the the IN operator is part of sub-queries.
+ */
+ else if( pExpr->op==TK_OR ){
+ int ok;
+ int i, j;
+ int iColumn, iCursor;
+ WhereClause sOr;
+ WhereTerm *pOrTerm;
+
+ assert( (pTerm->flags & TERM_DYNAMIC)==0 );
+ whereClauseInit(&sOr, pWC->pParse, pMaskSet);
+ whereSplit(&sOr, pExpr, TK_OR);
+ exprAnalyzeAll(pSrc, &sOr);
+ assert( sOr.nTerm>=2 );
+ j = 0;
+ if( db->mallocFailed ) goto or_not_possible;
+ do{
+ assert( j<sOr.nTerm );
+ iColumn = sOr.a[j].leftColumn;
+ iCursor = sOr.a[j].leftCursor;
+ ok = iCursor>=0;
+ for(i=sOr.nTerm-1, pOrTerm=sOr.a; i>=0 && ok; i--, pOrTerm++){
+ if( pOrTerm->eOperator!=WO_EQ ){
+ goto or_not_possible;
+ }
+ if( orTermIsOptCandidate(pOrTerm, iCursor, iColumn) ){
+ pOrTerm->flags |= TERM_OR_OK;
+ }else if( orTermHasOkDuplicate(&sOr, pOrTerm) ){
+ pOrTerm->flags &= ~TERM_OR_OK;
+ }else{
+ ok = 0;
+ }
+ }
+ }while( !ok && (sOr.a[j++].flags & TERM_COPIED)!=0 && j<2 );
+ if( ok ){
+ ExprList *pList = 0;
+ Expr *pNew, *pDup;
+ Expr *pLeft = 0;
+ for(i=sOr.nTerm-1, pOrTerm=sOr.a; i>=0 && ok; i--, pOrTerm++){
+ if( (pOrTerm->flags & TERM_OR_OK)==0 ) continue;
+ pDup = sqlite3ExprDup(db, pOrTerm->pExpr->pRight);
+ pList = sqlite3ExprListAppend(pWC->pParse, pList, pDup, 0);
+ pLeft = pOrTerm->pExpr->pLeft;
+ }
+ assert( pLeft!=0 );
+ pDup = sqlite3ExprDup(db, pLeft);
+ pNew = sqlite3Expr(db, TK_IN, pDup, 0, 0);
+ if( pNew ){
+ int idxNew;
+ transferJoinMarkings(pNew, pExpr);
+ pNew->pList = pList;
+ idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC);
+ exprAnalyze(pSrc, pWC, idxNew);
+ pTerm = &pWC->a[idxTerm];
+ pWC->a[idxNew].iParent = idxTerm;
+ pTerm->nChild = 1;
+ }else{
+ sqlite3ExprListDelete(pList);
+ }
+ }
+or_not_possible:
+ whereClauseClear(&sOr);
+ }
+#endif /* SQLITE_OMIT_OR_OPTIMIZATION */
+
+#ifndef SQLITE_OMIT_LIKE_OPTIMIZATION
+ /* Add constraints to reduce the search space on a LIKE or GLOB
+ ** operator.
+ **
+ ** A like pattern of the form "x LIKE 'abc%'" is changed into constraints
+ **
+ ** x>='abc' AND x<'abd' AND x LIKE 'abc%'
+ **
+ ** The last character of the prefix "abc" is incremented to form the
+ ** termination condidtion "abd". This trick of incrementing the last
+ ** is not 255 and if the character set is not EBCDIC.
+ */
+ if( isLikeOrGlob(db, pExpr, &nPattern, &isComplete, &noCase) ){
+ Expr *pLeft, *pRight;
+ Expr *pStr1, *pStr2;
+ Expr *pNewExpr1, *pNewExpr2;
+ int idxNew1, idxNew2;
+
+ pLeft = pExpr->pList->a[1].pExpr;
+ pRight = pExpr->pList->a[0].pExpr;
+ pStr1 = sqlite3PExpr(pParse, TK_STRING, 0, 0, 0);
+ if( pStr1 ){
+ sqlite3TokenCopy(db, &pStr1->token, &pRight->token);
+ pStr1->token.n = nPattern;
+ pStr1->flags = EP_Dequoted;
+ }
+ pStr2 = sqlite3ExprDup(db, pStr1);
+ if( !db->mallocFailed ){
+ u8 c, *pC;
+ assert( pStr2->token.dyn );
+ pC = (u8*)&pStr2->token.z[nPattern-1];
+ c = *pC;
+ if( noCase ) c = sqlite3UpperToLower[c];
+ *pC = c + 1;
+ }
+ pNewExpr1 = sqlite3PExpr(pParse, TK_GE, sqlite3ExprDup(db,pLeft), pStr1, 0);
+ idxNew1 = whereClauseInsert(pWC, pNewExpr1, TERM_VIRTUAL|TERM_DYNAMIC);
+ exprAnalyze(pSrc, pWC, idxNew1);
+ pNewExpr2 = sqlite3PExpr(pParse, TK_LT, sqlite3ExprDup(db,pLeft), pStr2, 0);
+ idxNew2 = whereClauseInsert(pWC, pNewExpr2, TERM_VIRTUAL|TERM_DYNAMIC);
+ exprAnalyze(pSrc, pWC, idxNew2);
+ pTerm = &pWC->a[idxTerm];
+ if( isComplete ){
+ pWC->a[idxNew1].iParent = idxTerm;
+ pWC->a[idxNew2].iParent = idxTerm;
+ pTerm->nChild = 2;
+ }
+ }
+#endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */
+
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ /* Add a WO_MATCH auxiliary term to the constraint set if the
+ ** current expression is of the form: column MATCH expr.
+ ** This information is used by the xBestIndex methods of
+ ** virtual tables. The native query optimizer does not attempt
+ ** to do anything with MATCH functions.
+ */
+ if( isMatchOfColumn(pExpr) ){
+ int idxNew;
+ Expr *pRight, *pLeft;
+ WhereTerm *pNewTerm;
+ Bitmask prereqColumn, prereqExpr;
+
+ pRight = pExpr->pList->a[0].pExpr;
+ pLeft = pExpr->pList->a[1].pExpr;
+ prereqExpr = exprTableUsage(pMaskSet, pRight);
+ prereqColumn = exprTableUsage(pMaskSet, pLeft);
+ if( (prereqExpr & prereqColumn)==0 ){
+ Expr *pNewExpr;
+ pNewExpr = sqlite3Expr(db, TK_MATCH, 0, sqlite3ExprDup(db, pRight), 0);
+ idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC);
+ pNewTerm = &pWC->a[idxNew];
+ pNewTerm->prereqRight = prereqExpr;
+ pNewTerm->leftCursor = pLeft->iTable;
+ pNewTerm->leftColumn = pLeft->iColumn;
+ pNewTerm->eOperator = WO_MATCH;
+ pNewTerm->iParent = idxTerm;
+ pTerm = &pWC->a[idxTerm];
+ pTerm->nChild = 1;
+ pTerm->flags |= TERM_COPIED;
+ pNewTerm->prereqAll = pTerm->prereqAll;
+ }
+ }
+#endif /* SQLITE_OMIT_VIRTUALTABLE */
+
+ /* Prevent ON clause terms of a LEFT JOIN from being used to drive
+ ** an index for tables to the left of the join.
+ */
+ pTerm->prereqRight |= extraRight;
+}
+
+/*
+** Return TRUE if any of the expressions in pList->a[iFirst...] contain
+** a reference to any table other than the iBase table.
+*/
+static int referencesOtherTables(
+ ExprList *pList, /* Search expressions in ths list */
+ ExprMaskSet *pMaskSet, /* Mapping from tables to bitmaps */
+ int iFirst, /* Be searching with the iFirst-th expression */
+ int iBase /* Ignore references to this table */
+){
+ Bitmask allowed = ~getMask(pMaskSet, iBase);
+ while( iFirst<pList->nExpr ){
+ if( (exprTableUsage(pMaskSet, pList->a[iFirst++].pExpr)&allowed)!=0 ){
+ return 1;
+ }
+ }
+ return 0;
+}
+
+
+/*
+** This routine decides if pIdx can be used to satisfy the ORDER BY
+** clause. If it can, it returns 1. If pIdx cannot satisfy the
+** ORDER BY clause, this routine returns 0.
+**
+** pOrderBy is an ORDER BY clause from a SELECT statement. pTab is the
+** left-most table in the FROM clause of that same SELECT statement and
+** the table has a cursor number of "base". pIdx is an index on pTab.
+**
+** nEqCol is the number of columns of pIdx that are used as equality
+** constraints. Any of these columns may be missing from the ORDER BY
+** clause and the match can still be a success.
+**
+** All terms of the ORDER BY that match against the index must be either
+** ASC or DESC. (Terms of the ORDER BY clause past the end of a UNIQUE
+** index do not need to satisfy this constraint.) The *pbRev value is
+** set to 1 if the ORDER BY clause is all DESC and it is set to 0 if
+** the ORDER BY clause is all ASC.
+*/
+static int isSortingIndex(
+ Parse *pParse, /* Parsing context */
+ ExprMaskSet *pMaskSet, /* Mapping from table indices to bitmaps */
+ Index *pIdx, /* The index we are testing */
+ int base, /* Cursor number for the table to be sorted */
+ ExprList *pOrderBy, /* The ORDER BY clause */
+ int nEqCol, /* Number of index columns with == constraints */
+ int *pbRev /* Set to 1 if ORDER BY is DESC */
+){
+ int i, j; /* Loop counters */
+ int sortOrder = 0; /* XOR of index and ORDER BY sort direction */
+ int nTerm; /* Number of ORDER BY terms */
+ struct ExprList_item *pTerm; /* A term of the ORDER BY clause */
+ sqlite3 *db = pParse->db;
+
+ assert( pOrderBy!=0 );
+ nTerm = pOrderBy->nExpr;
+ assert( nTerm>0 );
+
+ /* Match terms of the ORDER BY clause against columns of
+ ** the index.
+ **
+ ** Note that indices have pIdx->nColumn regular columns plus
+ ** one additional column containing the rowid. The rowid column
+ ** of the index is also allowed to match against the ORDER BY
+ ** clause.
+ */
+ for(i=j=0, pTerm=pOrderBy->a; j<nTerm && i<=pIdx->nColumn; i++){
+ Expr *pExpr; /* The expression of the ORDER BY pTerm */
+ CollSeq *pColl; /* The collating sequence of pExpr */
+ int termSortOrder; /* Sort order for this term */
+ int iColumn; /* The i-th column of the index. -1 for rowid */
+ int iSortOrder; /* 1 for DESC, 0 for ASC on the i-th index term */
+ const char *zColl; /* Name of the collating sequence for i-th index term */
+
+ pExpr = pTerm->pExpr;
+ if( pExpr->op!=TK_COLUMN || pExpr->iTable!=base ){
+ /* Can not use an index sort on anything that is not a column in the
+ ** left-most table of the FROM clause */
+ break;
+ }
+ pColl = sqlite3ExprCollSeq(pParse, pExpr);
+ if( !pColl ){
+ pColl = db->pDfltColl;
+ }
+ if( i<pIdx->nColumn ){
+ iColumn = pIdx->aiColumn[i];
+ if( iColumn==pIdx->pTable->iPKey ){
+ iColumn = -1;
+ }
+ iSortOrder = pIdx->aSortOrder[i];
+ zColl = pIdx->azColl[i];
+ }else{
+ iColumn = -1;
+ iSortOrder = 0;
+ zColl = pColl->zName;
+ }
+ if( pExpr->iColumn!=iColumn || sqlite3StrICmp(pColl->zName, zColl) ){
+ /* Term j of the ORDER BY clause does not match column i of the index */
+ if( i<nEqCol ){
+ /* If an index column that is constrained by == fails to match an
+ ** ORDER BY term, that is OK. Just ignore that column of the index
+ */
+ continue;
+ }else{
+ /* If an index column fails to match and is not constrained by ==
+ ** then the index cannot satisfy the ORDER BY constraint.
+ */
+ return 0;
+ }
+ }
+ assert( pIdx->aSortOrder!=0 );
+ assert( pTerm->sortOrder==0 || pTerm->sortOrder==1 );
+ assert( iSortOrder==0 || iSortOrder==1 );
+ termSortOrder = iSortOrder ^ pTerm->sortOrder;
+ if( i>nEqCol ){
+ if( termSortOrder!=sortOrder ){
+ /* Indices can only be used if all ORDER BY terms past the
+ ** equality constraints are all either DESC or ASC. */
+ return 0;
+ }
+ }else{
+ sortOrder = termSortOrder;
+ }
+ j++;
+ pTerm++;
+ if( iColumn<0 && !referencesOtherTables(pOrderBy, pMaskSet, j, base) ){
+ /* If the indexed column is the primary key and everything matches
+ ** so far and none of the ORDER BY terms to the right reference other
+ ** tables in the join, then we are assured that the index can be used
+ ** to sort because the primary key is unique and so none of the other
+ ** columns will make any difference
+ */
+ j = nTerm;
+ }
+ }
+
+ *pbRev = sortOrder!=0;
+ if( j>=nTerm ){
+ /* All terms of the ORDER BY clause are covered by this index so
+ ** this index can be used for sorting. */
+ return 1;
+ }
+ if( pIdx->onError!=OE_None && i==pIdx->nColumn
+ && !referencesOtherTables(pOrderBy, pMaskSet, j, base) ){
+ /* All terms of this index match some prefix of the ORDER BY clause
+ ** and the index is UNIQUE and no terms on the tail of the ORDER BY
+ ** clause reference other tables in a join. If this is all true then
+ ** the order by clause is superfluous. */
+ return 1;
+ }
+ return 0;
+}
+
+/*
+** Check table to see if the ORDER BY clause in pOrderBy can be satisfied
+** by sorting in order of ROWID. Return true if so and set *pbRev to be
+** true for reverse ROWID and false for forward ROWID order.
+*/
+static int sortableByRowid(
+ int base, /* Cursor number for table to be sorted */
+ ExprList *pOrderBy, /* The ORDER BY clause */
+ ExprMaskSet *pMaskSet, /* Mapping from tables to bitmaps */
+ int *pbRev /* Set to 1 if ORDER BY is DESC */
+){
+ Expr *p;
+
+ assert( pOrderBy!=0 );
+ assert( pOrderBy->nExpr>0 );
+ p = pOrderBy->a[0].pExpr;
+ if( p->op==TK_COLUMN && p->iTable==base && p->iColumn==-1
+ && !referencesOtherTables(pOrderBy, pMaskSet, 1, base) ){
+ *pbRev = pOrderBy->a[0].sortOrder;
+ return 1;
+ }
+ return 0;
+}
+
+/*
+** Prepare a crude estimate of the logarithm of the input value.
+** The results need not be exact. This is only used for estimating
+** the total cost of performing operatings with O(logN) or O(NlogN)
+** complexity. Because N is just a guess, it is no great tragedy if
+** logN is a little off.
+*/
+static double estLog(double N){
+ double logN = 1;
+ double x = 10;
+ while( N>x ){
+ logN += 1;
+ x *= 10;
+ }
+ return logN;
+}
+
+/*
+** Two routines for printing the content of an sqlite3_index_info
+** structure. Used for testing and debugging only. If neither
+** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines
+** are no-ops.
+*/
+#if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(SQLITE_DEBUG)
+static void TRACE_IDX_INPUTS(sqlite3_index_info *p){
+ int i;
+ if( !sqlite3WhereTrace ) return;
+ for(i=0; i<p->nConstraint; i++){
+ sqlite3DebugPrintf(" constraint[%d]: col=%d termid=%d op=%d usabled=%d\n",
+ i,
+ p->aConstraint[i].iColumn,
+ p->aConstraint[i].iTermOffset,
+ p->aConstraint[i].op,
+ p->aConstraint[i].usable);
+ }
+ for(i=0; i<p->nOrderBy; i++){
+ sqlite3DebugPrintf(" orderby[%d]: col=%d desc=%d\n",
+ i,
+ p->aOrderBy[i].iColumn,
+ p->aOrderBy[i].desc);
+ }
+}
+static void TRACE_IDX_OUTPUTS(sqlite3_index_info *p){
+ int i;
+ if( !sqlite3WhereTrace ) return;
+ for(i=0; i<p->nConstraint; i++){
+ sqlite3DebugPrintf(" usage[%d]: argvIdx=%d omit=%d\n",
+ i,
+ p->aConstraintUsage[i].argvIndex,
+ p->aConstraintUsage[i].omit);
+ }
+ sqlite3DebugPrintf(" idxNum=%d\n", p->idxNum);
+ sqlite3DebugPrintf(" idxStr=%s\n", p->idxStr);
+ sqlite3DebugPrintf(" orderByConsumed=%d\n", p->orderByConsumed);
+ sqlite3DebugPrintf(" estimatedCost=%g\n", p->estimatedCost);
+}
+#else
+#define TRACE_IDX_INPUTS(A)
+#define TRACE_IDX_OUTPUTS(A)
+#endif
+
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+/*
+** Compute the best index for a virtual table.
+**
+** The best index is computed by the xBestIndex method of the virtual
+** table module. This routine is really just a wrapper that sets up
+** the sqlite3_index_info structure that is used to communicate with
+** xBestIndex.
+**
+** In a join, this routine might be called multiple times for the
+** same virtual table. The sqlite3_index_info structure is created
+** and initialized on the first invocation and reused on all subsequent
+** invocations. The sqlite3_index_info structure is also used when
+** code is generated to access the virtual table. The whereInfoDelete()
+** routine takes care of freeing the sqlite3_index_info structure after
+** everybody has finished with it.
+*/
+static double bestVirtualIndex(
+ Parse *pParse, /* The parsing context */
+ WhereClause *pWC, /* The WHERE clause */
+ struct SrcList_item *pSrc, /* The FROM clause term to search */
+ Bitmask notReady, /* Mask of cursors that are not available */
+ ExprList *pOrderBy, /* The order by clause */
+ int orderByUsable, /* True if we can potential sort */
+ sqlite3_index_info **ppIdxInfo /* Index information passed to xBestIndex */
+){
+ Table *pTab = pSrc->pTab;
+ sqlite3_index_info *pIdxInfo;
+ struct sqlite3_index_constraint *pIdxCons;
+ struct sqlite3_index_orderby *pIdxOrderBy;
+ struct sqlite3_index_constraint_usage *pUsage;
+ WhereTerm *pTerm;
+ int i, j;
+ int nOrderBy;
+ int rc;
+
+ /* If the sqlite3_index_info structure has not been previously
+ ** allocated and initialized for this virtual table, then allocate
+ ** and initialize it now
+ */
+ pIdxInfo = *ppIdxInfo;
+ if( pIdxInfo==0 ){
+ WhereTerm *pTerm;
+ int nTerm;
+ WHERETRACE(("Recomputing index info for %s...\n", pTab->zName));
+
+ /* Count the number of possible WHERE clause constraints referring
+ ** to this virtual table */
+ for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
+ if( pTerm->leftCursor != pSrc->iCursor ) continue;
+ if( (pTerm->eOperator&(pTerm->eOperator-1))==0 );
+ testcase( pTerm->eOperator==WO_IN );
+ testcase( pTerm->eOperator==WO_ISNULL );
+ if( pTerm->eOperator & (WO_IN|WO_ISNULL) ) continue;
+ nTerm++;
+ }
+
+ /* If the ORDER BY clause contains only columns in the current
+ ** virtual table then allocate space for the aOrderBy part of
+ ** the sqlite3_index_info structure.
+ */
+ nOrderBy = 0;
+ if( pOrderBy ){
+ for(i=0; i<pOrderBy->nExpr; i++){
+ Expr *pExpr = pOrderBy->a[i].pExpr;
+ if( pExpr->op!=TK_COLUMN || pExpr->iTable!=pSrc->iCursor ) break;
+ }
+ if( i==pOrderBy->nExpr ){
+ nOrderBy = pOrderBy->nExpr;
+ }
+ }
+
+ /* Allocate the sqlite3_index_info structure
+ */
+ pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo)
+ + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm
+ + sizeof(*pIdxOrderBy)*nOrderBy );
+ if( pIdxInfo==0 ){
+ sqlite3ErrorMsg(pParse, "out of memory");
+ return 0.0;
+ }
+ *ppIdxInfo = pIdxInfo;
+
+ /* Initialize the structure. The sqlite3_index_info structure contains
+ ** many fields that are declared "const" to prevent xBestIndex from
+ ** changing them. We have to do some funky casting in order to
+ ** initialize those fields.
+ */
+ pIdxCons = (struct sqlite3_index_constraint*)&pIdxInfo[1];
+ pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm];
+ pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy];
+ *(int*)&pIdxInfo->nConstraint = nTerm;
+ *(int*)&pIdxInfo->nOrderBy = nOrderBy;
+ *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint = pIdxCons;
+ *(struct sqlite3_index_orderby**)&pIdxInfo->aOrderBy = pIdxOrderBy;
+ *(struct sqlite3_index_constraint_usage**)&pIdxInfo->aConstraintUsage =
+ pUsage;
+
+ for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
+ if( pTerm->leftCursor != pSrc->iCursor ) continue;
+ if( (pTerm->eOperator&(pTerm->eOperator-1))==0 );
+ testcase( pTerm->eOperator==WO_IN );
+ testcase( pTerm->eOperator==WO_ISNULL );
+ if( pTerm->eOperator & (WO_IN|WO_ISNULL) ) continue;
+ pIdxCons[j].iColumn = pTerm->leftColumn;
+ pIdxCons[j].iTermOffset = i;
+ pIdxCons[j].op = pTerm->eOperator;
+ /* The direct assignment in the previous line is possible only because
+ ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical. The
+ ** following asserts verify this fact. */
+ assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ );
+ assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT );
+ assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE );
+ assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT );
+ assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE );
+ assert( WO_MATCH==SQLITE_INDEX_CONSTRAINT_MATCH );
+ assert( pTerm->eOperator & (WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_MATCH) );
+ j++;
+ }
+ for(i=0; i<nOrderBy; i++){
+ Expr *pExpr = pOrderBy->a[i].pExpr;
+ pIdxOrderBy[i].iColumn = pExpr->iColumn;
+ pIdxOrderBy[i].desc = pOrderBy->a[i].sortOrder;
+ }
+ }
+
+ /* At this point, the sqlite3_index_info structure that pIdxInfo points
+ ** to will have been initialized, either during the current invocation or
+ ** during some prior invocation. Now we just have to customize the
+ ** details of pIdxInfo for the current invocation and pass it to
+ ** xBestIndex.
+ */
+
+ /* The module name must be defined. Also, by this point there must
+ ** be a pointer to an sqlite3_vtab structure. Otherwise
+ ** sqlite3ViewGetColumnNames() would have picked up the error.
+ */
+ assert( pTab->azModuleArg && pTab->azModuleArg[0] );
+ assert( pTab->pVtab );
+#if 0
+ if( pTab->pVtab==0 ){
+ sqlite3ErrorMsg(pParse, "undefined module %s for table %s",
+ pTab->azModuleArg[0], pTab->zName);
+ return 0.0;
+ }
+#endif
+
+ /* Set the aConstraint[].usable fields and initialize all
+ ** output variables to zero.
+ **
+ ** aConstraint[].usable is true for constraints where the right-hand
+ ** side contains only references to tables to the left of the current
+ ** table. In other words, if the constraint is of the form:
+ **
+ ** column = expr
+ **
+ ** and we are evaluating a join, then the constraint on column is
+ ** only valid if all tables referenced in expr occur to the left
+ ** of the table containing column.
+ **
+ ** The aConstraints[] array contains entries for all constraints
+ ** on the current table. That way we only have to compute it once
+ ** even though we might try to pick the best index multiple times.
+ ** For each attempt at picking an index, the order of tables in the
+ ** join might be different so we have to recompute the usable flag
+ ** each time.
+ */
+ pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
+ pUsage = pIdxInfo->aConstraintUsage;
+ for(i=0; i<pIdxInfo->nConstraint; i++, pIdxCons++){
+ j = pIdxCons->iTermOffset;
+ pTerm = &pWC->a[j];
+ pIdxCons->usable = (pTerm->prereqRight & notReady)==0;
+ }
+ memset(pUsage, 0, sizeof(pUsage[0])*pIdxInfo->nConstraint);
+ if( pIdxInfo->needToFreeIdxStr ){
+ sqlite3_free(pIdxInfo->idxStr);
+ }
+ pIdxInfo->idxStr = 0;
+ pIdxInfo->idxNum = 0;
+ pIdxInfo->needToFreeIdxStr = 0;
+ pIdxInfo->orderByConsumed = 0;
+ pIdxInfo->estimatedCost = SQLITE_BIG_DBL / 2.0;
+ nOrderBy = pIdxInfo->nOrderBy;
+ if( pIdxInfo->nOrderBy && !orderByUsable ){
+ *(int*)&pIdxInfo->nOrderBy = 0;
+ }
+
+ (void)sqlite3SafetyOff(pParse->db);
+ WHERETRACE(("xBestIndex for %s\n", pTab->zName));
+ TRACE_IDX_INPUTS(pIdxInfo);
+ rc = pTab->pVtab->pModule->xBestIndex(pTab->pVtab, pIdxInfo);
+ TRACE_IDX_OUTPUTS(pIdxInfo);
+ (void)sqlite3SafetyOn(pParse->db);
+
+ for(i=0; i<pIdxInfo->nConstraint; i++){
+ if( !pIdxInfo->aConstraint[i].usable && pUsage[i].argvIndex>0 ){
+ sqlite3ErrorMsg(pParse,
+ "table %s: xBestIndex returned an invalid plan", pTab->zName);
+ return 0.0;
+ }
+ }
+
+ if( rc!=SQLITE_OK ){
+ if( rc==SQLITE_NOMEM ){
+ pParse->db->mallocFailed = 1;
+ }else {
+ sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc));
+ }
+ }
+ *(int*)&pIdxInfo->nOrderBy = nOrderBy;
+
+ return pIdxInfo->estimatedCost;
+}
+#endif /* SQLITE_OMIT_VIRTUALTABLE */
+
+/*
+** Find the best index for accessing a particular table. Return a pointer
+** to the index, flags that describe how the index should be used, the
+** number of equality constraints, and the "cost" for this index.
+**
+** The lowest cost index wins. The cost is an estimate of the amount of
+** CPU and disk I/O need to process the request using the selected index.
+** Factors that influence cost include:
+**
+** * The estimated number of rows that will be retrieved. (The
+** fewer the better.)
+**
+** * Whether or not sorting must occur.
+**
+** * Whether or not there must be separate lookups in the
+** index and in the main table.
+**
+*/
+static double bestIndex(
+ Parse *pParse, /* The parsing context */
+ WhereClause *pWC, /* The WHERE clause */
+ struct SrcList_item *pSrc, /* The FROM clause term to search */
+ Bitmask notReady, /* Mask of cursors that are not available */
+ ExprList *pOrderBy, /* The order by clause */
+ Index **ppIndex, /* Make *ppIndex point to the best index */
+ int *pFlags, /* Put flags describing this choice in *pFlags */
+ int *pnEq /* Put the number of == or IN constraints here */
+){
+ WhereTerm *pTerm;
+ Index *bestIdx = 0; /* Index that gives the lowest cost */
+ double lowestCost; /* The cost of using bestIdx */
+ int bestFlags = 0; /* Flags associated with bestIdx */
+ int bestNEq = 0; /* Best value for nEq */
+ int iCur = pSrc->iCursor; /* The cursor of the table to be accessed */
+ Index *pProbe; /* An index we are evaluating */
+ int rev; /* True to scan in reverse order */
+ int flags; /* Flags associated with pProbe */
+ int nEq; /* Number of == or IN constraints */
+ int eqTermMask; /* Mask of valid equality operators */
+ double cost; /* Cost of using pProbe */
+
+ WHERETRACE(("bestIndex: tbl=%s notReady=%x\n", pSrc->pTab->zName, notReady));
+ lowestCost = SQLITE_BIG_DBL;
+ pProbe = pSrc->pTab->pIndex;
+
+ /* If the table has no indices and there are no terms in the where
+ ** clause that refer to the ROWID, then we will never be able to do
+ ** anything other than a full table scan on this table. We might as
+ ** well put it first in the join order. That way, perhaps it can be
+ ** referenced by other tables in the join.
+ */
+ if( pProbe==0 &&
+ findTerm(pWC, iCur, -1, 0, WO_EQ|WO_IN|WO_LT|WO_LE|WO_GT|WO_GE,0)==0 &&
+ (pOrderBy==0 || !sortableByRowid(iCur, pOrderBy, pWC->pMaskSet, &rev)) ){
+ *pFlags = 0;
+ *ppIndex = 0;
+ *pnEq = 0;
+ return 0.0;
+ }
+
+ /* Check for a rowid=EXPR or rowid IN (...) constraints
+ */
+ pTerm = findTerm(pWC, iCur, -1, notReady, WO_EQ|WO_IN, 0);
+ if( pTerm ){
+ Expr *pExpr;
+ *ppIndex = 0;
+ bestFlags = WHERE_ROWID_EQ;
+ if( pTerm->eOperator & WO_EQ ){
+ /* Rowid== is always the best pick. Look no further. Because only
+ ** a single row is generated, output is always in sorted order */
+ *pFlags = WHERE_ROWID_EQ | WHERE_UNIQUE;
+ *pnEq = 1;
+ WHERETRACE(("... best is rowid\n"));
+ return 0.0;
+ }else if( (pExpr = pTerm->pExpr)->pList!=0 ){
+ /* Rowid IN (LIST): cost is NlogN where N is the number of list
+ ** elements. */
+ lowestCost = pExpr->pList->nExpr;
+ lowestCost *= estLog(lowestCost);
+ }else{
+ /* Rowid IN (SELECT): cost is NlogN where N is the number of rows
+ ** in the result of the inner select. We have no way to estimate
+ ** that value so make a wild guess. */
+ lowestCost = 200;
+ }
+ WHERETRACE(("... rowid IN cost: %.9g\n", lowestCost));
+ }
+
+ /* Estimate the cost of a table scan. If we do not know how many
+ ** entries are in the table, use 1 million as a guess.
+ */
+ cost = pProbe ? pProbe->aiRowEst[0] : 1000000;
+ WHERETRACE(("... table scan base cost: %.9g\n", cost));
+ flags = WHERE_ROWID_RANGE;
+
+ /* Check for constraints on a range of rowids in a table scan.
+ */
+ pTerm = findTerm(pWC, iCur, -1, notReady, WO_LT|WO_LE|WO_GT|WO_GE, 0);
+ if( pTerm ){
+ if( findTerm(pWC, iCur, -1, notReady, WO_LT|WO_LE, 0) ){
+ flags |= WHERE_TOP_LIMIT;
+ cost /= 3; /* Guess that rowid<EXPR eliminates two-thirds or rows */
+ }
+ if( findTerm(pWC, iCur, -1, notReady, WO_GT|WO_GE, 0) ){
+ flags |= WHERE_BTM_LIMIT;
+ cost /= 3; /* Guess that rowid>EXPR eliminates two-thirds of rows */
+ }
+ WHERETRACE(("... rowid range reduces cost to %.9g\n", cost));
+ }else{
+ flags = 0;
+ }
+
+ /* If the table scan does not satisfy the ORDER BY clause, increase
+ ** the cost by NlogN to cover the expense of sorting. */
+ if( pOrderBy ){
+ if( sortableByRowid(iCur, pOrderBy, pWC->pMaskSet, &rev) ){
+ flags |= WHERE_ORDERBY|WHERE_ROWID_RANGE;
+ if( rev ){
+ flags |= WHERE_REVERSE;
+ }
+ }else{
+ cost += cost*estLog(cost);
+ WHERETRACE(("... sorting increases cost to %.9g\n", cost));
+ }
+ }
+ if( cost<lowestCost ){
+ lowestCost = cost;
+ bestFlags = flags;
+ }
+
+ /* If the pSrc table is the right table of a LEFT JOIN then we may not
+ ** use an index to satisfy IS NULL constraints on that table. This is
+ ** because columns might end up being NULL if the table does not match -
+ ** a circumstance which the index cannot help us discover. Ticket #2177.
+ */
+ if( (pSrc->jointype & JT_LEFT)!=0 ){
+ eqTermMask = WO_EQ|WO_IN;
+ }else{
+ eqTermMask = WO_EQ|WO_IN|WO_ISNULL;
+ }
+
+ /* Look at each index.
+ */
+ for(; pProbe; pProbe=pProbe->pNext){
+ int i; /* Loop counter */
+ double inMultiplier = 1;
+
+ WHERETRACE(("... index %s:\n", pProbe->zName));
+
+ /* Count the number of columns in the index that are satisfied
+ ** by x=EXPR constraints or x IN (...) constraints.
+ */
+ flags = 0;
+ for(i=0; i<pProbe->nColumn; i++){
+ int j = pProbe->aiColumn[i];
+ pTerm = findTerm(pWC, iCur, j, notReady, eqTermMask, pProbe);
+ if( pTerm==0 ) break;
+ flags |= WHERE_COLUMN_EQ;
+ if( pTerm->eOperator & WO_IN ){
+ Expr *pExpr = pTerm->pExpr;
+ flags |= WHERE_COLUMN_IN;
+ if( pExpr->pSelect!=0 ){
+ inMultiplier *= 25;
+ }else if( pExpr->pList!=0 ){
+ inMultiplier *= pExpr->pList->nExpr + 1;
+ }
+ }
+ }
+ cost = pProbe->aiRowEst[i] * inMultiplier * estLog(inMultiplier);
+ nEq = i;
+ if( pProbe->onError!=OE_None && (flags & WHERE_COLUMN_IN)==0
+ && nEq==pProbe->nColumn ){
+ flags |= WHERE_UNIQUE;
+ }
+ WHERETRACE(("...... nEq=%d inMult=%.9g cost=%.9g\n",nEq,inMultiplier,cost));
+
+ /* Look for range constraints
+ */
+ if( nEq<pProbe->nColumn ){
+ int j = pProbe->aiColumn[nEq];
+ pTerm = findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE|WO_GT|WO_GE, pProbe);
+ if( pTerm ){
+ flags |= WHERE_COLUMN_RANGE;
+ if( findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE, pProbe) ){
+ flags |= WHERE_TOP_LIMIT;
+ cost /= 3;
+ }
+ if( findTerm(pWC, iCur, j, notReady, WO_GT|WO_GE, pProbe) ){
+ flags |= WHERE_BTM_LIMIT;
+ cost /= 3;
+ }
+ WHERETRACE(("...... range reduces cost to %.9g\n", cost));
+ }
+ }
+
+ /* Add the additional cost of sorting if that is a factor.
+ */
+ if( pOrderBy ){
+ if( (flags & WHERE_COLUMN_IN)==0 &&
+ isSortingIndex(pParse,pWC->pMaskSet,pProbe,iCur,pOrderBy,nEq,&rev) ){
+ if( flags==0 ){
+ flags = WHERE_COLUMN_RANGE;
+ }
+ flags |= WHERE_ORDERBY;
+ if( rev ){
+ flags |= WHERE_REVERSE;
+ }
+ }else{
+ cost += cost*estLog(cost);
+ WHERETRACE(("...... orderby increases cost to %.9g\n", cost));
+ }
+ }
+
+ /* Check to see if we can get away with using just the index without
+ ** ever reading the table. If that is the case, then halve the
+ ** cost of this index.
+ */
+ if( flags && pSrc->colUsed < (((Bitmask)1)<<(BMS-1)) ){
+ Bitmask m = pSrc->colUsed;
+ int j;
+ for(j=0; j<pProbe->nColumn; j++){
+ int x = pProbe->aiColumn[j];
+ if( x<BMS-1 ){
+ m &= ~(((Bitmask)1)<<x);
+ }
+ }
+ if( m==0 ){
+ flags |= WHERE_IDX_ONLY;
+ cost /= 2;
+ WHERETRACE(("...... idx-only reduces cost to %.9g\n", cost));
+ }
+ }
+
+ /* If this index has achieved the lowest cost so far, then use it.
+ */
+ if( flags && cost < lowestCost ){
+ bestIdx = pProbe;
+ lowestCost = cost;
+ bestFlags = flags;
+ bestNEq = nEq;
+ }
+ }
+
+ /* Report the best result
+ */
+ *ppIndex = bestIdx;
+ WHERETRACE(("best index is %s, cost=%.9g, flags=%x, nEq=%d\n",
+ bestIdx ? bestIdx->zName : "(none)", lowestCost, bestFlags, bestNEq));
+ *pFlags = bestFlags | eqTermMask;
+ *pnEq = bestNEq;
+ return lowestCost;
+}
+
+
+/*
+** Disable a term in the WHERE clause. Except, do not disable the term
+** if it controls a LEFT OUTER JOIN and it did not originate in the ON
+** or USING clause of that join.
+**
+** Consider the term t2.z='ok' in the following queries:
+**
+** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok'
+** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok'
+** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok'
+**
+** The t2.z='ok' is disabled in the in (2) because it originates
+** in the ON clause. The term is disabled in (3) because it is not part
+** of a LEFT OUTER JOIN. In (1), the term is not disabled.
+**
+** Disabling a term causes that term to not be tested in the inner loop
+** of the join. Disabling is an optimization. When terms are satisfied
+** by indices, we disable them to prevent redundant tests in the inner
+** loop. We would get the correct results if nothing were ever disabled,
+** but joins might run a little slower. The trick is to disable as much
+** as we can without disabling too much. If we disabled in (1), we'd get
+** the wrong answer. See ticket #813.
+*/
+static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){
+ if( pTerm
+ && (pTerm->flags & TERM_CODED)==0
+ && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin))
+ ){
+ pTerm->flags |= TERM_CODED;
+ if( pTerm->iParent>=0 ){
+ WhereTerm *pOther = &pTerm->pWC->a[pTerm->iParent];
+ if( (--pOther->nChild)==0 ){
+ disableTerm(pLevel, pOther);
+ }
+ }
+ }
+}
+
+/*
+** Apply the affinities associated with the first n columns of index
+** pIdx to the values in the n registers starting at base.
+*/
+static void codeApplyAffinity(Parse *pParse, int base, int n, Index *pIdx){
+ if( n>0 ){
+ Vdbe *v = pParse->pVdbe;
+ assert( v!=0 );
+ sqlite3VdbeAddOp2(v, OP_Affinity, base, n);
+ sqlite3IndexAffinityStr(v, pIdx);
+ sqlite3ExprCacheAffinityChange(pParse, base, n);
+ }
+}
+
+
+/*
+** Generate code for a single equality term of the WHERE clause. An equality
+** term can be either X=expr or X IN (...). pTerm is the term to be
+** coded.
+**
+** The current value for the constraint is left in register iReg.
+**
+** For a constraint of the form X=expr, the expression is evaluated and its
+** result is left on the stack. For constraints of the form X IN (...)
+** this routine sets up a loop that will iterate over all values of X.
+*/
+static int codeEqualityTerm(
+ Parse *pParse, /* The parsing context */
+ WhereTerm *pTerm, /* The term of the WHERE clause to be coded */
+ WhereLevel *pLevel, /* When level of the FROM clause we are working on */
+ int iTarget /* Attempt to leave results in this register */
+){
+ Expr *pX = pTerm->pExpr;
+ Vdbe *v = pParse->pVdbe;
+ int iReg; /* Register holding results */
+
+ if( iTarget<=0 ){
+ iReg = iTarget = sqlite3GetTempReg(pParse);
+ }
+ if( pX->op==TK_EQ ){
+ iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget);
+ }else if( pX->op==TK_ISNULL ){
+ iReg = iTarget;
+ sqlite3VdbeAddOp2(v, OP_Null, 0, iReg);
+#ifndef SQLITE_OMIT_SUBQUERY
+ }else{
+ int eType;
+ int iTab;
+ struct InLoop *pIn;
+
+ assert( pX->op==TK_IN );
+ iReg = iTarget;
+ eType = sqlite3FindInIndex(pParse, pX, 1);
+ iTab = pX->iTable;
+ sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0);
+ VdbeComment((v, "%.*s", pX->span.n, pX->span.z));
+ if( pLevel->nIn==0 ){
+ pLevel->nxt = sqlite3VdbeMakeLabel(v);
+ }
+ pLevel->nIn++;
+ pLevel->aInLoop = sqlite3DbReallocOrFree(pParse->db, pLevel->aInLoop,
+ sizeof(pLevel->aInLoop[0])*pLevel->nIn);
+ pIn = pLevel->aInLoop;
+ if( pIn ){
+ pIn += pLevel->nIn - 1;
+ pIn->iCur = iTab;
+ if( eType==IN_INDEX_ROWID ){
+ pIn->topAddr = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iReg);
+ }else{
+ pIn->topAddr = sqlite3VdbeAddOp3(v, OP_Column, iTab, 0, iReg);
+ }
+ sqlite3VdbeAddOp1(v, OP_IsNull, iReg);
+ }else{
+ pLevel->nIn = 0;
+ }
+#endif
+ }
+ disableTerm(pLevel, pTerm);
+ return iReg;
+}
+
+/*
+** Generate code that will evaluate all == and IN constraints for an
+** index. The values for all constraints are left on the stack.
+**
+** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c).
+** Suppose the WHERE clause is this: a==5 AND b IN (1,2,3) AND c>5 AND c<10
+** The index has as many as three equality constraints, but in this
+** example, the third "c" value is an inequality. So only two
+** constraints are coded. This routine will generate code to evaluate
+** a==5 and b IN (1,2,3). The current values for a and b will be left
+** on the stack - a is the deepest and b the shallowest.
+**
+** In the example above nEq==2. But this subroutine works for any value
+** of nEq including 0. If nEq==0, this routine is nearly a no-op.
+** The only thing it does is allocate the pLevel->iMem memory cell.
+**
+** This routine always allocates at least one memory cell and puts
+** the address of that memory cell in pLevel->iMem. The code that
+** calls this routine will use pLevel->iMem to store the termination
+** key value of the loop. If one or more IN operators appear, then
+** this routine allocates an additional nEq memory cells for internal
+** use.
+*/
+static int codeAllEqualityTerms(
+ Parse *pParse, /* Parsing context */
+ WhereLevel *pLevel, /* Which nested loop of the FROM we are coding */
+ WhereClause *pWC, /* The WHERE clause */
+ Bitmask notReady, /* Which parts of FROM have not yet been coded */
+ int nExtraReg /* Number of extra registers to allocate */
+){
+ int nEq = pLevel->nEq; /* The number of == or IN constraints to code */
+ Vdbe *v = pParse->pVdbe; /* The virtual machine under construction */
+ Index *pIdx = pLevel->pIdx; /* The index being used for this loop */
+ int iCur = pLevel->iTabCur; /* The cursor of the table */
+ WhereTerm *pTerm; /* A single constraint term */
+ int j; /* Loop counter */
+ int regBase; /* Base register */
+
+ /* Figure out how many memory cells we will need then allocate them.
+ ** We always need at least one used to store the loop terminator
+ ** value. If there are IN operators we'll need one for each == or
+ ** IN constraint.
+ */
+ pLevel->iMem = pParse->nMem + 1;
+ regBase = pParse->nMem + 2;
+ pParse->nMem += pLevel->nEq + 2 + nExtraReg;
+
+ /* Evaluate the equality constraints
+ */
+ assert( pIdx->nColumn>=nEq );
+ for(j=0; j<nEq; j++){
+ int r1;
+ int k = pIdx->aiColumn[j];
+ pTerm = findTerm(pWC, iCur, k, notReady, pLevel->flags, pIdx);
+ if( pTerm==0 ) break;
+ assert( (pTerm->flags & TERM_CODED)==0 );
+ r1 = codeEqualityTerm(pParse, pTerm, pLevel, regBase+j);
+ if( r1!=regBase+j ){
+ sqlite3VdbeAddOp2(v, OP_SCopy, r1, regBase+j);
+ }
+ testcase( pTerm->eOperator & WO_ISNULL );
+ testcase( pTerm->eOperator & WO_IN );
+ if( (pTerm->eOperator & (WO_ISNULL|WO_IN))==0 ){
+ sqlite3VdbeAddOp2(v, OP_IsNull, regBase+j, pLevel->brk);
+ }
+ }
+ return regBase;
+}
+
+#if defined(SQLITE_TEST)
+/*
+** The following variable holds a text description of query plan generated
+** by the most recent call to sqlite3WhereBegin(). Each call to WhereBegin
+** overwrites the previous. This information is used for testing and
+** analysis only.
+*/
+SQLITE_API char sqlite3_query_plan[BMS*2*40]; /* Text of the join */
+static int nQPlan = 0; /* Next free slow in _query_plan[] */
+
+#endif /* SQLITE_TEST */
+
+
+/*
+** Free a WhereInfo structure
+*/
+static void whereInfoFree(WhereInfo *pWInfo){
+ if( pWInfo ){
+ int i;
+ for(i=0; i<pWInfo->nLevel; i++){
+ sqlite3_index_info *pInfo = pWInfo->a[i].pIdxInfo;
+ if( pInfo ){
+ assert( pInfo->needToFreeIdxStr==0 );
+ sqlite3_free(pInfo);
+ }
+ }
+ sqlite3_free(pWInfo);
+ }
+}
+
+
+/*
+** Generate the beginning of the loop used for WHERE clause processing.
+** The return value is a pointer to an opaque structure that contains
+** information needed to terminate the loop. Later, the calling routine
+** should invoke sqlite3WhereEnd() with the return value of this function
+** in order to complete the WHERE clause processing.
+**
+** If an error occurs, this routine returns NULL.
+**
+** The basic idea is to do a nested loop, one loop for each table in
+** the FROM clause of a select. (INSERT and UPDATE statements are the
+** same as a SELECT with only a single table in the FROM clause.) For
+** example, if the SQL is this:
+**
+** SELECT * FROM t1, t2, t3 WHERE ...;
+**
+** Then the code generated is conceptually like the following:
+**
+** foreach row1 in t1 do \ Code generated
+** foreach row2 in t2 do |-- by sqlite3WhereBegin()
+** foreach row3 in t3 do /
+** ...
+** end \ Code generated
+** end |-- by sqlite3WhereEnd()
+** end /
+**
+** Note that the loops might not be nested in the order in which they
+** appear in the FROM clause if a different order is better able to make
+** use of indices. Note also that when the IN operator appears in
+** the WHERE clause, it might result in additional nested loops for
+** scanning through all values on the right-hand side of the IN.
+**
+** There are Btree cursors associated with each table. t1 uses cursor
+** number pTabList->a[0].iCursor. t2 uses the cursor pTabList->a[1].iCursor.
+** And so forth. This routine generates code to open those VDBE cursors
+** and sqlite3WhereEnd() generates the code to close them.
+**
+** The code that sqlite3WhereBegin() generates leaves the cursors named
+** in pTabList pointing at their appropriate entries. The [...] code
+** can use OP_Column and OP_Rowid opcodes on these cursors to extract
+** data from the various tables of the loop.
+**
+** If the WHERE clause is empty, the foreach loops must each scan their
+** entire tables. Thus a three-way join is an O(N^3) operation. But if
+** the tables have indices and there are terms in the WHERE clause that
+** refer to those indices, a complete table scan can be avoided and the
+** code will run much faster. Most of the work of this routine is checking
+** to see if there are indices that can be used to speed up the loop.
+**
+** Terms of the WHERE clause are also used to limit which rows actually
+** make it to the "..." in the middle of the loop. After each "foreach",
+** terms of the WHERE clause that use only terms in that loop and outer
+** loops are evaluated and if false a jump is made around all subsequent
+** inner loops (or around the "..." if the test occurs within the inner-
+** most loop)
+**
+** OUTER JOINS
+**
+** An outer join of tables t1 and t2 is conceptally coded as follows:
+**
+** foreach row1 in t1 do
+** flag = 0
+** foreach row2 in t2 do
+** start:
+** ...
+** flag = 1
+** end
+** if flag==0 then
+** move the row2 cursor to a null row
+** goto start
+** fi
+** end
+**
+** ORDER BY CLAUSE PROCESSING
+**
+** *ppOrderBy is a pointer to the ORDER BY clause of a SELECT statement,
+** if there is one. If there is no ORDER BY clause or if this routine
+** is called from an UPDATE or DELETE statement, then ppOrderBy is NULL.
+**
+** If an index can be used so that the natural output order of the table
+** scan is correct for the ORDER BY clause, then that index is used and
+** *ppOrderBy is set to NULL. This is an optimization that prevents an
+** unnecessary sort of the result set if an index appropriate for the
+** ORDER BY clause already exists.
+**
+** If the where clause loops cannot be arranged to provide the correct
+** output order, then the *ppOrderBy is unchanged.
+*/
+SQLITE_PRIVATE WhereInfo *sqlite3WhereBegin(
+ Parse *pParse, /* The parser context */
+ SrcList *pTabList, /* A list of all tables to be scanned */
+ Expr *pWhere, /* The WHERE clause */
+ ExprList **ppOrderBy, /* An ORDER BY clause, or NULL */
+ u8 wflags /* One of the WHERE_* flags defined in sqliteInt.h */
+){
+ int i; /* Loop counter */
+ WhereInfo *pWInfo; /* Will become the return value of this function */
+ Vdbe *v = pParse->pVdbe; /* The virtual database engine */
+ int brk, cont = 0; /* Addresses used during code generation */
+ Bitmask notReady; /* Cursors that are not yet positioned */
+ WhereTerm *pTerm; /* A single term in the WHERE clause */
+ ExprMaskSet maskSet; /* The expression mask set */
+ WhereClause wc; /* The WHERE clause is divided into these terms */
+ struct SrcList_item *pTabItem; /* A single entry from pTabList */
+ WhereLevel *pLevel; /* A single level in the pWInfo list */
+ int iFrom; /* First unused FROM clause element */
+ int andFlags; /* AND-ed combination of all wc.a[].flags */
+ sqlite3 *db; /* Database connection */
+ ExprList *pOrderBy = 0;
+
+ /* The number of tables in the FROM clause is limited by the number of
+ ** bits in a Bitmask
+ */
+ if( pTabList->nSrc>BMS ){
+ sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS);
+ return 0;
+ }
+
+ if( ppOrderBy ){
+ pOrderBy = *ppOrderBy;
+ }
+
+ /* Split the WHERE clause into separate subexpressions where each
+ ** subexpression is separated by an AND operator.
+ */
+ initMaskSet(&maskSet);
+ whereClauseInit(&wc, pParse, &maskSet);
+ sqlite3ExprCodeConstants(pParse, pWhere);
+ whereSplit(&wc, pWhere, TK_AND);
+
+ /* Allocate and initialize the WhereInfo structure that will become the
+ ** return value.
+ */
+ db = pParse->db;
+ pWInfo = sqlite3DbMallocZero(db,
+ sizeof(WhereInfo) + pTabList->nSrc*sizeof(WhereLevel));
+ if( db->mallocFailed ){
+ goto whereBeginNoMem;
+ }
+ pWInfo->nLevel = pTabList->nSrc;
+ pWInfo->pParse = pParse;
+ pWInfo->pTabList = pTabList;
+ pWInfo->iBreak = sqlite3VdbeMakeLabel(v);
+
+ /* Special case: a WHERE clause that is constant. Evaluate the
+ ** expression and either jump over all of the code or fall thru.
+ */
+ if( pWhere && (pTabList->nSrc==0 || sqlite3ExprIsConstantNotJoin(pWhere)) ){
+ sqlite3ExprIfFalse(pParse, pWhere, pWInfo->iBreak, SQLITE_JUMPIFNULL);
+ pWhere = 0;
+ }
+
+ /* Assign a bit from the bitmask to every term in the FROM clause.
+ **
+ ** When assigning bitmask values to FROM clause cursors, it must be
+ ** the case that if X is the bitmask for the N-th FROM clause term then
+ ** the bitmask for all FROM clause terms to the left of the N-th term
+ ** is (X-1). An expression from the ON clause of a LEFT JOIN can use
+ ** its Expr.iRightJoinTable value to find the bitmask of the right table
+ ** of the join. Subtracting one from the right table bitmask gives a
+ ** bitmask for all tables to the left of the join. Knowing the bitmask
+ ** for all tables to the left of a left join is important. Ticket #3015.
+ */
+ for(i=0; i<pTabList->nSrc; i++){
+ createMask(&maskSet, pTabList->a[i].iCursor);
+ }
+#ifndef NDEBUG
+ {
+ Bitmask toTheLeft = 0;
+ for(i=0; i<pTabList->nSrc; i++){
+ Bitmask m = getMask(&maskSet, pTabList->a[i].iCursor);
+ assert( (m-1)==toTheLeft );
+ toTheLeft |= m;
+ }
+ }
+#endif
+
+ /* Analyze all of the subexpressions. Note that exprAnalyze() might
+ ** add new virtual terms onto the end of the WHERE clause. We do not
+ ** want to analyze these virtual terms, so start analyzing at the end
+ ** and work forward so that the added virtual terms are never processed.
+ */
+ exprAnalyzeAll(pTabList, &wc);
+ if( db->mallocFailed ){
+ goto whereBeginNoMem;
+ }
+
+ /* Chose the best index to use for each table in the FROM clause.
+ **
+ ** This loop fills in the following fields:
+ **
+ ** pWInfo->a[].pIdx The index to use for this level of the loop.
+ ** pWInfo->a[].flags WHERE_xxx flags associated with pIdx
+ ** pWInfo->a[].nEq The number of == and IN constraints
+ ** pWInfo->a[].iFrom When term of the FROM clause is being coded
+ ** pWInfo->a[].iTabCur The VDBE cursor for the database table
+ ** pWInfo->a[].iIdxCur The VDBE cursor for the index
+ **
+ ** This loop also figures out the nesting order of tables in the FROM
+ ** clause.
+ */
+ notReady = ~(Bitmask)0;
+ pTabItem = pTabList->a;
+ pLevel = pWInfo->a;
+ andFlags = ~0;
+ WHERETRACE(("*** Optimizer Start ***\n"));
+ for(i=iFrom=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){
+ Index *pIdx; /* Index for FROM table at pTabItem */
+ int flags; /* Flags asssociated with pIdx */
+ int nEq; /* Number of == or IN constraints */
+ double cost; /* The cost for pIdx */
+ int j; /* For looping over FROM tables */
+ Index *pBest = 0; /* The best index seen so far */
+ int bestFlags = 0; /* Flags associated with pBest */
+ int bestNEq = 0; /* nEq associated with pBest */
+ double lowestCost; /* Cost of the pBest */
+ int bestJ = 0; /* The value of j */
+ Bitmask m; /* Bitmask value for j or bestJ */
+ int once = 0; /* True when first table is seen */
+ sqlite3_index_info *pIndex; /* Current virtual index */
+
+ lowestCost = SQLITE_BIG_DBL;
+ for(j=iFrom, pTabItem=&pTabList->a[j]; j<pTabList->nSrc; j++, pTabItem++){
+ int doNotReorder; /* True if this table should not be reordered */
+
+ doNotReorder = (pTabItem->jointype & (JT_LEFT|JT_CROSS))!=0;
+ if( once && doNotReorder ) break;
+ m = getMask(&maskSet, pTabItem->iCursor);
+ if( (m & notReady)==0 ){
+ if( j==iFrom ) iFrom++;
+ continue;
+ }
+ assert( pTabItem->pTab );
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ if( IsVirtual(pTabItem->pTab) ){
+ sqlite3_index_info **ppIdxInfo = &pWInfo->a[j].pIdxInfo;
+ cost = bestVirtualIndex(pParse, &wc, pTabItem, notReady,
+ ppOrderBy ? *ppOrderBy : 0, i==0,
+ ppIdxInfo);
+ flags = WHERE_VIRTUALTABLE;
+ pIndex = *ppIdxInfo;
+ if( pIndex && pIndex->orderByConsumed ){
+ flags = WHERE_VIRTUALTABLE | WHERE_ORDERBY;
+ }
+ pIdx = 0;
+ nEq = 0;
+ if( (SQLITE_BIG_DBL/2.0)<cost ){
+ /* The cost is not allowed to be larger than SQLITE_BIG_DBL (the
+ ** inital value of lowestCost in this loop. If it is, then
+ ** the (cost<lowestCost) test below will never be true and
+ ** pLevel->pBestIdx never set.
+ */
+ cost = (SQLITE_BIG_DBL/2.0);
+ }
+ }else
+#endif
+ {
+ cost = bestIndex(pParse, &wc, pTabItem, notReady,
+ (i==0 && ppOrderBy) ? *ppOrderBy : 0,
+ &pIdx, &flags, &nEq);
+ pIndex = 0;
+ }
+ if( cost<lowestCost ){
+ once = 1;
+ lowestCost = cost;
+ pBest = pIdx;
+ bestFlags = flags;
+ bestNEq = nEq;
+ bestJ = j;
+ pLevel->pBestIdx = pIndex;
+ }
+ if( doNotReorder ) break;
+ }
+ WHERETRACE(("*** Optimizer choose table %d for loop %d\n", bestJ,
+ pLevel-pWInfo->a));
+ if( (bestFlags & WHERE_ORDERBY)!=0 ){
+ *ppOrderBy = 0;
+ }
+ andFlags &= bestFlags;
+ pLevel->flags = bestFlags;
+ pLevel->pIdx = pBest;
+ pLevel->nEq = bestNEq;
+ pLevel->aInLoop = 0;
+ pLevel->nIn = 0;
+ if( pBest ){
+ pLevel->iIdxCur = pParse->nTab++;
+ }else{
+ pLevel->iIdxCur = -1;
+ }
+ notReady &= ~getMask(&maskSet, pTabList->a[bestJ].iCursor);
+ pLevel->iFrom = bestJ;
+ }
+ WHERETRACE(("*** Optimizer Finished ***\n"));
+
+ /* If the total query only selects a single row, then the ORDER BY
+ ** clause is irrelevant.
+ */
+ if( (andFlags & WHERE_UNIQUE)!=0 && ppOrderBy ){
+ *ppOrderBy = 0;
+ }
+
+ /* If the caller is an UPDATE or DELETE statement that is requesting
+ ** to use a one-pass algorithm, determine if this is appropriate.
+ ** The one-pass algorithm only works if the WHERE clause constraints
+ ** the statement to update a single row.
+ */
+ assert( (wflags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 );
+ if( (wflags & WHERE_ONEPASS_DESIRED)!=0 && (andFlags & WHERE_UNIQUE)!=0 ){
+ pWInfo->okOnePass = 1;
+ pWInfo->a[0].flags &= ~WHERE_IDX_ONLY;
+ }
+
+ /* Open all tables in the pTabList and any indices selected for
+ ** searching those tables.
+ */
+ sqlite3CodeVerifySchema(pParse, -1); /* Insert the cookie verifier Goto */
+ for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){
+ Table *pTab; /* Table to open */
+ Index *pIx; /* Index used to access pTab (if any) */
+ int iDb; /* Index of database containing table/index */
+ int iIdxCur = pLevel->iIdxCur;
+
+#ifndef SQLITE_OMIT_EXPLAIN
+ if( pParse->explain==2 ){
+ char *zMsg;
+ struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom];
+ zMsg = sqlite3MPrintf(db, "TABLE %s", pItem->zName);
+ if( pItem->zAlias ){
+ zMsg = sqlite3MPrintf(db, "%z AS %s", zMsg, pItem->zAlias);
+ }
+ if( (pIx = pLevel->pIdx)!=0 ){
+ zMsg = sqlite3MPrintf(db, "%z WITH INDEX %s", zMsg, pIx->zName);
+ }else if( pLevel->flags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){
+ zMsg = sqlite3MPrintf(db, "%z USING PRIMARY KEY", zMsg);
+ }
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ else if( pLevel->pBestIdx ){
+ sqlite3_index_info *pBestIdx = pLevel->pBestIdx;
+ zMsg = sqlite3MPrintf(db, "%z VIRTUAL TABLE INDEX %d:%s", zMsg,
+ pBestIdx->idxNum, pBestIdx->idxStr);
+ }
+#endif
+ if( pLevel->flags & WHERE_ORDERBY ){
+ zMsg = sqlite3MPrintf(db, "%z ORDER BY", zMsg);
+ }
+ sqlite3VdbeAddOp4(v, OP_Explain, i, pLevel->iFrom, 0, zMsg, P4_DYNAMIC);
+ }
+#endif /* SQLITE_OMIT_EXPLAIN */
+ pTabItem = &pTabList->a[pLevel->iFrom];
+ pTab = pTabItem->pTab;
+ iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
+ if( pTab->isEphem || pTab->pSelect ) continue;
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ if( pLevel->pBestIdx ){
+ int iCur = pTabItem->iCursor;
+ sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0,
+ (const char*)pTab->pVtab, P4_VTAB);
+ }else
+#endif
+ if( (pLevel->flags & WHERE_IDX_ONLY)==0 ){
+ int op = pWInfo->okOnePass ? OP_OpenWrite : OP_OpenRead;
+ sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op);
+ if( !pWInfo->okOnePass && pTab->nCol<(sizeof(Bitmask)*8) ){
+ Bitmask b = pTabItem->colUsed;
+ int n = 0;
+ for(; b; b=b>>1, n++){}
+ sqlite3VdbeChangeP2(v, sqlite3VdbeCurrentAddr(v)-2, n);
+ assert( n<=pTab->nCol );
+ }
+ }else{
+ sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
+ }
+ pLevel->iTabCur = pTabItem->iCursor;
+ if( (pIx = pLevel->pIdx)!=0 ){
+ KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIx);
+ assert( pIx->pSchema==pTab->pSchema );
+ sqlite3VdbeAddOp2(v, OP_SetNumColumns, 0, pIx->nColumn+1);
+ sqlite3VdbeAddOp4(v, OP_OpenRead, iIdxCur, pIx->tnum, iDb,
+ (char*)pKey, P4_KEYINFO_HANDOFF);
+ VdbeComment((v, "%s", pIx->zName));
+ }
+ sqlite3CodeVerifySchema(pParse, iDb);
+ }
+ pWInfo->iTop = sqlite3VdbeCurrentAddr(v);
+
+ /* Generate the code to do the search. Each iteration of the for
+ ** loop below generates code for a single nested loop of the VM
+ ** program.
+ */
+ notReady = ~(Bitmask)0;
+ for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){
+ int j;
+ int iCur = pTabItem->iCursor; /* The VDBE cursor for the table */
+ Index *pIdx; /* The index we will be using */
+ int nxt; /* Where to jump to continue with the next IN case */
+ int iIdxCur; /* The VDBE cursor for the index */
+ int omitTable; /* True if we use the index only */
+ int bRev; /* True if we need to scan in reverse order */
+
+ pTabItem = &pTabList->a[pLevel->iFrom];
+ iCur = pTabItem->iCursor;
+ pIdx = pLevel->pIdx;
+ iIdxCur = pLevel->iIdxCur;
+ bRev = (pLevel->flags & WHERE_REVERSE)!=0;
+ omitTable = (pLevel->flags & WHERE_IDX_ONLY)!=0;
+
+ /* Create labels for the "break" and "continue" instructions
+ ** for the current loop. Jump to brk to break out of a loop.
+ ** Jump to cont to go immediately to the next iteration of the
+ ** loop.
+ **
+ ** When there is an IN operator, we also have a "nxt" label that
+ ** means to continue with the next IN value combination. When
+ ** there are no IN operators in the constraints, the "nxt" label
+ ** is the same as "brk".
+ */
+ brk = pLevel->brk = pLevel->nxt = sqlite3VdbeMakeLabel(v);
+ cont = pLevel->cont = sqlite3VdbeMakeLabel(v);
+
+ /* If this is the right table of a LEFT OUTER JOIN, allocate and
+ ** initialize a memory cell that records if this table matches any
+ ** row of the left table of the join.
+ */
+ if( pLevel->iFrom>0 && (pTabItem[0].jointype & JT_LEFT)!=0 ){
+ pLevel->iLeftJoin = ++pParse->nMem;
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin);
+ VdbeComment((v, "init LEFT JOIN no-match flag"));
+ }
+
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ if( pLevel->pBestIdx ){
+ /* Case 0: The table is a virtual-table. Use the VFilter and VNext
+ ** to access the data.
+ */
+ int j;
+ int iReg; /* P3 Value for OP_VFilter */
+ sqlite3_index_info *pBestIdx = pLevel->pBestIdx;
+ int nConstraint = pBestIdx->nConstraint;
+ struct sqlite3_index_constraint_usage *aUsage =
+ pBestIdx->aConstraintUsage;
+ const struct sqlite3_index_constraint *aConstraint =
+ pBestIdx->aConstraint;
+
+ iReg = sqlite3GetTempRange(pParse, nConstraint+2);
+ for(j=1; j<=nConstraint; j++){
+ int k;
+ for(k=0; k<nConstraint; k++){
+ if( aUsage[k].argvIndex==j ){
+ int iTerm = aConstraint[k].iTermOffset;
+ sqlite3ExprCode(pParse, wc.a[iTerm].pExpr->pRight, iReg+j+1);
+ break;
+ }
+ }
+ if( k==nConstraint ) break;
+ }
+ sqlite3VdbeAddOp2(v, OP_Integer, pBestIdx->idxNum, iReg);
+ sqlite3VdbeAddOp2(v, OP_Integer, j-1, iReg+1);
+ sqlite3VdbeAddOp4(v, OP_VFilter, iCur, brk, iReg, pBestIdx->idxStr,
+ pBestIdx->needToFreeIdxStr ? P4_MPRINTF : P4_STATIC);
+ sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2);
+ pBestIdx->needToFreeIdxStr = 0;
+ for(j=0; j<pBestIdx->nConstraint; j++){
+ if( aUsage[j].omit ){
+ int iTerm = aConstraint[j].iTermOffset;
+ disableTerm(pLevel, &wc.a[iTerm]);
+ }
+ }
+ pLevel->op = OP_VNext;
+ pLevel->p1 = iCur;
+ pLevel->p2 = sqlite3VdbeCurrentAddr(v);
+ }else
+#endif /* SQLITE_OMIT_VIRTUALTABLE */
+
+ if( pLevel->flags & WHERE_ROWID_EQ ){
+ /* Case 1: We can directly reference a single row using an
+ ** equality comparison against the ROWID field. Or
+ ** we reference multiple rows using a "rowid IN (...)"
+ ** construct.
+ */
+ int r1;
+ pTerm = findTerm(&wc, iCur, -1, notReady, WO_EQ|WO_IN, 0);
+ assert( pTerm!=0 );
+ assert( pTerm->pExpr!=0 );
+ assert( pTerm->leftCursor==iCur );
+ assert( omitTable==0 );
+ r1 = codeEqualityTerm(pParse, pTerm, pLevel, 0);
+ nxt = pLevel->nxt;
+ sqlite3VdbeAddOp2(v, OP_MustBeInt, r1, nxt);
+ sqlite3VdbeAddOp3(v, OP_NotExists, iCur, nxt, r1);
+ VdbeComment((v, "pk"));
+ pLevel->op = OP_Noop;
+ }else if( pLevel->flags & WHERE_ROWID_RANGE ){
+ /* Case 2: We have an inequality comparison against the ROWID field.
+ */
+ int testOp = OP_Noop;
+ int start;
+ WhereTerm *pStart, *pEnd;
+
+ assert( omitTable==0 );
+ pStart = findTerm(&wc, iCur, -1, notReady, WO_GT|WO_GE, 0);
+ pEnd = findTerm(&wc, iCur, -1, notReady, WO_LT|WO_LE, 0);
+ if( bRev ){
+ pTerm = pStart;
+ pStart = pEnd;
+ pEnd = pTerm;
+ }
+ if( pStart ){
+ Expr *pX;
+ int r1, regFree1;
+ pX = pStart->pExpr;
+ assert( pX!=0 );
+ assert( pStart->leftCursor==iCur );
+ r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &regFree1);
+ sqlite3VdbeAddOp3(v, OP_ForceInt, r1, brk,
+ pX->op==TK_LE || pX->op==TK_GT);
+ sqlite3VdbeAddOp3(v, bRev ? OP_MoveLt : OP_MoveGe, iCur, brk, r1);
+ VdbeComment((v, "pk"));
+ sqlite3ReleaseTempReg(pParse, regFree1);
+ disableTerm(pLevel, pStart);
+ }else{
+ sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, brk);
+ }
+ if( pEnd ){
+ Expr *pX;
+ pX = pEnd->pExpr;
+ assert( pX!=0 );
+ assert( pEnd->leftCursor==iCur );
+ pLevel->iMem = ++pParse->nMem;
+ sqlite3ExprCode(pParse, pX->pRight, pLevel->iMem);
+ if( pX->op==TK_LT || pX->op==TK_GT ){
+ testOp = bRev ? OP_Le : OP_Ge;
+ }else{
+ testOp = bRev ? OP_Lt : OP_Gt;
+ }
+ disableTerm(pLevel, pEnd);
+ }
+ start = sqlite3VdbeCurrentAddr(v);
+ pLevel->op = bRev ? OP_Prev : OP_Next;
+ pLevel->p1 = iCur;
+ pLevel->p2 = start;
+ if( testOp!=OP_Noop ){
+ int r1 = sqlite3GetTempReg(pParse);
+ sqlite3VdbeAddOp2(v, OP_Rowid, iCur, r1);
+ /* sqlite3VdbeAddOp2(v, OP_SCopy, pLevel->iMem, 0); */
+ sqlite3VdbeAddOp3(v, testOp, pLevel->iMem, brk, r1);
+ sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL);
+ sqlite3ReleaseTempReg(pParse, r1);
+ }
+ }else if( pLevel->flags & (WHERE_COLUMN_RANGE|WHERE_COLUMN_EQ) ){
+ /* Case 3: A scan using an index.
+ **
+ ** The WHERE clause may contain zero or more equality
+ ** terms ("==" or "IN" operators) that refer to the N
+ ** left-most columns of the index. It may also contain
+ ** inequality constraints (>, <, >= or <=) on the indexed
+ ** column that immediately follows the N equalities. Only
+ ** the right-most column can be an inequality - the rest must
+ ** use the "==" and "IN" operators. For example, if the
+ ** index is on (x,y,z), then the following clauses are all
+ ** optimized:
+ **
+ ** x=5
+ ** x=5 AND y=10
+ ** x=5 AND y<10
+ ** x=5 AND y>5 AND y<10
+ ** x=5 AND y=5 AND z<=10
+ **
+ ** The z<10 term of the following cannot be used, only
+ ** the x=5 term:
+ **
+ ** x=5 AND z<10
+ **
+ ** N may be zero if there are inequality constraints.
+ ** If there are no inequality constraints, then N is at
+ ** least one.
+ **
+ ** This case is also used when there are no WHERE clause
+ ** constraints but an index is selected anyway, in order
+ ** to force the output order to conform to an ORDER BY.
+ */
+ int aStartOp[] = {
+ 0,
+ 0,
+ OP_Rewind, /* 2: (!start_constraints && startEq && !bRev) */
+ OP_Last, /* 3: (!start_constraints && startEq && bRev) */
+ OP_MoveGt, /* 4: (start_constraints && !startEq && !bRev) */
+ OP_MoveLt, /* 5: (start_constraints && !startEq && bRev) */
+ OP_MoveGe, /* 6: (start_constraints && startEq && !bRev) */
+ OP_MoveLe /* 7: (start_constraints && startEq && bRev) */
+ };
+ int aEndOp[] = {
+ OP_Noop, /* 0: (!end_constraints) */
+ OP_IdxGE, /* 1: (end_constraints && !bRev) */
+ OP_IdxLT /* 2: (end_constraints && bRev) */
+ };
+ int nEq = pLevel->nEq;
+ int isMinQuery = 0; /* If this is an optimized SELECT min(x).. */
+ int regBase; /* Base register holding constraint values */
+ int r1; /* Temp register */
+ WhereTerm *pRangeStart = 0; /* Inequality constraint at range start */
+ WhereTerm *pRangeEnd = 0; /* Inequality constraint at range end */
+ int startEq; /* True if range start uses ==, >= or <= */
+ int endEq; /* True if range end uses ==, >= or <= */
+ int start_constraints; /* Start of range is constrained */
+ int k = pIdx->aiColumn[nEq]; /* Column for inequality constraints */
+ int nConstraint; /* Number of constraint terms */
+ int op;
+
+ /* Generate code to evaluate all constraint terms using == or IN
+ ** and store the values of those terms in an array of registers
+ ** starting at regBase.
+ */
+ regBase = codeAllEqualityTerms(pParse, pLevel, &wc, notReady, 2);
+ nxt = pLevel->nxt;
+
+ /* If this loop satisfies a sort order (pOrderBy) request that
+ ** was passed to this function to implement a "SELECT min(x) ..."
+ ** query, then the caller will only allow the loop to run for
+ ** a single iteration. This means that the first row returned
+ ** should not have a NULL value stored in 'x'. If column 'x' is
+ ** the first one after the nEq equality constraints in the index,
+ ** this requires some special handling.
+ */
+ if( (wflags&WHERE_ORDERBY_MIN)!=0
+ && (pLevel->flags&WHERE_ORDERBY)
+ && (pIdx->nColumn>nEq)
+ && (pOrderBy->a[0].pExpr->iColumn==pIdx->aiColumn[nEq])
+ ){
+ isMinQuery = 1;
+ }
+
+ /* Find any inequality constraint terms for the start and end
+ ** of the range.
+ */
+ if( pLevel->flags & WHERE_TOP_LIMIT ){
+ pRangeEnd = findTerm(&wc, iCur, k, notReady, (WO_LT|WO_LE), pIdx);
+ }
+ if( pLevel->flags & WHERE_BTM_LIMIT ){
+ pRangeStart = findTerm(&wc, iCur, k, notReady, (WO_GT|WO_GE), pIdx);
+ }
+
+ /* If we are doing a reverse order scan on an ascending index, or
+ ** a forward order scan on a descending index, interchange the
+ ** start and end terms (pRangeStart and pRangeEnd).
+ */
+ if( bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC) ){
+ SWAP(WhereTerm *, pRangeEnd, pRangeStart);
+ }
+
+ testcase( pRangeStart && pRangeStart->eOperator & WO_LE );
+ testcase( pRangeStart && pRangeStart->eOperator & WO_GE );
+ testcase( pRangeEnd && pRangeEnd->eOperator & WO_LE );
+ testcase( pRangeEnd && pRangeEnd->eOperator & WO_GE );
+ startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE);
+ endEq = !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE);
+ start_constraints = pRangeStart || nEq>0;
+
+ /* Seek the index cursor to the start of the range. */
+ nConstraint = nEq;
+ if( pRangeStart ){
+ int dcc = pParse->disableColCache;
+ if( pRangeEnd ){
+ pParse->disableColCache = 1;
+ }
+ sqlite3ExprCode(pParse, pRangeStart->pExpr->pRight, regBase+nEq);
+ pParse->disableColCache = dcc;
+ sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, nxt);
+ nConstraint++;
+ }else if( isMinQuery ){
+ sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
+ nConstraint++;
+ startEq = 0;
+ start_constraints = 1;
+ }
+ codeApplyAffinity(pParse, regBase, nConstraint, pIdx);
+ op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev];
+ assert( op!=0 );
+ testcase( op==OP_Rewind );
+ testcase( op==OP_Last );
+ testcase( op==OP_MoveGt );
+ testcase( op==OP_MoveGe );
+ testcase( op==OP_MoveLe );
+ testcase( op==OP_MoveLt );
+ sqlite3VdbeAddOp4(v, op, iIdxCur, nxt, regBase,
+ (char*)nConstraint, P4_INT32);
+
+ /* Load the value for the inequality constraint at the end of the
+ ** range (if any).
+ */
+ nConstraint = nEq;
+ if( pRangeEnd ){
+ sqlite3ExprCode(pParse, pRangeEnd->pExpr->pRight, regBase+nEq);
+ sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, nxt);
+ codeApplyAffinity(pParse, regBase, nEq+1, pIdx);
+ nConstraint++;
+ }
+
+ /* Top of the loop body */
+ pLevel->p2 = sqlite3VdbeCurrentAddr(v);
+
+ /* Check if the index cursor is past the end of the range. */
+ op = aEndOp[(pRangeEnd || nEq) * (1 + bRev)];
+ testcase( op==OP_Noop );
+ testcase( op==OP_IdxGE );
+ testcase( op==OP_IdxLT );
+ sqlite3VdbeAddOp4(v, op, iIdxCur, nxt, regBase,
+ (char*)nConstraint, P4_INT32);
+ sqlite3VdbeChangeP5(v, endEq!=bRev);
+
+ /* If there are inequality constraints, check that the value
+ ** of the table column that the inequality contrains is not NULL.
+ ** If it is, jump to the next iteration of the loop.
+ */
+ r1 = sqlite3GetTempReg(pParse);
+ testcase( pLevel->flags & WHERE_BTM_LIMIT );
+ testcase( pLevel->flags & WHERE_TOP_LIMIT );
+ if( pLevel->flags & (WHERE_BTM_LIMIT|WHERE_TOP_LIMIT) ){
+ sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, nEq, r1);
+ sqlite3VdbeAddOp2(v, OP_IsNull, r1, cont);
+ }
+
+ /* Seek the table cursor, if required */
+ if( !omitTable ){
+ sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, r1);
+ sqlite3VdbeAddOp3(v, OP_MoveGe, iCur, 0, r1); /* Deferred seek */
+ }
+ sqlite3ReleaseTempReg(pParse, r1);
+
+ /* Record the instruction used to terminate the loop. Disable
+ ** WHERE clause terms made redundant by the index range scan.
+ */
+ pLevel->op = bRev ? OP_Prev : OP_Next;
+ pLevel->p1 = iIdxCur;
+ disableTerm(pLevel, pRangeStart);
+ disableTerm(pLevel, pRangeEnd);
+ }else{
+ /* Case 4: There is no usable index. We must do a complete
+ ** scan of the entire table.
+ */
+ assert( omitTable==0 );
+ assert( bRev==0 );
+ pLevel->op = OP_Next;
+ pLevel->p1 = iCur;
+ pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, OP_Rewind, iCur, brk);
+ }
+ notReady &= ~getMask(&maskSet, iCur);
+
+ /* Insert code to test every subexpression that can be completely
+ ** computed using the current set of tables.
+ */
+ for(pTerm=wc.a, j=wc.nTerm; j>0; j--, pTerm++){
+ Expr *pE;
+ testcase( pTerm->flags & TERM_VIRTUAL );
+ testcase( pTerm->flags & TERM_CODED );
+ if( pTerm->flags & (TERM_VIRTUAL|TERM_CODED) ) continue;
+ if( (pTerm->prereqAll & notReady)!=0 ) continue;
+ pE = pTerm->pExpr;
+ assert( pE!=0 );
+ if( pLevel->iLeftJoin && !ExprHasProperty(pE, EP_FromJoin) ){
+ continue;
+ }
+ sqlite3ExprIfFalse(pParse, pE, cont, SQLITE_JUMPIFNULL);
+ pTerm->flags |= TERM_CODED;
+ }
+
+ /* For a LEFT OUTER JOIN, generate code that will record the fact that
+ ** at least one row of the right table has matched the left table.
+ */
+ if( pLevel->iLeftJoin ){
+ pLevel->top = sqlite3VdbeCurrentAddr(v);
+ sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin);
+ VdbeComment((v, "record LEFT JOIN hit"));
+ sqlite3ExprClearColumnCache(pParse, pLevel->iTabCur);
+ sqlite3ExprClearColumnCache(pParse, pLevel->iIdxCur);
+ for(pTerm=wc.a, j=0; j<wc.nTerm; j++, pTerm++){
+ testcase( pTerm->flags & TERM_VIRTUAL );
+ testcase( pTerm->flags & TERM_CODED );
+ if( pTerm->flags & (TERM_VIRTUAL|TERM_CODED) ) continue;
+ if( (pTerm->prereqAll & notReady)!=0 ) continue;
+ assert( pTerm->pExpr );
+ sqlite3ExprIfFalse(pParse, pTerm->pExpr, cont, SQLITE_JUMPIFNULL);
+ pTerm->flags |= TERM_CODED;
+ }
+ }
+ }
+
+#ifdef SQLITE_TEST /* For testing and debugging use only */
+ /* Record in the query plan information about the current table
+ ** and the index used to access it (if any). If the table itself
+ ** is not used, its name is just '{}'. If no index is used
+ ** the index is listed as "{}". If the primary key is used the
+ ** index name is '*'.
+ */
+ for(i=0; i<pTabList->nSrc; i++){
+ char *z;
+ int n;
+ pLevel = &pWInfo->a[i];
+ pTabItem = &pTabList->a[pLevel->iFrom];
+ z = pTabItem->zAlias;
+ if( z==0 ) z = pTabItem->pTab->zName;
+ n = strlen(z);
+ if( n+nQPlan < sizeof(sqlite3_query_plan)-10 ){
+ if( pLevel->flags & WHERE_IDX_ONLY ){
+ memcpy(&sqlite3_query_plan[nQPlan], "{}", 2);
+ nQPlan += 2;
+ }else{
+ memcpy(&sqlite3_query_plan[nQPlan], z, n);
+ nQPlan += n;
+ }
+ sqlite3_query_plan[nQPlan++] = ' ';
+ }
+ testcase( pLevel->flags & WHERE_ROWID_EQ );
+ testcase( pLevel->flags & WHERE_ROWID_RANGE );
+ if( pLevel->flags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){
+ memcpy(&sqlite3_query_plan[nQPlan], "* ", 2);
+ nQPlan += 2;
+ }else if( pLevel->pIdx==0 ){
+ memcpy(&sqlite3_query_plan[nQPlan], "{} ", 3);
+ nQPlan += 3;
+ }else{
+ n = strlen(pLevel->pIdx->zName);
+ if( n+nQPlan < sizeof(sqlite3_query_plan)-2 ){
+ memcpy(&sqlite3_query_plan[nQPlan], pLevel->pIdx->zName, n);
+ nQPlan += n;
+ sqlite3_query_plan[nQPlan++] = ' ';
+ }
+ }
+ }
+ while( nQPlan>0 && sqlite3_query_plan[nQPlan-1]==' ' ){
+ sqlite3_query_plan[--nQPlan] = 0;
+ }
+ sqlite3_query_plan[nQPlan] = 0;
+ nQPlan = 0;
+#endif /* SQLITE_TEST // Testing and debugging use only */
+
+ /* Record the continuation address in the WhereInfo structure. Then
+ ** clean up and return.
+ */
+ pWInfo->iContinue = cont;
+ whereClauseClear(&wc);
+ return pWInfo;
+
+ /* Jump here if malloc fails */
+whereBeginNoMem:
+ whereClauseClear(&wc);
+ whereInfoFree(pWInfo);
+ return 0;
+}
+
+/*
+** Generate the end of the WHERE loop. See comments on
+** sqlite3WhereBegin() for additional information.
+*/
+SQLITE_PRIVATE void sqlite3WhereEnd(WhereInfo *pWInfo){
+ Vdbe *v = pWInfo->pParse->pVdbe;
+ int i;
+ WhereLevel *pLevel;
+ SrcList *pTabList = pWInfo->pTabList;
+
+ /* Generate loop termination code.
+ */
+ sqlite3ExprClearColumnCache(pWInfo->pParse, -1);
+ for(i=pTabList->nSrc-1; i>=0; i--){
+ pLevel = &pWInfo->a[i];
+ sqlite3VdbeResolveLabel(v, pLevel->cont);
+ if( pLevel->op!=OP_Noop ){
+ sqlite3VdbeAddOp2(v, pLevel->op, pLevel->p1, pLevel->p2);
+ }
+ if( pLevel->nIn ){
+ struct InLoop *pIn;
+ int j;
+ sqlite3VdbeResolveLabel(v, pLevel->nxt);
+ for(j=pLevel->nIn, pIn=&pLevel->aInLoop[j-1]; j>0; j--, pIn--){
+ sqlite3VdbeJumpHere(v, pIn->topAddr+1);
+ sqlite3VdbeAddOp2(v, OP_Next, pIn->iCur, pIn->topAddr);
+ sqlite3VdbeJumpHere(v, pIn->topAddr-1);
+ }
+ sqlite3_free(pLevel->aInLoop);
+ }
+ sqlite3VdbeResolveLabel(v, pLevel->brk);
+ if( pLevel->iLeftJoin ){
+ int addr;
+ addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin);
+ sqlite3VdbeAddOp1(v, OP_NullRow, pTabList->a[i].iCursor);
+ if( pLevel->iIdxCur>=0 ){
+ sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur);
+ }
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, pLevel->top);
+ sqlite3VdbeJumpHere(v, addr);
+ }
+ }
+
+ /* The "break" point is here, just past the end of the outer loop.
+ ** Set it.
+ */
+ sqlite3VdbeResolveLabel(v, pWInfo->iBreak);
+
+ /* Close all of the cursors that were opened by sqlite3WhereBegin.
+ */
+ for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){
+ struct SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom];
+ Table *pTab = pTabItem->pTab;
+ assert( pTab!=0 );
+ if( pTab->isEphem || pTab->pSelect ) continue;
+ if( !pWInfo->okOnePass && (pLevel->flags & WHERE_IDX_ONLY)==0 ){
+ sqlite3VdbeAddOp1(v, OP_Close, pTabItem->iCursor);
+ }
+ if( pLevel->pIdx!=0 ){
+ sqlite3VdbeAddOp1(v, OP_Close, pLevel->iIdxCur);
+ }
+
+ /* If this scan uses an index, make code substitutions to read data
+ ** from the index in preference to the table. Sometimes, this means
+ ** the table need never be read from. This is a performance boost,
+ ** as the vdbe level waits until the table is read before actually
+ ** seeking the table cursor to the record corresponding to the current
+ ** position in the index.
+ **
+ ** Calls to the code generator in between sqlite3WhereBegin and
+ ** sqlite3WhereEnd will have created code that references the table
+ ** directly. This loop scans all that code looking for opcodes
+ ** that reference the table and converts them into opcodes that
+ ** reference the index.
+ */
+ if( pLevel->pIdx ){
+ int k, j, last;
+ VdbeOp *pOp;
+ Index *pIdx = pLevel->pIdx;
+ int useIndexOnly = pLevel->flags & WHERE_IDX_ONLY;
+
+ assert( pIdx!=0 );
+ pOp = sqlite3VdbeGetOp(v, pWInfo->iTop);
+ last = sqlite3VdbeCurrentAddr(v);
+ for(k=pWInfo->iTop; k<last; k++, pOp++){
+ if( pOp->p1!=pLevel->iTabCur ) continue;
+ if( pOp->opcode==OP_Column ){
+ for(j=0; j<pIdx->nColumn; j++){
+ if( pOp->p2==pIdx->aiColumn[j] ){
+ pOp->p2 = j;
+ pOp->p1 = pLevel->iIdxCur;
+ break;
+ }
+ }
+ assert(!useIndexOnly || j<pIdx->nColumn);
+ }else if( pOp->opcode==OP_Rowid ){
+ pOp->p1 = pLevel->iIdxCur;
+ pOp->opcode = OP_IdxRowid;
+ }else if( pOp->opcode==OP_NullRow && useIndexOnly ){
+ pOp->opcode = OP_Noop;
+ }
+ }
+ }
+ }
+
+ /* Final cleanup
+ */
+ whereInfoFree(pWInfo);
+ return;
+}
+
+/************** End of where.c ***********************************************/
+/************** Begin file parse.c *******************************************/
+/* Driver template for the LEMON parser generator.
+** The author disclaims copyright to this source code.
+*/
+/* First off, code is include which follows the "include" declaration
+** in the input file. */
+
+
+/*
+** An instance of this structure holds information about the
+** LIMIT clause of a SELECT statement.
+*/
+struct LimitVal {
+ Expr *pLimit; /* The LIMIT expression. NULL if there is no limit */
+ Expr *pOffset; /* The OFFSET expression. NULL if there is none */
+};
+
+/*
+** An instance of this structure is used to store the LIKE,
+** GLOB, NOT LIKE, and NOT GLOB operators.
+*/
+struct LikeOp {
+ Token eOperator; /* "like" or "glob" or "regexp" */
+ int not; /* True if the NOT keyword is present */
+};
+
+/*
+** An instance of the following structure describes the event of a
+** TRIGGER. "a" is the event type, one of TK_UPDATE, TK_INSERT,
+** TK_DELETE, or TK_INSTEAD. If the event is of the form
+**
+** UPDATE ON (a,b,c)
+**
+** Then the "b" IdList records the list "a,b,c".
+*/
+struct TrigEvent { int a; IdList * b; };
+
+/*
+** An instance of this structure holds the ATTACH key and the key type.
+*/
+struct AttachKey { int type; Token key; };
+
+/* Next is all token values, in a form suitable for use by makeheaders.
+** This section will be null unless lemon is run with the -m switch.
+*/
+/*
+** These constants (all generated automatically by the parser generator)
+** specify the various kinds of tokens (terminals) that the parser
+** understands.
+**
+** Each symbol here is a terminal symbol in the grammar.
+*/
+/* Make sure the INTERFACE macro is defined.
+*/
+#ifndef INTERFACE
+# define INTERFACE 1
+#endif
+/* The next thing included is series of defines which control
+** various aspects of the generated parser.
+** YYCODETYPE is the data type used for storing terminal
+** and nonterminal numbers. "unsigned char" is
+** used if there are fewer than 250 terminals
+** and nonterminals. "int" is used otherwise.
+** YYNOCODE is a number of type YYCODETYPE which corresponds
+** to no legal terminal or nonterminal number. This
+** number is used to fill in empty slots of the hash
+** table.
+** YYFALLBACK If defined, this indicates that one or more tokens
+** have fall-back values which should be used if the
+** original value of the token will not parse.
+** YYACTIONTYPE is the data type used for storing terminal
+** and nonterminal numbers. "unsigned char" is
+** used if there are fewer than 250 rules and
+** states combined. "int" is used otherwise.
+** sqlite3ParserTOKENTYPE is the data type used for minor tokens given
+** directly to the parser from the tokenizer.
+** YYMINORTYPE is the data type used for all minor tokens.
+** This is typically a union of many types, one of
+** which is sqlite3ParserTOKENTYPE. The entry in the union
+** for base tokens is called "yy0".
+** YYSTACKDEPTH is the maximum depth of the parser's stack. If
+** zero the stack is dynamically sized using realloc()
+** sqlite3ParserARG_SDECL A static variable declaration for the %extra_argument
+** sqlite3ParserARG_PDECL A parameter declaration for the %extra_argument
+** sqlite3ParserARG_STORE Code to store %extra_argument into yypParser
+** sqlite3ParserARG_FETCH Code to extract %extra_argument from yypParser
+** YYNSTATE the combined number of states.
+** YYNRULE the number of rules in the grammar
+** YYERRORSYMBOL is the code number of the error symbol. If not
+** defined, then do no error processing.
+*/
+#define YYCODETYPE unsigned char
+#define YYNOCODE 248
+#define YYACTIONTYPE unsigned short int
+#define YYWILDCARD 59
+#define sqlite3ParserTOKENTYPE Token
+typedef union {
+ sqlite3ParserTOKENTYPE yy0;
+ int yy46;
+ struct LikeOp yy72;
+ Expr* yy172;
+ ExprList* yy174;
+ Select* yy219;
+ struct LimitVal yy234;
+ TriggerStep* yy243;
+ struct TrigEvent yy370;
+ SrcList* yy373;
+ struct {int value; int mask;} yy405;
+ Token yy410;
+ IdList* yy432;
+} YYMINORTYPE;
+#ifndef YYSTACKDEPTH
+#define YYSTACKDEPTH 100
+#endif
+#define sqlite3ParserARG_SDECL Parse *pParse;
+#define sqlite3ParserARG_PDECL ,Parse *pParse
+#define sqlite3ParserARG_FETCH Parse *pParse = yypParser->pParse
+#define sqlite3ParserARG_STORE yypParser->pParse = pParse
+#define YYNSTATE 589
+#define YYNRULE 313
+#define YYFALLBACK 1
+#define YY_NO_ACTION (YYNSTATE+YYNRULE+2)
+#define YY_ACCEPT_ACTION (YYNSTATE+YYNRULE+1)
+#define YY_ERROR_ACTION (YYNSTATE+YYNRULE)
+
+/* The yyzerominor constant is used to initialize instances of
+** YYMINORTYPE objects to zero. */
+static const YYMINORTYPE yyzerominor;
+
+/* Next are that tables used to determine what action to take based on the
+** current state and lookahead token. These tables are used to implement
+** functions that take a state number and lookahead value and return an
+** action integer.
+**
+** Suppose the action integer is N. Then the action is determined as
+** follows
+**
+** 0 <= N < YYNSTATE Shift N. That is, push the lookahead
+** token onto the stack and goto state N.
+**
+** YYNSTATE <= N < YYNSTATE+YYNRULE Reduce by rule N-YYNSTATE.
+**
+** N == YYNSTATE+YYNRULE A syntax error has occurred.
+**
+** N == YYNSTATE+YYNRULE+1 The parser accepts its input.
+**
+** N == YYNSTATE+YYNRULE+2 No such action. Denotes unused
+** slots in the yy_action[] table.
+**
+** The action table is constructed as a single large table named yy_action[].
+** Given state S and lookahead X, the action is computed as
+**
+** yy_action[ yy_shift_ofst[S] + X ]
+**
+** If the index value yy_shift_ofst[S]+X is out of range or if the value
+** yy_lookahead[yy_shift_ofst[S]+X] is not equal to X or if yy_shift_ofst[S]
+** is equal to YY_SHIFT_USE_DFLT, it means that the action is not in the table
+** and that yy_default[S] should be used instead.
+**
+** The formula above is for computing the action when the lookahead is
+** a terminal symbol. If the lookahead is a non-terminal (as occurs after
+** a reduce action) then the yy_reduce_ofst[] array is used in place of
+** the yy_shift_ofst[] array and YY_REDUCE_USE_DFLT is used in place of
+** YY_SHIFT_USE_DFLT.
+**
+** The following are the tables generated in this section:
+**
+** yy_action[] A single table containing all actions.
+** yy_lookahead[] A table containing the lookahead for each entry in
+** yy_action. Used to detect hash collisions.
+** yy_shift_ofst[] For each state, the offset into yy_action for
+** shifting terminals.
+** yy_reduce_ofst[] For each state, the offset into yy_action for
+** shifting non-terminals after a reduce.
+** yy_default[] Default action for each state.
+*/
+static const YYACTIONTYPE yy_action[] = {
+ /* 0 */ 292, 903, 124, 588, 409, 172, 2, 418, 61, 61,
+ /* 10 */ 61, 61, 519, 63, 63, 63, 63, 64, 64, 65,
+ /* 20 */ 65, 65, 66, 210, 447, 212, 425, 431, 68, 63,
+ /* 30 */ 63, 63, 63, 64, 64, 65, 65, 65, 66, 210,
+ /* 40 */ 391, 388, 396, 451, 60, 59, 297, 435, 436, 432,
+ /* 50 */ 432, 62, 62, 61, 61, 61, 61, 263, 63, 63,
+ /* 60 */ 63, 63, 64, 64, 65, 65, 65, 66, 210, 292,
+ /* 70 */ 493, 494, 418, 489, 208, 82, 67, 420, 69, 154,
+ /* 80 */ 63, 63, 63, 63, 64, 64, 65, 65, 65, 66,
+ /* 90 */ 210, 67, 462, 69, 154, 425, 431, 574, 264, 58,
+ /* 100 */ 64, 64, 65, 65, 65, 66, 210, 397, 398, 422,
+ /* 110 */ 422, 422, 292, 60, 59, 297, 435, 436, 432, 432,
+ /* 120 */ 62, 62, 61, 61, 61, 61, 317, 63, 63, 63,
+ /* 130 */ 63, 64, 64, 65, 65, 65, 66, 210, 425, 431,
+ /* 140 */ 94, 65, 65, 65, 66, 210, 396, 210, 414, 34,
+ /* 150 */ 56, 298, 442, 443, 410, 418, 60, 59, 297, 435,
+ /* 160 */ 436, 432, 432, 62, 62, 61, 61, 61, 61, 208,
+ /* 170 */ 63, 63, 63, 63, 64, 64, 65, 65, 65, 66,
+ /* 180 */ 210, 292, 372, 524, 295, 572, 113, 408, 522, 451,
+ /* 190 */ 331, 317, 407, 20, 244, 340, 519, 396, 478, 531,
+ /* 200 */ 505, 447, 212, 571, 570, 245, 530, 425, 431, 149,
+ /* 210 */ 150, 397, 398, 414, 41, 211, 151, 533, 488, 489,
+ /* 220 */ 418, 568, 569, 420, 292, 60, 59, 297, 435, 436,
+ /* 230 */ 432, 432, 62, 62, 61, 61, 61, 61, 317, 63,
+ /* 240 */ 63, 63, 63, 64, 64, 65, 65, 65, 66, 210,
+ /* 250 */ 425, 431, 447, 333, 215, 422, 422, 422, 363, 299,
+ /* 260 */ 414, 41, 397, 398, 366, 567, 211, 292, 60, 59,
+ /* 270 */ 297, 435, 436, 432, 432, 62, 62, 61, 61, 61,
+ /* 280 */ 61, 396, 63, 63, 63, 63, 64, 64, 65, 65,
+ /* 290 */ 65, 66, 210, 425, 431, 491, 300, 524, 474, 66,
+ /* 300 */ 210, 214, 474, 229, 411, 286, 534, 20, 449, 523,
+ /* 310 */ 168, 60, 59, 297, 435, 436, 432, 432, 62, 62,
+ /* 320 */ 61, 61, 61, 61, 474, 63, 63, 63, 63, 64,
+ /* 330 */ 64, 65, 65, 65, 66, 210, 209, 480, 317, 77,
+ /* 340 */ 292, 239, 300, 55, 484, 490, 397, 398, 181, 547,
+ /* 350 */ 494, 345, 348, 349, 67, 152, 69, 154, 339, 524,
+ /* 360 */ 414, 35, 350, 241, 221, 370, 425, 431, 579, 20,
+ /* 370 */ 164, 118, 243, 343, 248, 344, 176, 322, 442, 443,
+ /* 380 */ 414, 3, 80, 252, 60, 59, 297, 435, 436, 432,
+ /* 390 */ 432, 62, 62, 61, 61, 61, 61, 174, 63, 63,
+ /* 400 */ 63, 63, 64, 64, 65, 65, 65, 66, 210, 292,
+ /* 410 */ 221, 550, 236, 487, 510, 353, 317, 118, 243, 343,
+ /* 420 */ 248, 344, 176, 181, 317, 532, 345, 348, 349, 252,
+ /* 430 */ 223, 415, 155, 464, 511, 425, 431, 350, 414, 34,
+ /* 440 */ 465, 211, 177, 175, 160, 525, 414, 34, 338, 549,
+ /* 450 */ 449, 323, 168, 60, 59, 297, 435, 436, 432, 432,
+ /* 460 */ 62, 62, 61, 61, 61, 61, 415, 63, 63, 63,
+ /* 470 */ 63, 64, 64, 65, 65, 65, 66, 210, 292, 542,
+ /* 480 */ 335, 517, 504, 541, 456, 572, 302, 19, 331, 144,
+ /* 490 */ 317, 390, 317, 330, 2, 362, 457, 294, 483, 373,
+ /* 500 */ 269, 268, 252, 571, 425, 431, 589, 391, 388, 458,
+ /* 510 */ 208, 495, 414, 49, 414, 49, 303, 586, 894, 230,
+ /* 520 */ 894, 496, 60, 59, 297, 435, 436, 432, 432, 62,
+ /* 530 */ 62, 61, 61, 61, 61, 201, 63, 63, 63, 63,
+ /* 540 */ 64, 64, 65, 65, 65, 66, 210, 292, 317, 181,
+ /* 550 */ 439, 255, 345, 348, 349, 370, 153, 583, 308, 251,
+ /* 560 */ 309, 452, 76, 350, 78, 382, 211, 426, 427, 415,
+ /* 570 */ 414, 27, 319, 425, 431, 440, 1, 22, 586, 893,
+ /* 580 */ 396, 893, 544, 478, 320, 263, 438, 438, 429, 430,
+ /* 590 */ 415, 60, 59, 297, 435, 436, 432, 432, 62, 62,
+ /* 600 */ 61, 61, 61, 61, 237, 63, 63, 63, 63, 64,
+ /* 610 */ 64, 65, 65, 65, 66, 210, 292, 428, 583, 374,
+ /* 620 */ 224, 93, 517, 9, 159, 396, 557, 396, 456, 67,
+ /* 630 */ 396, 69, 154, 399, 400, 401, 320, 328, 438, 438,
+ /* 640 */ 457, 336, 425, 431, 361, 397, 398, 320, 433, 438,
+ /* 650 */ 438, 582, 291, 458, 238, 327, 318, 222, 546, 292,
+ /* 660 */ 60, 59, 297, 435, 436, 432, 432, 62, 62, 61,
+ /* 670 */ 61, 61, 61, 225, 63, 63, 63, 63, 64, 64,
+ /* 680 */ 65, 65, 65, 66, 210, 425, 431, 482, 313, 392,
+ /* 690 */ 397, 398, 397, 398, 207, 397, 398, 825, 273, 517,
+ /* 700 */ 251, 200, 292, 60, 59, 297, 435, 436, 432, 432,
+ /* 710 */ 62, 62, 61, 61, 61, 61, 470, 63, 63, 63,
+ /* 720 */ 63, 64, 64, 65, 65, 65, 66, 210, 425, 431,
+ /* 730 */ 171, 160, 263, 263, 304, 415, 276, 395, 274, 263,
+ /* 740 */ 517, 517, 263, 517, 192, 292, 60, 70, 297, 435,
+ /* 750 */ 436, 432, 432, 62, 62, 61, 61, 61, 61, 379,
+ /* 760 */ 63, 63, 63, 63, 64, 64, 65, 65, 65, 66,
+ /* 770 */ 210, 425, 431, 384, 559, 305, 306, 251, 415, 320,
+ /* 780 */ 560, 438, 438, 561, 540, 360, 540, 387, 292, 196,
+ /* 790 */ 59, 297, 435, 436, 432, 432, 62, 62, 61, 61,
+ /* 800 */ 61, 61, 371, 63, 63, 63, 63, 64, 64, 65,
+ /* 810 */ 65, 65, 66, 210, 425, 431, 396, 275, 251, 251,
+ /* 820 */ 172, 250, 418, 415, 386, 367, 178, 179, 180, 469,
+ /* 830 */ 311, 123, 156, 5, 297, 435, 436, 432, 432, 62,
+ /* 840 */ 62, 61, 61, 61, 61, 317, 63, 63, 63, 63,
+ /* 850 */ 64, 64, 65, 65, 65, 66, 210, 72, 324, 194,
+ /* 860 */ 4, 317, 263, 317, 296, 263, 415, 414, 28, 317,
+ /* 870 */ 257, 317, 321, 72, 324, 317, 4, 119, 165, 177,
+ /* 880 */ 296, 397, 398, 414, 23, 414, 32, 418, 321, 326,
+ /* 890 */ 421, 414, 53, 414, 52, 317, 158, 414, 98, 451,
+ /* 900 */ 317, 263, 317, 277, 317, 326, 378, 471, 261, 317,
+ /* 910 */ 259, 18, 478, 445, 445, 451, 317, 414, 96, 75,
+ /* 920 */ 74, 469, 414, 101, 414, 102, 414, 112, 73, 315,
+ /* 930 */ 316, 414, 114, 420, 294, 75, 74, 481, 414, 16,
+ /* 940 */ 381, 317, 279, 467, 73, 315, 316, 72, 324, 420,
+ /* 950 */ 4, 208, 317, 183, 296, 317, 186, 128, 84, 208,
+ /* 960 */ 8, 341, 321, 414, 99, 422, 422, 422, 423, 424,
+ /* 970 */ 11, 623, 380, 307, 414, 33, 413, 414, 97, 326,
+ /* 980 */ 412, 422, 422, 422, 423, 424, 11, 415, 413, 451,
+ /* 990 */ 415, 162, 412, 317, 499, 500, 226, 227, 228, 104,
+ /* 1000 */ 448, 476, 317, 173, 507, 317, 509, 508, 317, 75,
+ /* 1010 */ 74, 329, 205, 21, 281, 414, 24, 418, 73, 315,
+ /* 1020 */ 316, 282, 317, 420, 414, 54, 460, 414, 115, 317,
+ /* 1030 */ 414, 116, 502, 203, 147, 549, 514, 468, 128, 202,
+ /* 1040 */ 317, 473, 204, 317, 414, 117, 317, 477, 317, 584,
+ /* 1050 */ 317, 414, 25, 317, 249, 422, 422, 422, 423, 424,
+ /* 1060 */ 11, 506, 414, 36, 512, 414, 37, 317, 414, 26,
+ /* 1070 */ 414, 38, 414, 39, 526, 414, 40, 317, 254, 317,
+ /* 1080 */ 128, 317, 418, 317, 256, 377, 278, 268, 585, 414,
+ /* 1090 */ 42, 293, 317, 352, 317, 128, 208, 513, 258, 414,
+ /* 1100 */ 43, 414, 44, 414, 29, 414, 30, 545, 260, 128,
+ /* 1110 */ 317, 553, 317, 173, 414, 45, 414, 46, 317, 262,
+ /* 1120 */ 383, 554, 317, 91, 564, 317, 91, 317, 581, 189,
+ /* 1130 */ 290, 357, 414, 47, 414, 48, 267, 365, 368, 369,
+ /* 1140 */ 414, 31, 270, 271, 414, 10, 272, 414, 50, 414,
+ /* 1150 */ 51, 556, 566, 280, 283, 284, 578, 146, 419, 405,
+ /* 1160 */ 231, 505, 444, 325, 516, 463, 163, 446, 552, 394,
+ /* 1170 */ 466, 563, 246, 515, 518, 520, 402, 403, 404, 7,
+ /* 1180 */ 314, 84, 232, 334, 347, 83, 332, 57, 170, 79,
+ /* 1190 */ 213, 461, 125, 85, 337, 342, 492, 502, 497, 301,
+ /* 1200 */ 498, 416, 105, 219, 247, 218, 503, 501, 233, 220,
+ /* 1210 */ 287, 234, 527, 528, 235, 529, 417, 521, 354, 288,
+ /* 1220 */ 184, 121, 185, 240, 535, 475, 242, 356, 187, 479,
+ /* 1230 */ 188, 358, 537, 88, 190, 548, 364, 193, 132, 376,
+ /* 1240 */ 555, 375, 133, 134, 135, 310, 562, 138, 136, 575,
+ /* 1250 */ 576, 577, 580, 100, 393, 406, 217, 142, 624, 625,
+ /* 1260 */ 103, 141, 265, 166, 167, 434, 71, 453, 441, 437,
+ /* 1270 */ 450, 143, 538, 157, 120, 454, 161, 472, 455, 169,
+ /* 1280 */ 459, 81, 6, 12, 13, 92, 95, 126, 216, 127,
+ /* 1290 */ 111, 485, 486, 17, 86, 346, 106, 122, 253, 107,
+ /* 1300 */ 87, 108, 182, 245, 355, 145, 351, 536, 129, 359,
+ /* 1310 */ 312, 130, 543, 173, 539, 266, 191, 109, 289, 551,
+ /* 1320 */ 195, 14, 131, 198, 197, 558, 137, 199, 139, 140,
+ /* 1330 */ 15, 565, 89, 90, 573, 110, 385, 206, 148, 389,
+ /* 1340 */ 285, 587,
+};
+static const YYCODETYPE yy_lookahead[] = {
+ /* 0 */ 16, 139, 140, 141, 168, 21, 144, 23, 69, 70,
+ /* 10 */ 71, 72, 176, 74, 75, 76, 77, 78, 79, 80,
+ /* 20 */ 81, 82, 83, 84, 78, 79, 42, 43, 73, 74,
+ /* 30 */ 75, 76, 77, 78, 79, 80, 81, 82, 83, 84,
+ /* 40 */ 1, 2, 23, 58, 60, 61, 62, 63, 64, 65,
+ /* 50 */ 66, 67, 68, 69, 70, 71, 72, 147, 74, 75,
+ /* 60 */ 76, 77, 78, 79, 80, 81, 82, 83, 84, 16,
+ /* 70 */ 185, 186, 88, 88, 110, 22, 217, 92, 219, 220,
+ /* 80 */ 74, 75, 76, 77, 78, 79, 80, 81, 82, 83,
+ /* 90 */ 84, 217, 218, 219, 220, 42, 43, 238, 188, 46,
+ /* 100 */ 78, 79, 80, 81, 82, 83, 84, 88, 89, 124,
+ /* 110 */ 125, 126, 16, 60, 61, 62, 63, 64, 65, 66,
+ /* 120 */ 67, 68, 69, 70, 71, 72, 147, 74, 75, 76,
+ /* 130 */ 77, 78, 79, 80, 81, 82, 83, 84, 42, 43,
+ /* 140 */ 44, 80, 81, 82, 83, 84, 23, 84, 169, 170,
+ /* 150 */ 19, 164, 165, 166, 23, 23, 60, 61, 62, 63,
+ /* 160 */ 64, 65, 66, 67, 68, 69, 70, 71, 72, 110,
+ /* 170 */ 74, 75, 76, 77, 78, 79, 80, 81, 82, 83,
+ /* 180 */ 84, 16, 123, 147, 150, 147, 21, 167, 168, 58,
+ /* 190 */ 211, 147, 156, 157, 92, 216, 176, 23, 147, 176,
+ /* 200 */ 177, 78, 79, 165, 166, 103, 183, 42, 43, 78,
+ /* 210 */ 79, 88, 89, 169, 170, 228, 180, 181, 169, 88,
+ /* 220 */ 88, 98, 99, 92, 16, 60, 61, 62, 63, 64,
+ /* 230 */ 65, 66, 67, 68, 69, 70, 71, 72, 147, 74,
+ /* 240 */ 75, 76, 77, 78, 79, 80, 81, 82, 83, 84,
+ /* 250 */ 42, 43, 78, 209, 210, 124, 125, 126, 224, 208,
+ /* 260 */ 169, 170, 88, 89, 230, 227, 228, 16, 60, 61,
+ /* 270 */ 62, 63, 64, 65, 66, 67, 68, 69, 70, 71,
+ /* 280 */ 72, 23, 74, 75, 76, 77, 78, 79, 80, 81,
+ /* 290 */ 82, 83, 84, 42, 43, 160, 16, 147, 161, 83,
+ /* 300 */ 84, 210, 161, 153, 169, 158, 156, 157, 161, 162,
+ /* 310 */ 163, 60, 61, 62, 63, 64, 65, 66, 67, 68,
+ /* 320 */ 69, 70, 71, 72, 161, 74, 75, 76, 77, 78,
+ /* 330 */ 79, 80, 81, 82, 83, 84, 192, 200, 147, 131,
+ /* 340 */ 16, 200, 16, 199, 20, 169, 88, 89, 90, 185,
+ /* 350 */ 186, 93, 94, 95, 217, 22, 219, 220, 147, 147,
+ /* 360 */ 169, 170, 104, 200, 84, 147, 42, 43, 156, 157,
+ /* 370 */ 90, 91, 92, 93, 94, 95, 96, 164, 165, 166,
+ /* 380 */ 169, 170, 131, 103, 60, 61, 62, 63, 64, 65,
+ /* 390 */ 66, 67, 68, 69, 70, 71, 72, 155, 74, 75,
+ /* 400 */ 76, 77, 78, 79, 80, 81, 82, 83, 84, 16,
+ /* 410 */ 84, 11, 221, 20, 30, 16, 147, 91, 92, 93,
+ /* 420 */ 94, 95, 96, 90, 147, 181, 93, 94, 95, 103,
+ /* 430 */ 212, 189, 155, 27, 50, 42, 43, 104, 169, 170,
+ /* 440 */ 34, 228, 43, 201, 202, 181, 169, 170, 206, 49,
+ /* 450 */ 161, 162, 163, 60, 61, 62, 63, 64, 65, 66,
+ /* 460 */ 67, 68, 69, 70, 71, 72, 189, 74, 75, 76,
+ /* 470 */ 77, 78, 79, 80, 81, 82, 83, 84, 16, 25,
+ /* 480 */ 211, 147, 20, 29, 12, 147, 102, 19, 211, 21,
+ /* 490 */ 147, 141, 147, 216, 144, 41, 24, 98, 20, 99,
+ /* 500 */ 100, 101, 103, 165, 42, 43, 0, 1, 2, 37,
+ /* 510 */ 110, 39, 169, 170, 169, 170, 182, 19, 20, 190,
+ /* 520 */ 22, 49, 60, 61, 62, 63, 64, 65, 66, 67,
+ /* 530 */ 68, 69, 70, 71, 72, 155, 74, 75, 76, 77,
+ /* 540 */ 78, 79, 80, 81, 82, 83, 84, 16, 147, 90,
+ /* 550 */ 20, 20, 93, 94, 95, 147, 155, 59, 215, 225,
+ /* 560 */ 215, 20, 130, 104, 132, 227, 228, 42, 43, 189,
+ /* 570 */ 169, 170, 16, 42, 43, 20, 19, 22, 19, 20,
+ /* 580 */ 23, 22, 18, 147, 106, 147, 108, 109, 63, 64,
+ /* 590 */ 189, 60, 61, 62, 63, 64, 65, 66, 67, 68,
+ /* 600 */ 69, 70, 71, 72, 147, 74, 75, 76, 77, 78,
+ /* 610 */ 79, 80, 81, 82, 83, 84, 16, 92, 59, 55,
+ /* 620 */ 212, 21, 147, 19, 147, 23, 188, 23, 12, 217,
+ /* 630 */ 23, 219, 220, 7, 8, 9, 106, 186, 108, 109,
+ /* 640 */ 24, 147, 42, 43, 208, 88, 89, 106, 92, 108,
+ /* 650 */ 109, 244, 245, 37, 147, 39, 147, 182, 94, 16,
+ /* 660 */ 60, 61, 62, 63, 64, 65, 66, 67, 68, 69,
+ /* 670 */ 70, 71, 72, 145, 74, 75, 76, 77, 78, 79,
+ /* 680 */ 80, 81, 82, 83, 84, 42, 43, 80, 142, 143,
+ /* 690 */ 88, 89, 88, 89, 148, 88, 89, 133, 14, 147,
+ /* 700 */ 225, 155, 16, 60, 61, 62, 63, 64, 65, 66,
+ /* 710 */ 67, 68, 69, 70, 71, 72, 114, 74, 75, 76,
+ /* 720 */ 77, 78, 79, 80, 81, 82, 83, 84, 42, 43,
+ /* 730 */ 201, 202, 147, 147, 182, 189, 52, 147, 54, 147,
+ /* 740 */ 147, 147, 147, 147, 155, 16, 60, 61, 62, 63,
+ /* 750 */ 64, 65, 66, 67, 68, 69, 70, 71, 72, 213,
+ /* 760 */ 74, 75, 76, 77, 78, 79, 80, 81, 82, 83,
+ /* 770 */ 84, 42, 43, 188, 188, 182, 182, 225, 189, 106,
+ /* 780 */ 188, 108, 109, 188, 99, 100, 101, 241, 16, 155,
+ /* 790 */ 61, 62, 63, 64, 65, 66, 67, 68, 69, 70,
+ /* 800 */ 71, 72, 213, 74, 75, 76, 77, 78, 79, 80,
+ /* 810 */ 81, 82, 83, 84, 42, 43, 23, 133, 225, 225,
+ /* 820 */ 21, 225, 23, 189, 239, 236, 99, 100, 101, 22,
+ /* 830 */ 242, 243, 155, 191, 62, 63, 64, 65, 66, 67,
+ /* 840 */ 68, 69, 70, 71, 72, 147, 74, 75, 76, 77,
+ /* 850 */ 78, 79, 80, 81, 82, 83, 84, 16, 17, 22,
+ /* 860 */ 19, 147, 147, 147, 23, 147, 189, 169, 170, 147,
+ /* 870 */ 14, 147, 31, 16, 17, 147, 19, 147, 19, 43,
+ /* 880 */ 23, 88, 89, 169, 170, 169, 170, 88, 31, 48,
+ /* 890 */ 147, 169, 170, 169, 170, 147, 89, 169, 170, 58,
+ /* 900 */ 147, 147, 147, 188, 147, 48, 188, 114, 52, 147,
+ /* 910 */ 54, 19, 147, 124, 125, 58, 147, 169, 170, 78,
+ /* 920 */ 79, 114, 169, 170, 169, 170, 169, 170, 87, 88,
+ /* 930 */ 89, 169, 170, 92, 98, 78, 79, 80, 169, 170,
+ /* 940 */ 91, 147, 188, 22, 87, 88, 89, 16, 17, 92,
+ /* 950 */ 19, 110, 147, 155, 23, 147, 155, 22, 121, 110,
+ /* 960 */ 68, 80, 31, 169, 170, 124, 125, 126, 127, 128,
+ /* 970 */ 129, 112, 123, 208, 169, 170, 107, 169, 170, 48,
+ /* 980 */ 111, 124, 125, 126, 127, 128, 129, 189, 107, 58,
+ /* 990 */ 189, 5, 111, 147, 7, 8, 10, 11, 12, 13,
+ /* 1000 */ 161, 20, 147, 22, 178, 147, 91, 92, 147, 78,
+ /* 1010 */ 79, 147, 26, 19, 28, 169, 170, 23, 87, 88,
+ /* 1020 */ 89, 35, 147, 92, 169, 170, 147, 169, 170, 147,
+ /* 1030 */ 169, 170, 97, 47, 113, 49, 20, 203, 22, 53,
+ /* 1040 */ 147, 147, 56, 147, 169, 170, 147, 147, 147, 20,
+ /* 1050 */ 147, 169, 170, 147, 147, 124, 125, 126, 127, 128,
+ /* 1060 */ 129, 147, 169, 170, 178, 169, 170, 147, 169, 170,
+ /* 1070 */ 169, 170, 169, 170, 147, 169, 170, 147, 20, 147,
+ /* 1080 */ 22, 147, 88, 147, 147, 99, 100, 101, 59, 169,
+ /* 1090 */ 170, 105, 147, 20, 147, 22, 110, 178, 147, 169,
+ /* 1100 */ 170, 169, 170, 169, 170, 169, 170, 20, 147, 22,
+ /* 1110 */ 147, 20, 147, 22, 169, 170, 169, 170, 147, 147,
+ /* 1120 */ 134, 20, 147, 22, 20, 147, 22, 147, 20, 232,
+ /* 1130 */ 22, 233, 169, 170, 169, 170, 147, 147, 147, 147,
+ /* 1140 */ 169, 170, 147, 147, 169, 170, 147, 169, 170, 169,
+ /* 1150 */ 170, 147, 147, 147, 147, 147, 147, 191, 161, 149,
+ /* 1160 */ 193, 177, 229, 223, 161, 172, 6, 229, 194, 146,
+ /* 1170 */ 172, 194, 172, 172, 172, 161, 146, 146, 146, 22,
+ /* 1180 */ 154, 121, 194, 118, 173, 119, 116, 120, 112, 130,
+ /* 1190 */ 222, 152, 152, 98, 115, 98, 171, 97, 171, 40,
+ /* 1200 */ 179, 189, 19, 84, 171, 226, 171, 173, 195, 226,
+ /* 1210 */ 174, 196, 171, 171, 197, 171, 198, 179, 15, 174,
+ /* 1220 */ 151, 60, 151, 204, 152, 205, 204, 152, 151, 205,
+ /* 1230 */ 152, 38, 152, 130, 151, 184, 152, 184, 19, 15,
+ /* 1240 */ 194, 152, 187, 187, 187, 152, 194, 184, 187, 33,
+ /* 1250 */ 152, 152, 137, 159, 1, 20, 175, 214, 112, 112,
+ /* 1260 */ 175, 214, 234, 112, 112, 92, 19, 11, 20, 107,
+ /* 1270 */ 20, 19, 235, 19, 32, 20, 112, 114, 20, 22,
+ /* 1280 */ 20, 22, 117, 22, 117, 237, 237, 19, 44, 20,
+ /* 1290 */ 240, 20, 20, 231, 19, 44, 19, 243, 20, 19,
+ /* 1300 */ 19, 19, 96, 103, 16, 21, 44, 17, 98, 36,
+ /* 1310 */ 246, 45, 45, 22, 51, 133, 98, 19, 5, 1,
+ /* 1320 */ 122, 19, 102, 14, 113, 17, 113, 115, 102, 122,
+ /* 1330 */ 19, 123, 68, 68, 20, 14, 57, 135, 19, 3,
+ /* 1340 */ 136, 4,
+};
+#define YY_SHIFT_USE_DFLT (-62)
+#define YY_SHIFT_MAX 389
+static const short yy_shift_ofst[] = {
+ /* 0 */ 39, 841, 986, -16, 841, 931, 931, 258, 123, -36,
+ /* 10 */ 96, 931, 931, 931, 931, 931, -45, 400, 174, 19,
+ /* 20 */ 132, -54, -54, 53, 165, 208, 251, 324, 393, 462,
+ /* 30 */ 531, 600, 643, 686, 643, 643, 643, 643, 643, 643,
+ /* 40 */ 643, 643, 643, 643, 643, 643, 643, 643, 643, 643,
+ /* 50 */ 643, 643, 729, 772, 772, 857, 931, 931, 931, 931,
+ /* 60 */ 931, 931, 931, 931, 931, 931, 931, 931, 931, 931,
+ /* 70 */ 931, 931, 931, 931, 931, 931, 931, 931, 931, 931,
+ /* 80 */ 931, 931, 931, 931, 931, 931, 931, 931, 931, 931,
+ /* 90 */ 931, 931, 931, 931, 931, 931, -61, -61, 6, 6,
+ /* 100 */ 280, 22, 61, 399, 564, 19, 19, 19, 19, 19,
+ /* 110 */ 19, 19, 216, 132, 63, -62, -62, -62, 131, 326,
+ /* 120 */ 472, 472, 498, 559, 506, 799, 19, 799, 19, 19,
+ /* 130 */ 19, 19, 19, 19, 19, 19, 19, 19, 19, 19,
+ /* 140 */ 19, 849, 59, -36, -36, -36, -62, -62, -62, -15,
+ /* 150 */ -15, 333, 459, 478, 557, 530, 541, 616, 602, 793,
+ /* 160 */ 604, 607, 626, 19, 19, 881, 19, 19, 994, 19,
+ /* 170 */ 19, 807, 19, 19, 673, 807, 19, 19, 384, 384,
+ /* 180 */ 384, 19, 19, 673, 19, 19, 673, 19, 454, 685,
+ /* 190 */ 19, 19, 673, 19, 19, 19, 673, 19, 19, 19,
+ /* 200 */ 673, 673, 19, 19, 19, 19, 19, 468, 869, 921,
+ /* 210 */ 132, 789, 789, 432, 406, 406, 406, 836, 406, 132,
+ /* 220 */ 406, 132, 935, 837, 837, 1160, 1160, 1160, 1160, 1157,
+ /* 230 */ -36, 1060, 1065, 1066, 1070, 1067, 1059, 1076, 1076, 1095,
+ /* 240 */ 1079, 1095, 1079, 1097, 1097, 1159, 1097, 1100, 1097, 1183,
+ /* 250 */ 1119, 1119, 1159, 1097, 1097, 1097, 1183, 1203, 1076, 1203,
+ /* 260 */ 1076, 1203, 1076, 1076, 1193, 1103, 1203, 1076, 1161, 1161,
+ /* 270 */ 1219, 1060, 1076, 1224, 1224, 1224, 1224, 1060, 1161, 1219,
+ /* 280 */ 1076, 1216, 1216, 1076, 1076, 1115, -62, -62, -62, -62,
+ /* 290 */ -62, -62, 525, 684, 727, 856, 859, 556, 555, 981,
+ /* 300 */ 102, 987, 915, 1016, 1058, 1073, 1087, 1091, 1101, 1104,
+ /* 310 */ 892, 1108, 1029, 1253, 1235, 1146, 1147, 1151, 1152, 1173,
+ /* 320 */ 1162, 1247, 1248, 1250, 1252, 1256, 1254, 1255, 1257, 1258,
+ /* 330 */ 1260, 1259, 1165, 1261, 1167, 1259, 1163, 1268, 1269, 1164,
+ /* 340 */ 1271, 1272, 1242, 1244, 1275, 1251, 1277, 1278, 1280, 1281,
+ /* 350 */ 1262, 1282, 1206, 1200, 1288, 1290, 1284, 1210, 1273, 1263,
+ /* 360 */ 1266, 1291, 1267, 1182, 1218, 1298, 1313, 1318, 1220, 1264,
+ /* 370 */ 1265, 1198, 1302, 1211, 1309, 1212, 1308, 1213, 1226, 1207,
+ /* 380 */ 1311, 1208, 1314, 1321, 1279, 1202, 1204, 1319, 1336, 1337,
+};
+#define YY_REDUCE_USE_DFLT (-165)
+#define YY_REDUCE_MAX 291
+static const short yy_reduce_ofst[] = {
+ /* 0 */ -138, 277, 546, 137, 401, -21, 44, 36, 38, 242,
+ /* 10 */ -141, 191, 91, 269, 343, 345, -126, 589, 338, 150,
+ /* 20 */ 147, -13, 213, 412, 412, 412, 412, 412, 412, 412,
+ /* 30 */ 412, 412, 412, 412, 412, 412, 412, 412, 412, 412,
+ /* 40 */ 412, 412, 412, 412, 412, 412, 412, 412, 412, 412,
+ /* 50 */ 412, 412, 412, 412, 412, 211, 698, 714, 716, 722,
+ /* 60 */ 724, 728, 748, 753, 755, 757, 762, 769, 794, 805,
+ /* 70 */ 808, 846, 855, 858, 861, 875, 882, 893, 896, 899,
+ /* 80 */ 901, 903, 906, 920, 930, 932, 934, 936, 945, 947,
+ /* 90 */ 963, 965, 971, 975, 978, 980, 412, 412, 412, 412,
+ /* 100 */ 20, 412, 412, 23, 34, 334, 475, 552, 593, 594,
+ /* 110 */ 585, 212, 412, 289, 412, 412, 412, 412, 135, -164,
+ /* 120 */ -115, 164, 407, 407, 350, 141, 51, 163, 596, -90,
+ /* 130 */ 436, 218, 765, 438, 586, 592, 595, 715, 718, 408,
+ /* 140 */ 754, 380, 634, 677, 798, 801, 144, 529, 588, 49,
+ /* 150 */ 176, 244, 264, 329, 457, 329, 329, 451, 477, 494,
+ /* 160 */ 507, 509, 528, 590, 730, 642, 509, 743, 839, 864,
+ /* 170 */ 879, 834, 894, 900, 329, 834, 907, 914, 826, 886,
+ /* 180 */ 919, 927, 937, 329, 951, 961, 329, 972, 897, 898,
+ /* 190 */ 989, 990, 329, 991, 992, 995, 329, 996, 999, 1004,
+ /* 200 */ 329, 329, 1005, 1006, 1007, 1008, 1009, 1010, 966, 967,
+ /* 210 */ 997, 933, 938, 940, 993, 998, 1000, 984, 1001, 1003,
+ /* 220 */ 1002, 1014, 1011, 974, 977, 1023, 1030, 1031, 1032, 1026,
+ /* 230 */ 1012, 988, 1013, 1015, 1017, 1018, 968, 1039, 1040, 1019,
+ /* 240 */ 1020, 1022, 1024, 1025, 1027, 1021, 1033, 1034, 1035, 1036,
+ /* 250 */ 979, 983, 1038, 1041, 1042, 1044, 1045, 1069, 1072, 1071,
+ /* 260 */ 1075, 1077, 1078, 1080, 1028, 1037, 1083, 1084, 1051, 1053,
+ /* 270 */ 1043, 1046, 1089, 1055, 1056, 1057, 1061, 1052, 1063, 1047,
+ /* 280 */ 1093, 1048, 1049, 1098, 1099, 1050, 1094, 1081, 1085, 1062,
+ /* 290 */ 1054, 1064,
+};
+static const YYACTIONTYPE yy_default[] = {
+ /* 0 */ 595, 820, 902, 710, 902, 820, 902, 902, 848, 714,
+ /* 10 */ 877, 818, 902, 902, 902, 902, 792, 902, 848, 902,
+ /* 20 */ 626, 848, 848, 743, 902, 902, 902, 902, 902, 902,
+ /* 30 */ 902, 902, 744, 902, 822, 817, 813, 815, 814, 821,
+ /* 40 */ 745, 734, 741, 748, 726, 861, 750, 751, 757, 758,
+ /* 50 */ 878, 876, 780, 779, 798, 902, 902, 902, 902, 902,
+ /* 60 */ 902, 902, 902, 902, 902, 902, 902, 902, 902, 902,
+ /* 70 */ 902, 902, 902, 902, 902, 902, 902, 902, 902, 902,
+ /* 80 */ 902, 902, 902, 902, 902, 902, 902, 902, 902, 902,
+ /* 90 */ 902, 902, 902, 902, 902, 902, 782, 804, 781, 791,
+ /* 100 */ 619, 783, 784, 679, 614, 902, 902, 902, 902, 902,
+ /* 110 */ 902, 902, 785, 902, 786, 799, 800, 801, 902, 902,
+ /* 120 */ 902, 902, 902, 902, 595, 710, 902, 710, 902, 902,
+ /* 130 */ 902, 902, 902, 902, 902, 902, 902, 902, 902, 902,
+ /* 140 */ 902, 902, 902, 902, 902, 902, 704, 714, 895, 902,
+ /* 150 */ 902, 670, 902, 902, 902, 902, 902, 902, 902, 902,
+ /* 160 */ 902, 902, 602, 600, 902, 702, 902, 902, 628, 902,
+ /* 170 */ 902, 712, 902, 902, 717, 718, 902, 902, 902, 902,
+ /* 180 */ 902, 902, 902, 616, 902, 902, 691, 902, 854, 902,
+ /* 190 */ 902, 902, 868, 902, 902, 902, 866, 902, 902, 902,
+ /* 200 */ 693, 753, 834, 902, 881, 883, 902, 902, 702, 711,
+ /* 210 */ 902, 902, 902, 816, 737, 737, 737, 649, 737, 902,
+ /* 220 */ 737, 902, 652, 747, 747, 599, 599, 599, 599, 669,
+ /* 230 */ 902, 747, 738, 740, 730, 742, 902, 719, 719, 727,
+ /* 240 */ 729, 727, 729, 681, 681, 666, 681, 652, 681, 826,
+ /* 250 */ 831, 831, 666, 681, 681, 681, 826, 611, 719, 611,
+ /* 260 */ 719, 611, 719, 719, 858, 860, 611, 719, 683, 683,
+ /* 270 */ 759, 747, 719, 690, 690, 690, 690, 747, 683, 759,
+ /* 280 */ 719, 880, 880, 719, 719, 888, 636, 654, 654, 863,
+ /* 290 */ 895, 900, 902, 902, 902, 902, 766, 902, 902, 902,
+ /* 300 */ 902, 902, 902, 902, 902, 902, 902, 902, 902, 902,
+ /* 310 */ 841, 902, 902, 902, 902, 771, 767, 902, 768, 902,
+ /* 320 */ 696, 902, 902, 902, 902, 902, 902, 902, 902, 902,
+ /* 330 */ 902, 819, 902, 731, 902, 739, 902, 902, 902, 902,
+ /* 340 */ 902, 902, 902, 902, 902, 902, 902, 902, 902, 902,
+ /* 350 */ 902, 902, 902, 902, 902, 902, 902, 902, 902, 902,
+ /* 360 */ 856, 857, 902, 902, 902, 902, 902, 902, 902, 902,
+ /* 370 */ 902, 902, 902, 902, 902, 902, 902, 902, 902, 902,
+ /* 380 */ 902, 902, 902, 902, 887, 902, 902, 890, 596, 902,
+ /* 390 */ 590, 593, 592, 594, 598, 601, 623, 624, 625, 603,
+ /* 400 */ 604, 605, 606, 607, 608, 609, 615, 617, 635, 637,
+ /* 410 */ 621, 639, 700, 701, 763, 694, 695, 699, 622, 774,
+ /* 420 */ 765, 769, 770, 772, 773, 787, 788, 790, 796, 803,
+ /* 430 */ 806, 789, 794, 795, 797, 802, 805, 697, 698, 809,
+ /* 440 */ 629, 630, 633, 634, 844, 846, 845, 847, 632, 631,
+ /* 450 */ 775, 778, 811, 812, 869, 870, 871, 872, 873, 807,
+ /* 460 */ 720, 810, 793, 732, 735, 736, 733, 703, 713, 722,
+ /* 470 */ 723, 724, 725, 708, 709, 715, 728, 761, 762, 716,
+ /* 480 */ 705, 706, 707, 808, 764, 776, 777, 640, 641, 771,
+ /* 490 */ 642, 643, 644, 682, 685, 686, 687, 645, 664, 667,
+ /* 500 */ 668, 646, 653, 647, 648, 655, 656, 657, 660, 661,
+ /* 510 */ 662, 663, 658, 659, 827, 828, 832, 830, 829, 650,
+ /* 520 */ 651, 665, 638, 627, 620, 671, 674, 675, 676, 677,
+ /* 530 */ 678, 680, 672, 673, 618, 610, 612, 721, 850, 859,
+ /* 540 */ 855, 851, 852, 853, 613, 823, 824, 684, 755, 756,
+ /* 550 */ 849, 862, 864, 760, 865, 867, 892, 688, 689, 692,
+ /* 560 */ 833, 874, 746, 749, 752, 754, 835, 836, 837, 838,
+ /* 570 */ 839, 842, 843, 840, 875, 879, 882, 884, 885, 886,
+ /* 580 */ 889, 891, 896, 897, 898, 901, 899, 597, 591,
+};
+#define YY_SZ_ACTTAB (int)(sizeof(yy_action)/sizeof(yy_action[0]))
+
+/* The next table maps tokens into fallback tokens. If a construct
+** like the following:
+**
+** %fallback ID X Y Z.
+**
+** appears in the grammer, then ID becomes a fallback token for X, Y,
+** and Z. Whenever one of the tokens X, Y, or Z is input to the parser
+** but it does not parse, the type of the token is changed to ID and
+** the parse is retried before an error is thrown.
+*/
+#ifdef YYFALLBACK
+static const YYCODETYPE yyFallback[] = {
+ 0, /* $ => nothing */
+ 0, /* SEMI => nothing */
+ 23, /* EXPLAIN => ID */
+ 23, /* QUERY => ID */
+ 23, /* PLAN => ID */
+ 23, /* BEGIN => ID */
+ 0, /* TRANSACTION => nothing */
+ 23, /* DEFERRED => ID */
+ 23, /* IMMEDIATE => ID */
+ 23, /* EXCLUSIVE => ID */
+ 0, /* COMMIT => nothing */
+ 23, /* END => ID */
+ 0, /* ROLLBACK => nothing */
+ 0, /* CREATE => nothing */
+ 0, /* TABLE => nothing */
+ 23, /* IF => ID */
+ 0, /* NOT => nothing */
+ 0, /* EXISTS => nothing */
+ 23, /* TEMP => ID */
+ 0, /* LP => nothing */
+ 0, /* RP => nothing */
+ 0, /* AS => nothing */
+ 0, /* COMMA => nothing */
+ 0, /* ID => nothing */
+ 23, /* ABORT => ID */
+ 23, /* AFTER => ID */
+ 23, /* ANALYZE => ID */
+ 23, /* ASC => ID */
+ 23, /* ATTACH => ID */
+ 23, /* BEFORE => ID */
+ 23, /* CASCADE => ID */
+ 23, /* CAST => ID */
+ 23, /* CONFLICT => ID */
+ 23, /* DATABASE => ID */
+ 23, /* DESC => ID */
+ 23, /* DETACH => ID */
+ 23, /* EACH => ID */
+ 23, /* FAIL => ID */
+ 23, /* FOR => ID */
+ 23, /* IGNORE => ID */
+ 23, /* INITIALLY => ID */
+ 23, /* INSTEAD => ID */
+ 23, /* LIKE_KW => ID */
+ 23, /* MATCH => ID */
+ 23, /* KEY => ID */
+ 23, /* OF => ID */
+ 23, /* OFFSET => ID */
+ 23, /* PRAGMA => ID */
+ 23, /* RAISE => ID */
+ 23, /* REPLACE => ID */
+ 23, /* RESTRICT => ID */
+ 23, /* ROW => ID */
+ 23, /* TRIGGER => ID */
+ 23, /* VACUUM => ID */
+ 23, /* VIEW => ID */
+ 23, /* VIRTUAL => ID */
+ 23, /* REINDEX => ID */
+ 23, /* RENAME => ID */
+ 23, /* CTIME_KW => ID */
+ 0, /* ANY => nothing */
+ 0, /* OR => nothing */
+ 0, /* AND => nothing */
+ 0, /* IS => nothing */
+ 0, /* BETWEEN => nothing */
+ 0, /* IN => nothing */
+ 0, /* ISNULL => nothing */
+ 0, /* NOTNULL => nothing */
+ 0, /* NE => nothing */
+ 0, /* EQ => nothing */
+ 0, /* GT => nothing */
+ 0, /* LE => nothing */
+ 0, /* LT => nothing */
+ 0, /* GE => nothing */
+ 0, /* ESCAPE => nothing */
+ 0, /* BITAND => nothing */
+ 0, /* BITOR => nothing */
+ 0, /* LSHIFT => nothing */
+ 0, /* RSHIFT => nothing */
+ 0, /* PLUS => nothing */
+ 0, /* MINUS => nothing */
+ 0, /* STAR => nothing */
+ 0, /* SLASH => nothing */
+ 0, /* REM => nothing */
+ 0, /* CONCAT => nothing */
+ 0, /* COLLATE => nothing */
+ 0, /* UMINUS => nothing */
+ 0, /* UPLUS => nothing */
+ 0, /* BITNOT => nothing */
+ 0, /* STRING => nothing */
+ 0, /* JOIN_KW => nothing */
+ 0, /* CONSTRAINT => nothing */
+ 0, /* DEFAULT => nothing */
+ 0, /* NULL => nothing */
+ 0, /* PRIMARY => nothing */
+ 0, /* UNIQUE => nothing */
+ 0, /* CHECK => nothing */
+ 0, /* REFERENCES => nothing */
+ 0, /* AUTOINCR => nothing */
+ 0, /* ON => nothing */
+ 0, /* DELETE => nothing */
+ 0, /* UPDATE => nothing */
+ 0, /* INSERT => nothing */
+ 0, /* SET => nothing */
+ 0, /* DEFERRABLE => nothing */
+ 0, /* FOREIGN => nothing */
+ 0, /* DROP => nothing */
+ 0, /* UNION => nothing */
+ 0, /* ALL => nothing */
+ 0, /* EXCEPT => nothing */
+ 0, /* INTERSECT => nothing */
+ 0, /* SELECT => nothing */
+ 0, /* DISTINCT => nothing */
+ 0, /* DOT => nothing */
+ 0, /* FROM => nothing */
+ 0, /* JOIN => nothing */
+ 0, /* USING => nothing */
+ 0, /* ORDER => nothing */
+ 0, /* BY => nothing */
+ 0, /* GROUP => nothing */
+ 0, /* HAVING => nothing */
+ 0, /* LIMIT => nothing */
+ 0, /* WHERE => nothing */
+ 0, /* INTO => nothing */
+ 0, /* VALUES => nothing */
+ 0, /* INTEGER => nothing */
+ 0, /* FLOAT => nothing */
+ 0, /* BLOB => nothing */
+ 0, /* REGISTER => nothing */
+ 0, /* VARIABLE => nothing */
+ 0, /* CASE => nothing */
+ 0, /* WHEN => nothing */
+ 0, /* THEN => nothing */
+ 0, /* ELSE => nothing */
+ 0, /* INDEX => nothing */
+ 0, /* ALTER => nothing */
+ 0, /* TO => nothing */
+ 0, /* ADD => nothing */
+ 0, /* COLUMNKW => nothing */
+};
+#endif /* YYFALLBACK */
+
+/* The following structure represents a single element of the
+** parser's stack. Information stored includes:
+**
+** + The state number for the parser at this level of the stack.
+**
+** + The value of the token stored at this level of the stack.
+** (In other words, the "major" token.)
+**
+** + The semantic value stored at this level of the stack. This is
+** the information used by the action routines in the grammar.
+** It is sometimes called the "minor" token.
+*/
+struct yyStackEntry {
+ int stateno; /* The state-number */
+ int major; /* The major token value. This is the code
+ ** number for the token at this stack level */
+ YYMINORTYPE minor; /* The user-supplied minor token value. This
+ ** is the value of the token */
+};
+typedef struct yyStackEntry yyStackEntry;
+
+/* The state of the parser is completely contained in an instance of
+** the following structure */
+struct yyParser {
+ int yyidx; /* Index of top element in stack */
+ int yyerrcnt; /* Shifts left before out of the error */
+ sqlite3ParserARG_SDECL /* A place to hold %extra_argument */
+#if YYSTACKDEPTH<=0
+ int yystksz; /* Current side of the stack */
+ yyStackEntry *yystack; /* The parser's stack */
+#else
+ yyStackEntry yystack[YYSTACKDEPTH]; /* The parser's stack */
+#endif
+};
+typedef struct yyParser yyParser;
+
+#ifndef NDEBUG
+static FILE *yyTraceFILE = 0;
+static char *yyTracePrompt = 0;
+#endif /* NDEBUG */
+
+#ifndef NDEBUG
+/*
+** Turn parser tracing on by giving a stream to which to write the trace
+** and a prompt to preface each trace message. Tracing is turned off
+** by making either argument NULL
+**
+** Inputs:
+** <ul>
+** <li> A FILE* to which trace output should be written.
+** If NULL, then tracing is turned off.
+** <li> A prefix string written at the beginning of every
+** line of trace output. If NULL, then tracing is
+** turned off.
+** </ul>
+**
+** Outputs:
+** None.
+*/
+SQLITE_PRIVATE void sqlite3ParserTrace(FILE *TraceFILE, char *zTracePrompt){
+ yyTraceFILE = TraceFILE;
+ yyTracePrompt = zTracePrompt;
+ if( yyTraceFILE==0 ) yyTracePrompt = 0;
+ else if( yyTracePrompt==0 ) yyTraceFILE = 0;
+}
+#endif /* NDEBUG */
+
+#ifndef NDEBUG
+/* For tracing shifts, the names of all terminals and nonterminals
+** are required. The following table supplies these names */
+static const char *const yyTokenName[] = {
+ "$", "SEMI", "EXPLAIN", "QUERY",
+ "PLAN", "BEGIN", "TRANSACTION", "DEFERRED",
+ "IMMEDIATE", "EXCLUSIVE", "COMMIT", "END",
+ "ROLLBACK", "CREATE", "TABLE", "IF",
+ "NOT", "EXISTS", "TEMP", "LP",
+ "RP", "AS", "COMMA", "ID",
+ "ABORT", "AFTER", "ANALYZE", "ASC",
+ "ATTACH", "BEFORE", "CASCADE", "CAST",
+ "CONFLICT", "DATABASE", "DESC", "DETACH",
+ "EACH", "FAIL", "FOR", "IGNORE",
+ "INITIALLY", "INSTEAD", "LIKE_KW", "MATCH",
+ "KEY", "OF", "OFFSET", "PRAGMA",
+ "RAISE", "REPLACE", "RESTRICT", "ROW",
+ "TRIGGER", "VACUUM", "VIEW", "VIRTUAL",
+ "REINDEX", "RENAME", "CTIME_KW", "ANY",
+ "OR", "AND", "IS", "BETWEEN",
+ "IN", "ISNULL", "NOTNULL", "NE",
+ "EQ", "GT", "LE", "LT",
+ "GE", "ESCAPE", "BITAND", "BITOR",
+ "LSHIFT", "RSHIFT", "PLUS", "MINUS",
+ "STAR", "SLASH", "REM", "CONCAT",
+ "COLLATE", "UMINUS", "UPLUS", "BITNOT",
+ "STRING", "JOIN_KW", "CONSTRAINT", "DEFAULT",
+ "NULL", "PRIMARY", "UNIQUE", "CHECK",
+ "REFERENCES", "AUTOINCR", "ON", "DELETE",
+ "UPDATE", "INSERT", "SET", "DEFERRABLE",
+ "FOREIGN", "DROP", "UNION", "ALL",
+ "EXCEPT", "INTERSECT", "SELECT", "DISTINCT",
+ "DOT", "FROM", "JOIN", "USING",
+ "ORDER", "BY", "GROUP", "HAVING",
+ "LIMIT", "WHERE", "INTO", "VALUES",
+ "INTEGER", "FLOAT", "BLOB", "REGISTER",
+ "VARIABLE", "CASE", "WHEN", "THEN",
+ "ELSE", "INDEX", "ALTER", "TO",
+ "ADD", "COLUMNKW", "error", "input",
+ "cmdlist", "ecmd", "cmdx", "cmd",
+ "explain", "transtype", "trans_opt", "nm",
+ "create_table", "create_table_args", "temp", "ifnotexists",
+ "dbnm", "columnlist", "conslist_opt", "select",
+ "column", "columnid", "type", "carglist",
+ "id", "ids", "typetoken", "typename",
+ "signed", "plus_num", "minus_num", "carg",
+ "ccons", "term", "expr", "onconf",
+ "sortorder", "autoinc", "idxlist_opt", "refargs",
+ "defer_subclause", "refarg", "refact", "init_deferred_pred_opt",
+ "conslist", "tcons", "idxlist", "defer_subclause_opt",
+ "orconf", "resolvetype", "raisetype", "ifexists",
+ "fullname", "oneselect", "multiselect_op", "distinct",
+ "selcollist", "from", "where_opt", "groupby_opt",
+ "having_opt", "orderby_opt", "limit_opt", "sclp",
+ "as", "seltablist", "stl_prefix", "joinop",
+ "on_opt", "using_opt", "seltablist_paren", "joinop2",
+ "inscollist", "sortlist", "sortitem", "nexprlist",
+ "setlist", "insert_cmd", "inscollist_opt", "itemlist",
+ "exprlist", "likeop", "escape", "between_op",
+ "in_op", "case_operand", "case_exprlist", "case_else",
+ "uniqueflag", "idxitem", "collate", "nmnum",
+ "plus_opt", "number", "trigger_decl", "trigger_cmd_list",
+ "trigger_time", "trigger_event", "foreach_clause", "when_clause",
+ "trigger_cmd", "database_kw_opt", "key_opt", "add_column_fullname",
+ "kwcolumn_opt", "create_vtab", "vtabarglist", "vtabarg",
+ "vtabargtoken", "lp", "anylist",
+};
+#endif /* NDEBUG */
+
+#ifndef NDEBUG
+/* For tracing reduce actions, the names of all rules are required.
+*/
+static const char *const yyRuleName[] = {
+ /* 0 */ "input ::= cmdlist",
+ /* 1 */ "cmdlist ::= cmdlist ecmd",
+ /* 2 */ "cmdlist ::= ecmd",
+ /* 3 */ "cmdx ::= cmd",
+ /* 4 */ "ecmd ::= SEMI",
+ /* 5 */ "ecmd ::= explain cmdx SEMI",
+ /* 6 */ "explain ::=",
+ /* 7 */ "explain ::= EXPLAIN",
+ /* 8 */ "explain ::= EXPLAIN QUERY PLAN",
+ /* 9 */ "cmd ::= BEGIN transtype trans_opt",
+ /* 10 */ "trans_opt ::=",
+ /* 11 */ "trans_opt ::= TRANSACTION",
+ /* 12 */ "trans_opt ::= TRANSACTION nm",
+ /* 13 */ "transtype ::=",
+ /* 14 */ "transtype ::= DEFERRED",
+ /* 15 */ "transtype ::= IMMEDIATE",
+ /* 16 */ "transtype ::= EXCLUSIVE",
+ /* 17 */ "cmd ::= COMMIT trans_opt",
+ /* 18 */ "cmd ::= END trans_opt",
+ /* 19 */ "cmd ::= ROLLBACK trans_opt",
+ /* 20 */ "cmd ::= create_table create_table_args",
+ /* 21 */ "create_table ::= CREATE temp TABLE ifnotexists nm dbnm",
+ /* 22 */ "ifnotexists ::=",
+ /* 23 */ "ifnotexists ::= IF NOT EXISTS",
+ /* 24 */ "temp ::= TEMP",
+ /* 25 */ "temp ::=",
+ /* 26 */ "create_table_args ::= LP columnlist conslist_opt RP",
+ /* 27 */ "create_table_args ::= AS select",
+ /* 28 */ "columnlist ::= columnlist COMMA column",
+ /* 29 */ "columnlist ::= column",
+ /* 30 */ "column ::= columnid type carglist",
+ /* 31 */ "columnid ::= nm",
+ /* 32 */ "id ::= ID",
+ /* 33 */ "ids ::= ID|STRING",
+ /* 34 */ "nm ::= ID",
+ /* 35 */ "nm ::= STRING",
+ /* 36 */ "nm ::= JOIN_KW",
+ /* 37 */ "type ::=",
+ /* 38 */ "type ::= typetoken",
+ /* 39 */ "typetoken ::= typename",
+ /* 40 */ "typetoken ::= typename LP signed RP",
+ /* 41 */ "typetoken ::= typename LP signed COMMA signed RP",
+ /* 42 */ "typename ::= ids",
+ /* 43 */ "typename ::= typename ids",
+ /* 44 */ "signed ::= plus_num",
+ /* 45 */ "signed ::= minus_num",
+ /* 46 */ "carglist ::= carglist carg",
+ /* 47 */ "carglist ::=",
+ /* 48 */ "carg ::= CONSTRAINT nm ccons",
+ /* 49 */ "carg ::= ccons",
+ /* 50 */ "ccons ::= DEFAULT term",
+ /* 51 */ "ccons ::= DEFAULT LP expr RP",
+ /* 52 */ "ccons ::= DEFAULT PLUS term",
+ /* 53 */ "ccons ::= DEFAULT MINUS term",
+ /* 54 */ "ccons ::= DEFAULT id",
+ /* 55 */ "ccons ::= NULL onconf",
+ /* 56 */ "ccons ::= NOT NULL onconf",
+ /* 57 */ "ccons ::= PRIMARY KEY sortorder onconf autoinc",
+ /* 58 */ "ccons ::= UNIQUE onconf",
+ /* 59 */ "ccons ::= CHECK LP expr RP",
+ /* 60 */ "ccons ::= REFERENCES nm idxlist_opt refargs",
+ /* 61 */ "ccons ::= defer_subclause",
+ /* 62 */ "ccons ::= COLLATE ids",
+ /* 63 */ "autoinc ::=",
+ /* 64 */ "autoinc ::= AUTOINCR",
+ /* 65 */ "refargs ::=",
+ /* 66 */ "refargs ::= refargs refarg",
+ /* 67 */ "refarg ::= MATCH nm",
+ /* 68 */ "refarg ::= ON DELETE refact",
+ /* 69 */ "refarg ::= ON UPDATE refact",
+ /* 70 */ "refarg ::= ON INSERT refact",
+ /* 71 */ "refact ::= SET NULL",
+ /* 72 */ "refact ::= SET DEFAULT",
+ /* 73 */ "refact ::= CASCADE",
+ /* 74 */ "refact ::= RESTRICT",
+ /* 75 */ "defer_subclause ::= NOT DEFERRABLE init_deferred_pred_opt",
+ /* 76 */ "defer_subclause ::= DEFERRABLE init_deferred_pred_opt",
+ /* 77 */ "init_deferred_pred_opt ::=",
+ /* 78 */ "init_deferred_pred_opt ::= INITIALLY DEFERRED",
+ /* 79 */ "init_deferred_pred_opt ::= INITIALLY IMMEDIATE",
+ /* 80 */ "conslist_opt ::=",
+ /* 81 */ "conslist_opt ::= COMMA conslist",
+ /* 82 */ "conslist ::= conslist COMMA tcons",
+ /* 83 */ "conslist ::= conslist tcons",
+ /* 84 */ "conslist ::= tcons",
+ /* 85 */ "tcons ::= CONSTRAINT nm",
+ /* 86 */ "tcons ::= PRIMARY KEY LP idxlist autoinc RP onconf",
+ /* 87 */ "tcons ::= UNIQUE LP idxlist RP onconf",
+ /* 88 */ "tcons ::= CHECK LP expr RP onconf",
+ /* 89 */ "tcons ::= FOREIGN KEY LP idxlist RP REFERENCES nm idxlist_opt refargs defer_subclause_opt",
+ /* 90 */ "defer_subclause_opt ::=",
+ /* 91 */ "defer_subclause_opt ::= defer_subclause",
+ /* 92 */ "onconf ::=",
+ /* 93 */ "onconf ::= ON CONFLICT resolvetype",
+ /* 94 */ "orconf ::=",
+ /* 95 */ "orconf ::= OR resolvetype",
+ /* 96 */ "resolvetype ::= raisetype",
+ /* 97 */ "resolvetype ::= IGNORE",
+ /* 98 */ "resolvetype ::= REPLACE",
+ /* 99 */ "cmd ::= DROP TABLE ifexists fullname",
+ /* 100 */ "ifexists ::= IF EXISTS",
+ /* 101 */ "ifexists ::=",
+ /* 102 */ "cmd ::= CREATE temp VIEW ifnotexists nm dbnm AS select",
+ /* 103 */ "cmd ::= DROP VIEW ifexists fullname",
+ /* 104 */ "cmd ::= select",
+ /* 105 */ "select ::= oneselect",
+ /* 106 */ "select ::= select multiselect_op oneselect",
+ /* 107 */ "multiselect_op ::= UNION",
+ /* 108 */ "multiselect_op ::= UNION ALL",
+ /* 109 */ "multiselect_op ::= EXCEPT|INTERSECT",
+ /* 110 */ "oneselect ::= SELECT distinct selcollist from where_opt groupby_opt having_opt orderby_opt limit_opt",
+ /* 111 */ "distinct ::= DISTINCT",
+ /* 112 */ "distinct ::= ALL",
+ /* 113 */ "distinct ::=",
+ /* 114 */ "sclp ::= selcollist COMMA",
+ /* 115 */ "sclp ::=",
+ /* 116 */ "selcollist ::= sclp expr as",
+ /* 117 */ "selcollist ::= sclp STAR",
+ /* 118 */ "selcollist ::= sclp nm DOT STAR",
+ /* 119 */ "as ::= AS nm",
+ /* 120 */ "as ::= ids",
+ /* 121 */ "as ::=",
+ /* 122 */ "from ::=",
+ /* 123 */ "from ::= FROM seltablist",
+ /* 124 */ "stl_prefix ::= seltablist joinop",
+ /* 125 */ "stl_prefix ::=",
+ /* 126 */ "seltablist ::= stl_prefix nm dbnm as on_opt using_opt",
+ /* 127 */ "seltablist ::= stl_prefix LP seltablist_paren RP as on_opt using_opt",
+ /* 128 */ "seltablist_paren ::= select",
+ /* 129 */ "seltablist_paren ::= seltablist",
+ /* 130 */ "dbnm ::=",
+ /* 131 */ "dbnm ::= DOT nm",
+ /* 132 */ "fullname ::= nm dbnm",
+ /* 133 */ "joinop ::= COMMA|JOIN",
+ /* 134 */ "joinop ::= JOIN_KW JOIN",
+ /* 135 */ "joinop ::= JOIN_KW nm JOIN",
+ /* 136 */ "joinop ::= JOIN_KW nm nm JOIN",
+ /* 137 */ "on_opt ::= ON expr",
+ /* 138 */ "on_opt ::=",
+ /* 139 */ "using_opt ::= USING LP inscollist RP",
+ /* 140 */ "using_opt ::=",
+ /* 141 */ "orderby_opt ::=",
+ /* 142 */ "orderby_opt ::= ORDER BY sortlist",
+ /* 143 */ "sortlist ::= sortlist COMMA sortitem sortorder",
+ /* 144 */ "sortlist ::= sortitem sortorder",
+ /* 145 */ "sortitem ::= expr",
+ /* 146 */ "sortorder ::= ASC",
+ /* 147 */ "sortorder ::= DESC",
+ /* 148 */ "sortorder ::=",
+ /* 149 */ "groupby_opt ::=",
+ /* 150 */ "groupby_opt ::= GROUP BY nexprlist",
+ /* 151 */ "having_opt ::=",
+ /* 152 */ "having_opt ::= HAVING expr",
+ /* 153 */ "limit_opt ::=",
+ /* 154 */ "limit_opt ::= LIMIT expr",
+ /* 155 */ "limit_opt ::= LIMIT expr OFFSET expr",
+ /* 156 */ "limit_opt ::= LIMIT expr COMMA expr",
+ /* 157 */ "cmd ::= DELETE FROM fullname where_opt",
+ /* 158 */ "where_opt ::=",
+ /* 159 */ "where_opt ::= WHERE expr",
+ /* 160 */ "cmd ::= UPDATE orconf fullname SET setlist where_opt",
+ /* 161 */ "setlist ::= setlist COMMA nm EQ expr",
+ /* 162 */ "setlist ::= nm EQ expr",
+ /* 163 */ "cmd ::= insert_cmd INTO fullname inscollist_opt VALUES LP itemlist RP",
+ /* 164 */ "cmd ::= insert_cmd INTO fullname inscollist_opt select",
+ /* 165 */ "cmd ::= insert_cmd INTO fullname inscollist_opt DEFAULT VALUES",
+ /* 166 */ "insert_cmd ::= INSERT orconf",
+ /* 167 */ "insert_cmd ::= REPLACE",
+ /* 168 */ "itemlist ::= itemlist COMMA expr",
+ /* 169 */ "itemlist ::= expr",
+ /* 170 */ "inscollist_opt ::=",
+ /* 171 */ "inscollist_opt ::= LP inscollist RP",
+ /* 172 */ "inscollist ::= inscollist COMMA nm",
+ /* 173 */ "inscollist ::= nm",
+ /* 174 */ "expr ::= term",
+ /* 175 */ "expr ::= LP expr RP",
+ /* 176 */ "term ::= NULL",
+ /* 177 */ "expr ::= ID",
+ /* 178 */ "expr ::= JOIN_KW",
+ /* 179 */ "expr ::= nm DOT nm",
+ /* 180 */ "expr ::= nm DOT nm DOT nm",
+ /* 181 */ "term ::= INTEGER|FLOAT|BLOB",
+ /* 182 */ "term ::= STRING",
+ /* 183 */ "expr ::= REGISTER",
+ /* 184 */ "expr ::= VARIABLE",
+ /* 185 */ "expr ::= expr COLLATE ids",
+ /* 186 */ "expr ::= CAST LP expr AS typetoken RP",
+ /* 187 */ "expr ::= ID LP distinct exprlist RP",
+ /* 188 */ "expr ::= ID LP STAR RP",
+ /* 189 */ "term ::= CTIME_KW",
+ /* 190 */ "expr ::= expr AND expr",
+ /* 191 */ "expr ::= expr OR expr",
+ /* 192 */ "expr ::= expr LT|GT|GE|LE expr",
+ /* 193 */ "expr ::= expr EQ|NE expr",
+ /* 194 */ "expr ::= expr BITAND|BITOR|LSHIFT|RSHIFT expr",
+ /* 195 */ "expr ::= expr PLUS|MINUS expr",
+ /* 196 */ "expr ::= expr STAR|SLASH|REM expr",
+ /* 197 */ "expr ::= expr CONCAT expr",
+ /* 198 */ "likeop ::= LIKE_KW",
+ /* 199 */ "likeop ::= NOT LIKE_KW",
+ /* 200 */ "likeop ::= MATCH",
+ /* 201 */ "likeop ::= NOT MATCH",
+ /* 202 */ "escape ::= ESCAPE expr",
+ /* 203 */ "escape ::=",
+ /* 204 */ "expr ::= expr likeop expr escape",
+ /* 205 */ "expr ::= expr ISNULL|NOTNULL",
+ /* 206 */ "expr ::= expr IS NULL",
+ /* 207 */ "expr ::= expr NOT NULL",
+ /* 208 */ "expr ::= expr IS NOT NULL",
+ /* 209 */ "expr ::= NOT expr",
+ /* 210 */ "expr ::= BITNOT expr",
+ /* 211 */ "expr ::= MINUS expr",
+ /* 212 */ "expr ::= PLUS expr",
+ /* 213 */ "between_op ::= BETWEEN",
+ /* 214 */ "between_op ::= NOT BETWEEN",
+ /* 215 */ "expr ::= expr between_op expr AND expr",
+ /* 216 */ "in_op ::= IN",
+ /* 217 */ "in_op ::= NOT IN",
+ /* 218 */ "expr ::= expr in_op LP exprlist RP",
+ /* 219 */ "expr ::= LP select RP",
+ /* 220 */ "expr ::= expr in_op LP select RP",
+ /* 221 */ "expr ::= expr in_op nm dbnm",
+ /* 222 */ "expr ::= EXISTS LP select RP",
+ /* 223 */ "expr ::= CASE case_operand case_exprlist case_else END",
+ /* 224 */ "case_exprlist ::= case_exprlist WHEN expr THEN expr",
+ /* 225 */ "case_exprlist ::= WHEN expr THEN expr",
+ /* 226 */ "case_else ::= ELSE expr",
+ /* 227 */ "case_else ::=",
+ /* 228 */ "case_operand ::= expr",
+ /* 229 */ "case_operand ::=",
+ /* 230 */ "exprlist ::= nexprlist",
+ /* 231 */ "exprlist ::=",
+ /* 232 */ "nexprlist ::= nexprlist COMMA expr",
+ /* 233 */ "nexprlist ::= expr",
+ /* 234 */ "cmd ::= CREATE uniqueflag INDEX ifnotexists nm dbnm ON nm LP idxlist RP",
+ /* 235 */ "uniqueflag ::= UNIQUE",
+ /* 236 */ "uniqueflag ::=",
+ /* 237 */ "idxlist_opt ::=",
+ /* 238 */ "idxlist_opt ::= LP idxlist RP",
+ /* 239 */ "idxlist ::= idxlist COMMA idxitem collate sortorder",
+ /* 240 */ "idxlist ::= idxitem collate sortorder",
+ /* 241 */ "idxitem ::= nm",
+ /* 242 */ "collate ::=",
+ /* 243 */ "collate ::= COLLATE ids",
+ /* 244 */ "cmd ::= DROP INDEX ifexists fullname",
+ /* 245 */ "cmd ::= VACUUM",
+ /* 246 */ "cmd ::= VACUUM nm",
+ /* 247 */ "cmd ::= PRAGMA nm dbnm EQ nmnum",
+ /* 248 */ "cmd ::= PRAGMA nm dbnm EQ ON",
+ /* 249 */ "cmd ::= PRAGMA nm dbnm EQ DELETE",
+ /* 250 */ "cmd ::= PRAGMA nm dbnm EQ minus_num",
+ /* 251 */ "cmd ::= PRAGMA nm dbnm LP nmnum RP",
+ /* 252 */ "cmd ::= PRAGMA nm dbnm",
+ /* 253 */ "nmnum ::= plus_num",
+ /* 254 */ "nmnum ::= nm",
+ /* 255 */ "plus_num ::= plus_opt number",
+ /* 256 */ "minus_num ::= MINUS number",
+ /* 257 */ "number ::= INTEGER|FLOAT",
+ /* 258 */ "plus_opt ::= PLUS",
+ /* 259 */ "plus_opt ::=",
+ /* 260 */ "cmd ::= CREATE trigger_decl BEGIN trigger_cmd_list END",
+ /* 261 */ "trigger_decl ::= temp TRIGGER ifnotexists nm dbnm trigger_time trigger_event ON fullname foreach_clause when_clause",
+ /* 262 */ "trigger_time ::= BEFORE",
+ /* 263 */ "trigger_time ::= AFTER",
+ /* 264 */ "trigger_time ::= INSTEAD OF",
+ /* 265 */ "trigger_time ::=",
+ /* 266 */ "trigger_event ::= DELETE|INSERT",
+ /* 267 */ "trigger_event ::= UPDATE",
+ /* 268 */ "trigger_event ::= UPDATE OF inscollist",
+ /* 269 */ "foreach_clause ::=",
+ /* 270 */ "foreach_clause ::= FOR EACH ROW",
+ /* 271 */ "when_clause ::=",
+ /* 272 */ "when_clause ::= WHEN expr",
+ /* 273 */ "trigger_cmd_list ::= trigger_cmd_list trigger_cmd SEMI",
+ /* 274 */ "trigger_cmd_list ::=",
+ /* 275 */ "trigger_cmd ::= UPDATE orconf nm SET setlist where_opt",
+ /* 276 */ "trigger_cmd ::= insert_cmd INTO nm inscollist_opt VALUES LP itemlist RP",
+ /* 277 */ "trigger_cmd ::= insert_cmd INTO nm inscollist_opt select",
+ /* 278 */ "trigger_cmd ::= DELETE FROM nm where_opt",
+ /* 279 */ "trigger_cmd ::= select",
+ /* 280 */ "expr ::= RAISE LP IGNORE RP",
+ /* 281 */ "expr ::= RAISE LP raisetype COMMA nm RP",
+ /* 282 */ "raisetype ::= ROLLBACK",
+ /* 283 */ "raisetype ::= ABORT",
+ /* 284 */ "raisetype ::= FAIL",
+ /* 285 */ "cmd ::= DROP TRIGGER ifexists fullname",
+ /* 286 */ "cmd ::= ATTACH database_kw_opt expr AS expr key_opt",
+ /* 287 */ "cmd ::= DETACH database_kw_opt expr",
+ /* 288 */ "key_opt ::=",
+ /* 289 */ "key_opt ::= KEY expr",
+ /* 290 */ "database_kw_opt ::= DATABASE",
+ /* 291 */ "database_kw_opt ::=",
+ /* 292 */ "cmd ::= REINDEX",
+ /* 293 */ "cmd ::= REINDEX nm dbnm",
+ /* 294 */ "cmd ::= ANALYZE",
+ /* 295 */ "cmd ::= ANALYZE nm dbnm",
+ /* 296 */ "cmd ::= ALTER TABLE fullname RENAME TO nm",
+ /* 297 */ "cmd ::= ALTER TABLE add_column_fullname ADD kwcolumn_opt column",
+ /* 298 */ "add_column_fullname ::= fullname",
+ /* 299 */ "kwcolumn_opt ::=",
+ /* 300 */ "kwcolumn_opt ::= COLUMNKW",
+ /* 301 */ "cmd ::= create_vtab",
+ /* 302 */ "cmd ::= create_vtab LP vtabarglist RP",
+ /* 303 */ "create_vtab ::= CREATE VIRTUAL TABLE nm dbnm USING nm",
+ /* 304 */ "vtabarglist ::= vtabarg",
+ /* 305 */ "vtabarglist ::= vtabarglist COMMA vtabarg",
+ /* 306 */ "vtabarg ::=",
+ /* 307 */ "vtabarg ::= vtabarg vtabargtoken",
+ /* 308 */ "vtabargtoken ::= ANY",
+ /* 309 */ "vtabargtoken ::= lp anylist RP",
+ /* 310 */ "lp ::= LP",
+ /* 311 */ "anylist ::=",
+ /* 312 */ "anylist ::= anylist ANY",
+};
+#endif /* NDEBUG */
+
+
+#if YYSTACKDEPTH<=0
+/*
+** Try to increase the size of the parser stack.
+*/
+static void yyGrowStack(yyParser *p){
+ int newSize;
+ yyStackEntry *pNew;
+
+ newSize = p->yystksz*2 + 100;
+ pNew = realloc(p->yystack, newSize*sizeof(pNew[0]));
+ if( pNew ){
+ p->yystack = pNew;
+ p->yystksz = newSize;
+#ifndef NDEBUG
+ if( yyTraceFILE ){
+ fprintf(yyTraceFILE,"%sStack grows to %d entries!\n",
+ yyTracePrompt, p->yystksz);
+ }
+#endif
+ }
+}
+#endif
+
+/*
+** This function allocates a new parser.
+** The only argument is a pointer to a function which works like
+** malloc.
+**
+** Inputs:
+** A pointer to the function used to allocate memory.
+**
+** Outputs:
+** A pointer to a parser. This pointer is used in subsequent calls
+** to sqlite3Parser and sqlite3ParserFree.
+*/
+SQLITE_PRIVATE void *sqlite3ParserAlloc(void *(*mallocProc)(size_t)){
+ yyParser *pParser;
+ pParser = (yyParser*)(*mallocProc)( (size_t)sizeof(yyParser) );
+ if( pParser ){
+ pParser->yyidx = -1;
+#if YYSTACKDEPTH<=0
+ yyGrowStack(pParser);
+#endif
+ }
+ return pParser;
+}
+
+/* The following function deletes the value associated with a
+** symbol. The symbol can be either a terminal or nonterminal.
+** "yymajor" is the symbol code, and "yypminor" is a pointer to
+** the value.
+*/
+static void yy_destructor(YYCODETYPE yymajor, YYMINORTYPE *yypminor){
+ switch( yymajor ){
+ /* Here is inserted the actions which take place when a
+ ** terminal or non-terminal is destroyed. This can happen
+ ** when the symbol is popped from the stack during a
+ ** reduce or during error processing or when a parser is
+ ** being destroyed before it is finished parsing.
+ **
+ ** Note: during a reduce, the only symbols destroyed are those
+ ** which appear on the RHS of the rule, but which are not used
+ ** inside the C code.
+ */
+ case 155: /* select */
+{
+sqlite3SelectDelete((yypminor->yy219));
+}
+ break;
+ case 169: /* term */
+{
+sqlite3ExprDelete((yypminor->yy172));
+}
+ break;
+ case 170: /* expr */
+{
+sqlite3ExprDelete((yypminor->yy172));
+}
+ break;
+ case 174: /* idxlist_opt */
+{
+sqlite3ExprListDelete((yypminor->yy174));
+}
+ break;
+ case 182: /* idxlist */
+{
+sqlite3ExprListDelete((yypminor->yy174));
+}
+ break;
+ case 188: /* fullname */
+{
+sqlite3SrcListDelete((yypminor->yy373));
+}
+ break;
+ case 189: /* oneselect */
+{
+sqlite3SelectDelete((yypminor->yy219));
+}
+ break;
+ case 192: /* selcollist */
+{
+sqlite3ExprListDelete((yypminor->yy174));
+}
+ break;
+ case 193: /* from */
+{
+sqlite3SrcListDelete((yypminor->yy373));
+}
+ break;
+ case 194: /* where_opt */
+{
+sqlite3ExprDelete((yypminor->yy172));
+}
+ break;
+ case 195: /* groupby_opt */
+{
+sqlite3ExprListDelete((yypminor->yy174));
+}
+ break;
+ case 196: /* having_opt */
+{
+sqlite3ExprDelete((yypminor->yy172));
+}
+ break;
+ case 197: /* orderby_opt */
+{
+sqlite3ExprListDelete((yypminor->yy174));
+}
+ break;
+ case 199: /* sclp */
+{
+sqlite3ExprListDelete((yypminor->yy174));
+}
+ break;
+ case 201: /* seltablist */
+{
+sqlite3SrcListDelete((yypminor->yy373));
+}
+ break;
+ case 202: /* stl_prefix */
+{
+sqlite3SrcListDelete((yypminor->yy373));
+}
+ break;
+ case 204: /* on_opt */
+{
+sqlite3ExprDelete((yypminor->yy172));
+}
+ break;
+ case 205: /* using_opt */
+{
+sqlite3IdListDelete((yypminor->yy432));
+}
+ break;
+ case 206: /* seltablist_paren */
+{
+sqlite3SelectDelete((yypminor->yy219));
+}
+ break;
+ case 208: /* inscollist */
+{
+sqlite3IdListDelete((yypminor->yy432));
+}
+ break;
+ case 209: /* sortlist */
+{
+sqlite3ExprListDelete((yypminor->yy174));
+}
+ break;
+ case 210: /* sortitem */
+{
+sqlite3ExprDelete((yypminor->yy172));
+}
+ break;
+ case 211: /* nexprlist */
+{
+sqlite3ExprListDelete((yypminor->yy174));
+}
+ break;
+ case 212: /* setlist */
+{
+sqlite3ExprListDelete((yypminor->yy174));
+}
+ break;
+ case 214: /* inscollist_opt */
+{
+sqlite3IdListDelete((yypminor->yy432));
+}
+ break;
+ case 215: /* itemlist */
+{
+sqlite3ExprListDelete((yypminor->yy174));
+}
+ break;
+ case 216: /* exprlist */
+{
+sqlite3ExprListDelete((yypminor->yy174));
+}
+ break;
+ case 218: /* escape */
+{
+sqlite3ExprDelete((yypminor->yy172));
+}
+ break;
+ case 221: /* case_operand */
+{
+sqlite3ExprDelete((yypminor->yy172));
+}
+ break;
+ case 222: /* case_exprlist */
+{
+sqlite3ExprListDelete((yypminor->yy174));
+}
+ break;
+ case 223: /* case_else */
+{
+sqlite3ExprDelete((yypminor->yy172));
+}
+ break;
+ case 231: /* trigger_cmd_list */
+{
+sqlite3DeleteTriggerStep((yypminor->yy243));
+}
+ break;
+ case 233: /* trigger_event */
+{
+sqlite3IdListDelete((yypminor->yy370).b);
+}
+ break;
+ case 235: /* when_clause */
+{
+sqlite3ExprDelete((yypminor->yy172));
+}
+ break;
+ case 236: /* trigger_cmd */
+{
+sqlite3DeleteTriggerStep((yypminor->yy243));
+}
+ break;
+ case 238: /* key_opt */
+{
+sqlite3ExprDelete((yypminor->yy172));
+}
+ break;
+ default: break; /* If no destructor action specified: do nothing */
+ }
+}
+
+/*
+** Pop the parser's stack once.
+**
+** If there is a destructor routine associated with the token which
+** is popped from the stack, then call it.
+**
+** Return the major token number for the symbol popped.
+*/
+static int yy_pop_parser_stack(yyParser *pParser){
+ YYCODETYPE yymajor;
+ yyStackEntry *yytos = &pParser->yystack[pParser->yyidx];
+
+ if( pParser->yyidx<0 ) return 0;
+#ifndef NDEBUG
+ if( yyTraceFILE && pParser->yyidx>=0 ){
+ fprintf(yyTraceFILE,"%sPopping %s\n",
+ yyTracePrompt,
+ yyTokenName[yytos->major]);
+ }
+#endif
+ yymajor = yytos->major;
+ yy_destructor( yymajor, &yytos->minor);
+ pParser->yyidx--;
+ return yymajor;
+}
+
+/*
+** Deallocate and destroy a parser. Destructors are all called for
+** all stack elements before shutting the parser down.
+**
+** Inputs:
+** <ul>
+** <li> A pointer to the parser. This should be a pointer
+** obtained from sqlite3ParserAlloc.
+** <li> A pointer to a function used to reclaim memory obtained
+** from malloc.
+** </ul>
+*/
+SQLITE_PRIVATE void sqlite3ParserFree(
+ void *p, /* The parser to be deleted */
+ void (*freeProc)(void*) /* Function used to reclaim memory */
+){
+ yyParser *pParser = (yyParser*)p;
+ if( pParser==0 ) return;
+ while( pParser->yyidx>=0 ) yy_pop_parser_stack(pParser);
+#if YYSTACKDEPTH<=0
+ free(pParser->yystack);
+#endif
+ (*freeProc)((void*)pParser);
+}
+
+/*
+** Find the appropriate action for a parser given the terminal
+** look-ahead token iLookAhead.
+**
+** If the look-ahead token is YYNOCODE, then check to see if the action is
+** independent of the look-ahead. If it is, return the action, otherwise
+** return YY_NO_ACTION.
+*/
+static int yy_find_shift_action(
+ yyParser *pParser, /* The parser */
+ YYCODETYPE iLookAhead /* The look-ahead token */
+){
+ int i;
+ int stateno = pParser->yystack[pParser->yyidx].stateno;
+
+ if( stateno>YY_SHIFT_MAX || (i = yy_shift_ofst[stateno])==YY_SHIFT_USE_DFLT ){
+ return yy_default[stateno];
+ }
+ assert( iLookAhead!=YYNOCODE );
+ i += iLookAhead;
+ if( i<0 || i>=YY_SZ_ACTTAB || yy_lookahead[i]!=iLookAhead ){
+ if( iLookAhead>0 ){
+#ifdef YYFALLBACK
+ int iFallback; /* Fallback token */
+ if( iLookAhead<sizeof(yyFallback)/sizeof(yyFallback[0])
+ && (iFallback = yyFallback[iLookAhead])!=0 ){
+#ifndef NDEBUG
+ if( yyTraceFILE ){
+ fprintf(yyTraceFILE, "%sFALLBACK %s => %s\n",
+ yyTracePrompt, yyTokenName[iLookAhead], yyTokenName[iFallback]);
+ }
+#endif
+ return yy_find_shift_action(pParser, iFallback);
+ }
+#endif
+#ifdef YYWILDCARD
+ {
+ int j = i - iLookAhead + YYWILDCARD;
+ if( j>=0 && j<YY_SZ_ACTTAB && yy_lookahead[j]==YYWILDCARD ){
+#ifndef NDEBUG
+ if( yyTraceFILE ){
+ fprintf(yyTraceFILE, "%sWILDCARD %s => %s\n",
+ yyTracePrompt, yyTokenName[iLookAhead], yyTokenName[YYWILDCARD]);
+ }
+#endif /* NDEBUG */
+ return yy_action[j];
+ }
+ }
+#endif /* YYWILDCARD */
+ }
+ return yy_default[stateno];
+ }else{
+ return yy_action[i];
+ }
+}
+
+/*
+** Find the appropriate action for a parser given the non-terminal
+** look-ahead token iLookAhead.
+**
+** If the look-ahead token is YYNOCODE, then check to see if the action is
+** independent of the look-ahead. If it is, return the action, otherwise
+** return YY_NO_ACTION.
+*/
+static int yy_find_reduce_action(
+ int stateno, /* Current state number */
+ YYCODETYPE iLookAhead /* The look-ahead token */
+){
+ int i;
+#ifdef YYERRORSYMBOL
+ if( stateno>YY_REDUCE_MAX ){
+ return yy_default[stateno];
+ }
+#else
+ assert( stateno<=YY_REDUCE_MAX );
+#endif
+ i = yy_reduce_ofst[stateno];
+ assert( i!=YY_REDUCE_USE_DFLT );
+ assert( iLookAhead!=YYNOCODE );
+ i += iLookAhead;
+#ifdef YYERRORSYMBOL
+ if( i<0 || i>=YY_SZ_ACTTAB || yy_lookahead[i]!=iLookAhead ){
+ return yy_default[stateno];
+ }
+#else
+ assert( i>=0 && i<YY_SZ_ACTTAB );
+ assert( yy_lookahead[i]==iLookAhead );
+#endif
+ return yy_action[i];
+}
+
+/*
+** The following routine is called if the stack overflows.
+*/
+static void yyStackOverflow(yyParser *yypParser, YYMINORTYPE *yypMinor){
+ sqlite3ParserARG_FETCH;
+ yypParser->yyidx--;
+#ifndef NDEBUG
+ if( yyTraceFILE ){
+ fprintf(yyTraceFILE,"%sStack Overflow!\n",yyTracePrompt);
+ }
+#endif
+ while( yypParser->yyidx>=0 ) yy_pop_parser_stack(yypParser);
+ /* Here code is inserted which will execute if the parser
+ ** stack every overflows */
+
+ sqlite3ErrorMsg(pParse, "parser stack overflow");
+ pParse->parseError = 1;
+ sqlite3ParserARG_STORE; /* Suppress warning about unused %extra_argument var */
+}
+
+/*
+** Perform a shift action.
+*/
+static void yy_shift(
+ yyParser *yypParser, /* The parser to be shifted */
+ int yyNewState, /* The new state to shift in */
+ int yyMajor, /* The major token to shift in */
+ YYMINORTYPE *yypMinor /* Pointer ot the minor token to shift in */
+){
+ yyStackEntry *yytos;
+ yypParser->yyidx++;
+#if YYSTACKDEPTH>0
+ if( yypParser->yyidx>=YYSTACKDEPTH ){
+ yyStackOverflow(yypParser, yypMinor);
+ return;
+ }
+#else
+ if( yypParser->yyidx>=yypParser->yystksz ){
+ yyGrowStack(yypParser);
+ if( yypParser->yyidx>=yypParser->yystksz ){
+ yyStackOverflow(yypParser, yypMinor);
+ return;
+ }
+ }
+#endif
+ yytos = &yypParser->yystack[yypParser->yyidx];
+ yytos->stateno = yyNewState;
+ yytos->major = yyMajor;
+ yytos->minor = *yypMinor;
+#ifndef NDEBUG
+ if( yyTraceFILE && yypParser->yyidx>0 ){
+ int i;
+ fprintf(yyTraceFILE,"%sShift %d\n",yyTracePrompt,yyNewState);
+ fprintf(yyTraceFILE,"%sStack:",yyTracePrompt);
+ for(i=1; i<=yypParser->yyidx; i++)
+ fprintf(yyTraceFILE," %s",yyTokenName[yypParser->yystack[i].major]);
+ fprintf(yyTraceFILE,"\n");
+ }
+#endif
+}
+
+/* The following table contains information about every rule that
+** is used during the reduce.
+*/
+static const struct {
+ YYCODETYPE lhs; /* Symbol on the left-hand side of the rule */
+ unsigned char nrhs; /* Number of right-hand side symbols in the rule */
+} yyRuleInfo[] = {
+ { 139, 1 },
+ { 140, 2 },
+ { 140, 1 },
+ { 142, 1 },
+ { 141, 1 },
+ { 141, 3 },
+ { 144, 0 },
+ { 144, 1 },
+ { 144, 3 },
+ { 143, 3 },
+ { 146, 0 },
+ { 146, 1 },
+ { 146, 2 },
+ { 145, 0 },
+ { 145, 1 },
+ { 145, 1 },
+ { 145, 1 },
+ { 143, 2 },
+ { 143, 2 },
+ { 143, 2 },
+ { 143, 2 },
+ { 148, 6 },
+ { 151, 0 },
+ { 151, 3 },
+ { 150, 1 },
+ { 150, 0 },
+ { 149, 4 },
+ { 149, 2 },
+ { 153, 3 },
+ { 153, 1 },
+ { 156, 3 },
+ { 157, 1 },
+ { 160, 1 },
+ { 161, 1 },
+ { 147, 1 },
+ { 147, 1 },
+ { 147, 1 },
+ { 158, 0 },
+ { 158, 1 },
+ { 162, 1 },
+ { 162, 4 },
+ { 162, 6 },
+ { 163, 1 },
+ { 163, 2 },
+ { 164, 1 },
+ { 164, 1 },
+ { 159, 2 },
+ { 159, 0 },
+ { 167, 3 },
+ { 167, 1 },
+ { 168, 2 },
+ { 168, 4 },
+ { 168, 3 },
+ { 168, 3 },
+ { 168, 2 },
+ { 168, 2 },
+ { 168, 3 },
+ { 168, 5 },
+ { 168, 2 },
+ { 168, 4 },
+ { 168, 4 },
+ { 168, 1 },
+ { 168, 2 },
+ { 173, 0 },
+ { 173, 1 },
+ { 175, 0 },
+ { 175, 2 },
+ { 177, 2 },
+ { 177, 3 },
+ { 177, 3 },
+ { 177, 3 },
+ { 178, 2 },
+ { 178, 2 },
+ { 178, 1 },
+ { 178, 1 },
+ { 176, 3 },
+ { 176, 2 },
+ { 179, 0 },
+ { 179, 2 },
+ { 179, 2 },
+ { 154, 0 },
+ { 154, 2 },
+ { 180, 3 },
+ { 180, 2 },
+ { 180, 1 },
+ { 181, 2 },
+ { 181, 7 },
+ { 181, 5 },
+ { 181, 5 },
+ { 181, 10 },
+ { 183, 0 },
+ { 183, 1 },
+ { 171, 0 },
+ { 171, 3 },
+ { 184, 0 },
+ { 184, 2 },
+ { 185, 1 },
+ { 185, 1 },
+ { 185, 1 },
+ { 143, 4 },
+ { 187, 2 },
+ { 187, 0 },
+ { 143, 8 },
+ { 143, 4 },
+ { 143, 1 },
+ { 155, 1 },
+ { 155, 3 },
+ { 190, 1 },
+ { 190, 2 },
+ { 190, 1 },
+ { 189, 9 },
+ { 191, 1 },
+ { 191, 1 },
+ { 191, 0 },
+ { 199, 2 },
+ { 199, 0 },
+ { 192, 3 },
+ { 192, 2 },
+ { 192, 4 },
+ { 200, 2 },
+ { 200, 1 },
+ { 200, 0 },
+ { 193, 0 },
+ { 193, 2 },
+ { 202, 2 },
+ { 202, 0 },
+ { 201, 6 },
+ { 201, 7 },
+ { 206, 1 },
+ { 206, 1 },
+ { 152, 0 },
+ { 152, 2 },
+ { 188, 2 },
+ { 203, 1 },
+ { 203, 2 },
+ { 203, 3 },
+ { 203, 4 },
+ { 204, 2 },
+ { 204, 0 },
+ { 205, 4 },
+ { 205, 0 },
+ { 197, 0 },
+ { 197, 3 },
+ { 209, 4 },
+ { 209, 2 },
+ { 210, 1 },
+ { 172, 1 },
+ { 172, 1 },
+ { 172, 0 },
+ { 195, 0 },
+ { 195, 3 },
+ { 196, 0 },
+ { 196, 2 },
+ { 198, 0 },
+ { 198, 2 },
+ { 198, 4 },
+ { 198, 4 },
+ { 143, 4 },
+ { 194, 0 },
+ { 194, 2 },
+ { 143, 6 },
+ { 212, 5 },
+ { 212, 3 },
+ { 143, 8 },
+ { 143, 5 },
+ { 143, 6 },
+ { 213, 2 },
+ { 213, 1 },
+ { 215, 3 },
+ { 215, 1 },
+ { 214, 0 },
+ { 214, 3 },
+ { 208, 3 },
+ { 208, 1 },
+ { 170, 1 },
+ { 170, 3 },
+ { 169, 1 },
+ { 170, 1 },
+ { 170, 1 },
+ { 170, 3 },
+ { 170, 5 },
+ { 169, 1 },
+ { 169, 1 },
+ { 170, 1 },
+ { 170, 1 },
+ { 170, 3 },
+ { 170, 6 },
+ { 170, 5 },
+ { 170, 4 },
+ { 169, 1 },
+ { 170, 3 },
+ { 170, 3 },
+ { 170, 3 },
+ { 170, 3 },
+ { 170, 3 },
+ { 170, 3 },
+ { 170, 3 },
+ { 170, 3 },
+ { 217, 1 },
+ { 217, 2 },
+ { 217, 1 },
+ { 217, 2 },
+ { 218, 2 },
+ { 218, 0 },
+ { 170, 4 },
+ { 170, 2 },
+ { 170, 3 },
+ { 170, 3 },
+ { 170, 4 },
+ { 170, 2 },
+ { 170, 2 },
+ { 170, 2 },
+ { 170, 2 },
+ { 219, 1 },
+ { 219, 2 },
+ { 170, 5 },
+ { 220, 1 },
+ { 220, 2 },
+ { 170, 5 },
+ { 170, 3 },
+ { 170, 5 },
+ { 170, 4 },
+ { 170, 4 },
+ { 170, 5 },
+ { 222, 5 },
+ { 222, 4 },
+ { 223, 2 },
+ { 223, 0 },
+ { 221, 1 },
+ { 221, 0 },
+ { 216, 1 },
+ { 216, 0 },
+ { 211, 3 },
+ { 211, 1 },
+ { 143, 11 },
+ { 224, 1 },
+ { 224, 0 },
+ { 174, 0 },
+ { 174, 3 },
+ { 182, 5 },
+ { 182, 3 },
+ { 225, 1 },
+ { 226, 0 },
+ { 226, 2 },
+ { 143, 4 },
+ { 143, 1 },
+ { 143, 2 },
+ { 143, 5 },
+ { 143, 5 },
+ { 143, 5 },
+ { 143, 5 },
+ { 143, 6 },
+ { 143, 3 },
+ { 227, 1 },
+ { 227, 1 },
+ { 165, 2 },
+ { 166, 2 },
+ { 229, 1 },
+ { 228, 1 },
+ { 228, 0 },
+ { 143, 5 },
+ { 230, 11 },
+ { 232, 1 },
+ { 232, 1 },
+ { 232, 2 },
+ { 232, 0 },
+ { 233, 1 },
+ { 233, 1 },
+ { 233, 3 },
+ { 234, 0 },
+ { 234, 3 },
+ { 235, 0 },
+ { 235, 2 },
+ { 231, 3 },
+ { 231, 0 },
+ { 236, 6 },
+ { 236, 8 },
+ { 236, 5 },
+ { 236, 4 },
+ { 236, 1 },
+ { 170, 4 },
+ { 170, 6 },
+ { 186, 1 },
+ { 186, 1 },
+ { 186, 1 },
+ { 143, 4 },
+ { 143, 6 },
+ { 143, 3 },
+ { 238, 0 },
+ { 238, 2 },
+ { 237, 1 },
+ { 237, 0 },
+ { 143, 1 },
+ { 143, 3 },
+ { 143, 1 },
+ { 143, 3 },
+ { 143, 6 },
+ { 143, 6 },
+ { 239, 1 },
+ { 240, 0 },
+ { 240, 1 },
+ { 143, 1 },
+ { 143, 4 },
+ { 241, 7 },
+ { 242, 1 },
+ { 242, 3 },
+ { 243, 0 },
+ { 243, 2 },
+ { 244, 1 },
+ { 244, 3 },
+ { 245, 1 },
+ { 246, 0 },
+ { 246, 2 },
+};
+
+static void yy_accept(yyParser*); /* Forward Declaration */
+
+/*
+** Perform a reduce action and the shift that must immediately
+** follow the reduce.
+*/
+static void yy_reduce(
+ yyParser *yypParser, /* The parser */
+ int yyruleno /* Number of the rule by which to reduce */
+){
+ int yygoto; /* The next state */
+ int yyact; /* The next action */
+ YYMINORTYPE yygotominor; /* The LHS of the rule reduced */
+ yyStackEntry *yymsp; /* The top of the parser's stack */
+ int yysize; /* Amount to pop the stack */
+ sqlite3ParserARG_FETCH;
+ yymsp = &yypParser->yystack[yypParser->yyidx];
+#ifndef NDEBUG
+ if( yyTraceFILE && yyruleno>=0
+ && yyruleno<(int)(sizeof(yyRuleName)/sizeof(yyRuleName[0])) ){
+ fprintf(yyTraceFILE, "%sReduce [%s].\n", yyTracePrompt,
+ yyRuleName[yyruleno]);
+ }
+#endif /* NDEBUG */
+
+ /* Silence complaints from purify about yygotominor being uninitialized
+ ** in some cases when it is copied into the stack after the following
+ ** switch. yygotominor is uninitialized when a rule reduces that does
+ ** not set the value of its left-hand side nonterminal. Leaving the
+ ** value of the nonterminal uninitialized is utterly harmless as long
+ ** as the value is never used. So really the only thing this code
+ ** accomplishes is to quieten purify.
+ **
+ ** 2007-01-16: The wireshark project (www.wireshark.org) reports that
+ ** without this code, their parser segfaults. I'm not sure what there
+ ** parser is doing to make this happen. This is the second bug report
+ ** from wireshark this week. Clearly they are stressing Lemon in ways
+ ** that it has not been previously stressed... (SQLite ticket #2172)
+ */
+ /*memset(&yygotominor, 0, sizeof(yygotominor));*/
+ yygotominor = yyzerominor;
+
+
+ switch( yyruleno ){
+ /* Beginning here are the reduction cases. A typical example
+ ** follows:
+ ** case 0:
+ ** #line <lineno> <grammarfile>
+ ** { ... } // User supplied code
+ ** #line <lineno> <thisfile>
+ ** break;
+ */
+ case 0: /* input ::= cmdlist */
+ case 1: /* cmdlist ::= cmdlist ecmd */
+ case 2: /* cmdlist ::= ecmd */
+ case 4: /* ecmd ::= SEMI */
+ case 5: /* ecmd ::= explain cmdx SEMI */
+ case 10: /* trans_opt ::= */
+ case 11: /* trans_opt ::= TRANSACTION */
+ case 12: /* trans_opt ::= TRANSACTION nm */
+ case 20: /* cmd ::= create_table create_table_args */
+ case 28: /* columnlist ::= columnlist COMMA column */
+ case 29: /* columnlist ::= column */
+ case 37: /* type ::= */
+ case 44: /* signed ::= plus_num */
+ case 45: /* signed ::= minus_num */
+ case 46: /* carglist ::= carglist carg */
+ case 47: /* carglist ::= */
+ case 48: /* carg ::= CONSTRAINT nm ccons */
+ case 49: /* carg ::= ccons */
+ case 55: /* ccons ::= NULL onconf */
+ case 82: /* conslist ::= conslist COMMA tcons */
+ case 83: /* conslist ::= conslist tcons */
+ case 84: /* conslist ::= tcons */
+ case 85: /* tcons ::= CONSTRAINT nm */
+ case 258: /* plus_opt ::= PLUS */
+ case 259: /* plus_opt ::= */
+ case 269: /* foreach_clause ::= */
+ case 270: /* foreach_clause ::= FOR EACH ROW */
+ case 290: /* database_kw_opt ::= DATABASE */
+ case 291: /* database_kw_opt ::= */
+ case 299: /* kwcolumn_opt ::= */
+ case 300: /* kwcolumn_opt ::= COLUMNKW */
+ case 304: /* vtabarglist ::= vtabarg */
+ case 305: /* vtabarglist ::= vtabarglist COMMA vtabarg */
+ case 307: /* vtabarg ::= vtabarg vtabargtoken */
+ case 311: /* anylist ::= */
+{
+}
+ break;
+ case 3: /* cmdx ::= cmd */
+{ sqlite3FinishCoding(pParse); }
+ break;
+ case 6: /* explain ::= */
+{ sqlite3BeginParse(pParse, 0); }
+ break;
+ case 7: /* explain ::= EXPLAIN */
+{ sqlite3BeginParse(pParse, 1); }
+ break;
+ case 8: /* explain ::= EXPLAIN QUERY PLAN */
+{ sqlite3BeginParse(pParse, 2); }
+ break;
+ case 9: /* cmd ::= BEGIN transtype trans_opt */
+{sqlite3BeginTransaction(pParse, yymsp[-1].minor.yy46);}
+ break;
+ case 13: /* transtype ::= */
+{yygotominor.yy46 = TK_DEFERRED;}
+ break;
+ case 14: /* transtype ::= DEFERRED */
+ case 15: /* transtype ::= IMMEDIATE */
+ case 16: /* transtype ::= EXCLUSIVE */
+ case 107: /* multiselect_op ::= UNION */
+ case 109: /* multiselect_op ::= EXCEPT|INTERSECT */
+{yygotominor.yy46 = yymsp[0].major;}
+ break;
+ case 17: /* cmd ::= COMMIT trans_opt */
+ case 18: /* cmd ::= END trans_opt */
+{sqlite3CommitTransaction(pParse);}
+ break;
+ case 19: /* cmd ::= ROLLBACK trans_opt */
+{sqlite3RollbackTransaction(pParse);}
+ break;
+ case 21: /* create_table ::= CREATE temp TABLE ifnotexists nm dbnm */
+{
+ sqlite3StartTable(pParse,&yymsp[-1].minor.yy410,&yymsp[0].minor.yy410,yymsp[-4].minor.yy46,0,0,yymsp[-2].minor.yy46);
+}
+ break;
+ case 22: /* ifnotexists ::= */
+ case 25: /* temp ::= */
+ case 63: /* autoinc ::= */
+ case 77: /* init_deferred_pred_opt ::= */
+ case 79: /* init_deferred_pred_opt ::= INITIALLY IMMEDIATE */
+ case 90: /* defer_subclause_opt ::= */
+ case 101: /* ifexists ::= */
+ case 112: /* distinct ::= ALL */
+ case 113: /* distinct ::= */
+ case 213: /* between_op ::= BETWEEN */
+ case 216: /* in_op ::= IN */
+{yygotominor.yy46 = 0;}
+ break;
+ case 23: /* ifnotexists ::= IF NOT EXISTS */
+ case 24: /* temp ::= TEMP */
+ case 64: /* autoinc ::= AUTOINCR */
+ case 78: /* init_deferred_pred_opt ::= INITIALLY DEFERRED */
+ case 100: /* ifexists ::= IF EXISTS */
+ case 111: /* distinct ::= DISTINCT */
+ case 214: /* between_op ::= NOT BETWEEN */
+ case 217: /* in_op ::= NOT IN */
+{yygotominor.yy46 = 1;}
+ break;
+ case 26: /* create_table_args ::= LP columnlist conslist_opt RP */
+{
+ sqlite3EndTable(pParse,&yymsp[-1].minor.yy410,&yymsp[0].minor.yy0,0);
+}
+ break;
+ case 27: /* create_table_args ::= AS select */
+{
+ sqlite3EndTable(pParse,0,0,yymsp[0].minor.yy219);
+ sqlite3SelectDelete(yymsp[0].minor.yy219);
+}
+ break;
+ case 30: /* column ::= columnid type carglist */
+{
+ yygotominor.yy410.z = yymsp[-2].minor.yy410.z;
+ yygotominor.yy410.n = (pParse->sLastToken.z-yymsp[-2].minor.yy410.z) + pParse->sLastToken.n;
+}
+ break;
+ case 31: /* columnid ::= nm */
+{
+ sqlite3AddColumn(pParse,&yymsp[0].minor.yy410);
+ yygotominor.yy410 = yymsp[0].minor.yy410;
+}
+ break;
+ case 32: /* id ::= ID */
+ case 33: /* ids ::= ID|STRING */
+ case 34: /* nm ::= ID */
+ case 35: /* nm ::= STRING */
+ case 36: /* nm ::= JOIN_KW */
+ case 257: /* number ::= INTEGER|FLOAT */
+{yygotominor.yy410 = yymsp[0].minor.yy0;}
+ break;
+ case 38: /* type ::= typetoken */
+{sqlite3AddColumnType(pParse,&yymsp[0].minor.yy410);}
+ break;
+ case 39: /* typetoken ::= typename */
+ case 42: /* typename ::= ids */
+ case 119: /* as ::= AS nm */
+ case 120: /* as ::= ids */
+ case 131: /* dbnm ::= DOT nm */
+ case 241: /* idxitem ::= nm */
+ case 243: /* collate ::= COLLATE ids */
+ case 253: /* nmnum ::= plus_num */
+ case 254: /* nmnum ::= nm */
+ case 255: /* plus_num ::= plus_opt number */
+ case 256: /* minus_num ::= MINUS number */
+{yygotominor.yy410 = yymsp[0].minor.yy410;}
+ break;
+ case 40: /* typetoken ::= typename LP signed RP */
+{
+ yygotominor.yy410.z = yymsp[-3].minor.yy410.z;
+ yygotominor.yy410.n = &yymsp[0].minor.yy0.z[yymsp[0].minor.yy0.n] - yymsp[-3].minor.yy410.z;
+}
+ break;
+ case 41: /* typetoken ::= typename LP signed COMMA signed RP */
+{
+ yygotominor.yy410.z = yymsp[-5].minor.yy410.z;
+ yygotominor.yy410.n = &yymsp[0].minor.yy0.z[yymsp[0].minor.yy0.n] - yymsp[-5].minor.yy410.z;
+}
+ break;
+ case 43: /* typename ::= typename ids */
+{yygotominor.yy410.z=yymsp[-1].minor.yy410.z; yygotominor.yy410.n=yymsp[0].minor.yy410.n+(yymsp[0].minor.yy410.z-yymsp[-1].minor.yy410.z);}
+ break;
+ case 50: /* ccons ::= DEFAULT term */
+ case 52: /* ccons ::= DEFAULT PLUS term */
+{sqlite3AddDefaultValue(pParse,yymsp[0].minor.yy172);}
+ break;
+ case 51: /* ccons ::= DEFAULT LP expr RP */
+{sqlite3AddDefaultValue(pParse,yymsp[-1].minor.yy172);}
+ break;
+ case 53: /* ccons ::= DEFAULT MINUS term */
+{
+ Expr *p = sqlite3PExpr(pParse, TK_UMINUS, yymsp[0].minor.yy172, 0, 0);
+ sqlite3AddDefaultValue(pParse,p);
+}
+ break;
+ case 54: /* ccons ::= DEFAULT id */
+{
+ Expr *p = sqlite3PExpr(pParse, TK_STRING, 0, 0, &yymsp[0].minor.yy410);
+ sqlite3AddDefaultValue(pParse,p);
+}
+ break;
+ case 56: /* ccons ::= NOT NULL onconf */
+{sqlite3AddNotNull(pParse, yymsp[0].minor.yy46);}
+ break;
+ case 57: /* ccons ::= PRIMARY KEY sortorder onconf autoinc */
+{sqlite3AddPrimaryKey(pParse,0,yymsp[-1].minor.yy46,yymsp[0].minor.yy46,yymsp[-2].minor.yy46);}
+ break;
+ case 58: /* ccons ::= UNIQUE onconf */
+{sqlite3CreateIndex(pParse,0,0,0,0,yymsp[0].minor.yy46,0,0,0,0);}
+ break;
+ case 59: /* ccons ::= CHECK LP expr RP */
+{sqlite3AddCheckConstraint(pParse,yymsp[-1].minor.yy172);}
+ break;
+ case 60: /* ccons ::= REFERENCES nm idxlist_opt refargs */
+{sqlite3CreateForeignKey(pParse,0,&yymsp[-2].minor.yy410,yymsp[-1].minor.yy174,yymsp[0].minor.yy46);}
+ break;
+ case 61: /* ccons ::= defer_subclause */
+{sqlite3DeferForeignKey(pParse,yymsp[0].minor.yy46);}
+ break;
+ case 62: /* ccons ::= COLLATE ids */
+{sqlite3AddCollateType(pParse, &yymsp[0].minor.yy410);}
+ break;
+ case 65: /* refargs ::= */
+{ yygotominor.yy46 = OE_Restrict * 0x010101; }
+ break;
+ case 66: /* refargs ::= refargs refarg */
+{ yygotominor.yy46 = (yymsp[-1].minor.yy46 & yymsp[0].minor.yy405.mask) | yymsp[0].minor.yy405.value; }
+ break;
+ case 67: /* refarg ::= MATCH nm */
+{ yygotominor.yy405.value = 0; yygotominor.yy405.mask = 0x000000; }
+ break;
+ case 68: /* refarg ::= ON DELETE refact */
+{ yygotominor.yy405.value = yymsp[0].minor.yy46; yygotominor.yy405.mask = 0x0000ff; }
+ break;
+ case 69: /* refarg ::= ON UPDATE refact */
+{ yygotominor.yy405.value = yymsp[0].minor.yy46<<8; yygotominor.yy405.mask = 0x00ff00; }
+ break;
+ case 70: /* refarg ::= ON INSERT refact */
+{ yygotominor.yy405.value = yymsp[0].minor.yy46<<16; yygotominor.yy405.mask = 0xff0000; }
+ break;
+ case 71: /* refact ::= SET NULL */
+{ yygotominor.yy46 = OE_SetNull; }
+ break;
+ case 72: /* refact ::= SET DEFAULT */
+{ yygotominor.yy46 = OE_SetDflt; }
+ break;
+ case 73: /* refact ::= CASCADE */
+{ yygotominor.yy46 = OE_Cascade; }
+ break;
+ case 74: /* refact ::= RESTRICT */
+{ yygotominor.yy46 = OE_Restrict; }
+ break;
+ case 75: /* defer_subclause ::= NOT DEFERRABLE init_deferred_pred_opt */
+ case 76: /* defer_subclause ::= DEFERRABLE init_deferred_pred_opt */
+ case 91: /* defer_subclause_opt ::= defer_subclause */
+ case 93: /* onconf ::= ON CONFLICT resolvetype */
+ case 95: /* orconf ::= OR resolvetype */
+ case 96: /* resolvetype ::= raisetype */
+ case 166: /* insert_cmd ::= INSERT orconf */
+{yygotominor.yy46 = yymsp[0].minor.yy46;}
+ break;
+ case 80: /* conslist_opt ::= */
+{yygotominor.yy410.n = 0; yygotominor.yy410.z = 0;}
+ break;
+ case 81: /* conslist_opt ::= COMMA conslist */
+{yygotominor.yy410 = yymsp[-1].minor.yy0;}
+ break;
+ case 86: /* tcons ::= PRIMARY KEY LP idxlist autoinc RP onconf */
+{sqlite3AddPrimaryKey(pParse,yymsp[-3].minor.yy174,yymsp[0].minor.yy46,yymsp[-2].minor.yy46,0);}
+ break;
+ case 87: /* tcons ::= UNIQUE LP idxlist RP onconf */
+{sqlite3CreateIndex(pParse,0,0,0,yymsp[-2].minor.yy174,yymsp[0].minor.yy46,0,0,0,0);}
+ break;
+ case 88: /* tcons ::= CHECK LP expr RP onconf */
+{sqlite3AddCheckConstraint(pParse,yymsp[-2].minor.yy172);}
+ break;
+ case 89: /* tcons ::= FOREIGN KEY LP idxlist RP REFERENCES nm idxlist_opt refargs defer_subclause_opt */
+{
+ sqlite3CreateForeignKey(pParse, yymsp[-6].minor.yy174, &yymsp[-3].minor.yy410, yymsp[-2].minor.yy174, yymsp[-1].minor.yy46);
+ sqlite3DeferForeignKey(pParse, yymsp[0].minor.yy46);
+}
+ break;
+ case 92: /* onconf ::= */
+ case 94: /* orconf ::= */
+{yygotominor.yy46 = OE_Default;}
+ break;
+ case 97: /* resolvetype ::= IGNORE */
+{yygotominor.yy46 = OE_Ignore;}
+ break;
+ case 98: /* resolvetype ::= REPLACE */
+ case 167: /* insert_cmd ::= REPLACE */
+{yygotominor.yy46 = OE_Replace;}
+ break;
+ case 99: /* cmd ::= DROP TABLE ifexists fullname */
+{
+ sqlite3DropTable(pParse, yymsp[0].minor.yy373, 0, yymsp[-1].minor.yy46);
+}
+ break;
+ case 102: /* cmd ::= CREATE temp VIEW ifnotexists nm dbnm AS select */
+{
+ sqlite3CreateView(pParse, &yymsp[-7].minor.yy0, &yymsp[-3].minor.yy410, &yymsp[-2].minor.yy410, yymsp[0].minor.yy219, yymsp[-6].minor.yy46, yymsp[-4].minor.yy46);
+}
+ break;
+ case 103: /* cmd ::= DROP VIEW ifexists fullname */
+{
+ sqlite3DropTable(pParse, yymsp[0].minor.yy373, 1, yymsp[-1].minor.yy46);
+}
+ break;
+ case 104: /* cmd ::= select */
+{
+ SelectDest dest = {SRT_Callback, 0, 0, 0, 0};
+ sqlite3Select(pParse, yymsp[0].minor.yy219, &dest, 0, 0, 0, 0);
+ sqlite3SelectDelete(yymsp[0].minor.yy219);
+}
+ break;
+ case 105: /* select ::= oneselect */
+ case 128: /* seltablist_paren ::= select */
+{yygotominor.yy219 = yymsp[0].minor.yy219;}
+ break;
+ case 106: /* select ::= select multiselect_op oneselect */
+{
+ if( yymsp[0].minor.yy219 ){
+ yymsp[0].minor.yy219->op = yymsp[-1].minor.yy46;
+ yymsp[0].minor.yy219->pPrior = yymsp[-2].minor.yy219;
+ }else{
+ sqlite3SelectDelete(yymsp[-2].minor.yy219);
+ }
+ yygotominor.yy219 = yymsp[0].minor.yy219;
+}
+ break;
+ case 108: /* multiselect_op ::= UNION ALL */
+{yygotominor.yy46 = TK_ALL;}
+ break;
+ case 110: /* oneselect ::= SELECT distinct selcollist from where_opt groupby_opt having_opt orderby_opt limit_opt */
+{
+ yygotominor.yy219 = sqlite3SelectNew(pParse,yymsp[-6].minor.yy174,yymsp[-5].minor.yy373,yymsp[-4].minor.yy172,yymsp[-3].minor.yy174,yymsp[-2].minor.yy172,yymsp[-1].minor.yy174,yymsp[-7].minor.yy46,yymsp[0].minor.yy234.pLimit,yymsp[0].minor.yy234.pOffset);
+}
+ break;
+ case 114: /* sclp ::= selcollist COMMA */
+ case 238: /* idxlist_opt ::= LP idxlist RP */
+{yygotominor.yy174 = yymsp[-1].minor.yy174;}
+ break;
+ case 115: /* sclp ::= */
+ case 141: /* orderby_opt ::= */
+ case 149: /* groupby_opt ::= */
+ case 231: /* exprlist ::= */
+ case 237: /* idxlist_opt ::= */
+{yygotominor.yy174 = 0;}
+ break;
+ case 116: /* selcollist ::= sclp expr as */
+{
+ yygotominor.yy174 = sqlite3ExprListAppend(pParse,yymsp[-2].minor.yy174,yymsp[-1].minor.yy172,yymsp[0].minor.yy410.n?&yymsp[0].minor.yy410:0);
+}
+ break;
+ case 117: /* selcollist ::= sclp STAR */
+{
+ Expr *p = sqlite3PExpr(pParse, TK_ALL, 0, 0, 0);
+ yygotominor.yy174 = sqlite3ExprListAppend(pParse, yymsp[-1].minor.yy174, p, 0);
+}
+ break;
+ case 118: /* selcollist ::= sclp nm DOT STAR */
+{
+ Expr *pRight = sqlite3PExpr(pParse, TK_ALL, 0, 0, 0);
+ Expr *pLeft = sqlite3PExpr(pParse, TK_ID, 0, 0, &yymsp[-2].minor.yy410);
+ Expr *pDot = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0);
+ yygotominor.yy174 = sqlite3ExprListAppend(pParse,yymsp[-3].minor.yy174, pDot, 0);
+}
+ break;
+ case 121: /* as ::= */
+{yygotominor.yy410.n = 0;}
+ break;
+ case 122: /* from ::= */
+{yygotominor.yy373 = sqlite3DbMallocZero(pParse->db, sizeof(*yygotominor.yy373));}
+ break;
+ case 123: /* from ::= FROM seltablist */
+{
+ yygotominor.yy373 = yymsp[0].minor.yy373;
+ sqlite3SrcListShiftJoinType(yygotominor.yy373);
+}
+ break;
+ case 124: /* stl_prefix ::= seltablist joinop */
+{
+ yygotominor.yy373 = yymsp[-1].minor.yy373;
+ if( yygotominor.yy373 && yygotominor.yy373->nSrc>0 ) yygotominor.yy373->a[yygotominor.yy373->nSrc-1].jointype = yymsp[0].minor.yy46;
+}
+ break;
+ case 125: /* stl_prefix ::= */
+{yygotominor.yy373 = 0;}
+ break;
+ case 126: /* seltablist ::= stl_prefix nm dbnm as on_opt using_opt */
+{
+ yygotominor.yy373 = sqlite3SrcListAppendFromTerm(pParse,yymsp[-5].minor.yy373,&yymsp[-4].minor.yy410,&yymsp[-3].minor.yy410,&yymsp[-2].minor.yy410,0,yymsp[-1].minor.yy172,yymsp[0].minor.yy432);
+}
+ break;
+ case 127: /* seltablist ::= stl_prefix LP seltablist_paren RP as on_opt using_opt */
+{
+ yygotominor.yy373 = sqlite3SrcListAppendFromTerm(pParse,yymsp[-6].minor.yy373,0,0,&yymsp[-2].minor.yy410,yymsp[-4].minor.yy219,yymsp[-1].minor.yy172,yymsp[0].minor.yy432);
+ }
+ break;
+ case 129: /* seltablist_paren ::= seltablist */
+{
+ sqlite3SrcListShiftJoinType(yymsp[0].minor.yy373);
+ yygotominor.yy219 = sqlite3SelectNew(pParse,0,yymsp[0].minor.yy373,0,0,0,0,0,0,0);
+ }
+ break;
+ case 130: /* dbnm ::= */
+{yygotominor.yy410.z=0; yygotominor.yy410.n=0;}
+ break;
+ case 132: /* fullname ::= nm dbnm */
+{yygotominor.yy373 = sqlite3SrcListAppend(pParse->db,0,&yymsp[-1].minor.yy410,&yymsp[0].minor.yy410);}
+ break;
+ case 133: /* joinop ::= COMMA|JOIN */
+{ yygotominor.yy46 = JT_INNER; }
+ break;
+ case 134: /* joinop ::= JOIN_KW JOIN */
+{ yygotominor.yy46 = sqlite3JoinType(pParse,&yymsp[-1].minor.yy0,0,0); }
+ break;
+ case 135: /* joinop ::= JOIN_KW nm JOIN */
+{ yygotominor.yy46 = sqlite3JoinType(pParse,&yymsp[-2].minor.yy0,&yymsp[-1].minor.yy410,0); }
+ break;
+ case 136: /* joinop ::= JOIN_KW nm nm JOIN */
+{ yygotominor.yy46 = sqlite3JoinType(pParse,&yymsp[-3].minor.yy0,&yymsp[-2].minor.yy410,&yymsp[-1].minor.yy410); }
+ break;
+ case 137: /* on_opt ::= ON expr */
+ case 145: /* sortitem ::= expr */
+ case 152: /* having_opt ::= HAVING expr */
+ case 159: /* where_opt ::= WHERE expr */
+ case 174: /* expr ::= term */
+ case 202: /* escape ::= ESCAPE expr */
+ case 226: /* case_else ::= ELSE expr */
+ case 228: /* case_operand ::= expr */
+{yygotominor.yy172 = yymsp[0].minor.yy172;}
+ break;
+ case 138: /* on_opt ::= */
+ case 151: /* having_opt ::= */
+ case 158: /* where_opt ::= */
+ case 203: /* escape ::= */
+ case 227: /* case_else ::= */
+ case 229: /* case_operand ::= */
+{yygotominor.yy172 = 0;}
+ break;
+ case 139: /* using_opt ::= USING LP inscollist RP */
+ case 171: /* inscollist_opt ::= LP inscollist RP */
+{yygotominor.yy432 = yymsp[-1].minor.yy432;}
+ break;
+ case 140: /* using_opt ::= */
+ case 170: /* inscollist_opt ::= */
+{yygotominor.yy432 = 0;}
+ break;
+ case 142: /* orderby_opt ::= ORDER BY sortlist */
+ case 150: /* groupby_opt ::= GROUP BY nexprlist */
+ case 230: /* exprlist ::= nexprlist */
+{yygotominor.yy174 = yymsp[0].minor.yy174;}
+ break;
+ case 143: /* sortlist ::= sortlist COMMA sortitem sortorder */
+{
+ yygotominor.yy174 = sqlite3ExprListAppend(pParse,yymsp[-3].minor.yy174,yymsp[-1].minor.yy172,0);
+ if( yygotominor.yy174 ) yygotominor.yy174->a[yygotominor.yy174->nExpr-1].sortOrder = yymsp[0].minor.yy46;
+}
+ break;
+ case 144: /* sortlist ::= sortitem sortorder */
+{
+ yygotominor.yy174 = sqlite3ExprListAppend(pParse,0,yymsp[-1].minor.yy172,0);
+ if( yygotominor.yy174 && yygotominor.yy174->a ) yygotominor.yy174->a[0].sortOrder = yymsp[0].minor.yy46;
+}
+ break;
+ case 146: /* sortorder ::= ASC */
+ case 148: /* sortorder ::= */
+{yygotominor.yy46 = SQLITE_SO_ASC;}
+ break;
+ case 147: /* sortorder ::= DESC */
+{yygotominor.yy46 = SQLITE_SO_DESC;}
+ break;
+ case 153: /* limit_opt ::= */
+{yygotominor.yy234.pLimit = 0; yygotominor.yy234.pOffset = 0;}
+ break;
+ case 154: /* limit_opt ::= LIMIT expr */
+{yygotominor.yy234.pLimit = yymsp[0].minor.yy172; yygotominor.yy234.pOffset = 0;}
+ break;
+ case 155: /* limit_opt ::= LIMIT expr OFFSET expr */
+{yygotominor.yy234.pLimit = yymsp[-2].minor.yy172; yygotominor.yy234.pOffset = yymsp[0].minor.yy172;}
+ break;
+ case 156: /* limit_opt ::= LIMIT expr COMMA expr */
+{yygotominor.yy234.pOffset = yymsp[-2].minor.yy172; yygotominor.yy234.pLimit = yymsp[0].minor.yy172;}
+ break;
+ case 157: /* cmd ::= DELETE FROM fullname where_opt */
+{sqlite3DeleteFrom(pParse,yymsp[-1].minor.yy373,yymsp[0].minor.yy172);}
+ break;
+ case 160: /* cmd ::= UPDATE orconf fullname SET setlist where_opt */
+{
+ sqlite3ExprListCheckLength(pParse,yymsp[-1].minor.yy174,"set list");
+ sqlite3Update(pParse,yymsp[-3].minor.yy373,yymsp[-1].minor.yy174,yymsp[0].minor.yy172,yymsp[-4].minor.yy46);
+}
+ break;
+ case 161: /* setlist ::= setlist COMMA nm EQ expr */
+{yygotominor.yy174 = sqlite3ExprListAppend(pParse,yymsp[-4].minor.yy174,yymsp[0].minor.yy172,&yymsp[-2].minor.yy410);}
+ break;
+ case 162: /* setlist ::= nm EQ expr */
+{yygotominor.yy174 = sqlite3ExprListAppend(pParse,0,yymsp[0].minor.yy172,&yymsp[-2].minor.yy410);}
+ break;
+ case 163: /* cmd ::= insert_cmd INTO fullname inscollist_opt VALUES LP itemlist RP */
+{sqlite3Insert(pParse, yymsp[-5].minor.yy373, yymsp[-1].minor.yy174, 0, yymsp[-4].minor.yy432, yymsp[-7].minor.yy46);}
+ break;
+ case 164: /* cmd ::= insert_cmd INTO fullname inscollist_opt select */
+{sqlite3Insert(pParse, yymsp[-2].minor.yy373, 0, yymsp[0].minor.yy219, yymsp[-1].minor.yy432, yymsp[-4].minor.yy46);}
+ break;
+ case 165: /* cmd ::= insert_cmd INTO fullname inscollist_opt DEFAULT VALUES */
+{sqlite3Insert(pParse, yymsp[-3].minor.yy373, 0, 0, yymsp[-2].minor.yy432, yymsp[-5].minor.yy46);}
+ break;
+ case 168: /* itemlist ::= itemlist COMMA expr */
+ case 232: /* nexprlist ::= nexprlist COMMA expr */
+{yygotominor.yy174 = sqlite3ExprListAppend(pParse,yymsp[-2].minor.yy174,yymsp[0].minor.yy172,0);}
+ break;
+ case 169: /* itemlist ::= expr */
+ case 233: /* nexprlist ::= expr */
+{yygotominor.yy174 = sqlite3ExprListAppend(pParse,0,yymsp[0].minor.yy172,0);}
+ break;
+ case 172: /* inscollist ::= inscollist COMMA nm */
+{yygotominor.yy432 = sqlite3IdListAppend(pParse->db,yymsp[-2].minor.yy432,&yymsp[0].minor.yy410);}
+ break;
+ case 173: /* inscollist ::= nm */
+{yygotominor.yy432 = sqlite3IdListAppend(pParse->db,0,&yymsp[0].minor.yy410);}
+ break;
+ case 175: /* expr ::= LP expr RP */
+{yygotominor.yy172 = yymsp[-1].minor.yy172; sqlite3ExprSpan(yygotominor.yy172,&yymsp[-2].minor.yy0,&yymsp[0].minor.yy0); }
+ break;
+ case 176: /* term ::= NULL */
+ case 181: /* term ::= INTEGER|FLOAT|BLOB */
+ case 182: /* term ::= STRING */
+{yygotominor.yy172 = sqlite3PExpr(pParse, yymsp[0].major, 0, 0, &yymsp[0].minor.yy0);}
+ break;
+ case 177: /* expr ::= ID */
+ case 178: /* expr ::= JOIN_KW */
+{yygotominor.yy172 = sqlite3PExpr(pParse, TK_ID, 0, 0, &yymsp[0].minor.yy0);}
+ break;
+ case 179: /* expr ::= nm DOT nm */
+{
+ Expr *temp1 = sqlite3PExpr(pParse, TK_ID, 0, 0, &yymsp[-2].minor.yy410);
+ Expr *temp2 = sqlite3PExpr(pParse, TK_ID, 0, 0, &yymsp[0].minor.yy410);
+ yygotominor.yy172 = sqlite3PExpr(pParse, TK_DOT, temp1, temp2, 0);
+}
+ break;
+ case 180: /* expr ::= nm DOT nm DOT nm */
+{
+ Expr *temp1 = sqlite3PExpr(pParse, TK_ID, 0, 0, &yymsp[-4].minor.yy410);
+ Expr *temp2 = sqlite3PExpr(pParse, TK_ID, 0, 0, &yymsp[-2].minor.yy410);
+ Expr *temp3 = sqlite3PExpr(pParse, TK_ID, 0, 0, &yymsp[0].minor.yy410);
+ Expr *temp4 = sqlite3PExpr(pParse, TK_DOT, temp2, temp3, 0);
+ yygotominor.yy172 = sqlite3PExpr(pParse, TK_DOT, temp1, temp4, 0);
+}
+ break;
+ case 183: /* expr ::= REGISTER */
+{yygotominor.yy172 = sqlite3RegisterExpr(pParse, &yymsp[0].minor.yy0);}
+ break;
+ case 184: /* expr ::= VARIABLE */
+{
+ Token *pToken = &yymsp[0].minor.yy0;
+ Expr *pExpr = yygotominor.yy172 = sqlite3PExpr(pParse, TK_VARIABLE, 0, 0, pToken);
+ sqlite3ExprAssignVarNumber(pParse, pExpr);
+}
+ break;
+ case 185: /* expr ::= expr COLLATE ids */
+{
+ yygotominor.yy172 = sqlite3ExprSetColl(pParse, yymsp[-2].minor.yy172, &yymsp[0].minor.yy410);
+}
+ break;
+ case 186: /* expr ::= CAST LP expr AS typetoken RP */
+{
+ yygotominor.yy172 = sqlite3PExpr(pParse, TK_CAST, yymsp[-3].minor.yy172, 0, &yymsp[-1].minor.yy410);
+ sqlite3ExprSpan(yygotominor.yy172,&yymsp[-5].minor.yy0,&yymsp[0].minor.yy0);
+}
+ break;
+ case 187: /* expr ::= ID LP distinct exprlist RP */
+{
+ if( yymsp[-1].minor.yy174 && yymsp[-1].minor.yy174->nExpr>SQLITE_MAX_FUNCTION_ARG ){
+ sqlite3ErrorMsg(pParse, "too many arguments on function %T", &yymsp[-4].minor.yy0);
+ }
+ yygotominor.yy172 = sqlite3ExprFunction(pParse, yymsp[-1].minor.yy174, &yymsp[-4].minor.yy0);
+ sqlite3ExprSpan(yygotominor.yy172,&yymsp[-4].minor.yy0,&yymsp[0].minor.yy0);
+ if( yymsp[-2].minor.yy46 && yygotominor.yy172 ){
+ yygotominor.yy172->flags |= EP_Distinct;
+ }
+}
+ break;
+ case 188: /* expr ::= ID LP STAR RP */
+{
+ yygotominor.yy172 = sqlite3ExprFunction(pParse, 0, &yymsp[-3].minor.yy0);
+ sqlite3ExprSpan(yygotominor.yy172,&yymsp[-3].minor.yy0,&yymsp[0].minor.yy0);
+}
+ break;
+ case 189: /* term ::= CTIME_KW */
+{
+ /* The CURRENT_TIME, CURRENT_DATE, and CURRENT_TIMESTAMP values are
+ ** treated as functions that return constants */
+ yygotominor.yy172 = sqlite3ExprFunction(pParse, 0,&yymsp[0].minor.yy0);
+ if( yygotominor.yy172 ){
+ yygotominor.yy172->op = TK_CONST_FUNC;
+ yygotominor.yy172->span = yymsp[0].minor.yy0;
+ }
+}
+ break;
+ case 190: /* expr ::= expr AND expr */
+ case 191: /* expr ::= expr OR expr */
+ case 192: /* expr ::= expr LT|GT|GE|LE expr */
+ case 193: /* expr ::= expr EQ|NE expr */
+ case 194: /* expr ::= expr BITAND|BITOR|LSHIFT|RSHIFT expr */
+ case 195: /* expr ::= expr PLUS|MINUS expr */
+ case 196: /* expr ::= expr STAR|SLASH|REM expr */
+ case 197: /* expr ::= expr CONCAT expr */
+{yygotominor.yy172 = sqlite3PExpr(pParse,yymsp[-1].major,yymsp[-2].minor.yy172,yymsp[0].minor.yy172,0);}
+ break;
+ case 198: /* likeop ::= LIKE_KW */
+ case 200: /* likeop ::= MATCH */
+{yygotominor.yy72.eOperator = yymsp[0].minor.yy0; yygotominor.yy72.not = 0;}
+ break;
+ case 199: /* likeop ::= NOT LIKE_KW */
+ case 201: /* likeop ::= NOT MATCH */
+{yygotominor.yy72.eOperator = yymsp[0].minor.yy0; yygotominor.yy72.not = 1;}
+ break;
+ case 204: /* expr ::= expr likeop expr escape */
+{
+ ExprList *pList;
+ pList = sqlite3ExprListAppend(pParse,0, yymsp[-1].minor.yy172, 0);
+ pList = sqlite3ExprListAppend(pParse,pList, yymsp[-3].minor.yy172, 0);
+ if( yymsp[0].minor.yy172 ){
+ pList = sqlite3ExprListAppend(pParse,pList, yymsp[0].minor.yy172, 0);
+ }
+ yygotominor.yy172 = sqlite3ExprFunction(pParse, pList, &yymsp[-2].minor.yy72.eOperator);
+ if( yymsp[-2].minor.yy72.not ) yygotominor.yy172 = sqlite3PExpr(pParse, TK_NOT, yygotominor.yy172, 0, 0);
+ sqlite3ExprSpan(yygotominor.yy172, &yymsp[-3].minor.yy172->span, &yymsp[-1].minor.yy172->span);
+ if( yygotominor.yy172 ) yygotominor.yy172->flags |= EP_InfixFunc;
+}
+ break;
+ case 205: /* expr ::= expr ISNULL|NOTNULL */
+{
+ yygotominor.yy172 = sqlite3PExpr(pParse, yymsp[0].major, yymsp[-1].minor.yy172, 0, 0);
+ sqlite3ExprSpan(yygotominor.yy172,&yymsp[-1].minor.yy172->span,&yymsp[0].minor.yy0);
+}
+ break;
+ case 206: /* expr ::= expr IS NULL */
+{
+ yygotominor.yy172 = sqlite3PExpr(pParse, TK_ISNULL, yymsp[-2].minor.yy172, 0, 0);
+ sqlite3ExprSpan(yygotominor.yy172,&yymsp[-2].minor.yy172->span,&yymsp[0].minor.yy0);
+}
+ break;
+ case 207: /* expr ::= expr NOT NULL */
+{
+ yygotominor.yy172 = sqlite3PExpr(pParse, TK_NOTNULL, yymsp[-2].minor.yy172, 0, 0);
+ sqlite3ExprSpan(yygotominor.yy172,&yymsp[-2].minor.yy172->span,&yymsp[0].minor.yy0);
+}
+ break;
+ case 208: /* expr ::= expr IS NOT NULL */
+{
+ yygotominor.yy172 = sqlite3PExpr(pParse, TK_NOTNULL, yymsp[-3].minor.yy172, 0, 0);
+ sqlite3ExprSpan(yygotominor.yy172,&yymsp[-3].minor.yy172->span,&yymsp[0].minor.yy0);
+}
+ break;
+ case 209: /* expr ::= NOT expr */
+ case 210: /* expr ::= BITNOT expr */
+{
+ yygotominor.yy172 = sqlite3PExpr(pParse, yymsp[-1].major, yymsp[0].minor.yy172, 0, 0);
+ sqlite3ExprSpan(yygotominor.yy172,&yymsp[-1].minor.yy0,&yymsp[0].minor.yy172->span);
+}
+ break;
+ case 211: /* expr ::= MINUS expr */
+{
+ yygotominor.yy172 = sqlite3PExpr(pParse, TK_UMINUS, yymsp[0].minor.yy172, 0, 0);
+ sqlite3ExprSpan(yygotominor.yy172,&yymsp[-1].minor.yy0,&yymsp[0].minor.yy172->span);
+}
+ break;
+ case 212: /* expr ::= PLUS expr */
+{
+ yygotominor.yy172 = sqlite3PExpr(pParse, TK_UPLUS, yymsp[0].minor.yy172, 0, 0);
+ sqlite3ExprSpan(yygotominor.yy172,&yymsp[-1].minor.yy0,&yymsp[0].minor.yy172->span);
+}
+ break;
+ case 215: /* expr ::= expr between_op expr AND expr */
+{
+ ExprList *pList = sqlite3ExprListAppend(pParse,0, yymsp[-2].minor.yy172, 0);
+ pList = sqlite3ExprListAppend(pParse,pList, yymsp[0].minor.yy172, 0);
+ yygotominor.yy172 = sqlite3PExpr(pParse, TK_BETWEEN, yymsp[-4].minor.yy172, 0, 0);
+ if( yygotominor.yy172 ){
+ yygotominor.yy172->pList = pList;
+ }else{
+ sqlite3ExprListDelete(pList);
+ }
+ if( yymsp[-3].minor.yy46 ) yygotominor.yy172 = sqlite3PExpr(pParse, TK_NOT, yygotominor.yy172, 0, 0);
+ sqlite3ExprSpan(yygotominor.yy172,&yymsp[-4].minor.yy172->span,&yymsp[0].minor.yy172->span);
+}
+ break;
+ case 218: /* expr ::= expr in_op LP exprlist RP */
+{
+ yygotominor.yy172 = sqlite3PExpr(pParse, TK_IN, yymsp[-4].minor.yy172, 0, 0);
+ if( yygotominor.yy172 ){
+ yygotominor.yy172->pList = yymsp[-1].minor.yy174;
+ sqlite3ExprSetHeight(yygotominor.yy172);
+ }else{
+ sqlite3ExprListDelete(yymsp[-1].minor.yy174);
+ }
+ if( yymsp[-3].minor.yy46 ) yygotominor.yy172 = sqlite3PExpr(pParse, TK_NOT, yygotominor.yy172, 0, 0);
+ sqlite3ExprSpan(yygotominor.yy172,&yymsp[-4].minor.yy172->span,&yymsp[0].minor.yy0);
+ }
+ break;
+ case 219: /* expr ::= LP select RP */
+{
+ yygotominor.yy172 = sqlite3PExpr(pParse, TK_SELECT, 0, 0, 0);
+ if( yygotominor.yy172 ){
+ yygotominor.yy172->pSelect = yymsp[-1].minor.yy219;
+ sqlite3ExprSetHeight(yygotominor.yy172);
+ }else{
+ sqlite3SelectDelete(yymsp[-1].minor.yy219);
+ }
+ sqlite3ExprSpan(yygotominor.yy172,&yymsp[-2].minor.yy0,&yymsp[0].minor.yy0);
+ }
+ break;
+ case 220: /* expr ::= expr in_op LP select RP */
+{
+ yygotominor.yy172 = sqlite3PExpr(pParse, TK_IN, yymsp[-4].minor.yy172, 0, 0);
+ if( yygotominor.yy172 ){
+ yygotominor.yy172->pSelect = yymsp[-1].minor.yy219;
+ sqlite3ExprSetHeight(yygotominor.yy172);
+ }else{
+ sqlite3SelectDelete(yymsp[-1].minor.yy219);
+ }
+ if( yymsp[-3].minor.yy46 ) yygotominor.yy172 = sqlite3PExpr(pParse, TK_NOT, yygotominor.yy172, 0, 0);
+ sqlite3ExprSpan(yygotominor.yy172,&yymsp[-4].minor.yy172->span,&yymsp[0].minor.yy0);
+ }
+ break;
+ case 221: /* expr ::= expr in_op nm dbnm */
+{
+ SrcList *pSrc = sqlite3SrcListAppend(pParse->db, 0,&yymsp[-1].minor.yy410,&yymsp[0].minor.yy410);
+ yygotominor.yy172 = sqlite3PExpr(pParse, TK_IN, yymsp[-3].minor.yy172, 0, 0);
+ if( yygotominor.yy172 ){
+ yygotominor.yy172->pSelect = sqlite3SelectNew(pParse, 0,pSrc,0,0,0,0,0,0,0);
+ sqlite3ExprSetHeight(yygotominor.yy172);
+ }else{
+ sqlite3SrcListDelete(pSrc);
+ }
+ if( yymsp[-2].minor.yy46 ) yygotominor.yy172 = sqlite3PExpr(pParse, TK_NOT, yygotominor.yy172, 0, 0);
+ sqlite3ExprSpan(yygotominor.yy172,&yymsp[-3].minor.yy172->span,yymsp[0].minor.yy410.z?&yymsp[0].minor.yy410:&yymsp[-1].minor.yy410);
+ }
+ break;
+ case 222: /* expr ::= EXISTS LP select RP */
+{
+ Expr *p = yygotominor.yy172 = sqlite3PExpr(pParse, TK_EXISTS, 0, 0, 0);
+ if( p ){
+ p->pSelect = yymsp[-1].minor.yy219;
+ sqlite3ExprSpan(p,&yymsp[-3].minor.yy0,&yymsp[0].minor.yy0);
+ sqlite3ExprSetHeight(yygotominor.yy172);
+ }else{
+ sqlite3SelectDelete(yymsp[-1].minor.yy219);
+ }
+ }
+ break;
+ case 223: /* expr ::= CASE case_operand case_exprlist case_else END */
+{
+ yygotominor.yy172 = sqlite3PExpr(pParse, TK_CASE, yymsp[-3].minor.yy172, yymsp[-1].minor.yy172, 0);
+ if( yygotominor.yy172 ){
+ yygotominor.yy172->pList = yymsp[-2].minor.yy174;
+ sqlite3ExprSetHeight(yygotominor.yy172);
+ }else{
+ sqlite3ExprListDelete(yymsp[-2].minor.yy174);
+ }
+ sqlite3ExprSpan(yygotominor.yy172, &yymsp[-4].minor.yy0, &yymsp[0].minor.yy0);
+}
+ break;
+ case 224: /* case_exprlist ::= case_exprlist WHEN expr THEN expr */
+{
+ yygotominor.yy174 = sqlite3ExprListAppend(pParse,yymsp[-4].minor.yy174, yymsp[-2].minor.yy172, 0);
+ yygotominor.yy174 = sqlite3ExprListAppend(pParse,yygotominor.yy174, yymsp[0].minor.yy172, 0);
+}
+ break;
+ case 225: /* case_exprlist ::= WHEN expr THEN expr */
+{
+ yygotominor.yy174 = sqlite3ExprListAppend(pParse,0, yymsp[-2].minor.yy172, 0);
+ yygotominor.yy174 = sqlite3ExprListAppend(pParse,yygotominor.yy174, yymsp[0].minor.yy172, 0);
+}
+ break;
+ case 234: /* cmd ::= CREATE uniqueflag INDEX ifnotexists nm dbnm ON nm LP idxlist RP */
+{
+ sqlite3CreateIndex(pParse, &yymsp[-6].minor.yy410, &yymsp[-5].minor.yy410,
+ sqlite3SrcListAppend(pParse->db,0,&yymsp[-3].minor.yy410,0), yymsp[-1].minor.yy174, yymsp[-9].minor.yy46,
+ &yymsp[-10].minor.yy0, &yymsp[0].minor.yy0, SQLITE_SO_ASC, yymsp[-7].minor.yy46);
+}
+ break;
+ case 235: /* uniqueflag ::= UNIQUE */
+ case 283: /* raisetype ::= ABORT */
+{yygotominor.yy46 = OE_Abort;}
+ break;
+ case 236: /* uniqueflag ::= */
+{yygotominor.yy46 = OE_None;}
+ break;
+ case 239: /* idxlist ::= idxlist COMMA idxitem collate sortorder */
+{
+ Expr *p = 0;
+ if( yymsp[-1].minor.yy410.n>0 ){
+ p = sqlite3PExpr(pParse, TK_COLUMN, 0, 0, 0);
+ sqlite3ExprSetColl(pParse, p, &yymsp[-1].minor.yy410);
+ }
+ yygotominor.yy174 = sqlite3ExprListAppend(pParse,yymsp[-4].minor.yy174, p, &yymsp[-2].minor.yy410);
+ sqlite3ExprListCheckLength(pParse, yygotominor.yy174, "index");
+ if( yygotominor.yy174 ) yygotominor.yy174->a[yygotominor.yy174->nExpr-1].sortOrder = yymsp[0].minor.yy46;
+}
+ break;
+ case 240: /* idxlist ::= idxitem collate sortorder */
+{
+ Expr *p = 0;
+ if( yymsp[-1].minor.yy410.n>0 ){
+ p = sqlite3PExpr(pParse, TK_COLUMN, 0, 0, 0);
+ sqlite3ExprSetColl(pParse, p, &yymsp[-1].minor.yy410);
+ }
+ yygotominor.yy174 = sqlite3ExprListAppend(pParse,0, p, &yymsp[-2].minor.yy410);
+ sqlite3ExprListCheckLength(pParse, yygotominor.yy174, "index");
+ if( yygotominor.yy174 ) yygotominor.yy174->a[yygotominor.yy174->nExpr-1].sortOrder = yymsp[0].minor.yy46;
+}
+ break;
+ case 242: /* collate ::= */
+{yygotominor.yy410.z = 0; yygotominor.yy410.n = 0;}
+ break;
+ case 244: /* cmd ::= DROP INDEX ifexists fullname */
+{sqlite3DropIndex(pParse, yymsp[0].minor.yy373, yymsp[-1].minor.yy46);}
+ break;
+ case 245: /* cmd ::= VACUUM */
+ case 246: /* cmd ::= VACUUM nm */
+{sqlite3Vacuum(pParse);}
+ break;
+ case 247: /* cmd ::= PRAGMA nm dbnm EQ nmnum */
+{sqlite3Pragma(pParse,&yymsp[-3].minor.yy410,&yymsp[-2].minor.yy410,&yymsp[0].minor.yy410,0);}
+ break;
+ case 248: /* cmd ::= PRAGMA nm dbnm EQ ON */
+ case 249: /* cmd ::= PRAGMA nm dbnm EQ DELETE */
+{sqlite3Pragma(pParse,&yymsp[-3].minor.yy410,&yymsp[-2].minor.yy410,&yymsp[0].minor.yy0,0);}
+ break;
+ case 250: /* cmd ::= PRAGMA nm dbnm EQ minus_num */
+{
+ sqlite3Pragma(pParse,&yymsp[-3].minor.yy410,&yymsp[-2].minor.yy410,&yymsp[0].minor.yy410,1);
+}
+ break;
+ case 251: /* cmd ::= PRAGMA nm dbnm LP nmnum RP */
+{sqlite3Pragma(pParse,&yymsp[-4].minor.yy410,&yymsp[-3].minor.yy410,&yymsp[-1].minor.yy410,0);}
+ break;
+ case 252: /* cmd ::= PRAGMA nm dbnm */
+{sqlite3Pragma(pParse,&yymsp[-1].minor.yy410,&yymsp[0].minor.yy410,0,0);}
+ break;
+ case 260: /* cmd ::= CREATE trigger_decl BEGIN trigger_cmd_list END */
+{
+ Token all;
+ all.z = yymsp[-3].minor.yy410.z;
+ all.n = (yymsp[0].minor.yy0.z - yymsp[-3].minor.yy410.z) + yymsp[0].minor.yy0.n;
+ sqlite3FinishTrigger(pParse, yymsp[-1].minor.yy243, &all);
+}
+ break;
+ case 261: /* trigger_decl ::= temp TRIGGER ifnotexists nm dbnm trigger_time trigger_event ON fullname foreach_clause when_clause */
+{
+ sqlite3BeginTrigger(pParse, &yymsp[-7].minor.yy410, &yymsp[-6].minor.yy410, yymsp[-5].minor.yy46, yymsp[-4].minor.yy370.a, yymsp[-4].minor.yy370.b, yymsp[-2].minor.yy373, yymsp[0].minor.yy172, yymsp[-10].minor.yy46, yymsp[-8].minor.yy46);
+ yygotominor.yy410 = (yymsp[-6].minor.yy410.n==0?yymsp[-7].minor.yy410:yymsp[-6].minor.yy410);
+}
+ break;
+ case 262: /* trigger_time ::= BEFORE */
+ case 265: /* trigger_time ::= */
+{ yygotominor.yy46 = TK_BEFORE; }
+ break;
+ case 263: /* trigger_time ::= AFTER */
+{ yygotominor.yy46 = TK_AFTER; }
+ break;
+ case 264: /* trigger_time ::= INSTEAD OF */
+{ yygotominor.yy46 = TK_INSTEAD;}
+ break;
+ case 266: /* trigger_event ::= DELETE|INSERT */
+ case 267: /* trigger_event ::= UPDATE */
+{yygotominor.yy370.a = yymsp[0].major; yygotominor.yy370.b = 0;}
+ break;
+ case 268: /* trigger_event ::= UPDATE OF inscollist */
+{yygotominor.yy370.a = TK_UPDATE; yygotominor.yy370.b = yymsp[0].minor.yy432;}
+ break;
+ case 271: /* when_clause ::= */
+ case 288: /* key_opt ::= */
+{ yygotominor.yy172 = 0; }
+ break;
+ case 272: /* when_clause ::= WHEN expr */
+ case 289: /* key_opt ::= KEY expr */
+{ yygotominor.yy172 = yymsp[0].minor.yy172; }
+ break;
+ case 273: /* trigger_cmd_list ::= trigger_cmd_list trigger_cmd SEMI */
+{
+ if( yymsp[-2].minor.yy243 ){
+ yymsp[-2].minor.yy243->pLast->pNext = yymsp[-1].minor.yy243;
+ }else{
+ yymsp[-2].minor.yy243 = yymsp[-1].minor.yy243;
+ }
+ yymsp[-2].minor.yy243->pLast = yymsp[-1].minor.yy243;
+ yygotominor.yy243 = yymsp[-2].minor.yy243;
+}
+ break;
+ case 274: /* trigger_cmd_list ::= */
+{ yygotominor.yy243 = 0; }
+ break;
+ case 275: /* trigger_cmd ::= UPDATE orconf nm SET setlist where_opt */
+{ yygotominor.yy243 = sqlite3TriggerUpdateStep(pParse->db, &yymsp[-3].minor.yy410, yymsp[-1].minor.yy174, yymsp[0].minor.yy172, yymsp[-4].minor.yy46); }
+ break;
+ case 276: /* trigger_cmd ::= insert_cmd INTO nm inscollist_opt VALUES LP itemlist RP */
+{yygotominor.yy243 = sqlite3TriggerInsertStep(pParse->db, &yymsp[-5].minor.yy410, yymsp[-4].minor.yy432, yymsp[-1].minor.yy174, 0, yymsp[-7].minor.yy46);}
+ break;
+ case 277: /* trigger_cmd ::= insert_cmd INTO nm inscollist_opt select */
+{yygotominor.yy243 = sqlite3TriggerInsertStep(pParse->db, &yymsp[-2].minor.yy410, yymsp[-1].minor.yy432, 0, yymsp[0].minor.yy219, yymsp[-4].minor.yy46);}
+ break;
+ case 278: /* trigger_cmd ::= DELETE FROM nm where_opt */
+{yygotominor.yy243 = sqlite3TriggerDeleteStep(pParse->db, &yymsp[-1].minor.yy410, yymsp[0].minor.yy172);}
+ break;
+ case 279: /* trigger_cmd ::= select */
+{yygotominor.yy243 = sqlite3TriggerSelectStep(pParse->db, yymsp[0].minor.yy219); }
+ break;
+ case 280: /* expr ::= RAISE LP IGNORE RP */
+{
+ yygotominor.yy172 = sqlite3PExpr(pParse, TK_RAISE, 0, 0, 0);
+ if( yygotominor.yy172 ){
+ yygotominor.yy172->iColumn = OE_Ignore;
+ sqlite3ExprSpan(yygotominor.yy172, &yymsp[-3].minor.yy0, &yymsp[0].minor.yy0);
+ }
+}
+ break;
+ case 281: /* expr ::= RAISE LP raisetype COMMA nm RP */
+{
+ yygotominor.yy172 = sqlite3PExpr(pParse, TK_RAISE, 0, 0, &yymsp[-1].minor.yy410);
+ if( yygotominor.yy172 ) {
+ yygotominor.yy172->iColumn = yymsp[-3].minor.yy46;
+ sqlite3ExprSpan(yygotominor.yy172, &yymsp[-5].minor.yy0, &yymsp[0].minor.yy0);
+ }
+}
+ break;
+ case 282: /* raisetype ::= ROLLBACK */
+{yygotominor.yy46 = OE_Rollback;}
+ break;
+ case 284: /* raisetype ::= FAIL */
+{yygotominor.yy46 = OE_Fail;}
+ break;
+ case 285: /* cmd ::= DROP TRIGGER ifexists fullname */
+{
+ sqlite3DropTrigger(pParse,yymsp[0].minor.yy373,yymsp[-1].minor.yy46);
+}
+ break;
+ case 286: /* cmd ::= ATTACH database_kw_opt expr AS expr key_opt */
+{
+ sqlite3Attach(pParse, yymsp[-3].minor.yy172, yymsp[-1].minor.yy172, yymsp[0].minor.yy172);
+}
+ break;
+ case 287: /* cmd ::= DETACH database_kw_opt expr */
+{
+ sqlite3Detach(pParse, yymsp[0].minor.yy172);
+}
+ break;
+ case 292: /* cmd ::= REINDEX */
+{sqlite3Reindex(pParse, 0, 0);}
+ break;
+ case 293: /* cmd ::= REINDEX nm dbnm */
+{sqlite3Reindex(pParse, &yymsp[-1].minor.yy410, &yymsp[0].minor.yy410);}
+ break;
+ case 294: /* cmd ::= ANALYZE */
+{sqlite3Analyze(pParse, 0, 0);}
+ break;
+ case 295: /* cmd ::= ANALYZE nm dbnm */
+{sqlite3Analyze(pParse, &yymsp[-1].minor.yy410, &yymsp[0].minor.yy410);}
+ break;
+ case 296: /* cmd ::= ALTER TABLE fullname RENAME TO nm */
+{
+ sqlite3AlterRenameTable(pParse,yymsp[-3].minor.yy373,&yymsp[0].minor.yy410);
+}
+ break;
+ case 297: /* cmd ::= ALTER TABLE add_column_fullname ADD kwcolumn_opt column */
+{
+ sqlite3AlterFinishAddColumn(pParse, &yymsp[0].minor.yy410);
+}
+ break;
+ case 298: /* add_column_fullname ::= fullname */
+{
+ sqlite3AlterBeginAddColumn(pParse, yymsp[0].minor.yy373);
+}
+ break;
+ case 301: /* cmd ::= create_vtab */
+{sqlite3VtabFinishParse(pParse,0);}
+ break;
+ case 302: /* cmd ::= create_vtab LP vtabarglist RP */
+{sqlite3VtabFinishParse(pParse,&yymsp[0].minor.yy0);}
+ break;
+ case 303: /* create_vtab ::= CREATE VIRTUAL TABLE nm dbnm USING nm */
+{
+ sqlite3VtabBeginParse(pParse, &yymsp[-3].minor.yy410, &yymsp[-2].minor.yy410, &yymsp[0].minor.yy410);
+}
+ break;
+ case 306: /* vtabarg ::= */
+{sqlite3VtabArgInit(pParse);}
+ break;
+ case 308: /* vtabargtoken ::= ANY */
+ case 309: /* vtabargtoken ::= lp anylist RP */
+ case 310: /* lp ::= LP */
+ case 312: /* anylist ::= anylist ANY */
+{sqlite3VtabArgExtend(pParse,&yymsp[0].minor.yy0);}
+ break;
+ };
+ yygoto = yyRuleInfo[yyruleno].lhs;
+ yysize = yyRuleInfo[yyruleno].nrhs;
+ yypParser->yyidx -= yysize;
+ yyact = yy_find_reduce_action(yymsp[-yysize].stateno,yygoto);
+ if( yyact < YYNSTATE ){
+#ifdef NDEBUG
+ /* If we are not debugging and the reduce action popped at least
+ ** one element off the stack, then we can push the new element back
+ ** onto the stack here, and skip the stack overflow test in yy_shift().
+ ** That gives a significant speed improvement. */
+ if( yysize ){
+ yypParser->yyidx++;
+ yymsp -= yysize-1;
+ yymsp->stateno = yyact;
+ yymsp->major = yygoto;
+ yymsp->minor = yygotominor;
+ }else
+#endif
+ {
+ yy_shift(yypParser,yyact,yygoto,&yygotominor);
+ }
+ }else{
+ assert( yyact == YYNSTATE + YYNRULE + 1 );
+ yy_accept(yypParser);
+ }
+}
+
+/*
+** The following code executes when the parse fails
+*/
+static void yy_parse_failed(
+ yyParser *yypParser /* The parser */
+){
+ sqlite3ParserARG_FETCH;
+#ifndef NDEBUG
+ if( yyTraceFILE ){
+ fprintf(yyTraceFILE,"%sFail!\n",yyTracePrompt);
+ }
+#endif
+ while( yypParser->yyidx>=0 ) yy_pop_parser_stack(yypParser);
+ /* Here code is inserted which will be executed whenever the
+ ** parser fails */
+ sqlite3ParserARG_STORE; /* Suppress warning about unused %extra_argument variable */
+}
+
+/*
+** The following code executes when a syntax error first occurs.
+*/
+static void yy_syntax_error(
+ yyParser *yypParser, /* The parser */
+ int yymajor, /* The major type of the error token */
+ YYMINORTYPE yyminor /* The minor type of the error token */
+){
+ sqlite3ParserARG_FETCH;
+#define TOKEN (yyminor.yy0)
+
+ assert( TOKEN.z[0] ); /* The tokenizer always gives us a token */
+ sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &TOKEN);
+ pParse->parseError = 1;
+ sqlite3ParserARG_STORE; /* Suppress warning about unused %extra_argument variable */
+}
+
+/*
+** The following is executed when the parser accepts
+*/
+static void yy_accept(
+ yyParser *yypParser /* The parser */
+){
+ sqlite3ParserARG_FETCH;
+#ifndef NDEBUG
+ if( yyTraceFILE ){
+ fprintf(yyTraceFILE,"%sAccept!\n",yyTracePrompt);
+ }
+#endif
+ while( yypParser->yyidx>=0 ) yy_pop_parser_stack(yypParser);
+ /* Here code is inserted which will be executed whenever the
+ ** parser accepts */
+ sqlite3ParserARG_STORE; /* Suppress warning about unused %extra_argument variable */
+}
+
+/* The main parser program.
+** The first argument is a pointer to a structure obtained from
+** "sqlite3ParserAlloc" which describes the current state of the parser.
+** The second argument is the major token number. The third is
+** the minor token. The fourth optional argument is whatever the
+** user wants (and specified in the grammar) and is available for
+** use by the action routines.
+**
+** Inputs:
+** <ul>
+** <li> A pointer to the parser (an opaque structure.)
+** <li> The major token number.
+** <li> The minor token number.
+** <li> An option argument of a grammar-specified type.
+** </ul>
+**
+** Outputs:
+** None.
+*/
+SQLITE_PRIVATE void sqlite3Parser(
+ void *yyp, /* The parser */
+ int yymajor, /* The major token code number */
+ sqlite3ParserTOKENTYPE yyminor /* The value for the token */
+ sqlite3ParserARG_PDECL /* Optional %extra_argument parameter */
+){
+ YYMINORTYPE yyminorunion;
+ int yyact; /* The parser action. */
+ int yyendofinput; /* True if we are at the end of input */
+#ifdef YYERRORSYMBOL
+ int yyerrorhit = 0; /* True if yymajor has invoked an error */
+#endif
+ yyParser *yypParser; /* The parser */
+
+ /* (re)initialize the parser, if necessary */
+ yypParser = (yyParser*)yyp;
+ if( yypParser->yyidx<0 ){
+#if YYSTACKDEPTH<=0
+ if( yypParser->yystksz <=0 ){
+ /*memset(&yyminorunion, 0, sizeof(yyminorunion));*/
+ yyminorunion = yyzerominor;
+ yyStackOverflow(yypParser, &yyminorunion);
+ return;
+ }
+#endif
+ yypParser->yyidx = 0;
+ yypParser->yyerrcnt = -1;
+ yypParser->yystack[0].stateno = 0;
+ yypParser->yystack[0].major = 0;
+ }
+ yyminorunion.yy0 = yyminor;
+ yyendofinput = (yymajor==0);
+ sqlite3ParserARG_STORE;
+
+#ifndef NDEBUG
+ if( yyTraceFILE ){
+ fprintf(yyTraceFILE,"%sInput %s\n",yyTracePrompt,yyTokenName[yymajor]);
+ }
+#endif
+
+ do{
+ yyact = yy_find_shift_action(yypParser,yymajor);
+ if( yyact<YYNSTATE ){
+ assert( !yyendofinput ); /* Impossible to shift the $ token */
+ yy_shift(yypParser,yyact,yymajor,&yyminorunion);
+ yypParser->yyerrcnt--;
+ yymajor = YYNOCODE;
+ }else if( yyact < YYNSTATE + YYNRULE ){
+ yy_reduce(yypParser,yyact-YYNSTATE);
+ }else{
+ assert( yyact == YY_ERROR_ACTION );
+#ifdef YYERRORSYMBOL
+ int yymx;
+#endif
+#ifndef NDEBUG
+ if( yyTraceFILE ){
+ fprintf(yyTraceFILE,"%sSyntax Error!\n",yyTracePrompt);
+ }
+#endif
+#ifdef YYERRORSYMBOL
+ /* A syntax error has occurred.
+ ** The response to an error depends upon whether or not the
+ ** grammar defines an error token "ERROR".
+ **
+ ** This is what we do if the grammar does define ERROR:
+ **
+ ** * Call the %syntax_error function.
+ **
+ ** * Begin popping the stack until we enter a state where
+ ** it is legal to shift the error symbol, then shift
+ ** the error symbol.
+ **
+ ** * Set the error count to three.
+ **
+ ** * Begin accepting and shifting new tokens. No new error
+ ** processing will occur until three tokens have been
+ ** shifted successfully.
+ **
+ */
+ if( yypParser->yyerrcnt<0 ){
+ yy_syntax_error(yypParser,yymajor,yyminorunion);
+ }
+ yymx = yypParser->yystack[yypParser->yyidx].major;
+ if( yymx==YYERRORSYMBOL || yyerrorhit ){
+#ifndef NDEBUG
+ if( yyTraceFILE ){
+ fprintf(yyTraceFILE,"%sDiscard input token %s\n",
+ yyTracePrompt,yyTokenName[yymajor]);
+ }
+#endif
+ yy_destructor(yymajor,&yyminorunion);
+ yymajor = YYNOCODE;
+ }else{
+ while(
+ yypParser->yyidx >= 0 &&
+ yymx != YYERRORSYMBOL &&
+ (yyact = yy_find_reduce_action(
+ yypParser->yystack[yypParser->yyidx].stateno,
+ YYERRORSYMBOL)) >= YYNSTATE
+ ){
+ yy_pop_parser_stack(yypParser);
+ }
+ if( yypParser->yyidx < 0 || yymajor==0 ){
+ yy_destructor(yymajor,&yyminorunion);
+ yy_parse_failed(yypParser);
+ yymajor = YYNOCODE;
+ }else if( yymx!=YYERRORSYMBOL ){
+ YYMINORTYPE u2;
+ u2.YYERRSYMDT = 0;
+ yy_shift(yypParser,yyact,YYERRORSYMBOL,&u2);
+ }
+ }
+ yypParser->yyerrcnt = 3;
+ yyerrorhit = 1;
+#else /* YYERRORSYMBOL is not defined */
+ /* This is what we do if the grammar does not define ERROR:
+ **
+ ** * Report an error message, and throw away the input token.
+ **
+ ** * If the input token is $, then fail the parse.
+ **
+ ** As before, subsequent error messages are suppressed until
+ ** three input tokens have been successfully shifted.
+ */
+ if( yypParser->yyerrcnt<=0 ){
+ yy_syntax_error(yypParser,yymajor,yyminorunion);
+ }
+ yypParser->yyerrcnt = 3;
+ yy_destructor(yymajor,&yyminorunion);
+ if( yyendofinput ){
+ yy_parse_failed(yypParser);
+ }
+ yymajor = YYNOCODE;
+#endif
+ }
+ }while( yymajor!=YYNOCODE && yypParser->yyidx>=0 );
+ return;
+}
+
+/************** End of parse.c ***********************************************/
+/************** Begin file tokenize.c ****************************************/
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** An tokenizer for SQL
+**
+** This file contains C code that splits an SQL input string up into
+** individual tokens and sends those tokens one-by-one over to the
+** parser for analysis.
+**
+** $Id: tokenize.c,v 1.142 2008/04/28 18:46:43 drh Exp $
+*/
+
+/*
+** The charMap() macro maps alphabetic characters into their
+** lower-case ASCII equivalent. On ASCII machines, this is just
+** an upper-to-lower case map. On EBCDIC machines we also need
+** to adjust the encoding. Only alphabetic characters and underscores
+** need to be translated.
+*/
+#ifdef SQLITE_ASCII
+# define charMap(X) sqlite3UpperToLower[(unsigned char)X]
+#endif
+#ifdef SQLITE_EBCDIC
+# define charMap(X) ebcdicToAscii[(unsigned char)X]
+const unsigned char ebcdicToAscii[] = {
+/* 0 1 2 3 4 5 6 7 8 9 A B C D E F */
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0x */
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 1x */
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 2x */
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 3x */
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 4x */
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 5x */
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 95, 0, 0, /* 6x */
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 7x */
+ 0, 97, 98, 99,100,101,102,103,104,105, 0, 0, 0, 0, 0, 0, /* 8x */
+ 0,106,107,108,109,110,111,112,113,114, 0, 0, 0, 0, 0, 0, /* 9x */
+ 0, 0,115,116,117,118,119,120,121,122, 0, 0, 0, 0, 0, 0, /* Ax */
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* Bx */
+ 0, 97, 98, 99,100,101,102,103,104,105, 0, 0, 0, 0, 0, 0, /* Cx */
+ 0,106,107,108,109,110,111,112,113,114, 0, 0, 0, 0, 0, 0, /* Dx */
+ 0, 0,115,116,117,118,119,120,121,122, 0, 0, 0, 0, 0, 0, /* Ex */
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* Fx */
+};
+#endif
+
+/*
+** The sqlite3KeywordCode function looks up an identifier to determine if
+** it is a keyword. If it is a keyword, the token code of that keyword is
+** returned. If the input is not a keyword, TK_ID is returned.
+**
+** The implementation of this routine was generated by a program,
+** mkkeywordhash.h, located in the tool subdirectory of the distribution.
+** The output of the mkkeywordhash.c program is written into a file
+** named keywordhash.h and then included into this source file by
+** the #include below.
+*/
+/************** Include keywordhash.h in the middle of tokenize.c ************/
+/************** Begin file keywordhash.h *************************************/
+/***** This file contains automatically generated code ******
+**
+** The code in this file has been automatically generated by
+**
+** $Header: /sqlite/sqlite/tool/mkkeywordhash.c,v 1.31 2007/07/30 18:26:20 rse Exp $
+**
+** The code in this file implements a function that determines whether
+** or not a given identifier is really an SQL keyword. The same thing
+** might be implemented more directly using a hand-written hash table.
+** But by using this automatically generated code, the size of the code
+** is substantially reduced. This is important for embedded applications
+** on platforms with limited memory.
+*/
+/* Hash score: 165 */
+static int keywordCode(const char *z, int n){
+ /* zText[] encodes 775 bytes of keywords in 526 bytes */
+ static const char zText[526] =
+ "BEFOREIGNOREGEXPLAINSTEADDESCAPEACHECKEYCONSTRAINTERSECTABLEFT"
+ "HENDATABASELECTRANSACTIONATURALTERAISELSEXCEPTRIGGEREFERENCES"
+ "UNIQUERYATTACHAVINGROUPDATEMPORARYBEGINNEREINDEXCLUSIVEXISTSBETWEEN"
+ "OTNULLIKECASCADEFERRABLECASECOLLATECREATECURRENT_DATEDELETEDETACH"
+ "IMMEDIATEJOINSERTMATCHPLANALYZEPRAGMABORTVALUESVIRTUALIMITWHEN"
+ "WHERENAMEAFTEREPLACEANDEFAULTAUTOINCREMENTCASTCOLUMNCOMMITCONFLICT"
+ "CROSSCURRENT_TIMESTAMPRIMARYDEFERREDISTINCTDROPFAILFROMFULLGLOB"
+ "YIFINTOFFSETISNULLORDERESTRICTOUTERIGHTROLLBACKROWUNIONUSINGVACUUM"
+ "VIEWINITIALLY";
+ static const unsigned char aHash[127] = {
+ 63, 92, 109, 61, 0, 38, 0, 0, 69, 0, 64, 0, 0,
+ 102, 4, 65, 7, 0, 108, 72, 103, 99, 0, 22, 0, 0,
+ 113, 0, 111, 106, 0, 18, 80, 0, 1, 0, 0, 56, 57,
+ 0, 55, 11, 0, 33, 77, 89, 0, 110, 88, 0, 0, 45,
+ 0, 90, 54, 0, 20, 0, 114, 34, 19, 0, 10, 97, 28,
+ 83, 0, 0, 116, 93, 47, 115, 41, 12, 44, 0, 78, 0,
+ 87, 29, 0, 86, 0, 0, 0, 82, 79, 84, 75, 96, 6,
+ 14, 95, 0, 68, 0, 21, 76, 98, 27, 0, 112, 67, 104,
+ 49, 40, 71, 0, 0, 81, 100, 0, 107, 0, 15, 0, 0,
+ 24, 0, 73, 42, 50, 0, 16, 48, 0, 37,
+ };
+ static const unsigned char aNext[116] = {
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 9, 0, 0, 0,
+ 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 32, 0, 0,
+ 17, 0, 0, 0, 36, 39, 0, 0, 25, 0, 0, 31, 0,
+ 0, 0, 43, 52, 0, 0, 0, 53, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 51, 0, 0, 0, 0, 26, 0, 8, 46,
+ 2, 0, 0, 0, 0, 0, 0, 0, 3, 58, 66, 0, 13,
+ 0, 91, 85, 0, 94, 0, 74, 0, 0, 62, 0, 35, 101,
+ 0, 0, 105, 23, 30, 60, 70, 0, 0, 59, 0, 0,
+ };
+ static const unsigned char aLen[116] = {
+ 6, 7, 3, 6, 6, 7, 7, 3, 4, 6, 4, 5, 3,
+ 10, 9, 5, 4, 4, 3, 8, 2, 6, 11, 2, 7, 5,
+ 5, 4, 6, 7, 10, 6, 5, 6, 6, 5, 6, 4, 9,
+ 2, 5, 5, 7, 5, 9, 6, 7, 7, 3, 4, 4, 7,
+ 3, 10, 4, 7, 6, 12, 6, 6, 9, 4, 6, 5, 4,
+ 7, 6, 5, 6, 7, 5, 4, 5, 6, 5, 7, 3, 7,
+ 13, 2, 2, 4, 6, 6, 8, 5, 17, 12, 7, 8, 8,
+ 2, 4, 4, 4, 4, 4, 2, 2, 4, 6, 2, 3, 6,
+ 5, 8, 5, 5, 8, 3, 5, 5, 6, 4, 9, 3,
+ };
+ static const unsigned short int aOffset[116] = {
+ 0, 2, 2, 6, 10, 13, 18, 23, 25, 26, 31, 33, 37,
+ 40, 47, 55, 58, 61, 63, 65, 70, 71, 76, 85, 86, 91,
+ 95, 99, 102, 107, 113, 123, 126, 131, 136, 141, 144, 148, 148,
+ 152, 157, 160, 164, 166, 169, 177, 183, 189, 189, 192, 195, 199,
+ 200, 204, 214, 218, 225, 231, 243, 249, 255, 264, 266, 272, 277,
+ 279, 286, 291, 296, 302, 308, 313, 317, 320, 326, 330, 337, 339,
+ 346, 348, 350, 359, 363, 369, 375, 383, 388, 388, 404, 411, 418,
+ 419, 426, 430, 434, 438, 442, 445, 447, 449, 452, 452, 455, 458,
+ 464, 468, 476, 480, 485, 493, 496, 501, 506, 512, 516, 521,
+ };
+ static const unsigned char aCode[116] = {
+ TK_BEFORE, TK_FOREIGN, TK_FOR, TK_IGNORE, TK_LIKE_KW,
+ TK_EXPLAIN, TK_INSTEAD, TK_ADD, TK_DESC, TK_ESCAPE,
+ TK_EACH, TK_CHECK, TK_KEY, TK_CONSTRAINT, TK_INTERSECT,
+ TK_TABLE, TK_JOIN_KW, TK_THEN, TK_END, TK_DATABASE,
+ TK_AS, TK_SELECT, TK_TRANSACTION,TK_ON, TK_JOIN_KW,
+ TK_ALTER, TK_RAISE, TK_ELSE, TK_EXCEPT, TK_TRIGGER,
+ TK_REFERENCES, TK_UNIQUE, TK_QUERY, TK_ATTACH, TK_HAVING,
+ TK_GROUP, TK_UPDATE, TK_TEMP, TK_TEMP, TK_OR,
+ TK_BEGIN, TK_JOIN_KW, TK_REINDEX, TK_INDEX, TK_EXCLUSIVE,
+ TK_EXISTS, TK_BETWEEN, TK_NOTNULL, TK_NOT, TK_NULL,
+ TK_LIKE_KW, TK_CASCADE, TK_ASC, TK_DEFERRABLE, TK_CASE,
+ TK_COLLATE, TK_CREATE, TK_CTIME_KW, TK_DELETE, TK_DETACH,
+ TK_IMMEDIATE, TK_JOIN, TK_INSERT, TK_MATCH, TK_PLAN,
+ TK_ANALYZE, TK_PRAGMA, TK_ABORT, TK_VALUES, TK_VIRTUAL,
+ TK_LIMIT, TK_WHEN, TK_WHERE, TK_RENAME, TK_AFTER,
+ TK_REPLACE, TK_AND, TK_DEFAULT, TK_AUTOINCR, TK_TO,
+ TK_IN, TK_CAST, TK_COLUMNKW, TK_COMMIT, TK_CONFLICT,
+ TK_JOIN_KW, TK_CTIME_KW, TK_CTIME_KW, TK_PRIMARY, TK_DEFERRED,
+ TK_DISTINCT, TK_IS, TK_DROP, TK_FAIL, TK_FROM,
+ TK_JOIN_KW, TK_LIKE_KW, TK_BY, TK_IF, TK_INTO,
+ TK_OFFSET, TK_OF, TK_SET, TK_ISNULL, TK_ORDER,
+ TK_RESTRICT, TK_JOIN_KW, TK_JOIN_KW, TK_ROLLBACK, TK_ROW,
+ TK_UNION, TK_USING, TK_VACUUM, TK_VIEW, TK_INITIALLY,
+ TK_ALL,
+ };
+ int h, i;
+ if( n<2 ) return TK_ID;
+ h = ((charMap(z[0])*4) ^
+ (charMap(z[n-1])*3) ^
+ n) % 127;
+ for(i=((int)aHash[h])-1; i>=0; i=((int)aNext[i])-1){
+ if( aLen[i]==n && sqlite3StrNICmp(&zText[aOffset[i]],z,n)==0 ){
+ return aCode[i];
+ }
+ }
+ return TK_ID;
+}
+SQLITE_PRIVATE int sqlite3KeywordCode(const unsigned char *z, int n){
+ return keywordCode((char*)z, n);
+}
+
+/************** End of keywordhash.h *****************************************/
+/************** Continuing where we left off in tokenize.c *******************/
+
+
+/*
+** If X is a character that can be used in an identifier then
+** IdChar(X) will be true. Otherwise it is false.
+**
+** For ASCII, any character with the high-order bit set is
+** allowed in an identifier. For 7-bit characters,
+** sqlite3IsIdChar[X] must be 1.
+**
+** For EBCDIC, the rules are more complex but have the same
+** end result.
+**
+** Ticket #1066. the SQL standard does not allow '$' in the
+** middle of identfiers. But many SQL implementations do.
+** SQLite will allow '$' in identifiers for compatibility.
+** But the feature is undocumented.
+*/
+#ifdef SQLITE_ASCII
+SQLITE_PRIVATE const char sqlite3IsAsciiIdChar[] = {
+/* x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF */
+ 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 2x */
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, /* 3x */
+ 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 4x */
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, /* 5x */
+ 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 6x */
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, /* 7x */
+};
+#define IdChar(C) (((c=C)&0x80)!=0 || (c>0x1f && sqlite3IsAsciiIdChar[c-0x20]))
+#endif
+#ifdef SQLITE_EBCDIC
+SQLITE_PRIVATE const char sqlite3IsEbcdicIdChar[] = {
+/* x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF */
+ 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, /* 4x */
+ 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, /* 5x */
+ 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, /* 6x */
+ 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, /* 7x */
+ 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, /* 8x */
+ 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, /* 9x */
+ 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, /* Ax */
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* Bx */
+ 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, /* Cx */
+ 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, /* Dx */
+ 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, /* Ex */
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, /* Fx */
+};
+#define IdChar(C) (((c=C)>=0x42 && sqlite3IsEbcdicIdChar[c-0x40]))
+#endif
+
+
+/*
+** Return the length of the token that begins at z[0].
+** Store the token type in *tokenType before returning.
+*/
+SQLITE_PRIVATE int sqlite3GetToken(const unsigned char *z, int *tokenType){
+ int i, c;
+ switch( *z ){
+ case ' ': case '\t': case '\n': case '\f': case '\r': {
+ for(i=1; isspace(z[i]); i++){}
+ *tokenType = TK_SPACE;
+ return i;
+ }
+ case '-': {
+ if( z[1]=='-' ){
+ for(i=2; (c=z[i])!=0 && c!='\n'; i++){}
+ *tokenType = TK_COMMENT;
+ return i;
+ }
+ *tokenType = TK_MINUS;
+ return 1;
+ }
+ case '(': {
+ *tokenType = TK_LP;
+ return 1;
+ }
+ case ')': {
+ *tokenType = TK_RP;
+ return 1;
+ }
+ case ';': {
+ *tokenType = TK_SEMI;
+ return 1;
+ }
+ case '+': {
+ *tokenType = TK_PLUS;
+ return 1;
+ }
+ case '*': {
+ *tokenType = TK_STAR;
+ return 1;
+ }
+ case '/': {
+ if( z[1]!='*' || z[2]==0 ){
+ *tokenType = TK_SLASH;
+ return 1;
+ }
+ for(i=3, c=z[2]; (c!='*' || z[i]!='/') && (c=z[i])!=0; i++){}
+ if( c ) i++;
+ *tokenType = TK_COMMENT;
+ return i;
+ }
+ case '%': {
+ *tokenType = TK_REM;
+ return 1;
+ }
+ case '=': {
+ *tokenType = TK_EQ;
+ return 1 + (z[1]=='=');
+ }
+ case '<': {
+ if( (c=z[1])=='=' ){
+ *tokenType = TK_LE;
+ return 2;
+ }else if( c=='>' ){
+ *tokenType = TK_NE;
+ return 2;
+ }else if( c=='<' ){
+ *tokenType = TK_LSHIFT;
+ return 2;
+ }else{
+ *tokenType = TK_LT;
+ return 1;
+ }
+ }
+ case '>': {
+ if( (c=z[1])=='=' ){
+ *tokenType = TK_GE;
+ return 2;
+ }else if( c=='>' ){
+ *tokenType = TK_RSHIFT;
+ return 2;
+ }else{
+ *tokenType = TK_GT;
+ return 1;
+ }
+ }
+ case '!': {
+ if( z[1]!='=' ){
+ *tokenType = TK_ILLEGAL;
+ return 2;
+ }else{
+ *tokenType = TK_NE;
+ return 2;
+ }
+ }
+ case '|': {
+ if( z[1]!='|' ){
+ *tokenType = TK_BITOR;
+ return 1;
+ }else{
+ *tokenType = TK_CONCAT;
+ return 2;
+ }
+ }
+ case ',': {
+ *tokenType = TK_COMMA;
+ return 1;
+ }
+ case '&': {
+ *tokenType = TK_BITAND;
+ return 1;
+ }
+ case '~': {
+ *tokenType = TK_BITNOT;
+ return 1;
+ }
+ case '`':
+ case '\'':
+ case '"': {
+ int delim = z[0];
+ for(i=1; (c=z[i])!=0; i++){
+ if( c==delim ){
+ if( z[i+1]==delim ){
+ i++;
+ }else{
+ break;
+ }
+ }
+ }
+ if( c ){
+ *tokenType = TK_STRING;
+ return i+1;
+ }else{
+ *tokenType = TK_ILLEGAL;
+ return i;
+ }
+ }
+ case '.': {
+#ifndef SQLITE_OMIT_FLOATING_POINT
+ if( !isdigit(z[1]) )
+#endif
+ {
+ *tokenType = TK_DOT;
+ return 1;
+ }
+ /* If the next character is a digit, this is a floating point
+ ** number that begins with ".". Fall thru into the next case */
+ }
+ case '0': case '1': case '2': case '3': case '4':
+ case '5': case '6': case '7': case '8': case '9': {
+ *tokenType = TK_INTEGER;
+ for(i=0; isdigit(z[i]); i++){}
+#ifndef SQLITE_OMIT_FLOATING_POINT
+ if( z[i]=='.' ){
+ i++;
+ while( isdigit(z[i]) ){ i++; }
+ *tokenType = TK_FLOAT;
+ }
+ if( (z[i]=='e' || z[i]=='E') &&
+ ( isdigit(z[i+1])
+ || ((z[i+1]=='+' || z[i+1]=='-') && isdigit(z[i+2]))
+ )
+ ){
+ i += 2;
+ while( isdigit(z[i]) ){ i++; }
+ *tokenType = TK_FLOAT;
+ }
+#endif
+ while( IdChar(z[i]) ){
+ *tokenType = TK_ILLEGAL;
+ i++;
+ }
+ return i;
+ }
+ case '[': {
+ for(i=1, c=z[0]; c!=']' && (c=z[i])!=0; i++){}
+ *tokenType = c==']' ? TK_ID : TK_ILLEGAL;
+ return i;
+ }
+ case '?': {
+ *tokenType = TK_VARIABLE;
+ for(i=1; isdigit(z[i]); i++){}
+ return i;
+ }
+ case '#': {
+ for(i=1; isdigit(z[i]); i++){}
+ if( i>1 ){
+ /* Parameters of the form #NNN (where NNN is a number) are used
+ ** internally by sqlite3NestedParse. */
+ *tokenType = TK_REGISTER;
+ return i;
+ }
+ /* Fall through into the next case if the '#' is not followed by
+ ** a digit. Try to match #AAAA where AAAA is a parameter name. */
+ }
+#ifndef SQLITE_OMIT_TCL_VARIABLE
+ case '$':
+#endif
+ case '@': /* For compatibility with MS SQL Server */
+ case ':': {
+ int n = 0;
+ *tokenType = TK_VARIABLE;
+ for(i=1; (c=z[i])!=0; i++){
+ if( IdChar(c) ){
+ n++;
+#ifndef SQLITE_OMIT_TCL_VARIABLE
+ }else if( c=='(' && n>0 ){
+ do{
+ i++;
+ }while( (c=z[i])!=0 && !isspace(c) && c!=')' );
+ if( c==')' ){
+ i++;
+ }else{
+ *tokenType = TK_ILLEGAL;
+ }
+ break;
+ }else if( c==':' && z[i+1]==':' ){
+ i++;
+#endif
+ }else{
+ break;
+ }
+ }
+ if( n==0 ) *tokenType = TK_ILLEGAL;
+ return i;
+ }
+#ifndef SQLITE_OMIT_BLOB_LITERAL
+ case 'x': case 'X': {
+ if( z[1]=='\'' ){
+ *tokenType = TK_BLOB;
+ for(i=2; (c=z[i])!=0 && c!='\''; i++){
+ if( !isxdigit(c) ){
+ *tokenType = TK_ILLEGAL;
+ }
+ }
+ if( i%2 || !c ) *tokenType = TK_ILLEGAL;
+ if( c ) i++;
+ return i;
+ }
+ /* Otherwise fall through to the next case */
+ }
+#endif
+ default: {
+ if( !IdChar(*z) ){
+ break;
+ }
+ for(i=1; IdChar(z[i]); i++){}
+ *tokenType = keywordCode((char*)z, i);
+ return i;
+ }
+ }
+ *tokenType = TK_ILLEGAL;
+ return 1;
+}
+
+/*
+** Run the parser on the given SQL string. The parser structure is
+** passed in. An SQLITE_ status code is returned. If an error occurs
+** and pzErrMsg!=NULL then an error message might be written into
+** memory obtained from sqlite3_malloc() and *pzErrMsg made to point to that
+** error message. Or maybe not.
+*/
+SQLITE_PRIVATE int sqlite3RunParser(Parse *pParse, const char *zSql, char **pzErrMsg){
+ int nErr = 0;
+ int i;
+ void *pEngine;
+ int tokenType;
+ int lastTokenParsed = -1;
+ sqlite3 *db = pParse->db;
+ int mxSqlLen = db->aLimit[SQLITE_LIMIT_SQL_LENGTH];
+
+ if( db->activeVdbeCnt==0 ){
+ db->u1.isInterrupted = 0;
+ }
+ pParse->rc = SQLITE_OK;
+ pParse->zTail = pParse->zSql = zSql;
+ i = 0;
+ pEngine = sqlite3ParserAlloc((void*(*)(size_t))sqlite3_malloc);
+ if( pEngine==0 ){
+ db->mallocFailed = 1;
+ return SQLITE_NOMEM;
+ }
+ assert( pParse->sLastToken.dyn==0 );
+ assert( pParse->pNewTable==0 );
+ assert( pParse->pNewTrigger==0 );
+ assert( pParse->nVar==0 );
+ assert( pParse->nVarExpr==0 );
+ assert( pParse->nVarExprAlloc==0 );
+ assert( pParse->apVarExpr==0 );
+ while( !db->mallocFailed && zSql[i]!=0 ){
+ assert( i>=0 );
+ pParse->sLastToken.z = (u8*)&zSql[i];
+ assert( pParse->sLastToken.dyn==0 );
+ pParse->sLastToken.n = sqlite3GetToken((unsigned char*)&zSql[i],&tokenType);
+ i += pParse->sLastToken.n;
+ if( i>mxSqlLen ){
+ pParse->rc = SQLITE_TOOBIG;
+ break;
+ }
+ switch( tokenType ){
+ case TK_SPACE:
+ case TK_COMMENT: {
+ if( db->u1.isInterrupted ){
+ pParse->rc = SQLITE_INTERRUPT;
+ sqlite3SetString(pzErrMsg, "interrupt", (char*)0);
+ goto abort_parse;
+ }
+ break;
+ }
+ case TK_ILLEGAL: {
+ if( pzErrMsg ){
+ sqlite3_free(*pzErrMsg);
+ *pzErrMsg = sqlite3MPrintf(db, "unrecognized token: \"%T\"",
+ &pParse->sLastToken);
+ }
+ nErr++;
+ goto abort_parse;
+ }
+ case TK_SEMI: {
+ pParse->zTail = &zSql[i];
+ /* Fall thru into the default case */
+ }
+ default: {
+ sqlite3Parser(pEngine, tokenType, pParse->sLastToken, pParse);
+ lastTokenParsed = tokenType;
+ if( pParse->rc!=SQLITE_OK ){
+ goto abort_parse;
+ }
+ break;
+ }
+ }
+ }
+abort_parse:
+ if( zSql[i]==0 && nErr==0 && pParse->rc==SQLITE_OK ){
+ if( lastTokenParsed!=TK_SEMI ){
+ sqlite3Parser(pEngine, TK_SEMI, pParse->sLastToken, pParse);
+ pParse->zTail = &zSql[i];
+ }
+ sqlite3Parser(pEngine, 0, pParse->sLastToken, pParse);
+ }
+ sqlite3ParserFree(pEngine, sqlite3_free);
+ if( db->mallocFailed ){
+ pParse->rc = SQLITE_NOMEM;
+ }
+ if( pParse->rc!=SQLITE_OK && pParse->rc!=SQLITE_DONE && pParse->zErrMsg==0 ){
+ sqlite3SetString(&pParse->zErrMsg, sqlite3ErrStr(pParse->rc), (char*)0);
+ }
+ if( pParse->zErrMsg ){
+ if( pzErrMsg && *pzErrMsg==0 ){
+ *pzErrMsg = pParse->zErrMsg;
+ }else{
+ sqlite3_free(pParse->zErrMsg);
+ }
+ pParse->zErrMsg = 0;
+ nErr++;
+ }
+ if( pParse->pVdbe && pParse->nErr>0 && pParse->nested==0 ){
+ sqlite3VdbeDelete(pParse->pVdbe);
+ pParse->pVdbe = 0;
+ }
+#ifndef SQLITE_OMIT_SHARED_CACHE
+ if( pParse->nested==0 ){
+ sqlite3_free(pParse->aTableLock);
+ pParse->aTableLock = 0;
+ pParse->nTableLock = 0;
+ }
+#endif
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ sqlite3_free(pParse->apVtabLock);
+#endif
+
+ if( !IN_DECLARE_VTAB ){
+ /* If the pParse->declareVtab flag is set, do not delete any table
+ ** structure built up in pParse->pNewTable. The calling code (see vtab.c)
+ ** will take responsibility for freeing the Table structure.
+ */
+ sqlite3DeleteTable(pParse->pNewTable);
+ }
+
+ sqlite3DeleteTrigger(pParse->pNewTrigger);
+ sqlite3_free(pParse->apVarExpr);
+ if( nErr>0 && (pParse->rc==SQLITE_OK || pParse->rc==SQLITE_DONE) ){
+ pParse->rc = SQLITE_ERROR;
+ }
+ return nErr;
+}
+
+/************** End of tokenize.c ********************************************/
+/************** Begin file complete.c ****************************************/
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** An tokenizer for SQL
+**
+** This file contains C code that implements the sqlite3_complete() API.
+** This code used to be part of the tokenizer.c source file. But by
+** separating it out, the code will be automatically omitted from
+** static links that do not use it.
+**
+** $Id: complete.c,v 1.6 2007/08/27 23:26:59 drh Exp $
+*/
+#ifndef SQLITE_OMIT_COMPLETE
+
+/*
+** This is defined in tokenize.c. We just have to import the definition.
+*/
+#ifndef SQLITE_AMALGAMATION
+#ifdef SQLITE_ASCII
+SQLITE_PRIVATE const char sqlite3IsAsciiIdChar[];
+#define IdChar(C) (((c=C)&0x80)!=0 || (c>0x1f && sqlite3IsAsciiIdChar[c-0x20]))
+#endif
+#ifdef SQLITE_EBCDIC
+SQLITE_PRIVATE const char sqlite3IsEbcdicIdChar[];
+#define IdChar(C) (((c=C)>=0x42 && sqlite3IsEbcdicIdChar[c-0x40]))
+#endif
+#endif /* SQLITE_AMALGAMATION */
+
+
+/*
+** Token types used by the sqlite3_complete() routine. See the header
+** comments on that procedure for additional information.
+*/
+#define tkSEMI 0
+#define tkWS 1
+#define tkOTHER 2
+#define tkEXPLAIN 3
+#define tkCREATE 4
+#define tkTEMP 5
+#define tkTRIGGER 6
+#define tkEND 7
+
+/*
+** Return TRUE if the given SQL string ends in a semicolon.
+**
+** Special handling is require for CREATE TRIGGER statements.
+** Whenever the CREATE TRIGGER keywords are seen, the statement
+** must end with ";END;".
+**
+** This implementation uses a state machine with 7 states:
+**
+** (0) START At the beginning or end of an SQL statement. This routine
+** returns 1 if it ends in the START state and 0 if it ends
+** in any other state.
+**
+** (1) NORMAL We are in the middle of statement which ends with a single
+** semicolon.
+**
+** (2) EXPLAIN The keyword EXPLAIN has been seen at the beginning of
+** a statement.
+**
+** (3) CREATE The keyword CREATE has been seen at the beginning of a
+** statement, possibly preceeded by EXPLAIN and/or followed by
+** TEMP or TEMPORARY
+**
+** (4) TRIGGER We are in the middle of a trigger definition that must be
+** ended by a semicolon, the keyword END, and another semicolon.
+**
+** (5) SEMI We've seen the first semicolon in the ";END;" that occurs at
+** the end of a trigger definition.
+**
+** (6) END We've seen the ";END" of the ";END;" that occurs at the end
+** of a trigger difinition.
+**
+** Transitions between states above are determined by tokens extracted
+** from the input. The following tokens are significant:
+**
+** (0) tkSEMI A semicolon.
+** (1) tkWS Whitespace
+** (2) tkOTHER Any other SQL token.
+** (3) tkEXPLAIN The "explain" keyword.
+** (4) tkCREATE The "create" keyword.
+** (5) tkTEMP The "temp" or "temporary" keyword.
+** (6) tkTRIGGER The "trigger" keyword.
+** (7) tkEND The "end" keyword.
+**
+** Whitespace never causes a state transition and is always ignored.
+**
+** If we compile with SQLITE_OMIT_TRIGGER, all of the computation needed
+** to recognize the end of a trigger can be omitted. All we have to do
+** is look for a semicolon that is not part of an string or comment.
+*/
+SQLITE_API int sqlite3_complete(const char *zSql){
+ u8 state = 0; /* Current state, using numbers defined in header comment */
+ u8 token; /* Value of the next token */
+
+#ifndef SQLITE_OMIT_TRIGGER
+ /* A complex statement machine used to detect the end of a CREATE TRIGGER
+ ** statement. This is the normal case.
+ */
+ static const u8 trans[7][8] = {
+ /* Token: */
+ /* State: ** SEMI WS OTHER EXPLAIN CREATE TEMP TRIGGER END */
+ /* 0 START: */ { 0, 0, 1, 2, 3, 1, 1, 1, },
+ /* 1 NORMAL: */ { 0, 1, 1, 1, 1, 1, 1, 1, },
+ /* 2 EXPLAIN: */ { 0, 2, 1, 1, 3, 1, 1, 1, },
+ /* 3 CREATE: */ { 0, 3, 1, 1, 1, 3, 4, 1, },
+ /* 4 TRIGGER: */ { 5, 4, 4, 4, 4, 4, 4, 4, },
+ /* 5 SEMI: */ { 5, 5, 4, 4, 4, 4, 4, 6, },
+ /* 6 END: */ { 0, 6, 4, 4, 4, 4, 4, 4, },
+ };
+#else
+ /* If triggers are not suppored by this compile then the statement machine
+ ** used to detect the end of a statement is much simplier
+ */
+ static const u8 trans[2][3] = {
+ /* Token: */
+ /* State: ** SEMI WS OTHER */
+ /* 0 START: */ { 0, 0, 1, },
+ /* 1 NORMAL: */ { 0, 1, 1, },
+ };
+#endif /* SQLITE_OMIT_TRIGGER */
+
+ while( *zSql ){
+ switch( *zSql ){
+ case ';': { /* A semicolon */
+ token = tkSEMI;
+ break;
+ }
+ case ' ':
+ case '\r':
+ case '\t':
+ case '\n':
+ case '\f': { /* White space is ignored */
+ token = tkWS;
+ break;
+ }
+ case '/': { /* C-style comments */
+ if( zSql[1]!='*' ){
+ token = tkOTHER;
+ break;
+ }
+ zSql += 2;
+ while( zSql[0] && (zSql[0]!='*' || zSql[1]!='/') ){ zSql++; }
+ if( zSql[0]==0 ) return 0;
+ zSql++;
+ token = tkWS;
+ break;
+ }
+ case '-': { /* SQL-style comments from "--" to end of line */
+ if( zSql[1]!='-' ){
+ token = tkOTHER;
+ break;
+ }
+ while( *zSql && *zSql!='\n' ){ zSql++; }
+ if( *zSql==0 ) return state==0;
+ token = tkWS;
+ break;
+ }
+ case '[': { /* Microsoft-style identifiers in [...] */
+ zSql++;
+ while( *zSql && *zSql!=']' ){ zSql++; }
+ if( *zSql==0 ) return 0;
+ token = tkOTHER;
+ break;
+ }
+ case '`': /* Grave-accent quoted symbols used by MySQL */
+ case '"': /* single- and double-quoted strings */
+ case '\'': {
+ int c = *zSql;
+ zSql++;
+ while( *zSql && *zSql!=c ){ zSql++; }
+ if( *zSql==0 ) return 0;
+ token = tkOTHER;
+ break;
+ }
+ default: {
+ int c;
+ if( IdChar((u8)*zSql) ){
+ /* Keywords and unquoted identifiers */
+ int nId;
+ for(nId=1; IdChar(zSql[nId]); nId++){}
+#ifdef SQLITE_OMIT_TRIGGER
+ token = tkOTHER;
+#else
+ switch( *zSql ){
+ case 'c': case 'C': {
+ if( nId==6 && sqlite3StrNICmp(zSql, "create", 6)==0 ){
+ token = tkCREATE;
+ }else{
+ token = tkOTHER;
+ }
+ break;
+ }
+ case 't': case 'T': {
+ if( nId==7 && sqlite3StrNICmp(zSql, "trigger", 7)==0 ){
+ token = tkTRIGGER;
+ }else if( nId==4 && sqlite3StrNICmp(zSql, "temp", 4)==0 ){
+ token = tkTEMP;
+ }else if( nId==9 && sqlite3StrNICmp(zSql, "temporary", 9)==0 ){
+ token = tkTEMP;
+ }else{
+ token = tkOTHER;
+ }
+ break;
+ }
+ case 'e': case 'E': {
+ if( nId==3 && sqlite3StrNICmp(zSql, "end", 3)==0 ){
+ token = tkEND;
+ }else
+#ifndef SQLITE_OMIT_EXPLAIN
+ if( nId==7 && sqlite3StrNICmp(zSql, "explain", 7)==0 ){
+ token = tkEXPLAIN;
+ }else
+#endif
+ {
+ token = tkOTHER;
+ }
+ break;
+ }
+ default: {
+ token = tkOTHER;
+ break;
+ }
+ }
+#endif /* SQLITE_OMIT_TRIGGER */
+ zSql += nId-1;
+ }else{
+ /* Operators and special symbols */
+ token = tkOTHER;
+ }
+ break;
+ }
+ }
+ state = trans[state][token];
+ zSql++;
+ }
+ return state==0;
+}
+
+#ifndef SQLITE_OMIT_UTF16
+/*
+** This routine is the same as the sqlite3_complete() routine described
+** above, except that the parameter is required to be UTF-16 encoded, not
+** UTF-8.
+*/
+SQLITE_API int sqlite3_complete16(const void *zSql){
+ sqlite3_value *pVal;
+ char const *zSql8;
+ int rc = SQLITE_NOMEM;
+
+ pVal = sqlite3ValueNew(0);
+ sqlite3ValueSetStr(pVal, -1, zSql, SQLITE_UTF16NATIVE, SQLITE_STATIC);
+ zSql8 = sqlite3ValueText(pVal, SQLITE_UTF8);
+ if( zSql8 ){
+ rc = sqlite3_complete(zSql8);
+ }
+ sqlite3ValueFree(pVal);
+ return sqlite3ApiExit(0, rc);
+}
+#endif /* SQLITE_OMIT_UTF16 */
+#endif /* SQLITE_OMIT_COMPLETE */
+
+/************** End of complete.c ********************************************/
+/************** Begin file main.c ********************************************/
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** Main file for the SQLite library. The routines in this file
+** implement the programmer interface to the library. Routines in
+** other files are for internal use by SQLite and should not be
+** accessed by users of the library.
+**
+** $Id: main.c,v 1.439 2008/05/13 13:27:34 drh Exp $
+*/
+#ifdef SQLITE_ENABLE_FTS3
+/************** Include fts3.h in the middle of main.c ***********************/
+/************** Begin file fts3.h ********************************************/
+/*
+** 2006 Oct 10
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+** This header file is used by programs that want to link against the
+** FTS3 library. All it does is declare the sqlite3Fts3Init() interface.
+*/
+
+#if 0
+extern "C" {
+#endif /* __cplusplus */
+
+SQLITE_PRIVATE int sqlite3Fts3Init(sqlite3 *db);
+
+#if 0
+} /* extern "C" */
+#endif /* __cplusplus */
+
+/************** End of fts3.h ************************************************/
+/************** Continuing where we left off in main.c ***********************/
+#endif
+
+/*
+** The version of the library
+*/
+SQLITE_API const char sqlite3_version[] = SQLITE_VERSION;
+SQLITE_API const char *sqlite3_libversion(void){ return sqlite3_version; }
+SQLITE_API int sqlite3_libversion_number(void){ return SQLITE_VERSION_NUMBER; }
+SQLITE_API int sqlite3_threadsafe(void){ return SQLITE_THREADSAFE; }
+
+#if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE)
+/*
+** If the following function pointer is not NULL and if
+** SQLITE_ENABLE_IOTRACE is enabled, then messages describing
+** I/O active are written using this function. These messages
+** are intended for debugging activity only.
+*/
+SQLITE_PRIVATE void (*sqlite3IoTrace)(const char*, ...) = 0;
+#endif
+
+/*
+** If the following global variable points to a string which is the
+** name of a directory, then that directory will be used to store
+** temporary files.
+**
+** See also the "PRAGMA temp_store_directory" SQL command.
+*/
+SQLITE_API char *sqlite3_temp_directory = 0;
+
+/*
+** Routine needed to support the testcase() macro.
+*/
+#ifdef SQLITE_COVERAGE_TEST
+SQLITE_PRIVATE void sqlite3Coverage(int x){
+ static int dummy = 0;
+ dummy += x;
+}
+#endif
+
+
+/*
+** Return true if the buffer z[0..n-1] contains all spaces.
+*/
+static int allSpaces(const char *z, int n){
+ while( n>0 && z[n-1]==' ' ){ n--; }
+ return n==0;
+}
+
+/*
+** This is the default collating function named "BINARY" which is always
+** available.
+**
+** If the padFlag argument is not NULL then space padding at the end
+** of strings is ignored. This implements the RTRIM collation.
+*/
+static int binCollFunc(
+ void *padFlag,
+ int nKey1, const void *pKey1,
+ int nKey2, const void *pKey2
+){
+ int rc, n;
+ n = nKey1<nKey2 ? nKey1 : nKey2;
+ rc = memcmp(pKey1, pKey2, n);
+ if( rc==0 ){
+ if( padFlag
+ && allSpaces(((char*)pKey1)+n, nKey1-n)
+ && allSpaces(((char*)pKey2)+n, nKey2-n)
+ ){
+ /* Leave rc unchanged at 0 */
+ }else{
+ rc = nKey1 - nKey2;
+ }
+ }
+ return rc;
+}
+
+/*
+** Another built-in collating sequence: NOCASE.
+**
+** This collating sequence is intended to be used for "case independant
+** comparison". SQLite's knowledge of upper and lower case equivalents
+** extends only to the 26 characters used in the English language.
+**
+** At the moment there is only a UTF-8 implementation.
+*/
+static int nocaseCollatingFunc(
+ void *NotUsed,
+ int nKey1, const void *pKey1,
+ int nKey2, const void *pKey2
+){
+ int r = sqlite3StrNICmp(
+ (const char *)pKey1, (const char *)pKey2, (nKey1<nKey2)?nKey1:nKey2);
+ if( 0==r ){
+ r = nKey1-nKey2;
+ }
+ return r;
+}
+
+/*
+** Return the ROWID of the most recent insert
+*/
+SQLITE_API sqlite_int64 sqlite3_last_insert_rowid(sqlite3 *db){
+ return db->lastRowid;
+}
+
+/*
+** Return the number of changes in the most recent call to sqlite3_exec().
+*/
+SQLITE_API int sqlite3_changes(sqlite3 *db){
+ return db->nChange;
+}
+
+/*
+** Return the number of changes since the database handle was opened.
+*/
+SQLITE_API int sqlite3_total_changes(sqlite3 *db){
+ return db->nTotalChange;
+}
+
+/*
+** Close an existing SQLite database
+*/
+SQLITE_API int sqlite3_close(sqlite3 *db){
+ HashElem *i;
+ int j;
+
+ if( !db ){
+ return SQLITE_OK;
+ }
+ if( !sqlite3SafetyCheckSickOrOk(db) ){
+ return SQLITE_MISUSE;
+ }
+ sqlite3_mutex_enter(db->mutex);
+
+#ifdef SQLITE_SSE
+ {
+ extern void sqlite3SseCleanup(sqlite3*);
+ sqlite3SseCleanup(db);
+ }
+#endif
+
+ sqlite3ResetInternalSchema(db, 0);
+
+ /* If a transaction is open, the ResetInternalSchema() call above
+ ** will not have called the xDisconnect() method on any virtual
+ ** tables in the db->aVTrans[] array. The following sqlite3VtabRollback()
+ ** call will do so. We need to do this before the check for active
+ ** SQL statements below, as the v-table implementation may be storing
+ ** some prepared statements internally.
+ */
+ sqlite3VtabRollback(db);
+
+ /* If there are any outstanding VMs, return SQLITE_BUSY. */
+ if( db->pVdbe ){
+ sqlite3Error(db, SQLITE_BUSY,
+ "Unable to close due to unfinalised statements");
+ sqlite3_mutex_leave(db->mutex);
+ return SQLITE_BUSY;
+ }
+ assert( sqlite3SafetyCheckSickOrOk(db) );
+
+ for(j=0; j<db->nDb; j++){
+ struct Db *pDb = &db->aDb[j];
+ if( pDb->pBt ){
+ sqlite3BtreeClose(pDb->pBt);
+ pDb->pBt = 0;
+ if( j!=1 ){
+ pDb->pSchema = 0;
+ }
+ }
+ }
+ sqlite3ResetInternalSchema(db, 0);
+ assert( db->nDb<=2 );
+ assert( db->aDb==db->aDbStatic );
+ for(i=sqliteHashFirst(&db->aFunc); i; i=sqliteHashNext(i)){
+ FuncDef *pFunc, *pNext;
+ for(pFunc = (FuncDef*)sqliteHashData(i); pFunc; pFunc=pNext){
+ pNext = pFunc->pNext;
+ sqlite3_free(pFunc);
+ }
+ }
+
+ for(i=sqliteHashFirst(&db->aCollSeq); i; i=sqliteHashNext(i)){
+ CollSeq *pColl = (CollSeq *)sqliteHashData(i);
+ /* Invoke any destructors registered for collation sequence user data. */
+ for(j=0; j<3; j++){
+ if( pColl[j].xDel ){
+ pColl[j].xDel(pColl[j].pUser);
+ }
+ }
+ sqlite3_free(pColl);
+ }
+ sqlite3HashClear(&db->aCollSeq);
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ for(i=sqliteHashFirst(&db->aModule); i; i=sqliteHashNext(i)){
+ Module *pMod = (Module *)sqliteHashData(i);
+ if( pMod->xDestroy ){
+ pMod->xDestroy(pMod->pAux);
+ }
+ sqlite3_free(pMod);
+ }
+ sqlite3HashClear(&db->aModule);
+#endif
+
+ sqlite3HashClear(&db->aFunc);
+ sqlite3Error(db, SQLITE_OK, 0); /* Deallocates any cached error strings. */
+ if( db->pErr ){
+ sqlite3ValueFree(db->pErr);
+ }
+ sqlite3CloseExtensions(db);
+
+ db->magic = SQLITE_MAGIC_ERROR;
+
+ /* The temp-database schema is allocated differently from the other schema
+ ** objects (using sqliteMalloc() directly, instead of sqlite3BtreeSchema()).
+ ** So it needs to be freed here. Todo: Why not roll the temp schema into
+ ** the same sqliteMalloc() as the one that allocates the database
+ ** structure?
+ */
+ sqlite3_free(db->aDb[1].pSchema);
+ sqlite3_mutex_leave(db->mutex);
+ db->magic = SQLITE_MAGIC_CLOSED;
+ sqlite3_mutex_free(db->mutex);
+ sqlite3_free(db);
+ return SQLITE_OK;
+}
+
+/*
+** Rollback all database files.
+*/
+SQLITE_PRIVATE void sqlite3RollbackAll(sqlite3 *db){
+ int i;
+ int inTrans = 0;
+ assert( sqlite3_mutex_held(db->mutex) );
+ sqlite3FaultBeginBenign(SQLITE_FAULTINJECTOR_MALLOC);
+ for(i=0; i<db->nDb; i++){
+ if( db->aDb[i].pBt ){
+ if( sqlite3BtreeIsInTrans(db->aDb[i].pBt) ){
+ inTrans = 1;
+ }
+ sqlite3BtreeRollback(db->aDb[i].pBt);
+ db->aDb[i].inTrans = 0;
+ }
+ }
+ sqlite3VtabRollback(db);
+ sqlite3FaultEndBenign(SQLITE_FAULTINJECTOR_MALLOC);
+
+ if( db->flags&SQLITE_InternChanges ){
+ sqlite3ExpirePreparedStatements(db);
+ sqlite3ResetInternalSchema(db, 0);
+ }
+
+ /* If one has been configured, invoke the rollback-hook callback */
+ if( db->xRollbackCallback && (inTrans || !db->autoCommit) ){
+ db->xRollbackCallback(db->pRollbackArg);
+ }
+}
+
+/*
+** Return a static string that describes the kind of error specified in the
+** argument.
+*/
+SQLITE_PRIVATE const char *sqlite3ErrStr(int rc){
+ const char *z;
+ switch( rc & 0xff ){
+ case SQLITE_ROW:
+ case SQLITE_DONE:
+ case SQLITE_OK: z = "not an error"; break;
+ case SQLITE_ERROR: z = "SQL logic error or missing database"; break;
+ case SQLITE_PERM: z = "access permission denied"; break;
+ case SQLITE_ABORT: z = "callback requested query abort"; break;
+ case SQLITE_BUSY: z = "database is locked"; break;
+ case SQLITE_LOCKED: z = "database table is locked"; break;
+ case SQLITE_NOMEM: z = "out of memory"; break;
+ case SQLITE_READONLY: z = "attempt to write a readonly database"; break;
+ case SQLITE_INTERRUPT: z = "interrupted"; break;
+ case SQLITE_IOERR: z = "disk I/O error"; break;
+ case SQLITE_CORRUPT: z = "database disk image is malformed"; break;
+ case SQLITE_FULL: z = "database or disk is full"; break;
+ case SQLITE_CANTOPEN: z = "unable to open database file"; break;
+ case SQLITE_EMPTY: z = "table contains no data"; break;
+ case SQLITE_SCHEMA: z = "database schema has changed"; break;
+ case SQLITE_TOOBIG: z = "String or BLOB exceeded size limit"; break;
+ case SQLITE_CONSTRAINT: z = "constraint failed"; break;
+ case SQLITE_MISMATCH: z = "datatype mismatch"; break;
+ case SQLITE_MISUSE: z = "library routine called out of sequence";break;
+ case SQLITE_NOLFS: z = "large file support is disabled"; break;
+ case SQLITE_AUTH: z = "authorization denied"; break;
+ case SQLITE_FORMAT: z = "auxiliary database format error"; break;
+ case SQLITE_RANGE: z = "bind or column index out of range"; break;
+ case SQLITE_NOTADB: z = "file is encrypted or is not a database";break;
+ default: z = "unknown error"; break;
+ }
+ return z;
+}
+
+/*
+** This routine implements a busy callback that sleeps and tries
+** again until a timeout value is reached. The timeout value is
+** an integer number of milliseconds passed in as the first
+** argument.
+*/
+static int sqliteDefaultBusyCallback(
+ void *ptr, /* Database connection */
+ int count /* Number of times table has been busy */
+){
+#if OS_WIN || (defined(HAVE_USLEEP) && HAVE_USLEEP)
+ static const u8 delays[] =
+ { 1, 2, 5, 10, 15, 20, 25, 25, 25, 50, 50, 100 };
+ static const u8 totals[] =
+ { 0, 1, 3, 8, 18, 33, 53, 78, 103, 128, 178, 228 };
+# define NDELAY (sizeof(delays)/sizeof(delays[0]))
+ sqlite3 *db = (sqlite3 *)ptr;
+ int timeout = db->busyTimeout;
+ int delay, prior;
+
+ assert( count>=0 );
+ if( count < NDELAY ){
+ delay = delays[count];
+ prior = totals[count];
+ }else{
+ delay = delays[NDELAY-1];
+ prior = totals[NDELAY-1] + delay*(count-(NDELAY-1));
+ }
+ if( prior + delay > timeout ){
+ delay = timeout - prior;
+ if( delay<=0 ) return 0;
+ }
+ sqlite3OsSleep(db->pVfs, delay*1000);
+ return 1;
+#else
+ sqlite3 *db = (sqlite3 *)ptr;
+ int timeout = ((sqlite3 *)ptr)->busyTimeout;
+ if( (count+1)*1000 > timeout ){
+ return 0;
+ }
+ sqlite3OsSleep(db->pVfs, 1000000);
+ return 1;
+#endif
+}
+
+/*
+** Invoke the given busy handler.
+**
+** This routine is called when an operation failed with a lock.
+** If this routine returns non-zero, the lock is retried. If it
+** returns 0, the operation aborts with an SQLITE_BUSY error.
+*/
+SQLITE_PRIVATE int sqlite3InvokeBusyHandler(BusyHandler *p){
+ int rc;
+ if( p==0 || p->xFunc==0 || p->nBusy<0 ) return 0;
+ rc = p->xFunc(p->pArg, p->nBusy);
+ if( rc==0 ){
+ p->nBusy = -1;
+ }else{
+ p->nBusy++;
+ }
+ return rc;
+}
+
+/*
+** This routine sets the busy callback for an Sqlite database to the
+** given callback function with the given argument.
+*/
+SQLITE_API int sqlite3_busy_handler(
+ sqlite3 *db,
+ int (*xBusy)(void*,int),
+ void *pArg
+){
+ sqlite3_mutex_enter(db->mutex);
+ db->busyHandler.xFunc = xBusy;
+ db->busyHandler.pArg = pArg;
+ db->busyHandler.nBusy = 0;
+ sqlite3_mutex_leave(db->mutex);
+ return SQLITE_OK;
+}
+
+#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
+/*
+** This routine sets the progress callback for an Sqlite database to the
+** given callback function with the given argument. The progress callback will
+** be invoked every nOps opcodes.
+*/
+SQLITE_API void sqlite3_progress_handler(
+ sqlite3 *db,
+ int nOps,
+ int (*xProgress)(void*),
+ void *pArg
+){
+ if( sqlite3SafetyCheckOk(db) ){
+ sqlite3_mutex_enter(db->mutex);
+ if( nOps>0 ){
+ db->xProgress = xProgress;
+ db->nProgressOps = nOps;
+ db->pProgressArg = pArg;
+ }else{
+ db->xProgress = 0;
+ db->nProgressOps = 0;
+ db->pProgressArg = 0;
+ }
+ sqlite3_mutex_leave(db->mutex);
+ }
+}
+#endif
+
+
+/*
+** This routine installs a default busy handler that waits for the
+** specified number of milliseconds before returning 0.
+*/
+SQLITE_API int sqlite3_busy_timeout(sqlite3 *db, int ms){
+ if( ms>0 ){
+ db->busyTimeout = ms;
+ sqlite3_busy_handler(db, sqliteDefaultBusyCallback, (void*)db);
+ }else{
+ sqlite3_busy_handler(db, 0, 0);
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Cause any pending operation to stop at its earliest opportunity.
+*/
+SQLITE_API void sqlite3_interrupt(sqlite3 *db){
+ if( sqlite3SafetyCheckOk(db) ){
+ db->u1.isInterrupted = 1;
+ }
+}
+
+
+/*
+** This function is exactly the same as sqlite3_create_function(), except
+** that it is designed to be called by internal code. The difference is
+** that if a malloc() fails in sqlite3_create_function(), an error code
+** is returned and the mallocFailed flag cleared.
+*/
+SQLITE_PRIVATE int sqlite3CreateFunc(
+ sqlite3 *db,
+ const char *zFunctionName,
+ int nArg,
+ int enc,
+ void *pUserData,
+ void (*xFunc)(sqlite3_context*,int,sqlite3_value **),
+ void (*xStep)(sqlite3_context*,int,sqlite3_value **),
+ void (*xFinal)(sqlite3_context*)
+){
+ FuncDef *p;
+ int nName;
+
+ assert( sqlite3_mutex_held(db->mutex) );
+ if( zFunctionName==0 ||
+ (xFunc && (xFinal || xStep)) ||
+ (!xFunc && (xFinal && !xStep)) ||
+ (!xFunc && (!xFinal && xStep)) ||
+ (nArg<-1 || nArg>127) ||
+ (255<(nName = strlen(zFunctionName))) ){
+ sqlite3Error(db, SQLITE_ERROR, "bad parameters");
+ return SQLITE_ERROR;
+ }
+
+#ifndef SQLITE_OMIT_UTF16
+ /* If SQLITE_UTF16 is specified as the encoding type, transform this
+ ** to one of SQLITE_UTF16LE or SQLITE_UTF16BE using the
+ ** SQLITE_UTF16NATIVE macro. SQLITE_UTF16 is not used internally.
+ **
+ ** If SQLITE_ANY is specified, add three versions of the function
+ ** to the hash table.
+ */
+ if( enc==SQLITE_UTF16 ){
+ enc = SQLITE_UTF16NATIVE;
+ }else if( enc==SQLITE_ANY ){
+ int rc;
+ rc = sqlite3CreateFunc(db, zFunctionName, nArg, SQLITE_UTF8,
+ pUserData, xFunc, xStep, xFinal);
+ if( rc==SQLITE_OK ){
+ rc = sqlite3CreateFunc(db, zFunctionName, nArg, SQLITE_UTF16LE,
+ pUserData, xFunc, xStep, xFinal);
+ }
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ enc = SQLITE_UTF16BE;
+ }
+#else
+ enc = SQLITE_UTF8;
+#endif
+
+ /* Check if an existing function is being overridden or deleted. If so,
+ ** and there are active VMs, then return SQLITE_BUSY. If a function
+ ** is being overridden/deleted but there are no active VMs, allow the
+ ** operation to continue but invalidate all precompiled statements.
+ */
+ p = sqlite3FindFunction(db, zFunctionName, nName, nArg, enc, 0);
+ if( p && p->iPrefEnc==enc && p->nArg==nArg ){
+ if( db->activeVdbeCnt ){
+ sqlite3Error(db, SQLITE_BUSY,
+ "Unable to delete/modify user-function due to active statements");
+ assert( !db->mallocFailed );
+ return SQLITE_BUSY;
+ }else{
+ sqlite3ExpirePreparedStatements(db);
+ }
+ }
+
+ p = sqlite3FindFunction(db, zFunctionName, nName, nArg, enc, 1);
+ assert(p || db->mallocFailed);
+ if( !p ){
+ return SQLITE_NOMEM;
+ }
+ p->flags = 0;
+ p->xFunc = xFunc;
+ p->xStep = xStep;
+ p->xFinalize = xFinal;
+ p->pUserData = pUserData;
+ p->nArg = nArg;
+ return SQLITE_OK;
+}
+
+/*
+** Create new user functions.
+*/
+SQLITE_API int sqlite3_create_function(
+ sqlite3 *db,
+ const char *zFunctionName,
+ int nArg,
+ int enc,
+ void *p,
+ void (*xFunc)(sqlite3_context*,int,sqlite3_value **),
+ void (*xStep)(sqlite3_context*,int,sqlite3_value **),
+ void (*xFinal)(sqlite3_context*)
+){
+ int rc;
+ sqlite3_mutex_enter(db->mutex);
+ rc = sqlite3CreateFunc(db, zFunctionName, nArg, enc, p, xFunc, xStep, xFinal);
+ rc = sqlite3ApiExit(db, rc);
+ sqlite3_mutex_leave(db->mutex);
+ return rc;
+}
+
+#ifndef SQLITE_OMIT_UTF16
+SQLITE_API int sqlite3_create_function16(
+ sqlite3 *db,
+ const void *zFunctionName,
+ int nArg,
+ int eTextRep,
+ void *p,
+ void (*xFunc)(sqlite3_context*,int,sqlite3_value**),
+ void (*xStep)(sqlite3_context*,int,sqlite3_value**),
+ void (*xFinal)(sqlite3_context*)
+){
+ int rc;
+ char *zFunc8;
+ sqlite3_mutex_enter(db->mutex);
+ assert( !db->mallocFailed );
+ zFunc8 = sqlite3Utf16to8(db, zFunctionName, -1);
+ rc = sqlite3CreateFunc(db, zFunc8, nArg, eTextRep, p, xFunc, xStep, xFinal);
+ sqlite3_free(zFunc8);
+ rc = sqlite3ApiExit(db, rc);
+ sqlite3_mutex_leave(db->mutex);
+ return rc;
+}
+#endif
+
+
+/*
+** Declare that a function has been overloaded by a virtual table.
+**
+** If the function already exists as a regular global function, then
+** this routine is a no-op. If the function does not exist, then create
+** a new one that always throws a run-time error.
+**
+** When virtual tables intend to provide an overloaded function, they
+** should call this routine to make sure the global function exists.
+** A global function must exist in order for name resolution to work
+** properly.
+*/
+SQLITE_API int sqlite3_overload_function(
+ sqlite3 *db,
+ const char *zName,
+ int nArg
+){
+ int nName = strlen(zName);
+ int rc;
+ sqlite3_mutex_enter(db->mutex);
+ if( sqlite3FindFunction(db, zName, nName, nArg, SQLITE_UTF8, 0)==0 ){
+ sqlite3CreateFunc(db, zName, nArg, SQLITE_UTF8,
+ 0, sqlite3InvalidFunction, 0, 0);
+ }
+ rc = sqlite3ApiExit(db, SQLITE_OK);
+ sqlite3_mutex_leave(db->mutex);
+ return rc;
+}
+
+#ifndef SQLITE_OMIT_TRACE
+/*
+** Register a trace function. The pArg from the previously registered trace
+** is returned.
+**
+** A NULL trace function means that no tracing is executes. A non-NULL
+** trace is a pointer to a function that is invoked at the start of each
+** SQL statement.
+*/
+SQLITE_API void *sqlite3_trace(sqlite3 *db, void (*xTrace)(void*,const char*), void *pArg){
+ void *pOld;
+ sqlite3_mutex_enter(db->mutex);
+ pOld = db->pTraceArg;
+ db->xTrace = xTrace;
+ db->pTraceArg = pArg;
+ sqlite3_mutex_leave(db->mutex);
+ return pOld;
+}
+/*
+** Register a profile function. The pArg from the previously registered
+** profile function is returned.
+**
+** A NULL profile function means that no profiling is executes. A non-NULL
+** profile is a pointer to a function that is invoked at the conclusion of
+** each SQL statement that is run.
+*/
+SQLITE_API void *sqlite3_profile(
+ sqlite3 *db,
+ void (*xProfile)(void*,const char*,sqlite_uint64),
+ void *pArg
+){
+ void *pOld;
+ sqlite3_mutex_enter(db->mutex);
+ pOld = db->pProfileArg;
+ db->xProfile = xProfile;
+ db->pProfileArg = pArg;
+ sqlite3_mutex_leave(db->mutex);
+ return pOld;
+}
+#endif /* SQLITE_OMIT_TRACE */
+
+/*** EXPERIMENTAL ***
+**
+** Register a function to be invoked when a transaction comments.
+** If the invoked function returns non-zero, then the commit becomes a
+** rollback.
+*/
+SQLITE_API void *sqlite3_commit_hook(
+ sqlite3 *db, /* Attach the hook to this database */
+ int (*xCallback)(void*), /* Function to invoke on each commit */
+ void *pArg /* Argument to the function */
+){
+ void *pOld;
+ sqlite3_mutex_enter(db->mutex);
+ pOld = db->pCommitArg;
+ db->xCommitCallback = xCallback;
+ db->pCommitArg = pArg;
+ sqlite3_mutex_leave(db->mutex);
+ return pOld;
+}
+
+/*
+** Register a callback to be invoked each time a row is updated,
+** inserted or deleted using this database connection.
+*/
+SQLITE_API void *sqlite3_update_hook(
+ sqlite3 *db, /* Attach the hook to this database */
+ void (*xCallback)(void*,int,char const *,char const *,sqlite_int64),
+ void *pArg /* Argument to the function */
+){
+ void *pRet;
+ sqlite3_mutex_enter(db->mutex);
+ pRet = db->pUpdateArg;
+ db->xUpdateCallback = xCallback;
+ db->pUpdateArg = pArg;
+ sqlite3_mutex_leave(db->mutex);
+ return pRet;
+}
+
+/*
+** Register a callback to be invoked each time a transaction is rolled
+** back by this database connection.
+*/
+SQLITE_API void *sqlite3_rollback_hook(
+ sqlite3 *db, /* Attach the hook to this database */
+ void (*xCallback)(void*), /* Callback function */
+ void *pArg /* Argument to the function */
+){
+ void *pRet;
+ sqlite3_mutex_enter(db->mutex);
+ pRet = db->pRollbackArg;
+ db->xRollbackCallback = xCallback;
+ db->pRollbackArg = pArg;
+ sqlite3_mutex_leave(db->mutex);
+ return pRet;
+}
+
+/*
+** This routine is called to create a connection to a database BTree
+** driver. If zFilename is the name of a file, then that file is
+** opened and used. If zFilename is the magic name ":memory:" then
+** the database is stored in memory (and is thus forgotten as soon as
+** the connection is closed.) If zFilename is NULL then the database
+** is a "virtual" database for transient use only and is deleted as
+** soon as the connection is closed.
+**
+** A virtual database can be either a disk file (that is automatically
+** deleted when the file is closed) or it an be held entirely in memory,
+** depending on the values of the TEMP_STORE compile-time macro and the
+** db->temp_store variable, according to the following chart:
+**
+** TEMP_STORE db->temp_store Location of temporary database
+** ---------- -------------- ------------------------------
+** 0 any file
+** 1 1 file
+** 1 2 memory
+** 1 0 file
+** 2 1 file
+** 2 2 memory
+** 2 0 memory
+** 3 any memory
+*/
+SQLITE_PRIVATE int sqlite3BtreeFactory(
+ const sqlite3 *db, /* Main database when opening aux otherwise 0 */
+ const char *zFilename, /* Name of the file containing the BTree database */
+ int omitJournal, /* if TRUE then do not journal this file */
+ int nCache, /* How many pages in the page cache */
+ int vfsFlags, /* Flags passed through to vfsOpen */
+ Btree **ppBtree /* Pointer to new Btree object written here */
+){
+ int btFlags = 0;
+ int rc;
+
+ assert( sqlite3_mutex_held(db->mutex) );
+ assert( ppBtree != 0);
+ if( omitJournal ){
+ btFlags |= BTREE_OMIT_JOURNAL;
+ }
+ if( db->flags & SQLITE_NoReadlock ){
+ btFlags |= BTREE_NO_READLOCK;
+ }
+ if( zFilename==0 ){
+#if TEMP_STORE==0
+ /* Do nothing */
+#endif
+#ifndef SQLITE_OMIT_MEMORYDB
+#if TEMP_STORE==1
+ if( db->temp_store==2 ) zFilename = ":memory:";
+#endif
+#if TEMP_STORE==2
+ if( db->temp_store!=1 ) zFilename = ":memory:";
+#endif
+#if TEMP_STORE==3
+ zFilename = ":memory:";
+#endif
+#endif /* SQLITE_OMIT_MEMORYDB */
+ }
+
+ if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (zFilename==0 || *zFilename==0) ){
+ vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB;
+ }
+ rc = sqlite3BtreeOpen(zFilename, (sqlite3 *)db, ppBtree, btFlags, vfsFlags);
+ if( rc==SQLITE_OK ){
+ sqlite3BtreeSetCacheSize(*ppBtree, nCache);
+ }
+ return rc;
+}
+
+/*
+** Return UTF-8 encoded English language explanation of the most recent
+** error.
+*/
+SQLITE_API const char *sqlite3_errmsg(sqlite3 *db){
+ const char *z;
+ if( !db ){
+ return sqlite3ErrStr(SQLITE_NOMEM);
+ }
+ if( !sqlite3SafetyCheckSickOrOk(db) || db->errCode==SQLITE_MISUSE ){
+ return sqlite3ErrStr(SQLITE_MISUSE);
+ }
+ sqlite3_mutex_enter(db->mutex);
+ assert( !db->mallocFailed );
+ z = (char*)sqlite3_value_text(db->pErr);
+ if( z==0 ){
+ z = sqlite3ErrStr(db->errCode);
+ }
+ sqlite3_mutex_leave(db->mutex);
+ return z;
+}
+
+#ifndef SQLITE_OMIT_UTF16
+/*
+** Return UTF-16 encoded English language explanation of the most recent
+** error.
+*/
+SQLITE_API const void *sqlite3_errmsg16(sqlite3 *db){
+ /* Because all the characters in the string are in the unicode
+ ** range 0x00-0xFF, if we pad the big-endian string with a
+ ** zero byte, we can obtain the little-endian string with
+ ** &big_endian[1].
+ */
+ static const char outOfMemBe[] = {
+ 0, 'o', 0, 'u', 0, 't', 0, ' ',
+ 0, 'o', 0, 'f', 0, ' ',
+ 0, 'm', 0, 'e', 0, 'm', 0, 'o', 0, 'r', 0, 'y', 0, 0, 0
+ };
+ static const char misuseBe [] = {
+ 0, 'l', 0, 'i', 0, 'b', 0, 'r', 0, 'a', 0, 'r', 0, 'y', 0, ' ',
+ 0, 'r', 0, 'o', 0, 'u', 0, 't', 0, 'i', 0, 'n', 0, 'e', 0, ' ',
+ 0, 'c', 0, 'a', 0, 'l', 0, 'l', 0, 'e', 0, 'd', 0, ' ',
+ 0, 'o', 0, 'u', 0, 't', 0, ' ',
+ 0, 'o', 0, 'f', 0, ' ',
+ 0, 's', 0, 'e', 0, 'q', 0, 'u', 0, 'e', 0, 'n', 0, 'c', 0, 'e', 0, 0, 0
+ };
+
+ const void *z;
+ if( !db ){
+ return (void *)(&outOfMemBe[SQLITE_UTF16NATIVE==SQLITE_UTF16LE?1:0]);
+ }
+ if( !sqlite3SafetyCheckSickOrOk(db) || db->errCode==SQLITE_MISUSE ){
+ return (void *)(&misuseBe[SQLITE_UTF16NATIVE==SQLITE_UTF16LE?1:0]);
+ }
+ sqlite3_mutex_enter(db->mutex);
+ assert( !db->mallocFailed );
+ z = sqlite3_value_text16(db->pErr);
+ if( z==0 ){
+ sqlite3ValueSetStr(db->pErr, -1, sqlite3ErrStr(db->errCode),
+ SQLITE_UTF8, SQLITE_STATIC);
+ z = sqlite3_value_text16(db->pErr);
+ }
+ sqlite3ApiExit(0, 0);
+ sqlite3_mutex_leave(db->mutex);
+ return z;
+}
+#endif /* SQLITE_OMIT_UTF16 */
+
+/*
+** Return the most recent error code generated by an SQLite routine. If NULL is
+** passed to this function, we assume a malloc() failed during sqlite3_open().
+*/
+SQLITE_API int sqlite3_errcode(sqlite3 *db){
+ if( db && !sqlite3SafetyCheckSickOrOk(db) ){
+ return SQLITE_MISUSE;
+ }
+ if( !db || db->mallocFailed ){
+ return SQLITE_NOMEM;
+ }
+ return db->errCode & db->errMask;
+}
+
+/*
+** Create a new collating function for database "db". The name is zName
+** and the encoding is enc.
+*/
+static int createCollation(
+ sqlite3* db,
+ const char *zName,
+ int enc,
+ void* pCtx,
+ int(*xCompare)(void*,int,const void*,int,const void*),
+ void(*xDel)(void*)
+){
+ CollSeq *pColl;
+ int enc2;
+
+ assert( sqlite3_mutex_held(db->mutex) );
+
+ /* If SQLITE_UTF16 is specified as the encoding type, transform this
+ ** to one of SQLITE_UTF16LE or SQLITE_UTF16BE using the
+ ** SQLITE_UTF16NATIVE macro. SQLITE_UTF16 is not used internally.
+ */
+ enc2 = enc & ~SQLITE_UTF16_ALIGNED;
+ if( enc2==SQLITE_UTF16 ){
+ enc2 = SQLITE_UTF16NATIVE;
+ }
+
+ if( (enc2&~3)!=0 ){
+ sqlite3Error(db, SQLITE_ERROR, "unknown encoding");
+ return SQLITE_ERROR;
+ }
+
+ /* Check if this call is removing or replacing an existing collation
+ ** sequence. If so, and there are active VMs, return busy. If there
+ ** are no active VMs, invalidate any pre-compiled statements.
+ */
+ pColl = sqlite3FindCollSeq(db, (u8)enc2, zName, strlen(zName), 0);
+ if( pColl && pColl->xCmp ){
+ if( db->activeVdbeCnt ){
+ sqlite3Error(db, SQLITE_BUSY,
+ "Unable to delete/modify collation sequence due to active statements");
+ return SQLITE_BUSY;
+ }
+ sqlite3ExpirePreparedStatements(db);
+
+ /* If collation sequence pColl was created directly by a call to
+ ** sqlite3_create_collation, and not generated by synthCollSeq(),
+ ** then any copies made by synthCollSeq() need to be invalidated.
+ ** Also, collation destructor - CollSeq.xDel() - function may need
+ ** to be called.
+ */
+ if( (pColl->enc & ~SQLITE_UTF16_ALIGNED)==enc2 ){
+ CollSeq *aColl = sqlite3HashFind(&db->aCollSeq, zName, strlen(zName));
+ int j;
+ for(j=0; j<3; j++){
+ CollSeq *p = &aColl[j];
+ if( p->enc==pColl->enc ){
+ if( p->xDel ){
+ p->xDel(p->pUser);
+ }
+ p->xCmp = 0;
+ }
+ }
+ }
+ }
+
+ pColl = sqlite3FindCollSeq(db, (u8)enc2, zName, strlen(zName), 1);
+ if( pColl ){
+ pColl->xCmp = xCompare;
+ pColl->pUser = pCtx;
+ pColl->xDel = xDel;
+ pColl->enc = enc2 | (enc & SQLITE_UTF16_ALIGNED);
+ }
+ sqlite3Error(db, SQLITE_OK, 0);
+ return SQLITE_OK;
+}
+
+
+/*
+** This array defines hard upper bounds on limit values. The
+** initializer must be kept in sync with the SQLITE_LIMIT_*
+** #defines in sqlite3.h.
+*/
+static const int aHardLimit[] = {
+ SQLITE_MAX_LENGTH,
+ SQLITE_MAX_SQL_LENGTH,
+ SQLITE_MAX_COLUMN,
+ SQLITE_MAX_EXPR_DEPTH,
+ SQLITE_MAX_COMPOUND_SELECT,
+ SQLITE_MAX_VDBE_OP,
+ SQLITE_MAX_FUNCTION_ARG,
+ SQLITE_MAX_ATTACHED,
+ SQLITE_MAX_LIKE_PATTERN_LENGTH,
+ SQLITE_MAX_VARIABLE_NUMBER,
+};
+
+/*
+** Make sure the hard limits are set to reasonable values
+*/
+#if SQLITE_MAX_LENGTH<100
+# error SQLITE_MAX_LENGTH must be at least 100
+#endif
+#if SQLITE_MAX_SQL_LENGTH<100
+# error SQLITE_MAX_SQL_LENGTH must be at least 100
+#endif
+#if SQLITE_MAX_SQL_LENGTH>SQLITE_MAX_LENGTH
+# error SQLITE_MAX_SQL_LENGTH must not be greater than SQLITE_MAX_LENGTH
+#endif
+#if SQLITE_MAX_COMPOUND_SELECT<2
+# error SQLITE_MAX_COMPOUND_SELECT must be at least 2
+#endif
+#if SQLITE_MAX_VDBE_OP<40
+# error SQLITE_MAX_VDBE_OP must be at least 40
+#endif
+#if SQLITE_MAX_FUNCTION_ARG<0 || SQLITE_MAX_FUNCTION_ARG>255
+# error SQLITE_MAX_FUNCTION_ARG must be between 0 and 255
+#endif
+#if SQLITE_MAX_ATTACH<0 || SQLITE_MAX_ATTACH>30
+# error SQLITE_MAX_ATTACH must be between 0 and 30
+#endif
+#if SQLITE_MAX_LIKE_PATTERN_LENGTH<1
+# error SQLITE_MAX_LIKE_PATTERN_LENGTH must be at least 1
+#endif
+#if SQLITE_MAX_VARIABLE_NUMBER<1
+# error SQLITE_MAX_VARIABLE_NUMBER must be at least 1
+#endif
+
+
+/*
+** Change the value of a limit. Report the old value.
+** If an invalid limit index is supplied, report -1.
+** Make no changes but still report the old value if the
+** new limit is negative.
+**
+** A new lower limit does not shrink existing constructs.
+** It merely prevents new constructs that exceed the limit
+** from forming.
+*/
+SQLITE_API int sqlite3_limit(sqlite3 *db, int limitId, int newLimit){
+ int oldLimit;
+ if( limitId<0 || limitId>=SQLITE_N_LIMIT ){
+ return -1;
+ }
+ oldLimit = db->aLimit[limitId];
+ if( newLimit>=0 ){
+ if( newLimit>aHardLimit[limitId] ){
+ newLimit = aHardLimit[limitId];
+ }
+ db->aLimit[limitId] = newLimit;
+ }
+ return oldLimit;
+}
+
+/*
+** This routine does the work of opening a database on behalf of
+** sqlite3_open() and sqlite3_open16(). The database filename "zFilename"
+** is UTF-8 encoded.
+*/
+static int openDatabase(
+ const char *zFilename, /* Database filename UTF-8 encoded */
+ sqlite3 **ppDb, /* OUT: Returned database handle */
+ unsigned flags, /* Operational flags */
+ const char *zVfs /* Name of the VFS to use */
+){
+ sqlite3 *db;
+ int rc;
+ CollSeq *pColl;
+
+ /* Remove harmful bits from the flags parameter */
+ flags &= ~( SQLITE_OPEN_DELETEONCLOSE |
+ SQLITE_OPEN_MAIN_DB |
+ SQLITE_OPEN_TEMP_DB |
+ SQLITE_OPEN_TRANSIENT_DB |
+ SQLITE_OPEN_MAIN_JOURNAL |
+ SQLITE_OPEN_TEMP_JOURNAL |
+ SQLITE_OPEN_SUBJOURNAL |
+ SQLITE_OPEN_MASTER_JOURNAL
+ );
+
+ /* Allocate the sqlite data structure */
+ db = sqlite3MallocZero( sizeof(sqlite3) );
+ if( db==0 ) goto opendb_out;
+ db->mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_RECURSIVE);
+ if( db->mutex==0 ){
+ sqlite3_free(db);
+ db = 0;
+ goto opendb_out;
+ }
+ sqlite3_mutex_enter(db->mutex);
+ db->errMask = 0xff;
+ db->priorNewRowid = 0;
+ db->nDb = 2;
+ db->magic = SQLITE_MAGIC_BUSY;
+ db->aDb = db->aDbStatic;
+ assert( sizeof(db->aLimit)==sizeof(aHardLimit) );
+ memcpy(db->aLimit, aHardLimit, sizeof(db->aLimit));
+ db->autoCommit = 1;
+ db->nextAutovac = -1;
+ db->nextPagesize = 0;
+ db->flags |= SQLITE_ShortColNames
+#if SQLITE_DEFAULT_FILE_FORMAT<4
+ | SQLITE_LegacyFileFmt
+#endif
+#ifdef SQLITE_ENABLE_LOAD_EXTENSION
+ | SQLITE_LoadExtension
+#endif
+ ;
+ sqlite3HashInit(&db->aFunc, SQLITE_HASH_STRING, 0);
+ sqlite3HashInit(&db->aCollSeq, SQLITE_HASH_STRING, 0);
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ sqlite3HashInit(&db->aModule, SQLITE_HASH_STRING, 0);
+#endif
+
+ db->pVfs = sqlite3_vfs_find(zVfs);
+ if( !db->pVfs ){
+ rc = SQLITE_ERROR;
+ db->magic = SQLITE_MAGIC_SICK;
+ sqlite3Error(db, rc, "no such vfs: %s", zVfs);
+ goto opendb_out;
+ }
+
+ /* Add the default collation sequence BINARY. BINARY works for both UTF-8
+ ** and UTF-16, so add a version for each to avoid any unnecessary
+ ** conversions. The only error that can occur here is a malloc() failure.
+ */
+ createCollation(db, "BINARY", SQLITE_UTF8, 0, binCollFunc, 0);
+ createCollation(db, "BINARY", SQLITE_UTF16BE, 0, binCollFunc, 0);
+ createCollation(db, "BINARY", SQLITE_UTF16LE, 0, binCollFunc, 0);
+ createCollation(db, "RTRIM", SQLITE_UTF8, (void*)1, binCollFunc, 0);
+ if( db->mallocFailed ){
+ db->magic = SQLITE_MAGIC_SICK;
+ goto opendb_out;
+ }
+ db->pDfltColl = sqlite3FindCollSeq(db, SQLITE_UTF8, "BINARY", 6, 0);
+ assert( db->pDfltColl!=0 );
+
+ /* Also add a UTF-8 case-insensitive collation sequence. */
+ createCollation(db, "NOCASE", SQLITE_UTF8, 0, nocaseCollatingFunc, 0);
+
+ /* Set flags on the built-in collating sequences */
+ db->pDfltColl->type = SQLITE_COLL_BINARY;
+ pColl = sqlite3FindCollSeq(db, SQLITE_UTF8, "NOCASE", 6, 0);
+ if( pColl ){
+ pColl->type = SQLITE_COLL_NOCASE;
+ }
+
+ /* Open the backend database driver */
+ db->openFlags = flags;
+ rc = sqlite3BtreeFactory(db, zFilename, 0, SQLITE_DEFAULT_CACHE_SIZE,
+ flags | SQLITE_OPEN_MAIN_DB,
+ &db->aDb[0].pBt);
+ if( rc!=SQLITE_OK ){
+ sqlite3Error(db, rc, 0);
+ db->magic = SQLITE_MAGIC_SICK;
+ goto opendb_out;
+ }
+ db->aDb[0].pSchema = sqlite3SchemaGet(db, db->aDb[0].pBt);
+ db->aDb[1].pSchema = sqlite3SchemaGet(db, 0);
+
+
+ /* The default safety_level for the main database is 'full'; for the temp
+ ** database it is 'NONE'. This matches the pager layer defaults.
+ */
+ db->aDb[0].zName = "main";
+ db->aDb[0].safety_level = 3;
+#ifndef SQLITE_OMIT_TEMPDB
+ db->aDb[1].zName = "temp";
+ db->aDb[1].safety_level = 1;
+#endif
+
+ db->magic = SQLITE_MAGIC_OPEN;
+ if( db->mallocFailed ){
+ goto opendb_out;
+ }
+
+ /* Register all built-in functions, but do not attempt to read the
+ ** database schema yet. This is delayed until the first time the database
+ ** is accessed.
+ */
+ sqlite3Error(db, SQLITE_OK, 0);
+ sqlite3RegisterBuiltinFunctions(db);
+
+ /* Load automatic extensions - extensions that have been registered
+ ** using the sqlite3_automatic_extension() API.
+ */
+ (void)sqlite3AutoLoadExtensions(db);
+ if( sqlite3_errcode(db)!=SQLITE_OK ){
+ goto opendb_out;
+ }
+
+#ifdef SQLITE_ENABLE_FTS1
+ if( !db->mallocFailed ){
+ extern int sqlite3Fts1Init(sqlite3*);
+ rc = sqlite3Fts1Init(db);
+ }
+#endif
+
+#ifdef SQLITE_ENABLE_FTS2
+ if( !db->mallocFailed && rc==SQLITE_OK ){
+ extern int sqlite3Fts2Init(sqlite3*);
+ rc = sqlite3Fts2Init(db);
+ }
+#endif
+
+#ifdef SQLITE_ENABLE_FTS3
+ if( !db->mallocFailed && rc==SQLITE_OK ){
+ rc = sqlite3Fts3Init(db);
+ }
+#endif
+
+#ifdef SQLITE_ENABLE_ICU
+ if( !db->mallocFailed && rc==SQLITE_OK ){
+ extern int sqlite3IcuInit(sqlite3*);
+ rc = sqlite3IcuInit(db);
+ }
+#endif
+ sqlite3Error(db, rc, 0);
+
+ /* -DSQLITE_DEFAULT_LOCKING_MODE=1 makes EXCLUSIVE the default locking
+ ** mode. -DSQLITE_DEFAULT_LOCKING_MODE=0 make NORMAL the default locking
+ ** mode. Doing nothing at all also makes NORMAL the default.
+ */
+#ifdef SQLITE_DEFAULT_LOCKING_MODE
+ db->dfltLockMode = SQLITE_DEFAULT_LOCKING_MODE;
+ sqlite3PagerLockingMode(sqlite3BtreePager(db->aDb[0].pBt),
+ SQLITE_DEFAULT_LOCKING_MODE);
+#endif
+
+opendb_out:
+ if( db ){
+ assert( db->mutex!=0 );
+ sqlite3_mutex_leave(db->mutex);
+ }
+ if( SQLITE_NOMEM==(rc = sqlite3_errcode(db)) ){
+ sqlite3_close(db);
+ db = 0;
+ }
+ *ppDb = db;
+ return sqlite3ApiExit(0, rc);
+}
+
+/*
+** Open a new database handle.
+*/
+SQLITE_API int sqlite3_open(
+ const char *zFilename,
+ sqlite3 **ppDb
+){
+ return openDatabase(zFilename, ppDb,
+ SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE, 0);
+}
+SQLITE_API int sqlite3_open_v2(
+ const char *filename, /* Database filename (UTF-8) */
+ sqlite3 **ppDb, /* OUT: SQLite db handle */
+ int flags, /* Flags */
+ const char *zVfs /* Name of VFS module to use */
+){
+ return openDatabase(filename, ppDb, flags, zVfs);
+}
+
+#ifndef SQLITE_OMIT_UTF16
+/*
+** Open a new database handle.
+*/
+SQLITE_API int sqlite3_open16(
+ const void *zFilename,
+ sqlite3 **ppDb
+){
+ char const *zFilename8; /* zFilename encoded in UTF-8 instead of UTF-16 */
+ sqlite3_value *pVal;
+ int rc = SQLITE_NOMEM;
+
+ assert( zFilename );
+ assert( ppDb );
+ *ppDb = 0;
+ pVal = sqlite3ValueNew(0);
+ sqlite3ValueSetStr(pVal, -1, zFilename, SQLITE_UTF16NATIVE, SQLITE_STATIC);
+ zFilename8 = sqlite3ValueText(pVal, SQLITE_UTF8);
+ if( zFilename8 ){
+ rc = openDatabase(zFilename8, ppDb,
+ SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE, 0);
+ assert( *ppDb || rc==SQLITE_NOMEM );
+ if( rc==SQLITE_OK && !DbHasProperty(*ppDb, 0, DB_SchemaLoaded) ){
+ ENC(*ppDb) = SQLITE_UTF16NATIVE;
+ }
+ }
+ sqlite3ValueFree(pVal);
+
+ return sqlite3ApiExit(0, rc);
+}
+#endif /* SQLITE_OMIT_UTF16 */
+
+/*
+** Register a new collation sequence with the database handle db.
+*/
+SQLITE_API int sqlite3_create_collation(
+ sqlite3* db,
+ const char *zName,
+ int enc,
+ void* pCtx,
+ int(*xCompare)(void*,int,const void*,int,const void*)
+){
+ int rc;
+ sqlite3_mutex_enter(db->mutex);
+ assert( !db->mallocFailed );
+ rc = createCollation(db, zName, enc, pCtx, xCompare, 0);
+ rc = sqlite3ApiExit(db, rc);
+ sqlite3_mutex_leave(db->mutex);
+ return rc;
+}
+
+/*
+** Register a new collation sequence with the database handle db.
+*/
+SQLITE_API int sqlite3_create_collation_v2(
+ sqlite3* db,
+ const char *zName,
+ int enc,
+ void* pCtx,
+ int(*xCompare)(void*,int,const void*,int,const void*),
+ void(*xDel)(void*)
+){
+ int rc;
+ sqlite3_mutex_enter(db->mutex);
+ assert( !db->mallocFailed );
+ rc = createCollation(db, zName, enc, pCtx, xCompare, xDel);
+ rc = sqlite3ApiExit(db, rc);
+ sqlite3_mutex_leave(db->mutex);
+ return rc;
+}
+
+#ifndef SQLITE_OMIT_UTF16
+/*
+** Register a new collation sequence with the database handle db.
+*/
+SQLITE_API int sqlite3_create_collation16(
+ sqlite3* db,
+ const char *zName,
+ int enc,
+ void* pCtx,
+ int(*xCompare)(void*,int,const void*,int,const void*)
+){
+ int rc = SQLITE_OK;
+ char *zName8;
+ sqlite3_mutex_enter(db->mutex);
+ assert( !db->mallocFailed );
+ zName8 = sqlite3Utf16to8(db, zName, -1);
+ if( zName8 ){
+ rc = createCollation(db, zName8, enc, pCtx, xCompare, 0);
+ sqlite3_free(zName8);
+ }
+ rc = sqlite3ApiExit(db, rc);
+ sqlite3_mutex_leave(db->mutex);
+ return rc;
+}
+#endif /* SQLITE_OMIT_UTF16 */
+
+/*
+** Register a collation sequence factory callback with the database handle
+** db. Replace any previously installed collation sequence factory.
+*/
+SQLITE_API int sqlite3_collation_needed(
+ sqlite3 *db,
+ void *pCollNeededArg,
+ void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*)
+){
+ sqlite3_mutex_enter(db->mutex);
+ db->xCollNeeded = xCollNeeded;
+ db->xCollNeeded16 = 0;
+ db->pCollNeededArg = pCollNeededArg;
+ sqlite3_mutex_leave(db->mutex);
+ return SQLITE_OK;
+}
+
+#ifndef SQLITE_OMIT_UTF16
+/*
+** Register a collation sequence factory callback with the database handle
+** db. Replace any previously installed collation sequence factory.
+*/
+SQLITE_API int sqlite3_collation_needed16(
+ sqlite3 *db,
+ void *pCollNeededArg,
+ void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*)
+){
+ sqlite3_mutex_enter(db->mutex);
+ db->xCollNeeded = 0;
+ db->xCollNeeded16 = xCollNeeded16;
+ db->pCollNeededArg = pCollNeededArg;
+ sqlite3_mutex_leave(db->mutex);
+ return SQLITE_OK;
+}
+#endif /* SQLITE_OMIT_UTF16 */
+
+#ifndef SQLITE_OMIT_GLOBALRECOVER
+/*
+** This function is now an anachronism. It used to be used to recover from a
+** malloc() failure, but SQLite now does this automatically.
+*/
+SQLITE_API int sqlite3_global_recover(void){
+ return SQLITE_OK;
+}
+#endif
+
+/*
+** Test to see whether or not the database connection is in autocommit
+** mode. Return TRUE if it is and FALSE if not. Autocommit mode is on
+** by default. Autocommit is disabled by a BEGIN statement and reenabled
+** by the next COMMIT or ROLLBACK.
+**
+******* THIS IS AN EXPERIMENTAL API AND IS SUBJECT TO CHANGE ******
+*/
+SQLITE_API int sqlite3_get_autocommit(sqlite3 *db){
+ return db->autoCommit;
+}
+
+#ifdef SQLITE_DEBUG
+/*
+** The following routine is subtituted for constant SQLITE_CORRUPT in
+** debugging builds. This provides a way to set a breakpoint for when
+** corruption is first detected.
+*/
+SQLITE_PRIVATE int sqlite3Corrupt(void){
+ return SQLITE_CORRUPT;
+}
+#endif
+
+/*
+** This is a convenience routine that makes sure that all thread-specific
+** data for this thread has been deallocated.
+**
+** SQLite no longer uses thread-specific data so this routine is now a
+** no-op. It is retained for historical compatibility.
+*/
+SQLITE_API void sqlite3_thread_cleanup(void){
+}
+
+/*
+** Return meta information about a specific column of a database table.
+** See comment in sqlite3.h (sqlite.h.in) for details.
+*/
+#ifdef SQLITE_ENABLE_COLUMN_METADATA
+SQLITE_API int sqlite3_table_column_metadata(
+ sqlite3 *db, /* Connection handle */
+ const char *zDbName, /* Database name or NULL */
+ const char *zTableName, /* Table name */
+ const char *zColumnName, /* Column name */
+ char const **pzDataType, /* OUTPUT: Declared data type */
+ char const **pzCollSeq, /* OUTPUT: Collation sequence name */
+ int *pNotNull, /* OUTPUT: True if NOT NULL constraint exists */
+ int *pPrimaryKey, /* OUTPUT: True if column part of PK */
+ int *pAutoinc /* OUTPUT: True if colums is auto-increment */
+){
+ int rc;
+ char *zErrMsg = 0;
+ Table *pTab = 0;
+ Column *pCol = 0;
+ int iCol;
+
+ char const *zDataType = 0;
+ char const *zCollSeq = 0;
+ int notnull = 0;
+ int primarykey = 0;
+ int autoinc = 0;
+
+ /* Ensure the database schema has been loaded */
+ sqlite3_mutex_enter(db->mutex);
+ (void)sqlite3SafetyOn(db);
+ sqlite3BtreeEnterAll(db);
+ rc = sqlite3Init(db, &zErrMsg);
+ sqlite3BtreeLeaveAll(db);
+ if( SQLITE_OK!=rc ){
+ goto error_out;
+ }
+
+ /* Locate the table in question */
+ pTab = sqlite3FindTable(db, zTableName, zDbName);
+ if( !pTab || pTab->pSelect ){
+ pTab = 0;
+ goto error_out;
+ }
+
+ /* Find the column for which info is requested */
+ if( sqlite3IsRowid(zColumnName) ){
+ iCol = pTab->iPKey;
+ if( iCol>=0 ){
+ pCol = &pTab->aCol[iCol];
+ }
+ }else{
+ for(iCol=0; iCol<pTab->nCol; iCol++){
+ pCol = &pTab->aCol[iCol];
+ if( 0==sqlite3StrICmp(pCol->zName, zColumnName) ){
+ break;
+ }
+ }
+ if( iCol==pTab->nCol ){
+ pTab = 0;
+ goto error_out;
+ }
+ }
+
+ /* The following block stores the meta information that will be returned
+ ** to the caller in local variables zDataType, zCollSeq, notnull, primarykey
+ ** and autoinc. At this point there are two possibilities:
+ **
+ ** 1. The specified column name was rowid", "oid" or "_rowid_"
+ ** and there is no explicitly declared IPK column.
+ **
+ ** 2. The table is not a view and the column name identified an
+ ** explicitly declared column. Copy meta information from *pCol.
+ */
+ if( pCol ){
+ zDataType = pCol->zType;
+ zCollSeq = pCol->zColl;
+ notnull = (pCol->notNull?1:0);
+ primarykey = (pCol->isPrimKey?1:0);
+ autoinc = ((pTab->iPKey==iCol && pTab->autoInc)?1:0);
+ }else{
+ zDataType = "INTEGER";
+ primarykey = 1;
+ }
+ if( !zCollSeq ){
+ zCollSeq = "BINARY";
+ }
+
+error_out:
+ (void)sqlite3SafetyOff(db);
+
+ /* Whether the function call succeeded or failed, set the output parameters
+ ** to whatever their local counterparts contain. If an error did occur,
+ ** this has the effect of zeroing all output parameters.
+ */
+ if( pzDataType ) *pzDataType = zDataType;
+ if( pzCollSeq ) *pzCollSeq = zCollSeq;
+ if( pNotNull ) *pNotNull = notnull;
+ if( pPrimaryKey ) *pPrimaryKey = primarykey;
+ if( pAutoinc ) *pAutoinc = autoinc;
+
+ if( SQLITE_OK==rc && !pTab ){
+ sqlite3SetString(&zErrMsg, "no such table column: ", zTableName, ".",
+ zColumnName, 0);
+ rc = SQLITE_ERROR;
+ }
+ sqlite3Error(db, rc, (zErrMsg?"%s":0), zErrMsg);
+ sqlite3_free(zErrMsg);
+ rc = sqlite3ApiExit(db, rc);
+ sqlite3_mutex_leave(db->mutex);
+ return rc;
+}
+#endif
+
+/*
+** Sleep for a little while. Return the amount of time slept.
+*/
+SQLITE_API int sqlite3_sleep(int ms){
+ sqlite3_vfs *pVfs;
+ int rc;
+ pVfs = sqlite3_vfs_find(0);
+
+ /* This function works in milliseconds, but the underlying OsSleep()
+ ** API uses microseconds. Hence the 1000's.
+ */
+ rc = (sqlite3OsSleep(pVfs, 1000*ms)/1000);
+ return rc;
+}
+
+/*
+** Enable or disable the extended result codes.
+*/
+SQLITE_API int sqlite3_extended_result_codes(sqlite3 *db, int onoff){
+ sqlite3_mutex_enter(db->mutex);
+ db->errMask = onoff ? 0xffffffff : 0xff;
+ sqlite3_mutex_leave(db->mutex);
+ return SQLITE_OK;
+}
+
+/*
+** Invoke the xFileControl method on a particular database.
+*/
+SQLITE_API int sqlite3_file_control(sqlite3 *db, const char *zDbName, int op, void *pArg){
+ int rc = SQLITE_ERROR;
+ int iDb;
+ sqlite3_mutex_enter(db->mutex);
+ if( zDbName==0 ){
+ iDb = 0;
+ }else{
+ for(iDb=0; iDb<db->nDb; iDb++){
+ if( strcmp(db->aDb[iDb].zName, zDbName)==0 ) break;
+ }
+ }
+ if( iDb<db->nDb ){
+ Btree *pBtree = db->aDb[iDb].pBt;
+ if( pBtree ){
+ Pager *pPager;
+ sqlite3_file *fd;
+ sqlite3BtreeEnter(pBtree);
+ pPager = sqlite3BtreePager(pBtree);
+ assert( pPager!=0 );
+ fd = sqlite3PagerFile(pPager);
+ assert( fd!=0 );
+ if( fd->pMethods ){
+ rc = sqlite3OsFileControl(fd, op, pArg);
+ }
+ sqlite3BtreeLeave(pBtree);
+ }
+ }
+ sqlite3_mutex_leave(db->mutex);
+ return rc;
+}
+
+/*
+** Interface to the testing logic.
+*/
+SQLITE_API int sqlite3_test_control(int op, ...){
+ int rc = 0;
+#ifndef SQLITE_OMIT_BUILTIN_TEST
+ va_list ap;
+ va_start(ap, op);
+ switch( op ){
+ /*
+ ** sqlite3_test_control(FAULT_CONFIG, fault_id, nDelay, nRepeat)
+ **
+ ** Configure a fault injector. The specific fault injector is
+ ** identified by the fault_id argument. (ex: SQLITE_FAULTINJECTOR_MALLOC)
+ ** The fault will occur after a delay of nDelay calls. The fault
+ ** will repeat nRepeat times.
+ */
+ case SQLITE_TESTCTRL_FAULT_CONFIG: {
+ int id = va_arg(ap, int);
+ int nDelay = va_arg(ap, int);
+ int nRepeat = va_arg(ap, int);
+ sqlite3FaultConfig(id, nDelay, nRepeat);
+ break;
+ }
+
+ /*
+ ** sqlite3_test_control(FAULT_FAILURES, fault_id)
+ **
+ ** Return the number of faults (both hard and benign faults) that have
+ ** occurred since the injector identified by fault_id) was last configured.
+ */
+ case SQLITE_TESTCTRL_FAULT_FAILURES: {
+ int id = va_arg(ap, int);
+ rc = sqlite3FaultFailures(id);
+ break;
+ }
+
+ /*
+ ** sqlite3_test_control(FAULT_BENIGN_FAILURES, fault_id)
+ **
+ ** Return the number of benign faults that have occurred since the
+ ** injector identified by fault_id was last configured.
+ */
+ case SQLITE_TESTCTRL_FAULT_BENIGN_FAILURES: {
+ int id = va_arg(ap, int);
+ rc = sqlite3FaultBenignFailures(id);
+ break;
+ }
+
+ /*
+ ** sqlite3_test_control(FAULT_PENDING, fault_id)
+ **
+ ** Return the number of successes that will occur before the next
+ ** scheduled failure on fault injector fault_id.
+ ** If no failures are scheduled, return -1.
+ */
+ case SQLITE_TESTCTRL_FAULT_PENDING: {
+ int id = va_arg(ap, int);
+ rc = sqlite3FaultPending(id);
+ break;
+ }
+
+ /*
+ ** Save the current state of the PRNG.
+ */
+ case SQLITE_TESTCTRL_PRNG_SAVE: {
+ sqlite3PrngSaveState();
+ break;
+ }
+
+ /*
+ ** Restore the state of the PRNG to the last state saved using
+ ** PRNG_SAVE. If PRNG_SAVE has never before been called, then
+ ** this verb acts like PRNG_RESET.
+ */
+ case SQLITE_TESTCTRL_PRNG_RESTORE: {
+ sqlite3PrngRestoreState();
+ break;
+ }
+
+ /*
+ ** Reset the PRNG back to its uninitialized state. The next call
+ ** to sqlite3_randomness() will reseed the PRNG using a single call
+ ** to the xRandomness method of the default VFS.
+ */
+ case SQLITE_TESTCTRL_PRNG_RESET: {
+ sqlite3PrngResetState();
+ break;
+ }
+
+ /*
+ ** sqlite3_test_control(BITVEC_TEST, size, program)
+ **
+ ** Run a test against a Bitvec object of size. The program argument
+ ** is an array of integers that defines the test. Return -1 on a
+ ** memory allocation error, 0 on success, or non-zero for an error.
+ ** See the sqlite3BitvecBuiltinTest() for additional information.
+ */
+ case SQLITE_TESTCTRL_BITVEC_TEST: {
+ int sz = va_arg(ap, int);
+ int *aProg = va_arg(ap, int*);
+ rc = sqlite3BitvecBuiltinTest(sz, aProg);
+ break;
+ }
+ }
+ va_end(ap);
+#endif /* SQLITE_OMIT_BUILTIN_TEST */
+ return rc;
+}
+
+/************** End of main.c ************************************************/
+/************** Begin file fts3.c ********************************************/
+/*
+** 2006 Oct 10
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+** This is an SQLite module implementing full-text search.
+*/
+
+/*
+** The code in this file is only compiled if:
+**
+** * The FTS3 module is being built as an extension
+** (in which case SQLITE_CORE is not defined), or
+**
+** * The FTS3 module is being built into the core of
+** SQLite (in which case SQLITE_ENABLE_FTS3 is defined).
+*/
+
+/* TODO(shess) Consider exporting this comment to an HTML file or the
+** wiki.
+*/
+/* The full-text index is stored in a series of b+tree (-like)
+** structures called segments which map terms to doclists. The
+** structures are like b+trees in layout, but are constructed from the
+** bottom up in optimal fashion and are not updatable. Since trees
+** are built from the bottom up, things will be described from the
+** bottom up.
+**
+**
+**** Varints ****
+** The basic unit of encoding is a variable-length integer called a
+** varint. We encode variable-length integers in little-endian order
+** using seven bits * per byte as follows:
+**
+** KEY:
+** A = 0xxxxxxx 7 bits of data and one flag bit
+** B = 1xxxxxxx 7 bits of data and one flag bit
+**
+** 7 bits - A
+** 14 bits - BA
+** 21 bits - BBA
+** and so on.
+**
+** This is identical to how sqlite encodes varints (see util.c).
+**
+**
+**** Document lists ****
+** A doclist (document list) holds a docid-sorted list of hits for a
+** given term. Doclists hold docids, and can optionally associate
+** token positions and offsets with docids.
+**
+** A DL_POSITIONS_OFFSETS doclist is stored like this:
+**
+** array {
+** varint docid;
+** array { (position list for column 0)
+** varint position; (delta from previous position plus POS_BASE)
+** varint startOffset; (delta from previous startOffset)
+** varint endOffset; (delta from startOffset)
+** }
+** array {
+** varint POS_COLUMN; (marks start of position list for new column)
+** varint column; (index of new column)
+** array {
+** varint position; (delta from previous position plus POS_BASE)
+** varint startOffset;(delta from previous startOffset)
+** varint endOffset; (delta from startOffset)
+** }
+** }
+** varint POS_END; (marks end of positions for this document.
+** }
+**
+** Here, array { X } means zero or more occurrences of X, adjacent in
+** memory. A "position" is an index of a token in the token stream
+** generated by the tokenizer, while an "offset" is a byte offset,
+** both based at 0. Note that POS_END and POS_COLUMN occur in the
+** same logical place as the position element, and act as sentinals
+** ending a position list array.
+**
+** A DL_POSITIONS doclist omits the startOffset and endOffset
+** information. A DL_DOCIDS doclist omits both the position and
+** offset information, becoming an array of varint-encoded docids.
+**
+** On-disk data is stored as type DL_DEFAULT, so we don't serialize
+** the type. Due to how deletion is implemented in the segmentation
+** system, on-disk doclists MUST store at least positions.
+**
+**
+**** Segment leaf nodes ****
+** Segment leaf nodes store terms and doclists, ordered by term. Leaf
+** nodes are written using LeafWriter, and read using LeafReader (to
+** iterate through a single leaf node's data) and LeavesReader (to
+** iterate through a segment's entire leaf layer). Leaf nodes have
+** the format:
+**
+** varint iHeight; (height from leaf level, always 0)
+** varint nTerm; (length of first term)
+** char pTerm[nTerm]; (content of first term)
+** varint nDoclist; (length of term's associated doclist)
+** char pDoclist[nDoclist]; (content of doclist)
+** array {
+** (further terms are delta-encoded)
+** varint nPrefix; (length of prefix shared with previous term)
+** varint nSuffix; (length of unshared suffix)
+** char pTermSuffix[nSuffix];(unshared suffix of next term)
+** varint nDoclist; (length of term's associated doclist)
+** char pDoclist[nDoclist]; (content of doclist)
+** }
+**
+** Here, array { X } means zero or more occurrences of X, adjacent in
+** memory.
+**
+** Leaf nodes are broken into blocks which are stored contiguously in
+** the %_segments table in sorted order. This means that when the end
+** of a node is reached, the next term is in the node with the next
+** greater node id.
+**
+** New data is spilled to a new leaf node when the current node
+** exceeds LEAF_MAX bytes (default 2048). New data which itself is
+** larger than STANDALONE_MIN (default 1024) is placed in a standalone
+** node (a leaf node with a single term and doclist). The goal of
+** these settings is to pack together groups of small doclists while
+** making it efficient to directly access large doclists. The
+** assumption is that large doclists represent terms which are more
+** likely to be query targets.
+**
+** TODO(shess) It may be useful for blocking decisions to be more
+** dynamic. For instance, it may make more sense to have a 2.5k leaf
+** node rather than splitting into 2k and .5k nodes. My intuition is
+** that this might extend through 2x or 4x the pagesize.
+**
+**
+**** Segment interior nodes ****
+** Segment interior nodes store blockids for subtree nodes and terms
+** to describe what data is stored by the each subtree. Interior
+** nodes are written using InteriorWriter, and read using
+** InteriorReader. InteriorWriters are created as needed when
+** SegmentWriter creates new leaf nodes, or when an interior node
+** itself grows too big and must be split. The format of interior
+** nodes:
+**
+** varint iHeight; (height from leaf level, always >0)
+** varint iBlockid; (block id of node's leftmost subtree)
+** optional {
+** varint nTerm; (length of first term)
+** char pTerm[nTerm]; (content of first term)
+** array {
+** (further terms are delta-encoded)
+** varint nPrefix; (length of shared prefix with previous term)
+** varint nSuffix; (length of unshared suffix)
+** char pTermSuffix[nSuffix]; (unshared suffix of next term)
+** }
+** }
+**
+** Here, optional { X } means an optional element, while array { X }
+** means zero or more occurrences of X, adjacent in memory.
+**
+** An interior node encodes n terms separating n+1 subtrees. The
+** subtree blocks are contiguous, so only the first subtree's blockid
+** is encoded. The subtree at iBlockid will contain all terms less
+** than the first term encoded (or all terms if no term is encoded).
+** Otherwise, for terms greater than or equal to pTerm[i] but less
+** than pTerm[i+1], the subtree for that term will be rooted at
+** iBlockid+i. Interior nodes only store enough term data to
+** distinguish adjacent children (if the rightmost term of the left
+** child is "something", and the leftmost term of the right child is
+** "wicked", only "w" is stored).
+**
+** New data is spilled to a new interior node at the same height when
+** the current node exceeds INTERIOR_MAX bytes (default 2048).
+** INTERIOR_MIN_TERMS (default 7) keeps large terms from monopolizing
+** interior nodes and making the tree too skinny. The interior nodes
+** at a given height are naturally tracked by interior nodes at
+** height+1, and so on.
+**
+**
+**** Segment directory ****
+** The segment directory in table %_segdir stores meta-information for
+** merging and deleting segments, and also the root node of the
+** segment's tree.
+**
+** The root node is the top node of the segment's tree after encoding
+** the entire segment, restricted to ROOT_MAX bytes (default 1024).
+** This could be either a leaf node or an interior node. If the top
+** node requires more than ROOT_MAX bytes, it is flushed to %_segments
+** and a new root interior node is generated (which should always fit
+** within ROOT_MAX because it only needs space for 2 varints, the
+** height and the blockid of the previous root).
+**
+** The meta-information in the segment directory is:
+** level - segment level (see below)
+** idx - index within level
+** - (level,idx uniquely identify a segment)
+** start_block - first leaf node
+** leaves_end_block - last leaf node
+** end_block - last block (including interior nodes)
+** root - contents of root node
+**
+** If the root node is a leaf node, then start_block,
+** leaves_end_block, and end_block are all 0.
+**
+**
+**** Segment merging ****
+** To amortize update costs, segments are groups into levels and
+** merged in matches. Each increase in level represents exponentially
+** more documents.
+**
+** New documents (actually, document updates) are tokenized and
+** written individually (using LeafWriter) to a level 0 segment, with
+** incrementing idx. When idx reaches MERGE_COUNT (default 16), all
+** level 0 segments are merged into a single level 1 segment. Level 1
+** is populated like level 0, and eventually MERGE_COUNT level 1
+** segments are merged to a single level 2 segment (representing
+** MERGE_COUNT^2 updates), and so on.
+**
+** A segment merge traverses all segments at a given level in
+** parallel, performing a straightforward sorted merge. Since segment
+** leaf nodes are written in to the %_segments table in order, this
+** merge traverses the underlying sqlite disk structures efficiently.
+** After the merge, all segment blocks from the merged level are
+** deleted.
+**
+** MERGE_COUNT controls how often we merge segments. 16 seems to be
+** somewhat of a sweet spot for insertion performance. 32 and 64 show
+** very similar performance numbers to 16 on insertion, though they're
+** a tiny bit slower (perhaps due to more overhead in merge-time
+** sorting). 8 is about 20% slower than 16, 4 about 50% slower than
+** 16, 2 about 66% slower than 16.
+**
+** At query time, high MERGE_COUNT increases the number of segments
+** which need to be scanned and merged. For instance, with 100k docs
+** inserted:
+**
+** MERGE_COUNT segments
+** 16 25
+** 8 12
+** 4 10
+** 2 6
+**
+** This appears to have only a moderate impact on queries for very
+** frequent terms (which are somewhat dominated by segment merge
+** costs), and infrequent and non-existent terms still seem to be fast
+** even with many segments.
+**
+** TODO(shess) That said, it would be nice to have a better query-side
+** argument for MERGE_COUNT of 16. Also, it is possible/likely that
+** optimizations to things like doclist merging will swing the sweet
+** spot around.
+**
+**
+**
+**** Handling of deletions and updates ****
+** Since we're using a segmented structure, with no docid-oriented
+** index into the term index, we clearly cannot simply update the term
+** index when a document is deleted or updated. For deletions, we
+** write an empty doclist (varint(docid) varint(POS_END)), for updates
+** we simply write the new doclist. Segment merges overwrite older
+** data for a particular docid with newer data, so deletes or updates
+** will eventually overtake the earlier data and knock it out. The
+** query logic likewise merges doclists so that newer data knocks out
+** older data.
+**
+** TODO(shess) Provide a VACUUM type operation to clear out all
+** deletions and duplications. This would basically be a forced merge
+** into a single segment.
+*/
+
+#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
+
+#if defined(SQLITE_ENABLE_FTS3) && !defined(SQLITE_CORE)
+# define SQLITE_CORE 1
+#endif
+
+
+/************** Include fts3_hash.h in the middle of fts3.c ******************/
+/************** Begin file fts3_hash.h ***************************************/
+/*
+** 2001 September 22
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This is the header file for the generic hash-table implemenation
+** used in SQLite. We've modified it slightly to serve as a standalone
+** hash table implementation for the full-text indexing module.
+**
+*/
+#ifndef _FTS3_HASH_H_
+#define _FTS3_HASH_H_
+
+/* Forward declarations of structures. */
+typedef struct fts3Hash fts3Hash;
+typedef struct fts3HashElem fts3HashElem;
+
+/* A complete hash table is an instance of the following structure.
+** The internals of this structure are intended to be opaque -- client
+** code should not attempt to access or modify the fields of this structure
+** directly. Change this structure only by using the routines below.
+** However, many of the "procedures" and "functions" for modifying and
+** accessing this structure are really macros, so we can't really make
+** this structure opaque.
+*/
+struct fts3Hash {
+ char keyClass; /* HASH_INT, _POINTER, _STRING, _BINARY */
+ char copyKey; /* True if copy of key made on insert */
+ int count; /* Number of entries in this table */
+ fts3HashElem *first; /* The first element of the array */
+ int htsize; /* Number of buckets in the hash table */
+ struct _fts3ht { /* the hash table */
+ int count; /* Number of entries with this hash */
+ fts3HashElem *chain; /* Pointer to first entry with this hash */
+ } *ht;
+};
+
+/* Each element in the hash table is an instance of the following
+** structure. All elements are stored on a single doubly-linked list.
+**
+** Again, this structure is intended to be opaque, but it can't really
+** be opaque because it is used by macros.
+*/
+struct fts3HashElem {
+ fts3HashElem *next, *prev; /* Next and previous elements in the table */
+ void *data; /* Data associated with this element */
+ void *pKey; int nKey; /* Key associated with this element */
+};
+
+/*
+** There are 2 different modes of operation for a hash table:
+**
+** FTS3_HASH_STRING pKey points to a string that is nKey bytes long
+** (including the null-terminator, if any). Case
+** is respected in comparisons.
+**
+** FTS3_HASH_BINARY pKey points to binary data nKey bytes long.
+** memcmp() is used to compare keys.
+**
+** A copy of the key is made if the copyKey parameter to fts3HashInit is 1.
+*/
+#define FTS3_HASH_STRING 1
+#define FTS3_HASH_BINARY 2
+
+/*
+** Access routines. To delete, insert a NULL pointer.
+*/
+SQLITE_PRIVATE void sqlite3Fts3HashInit(fts3Hash*, int keytype, int copyKey);
+SQLITE_PRIVATE void *sqlite3Fts3HashInsert(fts3Hash*, const void *pKey, int nKey, void *pData);
+SQLITE_PRIVATE void *sqlite3Fts3HashFind(const fts3Hash*, const void *pKey, int nKey);
+SQLITE_PRIVATE void sqlite3Fts3HashClear(fts3Hash*);
+
+/*
+** Shorthand for the functions above
+*/
+#define fts3HashInit sqlite3Fts3HashInit
+#define fts3HashInsert sqlite3Fts3HashInsert
+#define fts3HashFind sqlite3Fts3HashFind
+#define fts3HashClear sqlite3Fts3HashClear
+
+/*
+** Macros for looping over all elements of a hash table. The idiom is
+** like this:
+**
+** fts3Hash h;
+** fts3HashElem *p;
+** ...
+** for(p=fts3HashFirst(&h); p; p=fts3HashNext(p)){
+** SomeStructure *pData = fts3HashData(p);
+** // do something with pData
+** }
+*/
+#define fts3HashFirst(H) ((H)->first)
+#define fts3HashNext(E) ((E)->next)
+#define fts3HashData(E) ((E)->data)
+#define fts3HashKey(E) ((E)->pKey)
+#define fts3HashKeysize(E) ((E)->nKey)
+
+/*
+** Number of entries in a hash table
+*/
+#define fts3HashCount(H) ((H)->count)
+
+#endif /* _FTS3_HASH_H_ */
+
+/************** End of fts3_hash.h *******************************************/
+/************** Continuing where we left off in fts3.c ***********************/
+/************** Include fts3_tokenizer.h in the middle of fts3.c *************/
+/************** Begin file fts3_tokenizer.h **********************************/
+/*
+** 2006 July 10
+**
+** The author disclaims copyright to this source code.
+**
+*************************************************************************
+** Defines the interface to tokenizers used by fulltext-search. There
+** are three basic components:
+**
+** sqlite3_tokenizer_module is a singleton defining the tokenizer
+** interface functions. This is essentially the class structure for
+** tokenizers.
+**
+** sqlite3_tokenizer is used to define a particular tokenizer, perhaps
+** including customization information defined at creation time.
+**
+** sqlite3_tokenizer_cursor is generated by a tokenizer to generate
+** tokens from a particular input.
+*/
+#ifndef _FTS3_TOKENIZER_H_
+#define _FTS3_TOKENIZER_H_
+
+/* TODO(shess) Only used for SQLITE_OK and SQLITE_DONE at this time.
+** If tokenizers are to be allowed to call sqlite3_*() functions, then
+** we will need a way to register the API consistently.
+*/
+
+/*
+** Structures used by the tokenizer interface. When a new tokenizer
+** implementation is registered, the caller provides a pointer to
+** an sqlite3_tokenizer_module containing pointers to the callback
+** functions that make up an implementation.
+**
+** When an fts3 table is created, it passes any arguments passed to
+** the tokenizer clause of the CREATE VIRTUAL TABLE statement to the
+** sqlite3_tokenizer_module.xCreate() function of the requested tokenizer
+** implementation. The xCreate() function in turn returns an
+** sqlite3_tokenizer structure representing the specific tokenizer to
+** be used for the fts3 table (customized by the tokenizer clause arguments).
+**
+** To tokenize an input buffer, the sqlite3_tokenizer_module.xOpen()
+** method is called. It returns an sqlite3_tokenizer_cursor object
+** that may be used to tokenize a specific input buffer based on
+** the tokenization rules supplied by a specific sqlite3_tokenizer
+** object.
+*/
+typedef struct sqlite3_tokenizer_module sqlite3_tokenizer_module;
+typedef struct sqlite3_tokenizer sqlite3_tokenizer;
+typedef struct sqlite3_tokenizer_cursor sqlite3_tokenizer_cursor;
+
+struct sqlite3_tokenizer_module {
+
+ /*
+ ** Structure version. Should always be set to 0.
+ */
+ int iVersion;
+
+ /*
+ ** Create a new tokenizer. The values in the argv[] array are the
+ ** arguments passed to the "tokenizer" clause of the CREATE VIRTUAL
+ ** TABLE statement that created the fts3 table. For example, if
+ ** the following SQL is executed:
+ **
+ ** CREATE .. USING fts3( ... , tokenizer <tokenizer-name> arg1 arg2)
+ **
+ ** then argc is set to 2, and the argv[] array contains pointers
+ ** to the strings "arg1" and "arg2".
+ **
+ ** This method should return either SQLITE_OK (0), or an SQLite error
+ ** code. If SQLITE_OK is returned, then *ppTokenizer should be set
+ ** to point at the newly created tokenizer structure. The generic
+ ** sqlite3_tokenizer.pModule variable should not be initialised by
+ ** this callback. The caller will do so.
+ */
+ int (*xCreate)(
+ int argc, /* Size of argv array */
+ const char *const*argv, /* Tokenizer argument strings */
+ sqlite3_tokenizer **ppTokenizer /* OUT: Created tokenizer */
+ );
+
+ /*
+ ** Destroy an existing tokenizer. The fts3 module calls this method
+ ** exactly once for each successful call to xCreate().
+ */
+ int (*xDestroy)(sqlite3_tokenizer *pTokenizer);
+
+ /*
+ ** Create a tokenizer cursor to tokenize an input buffer. The caller
+ ** is responsible for ensuring that the input buffer remains valid
+ ** until the cursor is closed (using the xClose() method).
+ */
+ int (*xOpen)(
+ sqlite3_tokenizer *pTokenizer, /* Tokenizer object */
+ const char *pInput, int nBytes, /* Input buffer */
+ sqlite3_tokenizer_cursor **ppCursor /* OUT: Created tokenizer cursor */
+ );
+
+ /*
+ ** Destroy an existing tokenizer cursor. The fts3 module calls this
+ ** method exactly once for each successful call to xOpen().
+ */
+ int (*xClose)(sqlite3_tokenizer_cursor *pCursor);
+
+ /*
+ ** Retrieve the next token from the tokenizer cursor pCursor. This
+ ** method should either return SQLITE_OK and set the values of the
+ ** "OUT" variables identified below, or SQLITE_DONE to indicate that
+ ** the end of the buffer has been reached, or an SQLite error code.
+ **
+ ** *ppToken should be set to point at a buffer containing the
+ ** normalized version of the token (i.e. after any case-folding and/or
+ ** stemming has been performed). *pnBytes should be set to the length
+ ** of this buffer in bytes. The input text that generated the token is
+ ** identified by the byte offsets returned in *piStartOffset and
+ ** *piEndOffset.
+ **
+ ** The buffer *ppToken is set to point at is managed by the tokenizer
+ ** implementation. It is only required to be valid until the next call
+ ** to xNext() or xClose().
+ */
+ /* TODO(shess) current implementation requires pInput to be
+ ** nul-terminated. This should either be fixed, or pInput/nBytes
+ ** should be converted to zInput.
+ */
+ int (*xNext)(
+ sqlite3_tokenizer_cursor *pCursor, /* Tokenizer cursor */
+ const char **ppToken, int *pnBytes, /* OUT: Normalized text for token */
+ int *piStartOffset, /* OUT: Byte offset of token in input buffer */
+ int *piEndOffset, /* OUT: Byte offset of end of token in input buffer */
+ int *piPosition /* OUT: Number of tokens returned before this one */
+ );
+};
+
+struct sqlite3_tokenizer {
+ const sqlite3_tokenizer_module *pModule; /* The module for this tokenizer */
+ /* Tokenizer implementations will typically add additional fields */
+};
+
+struct sqlite3_tokenizer_cursor {
+ sqlite3_tokenizer *pTokenizer; /* Tokenizer for this cursor. */
+ /* Tokenizer implementations will typically add additional fields */
+};
+
+#endif /* _FTS3_TOKENIZER_H_ */
+
+/************** End of fts3_tokenizer.h **************************************/
+/************** Continuing where we left off in fts3.c ***********************/
+#ifndef SQLITE_CORE
+ SQLITE_EXTENSION_INIT1
+#endif
+
+
+/* TODO(shess) MAN, this thing needs some refactoring. At minimum, it
+** would be nice to order the file better, perhaps something along the
+** lines of:
+**
+** - utility functions
+** - table setup functions
+** - table update functions
+** - table query functions
+**
+** Put the query functions last because they're likely to reference
+** typedefs or functions from the table update section.
+*/
+
+#if 0
+# define FTSTRACE(A) printf A; fflush(stdout)
+#else
+# define FTSTRACE(A)
+#endif
+
+/*
+** Default span for NEAR operators.
+*/
+#define SQLITE_FTS3_DEFAULT_NEAR_PARAM 10
+
+/* It is not safe to call isspace(), tolower(), or isalnum() on
+** hi-bit-set characters. This is the same solution used in the
+** tokenizer.
+*/
+/* TODO(shess) The snippet-generation code should be using the
+** tokenizer-generated tokens rather than doing its own local
+** tokenization.
+*/
+/* TODO(shess) Is __isascii() a portable version of (c&0x80)==0? */
+static int safe_isspace(char c){
+ return (c&0x80)==0 ? isspace(c) : 0;
+}
+static int safe_tolower(char c){
+ return (c&0x80)==0 ? tolower(c) : c;
+}
+static int safe_isalnum(char c){
+ return (c&0x80)==0 ? isalnum(c) : 0;
+}
+
+typedef enum DocListType {
+ DL_DOCIDS, /* docids only */
+ DL_POSITIONS, /* docids + positions */
+ DL_POSITIONS_OFFSETS /* docids + positions + offsets */
+} DocListType;
+
+/*
+** By default, only positions and not offsets are stored in the doclists.
+** To change this so that offsets are stored too, compile with
+**
+** -DDL_DEFAULT=DL_POSITIONS_OFFSETS
+**
+** If DL_DEFAULT is set to DL_DOCIDS, your table can only be inserted
+** into (no deletes or updates).
+*/
+#ifndef DL_DEFAULT
+# define DL_DEFAULT DL_POSITIONS
+#endif
+
+enum {
+ POS_END = 0, /* end of this position list */
+ POS_COLUMN, /* followed by new column number */
+ POS_BASE
+};
+
+/* MERGE_COUNT controls how often we merge segments (see comment at
+** top of file).
+*/
+#define MERGE_COUNT 16
+
+/* utility functions */
+
+/* CLEAR() and SCRAMBLE() abstract memset() on a pointer to a single
+** record to prevent errors of the form:
+**
+** my_function(SomeType *b){
+** memset(b, '\0', sizeof(b)); // sizeof(b)!=sizeof(*b)
+** }
+*/
+/* TODO(shess) Obvious candidates for a header file. */
+#define CLEAR(b) memset(b, '\0', sizeof(*(b)))
+
+#ifndef NDEBUG
+# define SCRAMBLE(b) memset(b, 0x55, sizeof(*(b)))
+#else
+# define SCRAMBLE(b)
+#endif
+
+/* We may need up to VARINT_MAX bytes to store an encoded 64-bit integer. */
+#define VARINT_MAX 10
+
+/* Write a 64-bit variable-length integer to memory starting at p[0].
+ * The length of data written will be between 1 and VARINT_MAX bytes.
+ * The number of bytes written is returned. */
+static int fts3PutVarint(char *p, sqlite_int64 v){
+ unsigned char *q = (unsigned char *) p;
+ sqlite_uint64 vu = v;
+ do{
+ *q++ = (unsigned char) ((vu & 0x7f) | 0x80);
+ vu >>= 7;
+ }while( vu!=0 );
+ q[-1] &= 0x7f; /* turn off high bit in final byte */
+ assert( q - (unsigned char *)p <= VARINT_MAX );
+ return (int) (q - (unsigned char *)p);
+}
+
+/* Read a 64-bit variable-length integer from memory starting at p[0].
+ * Return the number of bytes read, or 0 on error.
+ * The value is stored in *v. */
+static int fts3GetVarint(const char *p, sqlite_int64 *v){
+ const unsigned char *q = (const unsigned char *) p;
+ sqlite_uint64 x = 0, y = 1;
+ while( (*q & 0x80) == 0x80 ){
+ x += y * (*q++ & 0x7f);
+ y <<= 7;
+ if( q - (unsigned char *)p >= VARINT_MAX ){ /* bad data */
+ assert( 0 );
+ return 0;
+ }
+ }
+ x += y * (*q++);
+ *v = (sqlite_int64) x;
+ return (int) (q - (unsigned char *)p);
+}
+
+static int fts3GetVarint32(const char *p, int *pi){
+ sqlite_int64 i;
+ int ret = fts3GetVarint(p, &i);
+ *pi = (int) i;
+ assert( *pi==i );
+ return ret;
+}
+
+/*******************************************************************/
+/* DataBuffer is used to collect data into a buffer in piecemeal
+** fashion. It implements the usual distinction between amount of
+** data currently stored (nData) and buffer capacity (nCapacity).
+**
+** dataBufferInit - create a buffer with given initial capacity.
+** dataBufferReset - forget buffer's data, retaining capacity.
+** dataBufferDestroy - free buffer's data.
+** dataBufferSwap - swap contents of two buffers.
+** dataBufferExpand - expand capacity without adding data.
+** dataBufferAppend - append data.
+** dataBufferAppend2 - append two pieces of data at once.
+** dataBufferReplace - replace buffer's data.
+*/
+typedef struct DataBuffer {
+ char *pData; /* Pointer to malloc'ed buffer. */
+ int nCapacity; /* Size of pData buffer. */
+ int nData; /* End of data loaded into pData. */
+} DataBuffer;
+
+static void dataBufferInit(DataBuffer *pBuffer, int nCapacity){
+ assert( nCapacity>=0 );
+ pBuffer->nData = 0;
+ pBuffer->nCapacity = nCapacity;
+ pBuffer->pData = nCapacity==0 ? NULL : sqlite3_malloc(nCapacity);
+}
+static void dataBufferReset(DataBuffer *pBuffer){
+ pBuffer->nData = 0;
+}
+static void dataBufferDestroy(DataBuffer *pBuffer){
+ if( pBuffer->pData!=NULL ) sqlite3_free(pBuffer->pData);
+ SCRAMBLE(pBuffer);
+}
+static void dataBufferSwap(DataBuffer *pBuffer1, DataBuffer *pBuffer2){
+ DataBuffer tmp = *pBuffer1;
+ *pBuffer1 = *pBuffer2;
+ *pBuffer2 = tmp;
+}
+static void dataBufferExpand(DataBuffer *pBuffer, int nAddCapacity){
+ assert( nAddCapacity>0 );
+ /* TODO(shess) Consider expanding more aggressively. Note that the
+ ** underlying malloc implementation may take care of such things for
+ ** us already.
+ */
+ if( pBuffer->nData+nAddCapacity>pBuffer->nCapacity ){
+ pBuffer->nCapacity = pBuffer->nData+nAddCapacity;
+ pBuffer->pData = sqlite3_realloc(pBuffer->pData, pBuffer->nCapacity);
+ }
+}
+static void dataBufferAppend(DataBuffer *pBuffer,
+ const char *pSource, int nSource){
+ assert( nSource>0 && pSource!=NULL );
+ dataBufferExpand(pBuffer, nSource);
+ memcpy(pBuffer->pData+pBuffer->nData, pSource, nSource);
+ pBuffer->nData += nSource;
+}
+static void dataBufferAppend2(DataBuffer *pBuffer,
+ const char *pSource1, int nSource1,
+ const char *pSource2, int nSource2){
+ assert( nSource1>0 && pSource1!=NULL );
+ assert( nSource2>0 && pSource2!=NULL );
+ dataBufferExpand(pBuffer, nSource1+nSource2);
+ memcpy(pBuffer->pData+pBuffer->nData, pSource1, nSource1);
+ memcpy(pBuffer->pData+pBuffer->nData+nSource1, pSource2, nSource2);
+ pBuffer->nData += nSource1+nSource2;
+}
+static void dataBufferReplace(DataBuffer *pBuffer,
+ const char *pSource, int nSource){
+ dataBufferReset(pBuffer);
+ dataBufferAppend(pBuffer, pSource, nSource);
+}
+
+/* StringBuffer is a null-terminated version of DataBuffer. */
+typedef struct StringBuffer {
+ DataBuffer b; /* Includes null terminator. */
+} StringBuffer;
+
+static void initStringBuffer(StringBuffer *sb){
+ dataBufferInit(&sb->b, 100);
+ dataBufferReplace(&sb->b, "", 1);
+}
+static int stringBufferLength(StringBuffer *sb){
+ return sb->b.nData-1;
+}
+static char *stringBufferData(StringBuffer *sb){
+ return sb->b.pData;
+}
+static void stringBufferDestroy(StringBuffer *sb){
+ dataBufferDestroy(&sb->b);
+}
+
+static void nappend(StringBuffer *sb, const char *zFrom, int nFrom){
+ assert( sb->b.nData>0 );
+ if( nFrom>0 ){
+ sb->b.nData--;
+ dataBufferAppend2(&sb->b, zFrom, nFrom, "", 1);
+ }
+}
+static void append(StringBuffer *sb, const char *zFrom){
+ nappend(sb, zFrom, strlen(zFrom));
+}
+
+/* Append a list of strings separated by commas. */
+static void appendList(StringBuffer *sb, int nString, char **azString){
+ int i;
+ for(i=0; i<nString; ++i){
+ if( i>0 ) append(sb, ", ");
+ append(sb, azString[i]);
+ }
+}
+
+static int endsInWhiteSpace(StringBuffer *p){
+ return stringBufferLength(p)>0 &&
+ safe_isspace(stringBufferData(p)[stringBufferLength(p)-1]);
+}
+
+/* If the StringBuffer ends in something other than white space, add a
+** single space character to the end.
+*/
+static void appendWhiteSpace(StringBuffer *p){
+ if( stringBufferLength(p)==0 ) return;
+ if( !endsInWhiteSpace(p) ) append(p, " ");
+}
+
+/* Remove white space from the end of the StringBuffer */
+static void trimWhiteSpace(StringBuffer *p){
+ while( endsInWhiteSpace(p) ){
+ p->b.pData[--p->b.nData-1] = '\0';
+ }
+}
+
+/*******************************************************************/
+/* DLReader is used to read document elements from a doclist. The
+** current docid is cached, so dlrDocid() is fast. DLReader does not
+** own the doclist buffer.
+**
+** dlrAtEnd - true if there's no more data to read.
+** dlrDocid - docid of current document.
+** dlrDocData - doclist data for current document (including docid).
+** dlrDocDataBytes - length of same.
+** dlrAllDataBytes - length of all remaining data.
+** dlrPosData - position data for current document.
+** dlrPosDataLen - length of pos data for current document (incl POS_END).
+** dlrStep - step to current document.
+** dlrInit - initial for doclist of given type against given data.
+** dlrDestroy - clean up.
+**
+** Expected usage is something like:
+**
+** DLReader reader;
+** dlrInit(&reader, pData, nData);
+** while( !dlrAtEnd(&reader) ){
+** // calls to dlrDocid() and kin.
+** dlrStep(&reader);
+** }
+** dlrDestroy(&reader);
+*/
+typedef struct DLReader {
+ DocListType iType;
+ const char *pData;
+ int nData;
+
+ sqlite_int64 iDocid;
+ int nElement;
+} DLReader;
+
+static int dlrAtEnd(DLReader *pReader){
+ assert( pReader->nData>=0 );
+ return pReader->nData==0;
+}
+static sqlite_int64 dlrDocid(DLReader *pReader){
+ assert( !dlrAtEnd(pReader) );
+ return pReader->iDocid;
+}
+static const char *dlrDocData(DLReader *pReader){
+ assert( !dlrAtEnd(pReader) );
+ return pReader->pData;
+}
+static int dlrDocDataBytes(DLReader *pReader){
+ assert( !dlrAtEnd(pReader) );
+ return pReader->nElement;
+}
+static int dlrAllDataBytes(DLReader *pReader){
+ assert( !dlrAtEnd(pReader) );
+ return pReader->nData;
+}
+/* TODO(shess) Consider adding a field to track iDocid varint length
+** to make these two functions faster. This might matter (a tiny bit)
+** for queries.
+*/
+static const char *dlrPosData(DLReader *pReader){
+ sqlite_int64 iDummy;
+ int n = fts3GetVarint(pReader->pData, &iDummy);
+ assert( !dlrAtEnd(pReader) );
+ return pReader->pData+n;
+}
+static int dlrPosDataLen(DLReader *pReader){
+ sqlite_int64 iDummy;
+ int n = fts3GetVarint(pReader->pData, &iDummy);
+ assert( !dlrAtEnd(pReader) );
+ return pReader->nElement-n;
+}
+static void dlrStep(DLReader *pReader){
+ assert( !dlrAtEnd(pReader) );
+
+ /* Skip past current doclist element. */
+ assert( pReader->nElement<=pReader->nData );
+ pReader->pData += pReader->nElement;
+ pReader->nData -= pReader->nElement;
+
+ /* If there is more data, read the next doclist element. */
+ if( pReader->nData!=0 ){
+ sqlite_int64 iDocidDelta;
+ int iDummy, n = fts3GetVarint(pReader->pData, &iDocidDelta);
+ pReader->iDocid += iDocidDelta;
+ if( pReader->iType>=DL_POSITIONS ){
+ assert( n<pReader->nData );
+ while( 1 ){
+ n += fts3GetVarint32(pReader->pData+n, &iDummy);
+ assert( n<=pReader->nData );
+ if( iDummy==POS_END ) break;
+ if( iDummy==POS_COLUMN ){
+ n += fts3GetVarint32(pReader->pData+n, &iDummy);
+ assert( n<pReader->nData );
+ }else if( pReader->iType==DL_POSITIONS_OFFSETS ){
+ n += fts3GetVarint32(pReader->pData+n, &iDummy);
+ n += fts3GetVarint32(pReader->pData+n, &iDummy);
+ assert( n<pReader->nData );
+ }
+ }
+ }
+ pReader->nElement = n;
+ assert( pReader->nElement<=pReader->nData );
+ }
+}
+static void dlrInit(DLReader *pReader, DocListType iType,
+ const char *pData, int nData){
+ assert( pData!=NULL && nData!=0 );
+ pReader->iType = iType;
+ pReader->pData = pData;
+ pReader->nData = nData;
+ pReader->nElement = 0;
+ pReader->iDocid = 0;
+
+ /* Load the first element's data. There must be a first element. */
+ dlrStep(pReader);
+}
+static void dlrDestroy(DLReader *pReader){
+ SCRAMBLE(pReader);
+}
+
+#ifndef NDEBUG
+/* Verify that the doclist can be validly decoded. Also returns the
+** last docid found because it is convenient in other assertions for
+** DLWriter.
+*/
+static void docListValidate(DocListType iType, const char *pData, int nData,
+ sqlite_int64 *pLastDocid){
+ sqlite_int64 iPrevDocid = 0;
+ assert( nData>0 );
+ assert( pData!=0 );
+ assert( pData+nData>pData );
+ while( nData!=0 ){
+ sqlite_int64 iDocidDelta;
+ int n = fts3GetVarint(pData, &iDocidDelta);
+ iPrevDocid += iDocidDelta;
+ if( iType>DL_DOCIDS ){
+ int iDummy;
+ while( 1 ){
+ n += fts3GetVarint32(pData+n, &iDummy);
+ if( iDummy==POS_END ) break;
+ if( iDummy==POS_COLUMN ){
+ n += fts3GetVarint32(pData+n, &iDummy);
+ }else if( iType>DL_POSITIONS ){
+ n += fts3GetVarint32(pData+n, &iDummy);
+ n += fts3GetVarint32(pData+n, &iDummy);
+ }
+ assert( n<=nData );
+ }
+ }
+ assert( n<=nData );
+ pData += n;
+ nData -= n;
+ }
+ if( pLastDocid ) *pLastDocid = iPrevDocid;
+}
+#define ASSERT_VALID_DOCLIST(i, p, n, o) docListValidate(i, p, n, o)
+#else
+#define ASSERT_VALID_DOCLIST(i, p, n, o) assert( 1 )
+#endif
+
+/*******************************************************************/
+/* DLWriter is used to write doclist data to a DataBuffer. DLWriter
+** always appends to the buffer and does not own it.
+**
+** dlwInit - initialize to write a given type doclistto a buffer.
+** dlwDestroy - clear the writer's memory. Does not free buffer.
+** dlwAppend - append raw doclist data to buffer.
+** dlwCopy - copy next doclist from reader to writer.
+** dlwAdd - construct doclist element and append to buffer.
+** Only apply dlwAdd() to DL_DOCIDS doclists (else use PLWriter).
+*/
+typedef struct DLWriter {
+ DocListType iType;
+ DataBuffer *b;
+ sqlite_int64 iPrevDocid;
+#ifndef NDEBUG
+ int has_iPrevDocid;
+#endif
+} DLWriter;
+
+static void dlwInit(DLWriter *pWriter, DocListType iType, DataBuffer *b){
+ pWriter->b = b;
+ pWriter->iType = iType;
+ pWriter->iPrevDocid = 0;
+#ifndef NDEBUG
+ pWriter->has_iPrevDocid = 0;
+#endif
+}
+static void dlwDestroy(DLWriter *pWriter){
+ SCRAMBLE(pWriter);
+}
+/* iFirstDocid is the first docid in the doclist in pData. It is
+** needed because pData may point within a larger doclist, in which
+** case the first item would be delta-encoded.
+**
+** iLastDocid is the final docid in the doclist in pData. It is
+** needed to create the new iPrevDocid for future delta-encoding. The
+** code could decode the passed doclist to recreate iLastDocid, but
+** the only current user (docListMerge) already has decoded this
+** information.
+*/
+/* TODO(shess) This has become just a helper for docListMerge.
+** Consider a refactor to make this cleaner.
+*/
+static void dlwAppend(DLWriter *pWriter,
+ const char *pData, int nData,
+ sqlite_int64 iFirstDocid, sqlite_int64 iLastDocid){
+ sqlite_int64 iDocid = 0;
+ char c[VARINT_MAX];
+ int nFirstOld, nFirstNew; /* Old and new varint len of first docid. */
+#ifndef NDEBUG
+ sqlite_int64 iLastDocidDelta;
+#endif
+
+ /* Recode the initial docid as delta from iPrevDocid. */
+ nFirstOld = fts3GetVarint(pData, &iDocid);
+ assert( nFirstOld<nData || (nFirstOld==nData && pWriter->iType==DL_DOCIDS) );
+ nFirstNew = fts3PutVarint(c, iFirstDocid-pWriter->iPrevDocid);
+
+ /* Verify that the incoming doclist is valid AND that it ends with
+ ** the expected docid. This is essential because we'll trust this
+ ** docid in future delta-encoding.
+ */
+ ASSERT_VALID_DOCLIST(pWriter->iType, pData, nData, &iLastDocidDelta);
+ assert( iLastDocid==iFirstDocid-iDocid+iLastDocidDelta );
+
+ /* Append recoded initial docid and everything else. Rest of docids
+ ** should have been delta-encoded from previous initial docid.
+ */
+ if( nFirstOld<nData ){
+ dataBufferAppend2(pWriter->b, c, nFirstNew,
+ pData+nFirstOld, nData-nFirstOld);
+ }else{
+ dataBufferAppend(pWriter->b, c, nFirstNew);
+ }
+ pWriter->iPrevDocid = iLastDocid;
+}
+static void dlwCopy(DLWriter *pWriter, DLReader *pReader){
+ dlwAppend(pWriter, dlrDocData(pReader), dlrDocDataBytes(pReader),
+ dlrDocid(pReader), dlrDocid(pReader));
+}
+static void dlwAdd(DLWriter *pWriter, sqlite_int64 iDocid){
+ char c[VARINT_MAX];
+ int n = fts3PutVarint(c, iDocid-pWriter->iPrevDocid);
+
+ /* Docids must ascend. */
+ assert( !pWriter->has_iPrevDocid || iDocid>pWriter->iPrevDocid );
+ assert( pWriter->iType==DL_DOCIDS );
+
+ dataBufferAppend(pWriter->b, c, n);
+ pWriter->iPrevDocid = iDocid;
+#ifndef NDEBUG
+ pWriter->has_iPrevDocid = 1;
+#endif
+}
+
+/*******************************************************************/
+/* PLReader is used to read data from a document's position list. As
+** the caller steps through the list, data is cached so that varints
+** only need to be decoded once.
+**
+** plrInit, plrDestroy - create/destroy a reader.
+** plrColumn, plrPosition, plrStartOffset, plrEndOffset - accessors
+** plrAtEnd - at end of stream, only call plrDestroy once true.
+** plrStep - step to the next element.
+*/
+typedef struct PLReader {
+ /* These refer to the next position's data. nData will reach 0 when
+ ** reading the last position, so plrStep() signals EOF by setting
+ ** pData to NULL.
+ */
+ const char *pData;
+ int nData;
+
+ DocListType iType;
+ int iColumn; /* the last column read */
+ int iPosition; /* the last position read */
+ int iStartOffset; /* the last start offset read */
+ int iEndOffset; /* the last end offset read */
+} PLReader;
+
+static int plrAtEnd(PLReader *pReader){
+ return pReader->pData==NULL;
+}
+static int plrColumn(PLReader *pReader){
+ assert( !plrAtEnd(pReader) );
+ return pReader->iColumn;
+}
+static int plrPosition(PLReader *pReader){
+ assert( !plrAtEnd(pReader) );
+ return pReader->iPosition;
+}
+static int plrStartOffset(PLReader *pReader){
+ assert( !plrAtEnd(pReader) );
+ return pReader->iStartOffset;
+}
+static int plrEndOffset(PLReader *pReader){
+ assert( !plrAtEnd(pReader) );
+ return pReader->iEndOffset;
+}
+static void plrStep(PLReader *pReader){
+ int i, n;
+
+ assert( !plrAtEnd(pReader) );
+
+ if( pReader->nData==0 ){
+ pReader->pData = NULL;
+ return;
+ }
+
+ n = fts3GetVarint32(pReader->pData, &i);
+ if( i==POS_COLUMN ){
+ n += fts3GetVarint32(pReader->pData+n, &pReader->iColumn);
+ pReader->iPosition = 0;
+ pReader->iStartOffset = 0;
+ n += fts3GetVarint32(pReader->pData+n, &i);
+ }
+ /* Should never see adjacent column changes. */
+ assert( i!=POS_COLUMN );
+
+ if( i==POS_END ){
+ pReader->nData = 0;
+ pReader->pData = NULL;
+ return;
+ }
+
+ pReader->iPosition += i-POS_BASE;
+ if( pReader->iType==DL_POSITIONS_OFFSETS ){
+ n += fts3GetVarint32(pReader->pData+n, &i);
+ pReader->iStartOffset += i;
+ n += fts3GetVarint32(pReader->pData+n, &i);
+ pReader->iEndOffset = pReader->iStartOffset+i;
+ }
+ assert( n<=pReader->nData );
+ pReader->pData += n;
+ pReader->nData -= n;
+}
+
+static void plrInit(PLReader *pReader, DLReader *pDLReader){
+ pReader->pData = dlrPosData(pDLReader);
+ pReader->nData = dlrPosDataLen(pDLReader);
+ pReader->iType = pDLReader->iType;
+ pReader->iColumn = 0;
+ pReader->iPosition = 0;
+ pReader->iStartOffset = 0;
+ pReader->iEndOffset = 0;
+ plrStep(pReader);
+}
+static void plrDestroy(PLReader *pReader){
+ SCRAMBLE(pReader);
+}
+
+/*******************************************************************/
+/* PLWriter is used in constructing a document's position list. As a
+** convenience, if iType is DL_DOCIDS, PLWriter becomes a no-op.
+** PLWriter writes to the associated DLWriter's buffer.
+**
+** plwInit - init for writing a document's poslist.
+** plwDestroy - clear a writer.
+** plwAdd - append position and offset information.
+** plwCopy - copy next position's data from reader to writer.
+** plwTerminate - add any necessary doclist terminator.
+**
+** Calling plwAdd() after plwTerminate() may result in a corrupt
+** doclist.
+*/
+/* TODO(shess) Until we've written the second item, we can cache the
+** first item's information. Then we'd have three states:
+**
+** - initialized with docid, no positions.
+** - docid and one position.
+** - docid and multiple positions.
+**
+** Only the last state needs to actually write to dlw->b, which would
+** be an improvement in the DLCollector case.
+*/
+typedef struct PLWriter {
+ DLWriter *dlw;
+
+ int iColumn; /* the last column written */
+ int iPos; /* the last position written */
+ int iOffset; /* the last start offset written */
+} PLWriter;
+
+/* TODO(shess) In the case where the parent is reading these values
+** from a PLReader, we could optimize to a copy if that PLReader has
+** the same type as pWriter.
+*/
+static void plwAdd(PLWriter *pWriter, int iColumn, int iPos,
+ int iStartOffset, int iEndOffset){
+ /* Worst-case space for POS_COLUMN, iColumn, iPosDelta,
+ ** iStartOffsetDelta, and iEndOffsetDelta.
+ */
+ char c[5*VARINT_MAX];
+ int n = 0;
+
+ /* Ban plwAdd() after plwTerminate(). */
+ assert( pWriter->iPos!=-1 );
+
+ if( pWriter->dlw->iType==DL_DOCIDS ) return;
+
+ if( iColumn!=pWriter->iColumn ){
+ n += fts3PutVarint(c+n, POS_COLUMN);
+ n += fts3PutVarint(c+n, iColumn);
+ pWriter->iColumn = iColumn;
+ pWriter->iPos = 0;
+ pWriter->iOffset = 0;
+ }
+ assert( iPos>=pWriter->iPos );
+ n += fts3PutVarint(c+n, POS_BASE+(iPos-pWriter->iPos));
+ pWriter->iPos = iPos;
+ if( pWriter->dlw->iType==DL_POSITIONS_OFFSETS ){
+ assert( iStartOffset>=pWriter->iOffset );
+ n += fts3PutVarint(c+n, iStartOffset-pWriter->iOffset);
+ pWriter->iOffset = iStartOffset;
+ assert( iEndOffset>=iStartOffset );
+ n += fts3PutVarint(c+n, iEndOffset-iStartOffset);
+ }
+ dataBufferAppend(pWriter->dlw->b, c, n);
+}
+static void plwCopy(PLWriter *pWriter, PLReader *pReader){
+ plwAdd(pWriter, plrColumn(pReader), plrPosition(pReader),
+ plrStartOffset(pReader), plrEndOffset(pReader));
+}
+static void plwInit(PLWriter *pWriter, DLWriter *dlw, sqlite_int64 iDocid){
+ char c[VARINT_MAX];
+ int n;
+
+ pWriter->dlw = dlw;
+
+ /* Docids must ascend. */
+ assert( !pWriter->dlw->has_iPrevDocid || iDocid>pWriter->dlw->iPrevDocid );
+ n = fts3PutVarint(c, iDocid-pWriter->dlw->iPrevDocid);
+ dataBufferAppend(pWriter->dlw->b, c, n);
+ pWriter->dlw->iPrevDocid = iDocid;
+#ifndef NDEBUG
+ pWriter->dlw->has_iPrevDocid = 1;
+#endif
+
+ pWriter->iColumn = 0;
+ pWriter->iPos = 0;
+ pWriter->iOffset = 0;
+}
+/* TODO(shess) Should plwDestroy() also terminate the doclist? But
+** then plwDestroy() would no longer be just a destructor, it would
+** also be doing work, which isn't consistent with the overall idiom.
+** Another option would be for plwAdd() to always append any necessary
+** terminator, so that the output is always correct. But that would
+** add incremental work to the common case with the only benefit being
+** API elegance. Punt for now.
+*/
+static void plwTerminate(PLWriter *pWriter){
+ if( pWriter->dlw->iType>DL_DOCIDS ){
+ char c[VARINT_MAX];
+ int n = fts3PutVarint(c, POS_END);
+ dataBufferAppend(pWriter->dlw->b, c, n);
+ }
+#ifndef NDEBUG
+ /* Mark as terminated for assert in plwAdd(). */
+ pWriter->iPos = -1;
+#endif
+}
+static void plwDestroy(PLWriter *pWriter){
+ SCRAMBLE(pWriter);
+}
+
+/*******************************************************************/
+/* DLCollector wraps PLWriter and DLWriter to provide a
+** dynamically-allocated doclist area to use during tokenization.
+**
+** dlcNew - malloc up and initialize a collector.
+** dlcDelete - destroy a collector and all contained items.
+** dlcAddPos - append position and offset information.
+** dlcAddDoclist - add the collected doclist to the given buffer.
+** dlcNext - terminate the current document and open another.
+*/
+typedef struct DLCollector {
+ DataBuffer b;
+ DLWriter dlw;
+ PLWriter plw;
+} DLCollector;
+
+/* TODO(shess) This could also be done by calling plwTerminate() and
+** dataBufferAppend(). I tried that, expecting nominal performance
+** differences, but it seemed to pretty reliably be worth 1% to code
+** it this way. I suspect it is the incremental malloc overhead (some
+** percentage of the plwTerminate() calls will cause a realloc), so
+** this might be worth revisiting if the DataBuffer implementation
+** changes.
+*/
+static void dlcAddDoclist(DLCollector *pCollector, DataBuffer *b){
+ if( pCollector->dlw.iType>DL_DOCIDS ){
+ char c[VARINT_MAX];
+ int n = fts3PutVarint(c, POS_END);
+ dataBufferAppend2(b, pCollector->b.pData, pCollector->b.nData, c, n);
+ }else{
+ dataBufferAppend(b, pCollector->b.pData, pCollector->b.nData);
+ }
+}
+static void dlcNext(DLCollector *pCollector, sqlite_int64 iDocid){
+ plwTerminate(&pCollector->plw);
+ plwDestroy(&pCollector->plw);
+ plwInit(&pCollector->plw, &pCollector->dlw, iDocid);
+}
+static void dlcAddPos(DLCollector *pCollector, int iColumn, int iPos,
+ int iStartOffset, int iEndOffset){
+ plwAdd(&pCollector->plw, iColumn, iPos, iStartOffset, iEndOffset);
+}
+
+static DLCollector *dlcNew(sqlite_int64 iDocid, DocListType iType){
+ DLCollector *pCollector = sqlite3_malloc(sizeof(DLCollector));
+ dataBufferInit(&pCollector->b, 0);
+ dlwInit(&pCollector->dlw, iType, &pCollector->b);
+ plwInit(&pCollector->plw, &pCollector->dlw, iDocid);
+ return pCollector;
+}
+static void dlcDelete(DLCollector *pCollector){
+ plwDestroy(&pCollector->plw);
+ dlwDestroy(&pCollector->dlw);
+ dataBufferDestroy(&pCollector->b);
+ SCRAMBLE(pCollector);
+ sqlite3_free(pCollector);
+}
+
+
+/* Copy the doclist data of iType in pData/nData into *out, trimming
+** unnecessary data as we go. Only columns matching iColumn are
+** copied, all columns copied if iColumn is -1. Elements with no
+** matching columns are dropped. The output is an iOutType doclist.
+*/
+/* NOTE(shess) This code is only valid after all doclists are merged.
+** If this is run before merges, then doclist items which represent
+** deletion will be trimmed, and will thus not effect a deletion
+** during the merge.
+*/
+static void docListTrim(DocListType iType, const char *pData, int nData,
+ int iColumn, DocListType iOutType, DataBuffer *out){
+ DLReader dlReader;
+ DLWriter dlWriter;
+
+ assert( iOutType<=iType );
+
+ dlrInit(&dlReader, iType, pData, nData);
+ dlwInit(&dlWriter, iOutType, out);
+
+ while( !dlrAtEnd(&dlReader) ){
+ PLReader plReader;
+ PLWriter plWriter;
+ int match = 0;
+
+ plrInit(&plReader, &dlReader);
+
+ while( !plrAtEnd(&plReader) ){
+ if( iColumn==-1 || plrColumn(&plReader)==iColumn ){
+ if( !match ){
+ plwInit(&plWriter, &dlWriter, dlrDocid(&dlReader));
+ match = 1;
+ }
+ plwAdd(&plWriter, plrColumn(&plReader), plrPosition(&plReader),
+ plrStartOffset(&plReader), plrEndOffset(&plReader));
+ }
+ plrStep(&plReader);
+ }
+ if( match ){
+ plwTerminate(&plWriter);
+ plwDestroy(&plWriter);
+ }
+
+ plrDestroy(&plReader);
+ dlrStep(&dlReader);
+ }
+ dlwDestroy(&dlWriter);
+ dlrDestroy(&dlReader);
+}
+
+/* Used by docListMerge() to keep doclists in the ascending order by
+** docid, then ascending order by age (so the newest comes first).
+*/
+typedef struct OrderedDLReader {
+ DLReader *pReader;
+
+ /* TODO(shess) If we assume that docListMerge pReaders is ordered by
+ ** age (which we do), then we could use pReader comparisons to break
+ ** ties.
+ */
+ int idx;
+} OrderedDLReader;
+
+/* Order eof to end, then by docid asc, idx desc. */
+static int orderedDLReaderCmp(OrderedDLReader *r1, OrderedDLReader *r2){
+ if( dlrAtEnd(r1->pReader) ){
+ if( dlrAtEnd(r2->pReader) ) return 0; /* Both atEnd(). */
+ return 1; /* Only r1 atEnd(). */
+ }
+ if( dlrAtEnd(r2->pReader) ) return -1; /* Only r2 atEnd(). */
+
+ if( dlrDocid(r1->pReader)<dlrDocid(r2->pReader) ) return -1;
+ if( dlrDocid(r1->pReader)>dlrDocid(r2->pReader) ) return 1;
+
+ /* Descending on idx. */
+ return r2->idx-r1->idx;
+}
+
+/* Bubble p[0] to appropriate place in p[1..n-1]. Assumes that
+** p[1..n-1] is already sorted.
+*/
+/* TODO(shess) Is this frequent enough to warrant a binary search?
+** Before implementing that, instrument the code to check. In most
+** current usage, I expect that p[0] will be less than p[1] a very
+** high proportion of the time.
+*/
+static void orderedDLReaderReorder(OrderedDLReader *p, int n){
+ while( n>1 && orderedDLReaderCmp(p, p+1)>0 ){
+ OrderedDLReader tmp = p[0];
+ p[0] = p[1];
+ p[1] = tmp;
+ n--;
+ p++;
+ }
+}
+
+/* Given an array of doclist readers, merge their doclist elements
+** into out in sorted order (by docid), dropping elements from older
+** readers when there is a duplicate docid. pReaders is assumed to be
+** ordered by age, oldest first.
+*/
+/* TODO(shess) nReaders must be <= MERGE_COUNT. This should probably
+** be fixed.
+*/
+static void docListMerge(DataBuffer *out,
+ DLReader *pReaders, int nReaders){
+ OrderedDLReader readers[MERGE_COUNT];
+ DLWriter writer;
+ int i, n;
+ const char *pStart = 0;
+ int nStart = 0;
+ sqlite_int64 iFirstDocid = 0, iLastDocid = 0;
+
+ assert( nReaders>0 );
+ if( nReaders==1 ){
+ dataBufferAppend(out, dlrDocData(pReaders), dlrAllDataBytes(pReaders));
+ return;
+ }
+
+ assert( nReaders<=MERGE_COUNT );
+ n = 0;
+ for(i=0; i<nReaders; i++){
+ assert( pReaders[i].iType==pReaders[0].iType );
+ readers[i].pReader = pReaders+i;
+ readers[i].idx = i;
+ n += dlrAllDataBytes(&pReaders[i]);
+ }
+ /* Conservatively size output to sum of inputs. Output should end
+ ** up strictly smaller than input.
+ */
+ dataBufferExpand(out, n);
+
+ /* Get the readers into sorted order. */
+ while( i-->0 ){
+ orderedDLReaderReorder(readers+i, nReaders-i);
+ }
+
+ dlwInit(&writer, pReaders[0].iType, out);
+ while( !dlrAtEnd(readers[0].pReader) ){
+ sqlite_int64 iDocid = dlrDocid(readers[0].pReader);
+
+ /* If this is a continuation of the current buffer to copy, extend
+ ** that buffer. memcpy() seems to be more efficient if it has a
+ ** lots of data to copy.
+ */
+ if( dlrDocData(readers[0].pReader)==pStart+nStart ){
+ nStart += dlrDocDataBytes(readers[0].pReader);
+ }else{
+ if( pStart!=0 ){
+ dlwAppend(&writer, pStart, nStart, iFirstDocid, iLastDocid);
+ }
+ pStart = dlrDocData(readers[0].pReader);
+ nStart = dlrDocDataBytes(readers[0].pReader);
+ iFirstDocid = iDocid;
+ }
+ iLastDocid = iDocid;
+ dlrStep(readers[0].pReader);
+
+ /* Drop all of the older elements with the same docid. */
+ for(i=1; i<nReaders &&
+ !dlrAtEnd(readers[i].pReader) &&
+ dlrDocid(readers[i].pReader)==iDocid; i++){
+ dlrStep(readers[i].pReader);
+ }
+
+ /* Get the readers back into order. */
+ while( i-->0 ){
+ orderedDLReaderReorder(readers+i, nReaders-i);
+ }
+ }
+
+ /* Copy over any remaining elements. */
+ if( nStart>0 ) dlwAppend(&writer, pStart, nStart, iFirstDocid, iLastDocid);
+ dlwDestroy(&writer);
+}
+
+/* Helper function for posListUnion(). Compares the current position
+** between left and right, returning as standard C idiom of <0 if
+** left<right, >0 if left>right, and 0 if left==right. "End" always
+** compares greater.
+*/
+static int posListCmp(PLReader *pLeft, PLReader *pRight){
+ assert( pLeft->iType==pRight->iType );
+ if( pLeft->iType==DL_DOCIDS ) return 0;
+
+ if( plrAtEnd(pLeft) ) return plrAtEnd(pRight) ? 0 : 1;
+ if( plrAtEnd(pRight) ) return -1;
+
+ if( plrColumn(pLeft)<plrColumn(pRight) ) return -1;
+ if( plrColumn(pLeft)>plrColumn(pRight) ) return 1;
+
+ if( plrPosition(pLeft)<plrPosition(pRight) ) return -1;
+ if( plrPosition(pLeft)>plrPosition(pRight) ) return 1;
+ if( pLeft->iType==DL_POSITIONS ) return 0;
+
+ if( plrStartOffset(pLeft)<plrStartOffset(pRight) ) return -1;
+ if( plrStartOffset(pLeft)>plrStartOffset(pRight) ) return 1;
+
+ if( plrEndOffset(pLeft)<plrEndOffset(pRight) ) return -1;
+ if( plrEndOffset(pLeft)>plrEndOffset(pRight) ) return 1;
+
+ return 0;
+}
+
+/* Write the union of position lists in pLeft and pRight to pOut.
+** "Union" in this case meaning "All unique position tuples". Should
+** work with any doclist type, though both inputs and the output
+** should be the same type.
+*/
+static void posListUnion(DLReader *pLeft, DLReader *pRight, DLWriter *pOut){
+ PLReader left, right;
+ PLWriter writer;
+
+ assert( dlrDocid(pLeft)==dlrDocid(pRight) );
+ assert( pLeft->iType==pRight->iType );
+ assert( pLeft->iType==pOut->iType );
+
+ plrInit(&left, pLeft);
+ plrInit(&right, pRight);
+ plwInit(&writer, pOut, dlrDocid(pLeft));
+
+ while( !plrAtEnd(&left) || !plrAtEnd(&right) ){
+ int c = posListCmp(&left, &right);
+ if( c<0 ){
+ plwCopy(&writer, &left);
+ plrStep(&left);
+ }else if( c>0 ){
+ plwCopy(&writer, &right);
+ plrStep(&right);
+ }else{
+ plwCopy(&writer, &left);
+ plrStep(&left);
+ plrStep(&right);
+ }
+ }
+
+ plwTerminate(&writer);
+ plwDestroy(&writer);
+ plrDestroy(&left);
+ plrDestroy(&right);
+}
+
+/* Write the union of doclists in pLeft and pRight to pOut. For
+** docids in common between the inputs, the union of the position
+** lists is written. Inputs and outputs are always type DL_DEFAULT.
+*/
+static void docListUnion(
+ const char *pLeft, int nLeft,
+ const char *pRight, int nRight,
+ DataBuffer *pOut /* Write the combined doclist here */
+){
+ DLReader left, right;
+ DLWriter writer;
+
+ if( nLeft==0 ){
+ if( nRight!=0) dataBufferAppend(pOut, pRight, nRight);
+ return;
+ }
+ if( nRight==0 ){
+ dataBufferAppend(pOut, pLeft, nLeft);
+ return;
+ }
+
+ dlrInit(&left, DL_DEFAULT, pLeft, nLeft);
+ dlrInit(&right, DL_DEFAULT, pRight, nRight);
+ dlwInit(&writer, DL_DEFAULT, pOut);
+
+ while( !dlrAtEnd(&left) || !dlrAtEnd(&right) ){
+ if( dlrAtEnd(&right) ){
+ dlwCopy(&writer, &left);
+ dlrStep(&left);
+ }else if( dlrAtEnd(&left) ){
+ dlwCopy(&writer, &right);
+ dlrStep(&right);
+ }else if( dlrDocid(&left)<dlrDocid(&right) ){
+ dlwCopy(&writer, &left);
+ dlrStep(&left);
+ }else if( dlrDocid(&left)>dlrDocid(&right) ){
+ dlwCopy(&writer, &right);
+ dlrStep(&right);
+ }else{
+ posListUnion(&left, &right, &writer);
+ dlrStep(&left);
+ dlrStep(&right);
+ }
+ }
+
+ dlrDestroy(&left);
+ dlrDestroy(&right);
+ dlwDestroy(&writer);
+}
+
+/*
+** This function is used as part of the implementation of phrase and
+** NEAR matching.
+**
+** pLeft and pRight are DLReaders positioned to the same docid in
+** lists of type DL_POSITION. This function writes an entry to the
+** DLWriter pOut for each position in pRight that is less than
+** (nNear+1) greater (but not equal to or smaller) than a position
+** in pLeft. For example, if nNear is 0, and the positions contained
+** by pLeft and pRight are:
+**
+** pLeft: 5 10 15 20
+** pRight: 6 9 17 21
+**
+** then the docid is added to pOut. If pOut is of type DL_POSITIONS,
+** then a positionids "6" and "21" are also added to pOut.
+**
+** If boolean argument isSaveLeft is true, then positionids are copied
+** from pLeft instead of pRight. In the example above, the positions "5"
+** and "20" would be added instead of "6" and "21".
+*/
+static void posListPhraseMerge(
+ DLReader *pLeft,
+ DLReader *pRight,
+ int nNear,
+ int isSaveLeft,
+ DLWriter *pOut
+){
+ PLReader left, right;
+ PLWriter writer;
+ int match = 0;
+
+ assert( dlrDocid(pLeft)==dlrDocid(pRight) );
+ assert( pOut->iType!=DL_POSITIONS_OFFSETS );
+
+ plrInit(&left, pLeft);
+ plrInit(&right, pRight);
+
+ while( !plrAtEnd(&left) && !plrAtEnd(&right) ){
+ if( plrColumn(&left)<plrColumn(&right) ){
+ plrStep(&left);
+ }else if( plrColumn(&left)>plrColumn(&right) ){
+ plrStep(&right);
+ }else if( plrPosition(&left)>=plrPosition(&right) ){
+ plrStep(&right);
+ }else{
+ if( (plrPosition(&right)-plrPosition(&left))<=(nNear+1) ){
+ if( !match ){
+ plwInit(&writer, pOut, dlrDocid(pLeft));
+ match = 1;
+ }
+ if( !isSaveLeft ){
+ plwAdd(&writer, plrColumn(&right), plrPosition(&right), 0, 0);
+ }else{
+ plwAdd(&writer, plrColumn(&left), plrPosition(&left), 0, 0);
+ }
+ plrStep(&right);
+ }else{
+ plrStep(&left);
+ }
+ }
+ }
+
+ if( match ){
+ plwTerminate(&writer);
+ plwDestroy(&writer);
+ }
+
+ plrDestroy(&left);
+ plrDestroy(&right);
+}
+
+/*
+** Compare the values pointed to by the PLReaders passed as arguments.
+** Return -1 if the value pointed to by pLeft is considered less than
+** the value pointed to by pRight, +1 if it is considered greater
+** than it, or 0 if it is equal. i.e.
+**
+** (*pLeft - *pRight)
+**
+** A PLReader that is in the EOF condition is considered greater than
+** any other. If neither argument is in EOF state, the return value of
+** plrColumn() is used. If the plrColumn() values are equal, the
+** comparison is on the basis of plrPosition().
+*/
+static int plrCompare(PLReader *pLeft, PLReader *pRight){
+ assert(!plrAtEnd(pLeft) || !plrAtEnd(pRight));
+
+ if( plrAtEnd(pRight) || plrAtEnd(pLeft) ){
+ return (plrAtEnd(pRight) ? -1 : 1);
+ }
+ if( plrColumn(pLeft)!=plrColumn(pRight) ){
+ return ((plrColumn(pLeft)<plrColumn(pRight)) ? -1 : 1);
+ }
+ if( plrPosition(pLeft)!=plrPosition(pRight) ){
+ return ((plrPosition(pLeft)<plrPosition(pRight)) ? -1 : 1);
+ }
+ return 0;
+}
+
+/* We have two doclists with positions: pLeft and pRight. Depending
+** on the value of the nNear parameter, perform either a phrase
+** intersection (if nNear==0) or a NEAR intersection (if nNear>0)
+** and write the results into pOut.
+**
+** A phrase intersection means that two documents only match
+** if pLeft.iPos+1==pRight.iPos.
+**
+** A NEAR intersection means that two documents only match if
+** (abs(pLeft.iPos-pRight.iPos)<nNear).
+**
+** If a NEAR intersection is requested, then the nPhrase argument should
+** be passed the number of tokens in the two operands to the NEAR operator
+** combined. For example:
+**
+** Query syntax nPhrase
+** ------------------------------------
+** "A B C" NEAR "D E" 5
+** A NEAR B 2
+**
+** iType controls the type of data written to pOut. If iType is
+** DL_POSITIONS, the positions are those from pRight.
+*/
+static void docListPhraseMerge(
+ const char *pLeft, int nLeft,
+ const char *pRight, int nRight,
+ int nNear, /* 0 for a phrase merge, non-zero for a NEAR merge */
+ int nPhrase, /* Number of tokens in left+right operands to NEAR */
+ DocListType iType, /* Type of doclist to write to pOut */
+ DataBuffer *pOut /* Write the combined doclist here */
+){
+ DLReader left, right;
+ DLWriter writer;
+
+ if( nLeft==0 || nRight==0 ) return;
+
+ assert( iType!=DL_POSITIONS_OFFSETS );
+
+ dlrInit(&left, DL_POSITIONS, pLeft, nLeft);
+ dlrInit(&right, DL_POSITIONS, pRight, nRight);
+ dlwInit(&writer, iType, pOut);
+
+ while( !dlrAtEnd(&left) && !dlrAtEnd(&right) ){
+ if( dlrDocid(&left)<dlrDocid(&right) ){
+ dlrStep(&left);
+ }else if( dlrDocid(&right)<dlrDocid(&left) ){
+ dlrStep(&right);
+ }else{
+ if( nNear==0 ){
+ posListPhraseMerge(&left, &right, 0, 0, &writer);
+ }else{
+ /* This case occurs when two terms (simple terms or phrases) are
+ * connected by a NEAR operator, span (nNear+1). i.e.
+ *
+ * '"terrible company" NEAR widget'
+ */
+ DataBuffer one = {0, 0, 0};
+ DataBuffer two = {0, 0, 0};
+
+ DLWriter dlwriter2;
+ DLReader dr1 = {0, 0, 0, 0, 0};
+ DLReader dr2 = {0, 0, 0, 0, 0};
+
+ dlwInit(&dlwriter2, iType, &one);
+ posListPhraseMerge(&right, &left, nNear-3+nPhrase, 1, &dlwriter2);
+ dlwInit(&dlwriter2, iType, &two);
+ posListPhraseMerge(&left, &right, nNear-1, 0, &dlwriter2);
+
+ if( one.nData) dlrInit(&dr1, iType, one.pData, one.nData);
+ if( two.nData) dlrInit(&dr2, iType, two.pData, two.nData);
+
+ if( !dlrAtEnd(&dr1) || !dlrAtEnd(&dr2) ){
+ PLReader pr1 = {0};
+ PLReader pr2 = {0};
+
+ PLWriter plwriter;
+ plwInit(&plwriter, &writer, dlrDocid(dlrAtEnd(&dr1)?&dr2:&dr1));
+
+ if( one.nData ) plrInit(&pr1, &dr1);
+ if( two.nData ) plrInit(&pr2, &dr2);
+ while( !plrAtEnd(&pr1) || !plrAtEnd(&pr2) ){
+ int iCompare = plrCompare(&pr1, &pr2);
+ switch( iCompare ){
+ case -1:
+ plwCopy(&plwriter, &pr1);
+ plrStep(&pr1);
+ break;
+ case 1:
+ plwCopy(&plwriter, &pr2);
+ plrStep(&pr2);
+ break;
+ case 0:
+ plwCopy(&plwriter, &pr1);
+ plrStep(&pr1);
+ plrStep(&pr2);
+ break;
+ }
+ }
+ plwTerminate(&plwriter);
+ }
+ dataBufferDestroy(&one);
+ dataBufferDestroy(&two);
+ }
+ dlrStep(&left);
+ dlrStep(&right);
+ }
+ }
+
+ dlrDestroy(&left);
+ dlrDestroy(&right);
+ dlwDestroy(&writer);
+}
+
+/* We have two DL_DOCIDS doclists: pLeft and pRight.
+** Write the intersection of these two doclists into pOut as a
+** DL_DOCIDS doclist.
+*/
+static void docListAndMerge(
+ const char *pLeft, int nLeft,
+ const char *pRight, int nRight,
+ DataBuffer *pOut /* Write the combined doclist here */
+){
+ DLReader left, right;
+ DLWriter writer;
+
+ if( nLeft==0 || nRight==0 ) return;
+
+ dlrInit(&left, DL_DOCIDS, pLeft, nLeft);
+ dlrInit(&right, DL_DOCIDS, pRight, nRight);
+ dlwInit(&writer, DL_DOCIDS, pOut);
+
+ while( !dlrAtEnd(&left) && !dlrAtEnd(&right) ){
+ if( dlrDocid(&left)<dlrDocid(&right) ){
+ dlrStep(&left);
+ }else if( dlrDocid(&right)<dlrDocid(&left) ){
+ dlrStep(&right);
+ }else{
+ dlwAdd(&writer, dlrDocid(&left));
+ dlrStep(&left);
+ dlrStep(&right);
+ }
+ }
+
+ dlrDestroy(&left);
+ dlrDestroy(&right);
+ dlwDestroy(&writer);
+}
+
+/* We have two DL_DOCIDS doclists: pLeft and pRight.
+** Write the union of these two doclists into pOut as a
+** DL_DOCIDS doclist.
+*/
+static void docListOrMerge(
+ const char *pLeft, int nLeft,
+ const char *pRight, int nRight,
+ DataBuffer *pOut /* Write the combined doclist here */
+){
+ DLReader left, right;
+ DLWriter writer;
+
+ if( nLeft==0 ){
+ if( nRight!=0 ) dataBufferAppend(pOut, pRight, nRight);
+ return;
+ }
+ if( nRight==0 ){
+ dataBufferAppend(pOut, pLeft, nLeft);
+ return;
+ }
+
+ dlrInit(&left, DL_DOCIDS, pLeft, nLeft);
+ dlrInit(&right, DL_DOCIDS, pRight, nRight);
+ dlwInit(&writer, DL_DOCIDS, pOut);
+
+ while( !dlrAtEnd(&left) || !dlrAtEnd(&right) ){
+ if( dlrAtEnd(&right) ){
+ dlwAdd(&writer, dlrDocid(&left));
+ dlrStep(&left);
+ }else if( dlrAtEnd(&left) ){
+ dlwAdd(&writer, dlrDocid(&right));
+ dlrStep(&right);
+ }else if( dlrDocid(&left)<dlrDocid(&right) ){
+ dlwAdd(&writer, dlrDocid(&left));
+ dlrStep(&left);
+ }else if( dlrDocid(&right)<dlrDocid(&left) ){
+ dlwAdd(&writer, dlrDocid(&right));
+ dlrStep(&right);
+ }else{
+ dlwAdd(&writer, dlrDocid(&left));
+ dlrStep(&left);
+ dlrStep(&right);
+ }
+ }
+
+ dlrDestroy(&left);
+ dlrDestroy(&right);
+ dlwDestroy(&writer);
+}
+
+/* We have two DL_DOCIDS doclists: pLeft and pRight.
+** Write into pOut as DL_DOCIDS doclist containing all documents that
+** occur in pLeft but not in pRight.
+*/
+static void docListExceptMerge(
+ const char *pLeft, int nLeft,
+ const char *pRight, int nRight,
+ DataBuffer *pOut /* Write the combined doclist here */
+){
+ DLReader left, right;
+ DLWriter writer;
+
+ if( nLeft==0 ) return;
+ if( nRight==0 ){
+ dataBufferAppend(pOut, pLeft, nLeft);
+ return;
+ }
+
+ dlrInit(&left, DL_DOCIDS, pLeft, nLeft);
+ dlrInit(&right, DL_DOCIDS, pRight, nRight);
+ dlwInit(&writer, DL_DOCIDS, pOut);
+
+ while( !dlrAtEnd(&left) ){
+ while( !dlrAtEnd(&right) && dlrDocid(&right)<dlrDocid(&left) ){
+ dlrStep(&right);
+ }
+ if( dlrAtEnd(&right) || dlrDocid(&left)<dlrDocid(&right) ){
+ dlwAdd(&writer, dlrDocid(&left));
+ }
+ dlrStep(&left);
+ }
+
+ dlrDestroy(&left);
+ dlrDestroy(&right);
+ dlwDestroy(&writer);
+}
+
+static char *string_dup_n(const char *s, int n){
+ char *str = sqlite3_malloc(n + 1);
+ memcpy(str, s, n);
+ str[n] = '\0';
+ return str;
+}
+
+/* Duplicate a string; the caller must free() the returned string.
+ * (We don't use strdup() since it is not part of the standard C library and
+ * may not be available everywhere.) */
+static char *string_dup(const char *s){
+ return string_dup_n(s, strlen(s));
+}
+
+/* Format a string, replacing each occurrence of the % character with
+ * zDb.zName. This may be more convenient than sqlite_mprintf()
+ * when one string is used repeatedly in a format string.
+ * The caller must free() the returned string. */
+static char *string_format(const char *zFormat,
+ const char *zDb, const char *zName){
+ const char *p;
+ size_t len = 0;
+ size_t nDb = strlen(zDb);
+ size_t nName = strlen(zName);
+ size_t nFullTableName = nDb+1+nName;
+ char *result;
+ char *r;
+
+ /* first compute length needed */
+ for(p = zFormat ; *p ; ++p){
+ len += (*p=='%' ? nFullTableName : 1);
+ }
+ len += 1; /* for null terminator */
+
+ r = result = sqlite3_malloc(len);
+ for(p = zFormat; *p; ++p){
+ if( *p=='%' ){
+ memcpy(r, zDb, nDb);
+ r += nDb;
+ *r++ = '.';
+ memcpy(r, zName, nName);
+ r += nName;
+ } else {
+ *r++ = *p;
+ }
+ }
+ *r++ = '\0';
+ assert( r == result + len );
+ return result;
+}
+
+static int sql_exec(sqlite3 *db, const char *zDb, const char *zName,
+ const char *zFormat){
+ char *zCommand = string_format(zFormat, zDb, zName);
+ int rc;
+ FTSTRACE(("FTS3 sql: %s\n", zCommand));
+ rc = sqlite3_exec(db, zCommand, NULL, 0, NULL);
+ sqlite3_free(zCommand);
+ return rc;
+}
+
+static int sql_prepare(sqlite3 *db, const char *zDb, const char *zName,
+ sqlite3_stmt **ppStmt, const char *zFormat){
+ char *zCommand = string_format(zFormat, zDb, zName);
+ int rc;
+ FTSTRACE(("FTS3 prepare: %s\n", zCommand));
+ rc = sqlite3_prepare_v2(db, zCommand, -1, ppStmt, NULL);
+ sqlite3_free(zCommand);
+ return rc;
+}
+
+/* end utility functions */
+
+/* Forward reference */
+typedef struct fulltext_vtab fulltext_vtab;
+
+/* A single term in a query is represented by an instances of
+** the following structure. Each word which may match against
+** document content is a term. Operators, like NEAR or OR, are
+** not terms. Query terms are organized as a flat list stored
+** in the Query.pTerms array.
+**
+** If the QueryTerm.nPhrase variable is non-zero, then the QueryTerm
+** is the first in a contiguous string of terms that are either part
+** of the same phrase, or connected by the NEAR operator.
+**
+** If the QueryTerm.nNear variable is non-zero, then the token is followed
+** by a NEAR operator with span set to (nNear-1). For example, the
+** following query:
+**
+** The QueryTerm.iPhrase variable stores the index of the token within
+** its phrase, indexed starting at 1, or 1 if the token is not part
+** of any phrase.
+**
+** For example, the data structure used to represent the following query:
+**
+** ... MATCH 'sqlite NEAR/5 google NEAR/2 "search engine"'
+**
+** is:
+**
+** {nPhrase=4, iPhrase=1, nNear=6, pTerm="sqlite"},
+** {nPhrase=0, iPhrase=1, nNear=3, pTerm="google"},
+** {nPhrase=0, iPhrase=1, nNear=0, pTerm="search"},
+** {nPhrase=0, iPhrase=2, nNear=0, pTerm="engine"},
+**
+** compiling the FTS3 syntax to Query structures is done by the parseQuery()
+** function.
+*/
+typedef struct QueryTerm {
+ short int nPhrase; /* How many following terms are part of the same phrase */
+ short int iPhrase; /* This is the i-th term of a phrase. */
+ short int iColumn; /* Column of the index that must match this term */
+ signed char nNear; /* term followed by a NEAR operator with span=(nNear-1) */
+ signed char isOr; /* this term is preceded by "OR" */
+ signed char isNot; /* this term is preceded by "-" */
+ signed char isPrefix; /* this term is followed by "*" */
+ char *pTerm; /* text of the term. '\000' terminated. malloced */
+ int nTerm; /* Number of bytes in pTerm[] */
+} QueryTerm;
+
+
+/* A query string is parsed into a Query structure.
+ *
+ * We could, in theory, allow query strings to be complicated
+ * nested expressions with precedence determined by parentheses.
+ * But none of the major search engines do this. (Perhaps the
+ * feeling is that an parenthesized expression is two complex of
+ * an idea for the average user to grasp.) Taking our lead from
+ * the major search engines, we will allow queries to be a list
+ * of terms (with an implied AND operator) or phrases in double-quotes,
+ * with a single optional "-" before each non-phrase term to designate
+ * negation and an optional OR connector.
+ *
+ * OR binds more tightly than the implied AND, which is what the
+ * major search engines seem to do. So, for example:
+ *
+ * [one two OR three] ==> one AND (two OR three)
+ * [one OR two three] ==> (one OR two) AND three
+ *
+ * A "-" before a term matches all entries that lack that term.
+ * The "-" must occur immediately before the term with in intervening
+ * space. This is how the search engines do it.
+ *
+ * A NOT term cannot be the right-hand operand of an OR. If this
+ * occurs in the query string, the NOT is ignored:
+ *
+ * [one OR -two] ==> one OR two
+ *
+ */
+typedef struct Query {
+ fulltext_vtab *pFts; /* The full text index */
+ int nTerms; /* Number of terms in the query */
+ QueryTerm *pTerms; /* Array of terms. Space obtained from malloc() */
+ int nextIsOr; /* Set the isOr flag on the next inserted term */
+ int nextIsNear; /* Set the isOr flag on the next inserted term */
+ int nextColumn; /* Next word parsed must be in this column */
+ int dfltColumn; /* The default column */
+} Query;
+
+
+/*
+** An instance of the following structure keeps track of generated
+** matching-word offset information and snippets.
+*/
+typedef struct Snippet {
+ int nMatch; /* Total number of matches */
+ int nAlloc; /* Space allocated for aMatch[] */
+ struct snippetMatch { /* One entry for each matching term */
+ char snStatus; /* Status flag for use while constructing snippets */
+ short int iCol; /* The column that contains the match */
+ short int iTerm; /* The index in Query.pTerms[] of the matching term */
+ int iToken; /* The index of the matching document token */
+ short int nByte; /* Number of bytes in the term */
+ int iStart; /* The offset to the first character of the term */
+ } *aMatch; /* Points to space obtained from malloc */
+ char *zOffset; /* Text rendering of aMatch[] */
+ int nOffset; /* strlen(zOffset) */
+ char *zSnippet; /* Snippet text */
+ int nSnippet; /* strlen(zSnippet) */
+} Snippet;
+
+
+typedef enum QueryType {
+ QUERY_GENERIC, /* table scan */
+ QUERY_DOCID, /* lookup by docid */
+ QUERY_FULLTEXT /* QUERY_FULLTEXT + [i] is a full-text search for column i*/
+} QueryType;
+
+typedef enum fulltext_statement {
+ CONTENT_INSERT_STMT,
+ CONTENT_SELECT_STMT,
+ CONTENT_UPDATE_STMT,
+ CONTENT_DELETE_STMT,
+
+ BLOCK_INSERT_STMT,
+ BLOCK_SELECT_STMT,
+ BLOCK_DELETE_STMT,
+
+ SEGDIR_MAX_INDEX_STMT,
+ SEGDIR_SET_STMT,
+ SEGDIR_SELECT_STMT,
+ SEGDIR_SPAN_STMT,
+ SEGDIR_DELETE_STMT,
+ SEGDIR_SELECT_ALL_STMT,
+
+ MAX_STMT /* Always at end! */
+} fulltext_statement;
+
+/* These must exactly match the enum above. */
+/* TODO(shess): Is there some risk that a statement will be used in two
+** cursors at once, e.g. if a query joins a virtual table to itself?
+** If so perhaps we should move some of these to the cursor object.
+*/
+static const char *const fulltext_zStatement[MAX_STMT] = {
+ /* CONTENT_INSERT */ NULL, /* generated in contentInsertStatement() */
+ /* CONTENT_SELECT */ NULL, /* generated in contentSelectStatement() */
+ /* CONTENT_UPDATE */ NULL, /* generated in contentUpdateStatement() */
+ /* CONTENT_DELETE */ "delete from %_content where docid = ?",
+
+ /* BLOCK_INSERT */
+ "insert into %_segments (blockid, block) values (null, ?)",
+ /* BLOCK_SELECT */ "select block from %_segments where blockid = ?",
+ /* BLOCK_DELETE */ "delete from %_segments where blockid between ? and ?",
+
+ /* SEGDIR_MAX_INDEX */ "select max(idx) from %_segdir where level = ?",
+ /* SEGDIR_SET */ "insert into %_segdir values (?, ?, ?, ?, ?, ?)",
+ /* SEGDIR_SELECT */
+ "select start_block, leaves_end_block, root from %_segdir "
+ " where level = ? order by idx",
+ /* SEGDIR_SPAN */
+ "select min(start_block), max(end_block) from %_segdir "
+ " where level = ? and start_block <> 0",
+ /* SEGDIR_DELETE */ "delete from %_segdir where level = ?",
+ /* SEGDIR_SELECT_ALL */
+ "select root, leaves_end_block from %_segdir order by level desc, idx",
+};
+
+/*
+** A connection to a fulltext index is an instance of the following
+** structure. The xCreate and xConnect methods create an instance
+** of this structure and xDestroy and xDisconnect free that instance.
+** All other methods receive a pointer to the structure as one of their
+** arguments.
+*/
+struct fulltext_vtab {
+ sqlite3_vtab base; /* Base class used by SQLite core */
+ sqlite3 *db; /* The database connection */
+ const char *zDb; /* logical database name */
+ const char *zName; /* virtual table name */
+ int nColumn; /* number of columns in virtual table */
+ char **azColumn; /* column names. malloced */
+ char **azContentColumn; /* column names in content table; malloced */
+ sqlite3_tokenizer *pTokenizer; /* tokenizer for inserts and queries */
+
+ /* Precompiled statements which we keep as long as the table is
+ ** open.
+ */
+ sqlite3_stmt *pFulltextStatements[MAX_STMT];
+
+ /* Precompiled statements used for segment merges. We run a
+ ** separate select across the leaf level of each tree being merged.
+ */
+ sqlite3_stmt *pLeafSelectStmts[MERGE_COUNT];
+ /* The statement used to prepare pLeafSelectStmts. */
+#define LEAF_SELECT \
+ "select block from %_segments where blockid between ? and ? order by blockid"
+
+ /* These buffer pending index updates during transactions.
+ ** nPendingData estimates the memory size of the pending data. It
+ ** doesn't include the hash-bucket overhead, nor any malloc
+ ** overhead. When nPendingData exceeds kPendingThreshold, the
+ ** buffer is flushed even before the transaction closes.
+ ** pendingTerms stores the data, and is only valid when nPendingData
+ ** is >=0 (nPendingData<0 means pendingTerms has not been
+ ** initialized). iPrevDocid is the last docid written, used to make
+ ** certain we're inserting in sorted order.
+ */
+ int nPendingData;
+#define kPendingThreshold (1*1024*1024)
+ sqlite_int64 iPrevDocid;
+ fts3Hash pendingTerms;
+};
+
+/*
+** When the core wants to do a query, it create a cursor using a
+** call to xOpen. This structure is an instance of a cursor. It
+** is destroyed by xClose.
+*/
+typedef struct fulltext_cursor {
+ sqlite3_vtab_cursor base; /* Base class used by SQLite core */
+ QueryType iCursorType; /* Copy of sqlite3_index_info.idxNum */
+ sqlite3_stmt *pStmt; /* Prepared statement in use by the cursor */
+ int eof; /* True if at End Of Results */
+ Query q; /* Parsed query string */
+ Snippet snippet; /* Cached snippet for the current row */
+ int iColumn; /* Column being searched */
+ DataBuffer result; /* Doclist results from fulltextQuery */
+ DLReader reader; /* Result reader if result not empty */
+} fulltext_cursor;
+
+static struct fulltext_vtab *cursor_vtab(fulltext_cursor *c){
+ return (fulltext_vtab *) c->base.pVtab;
+}
+
+static const sqlite3_module fts3Module; /* forward declaration */
+
+/* Return a dynamically generated statement of the form
+ * insert into %_content (docid, ...) values (?, ...)
+ */
+static const char *contentInsertStatement(fulltext_vtab *v){
+ StringBuffer sb;
+ int i;
+
+ initStringBuffer(&sb);
+ append(&sb, "insert into %_content (docid, ");
+ appendList(&sb, v->nColumn, v->azContentColumn);
+ append(&sb, ") values (?");
+ for(i=0; i<v->nColumn; ++i)
+ append(&sb, ", ?");
+ append(&sb, ")");
+ return stringBufferData(&sb);
+}
+
+/* Return a dynamically generated statement of the form
+ * select <content columns> from %_content where docid = ?
+ */
+static const char *contentSelectStatement(fulltext_vtab *v){
+ StringBuffer sb;
+ initStringBuffer(&sb);
+ append(&sb, "SELECT ");
+ appendList(&sb, v->nColumn, v->azContentColumn);
+ append(&sb, " FROM %_content WHERE docid = ?");
+ return stringBufferData(&sb);
+}
+
+/* Return a dynamically generated statement of the form
+ * update %_content set [col_0] = ?, [col_1] = ?, ...
+ * where docid = ?
+ */
+static const char *contentUpdateStatement(fulltext_vtab *v){
+ StringBuffer sb;
+ int i;
+
+ initStringBuffer(&sb);
+ append(&sb, "update %_content set ");
+ for(i=0; i<v->nColumn; ++i) {
+ if( i>0 ){
+ append(&sb, ", ");
+ }
+ append(&sb, v->azContentColumn[i]);
+ append(&sb, " = ?");
+ }
+ append(&sb, " where docid = ?");
+ return stringBufferData(&sb);
+}
+
+/* Puts a freshly-prepared statement determined by iStmt in *ppStmt.
+** If the indicated statement has never been prepared, it is prepared
+** and cached, otherwise the cached version is reset.
+*/
+static int sql_get_statement(fulltext_vtab *v, fulltext_statement iStmt,
+ sqlite3_stmt **ppStmt){
+ assert( iStmt<MAX_STMT );
+ if( v->pFulltextStatements[iStmt]==NULL ){
+ const char *zStmt;
+ int rc;
+ switch( iStmt ){
+ case CONTENT_INSERT_STMT:
+ zStmt = contentInsertStatement(v); break;
+ case CONTENT_SELECT_STMT:
+ zStmt = contentSelectStatement(v); break;
+ case CONTENT_UPDATE_STMT:
+ zStmt = contentUpdateStatement(v); break;
+ default:
+ zStmt = fulltext_zStatement[iStmt];
+ }
+ rc = sql_prepare(v->db, v->zDb, v->zName, &v->pFulltextStatements[iStmt],
+ zStmt);
+ if( zStmt != fulltext_zStatement[iStmt]) sqlite3_free((void *) zStmt);
+ if( rc!=SQLITE_OK ) return rc;
+ } else {
+ int rc = sqlite3_reset(v->pFulltextStatements[iStmt]);
+ if( rc!=SQLITE_OK ) return rc;
+ }
+
+ *ppStmt = v->pFulltextStatements[iStmt];
+ return SQLITE_OK;
+}
+
+/* Like sqlite3_step(), but convert SQLITE_DONE to SQLITE_OK and
+** SQLITE_ROW to SQLITE_ERROR. Useful for statements like UPDATE,
+** where we expect no results.
+*/
+static int sql_single_step(sqlite3_stmt *s){
+ int rc = sqlite3_step(s);
+ return (rc==SQLITE_DONE) ? SQLITE_OK : rc;
+}
+
+/* Like sql_get_statement(), but for special replicated LEAF_SELECT
+** statements.
+*/
+/* TODO(shess) Write version for generic statements and then share
+** that between the cached-statement functions.
+*/
+static int sql_get_leaf_statement(fulltext_vtab *v, int idx,
+ sqlite3_stmt **ppStmt){
+ assert( idx>=0 && idx<MERGE_COUNT );
+ if( v->pLeafSelectStmts[idx]==NULL ){
+ int rc = sql_prepare(v->db, v->zDb, v->zName, &v->pLeafSelectStmts[idx],
+ LEAF_SELECT);
+ if( rc!=SQLITE_OK ) return rc;
+ }else{
+ int rc = sqlite3_reset(v->pLeafSelectStmts[idx]);
+ if( rc!=SQLITE_OK ) return rc;
+ }
+
+ *ppStmt = v->pLeafSelectStmts[idx];
+ return SQLITE_OK;
+}
+
+/* insert into %_content (docid, ...) values ([docid], [pValues])
+** If the docid contains SQL NULL, then a unique docid will be
+** generated.
+*/
+static int content_insert(fulltext_vtab *v, sqlite3_value *docid,
+ sqlite3_value **pValues){
+ sqlite3_stmt *s;
+ int i;
+ int rc = sql_get_statement(v, CONTENT_INSERT_STMT, &s);
+ if( rc!=SQLITE_OK ) return rc;
+
+ rc = sqlite3_bind_value(s, 1, docid);
+ if( rc!=SQLITE_OK ) return rc;
+
+ for(i=0; i<v->nColumn; ++i){
+ rc = sqlite3_bind_value(s, 2+i, pValues[i]);
+ if( rc!=SQLITE_OK ) return rc;
+ }
+
+ return sql_single_step(s);
+}
+
+/* update %_content set col0 = pValues[0], col1 = pValues[1], ...
+ * where docid = [iDocid] */
+static int content_update(fulltext_vtab *v, sqlite3_value **pValues,
+ sqlite_int64 iDocid){
+ sqlite3_stmt *s;
+ int i;
+ int rc = sql_get_statement(v, CONTENT_UPDATE_STMT, &s);
+ if( rc!=SQLITE_OK ) return rc;
+
+ for(i=0; i<v->nColumn; ++i){
+ rc = sqlite3_bind_value(s, 1+i, pValues[i]);
+ if( rc!=SQLITE_OK ) return rc;
+ }
+
+ rc = sqlite3_bind_int64(s, 1+v->nColumn, iDocid);
+ if( rc!=SQLITE_OK ) return rc;
+
+ return sql_single_step(s);
+}
+
+static void freeStringArray(int nString, const char **pString){
+ int i;
+
+ for (i=0 ; i < nString ; ++i) {
+ if( pString[i]!=NULL ) sqlite3_free((void *) pString[i]);
+ }
+ sqlite3_free((void *) pString);
+}
+
+/* select * from %_content where docid = [iDocid]
+ * The caller must delete the returned array and all strings in it.
+ * null fields will be NULL in the returned array.
+ *
+ * TODO: Perhaps we should return pointer/length strings here for consistency
+ * with other code which uses pointer/length. */
+static int content_select(fulltext_vtab *v, sqlite_int64 iDocid,
+ const char ***pValues){
+ sqlite3_stmt *s;
+ const char **values;
+ int i;
+ int rc;
+
+ *pValues = NULL;
+
+ rc = sql_get_statement(v, CONTENT_SELECT_STMT, &s);
+ if( rc!=SQLITE_OK ) return rc;
+
+ rc = sqlite3_bind_int64(s, 1, iDocid);
+ if( rc!=SQLITE_OK ) return rc;
+
+ rc = sqlite3_step(s);
+ if( rc!=SQLITE_ROW ) return rc;
+
+ values = (const char **) sqlite3_malloc(v->nColumn * sizeof(const char *));
+ for(i=0; i<v->nColumn; ++i){
+ if( sqlite3_column_type(s, i)==SQLITE_NULL ){
+ values[i] = NULL;
+ }else{
+ values[i] = string_dup((char*)sqlite3_column_text(s, i));
+ }
+ }
+
+ /* We expect only one row. We must execute another sqlite3_step()
+ * to complete the iteration; otherwise the table will remain locked. */
+ rc = sqlite3_step(s);
+ if( rc==SQLITE_DONE ){
+ *pValues = values;
+ return SQLITE_OK;
+ }
+
+ freeStringArray(v->nColumn, values);
+ return rc;
+}
+
+/* delete from %_content where docid = [iDocid ] */
+static int content_delete(fulltext_vtab *v, sqlite_int64 iDocid){
+ sqlite3_stmt *s;
+ int rc = sql_get_statement(v, CONTENT_DELETE_STMT, &s);
+ if( rc!=SQLITE_OK ) return rc;
+
+ rc = sqlite3_bind_int64(s, 1, iDocid);
+ if( rc!=SQLITE_OK ) return rc;
+
+ return sql_single_step(s);
+}
+
+/* insert into %_segments values ([pData])
+** returns assigned blockid in *piBlockid
+*/
+static int block_insert(fulltext_vtab *v, const char *pData, int nData,
+ sqlite_int64 *piBlockid){
+ sqlite3_stmt *s;
+ int rc = sql_get_statement(v, BLOCK_INSERT_STMT, &s);
+ if( rc!=SQLITE_OK ) return rc;
+
+ rc = sqlite3_bind_blob(s, 1, pData, nData, SQLITE_STATIC);
+ if( rc!=SQLITE_OK ) return rc;
+
+ rc = sqlite3_step(s);
+ if( rc==SQLITE_ROW ) return SQLITE_ERROR;
+ if( rc!=SQLITE_DONE ) return rc;
+
+ /* blockid column is an alias for rowid. */
+ *piBlockid = sqlite3_last_insert_rowid(v->db);
+ return SQLITE_OK;
+}
+
+/* delete from %_segments
+** where blockid between [iStartBlockid] and [iEndBlockid]
+**
+** Deletes the range of blocks, inclusive, used to delete the blocks
+** which form a segment.
+*/
+static int block_delete(fulltext_vtab *v,
+ sqlite_int64 iStartBlockid, sqlite_int64 iEndBlockid){
+ sqlite3_stmt *s;
+ int rc = sql_get_statement(v, BLOCK_DELETE_STMT, &s);
+ if( rc!=SQLITE_OK ) return rc;
+
+ rc = sqlite3_bind_int64(s, 1, iStartBlockid);
+ if( rc!=SQLITE_OK ) return rc;
+
+ rc = sqlite3_bind_int64(s, 2, iEndBlockid);
+ if( rc!=SQLITE_OK ) return rc;
+
+ return sql_single_step(s);
+}
+
+/* Returns SQLITE_ROW with *pidx set to the maximum segment idx found
+** at iLevel. Returns SQLITE_DONE if there are no segments at
+** iLevel. Otherwise returns an error.
+*/
+static int segdir_max_index(fulltext_vtab *v, int iLevel, int *pidx){
+ sqlite3_stmt *s;
+ int rc = sql_get_statement(v, SEGDIR_MAX_INDEX_STMT, &s);
+ if( rc!=SQLITE_OK ) return rc;
+
+ rc = sqlite3_bind_int(s, 1, iLevel);
+ if( rc!=SQLITE_OK ) return rc;
+
+ rc = sqlite3_step(s);
+ /* Should always get at least one row due to how max() works. */
+ if( rc==SQLITE_DONE ) return SQLITE_DONE;
+ if( rc!=SQLITE_ROW ) return rc;
+
+ /* NULL means that there were no inputs to max(). */
+ if( SQLITE_NULL==sqlite3_column_type(s, 0) ){
+ rc = sqlite3_step(s);
+ if( rc==SQLITE_ROW ) return SQLITE_ERROR;
+ return rc;
+ }
+
+ *pidx = sqlite3_column_int(s, 0);
+
+ /* We expect only one row. We must execute another sqlite3_step()
+ * to complete the iteration; otherwise the table will remain locked. */
+ rc = sqlite3_step(s);
+ if( rc==SQLITE_ROW ) return SQLITE_ERROR;
+ if( rc!=SQLITE_DONE ) return rc;
+ return SQLITE_ROW;
+}
+
+/* insert into %_segdir values (
+** [iLevel], [idx],
+** [iStartBlockid], [iLeavesEndBlockid], [iEndBlockid],
+** [pRootData]
+** )
+*/
+static int segdir_set(fulltext_vtab *v, int iLevel, int idx,
+ sqlite_int64 iStartBlockid,
+ sqlite_int64 iLeavesEndBlockid,
+ sqlite_int64 iEndBlockid,
+ const char *pRootData, int nRootData){
+ sqlite3_stmt *s;
+ int rc = sql_get_statement(v, SEGDIR_SET_STMT, &s);
+ if( rc!=SQLITE_OK ) return rc;
+
+ rc = sqlite3_bind_int(s, 1, iLevel);
+ if( rc!=SQLITE_OK ) return rc;
+
+ rc = sqlite3_bind_int(s, 2, idx);
+ if( rc!=SQLITE_OK ) return rc;
+
+ rc = sqlite3_bind_int64(s, 3, iStartBlockid);
+ if( rc!=SQLITE_OK ) return rc;
+
+ rc = sqlite3_bind_int64(s, 4, iLeavesEndBlockid);
+ if( rc!=SQLITE_OK ) return rc;
+
+ rc = sqlite3_bind_int64(s, 5, iEndBlockid);
+ if( rc!=SQLITE_OK ) return rc;
+
+ rc = sqlite3_bind_blob(s, 6, pRootData, nRootData, SQLITE_STATIC);
+ if( rc!=SQLITE_OK ) return rc;
+
+ return sql_single_step(s);
+}
+
+/* Queries %_segdir for the block span of the segments in level
+** iLevel. Returns SQLITE_DONE if there are no blocks for iLevel,
+** SQLITE_ROW if there are blocks, else an error.
+*/
+static int segdir_span(fulltext_vtab *v, int iLevel,
+ sqlite_int64 *piStartBlockid,
+ sqlite_int64 *piEndBlockid){
+ sqlite3_stmt *s;
+ int rc = sql_get_statement(v, SEGDIR_SPAN_STMT, &s);
+ if( rc!=SQLITE_OK ) return rc;
+
+ rc = sqlite3_bind_int(s, 1, iLevel);
+ if( rc!=SQLITE_OK ) return rc;
+
+ rc = sqlite3_step(s);
+ if( rc==SQLITE_DONE ) return SQLITE_DONE; /* Should never happen */
+ if( rc!=SQLITE_ROW ) return rc;
+
+ /* This happens if all segments at this level are entirely inline. */
+ if( SQLITE_NULL==sqlite3_column_type(s, 0) ){
+ /* We expect only one row. We must execute another sqlite3_step()
+ * to complete the iteration; otherwise the table will remain locked. */
+ int rc2 = sqlite3_step(s);
+ if( rc2==SQLITE_ROW ) return SQLITE_ERROR;
+ return rc2;
+ }
+
+ *piStartBlockid = sqlite3_column_int64(s, 0);
+ *piEndBlockid = sqlite3_column_int64(s, 1);
+
+ /* We expect only one row. We must execute another sqlite3_step()
+ * to complete the iteration; otherwise the table will remain locked. */
+ rc = sqlite3_step(s);
+ if( rc==SQLITE_ROW ) return SQLITE_ERROR;
+ if( rc!=SQLITE_DONE ) return rc;
+ return SQLITE_ROW;
+}
+
+/* Delete the segment blocks and segment directory records for all
+** segments at iLevel.
+*/
+static int segdir_delete(fulltext_vtab *v, int iLevel){
+ sqlite3_stmt *s;
+ sqlite_int64 iStartBlockid, iEndBlockid;
+ int rc = segdir_span(v, iLevel, &iStartBlockid, &iEndBlockid);
+ if( rc!=SQLITE_ROW && rc!=SQLITE_DONE ) return rc;
+
+ if( rc==SQLITE_ROW ){
+ rc = block_delete(v, iStartBlockid, iEndBlockid);
+ if( rc!=SQLITE_OK ) return rc;
+ }
+
+ /* Delete the segment directory itself. */
+ rc = sql_get_statement(v, SEGDIR_DELETE_STMT, &s);
+ if( rc!=SQLITE_OK ) return rc;
+
+ rc = sqlite3_bind_int64(s, 1, iLevel);
+ if( rc!=SQLITE_OK ) return rc;
+
+ return sql_single_step(s);
+}
+
+/* TODO(shess) clearPendingTerms() is far down the file because
+** writeZeroSegment() is far down the file because LeafWriter is far
+** down the file. Consider refactoring the code to move the non-vtab
+** code above the vtab code so that we don't need this forward
+** reference.
+*/
+static int clearPendingTerms(fulltext_vtab *v);
+
+/*
+** Free the memory used to contain a fulltext_vtab structure.
+*/
+static void fulltext_vtab_destroy(fulltext_vtab *v){
+ int iStmt, i;
+
+ FTSTRACE(("FTS3 Destroy %p\n", v));
+ for( iStmt=0; iStmt<MAX_STMT; iStmt++ ){
+ if( v->pFulltextStatements[iStmt]!=NULL ){
+ sqlite3_finalize(v->pFulltextStatements[iStmt]);
+ v->pFulltextStatements[iStmt] = NULL;
+ }
+ }
+
+ for( i=0; i<MERGE_COUNT; i++ ){
+ if( v->pLeafSelectStmts[i]!=NULL ){
+ sqlite3_finalize(v->pLeafSelectStmts[i]);
+ v->pLeafSelectStmts[i] = NULL;
+ }
+ }
+
+ if( v->pTokenizer!=NULL ){
+ v->pTokenizer->pModule->xDestroy(v->pTokenizer);
+ v->pTokenizer = NULL;
+ }
+
+ clearPendingTerms(v);
+
+ sqlite3_free(v->azColumn);
+ for(i = 0; i < v->nColumn; ++i) {
+ sqlite3_free(v->azContentColumn[i]);
+ }
+ sqlite3_free(v->azContentColumn);
+ sqlite3_free(v);
+}
+
+/*
+** Token types for parsing the arguments to xConnect or xCreate.
+*/
+#define TOKEN_EOF 0 /* End of file */
+#define TOKEN_SPACE 1 /* Any kind of whitespace */
+#define TOKEN_ID 2 /* An identifier */
+#define TOKEN_STRING 3 /* A string literal */
+#define TOKEN_PUNCT 4 /* A single punctuation character */
+
+/*
+** If X is a character that can be used in an identifier then
+** ftsIdChar(X) will be true. Otherwise it is false.
+**
+** For ASCII, any character with the high-order bit set is
+** allowed in an identifier. For 7-bit characters,
+** isFtsIdChar[X] must be 1.
+**
+** Ticket #1066. the SQL standard does not allow '$' in the
+** middle of identfiers. But many SQL implementations do.
+** SQLite will allow '$' in identifiers for compatibility.
+** But the feature is undocumented.
+*/
+static const char isFtsIdChar[] = {
+/* x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF */
+ 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 2x */
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, /* 3x */
+ 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 4x */
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, /* 5x */
+ 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 6x */
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, /* 7x */
+};
+#define ftsIdChar(C) (((c=C)&0x80)!=0 || (c>0x1f && isFtsIdChar[c-0x20]))
+
+
+/*
+** Return the length of the token that begins at z[0].
+** Store the token type in *tokenType before returning.
+*/
+static int ftsGetToken(const char *z, int *tokenType){
+ int i, c;
+ switch( *z ){
+ case 0: {
+ *tokenType = TOKEN_EOF;
+ return 0;
+ }
+ case ' ': case '\t': case '\n': case '\f': case '\r': {
+ for(i=1; safe_isspace(z[i]); i++){}
+ *tokenType = TOKEN_SPACE;
+ return i;
+ }
+ case '`':
+ case '\'':
+ case '"': {
+ int delim = z[0];
+ for(i=1; (c=z[i])!=0; i++){
+ if( c==delim ){
+ if( z[i+1]==delim ){
+ i++;
+ }else{
+ break;
+ }
+ }
+ }
+ *tokenType = TOKEN_STRING;
+ return i + (c!=0);
+ }
+ case '[': {
+ for(i=1, c=z[0]; c!=']' && (c=z[i])!=0; i++){}
+ *tokenType = TOKEN_ID;
+ return i;
+ }
+ default: {
+ if( !ftsIdChar(*z) ){
+ break;
+ }
+ for(i=1; ftsIdChar(z[i]); i++){}
+ *tokenType = TOKEN_ID;
+ return i;
+ }
+ }
+ *tokenType = TOKEN_PUNCT;
+ return 1;
+}
+
+/*
+** A token extracted from a string is an instance of the following
+** structure.
+*/
+typedef struct FtsToken {
+ const char *z; /* Pointer to token text. Not '\000' terminated */
+ short int n; /* Length of the token text in bytes. */
+} FtsToken;
+
+/*
+** Given a input string (which is really one of the argv[] parameters
+** passed into xConnect or xCreate) split the string up into tokens.
+** Return an array of pointers to '\000' terminated strings, one string
+** for each non-whitespace token.
+**
+** The returned array is terminated by a single NULL pointer.
+**
+** Space to hold the returned array is obtained from a single
+** malloc and should be freed by passing the return value to free().
+** The individual strings within the token list are all a part of
+** the single memory allocation and will all be freed at once.
+*/
+static char **tokenizeString(const char *z, int *pnToken){
+ int nToken = 0;
+ FtsToken *aToken = sqlite3_malloc( strlen(z) * sizeof(aToken[0]) );
+ int n = 1;
+ int e, i;
+ int totalSize = 0;
+ char **azToken;
+ char *zCopy;
+ while( n>0 ){
+ n = ftsGetToken(z, &e);
+ if( e!=TOKEN_SPACE ){
+ aToken[nToken].z = z;
+ aToken[nToken].n = n;
+ nToken++;
+ totalSize += n+1;
+ }
+ z += n;
+ }
+ azToken = (char**)sqlite3_malloc( nToken*sizeof(char*) + totalSize );
+ zCopy = (char*)&azToken[nToken];
+ nToken--;
+ for(i=0; i<nToken; i++){
+ azToken[i] = zCopy;
+ n = aToken[i].n;
+ memcpy(zCopy, aToken[i].z, n);
+ zCopy[n] = 0;
+ zCopy += n+1;
+ }
+ azToken[nToken] = 0;
+ sqlite3_free(aToken);
+ *pnToken = nToken;
+ return azToken;
+}
+
+/*
+** Convert an SQL-style quoted string into a normal string by removing
+** the quote characters. The conversion is done in-place. If the
+** input does not begin with a quote character, then this routine
+** is a no-op.
+**
+** Examples:
+**
+** "abc" becomes abc
+** 'xyz' becomes xyz
+** [pqr] becomes pqr
+** `mno` becomes mno
+*/
+static void dequoteString(char *z){
+ int quote;
+ int i, j;
+ if( z==0 ) return;
+ quote = z[0];
+ switch( quote ){
+ case '\'': break;
+ case '"': break;
+ case '`': break; /* For MySQL compatibility */
+ case '[': quote = ']'; break; /* For MS SqlServer compatibility */
+ default: return;
+ }
+ for(i=1, j=0; z[i]; i++){
+ if( z[i]==quote ){
+ if( z[i+1]==quote ){
+ z[j++] = quote;
+ i++;
+ }else{
+ z[j++] = 0;
+ break;
+ }
+ }else{
+ z[j++] = z[i];
+ }
+ }
+}
+
+/*
+** The input azIn is a NULL-terminated list of tokens. Remove the first
+** token and all punctuation tokens. Remove the quotes from
+** around string literal tokens.
+**
+** Example:
+**
+** input: tokenize chinese ( 'simplifed' , 'mixed' )
+** output: chinese simplifed mixed
+**
+** Another example:
+**
+** input: delimiters ( '[' , ']' , '...' )
+** output: [ ] ...
+*/
+static void tokenListToIdList(char **azIn){
+ int i, j;
+ if( azIn ){
+ for(i=0, j=-1; azIn[i]; i++){
+ if( safe_isalnum(azIn[i][0]) || azIn[i][1] ){
+ dequoteString(azIn[i]);
+ if( j>=0 ){
+ azIn[j] = azIn[i];
+ }
+ j++;
+ }
+ }
+ azIn[j] = 0;
+ }
+}
+
+
+/*
+** Find the first alphanumeric token in the string zIn. Null-terminate
+** this token. Remove any quotation marks. And return a pointer to
+** the result.
+*/
+static char *firstToken(char *zIn, char **pzTail){
+ int n, ttype;
+ while(1){
+ n = ftsGetToken(zIn, &ttype);
+ if( ttype==TOKEN_SPACE ){
+ zIn += n;
+ }else if( ttype==TOKEN_EOF ){
+ *pzTail = zIn;
+ return 0;
+ }else{
+ zIn[n] = 0;
+ *pzTail = &zIn[1];
+ dequoteString(zIn);
+ return zIn;
+ }
+ }
+ /*NOTREACHED*/
+}
+
+/* Return true if...
+**
+** * s begins with the string t, ignoring case
+** * s is longer than t
+** * The first character of s beyond t is not a alphanumeric
+**
+** Ignore leading space in *s.
+**
+** To put it another way, return true if the first token of
+** s[] is t[].
+*/
+static int startsWith(const char *s, const char *t){
+ while( safe_isspace(*s) ){ s++; }
+ while( *t ){
+ if( safe_tolower(*s++)!=safe_tolower(*t++) ) return 0;
+ }
+ return *s!='_' && !safe_isalnum(*s);
+}
+
+/*
+** An instance of this structure defines the "spec" of a
+** full text index. This structure is populated by parseSpec
+** and use by fulltextConnect and fulltextCreate.
+*/
+typedef struct TableSpec {
+ const char *zDb; /* Logical database name */
+ const char *zName; /* Name of the full-text index */
+ int nColumn; /* Number of columns to be indexed */
+ char **azColumn; /* Original names of columns to be indexed */
+ char **azContentColumn; /* Column names for %_content */
+ char **azTokenizer; /* Name of tokenizer and its arguments */
+} TableSpec;
+
+/*
+** Reclaim all of the memory used by a TableSpec
+*/
+static void clearTableSpec(TableSpec *p) {
+ sqlite3_free(p->azColumn);
+ sqlite3_free(p->azContentColumn);
+ sqlite3_free(p->azTokenizer);
+}
+
+/* Parse a CREATE VIRTUAL TABLE statement, which looks like this:
+ *
+ * CREATE VIRTUAL TABLE email
+ * USING fts3(subject, body, tokenize mytokenizer(myarg))
+ *
+ * We return parsed information in a TableSpec structure.
+ *
+ */
+static int parseSpec(TableSpec *pSpec, int argc, const char *const*argv,
+ char**pzErr){
+ int i, n;
+ char *z, *zDummy;
+ char **azArg;
+ const char *zTokenizer = 0; /* argv[] entry describing the tokenizer */
+
+ assert( argc>=3 );
+ /* Current interface:
+ ** argv[0] - module name
+ ** argv[1] - database name
+ ** argv[2] - table name
+ ** argv[3..] - columns, optionally followed by tokenizer specification
+ ** and snippet delimiters specification.
+ */
+
+ /* Make a copy of the complete argv[][] array in a single allocation.
+ ** The argv[][] array is read-only and transient. We can write to the
+ ** copy in order to modify things and the copy is persistent.
+ */
+ CLEAR(pSpec);
+ for(i=n=0; i<argc; i++){
+ n += strlen(argv[i]) + 1;
+ }
+ azArg = sqlite3_malloc( sizeof(char*)*argc + n );
+ if( azArg==0 ){
+ return SQLITE_NOMEM;
+ }
+ z = (char*)&azArg[argc];
+ for(i=0; i<argc; i++){
+ azArg[i] = z;
+ strcpy(z, argv[i]);
+ z += strlen(z)+1;
+ }
+
+ /* Identify the column names and the tokenizer and delimiter arguments
+ ** in the argv[][] array.
+ */
+ pSpec->zDb = azArg[1];
+ pSpec->zName = azArg[2];
+ pSpec->nColumn = 0;
+ pSpec->azColumn = azArg;
+ zTokenizer = "tokenize simple";
+ for(i=3; i<argc; ++i){
+ if( startsWith(azArg[i],"tokenize") ){
+ zTokenizer = azArg[i];
+ }else{
+ z = azArg[pSpec->nColumn] = firstToken(azArg[i], &zDummy);
+ pSpec->nColumn++;
+ }
+ }
+ if( pSpec->nColumn==0 ){
+ azArg[0] = "content";
+ pSpec->nColumn = 1;
+ }
+
+ /*
+ ** Construct the list of content column names.
+ **
+ ** Each content column name will be of the form cNNAAAA
+ ** where NN is the column number and AAAA is the sanitized
+ ** column name. "sanitized" means that special characters are
+ ** converted to "_". The cNN prefix guarantees that all column
+ ** names are unique.
+ **
+ ** The AAAA suffix is not strictly necessary. It is included
+ ** for the convenience of people who might examine the generated
+ ** %_content table and wonder what the columns are used for.
+ */
+ pSpec->azContentColumn = sqlite3_malloc( pSpec->nColumn * sizeof(char *) );
+ if( pSpec->azContentColumn==0 ){
+ clearTableSpec(pSpec);
+ return SQLITE_NOMEM;
+ }
+ for(i=0; i<pSpec->nColumn; i++){
+ char *p;
+ pSpec->azContentColumn[i] = sqlite3_mprintf("c%d%s", i, azArg[i]);
+ for (p = pSpec->azContentColumn[i]; *p ; ++p) {
+ if( !safe_isalnum(*p) ) *p = '_';
+ }
+ }
+
+ /*
+ ** Parse the tokenizer specification string.
+ */
+ pSpec->azTokenizer = tokenizeString(zTokenizer, &n);
+ tokenListToIdList(pSpec->azTokenizer);
+
+ return SQLITE_OK;
+}
+
+/*
+** Generate a CREATE TABLE statement that describes the schema of
+** the virtual table. Return a pointer to this schema string.
+**
+** Space is obtained from sqlite3_mprintf() and should be freed
+** using sqlite3_free().
+*/
+static char *fulltextSchema(
+ int nColumn, /* Number of columns */
+ const char *const* azColumn, /* List of columns */
+ const char *zTableName /* Name of the table */
+){
+ int i;
+ char *zSchema, *zNext;
+ const char *zSep = "(";
+ zSchema = sqlite3_mprintf("CREATE TABLE x");
+ for(i=0; i<nColumn; i++){
+ zNext = sqlite3_mprintf("%s%s%Q", zSchema, zSep, azColumn[i]);
+ sqlite3_free(zSchema);
+ zSchema = zNext;
+ zSep = ",";
+ }
+ zNext = sqlite3_mprintf("%s,%Q HIDDEN", zSchema, zTableName);
+ sqlite3_free(zSchema);
+ zSchema = zNext;
+ zNext = sqlite3_mprintf("%s,docid HIDDEN)", zSchema);
+ sqlite3_free(zSchema);
+ return zNext;
+}
+
+/*
+** Build a new sqlite3_vtab structure that will describe the
+** fulltext index defined by spec.
+*/
+static int constructVtab(
+ sqlite3 *db, /* The SQLite database connection */
+ fts3Hash *pHash, /* Hash table containing tokenizers */
+ TableSpec *spec, /* Parsed spec information from parseSpec() */
+ sqlite3_vtab **ppVTab, /* Write the resulting vtab structure here */
+ char **pzErr /* Write any error message here */
+){
+ int rc;
+ int n;
+ fulltext_vtab *v = 0;
+ const sqlite3_tokenizer_module *m = NULL;
+ char *schema;
+
+ char const *zTok; /* Name of tokenizer to use for this fts table */
+ int nTok; /* Length of zTok, including nul terminator */
+
+ v = (fulltext_vtab *) sqlite3_malloc(sizeof(fulltext_vtab));
+ if( v==0 ) return SQLITE_NOMEM;
+ CLEAR(v);
+ /* sqlite will initialize v->base */
+ v->db = db;
+ v->zDb = spec->zDb; /* Freed when azColumn is freed */
+ v->zName = spec->zName; /* Freed when azColumn is freed */
+ v->nColumn = spec->nColumn;
+ v->azContentColumn = spec->azContentColumn;
+ spec->azContentColumn = 0;
+ v->azColumn = spec->azColumn;
+ spec->azColumn = 0;
+
+ if( spec->azTokenizer==0 ){
+ return SQLITE_NOMEM;
+ }
+
+ zTok = spec->azTokenizer[0];
+ if( !zTok ){
+ zTok = "simple";
+ }
+ nTok = strlen(zTok)+1;
+
+ m = (sqlite3_tokenizer_module *)sqlite3Fts3HashFind(pHash, zTok, nTok);
+ if( !m ){
+ *pzErr = sqlite3_mprintf("unknown tokenizer: %s", spec->azTokenizer[0]);
+ rc = SQLITE_ERROR;
+ goto err;
+ }
+
+ for(n=0; spec->azTokenizer[n]; n++){}
+ if( n ){
+ rc = m->xCreate(n-1, (const char*const*)&spec->azTokenizer[1],
+ &v->pTokenizer);
+ }else{
+ rc = m->xCreate(0, 0, &v->pTokenizer);
+ }
+ if( rc!=SQLITE_OK ) goto err;
+ v->pTokenizer->pModule = m;
+
+ /* TODO: verify the existence of backing tables foo_content, foo_term */
+
+ schema = fulltextSchema(v->nColumn, (const char*const*)v->azColumn,
+ spec->zName);
+ rc = sqlite3_declare_vtab(db, schema);
+ sqlite3_free(schema);
+ if( rc!=SQLITE_OK ) goto err;
+
+ memset(v->pFulltextStatements, 0, sizeof(v->pFulltextStatements));
+
+ /* Indicate that the buffer is not live. */
+ v->nPendingData = -1;
+
+ *ppVTab = &v->base;
+ FTSTRACE(("FTS3 Connect %p\n", v));
+
+ return rc;
+
+err:
+ fulltext_vtab_destroy(v);
+ return rc;
+}
+
+static int fulltextConnect(
+ sqlite3 *db,
+ void *pAux,
+ int argc, const char *const*argv,
+ sqlite3_vtab **ppVTab,
+ char **pzErr
+){
+ TableSpec spec;
+ int rc = parseSpec(&spec, argc, argv, pzErr);
+ if( rc!=SQLITE_OK ) return rc;
+
+ rc = constructVtab(db, (fts3Hash *)pAux, &spec, ppVTab, pzErr);
+ clearTableSpec(&spec);
+ return rc;
+}
+
+/* The %_content table holds the text of each document, with
+** the docid column exposed as the SQLite rowid for the table.
+*/
+/* TODO(shess) This comment needs elaboration to match the updated
+** code. Work it into the top-of-file comment at that time.
+*/
+static int fulltextCreate(sqlite3 *db, void *pAux,
+ int argc, const char * const *argv,
+ sqlite3_vtab **ppVTab, char **pzErr){
+ int rc;
+ TableSpec spec;
+ StringBuffer schema;
+ FTSTRACE(("FTS3 Create\n"));
+
+ rc = parseSpec(&spec, argc, argv, pzErr);
+ if( rc!=SQLITE_OK ) return rc;
+
+ initStringBuffer(&schema);
+ append(&schema, "CREATE TABLE %_content(");
+ append(&schema, " docid INTEGER PRIMARY KEY,");
+ appendList(&schema, spec.nColumn, spec.azContentColumn);
+ append(&schema, ")");
+ rc = sql_exec(db, spec.zDb, spec.zName, stringBufferData(&schema));
+ stringBufferDestroy(&schema);
+ if( rc!=SQLITE_OK ) goto out;
+
+ rc = sql_exec(db, spec.zDb, spec.zName,
+ "create table %_segments("
+ " blockid INTEGER PRIMARY KEY,"
+ " block blob"
+ ");"
+ );
+ if( rc!=SQLITE_OK ) goto out;
+
+ rc = sql_exec(db, spec.zDb, spec.zName,
+ "create table %_segdir("
+ " level integer,"
+ " idx integer,"
+ " start_block integer,"
+ " leaves_end_block integer,"
+ " end_block integer,"
+ " root blob,"
+ " primary key(level, idx)"
+ ");");
+ if( rc!=SQLITE_OK ) goto out;
+
+ rc = constructVtab(db, (fts3Hash *)pAux, &spec, ppVTab, pzErr);
+
+out:
+ clearTableSpec(&spec);
+ return rc;
+}
+
+/* Decide how to handle an SQL query. */
+static int fulltextBestIndex(sqlite3_vtab *pVTab, sqlite3_index_info *pInfo){
+ fulltext_vtab *v = (fulltext_vtab *)pVTab;
+ int i;
+ FTSTRACE(("FTS3 BestIndex\n"));
+
+ for(i=0; i<pInfo->nConstraint; ++i){
+ const struct sqlite3_index_constraint *pConstraint;
+ pConstraint = &pInfo->aConstraint[i];
+ if( pConstraint->usable ) {
+ if( (pConstraint->iColumn==-1 || pConstraint->iColumn==v->nColumn+1) &&
+ pConstraint->op==SQLITE_INDEX_CONSTRAINT_EQ ){
+ pInfo->idxNum = QUERY_DOCID; /* lookup by docid */
+ FTSTRACE(("FTS3 QUERY_DOCID\n"));
+ } else if( pConstraint->iColumn>=0 && pConstraint->iColumn<=v->nColumn &&
+ pConstraint->op==SQLITE_INDEX_CONSTRAINT_MATCH ){
+ /* full-text search */
+ pInfo->idxNum = QUERY_FULLTEXT + pConstraint->iColumn;
+ FTSTRACE(("FTS3 QUERY_FULLTEXT %d\n", pConstraint->iColumn));
+ } else continue;
+
+ pInfo->aConstraintUsage[i].argvIndex = 1;
+ pInfo->aConstraintUsage[i].omit = 1;
+
+ /* An arbitrary value for now.
+ * TODO: Perhaps docid matches should be considered cheaper than
+ * full-text searches. */
+ pInfo->estimatedCost = 1.0;
+
+ return SQLITE_OK;
+ }
+ }
+ pInfo->idxNum = QUERY_GENERIC;
+ return SQLITE_OK;
+}
+
+static int fulltextDisconnect(sqlite3_vtab *pVTab){
+ FTSTRACE(("FTS3 Disconnect %p\n", pVTab));
+ fulltext_vtab_destroy((fulltext_vtab *)pVTab);
+ return SQLITE_OK;
+}
+
+static int fulltextDestroy(sqlite3_vtab *pVTab){
+ fulltext_vtab *v = (fulltext_vtab *)pVTab;
+ int rc;
+
+ FTSTRACE(("FTS3 Destroy %p\n", pVTab));
+ rc = sql_exec(v->db, v->zDb, v->zName,
+ "drop table if exists %_content;"
+ "drop table if exists %_segments;"
+ "drop table if exists %_segdir;"
+ );
+ if( rc!=SQLITE_OK ) return rc;
+
+ fulltext_vtab_destroy((fulltext_vtab *)pVTab);
+ return SQLITE_OK;
+}
+
+static int fulltextOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){
+ fulltext_cursor *c;
+
+ c = (fulltext_cursor *) sqlite3_malloc(sizeof(fulltext_cursor));
+ if( c ){
+ memset(c, 0, sizeof(fulltext_cursor));
+ /* sqlite will initialize c->base */
+ *ppCursor = &c->base;
+ FTSTRACE(("FTS3 Open %p: %p\n", pVTab, c));
+ return SQLITE_OK;
+ }else{
+ return SQLITE_NOMEM;
+ }
+}
+
+
+/* Free all of the dynamically allocated memory held by *q
+*/
+static void queryClear(Query *q){
+ int i;
+ for(i = 0; i < q->nTerms; ++i){
+ sqlite3_free(q->pTerms[i].pTerm);
+ }
+ sqlite3_free(q->pTerms);
+ CLEAR(q);
+}
+
+/* Free all of the dynamically allocated memory held by the
+** Snippet
+*/
+static void snippetClear(Snippet *p){
+ sqlite3_free(p->aMatch);
+ sqlite3_free(p->zOffset);
+ sqlite3_free(p->zSnippet);
+ CLEAR(p);
+}
+/*
+** Append a single entry to the p->aMatch[] log.
+*/
+static void snippetAppendMatch(
+ Snippet *p, /* Append the entry to this snippet */
+ int iCol, int iTerm, /* The column and query term */
+ int iToken, /* Matching token in document */
+ int iStart, int nByte /* Offset and size of the match */
+){
+ int i;
+ struct snippetMatch *pMatch;
+ if( p->nMatch+1>=p->nAlloc ){
+ p->nAlloc = p->nAlloc*2 + 10;
+ p->aMatch = sqlite3_realloc(p->aMatch, p->nAlloc*sizeof(p->aMatch[0]) );
+ if( p->aMatch==0 ){
+ p->nMatch = 0;
+ p->nAlloc = 0;
+ return;
+ }
+ }
+ i = p->nMatch++;
+ pMatch = &p->aMatch[i];
+ pMatch->iCol = iCol;
+ pMatch->iTerm = iTerm;
+ pMatch->iToken = iToken;
+ pMatch->iStart = iStart;
+ pMatch->nByte = nByte;
+}
+
+/*
+** Sizing information for the circular buffer used in snippetOffsetsOfColumn()
+*/
+#define FTS3_ROTOR_SZ (32)
+#define FTS3_ROTOR_MASK (FTS3_ROTOR_SZ-1)
+
+/*
+** Add entries to pSnippet->aMatch[] for every match that occurs against
+** document zDoc[0..nDoc-1] which is stored in column iColumn.
+*/
+static void snippetOffsetsOfColumn(
+ Query *pQuery,
+ Snippet *pSnippet,
+ int iColumn,
+ const char *zDoc,
+ int nDoc
+){
+ const sqlite3_tokenizer_module *pTModule; /* The tokenizer module */
+ sqlite3_tokenizer *pTokenizer; /* The specific tokenizer */
+ sqlite3_tokenizer_cursor *pTCursor; /* Tokenizer cursor */
+ fulltext_vtab *pVtab; /* The full text index */
+ int nColumn; /* Number of columns in the index */
+ const QueryTerm *aTerm; /* Query string terms */
+ int nTerm; /* Number of query string terms */
+ int i, j; /* Loop counters */
+ int rc; /* Return code */
+ unsigned int match, prevMatch; /* Phrase search bitmasks */
+ const char *zToken; /* Next token from the tokenizer */
+ int nToken; /* Size of zToken */
+ int iBegin, iEnd, iPos; /* Offsets of beginning and end */
+
+ /* The following variables keep a circular buffer of the last
+ ** few tokens */
+ unsigned int iRotor = 0; /* Index of current token */
+ int iRotorBegin[FTS3_ROTOR_SZ]; /* Beginning offset of token */
+ int iRotorLen[FTS3_ROTOR_SZ]; /* Length of token */
+
+ pVtab = pQuery->pFts;
+ nColumn = pVtab->nColumn;
+ pTokenizer = pVtab->pTokenizer;
+ pTModule = pTokenizer->pModule;
+ rc = pTModule->xOpen(pTokenizer, zDoc, nDoc, &pTCursor);
+ if( rc ) return;
+ pTCursor->pTokenizer = pTokenizer;
+ aTerm = pQuery->pTerms;
+ nTerm = pQuery->nTerms;
+ if( nTerm>=FTS3_ROTOR_SZ ){
+ nTerm = FTS3_ROTOR_SZ - 1;
+ }
+ prevMatch = 0;
+ while(1){
+ rc = pTModule->xNext(pTCursor, &zToken, &nToken, &iBegin, &iEnd, &iPos);
+ if( rc ) break;
+ iRotorBegin[iRotor&FTS3_ROTOR_MASK] = iBegin;
+ iRotorLen[iRotor&FTS3_ROTOR_MASK] = iEnd-iBegin;
+ match = 0;
+ for(i=0; i<nTerm; i++){
+ int iCol;
+ iCol = aTerm[i].iColumn;
+ if( iCol>=0 && iCol<nColumn && iCol!=iColumn ) continue;
+ if( aTerm[i].nTerm>nToken ) continue;
+ if( !aTerm[i].isPrefix && aTerm[i].nTerm<nToken ) continue;
+ assert( aTerm[i].nTerm<=nToken );
+ if( memcmp(aTerm[i].pTerm, zToken, aTerm[i].nTerm) ) continue;
+ if( aTerm[i].iPhrase>1 && (prevMatch & (1<<i))==0 ) continue;
+ match |= 1<<i;
+ if( i==nTerm-1 || aTerm[i+1].iPhrase==1 ){
+ for(j=aTerm[i].iPhrase-1; j>=0; j--){
+ int k = (iRotor-j) & FTS3_ROTOR_MASK;
+ snippetAppendMatch(pSnippet, iColumn, i-j, iPos-j,
+ iRotorBegin[k], iRotorLen[k]);
+ }
+ }
+ }
+ prevMatch = match<<1;
+ iRotor++;
+ }
+ pTModule->xClose(pTCursor);
+}
+
+/*
+** Remove entries from the pSnippet structure to account for the NEAR
+** operator. When this is called, pSnippet contains the list of token
+** offsets produced by treating all NEAR operators as AND operators.
+** This function removes any entries that should not be present after
+** accounting for the NEAR restriction. For example, if the queried
+** document is:
+**
+** "A B C D E A"
+**
+** and the query is:
+**
+** A NEAR/0 E
+**
+** then when this function is called the Snippet contains token offsets
+** 0, 4 and 5. This function removes the "0" entry (because the first A
+** is not near enough to an E).
+*/
+static void trimSnippetOffsetsForNear(Query *pQuery, Snippet *pSnippet){
+ int ii;
+ int iDir = 1;
+
+ while(iDir>-2) {
+ assert( iDir==1 || iDir==-1 );
+ for(ii=0; ii<pSnippet->nMatch; ii++){
+ int jj;
+ int nNear;
+ struct snippetMatch *pMatch = &pSnippet->aMatch[ii];
+ QueryTerm *pQueryTerm = &pQuery->pTerms[pMatch->iTerm];
+
+ if( (pMatch->iTerm+iDir)<0
+ || (pMatch->iTerm+iDir)>=pQuery->nTerms
+ ){
+ continue;
+ }
+
+ nNear = pQueryTerm->nNear;
+ if( iDir<0 ){
+ nNear = pQueryTerm[-1].nNear;
+ }
+
+ if( pMatch->iTerm>=0 && nNear ){
+ int isOk = 0;
+ int iNextTerm = pMatch->iTerm+iDir;
+ int iPrevTerm = iNextTerm;
+
+ int iEndToken;
+ int iStartToken;
+
+ if( iDir<0 ){
+ int nPhrase = 1;
+ iStartToken = pMatch->iToken;
+ while( (pMatch->iTerm+nPhrase)<pQuery->nTerms
+ && pQuery->pTerms[pMatch->iTerm+nPhrase].iPhrase>1
+ ){
+ nPhrase++;
+ }
+ iEndToken = iStartToken + nPhrase - 1;
+ }else{
+ iEndToken = pMatch->iToken;
+ iStartToken = pMatch->iToken+1-pQueryTerm->iPhrase;
+ }
+
+ while( pQuery->pTerms[iNextTerm].iPhrase>1 ){
+ iNextTerm--;
+ }
+ while( (iPrevTerm+1)<pQuery->nTerms &&
+ pQuery->pTerms[iPrevTerm+1].iPhrase>1
+ ){
+ iPrevTerm++;
+ }
+
+ for(jj=0; isOk==0 && jj<pSnippet->nMatch; jj++){
+ struct snippetMatch *p = &pSnippet->aMatch[jj];
+ if( p->iCol==pMatch->iCol && ((
+ p->iTerm==iNextTerm &&
+ p->iToken>iEndToken &&
+ p->iToken<=iEndToken+nNear
+ ) || (
+ p->iTerm==iPrevTerm &&
+ p->iToken<iStartToken &&
+ p->iToken>=iStartToken-nNear
+ ))){
+ isOk = 1;
+ }
+ }
+ if( !isOk ){
+ for(jj=1-pQueryTerm->iPhrase; jj<=0; jj++){
+ pMatch[jj].iTerm = -1;
+ }
+ ii = -1;
+ iDir = 1;
+ }
+ }
+ }
+ iDir -= 2;
+ }
+}
+
+/*
+** Compute all offsets for the current row of the query.
+** If the offsets have already been computed, this routine is a no-op.
+*/
+static void snippetAllOffsets(fulltext_cursor *p){
+ int nColumn;
+ int iColumn, i;
+ int iFirst, iLast;
+ fulltext_vtab *pFts;
+
+ if( p->snippet.nMatch ) return;
+ if( p->q.nTerms==0 ) return;
+ pFts = p->q.pFts;
+ nColumn = pFts->nColumn;
+ iColumn = (p->iCursorType - QUERY_FULLTEXT);
+ if( iColumn<0 || iColumn>=nColumn ){
+ iFirst = 0;
+ iLast = nColumn-1;
+ }else{
+ iFirst = iColumn;
+ iLast = iColumn;
+ }
+ for(i=iFirst; i<=iLast; i++){
+ const char *zDoc;
+ int nDoc;
+ zDoc = (const char*)sqlite3_column_text(p->pStmt, i+1);
+ nDoc = sqlite3_column_bytes(p->pStmt, i+1);
+ snippetOffsetsOfColumn(&p->q, &p->snippet, i, zDoc, nDoc);
+ }
+
+ trimSnippetOffsetsForNear(&p->q, &p->snippet);
+}
+
+/*
+** Convert the information in the aMatch[] array of the snippet
+** into the string zOffset[0..nOffset-1].
+*/
+static void snippetOffsetText(Snippet *p){
+ int i;
+ int cnt = 0;
+ StringBuffer sb;
+ char zBuf[200];
+ if( p->zOffset ) return;
+ initStringBuffer(&sb);
+ for(i=0; i<p->nMatch; i++){
+ struct snippetMatch *pMatch = &p->aMatch[i];
+ if( pMatch->iTerm>=0 ){
+ /* If snippetMatch.iTerm is less than 0, then the match was
+ ** discarded as part of processing the NEAR operator (see the
+ ** trimSnippetOffsetsForNear() function for details). Ignore
+ ** it in this case
+ */
+ zBuf[0] = ' ';
+ sqlite3_snprintf(sizeof(zBuf)-1, &zBuf[cnt>0], "%d %d %d %d",
+ pMatch->iCol, pMatch->iTerm, pMatch->iStart, pMatch->nByte);
+ append(&sb, zBuf);
+ cnt++;
+ }
+ }
+ p->zOffset = stringBufferData(&sb);
+ p->nOffset = stringBufferLength(&sb);
+}
+
+/*
+** zDoc[0..nDoc-1] is phrase of text. aMatch[0..nMatch-1] are a set
+** of matching words some of which might be in zDoc. zDoc is column
+** number iCol.
+**
+** iBreak is suggested spot in zDoc where we could begin or end an
+** excerpt. Return a value similar to iBreak but possibly adjusted
+** to be a little left or right so that the break point is better.
+*/
+static int wordBoundary(
+ int iBreak, /* The suggested break point */
+ const char *zDoc, /* Document text */
+ int nDoc, /* Number of bytes in zDoc[] */
+ struct snippetMatch *aMatch, /* Matching words */
+ int nMatch, /* Number of entries in aMatch[] */
+ int iCol /* The column number for zDoc[] */
+){
+ int i;
+ if( iBreak<=10 ){
+ return 0;
+ }
+ if( iBreak>=nDoc-10 ){
+ return nDoc;
+ }
+ for(i=0; i<nMatch && aMatch[i].iCol<iCol; i++){}
+ while( i<nMatch && aMatch[i].iStart+aMatch[i].nByte<iBreak ){ i++; }
+ if( i<nMatch ){
+ if( aMatch[i].iStart<iBreak+10 ){
+ return aMatch[i].iStart;
+ }
+ if( i>0 && aMatch[i-1].iStart+aMatch[i-1].nByte>=iBreak ){
+ return aMatch[i-1].iStart;
+ }
+ }
+ for(i=1; i<=10; i++){
+ if( safe_isspace(zDoc[iBreak-i]) ){
+ return iBreak - i + 1;
+ }
+ if( safe_isspace(zDoc[iBreak+i]) ){
+ return iBreak + i + 1;
+ }
+ }
+ return iBreak;
+}
+
+
+
+/*
+** Allowed values for Snippet.aMatch[].snStatus
+*/
+#define SNIPPET_IGNORE 0 /* It is ok to omit this match from the snippet */
+#define SNIPPET_DESIRED 1 /* We want to include this match in the snippet */
+
+/*
+** Generate the text of a snippet.
+*/
+static void snippetText(
+ fulltext_cursor *pCursor, /* The cursor we need the snippet for */
+ const char *zStartMark, /* Markup to appear before each match */
+ const char *zEndMark, /* Markup to appear after each match */
+ const char *zEllipsis /* Ellipsis mark */
+){
+ int i, j;
+ struct snippetMatch *aMatch;
+ int nMatch;
+ int nDesired;
+ StringBuffer sb;
+ int tailCol;
+ int tailOffset;
+ int iCol;
+ int nDoc;
+ const char *zDoc;
+ int iStart, iEnd;
+ int tailEllipsis = 0;
+ int iMatch;
+
+
+ sqlite3_free(pCursor->snippet.zSnippet);
+ pCursor->snippet.zSnippet = 0;
+ aMatch = pCursor->snippet.aMatch;
+ nMatch = pCursor->snippet.nMatch;
+ initStringBuffer(&sb);
+
+ for(i=0; i<nMatch; i++){
+ aMatch[i].snStatus = SNIPPET_IGNORE;
+ }
+ nDesired = 0;
+ for(i=0; i<pCursor->q.nTerms; i++){
+ for(j=0; j<nMatch; j++){
+ if( aMatch[j].iTerm==i ){
+ aMatch[j].snStatus = SNIPPET_DESIRED;
+ nDesired++;
+ break;
+ }
+ }
+ }
+
+ iMatch = 0;
+ tailCol = -1;
+ tailOffset = 0;
+ for(i=0; i<nMatch && nDesired>0; i++){
+ if( aMatch[i].snStatus!=SNIPPET_DESIRED ) continue;
+ nDesired--;
+ iCol = aMatch[i].iCol;
+ zDoc = (const char*)sqlite3_column_text(pCursor->pStmt, iCol+1);
+ nDoc = sqlite3_column_bytes(pCursor->pStmt, iCol+1);
+ iStart = aMatch[i].iStart - 40;
+ iStart = wordBoundary(iStart, zDoc, nDoc, aMatch, nMatch, iCol);
+ if( iStart<=10 ){
+ iStart = 0;
+ }
+ if( iCol==tailCol && iStart<=tailOffset+20 ){
+ iStart = tailOffset;
+ }
+ if( (iCol!=tailCol && tailCol>=0) || iStart!=tailOffset ){
+ trimWhiteSpace(&sb);
+ appendWhiteSpace(&sb);
+ append(&sb, zEllipsis);
+ appendWhiteSpace(&sb);
+ }
+ iEnd = aMatch[i].iStart + aMatch[i].nByte + 40;
+ iEnd = wordBoundary(iEnd, zDoc, nDoc, aMatch, nMatch, iCol);
+ if( iEnd>=nDoc-10 ){
+ iEnd = nDoc;
+ tailEllipsis = 0;
+ }else{
+ tailEllipsis = 1;
+ }
+ while( iMatch<nMatch && aMatch[iMatch].iCol<iCol ){ iMatch++; }
+ while( iStart<iEnd ){
+ while( iMatch<nMatch && aMatch[iMatch].iStart<iStart
+ && aMatch[iMatch].iCol<=iCol ){
+ iMatch++;
+ }
+ if( iMatch<nMatch && aMatch[iMatch].iStart<iEnd
+ && aMatch[iMatch].iCol==iCol ){
+ nappend(&sb, &zDoc[iStart], aMatch[iMatch].iStart - iStart);
+ iStart = aMatch[iMatch].iStart;
+ append(&sb, zStartMark);
+ nappend(&sb, &zDoc[iStart], aMatch[iMatch].nByte);
+ append(&sb, zEndMark);
+ iStart += aMatch[iMatch].nByte;
+ for(j=iMatch+1; j<nMatch; j++){
+ if( aMatch[j].iTerm==aMatch[iMatch].iTerm
+ && aMatch[j].snStatus==SNIPPET_DESIRED ){
+ nDesired--;
+ aMatch[j].snStatus = SNIPPET_IGNORE;
+ }
+ }
+ }else{
+ nappend(&sb, &zDoc[iStart], iEnd - iStart);
+ iStart = iEnd;
+ }
+ }
+ tailCol = iCol;
+ tailOffset = iEnd;
+ }
+ trimWhiteSpace(&sb);
+ if( tailEllipsis ){
+ appendWhiteSpace(&sb);
+ append(&sb, zEllipsis);
+ }
+ pCursor->snippet.zSnippet = stringBufferData(&sb);
+ pCursor->snippet.nSnippet = stringBufferLength(&sb);
+}
+
+
+/*
+** Close the cursor. For additional information see the documentation
+** on the xClose method of the virtual table interface.
+*/
+static int fulltextClose(sqlite3_vtab_cursor *pCursor){
+ fulltext_cursor *c = (fulltext_cursor *) pCursor;
+ FTSTRACE(("FTS3 Close %p\n", c));
+ sqlite3_finalize(c->pStmt);
+ queryClear(&c->q);
+ snippetClear(&c->snippet);
+ if( c->result.nData!=0 ) dlrDestroy(&c->reader);
+ dataBufferDestroy(&c->result);
+ sqlite3_free(c);
+ return SQLITE_OK;
+}
+
+static int fulltextNext(sqlite3_vtab_cursor *pCursor){
+ fulltext_cursor *c = (fulltext_cursor *) pCursor;
+ int rc;
+
+ FTSTRACE(("FTS3 Next %p\n", pCursor));
+ snippetClear(&c->snippet);
+ if( c->iCursorType < QUERY_FULLTEXT ){
+ /* TODO(shess) Handle SQLITE_SCHEMA AND SQLITE_BUSY. */
+ rc = sqlite3_step(c->pStmt);
+ switch( rc ){
+ case SQLITE_ROW:
+ c->eof = 0;
+ return SQLITE_OK;
+ case SQLITE_DONE:
+ c->eof = 1;
+ return SQLITE_OK;
+ default:
+ c->eof = 1;
+ return rc;
+ }
+ } else { /* full-text query */
+ rc = sqlite3_reset(c->pStmt);
+ if( rc!=SQLITE_OK ) return rc;
+
+ if( c->result.nData==0 || dlrAtEnd(&c->reader) ){
+ c->eof = 1;
+ return SQLITE_OK;
+ }
+ rc = sqlite3_bind_int64(c->pStmt, 1, dlrDocid(&c->reader));
+ dlrStep(&c->reader);
+ if( rc!=SQLITE_OK ) return rc;
+ /* TODO(shess) Handle SQLITE_SCHEMA AND SQLITE_BUSY. */
+ rc = sqlite3_step(c->pStmt);
+ if( rc==SQLITE_ROW ){ /* the case we expect */
+ c->eof = 0;
+ return SQLITE_OK;
+ }
+ /* an error occurred; abort */
+ return rc==SQLITE_DONE ? SQLITE_ERROR : rc;
+ }
+}
+
+
+/* TODO(shess) If we pushed LeafReader to the top of the file, or to
+** another file, term_select() could be pushed above
+** docListOfTerm().
+*/
+static int termSelect(fulltext_vtab *v, int iColumn,
+ const char *pTerm, int nTerm, int isPrefix,
+ DocListType iType, DataBuffer *out);
+
+/* Return a DocList corresponding to the query term *pTerm. If *pTerm
+** is the first term of a phrase query, go ahead and evaluate the phrase
+** query and return the doclist for the entire phrase query.
+**
+** The resulting DL_DOCIDS doclist is stored in pResult, which is
+** overwritten.
+*/
+static int docListOfTerm(
+ fulltext_vtab *v, /* The full text index */
+ int iColumn, /* column to restrict to. No restriction if >=nColumn */
+ QueryTerm *pQTerm, /* Term we are looking for, or 1st term of a phrase */
+ DataBuffer *pResult /* Write the result here */
+){
+ DataBuffer left, right, new;
+ int i, rc;
+
+ /* No phrase search if no position info. */
+ assert( pQTerm->nPhrase==0 || DL_DEFAULT!=DL_DOCIDS );
+
+ /* This code should never be called with buffered updates. */
+ assert( v->nPendingData<0 );
+
+ dataBufferInit(&left, 0);
+ rc = termSelect(v, iColumn, pQTerm->pTerm, pQTerm->nTerm, pQTerm->isPrefix,
+ (0<pQTerm->nPhrase ? DL_POSITIONS : DL_DOCIDS), &left);
+ if( rc ) return rc;
+ for(i=1; i<=pQTerm->nPhrase && left.nData>0; i++){
+ /* If this token is connected to the next by a NEAR operator, and
+ ** the next token is the start of a phrase, then set nPhraseRight
+ ** to the number of tokens in the phrase. Otherwise leave it at 1.
+ */
+ int nPhraseRight = 1;
+ while( (i+nPhraseRight)<=pQTerm->nPhrase
+ && pQTerm[i+nPhraseRight].nNear==0
+ ){
+ nPhraseRight++;
+ }
+
+ dataBufferInit(&right, 0);
+ rc = termSelect(v, iColumn, pQTerm[i].pTerm, pQTerm[i].nTerm,
+ pQTerm[i].isPrefix, DL_POSITIONS, &right);
+ if( rc ){
+ dataBufferDestroy(&left);
+ return rc;
+ }
+ dataBufferInit(&new, 0);
+ docListPhraseMerge(left.pData, left.nData, right.pData, right.nData,
+ pQTerm[i-1].nNear, pQTerm[i-1].iPhrase + nPhraseRight,
+ ((i<pQTerm->nPhrase) ? DL_POSITIONS : DL_DOCIDS),
+ &new);
+ dataBufferDestroy(&left);
+ dataBufferDestroy(&right);
+ left = new;
+ }
+ *pResult = left;
+ return SQLITE_OK;
+}
+
+/* Add a new term pTerm[0..nTerm-1] to the query *q.
+*/
+static void queryAdd(Query *q, const char *pTerm, int nTerm){
+ QueryTerm *t;
+ ++q->nTerms;
+ q->pTerms = sqlite3_realloc(q->pTerms, q->nTerms * sizeof(q->pTerms[0]));
+ if( q->pTerms==0 ){
+ q->nTerms = 0;
+ return;
+ }
+ t = &q->pTerms[q->nTerms - 1];
+ CLEAR(t);
+ t->pTerm = sqlite3_malloc(nTerm+1);
+ memcpy(t->pTerm, pTerm, nTerm);
+ t->pTerm[nTerm] = 0;
+ t->nTerm = nTerm;
+ t->isOr = q->nextIsOr;
+ t->isPrefix = 0;
+ q->nextIsOr = 0;
+ t->iColumn = q->nextColumn;
+ q->nextColumn = q->dfltColumn;
+}
+
+/*
+** Check to see if the string zToken[0...nToken-1] matches any
+** column name in the virtual table. If it does,
+** return the zero-indexed column number. If not, return -1.
+*/
+static int checkColumnSpecifier(
+ fulltext_vtab *pVtab, /* The virtual table */
+ const char *zToken, /* Text of the token */
+ int nToken /* Number of characters in the token */
+){
+ int i;
+ for(i=0; i<pVtab->nColumn; i++){
+ if( memcmp(pVtab->azColumn[i], zToken, nToken)==0
+ && pVtab->azColumn[i][nToken]==0 ){
+ return i;
+ }
+ }
+ return -1;
+}
+
+/*
+** Parse the text at pSegment[0..nSegment-1]. Add additional terms
+** to the query being assemblied in pQuery.
+**
+** inPhrase is true if pSegment[0..nSegement-1] is contained within
+** double-quotes. If inPhrase is true, then the first term
+** is marked with the number of terms in the phrase less one and
+** OR and "-" syntax is ignored. If inPhrase is false, then every
+** term found is marked with nPhrase=0 and OR and "-" syntax is significant.
+*/
+static int tokenizeSegment(
+ sqlite3_tokenizer *pTokenizer, /* The tokenizer to use */
+ const char *pSegment, int nSegment, /* Query expression being parsed */
+ int inPhrase, /* True if within "..." */
+ Query *pQuery /* Append results here */
+){
+ const sqlite3_tokenizer_module *pModule = pTokenizer->pModule;
+ sqlite3_tokenizer_cursor *pCursor;
+ int firstIndex = pQuery->nTerms;
+ int iCol;
+ int nTerm = 1;
+
+ int rc = pModule->xOpen(pTokenizer, pSegment, nSegment, &pCursor);
+ if( rc!=SQLITE_OK ) return rc;
+ pCursor->pTokenizer = pTokenizer;
+
+ while( 1 ){
+ const char *pToken;
+ int nToken, iBegin, iEnd, iPos;
+
+ rc = pModule->xNext(pCursor,
+ &pToken, &nToken,
+ &iBegin, &iEnd, &iPos);
+ if( rc!=SQLITE_OK ) break;
+ if( !inPhrase &&
+ pSegment[iEnd]==':' &&
+ (iCol = checkColumnSpecifier(pQuery->pFts, pToken, nToken))>=0 ){
+ pQuery->nextColumn = iCol;
+ continue;
+ }
+ if( !inPhrase && pQuery->nTerms>0 && nToken==2
+ && pSegment[iBegin+0]=='O'
+ && pSegment[iBegin+1]=='R'
+ ){
+ pQuery->nextIsOr = 1;
+ continue;
+ }
+ if( !inPhrase && pQuery->nTerms>0 && !pQuery->nextIsOr && nToken==4
+ && pSegment[iBegin+0]=='N'
+ && pSegment[iBegin+1]=='E'
+ && pSegment[iBegin+2]=='A'
+ && pSegment[iBegin+3]=='R'
+ ){
+ QueryTerm *pTerm = &pQuery->pTerms[pQuery->nTerms-1];
+ if( (iBegin+6)<nSegment
+ && pSegment[iBegin+4] == '/'
+ && pSegment[iBegin+5]>='0' && pSegment[iBegin+5]<='9'
+ ){
+ pTerm->nNear = (pSegment[iBegin+5] - '0');
+ nToken += 2;
+ if( pSegment[iBegin+6]>='0' && pSegment[iBegin+6]<=9 ){
+ pTerm->nNear = pTerm->nNear * 10 + (pSegment[iBegin+6] - '0');
+ iEnd++;
+ }
+ pModule->xNext(pCursor, &pToken, &nToken, &iBegin, &iEnd, &iPos);
+ } else {
+ pTerm->nNear = SQLITE_FTS3_DEFAULT_NEAR_PARAM;
+ }
+ pTerm->nNear++;
+ continue;
+ }
+
+ queryAdd(pQuery, pToken, nToken);
+ if( !inPhrase && iBegin>0 && pSegment[iBegin-1]=='-' ){
+ pQuery->pTerms[pQuery->nTerms-1].isNot = 1;
+ }
+ if( iEnd<nSegment && pSegment[iEnd]=='*' ){
+ pQuery->pTerms[pQuery->nTerms-1].isPrefix = 1;
+ }
+ pQuery->pTerms[pQuery->nTerms-1].iPhrase = nTerm;
+ if( inPhrase ){
+ nTerm++;
+ }
+ }
+
+ if( inPhrase && pQuery->nTerms>firstIndex ){
+ pQuery->pTerms[firstIndex].nPhrase = pQuery->nTerms - firstIndex - 1;
+ }
+
+ return pModule->xClose(pCursor);
+}
+
+/* Parse a query string, yielding a Query object pQuery.
+**
+** The calling function will need to queryClear() to clean up
+** the dynamically allocated memory held by pQuery.
+*/
+static int parseQuery(
+ fulltext_vtab *v, /* The fulltext index */
+ const char *zInput, /* Input text of the query string */
+ int nInput, /* Size of the input text */
+ int dfltColumn, /* Default column of the index to match against */
+ Query *pQuery /* Write the parse results here. */
+){
+ int iInput, inPhrase = 0;
+ int ii;
+ QueryTerm *aTerm;
+
+ if( zInput==0 ) nInput = 0;
+ if( nInput<0 ) nInput = strlen(zInput);
+ pQuery->nTerms = 0;
+ pQuery->pTerms = NULL;
+ pQuery->nextIsOr = 0;
+ pQuery->nextColumn = dfltColumn;
+ pQuery->dfltColumn = dfltColumn;
+ pQuery->pFts = v;
+
+ for(iInput=0; iInput<nInput; ++iInput){
+ int i;
+ for(i=iInput; i<nInput && zInput[i]!='"'; ++i){}
+ if( i>iInput ){
+ tokenizeSegment(v->pTokenizer, zInput+iInput, i-iInput, inPhrase,
+ pQuery);
+ }
+ iInput = i;
+ if( i<nInput ){
+ assert( zInput[i]=='"' );
+ inPhrase = !inPhrase;
+ }
+ }
+
+ if( inPhrase ){
+ /* unmatched quote */
+ queryClear(pQuery);
+ return SQLITE_ERROR;
+ }
+
+ /* Modify the values of the QueryTerm.nPhrase variables to account for
+ ** the NEAR operator. For the purposes of QueryTerm.nPhrase, phrases
+ ** and tokens connected by the NEAR operator are handled as a single
+ ** phrase. See comments above the QueryTerm structure for details.
+ */
+ aTerm = pQuery->pTerms;
+ for(ii=0; ii<pQuery->nTerms; ii++){
+ if( aTerm[ii].nNear || aTerm[ii].nPhrase ){
+ while (aTerm[ii+aTerm[ii].nPhrase].nNear) {
+ aTerm[ii].nPhrase += (1 + aTerm[ii+aTerm[ii].nPhrase+1].nPhrase);
+ }
+ }
+ }
+
+ return SQLITE_OK;
+}
+
+/* TODO(shess) Refactor the code to remove this forward decl. */
+static int flushPendingTerms(fulltext_vtab *v);
+
+/* Perform a full-text query using the search expression in
+** zInput[0..nInput-1]. Return a list of matching documents
+** in pResult.
+**
+** Queries must match column iColumn. Or if iColumn>=nColumn
+** they are allowed to match against any column.
+*/
+static int fulltextQuery(
+ fulltext_vtab *v, /* The full text index */
+ int iColumn, /* Match against this column by default */
+ const char *zInput, /* The query string */
+ int nInput, /* Number of bytes in zInput[] */
+ DataBuffer *pResult, /* Write the result doclist here */
+ Query *pQuery /* Put parsed query string here */
+){
+ int i, iNext, rc;
+ DataBuffer left, right, or, new;
+ int nNot = 0;
+ QueryTerm *aTerm;
+
+ /* TODO(shess) Instead of flushing pendingTerms, we could query for
+ ** the relevant term and merge the doclist into what we receive from
+ ** the database. Wait and see if this is a common issue, first.
+ **
+ ** A good reason not to flush is to not generate update-related
+ ** error codes from here.
+ */
+
+ /* Flush any buffered updates before executing the query. */
+ rc = flushPendingTerms(v);
+ if( rc!=SQLITE_OK ) return rc;
+
+ /* TODO(shess) I think that the queryClear() calls below are not
+ ** necessary, because fulltextClose() already clears the query.
+ */
+ rc = parseQuery(v, zInput, nInput, iColumn, pQuery);
+ if( rc!=SQLITE_OK ) return rc;
+
+ /* Empty or NULL queries return no results. */
+ if( pQuery->nTerms==0 ){
+ dataBufferInit(pResult, 0);
+ return SQLITE_OK;
+ }
+
+ /* Merge AND terms. */
+ /* TODO(shess) I think we can early-exit if( i>nNot && left.nData==0 ). */
+ aTerm = pQuery->pTerms;
+ for(i = 0; i<pQuery->nTerms; i=iNext){
+ if( aTerm[i].isNot ){
+ /* Handle all NOT terms in a separate pass */
+ nNot++;
+ iNext = i + aTerm[i].nPhrase+1;
+ continue;
+ }
+ iNext = i + aTerm[i].nPhrase + 1;
+ rc = docListOfTerm(v, aTerm[i].iColumn, &aTerm[i], &right);
+ if( rc ){
+ if( i!=nNot ) dataBufferDestroy(&left);
+ queryClear(pQuery);
+ return rc;
+ }
+ while( iNext<pQuery->nTerms && aTerm[iNext].isOr ){
+ rc = docListOfTerm(v, aTerm[iNext].iColumn, &aTerm[iNext], &or);
+ iNext += aTerm[iNext].nPhrase + 1;
+ if( rc ){
+ if( i!=nNot ) dataBufferDestroy(&left);
+ dataBufferDestroy(&right);
+ queryClear(pQuery);
+ return rc;
+ }
+ dataBufferInit(&new, 0);
+ docListOrMerge(right.pData, right.nData, or.pData, or.nData, &new);
+ dataBufferDestroy(&right);
+ dataBufferDestroy(&or);
+ right = new;
+ }
+ if( i==nNot ){ /* first term processed. */
+ left = right;
+ }else{
+ dataBufferInit(&new, 0);
+ docListAndMerge(left.pData, left.nData, right.pData, right.nData, &new);
+ dataBufferDestroy(&right);
+ dataBufferDestroy(&left);
+ left = new;
+ }
+ }
+
+ if( nNot==pQuery->nTerms ){
+ /* We do not yet know how to handle a query of only NOT terms */
+ return SQLITE_ERROR;
+ }
+
+ /* Do the EXCEPT terms */
+ for(i=0; i<pQuery->nTerms; i += aTerm[i].nPhrase + 1){
+ if( !aTerm[i].isNot ) continue;
+ rc = docListOfTerm(v, aTerm[i].iColumn, &aTerm[i], &right);
+ if( rc ){
+ queryClear(pQuery);
+ dataBufferDestroy(&left);
+ return rc;
+ }
+ dataBufferInit(&new, 0);
+ docListExceptMerge(left.pData, left.nData, right.pData, right.nData, &new);
+ dataBufferDestroy(&right);
+ dataBufferDestroy(&left);
+ left = new;
+ }
+
+ *pResult = left;
+ return rc;
+}
+
+/*
+** This is the xFilter interface for the virtual table. See
+** the virtual table xFilter method documentation for additional
+** information.
+**
+** If idxNum==QUERY_GENERIC then do a full table scan against
+** the %_content table.
+**
+** If idxNum==QUERY_DOCID then do a docid lookup for a single entry
+** in the %_content table.
+**
+** If idxNum>=QUERY_FULLTEXT then use the full text index. The
+** column on the left-hand side of the MATCH operator is column
+** number idxNum-QUERY_FULLTEXT, 0 indexed. argv[0] is the right-hand
+** side of the MATCH operator.
+*/
+/* TODO(shess) Upgrade the cursor initialization and destruction to
+** account for fulltextFilter() being called multiple times on the
+** same cursor. The current solution is very fragile. Apply fix to
+** fts3 as appropriate.
+*/
+static int fulltextFilter(
+ sqlite3_vtab_cursor *pCursor, /* The cursor used for this query */
+ int idxNum, const char *idxStr, /* Which indexing scheme to use */
+ int argc, sqlite3_value **argv /* Arguments for the indexing scheme */
+){
+ fulltext_cursor *c = (fulltext_cursor *) pCursor;
+ fulltext_vtab *v = cursor_vtab(c);
+ int rc;
+ StringBuffer sb;
+
+ FTSTRACE(("FTS3 Filter %p\n",pCursor));
+
+ initStringBuffer(&sb);
+ append(&sb, "SELECT docid, ");
+ appendList(&sb, v->nColumn, v->azContentColumn);
+ append(&sb, " FROM %_content");
+ if( idxNum!=QUERY_GENERIC ) append(&sb, " WHERE docid = ?");
+ sqlite3_finalize(c->pStmt);
+ rc = sql_prepare(v->db, v->zDb, v->zName, &c->pStmt, stringBufferData(&sb));
+ stringBufferDestroy(&sb);
+ if( rc!=SQLITE_OK ) return rc;
+
+ c->iCursorType = idxNum;
+ switch( idxNum ){
+ case QUERY_GENERIC:
+ break;
+
+ case QUERY_DOCID:
+ rc = sqlite3_bind_int64(c->pStmt, 1, sqlite3_value_int64(argv[0]));
+ if( rc!=SQLITE_OK ) return rc;
+ break;
+
+ default: /* full-text search */
+ {
+ const char *zQuery = (const char *)sqlite3_value_text(argv[0]);
+ assert( idxNum<=QUERY_FULLTEXT+v->nColumn);
+ assert( argc==1 );
+ queryClear(&c->q);
+ if( c->result.nData!=0 ){
+ /* This case happens if the same cursor is used repeatedly. */
+ dlrDestroy(&c->reader);
+ dataBufferReset(&c->result);
+ }else{
+ dataBufferInit(&c->result, 0);
+ }
+ rc = fulltextQuery(v, idxNum-QUERY_FULLTEXT, zQuery, -1, &c->result, &c->q);
+ if( rc!=SQLITE_OK ) return rc;
+ if( c->result.nData!=0 ){
+ dlrInit(&c->reader, DL_DOCIDS, c->result.pData, c->result.nData);
+ }
+ break;
+ }
+ }
+
+ return fulltextNext(pCursor);
+}
+
+/* This is the xEof method of the virtual table. The SQLite core
+** calls this routine to find out if it has reached the end of
+** a query's results set.
+*/
+static int fulltextEof(sqlite3_vtab_cursor *pCursor){
+ fulltext_cursor *c = (fulltext_cursor *) pCursor;
+ return c->eof;
+}
+
+/* This is the xColumn method of the virtual table. The SQLite
+** core calls this method during a query when it needs the value
+** of a column from the virtual table. This method needs to use
+** one of the sqlite3_result_*() routines to store the requested
+** value back in the pContext.
+*/
+static int fulltextColumn(sqlite3_vtab_cursor *pCursor,
+ sqlite3_context *pContext, int idxCol){
+ fulltext_cursor *c = (fulltext_cursor *) pCursor;
+ fulltext_vtab *v = cursor_vtab(c);
+
+ if( idxCol<v->nColumn ){
+ sqlite3_value *pVal = sqlite3_column_value(c->pStmt, idxCol+1);
+ sqlite3_result_value(pContext, pVal);
+ }else if( idxCol==v->nColumn ){
+ /* The extra column whose name is the same as the table.
+ ** Return a blob which is a pointer to the cursor
+ */
+ sqlite3_result_blob(pContext, &c, sizeof(c), SQLITE_TRANSIENT);
+ }else if( idxCol==v->nColumn+1 ){
+ /* The docid column, which is an alias for rowid. */
+ sqlite3_value *pVal = sqlite3_column_value(c->pStmt, 0);
+ sqlite3_result_value(pContext, pVal);
+ }
+ return SQLITE_OK;
+}
+
+/* This is the xRowid method. The SQLite core calls this routine to
+** retrieve the rowid for the current row of the result set. fts3
+** exposes %_content.docid as the rowid for the virtual table. The
+** rowid should be written to *pRowid.
+*/
+static int fulltextRowid(sqlite3_vtab_cursor *pCursor, sqlite_int64 *pRowid){
+ fulltext_cursor *c = (fulltext_cursor *) pCursor;
+
+ *pRowid = sqlite3_column_int64(c->pStmt, 0);
+ return SQLITE_OK;
+}
+
+/* Add all terms in [zText] to pendingTerms table. If [iColumn] > 0,
+** we also store positions and offsets in the hash table using that
+** column number.
+*/
+static int buildTerms(fulltext_vtab *v, sqlite_int64 iDocid,
+ const char *zText, int iColumn){
+ sqlite3_tokenizer *pTokenizer = v->pTokenizer;
+ sqlite3_tokenizer_cursor *pCursor;
+ const char *pToken;
+ int nTokenBytes;
+ int iStartOffset, iEndOffset, iPosition;
+ int rc;
+
+ rc = pTokenizer->pModule->xOpen(pTokenizer, zText, -1, &pCursor);
+ if( rc!=SQLITE_OK ) return rc;
+
+ pCursor->pTokenizer = pTokenizer;
+ while( SQLITE_OK==(rc=pTokenizer->pModule->xNext(pCursor,
+ &pToken, &nTokenBytes,
+ &iStartOffset, &iEndOffset,
+ &iPosition)) ){
+ DLCollector *p;
+ int nData; /* Size of doclist before our update. */
+
+ /* Positions can't be negative; we use -1 as a terminator
+ * internally. Token can't be NULL or empty. */
+ if( iPosition<0 || pToken == NULL || nTokenBytes == 0 ){
+ rc = SQLITE_ERROR;
+ break;
+ }
+
+ p = fts3HashFind(&v->pendingTerms, pToken, nTokenBytes);
+ if( p==NULL ){
+ nData = 0;
+ p = dlcNew(iDocid, DL_DEFAULT);
+ fts3HashInsert(&v->pendingTerms, pToken, nTokenBytes, p);
+
+ /* Overhead for our hash table entry, the key, and the value. */
+ v->nPendingData += sizeof(struct fts3HashElem)+sizeof(*p)+nTokenBytes;
+ }else{
+ nData = p->b.nData;
+ if( p->dlw.iPrevDocid!=iDocid ) dlcNext(p, iDocid);
+ }
+ if( iColumn>=0 ){
+ dlcAddPos(p, iColumn, iPosition, iStartOffset, iEndOffset);
+ }
+
+ /* Accumulate data added by dlcNew or dlcNext, and dlcAddPos. */
+ v->nPendingData += p->b.nData-nData;
+ }
+
+ /* TODO(shess) Check return? Should this be able to cause errors at
+ ** this point? Actually, same question about sqlite3_finalize(),
+ ** though one could argue that failure there means that the data is
+ ** not durable. *ponder*
+ */
+ pTokenizer->pModule->xClose(pCursor);
+ if( SQLITE_DONE == rc ) return SQLITE_OK;
+ return rc;
+}
+
+/* Add doclists for all terms in [pValues] to pendingTerms table. */
+static int insertTerms(fulltext_vtab *v, sqlite_int64 iDocid,
+ sqlite3_value **pValues){
+ int i;
+ for(i = 0; i < v->nColumn ; ++i){
+ char *zText = (char*)sqlite3_value_text(pValues[i]);
+ int rc = buildTerms(v, iDocid, zText, i);
+ if( rc!=SQLITE_OK ) return rc;
+ }
+ return SQLITE_OK;
+}
+
+/* Add empty doclists for all terms in the given row's content to
+** pendingTerms.
+*/
+static int deleteTerms(fulltext_vtab *v, sqlite_int64 iDocid){
+ const char **pValues;
+ int i, rc;
+
+ /* TODO(shess) Should we allow such tables at all? */
+ if( DL_DEFAULT==DL_DOCIDS ) return SQLITE_ERROR;
+
+ rc = content_select(v, iDocid, &pValues);
+ if( rc!=SQLITE_OK ) return rc;
+
+ for(i = 0 ; i < v->nColumn; ++i) {
+ rc = buildTerms(v, iDocid, pValues[i], -1);
+ if( rc!=SQLITE_OK ) break;
+ }
+
+ freeStringArray(v->nColumn, pValues);
+ return SQLITE_OK;
+}
+
+/* TODO(shess) Refactor the code to remove this forward decl. */
+static int initPendingTerms(fulltext_vtab *v, sqlite_int64 iDocid);
+
+/* Insert a row into the %_content table; set *piDocid to be the ID of the
+** new row. Add doclists for terms to pendingTerms.
+*/
+static int index_insert(fulltext_vtab *v, sqlite3_value *pRequestDocid,
+ sqlite3_value **pValues, sqlite_int64 *piDocid){
+ int rc;
+
+ rc = content_insert(v, pRequestDocid, pValues); /* execute an SQL INSERT */
+ if( rc!=SQLITE_OK ) return rc;
+
+ /* docid column is an alias for rowid. */
+ *piDocid = sqlite3_last_insert_rowid(v->db);
+ rc = initPendingTerms(v, *piDocid);
+ if( rc!=SQLITE_OK ) return rc;
+
+ return insertTerms(v, *piDocid, pValues);
+}
+
+/* Delete a row from the %_content table; add empty doclists for terms
+** to pendingTerms.
+*/
+static int index_delete(fulltext_vtab *v, sqlite_int64 iRow){
+ int rc = initPendingTerms(v, iRow);
+ if( rc!=SQLITE_OK ) return rc;
+
+ rc = deleteTerms(v, iRow);
+ if( rc!=SQLITE_OK ) return rc;
+
+ return content_delete(v, iRow); /* execute an SQL DELETE */
+}
+
+/* Update a row in the %_content table; add delete doclists to
+** pendingTerms for old terms not in the new data, add insert doclists
+** to pendingTerms for terms in the new data.
+*/
+static int index_update(fulltext_vtab *v, sqlite_int64 iRow,
+ sqlite3_value **pValues){
+ int rc = initPendingTerms(v, iRow);
+ if( rc!=SQLITE_OK ) return rc;
+
+ /* Generate an empty doclist for each term that previously appeared in this
+ * row. */
+ rc = deleteTerms(v, iRow);
+ if( rc!=SQLITE_OK ) return rc;
+
+ rc = content_update(v, pValues, iRow); /* execute an SQL UPDATE */
+ if( rc!=SQLITE_OK ) return rc;
+
+ /* Now add positions for terms which appear in the updated row. */
+ return insertTerms(v, iRow, pValues);
+}
+
+/*******************************************************************/
+/* InteriorWriter is used to collect terms and block references into
+** interior nodes in %_segments. See commentary at top of file for
+** format.
+*/
+
+/* How large interior nodes can grow. */
+#define INTERIOR_MAX 2048
+
+/* Minimum number of terms per interior node (except the root). This
+** prevents large terms from making the tree too skinny - must be >0
+** so that the tree always makes progress. Note that the min tree
+** fanout will be INTERIOR_MIN_TERMS+1.
+*/
+#define INTERIOR_MIN_TERMS 7
+#if INTERIOR_MIN_TERMS<1
+# error INTERIOR_MIN_TERMS must be greater than 0.
+#endif
+
+/* ROOT_MAX controls how much data is stored inline in the segment
+** directory.
+*/
+/* TODO(shess) Push ROOT_MAX down to whoever is writing things. It's
+** only here so that interiorWriterRootInfo() and leafWriterRootInfo()
+** can both see it, but if the caller passed it in, we wouldn't even
+** need a define.
+*/
+#define ROOT_MAX 1024
+#if ROOT_MAX<VARINT_MAX*2
+# error ROOT_MAX must have enough space for a header.
+#endif
+
+/* InteriorBlock stores a linked-list of interior blocks while a lower
+** layer is being constructed.
+*/
+typedef struct InteriorBlock {
+ DataBuffer term; /* Leftmost term in block's subtree. */
+ DataBuffer data; /* Accumulated data for the block. */
+ struct InteriorBlock *next;
+} InteriorBlock;
+
+static InteriorBlock *interiorBlockNew(int iHeight, sqlite_int64 iChildBlock,
+ const char *pTerm, int nTerm){
+ InteriorBlock *block = sqlite3_malloc(sizeof(InteriorBlock));
+ char c[VARINT_MAX+VARINT_MAX];
+ int n;
+
+ if( block ){
+ memset(block, 0, sizeof(*block));
+ dataBufferInit(&block->term, 0);
+ dataBufferReplace(&block->term, pTerm, nTerm);
+
+ n = fts3PutVarint(c, iHeight);
+ n += fts3PutVarint(c+n, iChildBlock);
+ dataBufferInit(&block->data, INTERIOR_MAX);
+ dataBufferReplace(&block->data, c, n);
+ }
+ return block;
+}
+
+#ifndef NDEBUG
+/* Verify that the data is readable as an interior node. */
+static void interiorBlockValidate(InteriorBlock *pBlock){
+ const char *pData = pBlock->data.pData;
+ int nData = pBlock->data.nData;
+ int n, iDummy;
+ sqlite_int64 iBlockid;
+
+ assert( nData>0 );
+ assert( pData!=0 );
+ assert( pData+nData>pData );
+
+ /* Must lead with height of node as a varint(n), n>0 */
+ n = fts3GetVarint32(pData, &iDummy);
+ assert( n>0 );
+ assert( iDummy>0 );
+ assert( n<nData );
+ pData += n;
+ nData -= n;
+
+ /* Must contain iBlockid. */
+ n = fts3GetVarint(pData, &iBlockid);
+ assert( n>0 );
+ assert( n<=nData );
+ pData += n;
+ nData -= n;
+
+ /* Zero or more terms of positive length */
+ if( nData!=0 ){
+ /* First term is not delta-encoded. */
+ n = fts3GetVarint32(pData, &iDummy);
+ assert( n>0 );
+ assert( iDummy>0 );
+ assert( n+iDummy>0);
+ assert( n+iDummy<=nData );
+ pData += n+iDummy;
+ nData -= n+iDummy;
+
+ /* Following terms delta-encoded. */
+ while( nData!=0 ){
+ /* Length of shared prefix. */
+ n = fts3GetVarint32(pData, &iDummy);
+ assert( n>0 );
+ assert( iDummy>=0 );
+ assert( n<nData );
+ pData += n;
+ nData -= n;
+
+ /* Length and data of distinct suffix. */
+ n = fts3GetVarint32(pData, &iDummy);
+ assert( n>0 );
+ assert( iDummy>0 );
+ assert( n+iDummy>0);
+ assert( n+iDummy<=nData );
+ pData += n+iDummy;
+ nData -= n+iDummy;
+ }
+ }
+}
+#define ASSERT_VALID_INTERIOR_BLOCK(x) interiorBlockValidate(x)
+#else
+#define ASSERT_VALID_INTERIOR_BLOCK(x) assert( 1 )
+#endif
+
+typedef struct InteriorWriter {
+ int iHeight; /* from 0 at leaves. */
+ InteriorBlock *first, *last;
+ struct InteriorWriter *parentWriter;
+
+ DataBuffer term; /* Last term written to block "last". */
+ sqlite_int64 iOpeningChildBlock; /* First child block in block "last". */
+#ifndef NDEBUG
+ sqlite_int64 iLastChildBlock; /* for consistency checks. */
+#endif
+} InteriorWriter;
+
+/* Initialize an interior node where pTerm[nTerm] marks the leftmost
+** term in the tree. iChildBlock is the leftmost child block at the
+** next level down the tree.
+*/
+static void interiorWriterInit(int iHeight, const char *pTerm, int nTerm,
+ sqlite_int64 iChildBlock,
+ InteriorWriter *pWriter){
+ InteriorBlock *block;
+ assert( iHeight>0 );
+ CLEAR(pWriter);
+
+ pWriter->iHeight = iHeight;
+ pWriter->iOpeningChildBlock = iChildBlock;
+#ifndef NDEBUG
+ pWriter->iLastChildBlock = iChildBlock;
+#endif
+ block = interiorBlockNew(iHeight, iChildBlock, pTerm, nTerm);
+ pWriter->last = pWriter->first = block;
+ ASSERT_VALID_INTERIOR_BLOCK(pWriter->last);
+ dataBufferInit(&pWriter->term, 0);
+}
+
+/* Append the child node rooted at iChildBlock to the interior node,
+** with pTerm[nTerm] as the leftmost term in iChildBlock's subtree.
+*/
+static void interiorWriterAppend(InteriorWriter *pWriter,
+ const char *pTerm, int nTerm,
+ sqlite_int64 iChildBlock){
+ char c[VARINT_MAX+VARINT_MAX];
+ int n, nPrefix = 0;
+
+ ASSERT_VALID_INTERIOR_BLOCK(pWriter->last);
+
+ /* The first term written into an interior node is actually
+ ** associated with the second child added (the first child was added
+ ** in interiorWriterInit, or in the if clause at the bottom of this
+ ** function). That term gets encoded straight up, with nPrefix left
+ ** at 0.
+ */
+ if( pWriter->term.nData==0 ){
+ n = fts3PutVarint(c, nTerm);
+ }else{
+ while( nPrefix<pWriter->term.nData &&
+ pTerm[nPrefix]==pWriter->term.pData[nPrefix] ){
+ nPrefix++;
+ }
+
+ n = fts3PutVarint(c, nPrefix);
+ n += fts3PutVarint(c+n, nTerm-nPrefix);
+ }
+
+#ifndef NDEBUG
+ pWriter->iLastChildBlock++;
+#endif
+ assert( pWriter->iLastChildBlock==iChildBlock );
+
+ /* Overflow to a new block if the new term makes the current block
+ ** too big, and the current block already has enough terms.
+ */
+ if( pWriter->last->data.nData+n+nTerm-nPrefix>INTERIOR_MAX &&
+ iChildBlock-pWriter->iOpeningChildBlock>INTERIOR_MIN_TERMS ){
+ pWriter->last->next = interiorBlockNew(pWriter->iHeight, iChildBlock,
+ pTerm, nTerm);
+ pWriter->last = pWriter->last->next;
+ pWriter->iOpeningChildBlock = iChildBlock;
+ dataBufferReset(&pWriter->term);
+ }else{
+ dataBufferAppend2(&pWriter->last->data, c, n,
+ pTerm+nPrefix, nTerm-nPrefix);
+ dataBufferReplace(&pWriter->term, pTerm, nTerm);
+ }
+ ASSERT_VALID_INTERIOR_BLOCK(pWriter->last);
+}
+
+/* Free the space used by pWriter, including the linked-list of
+** InteriorBlocks, and parentWriter, if present.
+*/
+static int interiorWriterDestroy(InteriorWriter *pWriter){
+ InteriorBlock *block = pWriter->first;
+
+ while( block!=NULL ){
+ InteriorBlock *b = block;
+ block = block->next;
+ dataBufferDestroy(&b->term);
+ dataBufferDestroy(&b->data);
+ sqlite3_free(b);
+ }
+ if( pWriter->parentWriter!=NULL ){
+ interiorWriterDestroy(pWriter->parentWriter);
+ sqlite3_free(pWriter->parentWriter);
+ }
+ dataBufferDestroy(&pWriter->term);
+ SCRAMBLE(pWriter);
+ return SQLITE_OK;
+}
+
+/* If pWriter can fit entirely in ROOT_MAX, return it as the root info
+** directly, leaving *piEndBlockid unchanged. Otherwise, flush
+** pWriter to %_segments, building a new layer of interior nodes, and
+** recursively ask for their root into.
+*/
+static int interiorWriterRootInfo(fulltext_vtab *v, InteriorWriter *pWriter,
+ char **ppRootInfo, int *pnRootInfo,
+ sqlite_int64 *piEndBlockid){
+ InteriorBlock *block = pWriter->first;
+ sqlite_int64 iBlockid = 0;
+ int rc;
+
+ /* If we can fit the segment inline */
+ if( block==pWriter->last && block->data.nData<ROOT_MAX ){
+ *ppRootInfo = block->data.pData;
+ *pnRootInfo = block->data.nData;
+ return SQLITE_OK;
+ }
+
+ /* Flush the first block to %_segments, and create a new level of
+ ** interior node.
+ */
+ ASSERT_VALID_INTERIOR_BLOCK(block);
+ rc = block_insert(v, block->data.pData, block->data.nData, &iBlockid);
+ if( rc!=SQLITE_OK ) return rc;
+ *piEndBlockid = iBlockid;
+
+ pWriter->parentWriter = sqlite3_malloc(sizeof(*pWriter->parentWriter));
+ interiorWriterInit(pWriter->iHeight+1,
+ block->term.pData, block->term.nData,
+ iBlockid, pWriter->parentWriter);
+
+ /* Flush additional blocks and append to the higher interior
+ ** node.
+ */
+ for(block=block->next; block!=NULL; block=block->next){
+ ASSERT_VALID_INTERIOR_BLOCK(block);
+ rc = block_insert(v, block->data.pData, block->data.nData, &iBlockid);
+ if( rc!=SQLITE_OK ) return rc;
+ *piEndBlockid = iBlockid;
+
+ interiorWriterAppend(pWriter->parentWriter,
+ block->term.pData, block->term.nData, iBlockid);
+ }
+
+ /* Parent node gets the chance to be the root. */
+ return interiorWriterRootInfo(v, pWriter->parentWriter,
+ ppRootInfo, pnRootInfo, piEndBlockid);
+}
+
+/****************************************************************/
+/* InteriorReader is used to read off the data from an interior node
+** (see comment at top of file for the format).
+*/
+typedef struct InteriorReader {
+ const char *pData;
+ int nData;
+
+ DataBuffer term; /* previous term, for decoding term delta. */
+
+ sqlite_int64 iBlockid;
+} InteriorReader;
+
+static void interiorReaderDestroy(InteriorReader *pReader){
+ dataBufferDestroy(&pReader->term);
+ SCRAMBLE(pReader);
+}
+
+/* TODO(shess) The assertions are great, but what if we're in NDEBUG
+** and the blob is empty or otherwise contains suspect data?
+*/
+static void interiorReaderInit(const char *pData, int nData,
+ InteriorReader *pReader){
+ int n, nTerm;
+
+ /* Require at least the leading flag byte */
+ assert( nData>0 );
+ assert( pData[0]!='\0' );
+
+ CLEAR(pReader);
+
+ /* Decode the base blockid, and set the cursor to the first term. */
+ n = fts3GetVarint(pData+1, &pReader->iBlockid);
+ assert( 1+n<=nData );
+ pReader->pData = pData+1+n;
+ pReader->nData = nData-(1+n);
+
+ /* A single-child interior node (such as when a leaf node was too
+ ** large for the segment directory) won't have any terms.
+ ** Otherwise, decode the first term.
+ */
+ if( pReader->nData==0 ){
+ dataBufferInit(&pReader->term, 0);
+ }else{
+ n = fts3GetVarint32(pReader->pData, &nTerm);
+ dataBufferInit(&pReader->term, nTerm);
+ dataBufferReplace(&pReader->term, pReader->pData+n, nTerm);
+ assert( n+nTerm<=pReader->nData );
+ pReader->pData += n+nTerm;
+ pReader->nData -= n+nTerm;
+ }
+}
+
+static int interiorReaderAtEnd(InteriorReader *pReader){
+ return pReader->term.nData==0;
+}
+
+static sqlite_int64 interiorReaderCurrentBlockid(InteriorReader *pReader){
+ return pReader->iBlockid;
+}
+
+static int interiorReaderTermBytes(InteriorReader *pReader){
+ assert( !interiorReaderAtEnd(pReader) );
+ return pReader->term.nData;
+}
+static const char *interiorReaderTerm(InteriorReader *pReader){
+ assert( !interiorReaderAtEnd(pReader) );
+ return pReader->term.pData;
+}
+
+/* Step forward to the next term in the node. */
+static void interiorReaderStep(InteriorReader *pReader){
+ assert( !interiorReaderAtEnd(pReader) );
+
+ /* If the last term has been read, signal eof, else construct the
+ ** next term.
+ */
+ if( pReader->nData==0 ){
+ dataBufferReset(&pReader->term);
+ }else{
+ int n, nPrefix, nSuffix;
+
+ n = fts3GetVarint32(pReader->pData, &nPrefix);
+ n += fts3GetVarint32(pReader->pData+n, &nSuffix);
+
+ /* Truncate the current term and append suffix data. */
+ pReader->term.nData = nPrefix;
+ dataBufferAppend(&pReader->term, pReader->pData+n, nSuffix);
+
+ assert( n+nSuffix<=pReader->nData );
+ pReader->pData += n+nSuffix;
+ pReader->nData -= n+nSuffix;
+ }
+ pReader->iBlockid++;
+}
+
+/* Compare the current term to pTerm[nTerm], returning strcmp-style
+** results. If isPrefix, equality means equal through nTerm bytes.
+*/
+static int interiorReaderTermCmp(InteriorReader *pReader,
+ const char *pTerm, int nTerm, int isPrefix){
+ const char *pReaderTerm = interiorReaderTerm(pReader);
+ int nReaderTerm = interiorReaderTermBytes(pReader);
+ int c, n = nReaderTerm<nTerm ? nReaderTerm : nTerm;
+
+ if( n==0 ){
+ if( nReaderTerm>0 ) return -1;
+ if( nTerm>0 ) return 1;
+ return 0;
+ }
+
+ c = memcmp(pReaderTerm, pTerm, n);
+ if( c!=0 ) return c;
+ if( isPrefix && n==nTerm ) return 0;
+ return nReaderTerm - nTerm;
+}
+
+/****************************************************************/
+/* LeafWriter is used to collect terms and associated doclist data
+** into leaf blocks in %_segments (see top of file for format info).
+** Expected usage is:
+**
+** LeafWriter writer;
+** leafWriterInit(0, 0, &writer);
+** while( sorted_terms_left_to_process ){
+** // data is doclist data for that term.
+** rc = leafWriterStep(v, &writer, pTerm, nTerm, pData, nData);
+** if( rc!=SQLITE_OK ) goto err;
+** }
+** rc = leafWriterFinalize(v, &writer);
+**err:
+** leafWriterDestroy(&writer);
+** return rc;
+**
+** leafWriterStep() may write a collected leaf out to %_segments.
+** leafWriterFinalize() finishes writing any buffered data and stores
+** a root node in %_segdir. leafWriterDestroy() frees all buffers and
+** InteriorWriters allocated as part of writing this segment.
+**
+** TODO(shess) Document leafWriterStepMerge().
+*/
+
+/* Put terms with data this big in their own block. */
+#define STANDALONE_MIN 1024
+
+/* Keep leaf blocks below this size. */
+#define LEAF_MAX 2048
+
+typedef struct LeafWriter {
+ int iLevel;
+ int idx;
+ sqlite_int64 iStartBlockid; /* needed to create the root info */
+ sqlite_int64 iEndBlockid; /* when we're done writing. */
+
+ DataBuffer term; /* previous encoded term */
+ DataBuffer data; /* encoding buffer */
+
+ /* bytes of first term in the current node which distinguishes that
+ ** term from the last term of the previous node.
+ */
+ int nTermDistinct;
+
+ InteriorWriter parentWriter; /* if we overflow */
+ int has_parent;
+} LeafWriter;
+
+static void leafWriterInit(int iLevel, int idx, LeafWriter *pWriter){
+ CLEAR(pWriter);
+ pWriter->iLevel = iLevel;
+ pWriter->idx = idx;
+
+ dataBufferInit(&pWriter->term, 32);
+
+ /* Start out with a reasonably sized block, though it can grow. */
+ dataBufferInit(&pWriter->data, LEAF_MAX);
+}
+
+#ifndef NDEBUG
+/* Verify that the data is readable as a leaf node. */
+static void leafNodeValidate(const char *pData, int nData){
+ int n, iDummy;
+
+ if( nData==0 ) return;
+ assert( nData>0 );
+ assert( pData!=0 );
+ assert( pData+nData>pData );
+
+ /* Must lead with a varint(0) */
+ n = fts3GetVarint32(pData, &iDummy);
+ assert( iDummy==0 );
+ assert( n>0 );
+ assert( n<nData );
+ pData += n;
+ nData -= n;
+
+ /* Leading term length and data must fit in buffer. */
+ n = fts3GetVarint32(pData, &iDummy);
+ assert( n>0 );
+ assert( iDummy>0 );
+ assert( n+iDummy>0 );
+ assert( n+iDummy<nData );
+ pData += n+iDummy;
+ nData -= n+iDummy;
+
+ /* Leading term's doclist length and data must fit. */
+ n = fts3GetVarint32(pData, &iDummy);
+ assert( n>0 );
+ assert( iDummy>0 );
+ assert( n+iDummy>0 );
+ assert( n+iDummy<=nData );
+ ASSERT_VALID_DOCLIST(DL_DEFAULT, pData+n, iDummy, NULL);
+ pData += n+iDummy;
+ nData -= n+iDummy;
+
+ /* Verify that trailing terms and doclists also are readable. */
+ while( nData!=0 ){
+ n = fts3GetVarint32(pData, &iDummy);
+ assert( n>0 );
+ assert( iDummy>=0 );
+ assert( n<nData );
+ pData += n;
+ nData -= n;
+ n = fts3GetVarint32(pData, &iDummy);
+ assert( n>0 );
+ assert( iDummy>0 );
+ assert( n+iDummy>0 );
+ assert( n+iDummy<nData );
+ pData += n+iDummy;
+ nData -= n+iDummy;
+
+ n = fts3GetVarint32(pData, &iDummy);
+ assert( n>0 );
+ assert( iDummy>0 );
+ assert( n+iDummy>0 );
+ assert( n+iDummy<=nData );
+ ASSERT_VALID_DOCLIST(DL_DEFAULT, pData+n, iDummy, NULL);
+ pData += n+iDummy;
+ nData -= n+iDummy;
+ }
+}
+#define ASSERT_VALID_LEAF_NODE(p, n) leafNodeValidate(p, n)
+#else
+#define ASSERT_VALID_LEAF_NODE(p, n) assert( 1 )
+#endif
+
+/* Flush the current leaf node to %_segments, and adding the resulting
+** blockid and the starting term to the interior node which will
+** contain it.
+*/
+static int leafWriterInternalFlush(fulltext_vtab *v, LeafWriter *pWriter,
+ int iData, int nData){
+ sqlite_int64 iBlockid = 0;
+ const char *pStartingTerm;
+ int nStartingTerm, rc, n;
+
+ /* Must have the leading varint(0) flag, plus at least some
+ ** valid-looking data.
+ */
+ assert( nData>2 );
+ assert( iData>=0 );
+ assert( iData+nData<=pWriter->data.nData );
+ ASSERT_VALID_LEAF_NODE(pWriter->data.pData+iData, nData);
+
+ rc = block_insert(v, pWriter->data.pData+iData, nData, &iBlockid);
+ if( rc!=SQLITE_OK ) return rc;
+ assert( iBlockid!=0 );
+
+ /* Reconstruct the first term in the leaf for purposes of building
+ ** the interior node.
+ */
+ n = fts3GetVarint32(pWriter->data.pData+iData+1, &nStartingTerm);
+ pStartingTerm = pWriter->data.pData+iData+1+n;
+ assert( pWriter->data.nData>iData+1+n+nStartingTerm );
+ assert( pWriter->nTermDistinct>0 );
+ assert( pWriter->nTermDistinct<=nStartingTerm );
+ nStartingTerm = pWriter->nTermDistinct;
+
+ if( pWriter->has_parent ){
+ interiorWriterAppend(&pWriter->parentWriter,
+ pStartingTerm, nStartingTerm, iBlockid);
+ }else{
+ interiorWriterInit(1, pStartingTerm, nStartingTerm, iBlockid,
+ &pWriter->parentWriter);
+ pWriter->has_parent = 1;
+ }
+
+ /* Track the span of this segment's leaf nodes. */
+ if( pWriter->iEndBlockid==0 ){
+ pWriter->iEndBlockid = pWriter->iStartBlockid = iBlockid;
+ }else{
+ pWriter->iEndBlockid++;
+ assert( iBlockid==pWriter->iEndBlockid );
+ }
+
+ return SQLITE_OK;
+}
+static int leafWriterFlush(fulltext_vtab *v, LeafWriter *pWriter){
+ int rc = leafWriterInternalFlush(v, pWriter, 0, pWriter->data.nData);
+ if( rc!=SQLITE_OK ) return rc;
+
+ /* Re-initialize the output buffer. */
+ dataBufferReset(&pWriter->data);
+
+ return SQLITE_OK;
+}
+
+/* Fetch the root info for the segment. If the entire leaf fits
+** within ROOT_MAX, then it will be returned directly, otherwise it
+** will be flushed and the root info will be returned from the
+** interior node. *piEndBlockid is set to the blockid of the last
+** interior or leaf node written to disk (0 if none are written at
+** all).
+*/
+static int leafWriterRootInfo(fulltext_vtab *v, LeafWriter *pWriter,
+ char **ppRootInfo, int *pnRootInfo,
+ sqlite_int64 *piEndBlockid){
+ /* we can fit the segment entirely inline */
+ if( !pWriter->has_parent && pWriter->data.nData<ROOT_MAX ){
+ *ppRootInfo = pWriter->data.pData;
+ *pnRootInfo = pWriter->data.nData;
+ *piEndBlockid = 0;
+ return SQLITE_OK;
+ }
+
+ /* Flush remaining leaf data. */
+ if( pWriter->data.nData>0 ){
+ int rc = leafWriterFlush(v, pWriter);
+ if( rc!=SQLITE_OK ) return rc;
+ }
+
+ /* We must have flushed a leaf at some point. */
+ assert( pWriter->has_parent );
+
+ /* Tenatively set the end leaf blockid as the end blockid. If the
+ ** interior node can be returned inline, this will be the final
+ ** blockid, otherwise it will be overwritten by
+ ** interiorWriterRootInfo().
+ */
+ *piEndBlockid = pWriter->iEndBlockid;
+
+ return interiorWriterRootInfo(v, &pWriter->parentWriter,
+ ppRootInfo, pnRootInfo, piEndBlockid);
+}
+
+/* Collect the rootInfo data and store it into the segment directory.
+** This has the effect of flushing the segment's leaf data to
+** %_segments, and also flushing any interior nodes to %_segments.
+*/
+static int leafWriterFinalize(fulltext_vtab *v, LeafWriter *pWriter){
+ sqlite_int64 iEndBlockid;
+ char *pRootInfo;
+ int rc, nRootInfo;
+
+ rc = leafWriterRootInfo(v, pWriter, &pRootInfo, &nRootInfo, &iEndBlockid);
+ if( rc!=SQLITE_OK ) return rc;
+
+ /* Don't bother storing an entirely empty segment. */
+ if( iEndBlockid==0 && nRootInfo==0 ) return SQLITE_OK;
+
+ return segdir_set(v, pWriter->iLevel, pWriter->idx,
+ pWriter->iStartBlockid, pWriter->iEndBlockid,
+ iEndBlockid, pRootInfo, nRootInfo);
+}
+
+static void leafWriterDestroy(LeafWriter *pWriter){
+ if( pWriter->has_parent ) interiorWriterDestroy(&pWriter->parentWriter);
+ dataBufferDestroy(&pWriter->term);
+ dataBufferDestroy(&pWriter->data);
+}
+
+/* Encode a term into the leafWriter, delta-encoding as appropriate.
+** Returns the length of the new term which distinguishes it from the
+** previous term, which can be used to set nTermDistinct when a node
+** boundary is crossed.
+*/
+static int leafWriterEncodeTerm(LeafWriter *pWriter,
+ const char *pTerm, int nTerm){
+ char c[VARINT_MAX+VARINT_MAX];
+ int n, nPrefix = 0;
+
+ assert( nTerm>0 );
+ while( nPrefix<pWriter->term.nData &&
+ pTerm[nPrefix]==pWriter->term.pData[nPrefix] ){
+ nPrefix++;
+ /* Failing this implies that the terms weren't in order. */
+ assert( nPrefix<nTerm );
+ }
+
+ if( pWriter->data.nData==0 ){
+ /* Encode the node header and leading term as:
+ ** varint(0)
+ ** varint(nTerm)
+ ** char pTerm[nTerm]
+ */
+ n = fts3PutVarint(c, '\0');
+ n += fts3PutVarint(c+n, nTerm);
+ dataBufferAppend2(&pWriter->data, c, n, pTerm, nTerm);
+ }else{
+ /* Delta-encode the term as:
+ ** varint(nPrefix)
+ ** varint(nSuffix)
+ ** char pTermSuffix[nSuffix]
+ */
+ n = fts3PutVarint(c, nPrefix);
+ n += fts3PutVarint(c+n, nTerm-nPrefix);
+ dataBufferAppend2(&pWriter->data, c, n, pTerm+nPrefix, nTerm-nPrefix);
+ }
+ dataBufferReplace(&pWriter->term, pTerm, nTerm);
+
+ return nPrefix+1;
+}
+
+/* Used to avoid a memmove when a large amount of doclist data is in
+** the buffer. This constructs a node and term header before
+** iDoclistData and flushes the resulting complete node using
+** leafWriterInternalFlush().
+*/
+static int leafWriterInlineFlush(fulltext_vtab *v, LeafWriter *pWriter,
+ const char *pTerm, int nTerm,
+ int iDoclistData){
+ char c[VARINT_MAX+VARINT_MAX];
+ int iData, n = fts3PutVarint(c, 0);
+ n += fts3PutVarint(c+n, nTerm);
+
+ /* There should always be room for the header. Even if pTerm shared
+ ** a substantial prefix with the previous term, the entire prefix
+ ** could be constructed from earlier data in the doclist, so there
+ ** should be room.
+ */
+ assert( iDoclistData>=n+nTerm );
+
+ iData = iDoclistData-(n+nTerm);
+ memcpy(pWriter->data.pData+iData, c, n);
+ memcpy(pWriter->data.pData+iData+n, pTerm, nTerm);
+
+ return leafWriterInternalFlush(v, pWriter, iData, pWriter->data.nData-iData);
+}
+
+/* Push pTerm[nTerm] along with the doclist data to the leaf layer of
+** %_segments.
+*/
+static int leafWriterStepMerge(fulltext_vtab *v, LeafWriter *pWriter,
+ const char *pTerm, int nTerm,
+ DLReader *pReaders, int nReaders){
+ char c[VARINT_MAX+VARINT_MAX];
+ int iTermData = pWriter->data.nData, iDoclistData;
+ int i, nData, n, nActualData, nActual, rc, nTermDistinct;
+
+ ASSERT_VALID_LEAF_NODE(pWriter->data.pData, pWriter->data.nData);
+ nTermDistinct = leafWriterEncodeTerm(pWriter, pTerm, nTerm);
+
+ /* Remember nTermDistinct if opening a new node. */
+ if( iTermData==0 ) pWriter->nTermDistinct = nTermDistinct;
+
+ iDoclistData = pWriter->data.nData;
+
+ /* Estimate the length of the merged doclist so we can leave space
+ ** to encode it.
+ */
+ for(i=0, nData=0; i<nReaders; i++){
+ nData += dlrAllDataBytes(&pReaders[i]);
+ }
+ n = fts3PutVarint(c, nData);
+ dataBufferAppend(&pWriter->data, c, n);
+
+ docListMerge(&pWriter->data, pReaders, nReaders);
+ ASSERT_VALID_DOCLIST(DL_DEFAULT,
+ pWriter->data.pData+iDoclistData+n,
+ pWriter->data.nData-iDoclistData-n, NULL);
+
+ /* The actual amount of doclist data at this point could be smaller
+ ** than the length we encoded. Additionally, the space required to
+ ** encode this length could be smaller. For small doclists, this is
+ ** not a big deal, we can just use memmove() to adjust things.
+ */
+ nActualData = pWriter->data.nData-(iDoclistData+n);
+ nActual = fts3PutVarint(c, nActualData);
+ assert( nActualData<=nData );
+ assert( nActual<=n );
+
+ /* If the new doclist is big enough for force a standalone leaf
+ ** node, we can immediately flush it inline without doing the
+ ** memmove().
+ */
+ /* TODO(shess) This test matches leafWriterStep(), which does this
+ ** test before it knows the cost to varint-encode the term and
+ ** doclist lengths. At some point, change to
+ ** pWriter->data.nData-iTermData>STANDALONE_MIN.
+ */
+ if( nTerm+nActualData>STANDALONE_MIN ){
+ /* Push leaf node from before this term. */
+ if( iTermData>0 ){
+ rc = leafWriterInternalFlush(v, pWriter, 0, iTermData);
+ if( rc!=SQLITE_OK ) return rc;
+
+ pWriter->nTermDistinct = nTermDistinct;
+ }
+
+ /* Fix the encoded doclist length. */
+ iDoclistData += n - nActual;
+ memcpy(pWriter->data.pData+iDoclistData, c, nActual);
+
+ /* Push the standalone leaf node. */
+ rc = leafWriterInlineFlush(v, pWriter, pTerm, nTerm, iDoclistData);
+ if( rc!=SQLITE_OK ) return rc;
+
+ /* Leave the node empty. */
+ dataBufferReset(&pWriter->data);
+
+ return rc;
+ }
+
+ /* At this point, we know that the doclist was small, so do the
+ ** memmove if indicated.
+ */
+ if( nActual<n ){
+ memmove(pWriter->data.pData+iDoclistData+nActual,
+ pWriter->data.pData+iDoclistData+n,
+ pWriter->data.nData-(iDoclistData+n));
+ pWriter->data.nData -= n-nActual;
+ }
+
+ /* Replace written length with actual length. */
+ memcpy(pWriter->data.pData+iDoclistData, c, nActual);
+
+ /* If the node is too large, break things up. */
+ /* TODO(shess) This test matches leafWriterStep(), which does this
+ ** test before it knows the cost to varint-encode the term and
+ ** doclist lengths. At some point, change to
+ ** pWriter->data.nData>LEAF_MAX.
+ */
+ if( iTermData+nTerm+nActualData>LEAF_MAX ){
+ /* Flush out the leading data as a node */
+ rc = leafWriterInternalFlush(v, pWriter, 0, iTermData);
+ if( rc!=SQLITE_OK ) return rc;
+
+ pWriter->nTermDistinct = nTermDistinct;
+
+ /* Rebuild header using the current term */
+ n = fts3PutVarint(pWriter->data.pData, 0);
+ n += fts3PutVarint(pWriter->data.pData+n, nTerm);
+ memcpy(pWriter->data.pData+n, pTerm, nTerm);
+ n += nTerm;
+
+ /* There should always be room, because the previous encoding
+ ** included all data necessary to construct the term.
+ */
+ assert( n<iDoclistData );
+ /* So long as STANDALONE_MIN is half or less of LEAF_MAX, the
+ ** following memcpy() is safe (as opposed to needing a memmove).
+ */
+ assert( 2*STANDALONE_MIN<=LEAF_MAX );
+ assert( n+pWriter->data.nData-iDoclistData<iDoclistData );
+ memcpy(pWriter->data.pData+n,
+ pWriter->data.pData+iDoclistData,
+ pWriter->data.nData-iDoclistData);
+ pWriter->data.nData -= iDoclistData-n;
+ }
+ ASSERT_VALID_LEAF_NODE(pWriter->data.pData, pWriter->data.nData);
+
+ return SQLITE_OK;
+}
+
+/* Push pTerm[nTerm] along with the doclist data to the leaf layer of
+** %_segments.
+*/
+/* TODO(shess) Revise writeZeroSegment() so that doclists are
+** constructed directly in pWriter->data.
+*/
+static int leafWriterStep(fulltext_vtab *v, LeafWriter *pWriter,
+ const char *pTerm, int nTerm,
+ const char *pData, int nData){
+ int rc;
+ DLReader reader;
+
+ dlrInit(&reader, DL_DEFAULT, pData, nData);
+ rc = leafWriterStepMerge(v, pWriter, pTerm, nTerm, &reader, 1);
+ dlrDestroy(&reader);
+
+ return rc;
+}
+
+
+/****************************************************************/
+/* LeafReader is used to iterate over an individual leaf node. */
+typedef struct LeafReader {
+ DataBuffer term; /* copy of current term. */
+
+ const char *pData; /* data for current term. */
+ int nData;
+} LeafReader;
+
+static void leafReaderDestroy(LeafReader *pReader){
+ dataBufferDestroy(&pReader->term);
+ SCRAMBLE(pReader);
+}
+
+static int leafReaderAtEnd(LeafReader *pReader){
+ return pReader->nData<=0;
+}
+
+/* Access the current term. */
+static int leafReaderTermBytes(LeafReader *pReader){
+ return pReader->term.nData;
+}
+static const char *leafReaderTerm(LeafReader *pReader){
+ assert( pReader->term.nData>0 );
+ return pReader->term.pData;
+}
+
+/* Access the doclist data for the current term. */
+static int leafReaderDataBytes(LeafReader *pReader){
+ int nData;
+ assert( pReader->term.nData>0 );
+ fts3GetVarint32(pReader->pData, &nData);
+ return nData;
+}
+static const char *leafReaderData(LeafReader *pReader){
+ int n, nData;
+ assert( pReader->term.nData>0 );
+ n = fts3GetVarint32(pReader->pData, &nData);
+ return pReader->pData+n;
+}
+
+static void leafReaderInit(const char *pData, int nData,
+ LeafReader *pReader){
+ int nTerm, n;
+
+ assert( nData>0 );
+ assert( pData[0]=='\0' );
+
+ CLEAR(pReader);
+
+ /* Read the first term, skipping the header byte. */
+ n = fts3GetVarint32(pData+1, &nTerm);
+ dataBufferInit(&pReader->term, nTerm);
+ dataBufferReplace(&pReader->term, pData+1+n, nTerm);
+
+ /* Position after the first term. */
+ assert( 1+n+nTerm<nData );
+ pReader->pData = pData+1+n+nTerm;
+ pReader->nData = nData-1-n-nTerm;
+}
+
+/* Step the reader forward to the next term. */
+static void leafReaderStep(LeafReader *pReader){
+ int n, nData, nPrefix, nSuffix;
+ assert( !leafReaderAtEnd(pReader) );
+
+ /* Skip previous entry's data block. */
+ n = fts3GetVarint32(pReader->pData, &nData);
+ assert( n+nData<=pReader->nData );
+ pReader->pData += n+nData;
+ pReader->nData -= n+nData;
+
+ if( !leafReaderAtEnd(pReader) ){
+ /* Construct the new term using a prefix from the old term plus a
+ ** suffix from the leaf data.
+ */
+ n = fts3GetVarint32(pReader->pData, &nPrefix);
+ n += fts3GetVarint32(pReader->pData+n, &nSuffix);
+ assert( n+nSuffix<pReader->nData );
+ pReader->term.nData = nPrefix;
+ dataBufferAppend(&pReader->term, pReader->pData+n, nSuffix);
+
+ pReader->pData += n+nSuffix;
+ pReader->nData -= n+nSuffix;
+ }
+}
+
+/* strcmp-style comparison of pReader's current term against pTerm.
+** If isPrefix, equality means equal through nTerm bytes.
+*/
+static int leafReaderTermCmp(LeafReader *pReader,
+ const char *pTerm, int nTerm, int isPrefix){
+ int c, n = pReader->term.nData<nTerm ? pReader->term.nData : nTerm;
+ if( n==0 ){
+ if( pReader->term.nData>0 ) return -1;
+ if(nTerm>0 ) return 1;
+ return 0;
+ }
+
+ c = memcmp(pReader->term.pData, pTerm, n);
+ if( c!=0 ) return c;
+ if( isPrefix && n==nTerm ) return 0;
+ return pReader->term.nData - nTerm;
+}
+
+
+/****************************************************************/
+/* LeavesReader wraps LeafReader to allow iterating over the entire
+** leaf layer of the tree.
+*/
+typedef struct LeavesReader {
+ int idx; /* Index within the segment. */
+
+ sqlite3_stmt *pStmt; /* Statement we're streaming leaves from. */
+ int eof; /* we've seen SQLITE_DONE from pStmt. */
+
+ LeafReader leafReader; /* reader for the current leaf. */
+ DataBuffer rootData; /* root data for inline. */
+} LeavesReader;
+
+/* Access the current term. */
+static int leavesReaderTermBytes(LeavesReader *pReader){
+ assert( !pReader->eof );
+ return leafReaderTermBytes(&pReader->leafReader);
+}
+static const char *leavesReaderTerm(LeavesReader *pReader){
+ assert( !pReader->eof );
+ return leafReaderTerm(&pReader->leafReader);
+}
+
+/* Access the doclist data for the current term. */
+static int leavesReaderDataBytes(LeavesReader *pReader){
+ assert( !pReader->eof );
+ return leafReaderDataBytes(&pReader->leafReader);
+}
+static const char *leavesReaderData(LeavesReader *pReader){
+ assert( !pReader->eof );
+ return leafReaderData(&pReader->leafReader);
+}
+
+static int leavesReaderAtEnd(LeavesReader *pReader){
+ return pReader->eof;
+}
+
+/* loadSegmentLeaves() may not read all the way to SQLITE_DONE, thus
+** leaving the statement handle open, which locks the table.
+*/
+/* TODO(shess) This "solution" is not satisfactory. Really, there
+** should be check-in function for all statement handles which
+** arranges to call sqlite3_reset(). This most likely will require
+** modification to control flow all over the place, though, so for now
+** just punt.
+**
+** Note the the current system assumes that segment merges will run to
+** completion, which is why this particular probably hasn't arisen in
+** this case. Probably a brittle assumption.
+*/
+static int leavesReaderReset(LeavesReader *pReader){
+ return sqlite3_reset(pReader->pStmt);
+}
+
+static void leavesReaderDestroy(LeavesReader *pReader){
+ leafReaderDestroy(&pReader->leafReader);
+ dataBufferDestroy(&pReader->rootData);
+ SCRAMBLE(pReader);
+}
+
+/* Initialize pReader with the given root data (if iStartBlockid==0
+** the leaf data was entirely contained in the root), or from the
+** stream of blocks between iStartBlockid and iEndBlockid, inclusive.
+*/
+static int leavesReaderInit(fulltext_vtab *v,
+ int idx,
+ sqlite_int64 iStartBlockid,
+ sqlite_int64 iEndBlockid,
+ const char *pRootData, int nRootData,
+ LeavesReader *pReader){
+ CLEAR(pReader);
+ pReader->idx = idx;
+
+ dataBufferInit(&pReader->rootData, 0);
+ if( iStartBlockid==0 ){
+ /* Entire leaf level fit in root data. */
+ dataBufferReplace(&pReader->rootData, pRootData, nRootData);
+ leafReaderInit(pReader->rootData.pData, pReader->rootData.nData,
+ &pReader->leafReader);
+ }else{
+ sqlite3_stmt *s;
+ int rc = sql_get_leaf_statement(v, idx, &s);
+ if( rc!=SQLITE_OK ) return rc;
+
+ rc = sqlite3_bind_int64(s, 1, iStartBlockid);
+ if( rc!=SQLITE_OK ) return rc;
+
+ rc = sqlite3_bind_int64(s, 2, iEndBlockid);
+ if( rc!=SQLITE_OK ) return rc;
+
+ rc = sqlite3_step(s);
+ if( rc==SQLITE_DONE ){
+ pReader->eof = 1;
+ return SQLITE_OK;
+ }
+ if( rc!=SQLITE_ROW ) return rc;
+
+ pReader->pStmt = s;
+ leafReaderInit(sqlite3_column_blob(pReader->pStmt, 0),
+ sqlite3_column_bytes(pReader->pStmt, 0),
+ &pReader->leafReader);
+ }
+ return SQLITE_OK;
+}
+
+/* Step the current leaf forward to the next term. If we reach the
+** end of the current leaf, step forward to the next leaf block.
+*/
+static int leavesReaderStep(fulltext_vtab *v, LeavesReader *pReader){
+ assert( !leavesReaderAtEnd(pReader) );
+ leafReaderStep(&pReader->leafReader);
+
+ if( leafReaderAtEnd(&pReader->leafReader) ){
+ int rc;
+ if( pReader->rootData.pData ){
+ pReader->eof = 1;
+ return SQLITE_OK;
+ }
+ rc = sqlite3_step(pReader->pStmt);
+ if( rc!=SQLITE_ROW ){
+ pReader->eof = 1;
+ return rc==SQLITE_DONE ? SQLITE_OK : rc;
+ }
+ leafReaderDestroy(&pReader->leafReader);
+ leafReaderInit(sqlite3_column_blob(pReader->pStmt, 0),
+ sqlite3_column_bytes(pReader->pStmt, 0),
+ &pReader->leafReader);
+ }
+ return SQLITE_OK;
+}
+
+/* Order LeavesReaders by their term, ignoring idx. Readers at eof
+** always sort to the end.
+*/
+static int leavesReaderTermCmp(LeavesReader *lr1, LeavesReader *lr2){
+ if( leavesReaderAtEnd(lr1) ){
+ if( leavesReaderAtEnd(lr2) ) return 0;
+ return 1;
+ }
+ if( leavesReaderAtEnd(lr2) ) return -1;
+
+ return leafReaderTermCmp(&lr1->leafReader,
+ leavesReaderTerm(lr2), leavesReaderTermBytes(lr2),
+ 0);
+}
+
+/* Similar to leavesReaderTermCmp(), with additional ordering by idx
+** so that older segments sort before newer segments.
+*/
+static int leavesReaderCmp(LeavesReader *lr1, LeavesReader *lr2){
+ int c = leavesReaderTermCmp(lr1, lr2);
+ if( c!=0 ) return c;
+ return lr1->idx-lr2->idx;
+}
+
+/* Assume that pLr[1]..pLr[nLr] are sorted. Bubble pLr[0] into its
+** sorted position.
+*/
+static void leavesReaderReorder(LeavesReader *pLr, int nLr){
+ while( nLr>1 && leavesReaderCmp(pLr, pLr+1)>0 ){
+ LeavesReader tmp = pLr[0];
+ pLr[0] = pLr[1];
+ pLr[1] = tmp;
+ nLr--;
+ pLr++;
+ }
+}
+
+/* Initializes pReaders with the segments from level iLevel, returning
+** the number of segments in *piReaders. Leaves pReaders in sorted
+** order.
+*/
+static int leavesReadersInit(fulltext_vtab *v, int iLevel,
+ LeavesReader *pReaders, int *piReaders){
+ sqlite3_stmt *s;
+ int i, rc = sql_get_statement(v, SEGDIR_SELECT_STMT, &s);
+ if( rc!=SQLITE_OK ) return rc;
+
+ rc = sqlite3_bind_int(s, 1, iLevel);
+ if( rc!=SQLITE_OK ) return rc;
+
+ i = 0;
+ while( (rc = sqlite3_step(s))==SQLITE_ROW ){
+ sqlite_int64 iStart = sqlite3_column_int64(s, 0);
+ sqlite_int64 iEnd = sqlite3_column_int64(s, 1);
+ const char *pRootData = sqlite3_column_blob(s, 2);
+ int nRootData = sqlite3_column_bytes(s, 2);
+
+ assert( i<MERGE_COUNT );
+ rc = leavesReaderInit(v, i, iStart, iEnd, pRootData, nRootData,
+ &pReaders[i]);
+ if( rc!=SQLITE_OK ) break;
+
+ i++;
+ }
+ if( rc!=SQLITE_DONE ){
+ while( i-->0 ){
+ leavesReaderDestroy(&pReaders[i]);
+ }
+ return rc;
+ }
+
+ *piReaders = i;
+
+ /* Leave our results sorted by term, then age. */
+ while( i-- ){
+ leavesReaderReorder(pReaders+i, *piReaders-i);
+ }
+ return SQLITE_OK;
+}
+
+/* Merge doclists from pReaders[nReaders] into a single doclist, which
+** is written to pWriter. Assumes pReaders is ordered oldest to
+** newest.
+*/
+/* TODO(shess) Consider putting this inline in segmentMerge(). */
+static int leavesReadersMerge(fulltext_vtab *v,
+ LeavesReader *pReaders, int nReaders,
+ LeafWriter *pWriter){
+ DLReader dlReaders[MERGE_COUNT];
+ const char *pTerm = leavesReaderTerm(pReaders);
+ int i, nTerm = leavesReaderTermBytes(pReaders);
+
+ assert( nReaders<=MERGE_COUNT );
+
+ for(i=0; i<nReaders; i++){
+ dlrInit(&dlReaders[i], DL_DEFAULT,
+ leavesReaderData(pReaders+i),
+ leavesReaderDataBytes(pReaders+i));
+ }
+
+ return leafWriterStepMerge(v, pWriter, pTerm, nTerm, dlReaders, nReaders);
+}
+
+/* Forward ref due to mutual recursion with segdirNextIndex(). */
+static int segmentMerge(fulltext_vtab *v, int iLevel);
+
+/* Put the next available index at iLevel into *pidx. If iLevel
+** already has MERGE_COUNT segments, they are merged to a higher
+** level to make room.
+*/
+static int segdirNextIndex(fulltext_vtab *v, int iLevel, int *pidx){
+ int rc = segdir_max_index(v, iLevel, pidx);
+ if( rc==SQLITE_DONE ){ /* No segments at iLevel. */
+ *pidx = 0;
+ }else if( rc==SQLITE_ROW ){
+ if( *pidx==(MERGE_COUNT-1) ){
+ rc = segmentMerge(v, iLevel);
+ if( rc!=SQLITE_OK ) return rc;
+ *pidx = 0;
+ }else{
+ (*pidx)++;
+ }
+ }else{
+ return rc;
+ }
+ return SQLITE_OK;
+}
+
+/* Merge MERGE_COUNT segments at iLevel into a new segment at
+** iLevel+1. If iLevel+1 is already full of segments, those will be
+** merged to make room.
+*/
+static int segmentMerge(fulltext_vtab *v, int iLevel){
+ LeafWriter writer;
+ LeavesReader lrs[MERGE_COUNT];
+ int i, rc, idx = 0;
+
+ /* Determine the next available segment index at the next level,
+ ** merging as necessary.
+ */
+ rc = segdirNextIndex(v, iLevel+1, &idx);
+ if( rc!=SQLITE_OK ) return rc;
+
+ /* TODO(shess) This assumes that we'll always see exactly
+ ** MERGE_COUNT segments to merge at a given level. That will be
+ ** broken if we allow the developer to request preemptive or
+ ** deferred merging.
+ */
+ memset(&lrs, '\0', sizeof(lrs));
+ rc = leavesReadersInit(v, iLevel, lrs, &i);
+ if( rc!=SQLITE_OK ) return rc;
+ assert( i==MERGE_COUNT );
+
+ leafWriterInit(iLevel+1, idx, &writer);
+
+ /* Since leavesReaderReorder() pushes readers at eof to the end,
+ ** when the first reader is empty, all will be empty.
+ */
+ while( !leavesReaderAtEnd(lrs) ){
+ /* Figure out how many readers share their next term. */
+ for(i=1; i<MERGE_COUNT && !leavesReaderAtEnd(lrs+i); i++){
+ if( 0!=leavesReaderTermCmp(lrs, lrs+i) ) break;
+ }
+
+ rc = leavesReadersMerge(v, lrs, i, &writer);
+ if( rc!=SQLITE_OK ) goto err;
+
+ /* Step forward those that were merged. */
+ while( i-->0 ){
+ rc = leavesReaderStep(v, lrs+i);
+ if( rc!=SQLITE_OK ) goto err;
+
+ /* Reorder by term, then by age. */
+ leavesReaderReorder(lrs+i, MERGE_COUNT-i);
+ }
+ }
+
+ for(i=0; i<MERGE_COUNT; i++){
+ leavesReaderDestroy(&lrs[i]);
+ }
+
+ rc = leafWriterFinalize(v, &writer);
+ leafWriterDestroy(&writer);
+ if( rc!=SQLITE_OK ) return rc;
+
+ /* Delete the merged segment data. */
+ return segdir_delete(v, iLevel);
+
+ err:
+ for(i=0; i<MERGE_COUNT; i++){
+ leavesReaderDestroy(&lrs[i]);
+ }
+ leafWriterDestroy(&writer);
+ return rc;
+}
+
+/* Accumulate the union of *acc and *pData into *acc. */
+static void docListAccumulateUnion(DataBuffer *acc,
+ const char *pData, int nData) {
+ DataBuffer tmp = *acc;
+ dataBufferInit(acc, tmp.nData+nData);
+ docListUnion(tmp.pData, tmp.nData, pData, nData, acc);
+ dataBufferDestroy(&tmp);
+}
+
+/* TODO(shess) It might be interesting to explore different merge
+** strategies, here. For instance, since this is a sorted merge, we
+** could easily merge many doclists in parallel. With some
+** comprehension of the storage format, we could merge all of the
+** doclists within a leaf node directly from the leaf node's storage.
+** It may be worthwhile to merge smaller doclists before larger
+** doclists, since they can be traversed more quickly - but the
+** results may have less overlap, making them more expensive in a
+** different way.
+*/
+
+/* Scan pReader for pTerm/nTerm, and merge the term's doclist over
+** *out (any doclists with duplicate docids overwrite those in *out).
+** Internal function for loadSegmentLeaf().
+*/
+static int loadSegmentLeavesInt(fulltext_vtab *v, LeavesReader *pReader,
+ const char *pTerm, int nTerm, int isPrefix,
+ DataBuffer *out){
+ /* doclist data is accumulated into pBuffers similar to how one does
+ ** increment in binary arithmetic. If index 0 is empty, the data is
+ ** stored there. If there is data there, it is merged and the
+ ** results carried into position 1, with further merge-and-carry
+ ** until an empty position is found.
+ */
+ DataBuffer *pBuffers = NULL;
+ int nBuffers = 0, nMaxBuffers = 0, rc;
+
+ assert( nTerm>0 );
+
+ for(rc=SQLITE_OK; rc==SQLITE_OK && !leavesReaderAtEnd(pReader);
+ rc=leavesReaderStep(v, pReader)){
+ /* TODO(shess) Really want leavesReaderTermCmp(), but that name is
+ ** already taken to compare the terms of two LeavesReaders. Think
+ ** on a better name. [Meanwhile, break encapsulation rather than
+ ** use a confusing name.]
+ */
+ int c = leafReaderTermCmp(&pReader->leafReader, pTerm, nTerm, isPrefix);
+ if( c>0 ) break; /* Past any possible matches. */
+ if( c==0 ){
+ const char *pData = leavesReaderData(pReader);
+ int iBuffer, nData = leavesReaderDataBytes(pReader);
+
+ /* Find the first empty buffer. */
+ for(iBuffer=0; iBuffer<nBuffers; ++iBuffer){
+ if( 0==pBuffers[iBuffer].nData ) break;
+ }
+
+ /* Out of buffers, add an empty one. */
+ if( iBuffer==nBuffers ){
+ if( nBuffers==nMaxBuffers ){
+ DataBuffer *p;
+ nMaxBuffers += 20;
+
+ /* Manual realloc so we can handle NULL appropriately. */
+ p = sqlite3_malloc(nMaxBuffers*sizeof(*pBuffers));
+ if( p==NULL ){
+ rc = SQLITE_NOMEM;
+ break;
+ }
+
+ if( nBuffers>0 ){
+ assert(pBuffers!=NULL);
+ memcpy(p, pBuffers, nBuffers*sizeof(*pBuffers));
+ sqlite3_free(pBuffers);
+ }
+ pBuffers = p;
+ }
+ dataBufferInit(&(pBuffers[nBuffers]), 0);
+ nBuffers++;
+ }
+
+ /* At this point, must have an empty at iBuffer. */
+ assert(iBuffer<nBuffers && pBuffers[iBuffer].nData==0);
+
+ /* If empty was first buffer, no need for merge logic. */
+ if( iBuffer==0 ){
+ dataBufferReplace(&(pBuffers[0]), pData, nData);
+ }else{
+ /* pAcc is the empty buffer the merged data will end up in. */
+ DataBuffer *pAcc = &(pBuffers[iBuffer]);
+ DataBuffer *p = &(pBuffers[0]);
+
+ /* Handle position 0 specially to avoid need to prime pAcc
+ ** with pData/nData.
+ */
+ dataBufferSwap(p, pAcc);
+ docListAccumulateUnion(pAcc, pData, nData);
+
+ /* Accumulate remaining doclists into pAcc. */
+ for(++p; p<pAcc; ++p){
+ docListAccumulateUnion(pAcc, p->pData, p->nData);
+
+ /* dataBufferReset() could allow a large doclist to blow up
+ ** our memory requirements.
+ */
+ if( p->nCapacity<1024 ){
+ dataBufferReset(p);
+ }else{
+ dataBufferDestroy(p);
+ dataBufferInit(p, 0);
+ }
+ }
+ }
+ }
+ }
+
+ /* Union all the doclists together into *out. */
+ /* TODO(shess) What if *out is big? Sigh. */
+ if( rc==SQLITE_OK && nBuffers>0 ){
+ int iBuffer;
+ for(iBuffer=0; iBuffer<nBuffers; ++iBuffer){
+ if( pBuffers[iBuffer].nData>0 ){
+ if( out->nData==0 ){
+ dataBufferSwap(out, &(pBuffers[iBuffer]));
+ }else{
+ docListAccumulateUnion(out, pBuffers[iBuffer].pData,
+ pBuffers[iBuffer].nData);
+ }
+ }
+ }
+ }
+
+ while( nBuffers-- ){
+ dataBufferDestroy(&(pBuffers[nBuffers]));
+ }
+ if( pBuffers!=NULL ) sqlite3_free(pBuffers);
+
+ return rc;
+}
+
+/* Call loadSegmentLeavesInt() with pData/nData as input. */
+static int loadSegmentLeaf(fulltext_vtab *v, const char *pData, int nData,
+ const char *pTerm, int nTerm, int isPrefix,
+ DataBuffer *out){
+ LeavesReader reader;
+ int rc;
+
+ assert( nData>1 );
+ assert( *pData=='\0' );
+ rc = leavesReaderInit(v, 0, 0, 0, pData, nData, &reader);
+ if( rc!=SQLITE_OK ) return rc;
+
+ rc = loadSegmentLeavesInt(v, &reader, pTerm, nTerm, isPrefix, out);
+ leavesReaderReset(&reader);
+ leavesReaderDestroy(&reader);
+ return rc;
+}
+
+/* Call loadSegmentLeavesInt() with the leaf nodes from iStartLeaf to
+** iEndLeaf (inclusive) as input, and merge the resulting doclist into
+** out.
+*/
+static int loadSegmentLeaves(fulltext_vtab *v,
+ sqlite_int64 iStartLeaf, sqlite_int64 iEndLeaf,
+ const char *pTerm, int nTerm, int isPrefix,
+ DataBuffer *out){
+ int rc;
+ LeavesReader reader;
+
+ assert( iStartLeaf<=iEndLeaf );
+ rc = leavesReaderInit(v, 0, iStartLeaf, iEndLeaf, NULL, 0, &reader);
+ if( rc!=SQLITE_OK ) return rc;
+
+ rc = loadSegmentLeavesInt(v, &reader, pTerm, nTerm, isPrefix, out);
+ leavesReaderReset(&reader);
+ leavesReaderDestroy(&reader);
+ return rc;
+}
+
+/* Taking pData/nData as an interior node, find the sequence of child
+** nodes which could include pTerm/nTerm/isPrefix. Note that the
+** interior node terms logically come between the blocks, so there is
+** one more blockid than there are terms (that block contains terms >=
+** the last interior-node term).
+*/
+/* TODO(shess) The calling code may already know that the end child is
+** not worth calculating, because the end may be in a later sibling
+** node. Consider whether breaking symmetry is worthwhile. I suspect
+** it is not worthwhile.
+*/
+static void getChildrenContaining(const char *pData, int nData,
+ const char *pTerm, int nTerm, int isPrefix,
+ sqlite_int64 *piStartChild,
+ sqlite_int64 *piEndChild){
+ InteriorReader reader;
+
+ assert( nData>1 );
+ assert( *pData!='\0' );
+ interiorReaderInit(pData, nData, &reader);
+
+ /* Scan for the first child which could contain pTerm/nTerm. */
+ while( !interiorReaderAtEnd(&reader) ){
+ if( interiorReaderTermCmp(&reader, pTerm, nTerm, 0)>0 ) break;
+ interiorReaderStep(&reader);
+ }
+ *piStartChild = interiorReaderCurrentBlockid(&reader);
+
+ /* Keep scanning to find a term greater than our term, using prefix
+ ** comparison if indicated. If isPrefix is false, this will be the
+ ** same blockid as the starting block.
+ */
+ while( !interiorReaderAtEnd(&reader) ){
+ if( interiorReaderTermCmp(&reader, pTerm, nTerm, isPrefix)>0 ) break;
+ interiorReaderStep(&reader);
+ }
+ *piEndChild = interiorReaderCurrentBlockid(&reader);
+
+ interiorReaderDestroy(&reader);
+
+ /* Children must ascend, and if !prefix, both must be the same. */
+ assert( *piEndChild>=*piStartChild );
+ assert( isPrefix || *piStartChild==*piEndChild );
+}
+
+/* Read block at iBlockid and pass it with other params to
+** getChildrenContaining().
+*/
+static int loadAndGetChildrenContaining(
+ fulltext_vtab *v,
+ sqlite_int64 iBlockid,
+ const char *pTerm, int nTerm, int isPrefix,
+ sqlite_int64 *piStartChild, sqlite_int64 *piEndChild
+){
+ sqlite3_stmt *s = NULL;
+ int rc;
+
+ assert( iBlockid!=0 );
+ assert( pTerm!=NULL );
+ assert( nTerm!=0 ); /* TODO(shess) Why not allow this? */
+ assert( piStartChild!=NULL );
+ assert( piEndChild!=NULL );
+
+ rc = sql_get_statement(v, BLOCK_SELECT_STMT, &s);
+ if( rc!=SQLITE_OK ) return rc;
+
+ rc = sqlite3_bind_int64(s, 1, iBlockid);
+ if( rc!=SQLITE_OK ) return rc;
+
+ rc = sqlite3_step(s);
+ if( rc==SQLITE_DONE ) return SQLITE_ERROR;
+ if( rc!=SQLITE_ROW ) return rc;
+
+ getChildrenContaining(sqlite3_column_blob(s, 0), sqlite3_column_bytes(s, 0),
+ pTerm, nTerm, isPrefix, piStartChild, piEndChild);
+
+ /* We expect only one row. We must execute another sqlite3_step()
+ * to complete the iteration; otherwise the table will remain
+ * locked. */
+ rc = sqlite3_step(s);
+ if( rc==SQLITE_ROW ) return SQLITE_ERROR;
+ if( rc!=SQLITE_DONE ) return rc;
+
+ return SQLITE_OK;
+}
+
+/* Traverse the tree represented by pData[nData] looking for
+** pTerm[nTerm], placing its doclist into *out. This is internal to
+** loadSegment() to make error-handling cleaner.
+*/
+static int loadSegmentInt(fulltext_vtab *v, const char *pData, int nData,
+ sqlite_int64 iLeavesEnd,
+ const char *pTerm, int nTerm, int isPrefix,
+ DataBuffer *out){
+ /* Special case where root is a leaf. */
+ if( *pData=='\0' ){
+ return loadSegmentLeaf(v, pData, nData, pTerm, nTerm, isPrefix, out);
+ }else{
+ int rc;
+ sqlite_int64 iStartChild, iEndChild;
+
+ /* Process pData as an interior node, then loop down the tree
+ ** until we find the set of leaf nodes to scan for the term.
+ */
+ getChildrenContaining(pData, nData, pTerm, nTerm, isPrefix,
+ &iStartChild, &iEndChild);
+ while( iStartChild>iLeavesEnd ){
+ sqlite_int64 iNextStart, iNextEnd;
+ rc = loadAndGetChildrenContaining(v, iStartChild, pTerm, nTerm, isPrefix,
+ &iNextStart, &iNextEnd);
+ if( rc!=SQLITE_OK ) return rc;
+
+ /* If we've branched, follow the end branch, too. */
+ if( iStartChild!=iEndChild ){
+ sqlite_int64 iDummy;
+ rc = loadAndGetChildrenContaining(v, iEndChild, pTerm, nTerm, isPrefix,
+ &iDummy, &iNextEnd);
+ if( rc!=SQLITE_OK ) return rc;
+ }
+
+ assert( iNextStart<=iNextEnd );
+ iStartChild = iNextStart;
+ iEndChild = iNextEnd;
+ }
+ assert( iStartChild<=iLeavesEnd );
+ assert( iEndChild<=iLeavesEnd );
+
+ /* Scan through the leaf segments for doclists. */
+ return loadSegmentLeaves(v, iStartChild, iEndChild,
+ pTerm, nTerm, isPrefix, out);
+ }
+}
+
+/* Call loadSegmentInt() to collect the doclist for pTerm/nTerm, then
+** merge its doclist over *out (any duplicate doclists read from the
+** segment rooted at pData will overwrite those in *out).
+*/
+/* TODO(shess) Consider changing this to determine the depth of the
+** leaves using either the first characters of interior nodes (when
+** ==1, we're one level above the leaves), or the first character of
+** the root (which will describe the height of the tree directly).
+** Either feels somewhat tricky to me.
+*/
+/* TODO(shess) The current merge is likely to be slow for large
+** doclists (though it should process from newest/smallest to
+** oldest/largest, so it may not be that bad). It might be useful to
+** modify things to allow for N-way merging. This could either be
+** within a segment, with pairwise merges across segments, or across
+** all segments at once.
+*/
+static int loadSegment(fulltext_vtab *v, const char *pData, int nData,
+ sqlite_int64 iLeavesEnd,
+ const char *pTerm, int nTerm, int isPrefix,
+ DataBuffer *out){
+ DataBuffer result;
+ int rc;
+
+ assert( nData>1 );
+
+ /* This code should never be called with buffered updates. */
+ assert( v->nPendingData<0 );
+
+ dataBufferInit(&result, 0);
+ rc = loadSegmentInt(v, pData, nData, iLeavesEnd,
+ pTerm, nTerm, isPrefix, &result);
+ if( rc==SQLITE_OK && result.nData>0 ){
+ if( out->nData==0 ){
+ DataBuffer tmp = *out;
+ *out = result;
+ result = tmp;
+ }else{
+ DataBuffer merged;
+ DLReader readers[2];
+
+ dlrInit(&readers[0], DL_DEFAULT, out->pData, out->nData);
+ dlrInit(&readers[1], DL_DEFAULT, result.pData, result.nData);
+ dataBufferInit(&merged, out->nData+result.nData);
+ docListMerge(&merged, readers, 2);
+ dataBufferDestroy(out);
+ *out = merged;
+ dlrDestroy(&readers[0]);
+ dlrDestroy(&readers[1]);
+ }
+ }
+ dataBufferDestroy(&result);
+ return rc;
+}
+
+/* Scan the database and merge together the posting lists for the term
+** into *out.
+*/
+static int termSelect(fulltext_vtab *v, int iColumn,
+ const char *pTerm, int nTerm, int isPrefix,
+ DocListType iType, DataBuffer *out){
+ DataBuffer doclist;
+ sqlite3_stmt *s;
+ int rc = sql_get_statement(v, SEGDIR_SELECT_ALL_STMT, &s);
+ if( rc!=SQLITE_OK ) return rc;
+
+ /* This code should never be called with buffered updates. */
+ assert( v->nPendingData<0 );
+
+ dataBufferInit(&doclist, 0);
+
+ /* Traverse the segments from oldest to newest so that newer doclist
+ ** elements for given docids overwrite older elements.
+ */
+ while( (rc = sqlite3_step(s))==SQLITE_ROW ){
+ const char *pData = sqlite3_column_blob(s, 0);
+ const int nData = sqlite3_column_bytes(s, 0);
+ const sqlite_int64 iLeavesEnd = sqlite3_column_int64(s, 1);
+ rc = loadSegment(v, pData, nData, iLeavesEnd, pTerm, nTerm, isPrefix,
+ &doclist);
+ if( rc!=SQLITE_OK ) goto err;
+ }
+ if( rc==SQLITE_DONE ){
+ if( doclist.nData!=0 ){
+ /* TODO(shess) The old term_select_all() code applied the column
+ ** restrict as we merged segments, leading to smaller buffers.
+ ** This is probably worthwhile to bring back, once the new storage
+ ** system is checked in.
+ */
+ if( iColumn==v->nColumn) iColumn = -1;
+ docListTrim(DL_DEFAULT, doclist.pData, doclist.nData,
+ iColumn, iType, out);
+ }
+ rc = SQLITE_OK;
+ }
+
+ err:
+ dataBufferDestroy(&doclist);
+ return rc;
+}
+
+/****************************************************************/
+/* Used to hold hashtable data for sorting. */
+typedef struct TermData {
+ const char *pTerm;
+ int nTerm;
+ DLCollector *pCollector;
+} TermData;
+
+/* Orders TermData elements in strcmp fashion ( <0 for less-than, 0
+** for equal, >0 for greater-than).
+*/
+static int termDataCmp(const void *av, const void *bv){
+ const TermData *a = (const TermData *)av;
+ const TermData *b = (const TermData *)bv;
+ int n = a->nTerm<b->nTerm ? a->nTerm : b->nTerm;
+ int c = memcmp(a->pTerm, b->pTerm, n);
+ if( c!=0 ) return c;
+ return a->nTerm-b->nTerm;
+}
+
+/* Order pTerms data by term, then write a new level 0 segment using
+** LeafWriter.
+*/
+static int writeZeroSegment(fulltext_vtab *v, fts3Hash *pTerms){
+ fts3HashElem *e;
+ int idx, rc, i, n;
+ TermData *pData;
+ LeafWriter writer;
+ DataBuffer dl;
+
+ /* Determine the next index at level 0, merging as necessary. */
+ rc = segdirNextIndex(v, 0, &idx);
+ if( rc!=SQLITE_OK ) return rc;
+
+ n = fts3HashCount(pTerms);
+ pData = sqlite3_malloc(n*sizeof(TermData));
+
+ for(i = 0, e = fts3HashFirst(pTerms); e; i++, e = fts3HashNext(e)){
+ assert( i<n );
+ pData[i].pTerm = fts3HashKey(e);
+ pData[i].nTerm = fts3HashKeysize(e);
+ pData[i].pCollector = fts3HashData(e);
+ }
+ assert( i==n );
+
+ /* TODO(shess) Should we allow user-defined collation sequences,
+ ** here? I think we only need that once we support prefix searches.
+ */
+ if( n>1 ) qsort(pData, n, sizeof(*pData), termDataCmp);
+
+ /* TODO(shess) Refactor so that we can write directly to the segment
+ ** DataBuffer, as happens for segment merges.
+ */
+ leafWriterInit(0, idx, &writer);
+ dataBufferInit(&dl, 0);
+ for(i=0; i<n; i++){
+ dataBufferReset(&dl);
+ dlcAddDoclist(pData[i].pCollector, &dl);
+ rc = leafWriterStep(v, &writer,
+ pData[i].pTerm, pData[i].nTerm, dl.pData, dl.nData);
+ if( rc!=SQLITE_OK ) goto err;
+ }
+ rc = leafWriterFinalize(v, &writer);
+
+ err:
+ dataBufferDestroy(&dl);
+ sqlite3_free(pData);
+ leafWriterDestroy(&writer);
+ return rc;
+}
+
+/* If pendingTerms has data, free it. */
+static int clearPendingTerms(fulltext_vtab *v){
+ if( v->nPendingData>=0 ){
+ fts3HashElem *e;
+ for(e=fts3HashFirst(&v->pendingTerms); e; e=fts3HashNext(e)){
+ dlcDelete(fts3HashData(e));
+ }
+ fts3HashClear(&v->pendingTerms);
+ v->nPendingData = -1;
+ }
+ return SQLITE_OK;
+}
+
+/* If pendingTerms has data, flush it to a level-zero segment, and
+** free it.
+*/
+static int flushPendingTerms(fulltext_vtab *v){
+ if( v->nPendingData>=0 ){
+ int rc = writeZeroSegment(v, &v->pendingTerms);
+ if( rc==SQLITE_OK ) clearPendingTerms(v);
+ return rc;
+ }
+ return SQLITE_OK;
+}
+
+/* If pendingTerms is "too big", or docid is out of order, flush it.
+** Regardless, be certain that pendingTerms is initialized for use.
+*/
+static int initPendingTerms(fulltext_vtab *v, sqlite_int64 iDocid){
+ /* TODO(shess) Explore whether partially flushing the buffer on
+ ** forced-flush would provide better performance. I suspect that if
+ ** we ordered the doclists by size and flushed the largest until the
+ ** buffer was half empty, that would let the less frequent terms
+ ** generate longer doclists.
+ */
+ if( iDocid<=v->iPrevDocid || v->nPendingData>kPendingThreshold ){
+ int rc = flushPendingTerms(v);
+ if( rc!=SQLITE_OK ) return rc;
+ }
+ if( v->nPendingData<0 ){
+ fts3HashInit(&v->pendingTerms, FTS3_HASH_STRING, 1);
+ v->nPendingData = 0;
+ }
+ v->iPrevDocid = iDocid;
+ return SQLITE_OK;
+}
+
+/* This function implements the xUpdate callback; it is the top-level entry
+ * point for inserting, deleting or updating a row in a full-text table. */
+static int fulltextUpdate(sqlite3_vtab *pVtab, int nArg, sqlite3_value **ppArg,
+ sqlite_int64 *pRowid){
+ fulltext_vtab *v = (fulltext_vtab *) pVtab;
+ int rc;
+
+ FTSTRACE(("FTS3 Update %p\n", pVtab));
+
+ if( nArg<2 ){
+ rc = index_delete(v, sqlite3_value_int64(ppArg[0]));
+ } else if( sqlite3_value_type(ppArg[0]) != SQLITE_NULL ){
+ /* An update:
+ * ppArg[0] = old rowid
+ * ppArg[1] = new rowid
+ * ppArg[2..2+v->nColumn-1] = values
+ * ppArg[2+v->nColumn] = value for magic column (we ignore this)
+ * ppArg[2+v->nColumn+1] = value for docid
+ */
+ sqlite_int64 rowid = sqlite3_value_int64(ppArg[0]);
+ if( sqlite3_value_type(ppArg[1]) != SQLITE_INTEGER ||
+ sqlite3_value_int64(ppArg[1]) != rowid ){
+ rc = SQLITE_ERROR; /* we don't allow changing the rowid */
+ }else if( sqlite3_value_type(ppArg[2+v->nColumn+1]) != SQLITE_INTEGER ||
+ sqlite3_value_int64(ppArg[2+v->nColumn+1]) != rowid ){
+ rc = SQLITE_ERROR; /* we don't allow changing the docid */
+ }else{
+ assert( nArg==2+v->nColumn+2);
+ rc = index_update(v, rowid, &ppArg[2]);
+ }
+ } else {
+ /* An insert:
+ * ppArg[1] = requested rowid
+ * ppArg[2..2+v->nColumn-1] = values
+ * ppArg[2+v->nColumn] = value for magic column (we ignore this)
+ * ppArg[2+v->nColumn+1] = value for docid
+ */
+ sqlite3_value *pRequestDocid = ppArg[2+v->nColumn+1];
+ assert( nArg==2+v->nColumn+2);
+ if( SQLITE_NULL != sqlite3_value_type(pRequestDocid) &&
+ SQLITE_NULL != sqlite3_value_type(ppArg[1]) ){
+ /* TODO(shess) Consider allowing this to work if the values are
+ ** identical. I'm inclined to discourage that usage, though,
+ ** given that both rowid and docid are special columns. Better
+ ** would be to define one or the other as the default winner,
+ ** but should it be fts3-centric (docid) or SQLite-centric
+ ** (rowid)?
+ */
+ rc = SQLITE_ERROR;
+ }else{
+ if( SQLITE_NULL == sqlite3_value_type(pRequestDocid) ){
+ pRequestDocid = ppArg[1];
+ }
+ rc = index_insert(v, pRequestDocid, &ppArg[2], pRowid);
+ }
+ }
+
+ return rc;
+}
+
+static int fulltextSync(sqlite3_vtab *pVtab){
+ FTSTRACE(("FTS3 xSync()\n"));
+ return flushPendingTerms((fulltext_vtab *)pVtab);
+}
+
+static int fulltextBegin(sqlite3_vtab *pVtab){
+ fulltext_vtab *v = (fulltext_vtab *) pVtab;
+ FTSTRACE(("FTS3 xBegin()\n"));
+
+ /* Any buffered updates should have been cleared by the previous
+ ** transaction.
+ */
+ assert( v->nPendingData<0 );
+ return clearPendingTerms(v);
+}
+
+static int fulltextCommit(sqlite3_vtab *pVtab){
+ fulltext_vtab *v = (fulltext_vtab *) pVtab;
+ FTSTRACE(("FTS3 xCommit()\n"));
+
+ /* Buffered updates should have been cleared by fulltextSync(). */
+ assert( v->nPendingData<0 );
+ return clearPendingTerms(v);
+}
+
+static int fulltextRollback(sqlite3_vtab *pVtab){
+ FTSTRACE(("FTS3 xRollback()\n"));
+ return clearPendingTerms((fulltext_vtab *)pVtab);
+}
+
+/*
+** Implementation of the snippet() function for FTS3
+*/
+static void snippetFunc(
+ sqlite3_context *pContext,
+ int argc,
+ sqlite3_value **argv
+){
+ fulltext_cursor *pCursor;
+ if( argc<1 ) return;
+ if( sqlite3_value_type(argv[0])!=SQLITE_BLOB ||
+ sqlite3_value_bytes(argv[0])!=sizeof(pCursor) ){
+ sqlite3_result_error(pContext, "illegal first argument to html_snippet",-1);
+ }else{
+ const char *zStart = "<b>";
+ const char *zEnd = "</b>";
+ const char *zEllipsis = "<b>...</b>";
+ memcpy(&pCursor, sqlite3_value_blob(argv[0]), sizeof(pCursor));
+ if( argc>=2 ){
+ zStart = (const char*)sqlite3_value_text(argv[1]);
+ if( argc>=3 ){
+ zEnd = (const char*)sqlite3_value_text(argv[2]);
+ if( argc>=4 ){
+ zEllipsis = (const char*)sqlite3_value_text(argv[3]);
+ }
+ }
+ }
+ snippetAllOffsets(pCursor);
+ snippetText(pCursor, zStart, zEnd, zEllipsis);
+ sqlite3_result_text(pContext, pCursor->snippet.zSnippet,
+ pCursor->snippet.nSnippet, SQLITE_STATIC);
+ }
+}
+
+/*
+** Implementation of the offsets() function for FTS3
+*/
+static void snippetOffsetsFunc(
+ sqlite3_context *pContext,
+ int argc,
+ sqlite3_value **argv
+){
+ fulltext_cursor *pCursor;
+ if( argc<1 ) return;
+ if( sqlite3_value_type(argv[0])!=SQLITE_BLOB ||
+ sqlite3_value_bytes(argv[0])!=sizeof(pCursor) ){
+ sqlite3_result_error(pContext, "illegal first argument to offsets",-1);
+ }else{
+ memcpy(&pCursor, sqlite3_value_blob(argv[0]), sizeof(pCursor));
+ snippetAllOffsets(pCursor);
+ snippetOffsetText(&pCursor->snippet);
+ sqlite3_result_text(pContext,
+ pCursor->snippet.zOffset, pCursor->snippet.nOffset,
+ SQLITE_STATIC);
+ }
+}
+
+/*
+** This routine implements the xFindFunction method for the FTS3
+** virtual table.
+*/
+static int fulltextFindFunction(
+ sqlite3_vtab *pVtab,
+ int nArg,
+ const char *zName,
+ void (**pxFunc)(sqlite3_context*,int,sqlite3_value**),
+ void **ppArg
+){
+ if( strcmp(zName,"snippet")==0 ){
+ *pxFunc = snippetFunc;
+ return 1;
+ }else if( strcmp(zName,"offsets")==0 ){
+ *pxFunc = snippetOffsetsFunc;
+ return 1;
+ }
+ return 0;
+}
+
+/*
+** Rename an fts3 table.
+*/
+static int fulltextRename(
+ sqlite3_vtab *pVtab,
+ const char *zName
+){
+ fulltext_vtab *p = (fulltext_vtab *)pVtab;
+ int rc = SQLITE_NOMEM;
+ char *zSql = sqlite3_mprintf(
+ "ALTER TABLE %Q.'%q_content' RENAME TO '%q_content';"
+ "ALTER TABLE %Q.'%q_segments' RENAME TO '%q_segments';"
+ "ALTER TABLE %Q.'%q_segdir' RENAME TO '%q_segdir';"
+ , p->zDb, p->zName, zName
+ , p->zDb, p->zName, zName
+ , p->zDb, p->zName, zName
+ );
+ if( zSql ){
+ rc = sqlite3_exec(p->db, zSql, 0, 0, 0);
+ sqlite3_free(zSql);
+ }
+ return rc;
+}
+
+static const sqlite3_module fts3Module = {
+ /* iVersion */ 0,
+ /* xCreate */ fulltextCreate,
+ /* xConnect */ fulltextConnect,
+ /* xBestIndex */ fulltextBestIndex,
+ /* xDisconnect */ fulltextDisconnect,
+ /* xDestroy */ fulltextDestroy,
+ /* xOpen */ fulltextOpen,
+ /* xClose */ fulltextClose,
+ /* xFilter */ fulltextFilter,
+ /* xNext */ fulltextNext,
+ /* xEof */ fulltextEof,
+ /* xColumn */ fulltextColumn,
+ /* xRowid */ fulltextRowid,
+ /* xUpdate */ fulltextUpdate,
+ /* xBegin */ fulltextBegin,
+ /* xSync */ fulltextSync,
+ /* xCommit */ fulltextCommit,
+ /* xRollback */ fulltextRollback,
+ /* xFindFunction */ fulltextFindFunction,
+ /* xRename */ fulltextRename,
+};
+
+static void hashDestroy(void *p){
+ fts3Hash *pHash = (fts3Hash *)p;
+ sqlite3Fts3HashClear(pHash);
+ sqlite3_free(pHash);
+}
+
+/*
+** The fts3 built-in tokenizers - "simple" and "porter" - are implemented
+** in files fts3_tokenizer1.c and fts3_porter.c respectively. The following
+** two forward declarations are for functions declared in these files
+** used to retrieve the respective implementations.
+**
+** Calling sqlite3Fts3SimpleTokenizerModule() sets the value pointed
+** to by the argument to point a the "simple" tokenizer implementation.
+** Function ...PorterTokenizerModule() sets *pModule to point to the
+** porter tokenizer/stemmer implementation.
+*/
+SQLITE_PRIVATE void sqlite3Fts3SimpleTokenizerModule(sqlite3_tokenizer_module const**ppModule);
+SQLITE_PRIVATE void sqlite3Fts3PorterTokenizerModule(sqlite3_tokenizer_module const**ppModule);
+SQLITE_PRIVATE void sqlite3Fts3IcuTokenizerModule(sqlite3_tokenizer_module const**ppModule);
+
+SQLITE_PRIVATE int sqlite3Fts3InitHashTable(sqlite3 *, fts3Hash *, const char *);
+
+/*
+** Initialise the fts3 extension. If this extension is built as part
+** of the sqlite library, then this function is called directly by
+** SQLite. If fts3 is built as a dynamically loadable extension, this
+** function is called by the sqlite3_extension_init() entry point.
+*/
+SQLITE_PRIVATE int sqlite3Fts3Init(sqlite3 *db){
+ int rc = SQLITE_OK;
+ fts3Hash *pHash = 0;
+ const sqlite3_tokenizer_module *pSimple = 0;
+ const sqlite3_tokenizer_module *pPorter = 0;
+ const sqlite3_tokenizer_module *pIcu = 0;
+
+ sqlite3Fts3SimpleTokenizerModule(&pSimple);
+ sqlite3Fts3PorterTokenizerModule(&pPorter);
+#ifdef SQLITE_ENABLE_ICU
+ sqlite3Fts3IcuTokenizerModule(&pIcu);
+#endif
+
+ /* Allocate and initialise the hash-table used to store tokenizers. */
+ pHash = sqlite3_malloc(sizeof(fts3Hash));
+ if( !pHash ){
+ rc = SQLITE_NOMEM;
+ }else{
+ sqlite3Fts3HashInit(pHash, FTS3_HASH_STRING, 1);
+ }
+
+ /* Load the built-in tokenizers into the hash table */
+ if( rc==SQLITE_OK ){
+ if( sqlite3Fts3HashInsert(pHash, "simple", 7, (void *)pSimple)
+ || sqlite3Fts3HashInsert(pHash, "porter", 7, (void *)pPorter)
+ || (pIcu && sqlite3Fts3HashInsert(pHash, "icu", 4, (void *)pIcu))
+ ){
+ rc = SQLITE_NOMEM;
+ }
+ }
+
+ /* Create the virtual table wrapper around the hash-table and overload
+ ** the two scalar functions. If this is successful, register the
+ ** module with sqlite.
+ */
+ if( SQLITE_OK==rc
+ && SQLITE_OK==(rc = sqlite3Fts3InitHashTable(db, pHash, "fts3_tokenizer"))
+ && SQLITE_OK==(rc = sqlite3_overload_function(db, "snippet", -1))
+ && SQLITE_OK==(rc = sqlite3_overload_function(db, "offsets", -1))
+ ){
+ return sqlite3_create_module_v2(
+ db, "fts3", &fts3Module, (void *)pHash, hashDestroy
+ );
+ }
+
+ /* An error has occured. Delete the hash table and return the error code. */
+ assert( rc!=SQLITE_OK );
+ if( pHash ){
+ sqlite3Fts3HashClear(pHash);
+ sqlite3_free(pHash);
+ }
+ return rc;
+}
+
+#if !SQLITE_CORE
+SQLITE_API int sqlite3_extension_init(
+ sqlite3 *db,
+ char **pzErrMsg,
+ const sqlite3_api_routines *pApi
+){
+ SQLITE_EXTENSION_INIT2(pApi)
+ return sqlite3Fts3Init(db);
+}
+#endif
+
+#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */
+
+/************** End of fts3.c ************************************************/
+/************** Begin file fts3_hash.c ***************************************/
+/*
+** 2001 September 22
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This is the implementation of generic hash-tables used in SQLite.
+** We've modified it slightly to serve as a standalone hash table
+** implementation for the full-text indexing module.
+*/
+
+/*
+** The code in this file is only compiled if:
+**
+** * The FTS3 module is being built as an extension
+** (in which case SQLITE_CORE is not defined), or
+**
+** * The FTS3 module is being built into the core of
+** SQLite (in which case SQLITE_ENABLE_FTS3 is defined).
+*/
+#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
+
+
+
+/*
+** Malloc and Free functions
+*/
+static void *fts3HashMalloc(int n){
+ void *p = sqlite3_malloc(n);
+ if( p ){
+ memset(p, 0, n);
+ }
+ return p;
+}
+static void fts3HashFree(void *p){
+ sqlite3_free(p);
+}
+
+/* Turn bulk memory into a hash table object by initializing the
+** fields of the Hash structure.
+**
+** "pNew" is a pointer to the hash table that is to be initialized.
+** keyClass is one of the constants
+** FTS3_HASH_BINARY or FTS3_HASH_STRING. The value of keyClass
+** determines what kind of key the hash table will use. "copyKey" is
+** true if the hash table should make its own private copy of keys and
+** false if it should just use the supplied pointer.
+*/
+SQLITE_PRIVATE void sqlite3Fts3HashInit(fts3Hash *pNew, int keyClass, int copyKey){
+ assert( pNew!=0 );
+ assert( keyClass>=FTS3_HASH_STRING && keyClass<=FTS3_HASH_BINARY );
+ pNew->keyClass = keyClass;
+ pNew->copyKey = copyKey;
+ pNew->first = 0;
+ pNew->count = 0;
+ pNew->htsize = 0;
+ pNew->ht = 0;
+}
+
+/* Remove all entries from a hash table. Reclaim all memory.
+** Call this routine to delete a hash table or to reset a hash table
+** to the empty state.
+*/
+SQLITE_PRIVATE void sqlite3Fts3HashClear(fts3Hash *pH){
+ fts3HashElem *elem; /* For looping over all elements of the table */
+
+ assert( pH!=0 );
+ elem = pH->first;
+ pH->first = 0;
+ fts3HashFree(pH->ht);
+ pH->ht = 0;
+ pH->htsize = 0;
+ while( elem ){
+ fts3HashElem *next_elem = elem->next;
+ if( pH->copyKey && elem->pKey ){
+ fts3HashFree(elem->pKey);
+ }
+ fts3HashFree(elem);
+ elem = next_elem;
+ }
+ pH->count = 0;
+}
+
+/*
+** Hash and comparison functions when the mode is FTS3_HASH_STRING
+*/
+static int fts3StrHash(const void *pKey, int nKey){
+ const char *z = (const char *)pKey;
+ int h = 0;
+ if( nKey<=0 ) nKey = (int) strlen(z);
+ while( nKey > 0 ){
+ h = (h<<3) ^ h ^ *z++;
+ nKey--;
+ }
+ return h & 0x7fffffff;
+}
+static int fts3StrCompare(const void *pKey1, int n1, const void *pKey2, int n2){
+ if( n1!=n2 ) return 1;
+ return strncmp((const char*)pKey1,(const char*)pKey2,n1);
+}
+
+/*
+** Hash and comparison functions when the mode is FTS3_HASH_BINARY
+*/
+static int fts3BinHash(const void *pKey, int nKey){
+ int h = 0;
+ const char *z = (const char *)pKey;
+ while( nKey-- > 0 ){
+ h = (h<<3) ^ h ^ *(z++);
+ }
+ return h & 0x7fffffff;
+}
+static int fts3BinCompare(const void *pKey1, int n1, const void *pKey2, int n2){
+ if( n1!=n2 ) return 1;
+ return memcmp(pKey1,pKey2,n1);
+}
+
+/*
+** Return a pointer to the appropriate hash function given the key class.
+**
+** The C syntax in this function definition may be unfamilar to some
+** programmers, so we provide the following additional explanation:
+**
+** The name of the function is "ftsHashFunction". The function takes a
+** single parameter "keyClass". The return value of ftsHashFunction()
+** is a pointer to another function. Specifically, the return value
+** of ftsHashFunction() is a pointer to a function that takes two parameters
+** with types "const void*" and "int" and returns an "int".
+*/
+static int (*ftsHashFunction(int keyClass))(const void*,int){
+ if( keyClass==FTS3_HASH_STRING ){
+ return &fts3StrHash;
+ }else{
+ assert( keyClass==FTS3_HASH_BINARY );
+ return &fts3BinHash;
+ }
+}
+
+/*
+** Return a pointer to the appropriate hash function given the key class.
+**
+** For help in interpreted the obscure C code in the function definition,
+** see the header comment on the previous function.
+*/
+static int (*ftsCompareFunction(int keyClass))(const void*,int,const void*,int){
+ if( keyClass==FTS3_HASH_STRING ){
+ return &fts3StrCompare;
+ }else{
+ assert( keyClass==FTS3_HASH_BINARY );
+ return &fts3BinCompare;
+ }
+}
+
+/* Link an element into the hash table
+*/
+static void fts3HashInsertElement(
+ fts3Hash *pH, /* The complete hash table */
+ struct _fts3ht *pEntry, /* The entry into which pNew is inserted */
+ fts3HashElem *pNew /* The element to be inserted */
+){
+ fts3HashElem *pHead; /* First element already in pEntry */
+ pHead = pEntry->chain;
+ if( pHead ){
+ pNew->next = pHead;
+ pNew->prev = pHead->prev;
+ if( pHead->prev ){ pHead->prev->next = pNew; }
+ else { pH->first = pNew; }
+ pHead->prev = pNew;
+ }else{
+ pNew->next = pH->first;
+ if( pH->first ){ pH->first->prev = pNew; }
+ pNew->prev = 0;
+ pH->first = pNew;
+ }
+ pEntry->count++;
+ pEntry->chain = pNew;
+}
+
+
+/* Resize the hash table so that it cantains "new_size" buckets.
+** "new_size" must be a power of 2. The hash table might fail
+** to resize if sqliteMalloc() fails.
+*/
+static void fts3Rehash(fts3Hash *pH, int new_size){
+ struct _fts3ht *new_ht; /* The new hash table */
+ fts3HashElem *elem, *next_elem; /* For looping over existing elements */
+ int (*xHash)(const void*,int); /* The hash function */
+
+ assert( (new_size & (new_size-1))==0 );
+ new_ht = (struct _fts3ht *)fts3HashMalloc( new_size*sizeof(struct _fts3ht) );
+ if( new_ht==0 ) return;
+ fts3HashFree(pH->ht);
+ pH->ht = new_ht;
+ pH->htsize = new_size;
+ xHash = ftsHashFunction(pH->keyClass);
+ for(elem=pH->first, pH->first=0; elem; elem = next_elem){
+ int h = (*xHash)(elem->pKey, elem->nKey) & (new_size-1);
+ next_elem = elem->next;
+ fts3HashInsertElement(pH, &new_ht[h], elem);
+ }
+}
+
+/* This function (for internal use only) locates an element in an
+** hash table that matches the given key. The hash for this key has
+** already been computed and is passed as the 4th parameter.
+*/
+static fts3HashElem *fts3FindElementByHash(
+ const fts3Hash *pH, /* The pH to be searched */
+ const void *pKey, /* The key we are searching for */
+ int nKey,
+ int h /* The hash for this key. */
+){
+ fts3HashElem *elem; /* Used to loop thru the element list */
+ int count; /* Number of elements left to test */
+ int (*xCompare)(const void*,int,const void*,int); /* comparison function */
+
+ if( pH->ht ){
+ struct _fts3ht *pEntry = &pH->ht[h];
+ elem = pEntry->chain;
+ count = pEntry->count;
+ xCompare = ftsCompareFunction(pH->keyClass);
+ while( count-- && elem ){
+ if( (*xCompare)(elem->pKey,elem->nKey,pKey,nKey)==0 ){
+ return elem;
+ }
+ elem = elem->next;
+ }
+ }
+ return 0;
+}
+
+/* Remove a single entry from the hash table given a pointer to that
+** element and a hash on the element's key.
+*/
+static void fts3RemoveElementByHash(
+ fts3Hash *pH, /* The pH containing "elem" */
+ fts3HashElem* elem, /* The element to be removed from the pH */
+ int h /* Hash value for the element */
+){
+ struct _fts3ht *pEntry;
+ if( elem->prev ){
+ elem->prev->next = elem->next;
+ }else{
+ pH->first = elem->next;
+ }
+ if( elem->next ){
+ elem->next->prev = elem->prev;
+ }
+ pEntry = &pH->ht[h];
+ if( pEntry->chain==elem ){
+ pEntry->chain = elem->next;
+ }
+ pEntry->count--;
+ if( pEntry->count<=0 ){
+ pEntry->chain = 0;
+ }
+ if( pH->copyKey && elem->pKey ){
+ fts3HashFree(elem->pKey);
+ }
+ fts3HashFree( elem );
+ pH->count--;
+ if( pH->count<=0 ){
+ assert( pH->first==0 );
+ assert( pH->count==0 );
+ fts3HashClear(pH);
+ }
+}
+
+/* Attempt to locate an element of the hash table pH with a key
+** that matches pKey,nKey. Return the data for this element if it is
+** found, or NULL if there is no match.
+*/
+SQLITE_PRIVATE void *sqlite3Fts3HashFind(const fts3Hash *pH, const void *pKey, int nKey){
+ int h; /* A hash on key */
+ fts3HashElem *elem; /* The element that matches key */
+ int (*xHash)(const void*,int); /* The hash function */
+
+ if( pH==0 || pH->ht==0 ) return 0;
+ xHash = ftsHashFunction(pH->keyClass);
+ assert( xHash!=0 );
+ h = (*xHash)(pKey,nKey);
+ assert( (pH->htsize & (pH->htsize-1))==0 );
+ elem = fts3FindElementByHash(pH,pKey,nKey, h & (pH->htsize-1));
+ return elem ? elem->data : 0;
+}
+
+/* Insert an element into the hash table pH. The key is pKey,nKey
+** and the data is "data".
+**
+** If no element exists with a matching key, then a new
+** element is created. A copy of the key is made if the copyKey
+** flag is set. NULL is returned.
+**
+** If another element already exists with the same key, then the
+** new data replaces the old data and the old data is returned.
+** The key is not copied in this instance. If a malloc fails, then
+** the new data is returned and the hash table is unchanged.
+**
+** If the "data" parameter to this function is NULL, then the
+** element corresponding to "key" is removed from the hash table.
+*/
+SQLITE_PRIVATE void *sqlite3Fts3HashInsert(
+ fts3Hash *pH, /* The hash table to insert into */
+ const void *pKey, /* The key */
+ int nKey, /* Number of bytes in the key */
+ void *data /* The data */
+){
+ int hraw; /* Raw hash value of the key */
+ int h; /* the hash of the key modulo hash table size */
+ fts3HashElem *elem; /* Used to loop thru the element list */
+ fts3HashElem *new_elem; /* New element added to the pH */
+ int (*xHash)(const void*,int); /* The hash function */
+
+ assert( pH!=0 );
+ xHash = ftsHashFunction(pH->keyClass);
+ assert( xHash!=0 );
+ hraw = (*xHash)(pKey, nKey);
+ assert( (pH->htsize & (pH->htsize-1))==0 );
+ h = hraw & (pH->htsize-1);
+ elem = fts3FindElementByHash(pH,pKey,nKey,h);
+ if( elem ){
+ void *old_data = elem->data;
+ if( data==0 ){
+ fts3RemoveElementByHash(pH,elem,h);
+ }else{
+ elem->data = data;
+ }
+ return old_data;
+ }
+ if( data==0 ) return 0;
+ new_elem = (fts3HashElem*)fts3HashMalloc( sizeof(fts3HashElem) );
+ if( new_elem==0 ) return data;
+ if( pH->copyKey && pKey!=0 ){
+ new_elem->pKey = fts3HashMalloc( nKey );
+ if( new_elem->pKey==0 ){
+ fts3HashFree(new_elem);
+ return data;
+ }
+ memcpy((void*)new_elem->pKey, pKey, nKey);
+ }else{
+ new_elem->pKey = (void*)pKey;
+ }
+ new_elem->nKey = nKey;
+ pH->count++;
+ if( pH->htsize==0 ){
+ fts3Rehash(pH,8);
+ if( pH->htsize==0 ){
+ pH->count = 0;
+ fts3HashFree(new_elem);
+ return data;
+ }
+ }
+ if( pH->count > pH->htsize ){
+ fts3Rehash(pH,pH->htsize*2);
+ }
+ assert( pH->htsize>0 );
+ assert( (pH->htsize & (pH->htsize-1))==0 );
+ h = hraw & (pH->htsize-1);
+ fts3HashInsertElement(pH, &pH->ht[h], new_elem);
+ new_elem->data = data;
+ return 0;
+}
+
+#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */
+
+/************** End of fts3_hash.c *******************************************/
+/************** Begin file fts3_porter.c *************************************/
+/*
+** 2006 September 30
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** Implementation of the full-text-search tokenizer that implements
+** a Porter stemmer.
+*/
+
+/*
+** The code in this file is only compiled if:
+**
+** * The FTS3 module is being built as an extension
+** (in which case SQLITE_CORE is not defined), or
+**
+** * The FTS3 module is being built into the core of
+** SQLite (in which case SQLITE_ENABLE_FTS3 is defined).
+*/
+#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
+
+
+
+
+/*
+** Class derived from sqlite3_tokenizer
+*/
+typedef struct porter_tokenizer {
+ sqlite3_tokenizer base; /* Base class */
+} porter_tokenizer;
+
+/*
+** Class derived from sqlit3_tokenizer_cursor
+*/
+typedef struct porter_tokenizer_cursor {
+ sqlite3_tokenizer_cursor base;
+ const char *zInput; /* input we are tokenizing */
+ int nInput; /* size of the input */
+ int iOffset; /* current position in zInput */
+ int iToken; /* index of next token to be returned */
+ char *zToken; /* storage for current token */
+ int nAllocated; /* space allocated to zToken buffer */
+} porter_tokenizer_cursor;
+
+
+/* Forward declaration */
+static const sqlite3_tokenizer_module porterTokenizerModule;
+
+
+/*
+** Create a new tokenizer instance.
+*/
+static int porterCreate(
+ int argc, const char * const *argv,
+ sqlite3_tokenizer **ppTokenizer
+){
+ porter_tokenizer *t;
+ t = (porter_tokenizer *) sqlite3_malloc(sizeof(*t));
+ if( t==NULL ) return SQLITE_NOMEM;
+ memset(t, 0, sizeof(*t));
+ *ppTokenizer = &t->base;
+ return SQLITE_OK;
+}
+
+/*
+** Destroy a tokenizer
+*/
+static int porterDestroy(sqlite3_tokenizer *pTokenizer){
+ sqlite3_free(pTokenizer);
+ return SQLITE_OK;
+}
+
+/*
+** Prepare to begin tokenizing a particular string. The input
+** string to be tokenized is zInput[0..nInput-1]. A cursor
+** used to incrementally tokenize this string is returned in
+** *ppCursor.
+*/
+static int porterOpen(
+ sqlite3_tokenizer *pTokenizer, /* The tokenizer */
+ const char *zInput, int nInput, /* String to be tokenized */
+ sqlite3_tokenizer_cursor **ppCursor /* OUT: Tokenization cursor */
+){
+ porter_tokenizer_cursor *c;
+
+ c = (porter_tokenizer_cursor *) sqlite3_malloc(sizeof(*c));
+ if( c==NULL ) return SQLITE_NOMEM;
+
+ c->zInput = zInput;
+ if( zInput==0 ){
+ c->nInput = 0;
+ }else if( nInput<0 ){
+ c->nInput = (int)strlen(zInput);
+ }else{
+ c->nInput = nInput;
+ }
+ c->iOffset = 0; /* start tokenizing at the beginning */
+ c->iToken = 0;
+ c->zToken = NULL; /* no space allocated, yet. */
+ c->nAllocated = 0;
+
+ *ppCursor = &c->base;
+ return SQLITE_OK;
+}
+
+/*
+** Close a tokenization cursor previously opened by a call to
+** porterOpen() above.
+*/
+static int porterClose(sqlite3_tokenizer_cursor *pCursor){
+ porter_tokenizer_cursor *c = (porter_tokenizer_cursor *) pCursor;
+ sqlite3_free(c->zToken);
+ sqlite3_free(c);
+ return SQLITE_OK;
+}
+/*
+** Vowel or consonant
+*/
+static const char cType[] = {
+ 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0,
+ 1, 1, 1, 2, 1
+};
+
+/*
+** isConsonant() and isVowel() determine if their first character in
+** the string they point to is a consonant or a vowel, according
+** to Porter ruls.
+**
+** A consonate is any letter other than 'a', 'e', 'i', 'o', or 'u'.
+** 'Y' is a consonant unless it follows another consonant,
+** in which case it is a vowel.
+**
+** In these routine, the letters are in reverse order. So the 'y' rule
+** is that 'y' is a consonant unless it is followed by another
+** consonent.
+*/
+static int isVowel(const char*);
+static int isConsonant(const char *z){
+ int j;
+ char x = *z;
+ if( x==0 ) return 0;
+ assert( x>='a' && x<='z' );
+ j = cType[x-'a'];
+ if( j<2 ) return j;
+ return z[1]==0 || isVowel(z + 1);
+}
+static int isVowel(const char *z){
+ int j;
+ char x = *z;
+ if( x==0 ) return 0;
+ assert( x>='a' && x<='z' );
+ j = cType[x-'a'];
+ if( j<2 ) return 1-j;
+ return isConsonant(z + 1);
+}
+
+/*
+** Let any sequence of one or more vowels be represented by V and let
+** C be sequence of one or more consonants. Then every word can be
+** represented as:
+**
+** [C] (VC){m} [V]
+**
+** In prose: A word is an optional consonant followed by zero or
+** vowel-consonant pairs followed by an optional vowel. "m" is the
+** number of vowel consonant pairs. This routine computes the value
+** of m for the first i bytes of a word.
+**
+** Return true if the m-value for z is 1 or more. In other words,
+** return true if z contains at least one vowel that is followed
+** by a consonant.
+**
+** In this routine z[] is in reverse order. So we are really looking
+** for an instance of of a consonant followed by a vowel.
+*/
+static int m_gt_0(const char *z){
+ while( isVowel(z) ){ z++; }
+ if( *z==0 ) return 0;
+ while( isConsonant(z) ){ z++; }
+ return *z!=0;
+}
+
+/* Like mgt0 above except we are looking for a value of m which is
+** exactly 1
+*/
+static int m_eq_1(const char *z){
+ while( isVowel(z) ){ z++; }
+ if( *z==0 ) return 0;
+ while( isConsonant(z) ){ z++; }
+ if( *z==0 ) return 0;
+ while( isVowel(z) ){ z++; }
+ if( *z==0 ) return 1;
+ while( isConsonant(z) ){ z++; }
+ return *z==0;
+}
+
+/* Like mgt0 above except we are looking for a value of m>1 instead
+** or m>0
+*/
+static int m_gt_1(const char *z){
+ while( isVowel(z) ){ z++; }
+ if( *z==0 ) return 0;
+ while( isConsonant(z) ){ z++; }
+ if( *z==0 ) return 0;
+ while( isVowel(z) ){ z++; }
+ if( *z==0 ) return 0;
+ while( isConsonant(z) ){ z++; }
+ return *z!=0;
+}
+
+/*
+** Return TRUE if there is a vowel anywhere within z[0..n-1]
+*/
+static int hasVowel(const char *z){
+ while( isConsonant(z) ){ z++; }
+ return *z!=0;
+}
+
+/*
+** Return TRUE if the word ends in a double consonant.
+**
+** The text is reversed here. So we are really looking at
+** the first two characters of z[].
+*/
+static int doubleConsonant(const char *z){
+ return isConsonant(z) && z[0]==z[1] && isConsonant(z+1);
+}
+
+/*
+** Return TRUE if the word ends with three letters which
+** are consonant-vowel-consonent and where the final consonant
+** is not 'w', 'x', or 'y'.
+**
+** The word is reversed here. So we are really checking the
+** first three letters and the first one cannot be in [wxy].
+*/
+static int star_oh(const char *z){
+ return
+ z[0]!=0 && isConsonant(z) &&
+ z[0]!='w' && z[0]!='x' && z[0]!='y' &&
+ z[1]!=0 && isVowel(z+1) &&
+ z[2]!=0 && isConsonant(z+2);
+}
+
+/*
+** If the word ends with zFrom and xCond() is true for the stem
+** of the word that preceeds the zFrom ending, then change the
+** ending to zTo.
+**
+** The input word *pz and zFrom are both in reverse order. zTo
+** is in normal order.
+**
+** Return TRUE if zFrom matches. Return FALSE if zFrom does not
+** match. Not that TRUE is returned even if xCond() fails and
+** no substitution occurs.
+*/
+static int stem(
+ char **pz, /* The word being stemmed (Reversed) */
+ const char *zFrom, /* If the ending matches this... (Reversed) */
+ const char *zTo, /* ... change the ending to this (not reversed) */
+ int (*xCond)(const char*) /* Condition that must be true */
+){
+ char *z = *pz;
+ while( *zFrom && *zFrom==*z ){ z++; zFrom++; }
+ if( *zFrom!=0 ) return 0;
+ if( xCond && !xCond(z) ) return 1;
+ while( *zTo ){
+ *(--z) = *(zTo++);
+ }
+ *pz = z;
+ return 1;
+}
+
+/*
+** This is the fallback stemmer used when the porter stemmer is
+** inappropriate. The input word is copied into the output with
+** US-ASCII case folding. If the input word is too long (more
+** than 20 bytes if it contains no digits or more than 6 bytes if
+** it contains digits) then word is truncated to 20 or 6 bytes
+** by taking 10 or 3 bytes from the beginning and end.
+*/
+static void copy_stemmer(const char *zIn, int nIn, char *zOut, int *pnOut){
+ int i, mx, j;
+ int hasDigit = 0;
+ for(i=0; i<nIn; i++){
+ int c = zIn[i];
+ if( c>='A' && c<='Z' ){
+ zOut[i] = c - 'A' + 'a';
+ }else{
+ if( c>='0' && c<='9' ) hasDigit = 1;
+ zOut[i] = c;
+ }
+ }
+ mx = hasDigit ? 3 : 10;
+ if( nIn>mx*2 ){
+ for(j=mx, i=nIn-mx; i<nIn; i++, j++){
+ zOut[j] = zOut[i];
+ }
+ i = j;
+ }
+ zOut[i] = 0;
+ *pnOut = i;
+}
+
+
+/*
+** Stem the input word zIn[0..nIn-1]. Store the output in zOut.
+** zOut is at least big enough to hold nIn bytes. Write the actual
+** size of the output word (exclusive of the '\0' terminator) into *pnOut.
+**
+** Any upper-case characters in the US-ASCII character set ([A-Z])
+** are converted to lower case. Upper-case UTF characters are
+** unchanged.
+**
+** Words that are longer than about 20 bytes are stemmed by retaining
+** a few bytes from the beginning and the end of the word. If the
+** word contains digits, 3 bytes are taken from the beginning and
+** 3 bytes from the end. For long words without digits, 10 bytes
+** are taken from each end. US-ASCII case folding still applies.
+**
+** If the input word contains not digits but does characters not
+** in [a-zA-Z] then no stemming is attempted and this routine just
+** copies the input into the input into the output with US-ASCII
+** case folding.
+**
+** Stemming never increases the length of the word. So there is
+** no chance of overflowing the zOut buffer.
+*/
+static void porter_stemmer(const char *zIn, int nIn, char *zOut, int *pnOut){
+ int i, j, c;
+ char zReverse[28];
+ char *z, *z2;
+ if( nIn<3 || nIn>=sizeof(zReverse)-7 ){
+ /* The word is too big or too small for the porter stemmer.
+ ** Fallback to the copy stemmer */
+ copy_stemmer(zIn, nIn, zOut, pnOut);
+ return;
+ }
+ for(i=0, j=sizeof(zReverse)-6; i<nIn; i++, j--){
+ c = zIn[i];
+ if( c>='A' && c<='Z' ){
+ zReverse[j] = c + 'a' - 'A';
+ }else if( c>='a' && c<='z' ){
+ zReverse[j] = c;
+ }else{
+ /* The use of a character not in [a-zA-Z] means that we fallback
+ ** to the copy stemmer */
+ copy_stemmer(zIn, nIn, zOut, pnOut);
+ return;
+ }
+ }
+ memset(&zReverse[sizeof(zReverse)-5], 0, 5);
+ z = &zReverse[j+1];
+
+
+ /* Step 1a */
+ if( z[0]=='s' ){
+ if(
+ !stem(&z, "sess", "ss", 0) &&
+ !stem(&z, "sei", "i", 0) &&
+ !stem(&z, "ss", "ss", 0)
+ ){
+ z++;
+ }
+ }
+
+ /* Step 1b */
+ z2 = z;
+ if( stem(&z, "dee", "ee", m_gt_0) ){
+ /* Do nothing. The work was all in the test */
+ }else if(
+ (stem(&z, "gni", "", hasVowel) || stem(&z, "de", "", hasVowel))
+ && z!=z2
+ ){
+ if( stem(&z, "ta", "ate", 0) ||
+ stem(&z, "lb", "ble", 0) ||
+ stem(&z, "zi", "ize", 0) ){
+ /* Do nothing. The work was all in the test */
+ }else if( doubleConsonant(z) && (*z!='l' && *z!='s' && *z!='z') ){
+ z++;
+ }else if( m_eq_1(z) && star_oh(z) ){
+ *(--z) = 'e';
+ }
+ }
+
+ /* Step 1c */
+ if( z[0]=='y' && hasVowel(z+1) ){
+ z[0] = 'i';
+ }
+
+ /* Step 2 */
+ switch( z[1] ){
+ case 'a':
+ stem(&z, "lanoita", "ate", m_gt_0) ||
+ stem(&z, "lanoit", "tion", m_gt_0);
+ break;
+ case 'c':
+ stem(&z, "icne", "ence", m_gt_0) ||
+ stem(&z, "icna", "ance", m_gt_0);
+ break;
+ case 'e':
+ stem(&z, "rezi", "ize", m_gt_0);
+ break;
+ case 'g':
+ stem(&z, "igol", "log", m_gt_0);
+ break;
+ case 'l':
+ stem(&z, "ilb", "ble", m_gt_0) ||
+ stem(&z, "illa", "al", m_gt_0) ||
+ stem(&z, "iltne", "ent", m_gt_0) ||
+ stem(&z, "ile", "e", m_gt_0) ||
+ stem(&z, "ilsuo", "ous", m_gt_0);
+ break;
+ case 'o':
+ stem(&z, "noitazi", "ize", m_gt_0) ||
+ stem(&z, "noita", "ate", m_gt_0) ||
+ stem(&z, "rota", "ate", m_gt_0);
+ break;
+ case 's':
+ stem(&z, "msila", "al", m_gt_0) ||
+ stem(&z, "ssenevi", "ive", m_gt_0) ||
+ stem(&z, "ssenluf", "ful", m_gt_0) ||
+ stem(&z, "ssensuo", "ous", m_gt_0);
+ break;
+ case 't':
+ stem(&z, "itila", "al", m_gt_0) ||
+ stem(&z, "itivi", "ive", m_gt_0) ||
+ stem(&z, "itilib", "ble", m_gt_0);
+ break;
+ }
+
+ /* Step 3 */
+ switch( z[0] ){
+ case 'e':
+ stem(&z, "etaci", "ic", m_gt_0) ||
+ stem(&z, "evita", "", m_gt_0) ||
+ stem(&z, "ezila", "al", m_gt_0);
+ break;
+ case 'i':
+ stem(&z, "itici", "ic", m_gt_0);
+ break;
+ case 'l':
+ stem(&z, "laci", "ic", m_gt_0) ||
+ stem(&z, "luf", "", m_gt_0);
+ break;
+ case 's':
+ stem(&z, "ssen", "", m_gt_0);
+ break;
+ }
+
+ /* Step 4 */
+ switch( z[1] ){
+ case 'a':
+ if( z[0]=='l' && m_gt_1(z+2) ){
+ z += 2;
+ }
+ break;
+ case 'c':
+ if( z[0]=='e' && z[2]=='n' && (z[3]=='a' || z[3]=='e') && m_gt_1(z+4) ){
+ z += 4;
+ }
+ break;
+ case 'e':
+ if( z[0]=='r' && m_gt_1(z+2) ){
+ z += 2;
+ }
+ break;
+ case 'i':
+ if( z[0]=='c' && m_gt_1(z+2) ){
+ z += 2;
+ }
+ break;
+ case 'l':
+ if( z[0]=='e' && z[2]=='b' && (z[3]=='a' || z[3]=='i') && m_gt_1(z+4) ){
+ z += 4;
+ }
+ break;
+ case 'n':
+ if( z[0]=='t' ){
+ if( z[2]=='a' ){
+ if( m_gt_1(z+3) ){
+ z += 3;
+ }
+ }else if( z[2]=='e' ){
+ stem(&z, "tneme", "", m_gt_1) ||
+ stem(&z, "tnem", "", m_gt_1) ||
+ stem(&z, "tne", "", m_gt_1);
+ }
+ }
+ break;
+ case 'o':
+ if( z[0]=='u' ){
+ if( m_gt_1(z+2) ){
+ z += 2;
+ }
+ }else if( z[3]=='s' || z[3]=='t' ){
+ stem(&z, "noi", "", m_gt_1);
+ }
+ break;
+ case 's':
+ if( z[0]=='m' && z[2]=='i' && m_gt_1(z+3) ){
+ z += 3;
+ }
+ break;
+ case 't':
+ stem(&z, "eta", "", m_gt_1) ||
+ stem(&z, "iti", "", m_gt_1);
+ break;
+ case 'u':
+ if( z[0]=='s' && z[2]=='o' && m_gt_1(z+3) ){
+ z += 3;
+ }
+ break;
+ case 'v':
+ case 'z':
+ if( z[0]=='e' && z[2]=='i' && m_gt_1(z+3) ){
+ z += 3;
+ }
+ break;
+ }
+
+ /* Step 5a */
+ if( z[0]=='e' ){
+ if( m_gt_1(z+1) ){
+ z++;
+ }else if( m_eq_1(z+1) && !star_oh(z+1) ){
+ z++;
+ }
+ }
+
+ /* Step 5b */
+ if( m_gt_1(z) && z[0]=='l' && z[1]=='l' ){
+ z++;
+ }
+
+ /* z[] is now the stemmed word in reverse order. Flip it back
+ ** around into forward order and return.
+ */
+ *pnOut = i = strlen(z);
+ zOut[i] = 0;
+ while( *z ){
+ zOut[--i] = *(z++);
+ }
+}
+
+/*
+** Characters that can be part of a token. We assume any character
+** whose value is greater than 0x80 (any UTF character) can be
+** part of a token. In other words, delimiters all must have
+** values of 0x7f or lower.
+*/
+static const char porterIdChar[] = {
+/* x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF */
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, /* 3x */
+ 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 4x */
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, /* 5x */
+ 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 6x */
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, /* 7x */
+};
+#define isDelim(C) (((ch=C)&0x80)==0 && (ch<0x30 || !porterIdChar[ch-0x30]))
+
+/*
+** Extract the next token from a tokenization cursor. The cursor must
+** have been opened by a prior call to porterOpen().
+*/
+static int porterNext(
+ sqlite3_tokenizer_cursor *pCursor, /* Cursor returned by porterOpen */
+ const char **pzToken, /* OUT: *pzToken is the token text */
+ int *pnBytes, /* OUT: Number of bytes in token */
+ int *piStartOffset, /* OUT: Starting offset of token */
+ int *piEndOffset, /* OUT: Ending offset of token */
+ int *piPosition /* OUT: Position integer of token */
+){
+ porter_tokenizer_cursor *c = (porter_tokenizer_cursor *) pCursor;
+ const char *z = c->zInput;
+
+ while( c->iOffset<c->nInput ){
+ int iStartOffset, ch;
+
+ /* Scan past delimiter characters */
+ while( c->iOffset<c->nInput && isDelim(z[c->iOffset]) ){
+ c->iOffset++;
+ }
+
+ /* Count non-delimiter characters. */
+ iStartOffset = c->iOffset;
+ while( c->iOffset<c->nInput && !isDelim(z[c->iOffset]) ){
+ c->iOffset++;
+ }
+
+ if( c->iOffset>iStartOffset ){
+ int n = c->iOffset-iStartOffset;
+ if( n>c->nAllocated ){
+ c->nAllocated = n+20;
+ c->zToken = sqlite3_realloc(c->zToken, c->nAllocated);
+ if( c->zToken==NULL ) return SQLITE_NOMEM;
+ }
+ porter_stemmer(&z[iStartOffset], n, c->zToken, pnBytes);
+ *pzToken = c->zToken;
+ *piStartOffset = iStartOffset;
+ *piEndOffset = c->iOffset;
+ *piPosition = c->iToken++;
+ return SQLITE_OK;
+ }
+ }
+ return SQLITE_DONE;
+}
+
+/*
+** The set of routines that implement the porter-stemmer tokenizer
+*/
+static const sqlite3_tokenizer_module porterTokenizerModule = {
+ 0,
+ porterCreate,
+ porterDestroy,
+ porterOpen,
+ porterClose,
+ porterNext,
+};
+
+/*
+** Allocate a new porter tokenizer. Return a pointer to the new
+** tokenizer in *ppModule
+*/
+SQLITE_PRIVATE void sqlite3Fts3PorterTokenizerModule(
+ sqlite3_tokenizer_module const**ppModule
+){
+ *ppModule = &porterTokenizerModule;
+}
+
+#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */
+
+/************** End of fts3_porter.c *****************************************/
+/************** Begin file fts3_tokenizer.c **********************************/
+/*
+** 2007 June 22
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+** This is part of an SQLite module implementing full-text search.
+** This particular file implements the generic tokenizer interface.
+*/
+
+/*
+** The code in this file is only compiled if:
+**
+** * The FTS3 module is being built as an extension
+** (in which case SQLITE_CORE is not defined), or
+**
+** * The FTS3 module is being built into the core of
+** SQLite (in which case SQLITE_ENABLE_FTS3 is defined).
+*/
+#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
+
+#ifndef SQLITE_CORE
+ SQLITE_EXTENSION_INIT1
+#endif
+
+
+/*
+** Implementation of the SQL scalar function for accessing the underlying
+** hash table. This function may be called as follows:
+**
+** SELECT <function-name>(<key-name>);
+** SELECT <function-name>(<key-name>, <pointer>);
+**
+** where <function-name> is the name passed as the second argument
+** to the sqlite3Fts3InitHashTable() function (e.g. 'fts3_tokenizer').
+**
+** If the <pointer> argument is specified, it must be a blob value
+** containing a pointer to be stored as the hash data corresponding
+** to the string <key-name>. If <pointer> is not specified, then
+** the string <key-name> must already exist in the has table. Otherwise,
+** an error is returned.
+**
+** Whether or not the <pointer> argument is specified, the value returned
+** is a blob containing the pointer stored as the hash data corresponding
+** to string <key-name> (after the hash-table is updated, if applicable).
+*/
+static void scalarFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ fts3Hash *pHash;
+ void *pPtr = 0;
+ const unsigned char *zName;
+ int nName;
+
+ assert( argc==1 || argc==2 );
+
+ pHash = (fts3Hash *)sqlite3_user_data(context);
+
+ zName = sqlite3_value_text(argv[0]);
+ nName = sqlite3_value_bytes(argv[0])+1;
+
+ if( argc==2 ){
+ void *pOld;
+ int n = sqlite3_value_bytes(argv[1]);
+ if( n!=sizeof(pPtr) ){
+ sqlite3_result_error(context, "argument type mismatch", -1);
+ return;
+ }
+ pPtr = *(void **)sqlite3_value_blob(argv[1]);
+ pOld = sqlite3Fts3HashInsert(pHash, (void *)zName, nName, pPtr);
+ if( pOld==pPtr ){
+ sqlite3_result_error(context, "out of memory", -1);
+ return;
+ }
+ }else{
+ pPtr = sqlite3Fts3HashFind(pHash, zName, nName);
+ if( !pPtr ){
+ char *zErr = sqlite3_mprintf("unknown tokenizer: %s", zName);
+ sqlite3_result_error(context, zErr, -1);
+ sqlite3_free(zErr);
+ return;
+ }
+ }
+
+ sqlite3_result_blob(context, (void *)&pPtr, sizeof(pPtr), SQLITE_TRANSIENT);
+}
+
+#ifdef SQLITE_TEST
+
+
+/*
+** Implementation of a special SQL scalar function for testing tokenizers
+** designed to be used in concert with the Tcl testing framework. This
+** function must be called with two arguments:
+**
+** SELECT <function-name>(<key-name>, <input-string>);
+** SELECT <function-name>(<key-name>, <pointer>);
+**
+** where <function-name> is the name passed as the second argument
+** to the sqlite3Fts3InitHashTable() function (e.g. 'fts3_tokenizer')
+** concatenated with the string '_test' (e.g. 'fts3_tokenizer_test').
+**
+** The return value is a string that may be interpreted as a Tcl
+** list. For each token in the <input-string>, three elements are
+** added to the returned list. The first is the token position, the
+** second is the token text (folded, stemmed, etc.) and the third is the
+** substring of <input-string> associated with the token. For example,
+** using the built-in "simple" tokenizer:
+**
+** SELECT fts_tokenizer_test('simple', 'I don't see how');
+**
+** will return the string:
+**
+** "{0 i I 1 dont don't 2 see see 3 how how}"
+**
+*/
+static void testFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ fts3Hash *pHash;
+ sqlite3_tokenizer_module *p;
+ sqlite3_tokenizer *pTokenizer = 0;
+ sqlite3_tokenizer_cursor *pCsr = 0;
+
+ const char *zErr = 0;
+
+ const char *zName;
+ int nName;
+ const char *zInput;
+ int nInput;
+
+ const char *zArg = 0;
+
+ const char *zToken;
+ int nToken;
+ int iStart;
+ int iEnd;
+ int iPos;
+
+ Tcl_Obj *pRet;
+
+ assert( argc==2 || argc==3 );
+
+ nName = sqlite3_value_bytes(argv[0]);
+ zName = (const char *)sqlite3_value_text(argv[0]);
+ nInput = sqlite3_value_bytes(argv[argc-1]);
+ zInput = (const char *)sqlite3_value_text(argv[argc-1]);
+
+ if( argc==3 ){
+ zArg = (const char *)sqlite3_value_text(argv[1]);
+ }
+
+ pHash = (fts3Hash *)sqlite3_user_data(context);
+ p = (sqlite3_tokenizer_module *)sqlite3Fts3HashFind(pHash, zName, nName+1);
+
+ if( !p ){
+ char *zErr = sqlite3_mprintf("unknown tokenizer: %s", zName);
+ sqlite3_result_error(context, zErr, -1);
+ sqlite3_free(zErr);
+ return;
+ }
+
+ pRet = Tcl_NewObj();
+ Tcl_IncrRefCount(pRet);
+
+ if( SQLITE_OK!=p->xCreate(zArg ? 1 : 0, &zArg, &pTokenizer) ){
+ zErr = "error in xCreate()";
+ goto finish;
+ }
+ pTokenizer->pModule = p;
+ if( SQLITE_OK!=p->xOpen(pTokenizer, zInput, nInput, &pCsr) ){
+ zErr = "error in xOpen()";
+ goto finish;
+ }
+ pCsr->pTokenizer = pTokenizer;
+
+ while( SQLITE_OK==p->xNext(pCsr, &zToken, &nToken, &iStart, &iEnd, &iPos) ){
+ Tcl_ListObjAppendElement(0, pRet, Tcl_NewIntObj(iPos));
+ Tcl_ListObjAppendElement(0, pRet, Tcl_NewStringObj(zToken, nToken));
+ zToken = &zInput[iStart];
+ nToken = iEnd-iStart;
+ Tcl_ListObjAppendElement(0, pRet, Tcl_NewStringObj(zToken, nToken));
+ }
+
+ if( SQLITE_OK!=p->xClose(pCsr) ){
+ zErr = "error in xClose()";
+ goto finish;
+ }
+ if( SQLITE_OK!=p->xDestroy(pTokenizer) ){
+ zErr = "error in xDestroy()";
+ goto finish;
+ }
+
+finish:
+ if( zErr ){
+ sqlite3_result_error(context, zErr, -1);
+ }else{
+ sqlite3_result_text(context, Tcl_GetString(pRet), -1, SQLITE_TRANSIENT);
+ }
+ Tcl_DecrRefCount(pRet);
+}
+
+static
+int registerTokenizer(
+ sqlite3 *db,
+ char *zName,
+ const sqlite3_tokenizer_module *p
+){
+ int rc;
+ sqlite3_stmt *pStmt;
+ const char zSql[] = "SELECT fts3_tokenizer(?, ?)";
+
+ rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+
+ sqlite3_bind_text(pStmt, 1, zName, -1, SQLITE_STATIC);
+ sqlite3_bind_blob(pStmt, 2, &p, sizeof(p), SQLITE_STATIC);
+ sqlite3_step(pStmt);
+
+ return sqlite3_finalize(pStmt);
+}
+
+static
+int queryTokenizer(
+ sqlite3 *db,
+ char *zName,
+ const sqlite3_tokenizer_module **pp
+){
+ int rc;
+ sqlite3_stmt *pStmt;
+ const char zSql[] = "SELECT fts3_tokenizer(?)";
+
+ *pp = 0;
+ rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+
+ sqlite3_bind_text(pStmt, 1, zName, -1, SQLITE_STATIC);
+ if( SQLITE_ROW==sqlite3_step(pStmt) ){
+ if( sqlite3_column_type(pStmt, 0)==SQLITE_BLOB ){
+ memcpy(pp, sqlite3_column_blob(pStmt, 0), sizeof(*pp));
+ }
+ }
+
+ return sqlite3_finalize(pStmt);
+}
+
+SQLITE_PRIVATE void sqlite3Fts3SimpleTokenizerModule(sqlite3_tokenizer_module const**ppModule);
+
+/*
+** Implementation of the scalar function fts3_tokenizer_internal_test().
+** This function is used for testing only, it is not included in the
+** build unless SQLITE_TEST is defined.
+**
+** The purpose of this is to test that the fts3_tokenizer() function
+** can be used as designed by the C-code in the queryTokenizer and
+** registerTokenizer() functions above. These two functions are repeated
+** in the README.tokenizer file as an example, so it is important to
+** test them.
+**
+** To run the tests, evaluate the fts3_tokenizer_internal_test() scalar
+** function with no arguments. An assert() will fail if a problem is
+** detected. i.e.:
+**
+** SELECT fts3_tokenizer_internal_test();
+**
+*/
+static void intTestFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ int rc;
+ const sqlite3_tokenizer_module *p1;
+ const sqlite3_tokenizer_module *p2;
+ sqlite3 *db = (sqlite3 *)sqlite3_user_data(context);
+
+ /* Test the query function */
+ sqlite3Fts3SimpleTokenizerModule(&p1);
+ rc = queryTokenizer(db, "simple", &p2);
+ assert( rc==SQLITE_OK );
+ assert( p1==p2 );
+ rc = queryTokenizer(db, "nosuchtokenizer", &p2);
+ assert( rc==SQLITE_ERROR );
+ assert( p2==0 );
+ assert( 0==strcmp(sqlite3_errmsg(db), "unknown tokenizer: nosuchtokenizer") );
+
+ /* Test the storage function */
+ rc = registerTokenizer(db, "nosuchtokenizer", p1);
+ assert( rc==SQLITE_OK );
+ rc = queryTokenizer(db, "nosuchtokenizer", &p2);
+ assert( rc==SQLITE_OK );
+ assert( p2==p1 );
+
+ sqlite3_result_text(context, "ok", -1, SQLITE_STATIC);
+}
+
+#endif
+
+/*
+** Set up SQL objects in database db used to access the contents of
+** the hash table pointed to by argument pHash. The hash table must
+** been initialised to use string keys, and to take a private copy
+** of the key when a value is inserted. i.e. by a call similar to:
+**
+** sqlite3Fts3HashInit(pHash, FTS3_HASH_STRING, 1);
+**
+** This function adds a scalar function (see header comment above
+** scalarFunc() in this file for details) and, if ENABLE_TABLE is
+** defined at compilation time, a temporary virtual table (see header
+** comment above struct HashTableVtab) to the database schema. Both
+** provide read/write access to the contents of *pHash.
+**
+** The third argument to this function, zName, is used as the name
+** of both the scalar and, if created, the virtual table.
+*/
+SQLITE_PRIVATE int sqlite3Fts3InitHashTable(
+ sqlite3 *db,
+ fts3Hash *pHash,
+ const char *zName
+){
+ int rc = SQLITE_OK;
+ void *p = (void *)pHash;
+ const int any = SQLITE_ANY;
+ char *zTest = 0;
+ char *zTest2 = 0;
+
+#ifdef SQLITE_TEST
+ void *pdb = (void *)db;
+ zTest = sqlite3_mprintf("%s_test", zName);
+ zTest2 = sqlite3_mprintf("%s_internal_test", zName);
+ if( !zTest || !zTest2 ){
+ rc = SQLITE_NOMEM;
+ }
+#endif
+
+ if( rc!=SQLITE_OK
+ || (rc = sqlite3_create_function(db, zName, 1, any, p, scalarFunc, 0, 0))
+ || (rc = sqlite3_create_function(db, zName, 2, any, p, scalarFunc, 0, 0))
+#ifdef SQLITE_TEST
+ || (rc = sqlite3_create_function(db, zTest, 2, any, p, testFunc, 0, 0))
+ || (rc = sqlite3_create_function(db, zTest, 3, any, p, testFunc, 0, 0))
+ || (rc = sqlite3_create_function(db, zTest2, 0, any, pdb, intTestFunc, 0, 0))
+#endif
+ );
+
+ sqlite3_free(zTest);
+ sqlite3_free(zTest2);
+ return rc;
+}
+
+#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */
+
+/************** End of fts3_tokenizer.c **************************************/
+/************** Begin file fts3_tokenizer1.c *********************************/
+/*
+** 2006 Oct 10
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+** Implementation of the "simple" full-text-search tokenizer.
+*/
+
+/*
+** The code in this file is only compiled if:
+**
+** * The FTS3 module is being built as an extension
+** (in which case SQLITE_CORE is not defined), or
+**
+** * The FTS3 module is being built into the core of
+** SQLite (in which case SQLITE_ENABLE_FTS3 is defined).
+*/
+#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
+
+
+
+
+typedef struct simple_tokenizer {
+ sqlite3_tokenizer base;
+ char delim[128]; /* flag ASCII delimiters */
+} simple_tokenizer;
+
+typedef struct simple_tokenizer_cursor {
+ sqlite3_tokenizer_cursor base;
+ const char *pInput; /* input we are tokenizing */
+ int nBytes; /* size of the input */
+ int iOffset; /* current position in pInput */
+ int iToken; /* index of next token to be returned */
+ char *pToken; /* storage for current token */
+ int nTokenAllocated; /* space allocated to zToken buffer */
+} simple_tokenizer_cursor;
+
+
+/* Forward declaration */
+static const sqlite3_tokenizer_module simpleTokenizerModule;
+
+static int simpleDelim(simple_tokenizer *t, unsigned char c){
+ return c<0x80 && t->delim[c];
+}
+
+/*
+** Create a new tokenizer instance.
+*/
+static int simpleCreate(
+ int argc, const char * const *argv,
+ sqlite3_tokenizer **ppTokenizer
+){
+ simple_tokenizer *t;
+
+ t = (simple_tokenizer *) sqlite3_malloc(sizeof(*t));
+ if( t==NULL ) return SQLITE_NOMEM;
+ memset(t, 0, sizeof(*t));
+
+ /* TODO(shess) Delimiters need to remain the same from run to run,
+ ** else we need to reindex. One solution would be a meta-table to
+ ** track such information in the database, then we'd only want this
+ ** information on the initial create.
+ */
+ if( argc>1 ){
+ int i, n = strlen(argv[1]);
+ for(i=0; i<n; i++){
+ unsigned char ch = argv[1][i];
+ /* We explicitly don't support UTF-8 delimiters for now. */
+ if( ch>=0x80 ){
+ sqlite3_free(t);
+ return SQLITE_ERROR;
+ }
+ t->delim[ch] = 1;
+ }
+ } else {
+ /* Mark non-alphanumeric ASCII characters as delimiters */
+ int i;
+ for(i=1; i<0x80; i++){
+ t->delim[i] = !isalnum(i);
+ }
+ }
+
+ *ppTokenizer = &t->base;
+ return SQLITE_OK;
+}
+
+/*
+** Destroy a tokenizer
+*/
+static int simpleDestroy(sqlite3_tokenizer *pTokenizer){
+ sqlite3_free(pTokenizer);
+ return SQLITE_OK;
+}
+
+/*
+** Prepare to begin tokenizing a particular string. The input
+** string to be tokenized is pInput[0..nBytes-1]. A cursor
+** used to incrementally tokenize this string is returned in
+** *ppCursor.
+*/
+static int simpleOpen(
+ sqlite3_tokenizer *pTokenizer, /* The tokenizer */
+ const char *pInput, int nBytes, /* String to be tokenized */
+ sqlite3_tokenizer_cursor **ppCursor /* OUT: Tokenization cursor */
+){
+ simple_tokenizer_cursor *c;
+
+ c = (simple_tokenizer_cursor *) sqlite3_malloc(sizeof(*c));
+ if( c==NULL ) return SQLITE_NOMEM;
+
+ c->pInput = pInput;
+ if( pInput==0 ){
+ c->nBytes = 0;
+ }else if( nBytes<0 ){
+ c->nBytes = (int)strlen(pInput);
+ }else{
+ c->nBytes = nBytes;
+ }
+ c->iOffset = 0; /* start tokenizing at the beginning */
+ c->iToken = 0;
+ c->pToken = NULL; /* no space allocated, yet. */
+ c->nTokenAllocated = 0;
+
+ *ppCursor = &c->base;
+ return SQLITE_OK;
+}
+
+/*
+** Close a tokenization cursor previously opened by a call to
+** simpleOpen() above.
+*/
+static int simpleClose(sqlite3_tokenizer_cursor *pCursor){
+ simple_tokenizer_cursor *c = (simple_tokenizer_cursor *) pCursor;
+ sqlite3_free(c->pToken);
+ sqlite3_free(c);
+ return SQLITE_OK;
+}
+
+/*
+** Extract the next token from a tokenization cursor. The cursor must
+** have been opened by a prior call to simpleOpen().
+*/
+static int simpleNext(
+ sqlite3_tokenizer_cursor *pCursor, /* Cursor returned by simpleOpen */
+ const char **ppToken, /* OUT: *ppToken is the token text */
+ int *pnBytes, /* OUT: Number of bytes in token */
+ int *piStartOffset, /* OUT: Starting offset of token */
+ int *piEndOffset, /* OUT: Ending offset of token */
+ int *piPosition /* OUT: Position integer of token */
+){
+ simple_tokenizer_cursor *c = (simple_tokenizer_cursor *) pCursor;
+ simple_tokenizer *t = (simple_tokenizer *) pCursor->pTokenizer;
+ unsigned char *p = (unsigned char *)c->pInput;
+
+ while( c->iOffset<c->nBytes ){
+ int iStartOffset;
+
+ /* Scan past delimiter characters */
+ while( c->iOffset<c->nBytes && simpleDelim(t, p[c->iOffset]) ){
+ c->iOffset++;
+ }
+
+ /* Count non-delimiter characters. */
+ iStartOffset = c->iOffset;
+ while( c->iOffset<c->nBytes && !simpleDelim(t, p[c->iOffset]) ){
+ c->iOffset++;
+ }
+
+ if( c->iOffset>iStartOffset ){
+ int i, n = c->iOffset-iStartOffset;
+ if( n>c->nTokenAllocated ){
+ c->nTokenAllocated = n+20;
+ c->pToken = sqlite3_realloc(c->pToken, c->nTokenAllocated);
+ if( c->pToken==NULL ) return SQLITE_NOMEM;
+ }
+ for(i=0; i<n; i++){
+ /* TODO(shess) This needs expansion to handle UTF-8
+ ** case-insensitivity.
+ */
+ unsigned char ch = p[iStartOffset+i];
+ c->pToken[i] = ch<0x80 ? tolower(ch) : ch;
+ }
+ *ppToken = c->pToken;
+ *pnBytes = n;
+ *piStartOffset = iStartOffset;
+ *piEndOffset = c->iOffset;
+ *piPosition = c->iToken++;
+
+ return SQLITE_OK;
+ }
+ }
+ return SQLITE_DONE;
+}
+
+/*
+** The set of routines that implement the simple tokenizer
+*/
+static const sqlite3_tokenizer_module simpleTokenizerModule = {
+ 0,
+ simpleCreate,
+ simpleDestroy,
+ simpleOpen,
+ simpleClose,
+ simpleNext,
+};
+
+/*
+** Allocate a new simple tokenizer. Return a pointer to the new
+** tokenizer in *ppModule
+*/
+SQLITE_PRIVATE void sqlite3Fts3SimpleTokenizerModule(
+ sqlite3_tokenizer_module const**ppModule
+){
+ *ppModule = &simpleTokenizerModule;
+}
+
+#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */
+
+/************** End of fts3_tokenizer1.c *************************************/
diff --git a/digikam/libs/sqlite3/sqlite3.h b/digikam/libs/sqlite3/sqlite3.h
new file mode 100644
index 0000000..a492b6d
--- /dev/null
+++ b/digikam/libs/sqlite3/sqlite3.h
@@ -0,0 +1,5638 @@
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This header file defines the interface that the SQLite library
+** presents to client programs. If a C-function, structure, datatype,
+** or constant definition does not appear in this file, then it is
+** not a published API of SQLite, is subject to change without
+** notice, and should not be referenced by programs that use SQLite.
+**
+** Some of the definitions that are in this file are marked as
+** "experimental". Experimental interfaces are normally new
+** features recently added to SQLite. We do not anticipate changes
+** to experimental interfaces but reserve to make minor changes if
+** experience from use "in the wild" suggest such changes are prudent.
+**
+** The official C-language API documentation for SQLite is derived
+** from comments in this file. This file is the authoritative source
+** on how SQLite interfaces are suppose to operate.
+**
+** The name of this file under configuration management is "sqlite.h.in".
+** The makefile makes some minor changes to this file (such as inserting
+** the version number) and changes its name to "sqlite3.h" as
+** part of the build process.
+**
+** @(#) $Id: sqlite.h.in,v 1.312 2008/05/12 12:39:56 drh Exp $
+*/
+#ifndef _SQLITE3_H_
+#define _SQLITE3_H_
+#include <stdarg.h> /* Needed for the definition of va_list */
+
+/*
+** Make sure we can call this stuff from C++.
+*/
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+
+/*
+** Add the ability to override 'extern'
+*/
+#ifndef SQLITE_EXTERN
+# define SQLITE_EXTERN extern
+#endif
+
+/*
+** Make sure these symbols where not defined by some previous header
+** file.
+*/
+#ifdef SQLITE_VERSION
+# undef SQLITE_VERSION
+#endif
+#ifdef SQLITE_VERSION_NUMBER
+# undef SQLITE_VERSION_NUMBER
+#endif
+
+/*
+** CAPI3REF: Compile-Time Library Version Numbers {F10010}
+**
+** The SQLITE_VERSION and SQLITE_VERSION_NUMBER #defines in
+** the sqlite3.h file specify the version of SQLite with which
+** that header file is associated.
+**
+** The "version" of SQLite is a string of the form "X.Y.Z".
+** The phrase "alpha" or "beta" might be appended after the Z.
+** The X value is major version number always 3 in SQLite3.
+** The X value only changes when backwards compatibility is
+** broken and we intend to never break
+** backwards compatibility. The Y value is the minor version
+** number and only changes when
+** there are major feature enhancements that are forwards compatible
+** but not backwards compatible. The Z value is release number
+** and is incremented with
+** each release but resets back to 0 when Y is incremented.
+**
+** See also: [sqlite3_libversion()] and [sqlite3_libversion_number()].
+**
+** INVARIANTS:
+**
+** {F10011} The SQLITE_VERSION #define in the sqlite3.h header file
+** evaluates to a string literal that is the SQLite version
+** with which the header file is associated.
+**
+** {F10014} The SQLITE_VERSION_NUMBER #define resolves to an integer
+** with the value (X*1000000 + Y*1000 + Z) where X, Y, and
+** Z are the major version, minor version, and release number.
+*/
+#define SQLITE_VERSION "3.5.9"
+#define SQLITE_VERSION_NUMBER 3005009
+
+/*
+** CAPI3REF: Run-Time Library Version Numbers {F10020}
+** KEYWORDS: sqlite3_version
+**
+** These features provide the same information as the [SQLITE_VERSION]
+** and [SQLITE_VERSION_NUMBER] #defines in the header, but are associated
+** with the library instead of the header file. Cautious programmers might
+** include a check in their application to verify that
+** sqlite3_libversion_number() always returns the value
+** [SQLITE_VERSION_NUMBER].
+**
+** The sqlite3_libversion() function returns the same information as is
+** in the sqlite3_version[] string constant. The function is provided
+** for use in DLLs since DLL users usually do not have direct access to string
+** constants within the DLL.
+**
+** INVARIANTS:
+**
+** {F10021} The [sqlite3_libversion_number()] interface returns an integer
+** equal to [SQLITE_VERSION_NUMBER].
+**
+** {F10022} The [sqlite3_version] string constant contains the text of the
+** [SQLITE_VERSION] string.
+**
+** {F10023} The [sqlite3_libversion()] function returns
+** a pointer to the [sqlite3_version] string constant.
+*/
+SQLITE_EXTERN const char sqlite3_version[];
+const char *sqlite3_libversion(void);
+int sqlite3_libversion_number(void);
+
+/*
+** CAPI3REF: Test To See If The Library Is Threadsafe {F10100}
+**
+** SQLite can be compiled with or without mutexes. When
+** the SQLITE_THREADSAFE C preprocessor macro is true, mutexes
+** are enabled and SQLite is threadsafe. When that macro is false,
+** the mutexes are omitted. Without the mutexes, it is not safe
+** to use SQLite from more than one thread.
+**
+** There is a measurable performance penalty for enabling mutexes.
+** So if speed is of utmost importance, it makes sense to disable
+** the mutexes. But for maximum safety, mutexes should be enabled.
+** The default behavior is for mutexes to be enabled.
+**
+** This interface can be used by a program to make sure that the
+** version of SQLite that it is linking against was compiled with
+** the desired setting of the SQLITE_THREADSAFE macro.
+**
+** INVARIANTS:
+**
+** {F10101} The [sqlite3_threadsafe()] function returns nonzero if
+** SQLite was compiled with its mutexes enabled or zero
+** if SQLite was compiled with mutexes disabled.
+*/
+int sqlite3_threadsafe(void);
+
+/*
+** CAPI3REF: Database Connection Handle {F12000}
+** KEYWORDS: {database connection} {database connections}
+**
+** Each open SQLite database is represented by pointer to an instance of the
+** opaque structure named "sqlite3". It is useful to think of an sqlite3
+** pointer as an object. The [sqlite3_open()], [sqlite3_open16()], and
+** [sqlite3_open_v2()] interfaces are its constructors
+** and [sqlite3_close()] is its destructor. There are many other interfaces
+** (such as [sqlite3_prepare_v2()], [sqlite3_create_function()], and
+** [sqlite3_busy_timeout()] to name but three) that are methods on this
+** object.
+*/
+typedef struct sqlite3 sqlite3;
+
+
+/*
+** CAPI3REF: 64-Bit Integer Types {F10200}
+** KEYWORDS: sqlite_int64 sqlite_uint64
+**
+** Because there is no cross-platform way to specify 64-bit integer types
+** SQLite includes typedefs for 64-bit signed and unsigned integers.
+**
+** The sqlite3_int64 and sqlite3_uint64 are the preferred type
+** definitions. The sqlite_int64 and sqlite_uint64 types are
+** supported for backwards compatibility only.
+**
+** INVARIANTS:
+**
+** {F10201} The [sqlite_int64] and [sqlite3_int64] types specify a
+** 64-bit signed integer.
+**
+** {F10202} The [sqlite_uint64] and [sqlite3_uint64] types specify
+** a 64-bit unsigned integer.
+*/
+#ifdef SQLITE_INT64_TYPE
+ typedef SQLITE_INT64_TYPE sqlite_int64;
+ typedef unsigned SQLITE_INT64_TYPE sqlite_uint64;
+#elif defined(_MSC_VER) || defined(__BORLANDC__)
+ typedef __int64 sqlite_int64;
+ typedef unsigned __int64 sqlite_uint64;
+#else
+ typedef long long int sqlite_int64;
+ typedef unsigned long long int sqlite_uint64;
+#endif
+typedef sqlite_int64 sqlite3_int64;
+typedef sqlite_uint64 sqlite3_uint64;
+
+/*
+** If compiling for a processor that lacks floating point support,
+** substitute integer for floating-point
+*/
+#ifdef SQLITE_OMIT_FLOATING_POINT
+# define double sqlite3_int64
+#endif
+
+/*
+** CAPI3REF: Closing A Database Connection {F12010}
+**
+** This routine is the destructor for the [sqlite3] object.
+**
+** Applications should [sqlite3_finalize | finalize] all
+** [prepared statements] and
+** [sqlite3_blob_close | close] all [sqlite3_blob | BLOBs]
+** associated with the [sqlite3] object prior
+** to attempting to close the [sqlite3] object.
+**
+** <todo>What happens to pending transactions? Are they
+** rolled back, or abandoned?</todo>
+**
+** INVARIANTS:
+**
+** {F12011} The [sqlite3_close()] interface destroys an [sqlite3] object
+** allocated by a prior call to [sqlite3_open()],
+** [sqlite3_open16()], or [sqlite3_open_v2()].
+**
+** {F12012} The [sqlite3_close()] function releases all memory used by the
+** connection and closes all open files.
+**
+** {F12013} If the database connection contains
+** [prepared statements] that have not been
+** finalized by [sqlite3_finalize()], then [sqlite3_close()]
+** returns [SQLITE_BUSY] and leaves the connection open.
+**
+** {F12014} Giving sqlite3_close() a NULL pointer is a harmless no-op.
+**
+** LIMITATIONS:
+**
+** {U12015} The parameter to [sqlite3_close()] must be an [sqlite3] object
+** pointer previously obtained from [sqlite3_open()] or the
+** equivalent, or NULL.
+**
+** {U12016} The parameter to [sqlite3_close()] must not have been previously
+** closed.
+*/
+int sqlite3_close(sqlite3 *);
+
+/*
+** The type for a callback function.
+** This is legacy and deprecated. It is included for historical
+** compatibility and is not documented.
+*/
+typedef int (*sqlite3_callback)(void*,int,char**, char**);
+
+/*
+** CAPI3REF: One-Step Query Execution Interface {F12100}
+**
+** The sqlite3_exec() interface is a convenient way of running
+** one or more SQL statements without a lot of C code. The
+** SQL statements are passed in as the second parameter to
+** sqlite3_exec(). The statements are evaluated one by one
+** until either an error or an interrupt is encountered or
+** until they are all done. The 3rd parameter is an optional
+** callback that is invoked once for each row of any query results
+** produced by the SQL statements. The 5th parameter tells where
+** to write any error messages.
+**
+** The sqlite3_exec() interface is implemented in terms of
+** [sqlite3_prepare_v2()], [sqlite3_step()], and [sqlite3_finalize()].
+** The sqlite3_exec() routine does nothing that cannot be done
+** by [sqlite3_prepare_v2()], [sqlite3_step()], and [sqlite3_finalize()].
+** The sqlite3_exec() is just a convenient wrapper.
+**
+** INVARIANTS:
+**
+** {F12101} The [sqlite3_exec()] interface evaluates zero or more UTF-8
+** encoded, semicolon-separated, SQL statements in the
+** zero-terminated string of its 2nd parameter within the
+** context of the [sqlite3] object given in the 1st parameter.
+**
+** {F12104} The return value of [sqlite3_exec()] is SQLITE_OK if all
+** SQL statements run successfully.
+**
+** {F12105} The return value of [sqlite3_exec()] is an appropriate
+** non-zero error code if any SQL statement fails.
+**
+** {F12107} If one or more of the SQL statements handed to [sqlite3_exec()]
+** return results and the 3rd parameter is not NULL, then
+** the callback function specified by the 3rd parameter is
+** invoked once for each row of result.
+**
+** {F12110} If the callback returns a non-zero value then [sqlite3_exec()]
+** will aborted the SQL statement it is currently evaluating,
+** skip all subsequent SQL statements, and return [SQLITE_ABORT].
+** <todo>What happens to *errmsg here? Does the result code for
+** sqlite3_errcode() get set?</todo>
+**
+** {F12113} The [sqlite3_exec()] routine will pass its 4th parameter through
+** as the 1st parameter of the callback.
+**
+** {F12116} The [sqlite3_exec()] routine sets the 2nd parameter of its
+** callback to be the number of columns in the current row of
+** result.
+**
+** {F12119} The [sqlite3_exec()] routine sets the 3rd parameter of its
+** callback to be an array of pointers to strings holding the
+** values for each column in the current result set row as
+** obtained from [sqlite3_column_text()].
+**
+** {F12122} The [sqlite3_exec()] routine sets the 4th parameter of its
+** callback to be an array of pointers to strings holding the
+** names of result columns as obtained from [sqlite3_column_name()].
+**
+** {F12125} If the 3rd parameter to [sqlite3_exec()] is NULL then
+** [sqlite3_exec()] never invokes a callback. All query
+** results are silently discarded.
+**
+** {F12128} If an error occurs while parsing or evaluating any of the SQL
+** statements handed to [sqlite3_exec()] then [sqlite3_exec()] will
+** return an [error code] other than [SQLITE_OK].
+**
+** {F12131} If an error occurs while parsing or evaluating any of the SQL
+** handed to [sqlite3_exec()] and if the 5th parameter (errmsg)
+** to [sqlite3_exec()] is not NULL, then an error message is
+** allocated using the equivalent of [sqlite3_mprintf()] and
+** *errmsg is made to point to that message.
+**
+** {F12134} The [sqlite3_exec()] routine does not change the value of
+** *errmsg if errmsg is NULL or if there are no errors.
+**
+** {F12137} The [sqlite3_exec()] function sets the error code and message
+** accessible via [sqlite3_errcode()], [sqlite3_errmsg()], and
+** [sqlite3_errmsg16()].
+**
+** LIMITATIONS:
+**
+** {U12141} The first parameter to [sqlite3_exec()] must be an valid and open
+** [database connection].
+**
+** {U12142} The database connection must not be closed while
+** [sqlite3_exec()] is running.
+**
+** {U12143} The calling function is should use [sqlite3_free()] to free
+** the memory that *errmsg is left pointing at once the error
+** message is no longer needed.
+**
+** {U12145} The SQL statement text in the 2nd parameter to [sqlite3_exec()]
+** must remain unchanged while [sqlite3_exec()] is running.
+*/
+int sqlite3_exec(
+ sqlite3*, /* An open database */
+ const char *sql, /* SQL to be evaluted */
+ int (*callback)(void*,int,char**,char**), /* Callback function */
+ void *, /* 1st argument to callback */
+ char **errmsg /* Error msg written here */
+);
+
+/*
+** CAPI3REF: Result Codes {F10210}
+** KEYWORDS: SQLITE_OK {error code} {error codes}
+**
+** Many SQLite functions return an integer result code from the set shown
+** here in order to indicates success or failure.
+**
+** See also: [SQLITE_IOERR_READ | extended result codes]
+*/
+#define SQLITE_OK 0 /* Successful result */
+/* beginning-of-error-codes */
+#define SQLITE_ERROR 1 /* SQL error or missing database */
+#define SQLITE_INTERNAL 2 /* Internal logic error in SQLite */
+#define SQLITE_PERM 3 /* Access permission denied */
+#define SQLITE_ABORT 4 /* Callback routine requested an abort */
+#define SQLITE_BUSY 5 /* The database file is locked */
+#define SQLITE_LOCKED 6 /* A table in the database is locked */
+#define SQLITE_NOMEM 7 /* A malloc() failed */
+#define SQLITE_READONLY 8 /* Attempt to write a readonly database */
+#define SQLITE_INTERRUPT 9 /* Operation terminated by sqlite3_interrupt()*/
+#define SQLITE_IOERR 10 /* Some kind of disk I/O error occurred */
+#define SQLITE_CORRUPT 11 /* The database disk image is malformed */
+#define SQLITE_NOTFOUND 12 /* NOT USED. Table or record not found */
+#define SQLITE_FULL 13 /* Insertion failed because database is full */
+#define SQLITE_CANTOPEN 14 /* Unable to open the database file */
+#define SQLITE_PROTOCOL 15 /* NOT USED. Database lock protocol error */
+#define SQLITE_EMPTY 16 /* Database is empty */
+#define SQLITE_SCHEMA 17 /* The database schema changed */
+#define SQLITE_TOOBIG 18 /* String or BLOB exceeds size limit */
+#define SQLITE_CONSTRAINT 19 /* Abort due to constraint violation */
+#define SQLITE_MISMATCH 20 /* Data type mismatch */
+#define SQLITE_MISUSE 21 /* Library used incorrectly */
+#define SQLITE_NOLFS 22 /* Uses OS features not supported on host */
+#define SQLITE_AUTH 23 /* Authorization denied */
+#define SQLITE_FORMAT 24 /* Auxiliary database format error */
+#define SQLITE_RANGE 25 /* 2nd parameter to sqlite3_bind out of range */
+#define SQLITE_NOTADB 26 /* File opened that is not a database file */
+#define SQLITE_ROW 100 /* sqlite3_step() has another row ready */
+#define SQLITE_DONE 101 /* sqlite3_step() has finished executing */
+/* end-of-error-codes */
+
+/*
+** CAPI3REF: Extended Result Codes {F10220}
+** KEYWORDS: {extended error code} {extended error codes}
+** KEYWORDS: {extended result codes}
+**
+** In its default configuration, SQLite API routines return one of 26 integer
+** [SQLITE_OK | result codes]. However, experience has shown that
+** many of these result codes are too course-grained. They do not provide as
+** much information about problems as programmers might like. In an effort to
+** address this, newer versions of SQLite (version 3.3.8 and later) include
+** support for additional result codes that provide more detailed information
+** about errors. The extended result codes are enabled or disabled
+** for each database connection using the [sqlite3_extended_result_codes()]
+** API.
+**
+** Some of the available extended result codes are listed here.
+** One may expect the number of extended result codes will be expand
+** over time. Software that uses extended result codes should expect
+** to see new result codes in future releases of SQLite.
+**
+** The SQLITE_OK result code will never be extended. It will always
+** be exactly zero.
+**
+** INVARIANTS:
+**
+** {F10223} The symbolic name for an extended result code always contains
+** a related primary result code as a prefix.
+**
+** {F10224} Primary result code names contain a single "_" character.
+**
+** {F10225} Extended result code names contain two or more "_" characters.
+**
+** {F10226} The numeric value of an extended result code contains the
+** numeric value of its corresponding primary result code in
+** its least significant 8 bits.
+*/
+#define SQLITE_IOERR_READ (SQLITE_IOERR | (1<<8))
+#define SQLITE_IOERR_SHORT_READ (SQLITE_IOERR | (2<<8))
+#define SQLITE_IOERR_WRITE (SQLITE_IOERR | (3<<8))
+#define SQLITE_IOERR_FSYNC (SQLITE_IOERR | (4<<8))
+#define SQLITE_IOERR_DIR_FSYNC (SQLITE_IOERR | (5<<8))
+#define SQLITE_IOERR_TRUNCATE (SQLITE_IOERR | (6<<8))
+#define SQLITE_IOERR_FSTAT (SQLITE_IOERR | (7<<8))
+#define SQLITE_IOERR_UNLOCK (SQLITE_IOERR | (8<<8))
+#define SQLITE_IOERR_RDLOCK (SQLITE_IOERR | (9<<8))
+#define SQLITE_IOERR_DELETE (SQLITE_IOERR | (10<<8))
+#define SQLITE_IOERR_BLOCKED (SQLITE_IOERR | (11<<8))
+#define SQLITE_IOERR_NOMEM (SQLITE_IOERR | (12<<8))
+
+/*
+** CAPI3REF: Flags For File Open Operations {F10230}
+**
+** These bit values are intended for use in the
+** 3rd parameter to the [sqlite3_open_v2()] interface and
+** in the 4th parameter to the xOpen method of the
+** [sqlite3_vfs] object.
+*/
+#define SQLITE_OPEN_READONLY 0x00000001
+#define SQLITE_OPEN_READWRITE 0x00000002
+#define SQLITE_OPEN_CREATE 0x00000004
+#define SQLITE_OPEN_DELETEONCLOSE 0x00000008
+#define SQLITE_OPEN_EXCLUSIVE 0x00000010
+#define SQLITE_OPEN_MAIN_DB 0x00000100
+#define SQLITE_OPEN_TEMP_DB 0x00000200
+#define SQLITE_OPEN_TRANSIENT_DB 0x00000400
+#define SQLITE_OPEN_MAIN_JOURNAL 0x00000800
+#define SQLITE_OPEN_TEMP_JOURNAL 0x00001000
+#define SQLITE_OPEN_SUBJOURNAL 0x00002000
+#define SQLITE_OPEN_MASTER_JOURNAL 0x00004000
+
+/*
+** CAPI3REF: Device Characteristics {F10240}
+**
+** The xDeviceCapabilities method of the [sqlite3_io_methods]
+** object returns an integer which is a vector of the these
+** bit values expressing I/O characteristics of the mass storage
+** device that holds the file that the [sqlite3_io_methods]
+** refers to.
+**
+** The SQLITE_IOCAP_ATOMIC property means that all writes of
+** any size are atomic. The SQLITE_IOCAP_ATOMICnnn values
+** mean that writes of blocks that are nnn bytes in size and
+** are aligned to an address which is an integer multiple of
+** nnn are atomic. The SQLITE_IOCAP_SAFE_APPEND value means
+** that when data is appended to a file, the data is appended
+** first then the size of the file is extended, never the other
+** way around. The SQLITE_IOCAP_SEQUENTIAL property means that
+** information is written to disk in the same order as calls
+** to xWrite().
+*/
+#define SQLITE_IOCAP_ATOMIC 0x00000001
+#define SQLITE_IOCAP_ATOMIC512 0x00000002
+#define SQLITE_IOCAP_ATOMIC1K 0x00000004
+#define SQLITE_IOCAP_ATOMIC2K 0x00000008
+#define SQLITE_IOCAP_ATOMIC4K 0x00000010
+#define SQLITE_IOCAP_ATOMIC8K 0x00000020
+#define SQLITE_IOCAP_ATOMIC16K 0x00000040
+#define SQLITE_IOCAP_ATOMIC32K 0x00000080
+#define SQLITE_IOCAP_ATOMIC64K 0x00000100
+#define SQLITE_IOCAP_SAFE_APPEND 0x00000200
+#define SQLITE_IOCAP_SEQUENTIAL 0x00000400
+
+/*
+** CAPI3REF: File Locking Levels {F10250}
+**
+** SQLite uses one of these integer values as the second
+** argument to calls it makes to the xLock() and xUnlock() methods
+** of an [sqlite3_io_methods] object.
+*/
+#define SQLITE_LOCK_NONE 0
+#define SQLITE_LOCK_SHARED 1
+#define SQLITE_LOCK_RESERVED 2
+#define SQLITE_LOCK_PENDING 3
+#define SQLITE_LOCK_EXCLUSIVE 4
+
+/*
+** CAPI3REF: Synchronization Type Flags {F10260}
+**
+** When SQLite invokes the xSync() method of an
+** [sqlite3_io_methods] object it uses a combination of
+** these integer values as the second argument.
+**
+** When the SQLITE_SYNC_DATAONLY flag is used, it means that the
+** sync operation only needs to flush data to mass storage. Inode
+** information need not be flushed. The SQLITE_SYNC_NORMAL flag means
+** to use normal fsync() semantics. The SQLITE_SYNC_FULL flag means
+** to use Mac OS-X style fullsync instead of fsync().
+*/
+#define SQLITE_SYNC_NORMAL 0x00002
+#define SQLITE_SYNC_FULL 0x00003
+#define SQLITE_SYNC_DATAONLY 0x00010
+
+
+/*
+** CAPI3REF: OS Interface Open File Handle {F11110}
+**
+** An [sqlite3_file] object represents an open file in the OS
+** interface layer. Individual OS interface implementations will
+** want to subclass this object by appending additional fields
+** for their own use. The pMethods entry is a pointer to an
+** [sqlite3_io_methods] object that defines methods for performing
+** I/O operations on the open file.
+*/
+typedef struct sqlite3_file sqlite3_file;
+struct sqlite3_file {
+ const struct sqlite3_io_methods *pMethods; /* Methods for an open file */
+};
+
+/*
+** CAPI3REF: OS Interface File Virtual Methods Object {F11120}
+**
+** Every file opened by the [sqlite3_vfs] xOpen method contains a pointer to
+** an instance of this object. This object defines the
+** methods used to perform various operations against the open file.
+**
+** The flags argument to xSync may be one of [SQLITE_SYNC_NORMAL] or
+** [SQLITE_SYNC_FULL]. The first choice is the normal fsync().
+* The second choice is an
+** OS-X style fullsync. The SQLITE_SYNC_DATA flag may be ORed in to
+** indicate that only the data of the file and not its inode needs to be
+** synced.
+**
+** The integer values to xLock() and xUnlock() are one of
+** <ul>
+** <li> [SQLITE_LOCK_NONE],
+** <li> [SQLITE_LOCK_SHARED],
+** <li> [SQLITE_LOCK_RESERVED],
+** <li> [SQLITE_LOCK_PENDING], or
+** <li> [SQLITE_LOCK_EXCLUSIVE].
+** </ul>
+** xLock() increases the lock. xUnlock() decreases the lock.
+** The xCheckReservedLock() method looks
+** to see if any database connection, either in this
+** process or in some other process, is holding an RESERVED,
+** PENDING, or EXCLUSIVE lock on the file. It returns true
+** if such a lock exists and false if not.
+**
+** The xFileControl() method is a generic interface that allows custom
+** VFS implementations to directly control an open file using the
+** [sqlite3_file_control()] interface. The second "op" argument
+** is an integer opcode. The third
+** argument is a generic pointer which is intended to be a pointer
+** to a structure that may contain arguments or space in which to
+** write return values. Potential uses for xFileControl() might be
+** functions to enable blocking locks with timeouts, to change the
+** locking strategy (for example to use dot-file locks), to inquire
+** about the status of a lock, or to break stale locks. The SQLite
+** core reserves opcodes less than 100 for its own use.
+** A [SQLITE_FCNTL_LOCKSTATE | list of opcodes] less than 100 is available.
+** Applications that define a custom xFileControl method should use opcodes
+** greater than 100 to avoid conflicts.
+**
+** The xSectorSize() method returns the sector size of the
+** device that underlies the file. The sector size is the
+** minimum write that can be performed without disturbing
+** other bytes in the file. The xDeviceCharacteristics()
+** method returns a bit vector describing behaviors of the
+** underlying device:
+**
+** <ul>
+** <li> [SQLITE_IOCAP_ATOMIC]
+** <li> [SQLITE_IOCAP_ATOMIC512]
+** <li> [SQLITE_IOCAP_ATOMIC1K]
+** <li> [SQLITE_IOCAP_ATOMIC2K]
+** <li> [SQLITE_IOCAP_ATOMIC4K]
+** <li> [SQLITE_IOCAP_ATOMIC8K]
+** <li> [SQLITE_IOCAP_ATOMIC16K]
+** <li> [SQLITE_IOCAP_ATOMIC32K]
+** <li> [SQLITE_IOCAP_ATOMIC64K]
+** <li> [SQLITE_IOCAP_SAFE_APPEND]
+** <li> [SQLITE_IOCAP_SEQUENTIAL]
+** </ul>
+**
+** The SQLITE_IOCAP_ATOMIC property means that all writes of
+** any size are atomic. The SQLITE_IOCAP_ATOMICnnn values
+** mean that writes of blocks that are nnn bytes in size and
+** are aligned to an address which is an integer multiple of
+** nnn are atomic. The SQLITE_IOCAP_SAFE_APPEND value means
+** that when data is appended to a file, the data is appended
+** first then the size of the file is extended, never the other
+** way around. The SQLITE_IOCAP_SEQUENTIAL property means that
+** information is written to disk in the same order as calls
+** to xWrite().
+*/
+typedef struct sqlite3_io_methods sqlite3_io_methods;
+struct sqlite3_io_methods {
+ int iVersion;
+ int (*xClose)(sqlite3_file*);
+ int (*xRead)(sqlite3_file*, void*, int iAmt, sqlite3_int64 iOfst);
+ int (*xWrite)(sqlite3_file*, const void*, int iAmt, sqlite3_int64 iOfst);
+ int (*xTruncate)(sqlite3_file*, sqlite3_int64 size);
+ int (*xSync)(sqlite3_file*, int flags);
+ int (*xFileSize)(sqlite3_file*, sqlite3_int64 *pSize);
+ int (*xLock)(sqlite3_file*, int);
+ int (*xUnlock)(sqlite3_file*, int);
+ int (*xCheckReservedLock)(sqlite3_file*);
+ int (*xFileControl)(sqlite3_file*, int op, void *pArg);
+ int (*xSectorSize)(sqlite3_file*);
+ int (*xDeviceCharacteristics)(sqlite3_file*);
+ /* Additional methods may be added in future releases */
+};
+
+/*
+** CAPI3REF: Standard File Control Opcodes {F11310}
+**
+** These integer constants are opcodes for the xFileControl method
+** of the [sqlite3_io_methods] object and to the [sqlite3_file_control()]
+** interface.
+**
+** The [SQLITE_FCNTL_LOCKSTATE] opcode is used for debugging. This
+** opcode causes the xFileControl method to write the current state of
+** the lock (one of [SQLITE_LOCK_NONE], [SQLITE_LOCK_SHARED],
+** [SQLITE_LOCK_RESERVED], [SQLITE_LOCK_PENDING], or [SQLITE_LOCK_EXCLUSIVE])
+** into an integer that the pArg argument points to. This capability
+** is used during testing and only needs to be supported when SQLITE_TEST
+** is defined.
+*/
+#define SQLITE_FCNTL_LOCKSTATE 1
+
+/*
+** CAPI3REF: Mutex Handle {F17110}
+**
+** The mutex module within SQLite defines [sqlite3_mutex] to be an
+** abstract type for a mutex object. The SQLite core never looks
+** at the internal representation of an [sqlite3_mutex]. It only
+** deals with pointers to the [sqlite3_mutex] object.
+**
+** Mutexes are created using [sqlite3_mutex_alloc()].
+*/
+typedef struct sqlite3_mutex sqlite3_mutex;
+
+/*
+** CAPI3REF: OS Interface Object {F11140}
+**
+** An instance of this object defines the interface between the
+** SQLite core and the underlying operating system. The "vfs"
+** in the name of the object stands for "virtual file system".
+**
+** The iVersion field is initially 1 but may be larger for future
+** versions of SQLite. Additional fields may be appended to this
+** object when the iVersion value is increased.
+**
+** The szOsFile field is the size of the subclassed [sqlite3_file]
+** structure used by this VFS. mxPathname is the maximum length of
+** a pathname in this VFS.
+**
+** Registered sqlite3_vfs objects are kept on a linked list formed by
+** the pNext pointer. The [sqlite3_vfs_register()]
+** and [sqlite3_vfs_unregister()] interfaces manage this list
+** in a thread-safe way. The [sqlite3_vfs_find()] interface
+** searches the list.
+**
+** The pNext field is the only field in the sqlite3_vfs
+** structure that SQLite will ever modify. SQLite will only access
+** or modify this field while holding a particular static mutex.
+** The application should never modify anything within the sqlite3_vfs
+** object once the object has been registered.
+**
+** The zName field holds the name of the VFS module. The name must
+** be unique across all VFS modules.
+**
+** {F11141} SQLite will guarantee that the zFilename string passed to
+** xOpen() is a full pathname as generated by xFullPathname() and
+** that the string will be valid and unchanged until xClose() is
+** called. {END} So the [sqlite3_file] can store a pointer to the
+** filename if it needs to remember the filename for some reason.
+**
+** {F11142} The flags argument to xOpen() includes all bits set in
+** the flags argument to [sqlite3_open_v2()]. Or if [sqlite3_open()]
+** or [sqlite3_open16()] is used, then flags includes at least
+** [SQLITE_OPEN_READWRITE] | [SQLITE_OPEN_CREATE]. {END}
+** If xOpen() opens a file read-only then it sets *pOutFlags to
+** include [SQLITE_OPEN_READONLY]. Other bits in *pOutFlags may be
+** set.
+**
+** {F11143} SQLite will also add one of the following flags to the xOpen()
+** call, depending on the object being opened:
+**
+** <ul>
+** <li> [SQLITE_OPEN_MAIN_DB]
+** <li> [SQLITE_OPEN_MAIN_JOURNAL]
+** <li> [SQLITE_OPEN_TEMP_DB]
+** <li> [SQLITE_OPEN_TEMP_JOURNAL]
+** <li> [SQLITE_OPEN_TRANSIENT_DB]
+** <li> [SQLITE_OPEN_SUBJOURNAL]
+** <li> [SQLITE_OPEN_MASTER_JOURNAL]
+** </ul> {END}
+**
+** The file I/O implementation can use the object type flags to
+** changes the way it deals with files. For example, an application
+** that does not care about crash recovery or rollback might make
+** the open of a journal file a no-op. Writes to this journal would
+** also be no-ops, and any attempt to read the journal would return
+** SQLITE_IOERR. Or the implementation might recognize that a database
+** file will be doing page-aligned sector reads and writes in a random
+** order and set up its I/O subsystem accordingly.
+**
+** SQLite might also add one of the following flags to the xOpen
+** method:
+**
+** <ul>
+** <li> [SQLITE_OPEN_DELETEONCLOSE]
+** <li> [SQLITE_OPEN_EXCLUSIVE]
+** </ul>
+**
+** {F11145} The [SQLITE_OPEN_DELETEONCLOSE] flag means the file should be
+** deleted when it is closed. {F11146} The [SQLITE_OPEN_DELETEONCLOSE]
+** will be set for TEMP databases, journals and for subjournals.
+** {F11147} The [SQLITE_OPEN_EXCLUSIVE] flag means the file should be opened
+** for exclusive access. This flag is set for all files except
+** for the main database file. {END}
+**
+** {F11148} At least szOsFile bytes of memory are allocated by SQLite
+** to hold the [sqlite3_file] structure passed as the third
+** argument to xOpen. {END} The xOpen method does not have to
+** allocate the structure; it should just fill it in.
+**
+** {F11149} The flags argument to xAccess() may be [SQLITE_ACCESS_EXISTS]
+** to test for the existance of a file,
+** or [SQLITE_ACCESS_READWRITE] to test to see
+** if a file is readable and writable, or [SQLITE_ACCESS_READ]
+** to test to see if a file is at least readable. {END} The file can be a
+** directory.
+**
+** {F11150} SQLite will always allocate at least mxPathname+1 bytes for
+** the output buffers for xGetTempname and xFullPathname. {F11151} The exact
+** size of the output buffer is also passed as a parameter to both
+** methods. {END} If the output buffer is not large enough, SQLITE_CANTOPEN
+** should be returned. As this is handled as a fatal error by SQLite,
+** vfs implementations should endeavor to prevent this by setting
+** mxPathname to a sufficiently large value.
+**
+** The xRandomness(), xSleep(), and xCurrentTime() interfaces
+** are not strictly a part of the filesystem, but they are
+** included in the VFS structure for completeness.
+** The xRandomness() function attempts to return nBytes bytes
+** of good-quality randomness into zOut. The return value is
+** the actual number of bytes of randomness obtained. The
+** xSleep() method causes the calling thread to sleep for at
+** least the number of microseconds given. The xCurrentTime()
+** method returns a Julian Day Number for the current date and
+** time.
+*/
+typedef struct sqlite3_vfs sqlite3_vfs;
+struct sqlite3_vfs {
+ int iVersion; /* Structure version number */
+ int szOsFile; /* Size of subclassed sqlite3_file */
+ int mxPathname; /* Maximum file pathname length */
+ sqlite3_vfs *pNext; /* Next registered VFS */
+ const char *zName; /* Name of this virtual file system */
+ void *pAppData; /* Pointer to application-specific data */
+ int (*xOpen)(sqlite3_vfs*, const char *zName, sqlite3_file*,
+ int flags, int *pOutFlags);
+ int (*xDelete)(sqlite3_vfs*, const char *zName, int syncDir);
+ int (*xAccess)(sqlite3_vfs*, const char *zName, int flags);
+ int (*xGetTempname)(sqlite3_vfs*, int nOut, char *zOut);
+ int (*xFullPathname)(sqlite3_vfs*, const char *zName, int nOut, char *zOut);
+ void *(*xDlOpen)(sqlite3_vfs*, const char *zFilename);
+ void (*xDlError)(sqlite3_vfs*, int nByte, char *zErrMsg);
+ void *(*xDlSym)(sqlite3_vfs*,void*, const char *zSymbol);
+ void (*xDlClose)(sqlite3_vfs*, void*);
+ int (*xRandomness)(sqlite3_vfs*, int nByte, char *zOut);
+ int (*xSleep)(sqlite3_vfs*, int microseconds);
+ int (*xCurrentTime)(sqlite3_vfs*, double*);
+ /* New fields may be appended in figure versions. The iVersion
+ ** value will increment whenever this happens. */
+};
+
+/*
+** CAPI3REF: Flags for the xAccess VFS method {F11190}
+**
+** {F11191} These integer constants can be used as the third parameter to
+** the xAccess method of an [sqlite3_vfs] object. {END} They determine
+** what kind of permissions the xAccess method is
+** looking for. {F11192} With SQLITE_ACCESS_EXISTS, the xAccess method
+** simply checks to see if the file exists. {F11193} With
+** SQLITE_ACCESS_READWRITE, the xAccess method checks to see
+** if the file is both readable and writable. {F11194} With
+** SQLITE_ACCESS_READ the xAccess method
+** checks to see if the file is readable.
+*/
+#define SQLITE_ACCESS_EXISTS 0
+#define SQLITE_ACCESS_READWRITE 1
+#define SQLITE_ACCESS_READ 2
+
+/*
+** CAPI3REF: Enable Or Disable Extended Result Codes {F12200}
+**
+** The sqlite3_extended_result_codes() routine enables or disables the
+** [SQLITE_IOERR_READ | extended result codes] feature of SQLite.
+** The extended result codes are disabled by default for historical
+** compatibility.
+**
+** INVARIANTS:
+**
+** {F12201} Each new [database connection] has the
+** [extended result codes] feature
+** disabled by default.
+**
+** {F12202} The [sqlite3_extended_result_codes(D,F)] interface will enable
+** [extended result codes] for the
+** [database connection] D if the F parameter
+** is true, or disable them if F is false.
+*/
+int sqlite3_extended_result_codes(sqlite3*, int onoff);
+
+/*
+** CAPI3REF: Last Insert Rowid {F12220}
+**
+** Each entry in an SQLite table has a unique 64-bit signed
+** integer key called the "rowid". The rowid is always available
+** as an undeclared column named ROWID, OID, or _ROWID_ as long as those
+** names are not also used by explicitly declared columns. If
+** the table has a column of type INTEGER PRIMARY KEY then that column
+** is another alias for the rowid.
+**
+** This routine returns the rowid of the most recent
+** successful INSERT into the database from the database connection
+** shown in the first argument. If no successful inserts
+** have ever occurred on this database connection, zero is returned.
+**
+** If an INSERT occurs within a trigger, then the rowid of the
+** inserted row is returned by this routine as long as the trigger
+** is running. But once the trigger terminates, the value returned
+** by this routine reverts to the last value inserted before the
+** trigger fired.
+**
+** An INSERT that fails due to a constraint violation is not a
+** successful insert and does not change the value returned by this
+** routine. Thus INSERT OR FAIL, INSERT OR IGNORE, INSERT OR ROLLBACK,
+** and INSERT OR ABORT make no changes to the return value of this
+** routine when their insertion fails. When INSERT OR REPLACE
+** encounters a constraint violation, it does not fail. The
+** INSERT continues to completion after deleting rows that caused
+** the constraint problem so INSERT OR REPLACE will always change
+** the return value of this interface.
+**
+** For the purposes of this routine, an insert is considered to
+** be successful even if it is subsequently rolled back.
+**
+** INVARIANTS:
+**
+** {F12221} The [sqlite3_last_insert_rowid()] function returns the
+** rowid of the most recent successful insert done
+** on the same database connection and within the same
+** trigger context, or zero if there have
+** been no qualifying inserts on that connection.
+**
+** {F12223} The [sqlite3_last_insert_rowid()] function returns
+** same value when called from the same trigger context
+** immediately before and after a ROLLBACK.
+**
+** LIMITATIONS:
+**
+** {U12232} If a separate thread does a new insert on the same
+** database connection while the [sqlite3_last_insert_rowid()]
+** function is running and thus changes the last insert rowid,
+** then the value returned by [sqlite3_last_insert_rowid()] is
+** unpredictable and might not equal either the old or the new
+** last insert rowid.
+*/
+sqlite3_int64 sqlite3_last_insert_rowid(sqlite3*);
+
+/*
+** CAPI3REF: Count The Number Of Rows Modified {F12240}
+**
+** This function returns the number of database rows that were changed
+** or inserted or deleted by the most recently completed SQL statement
+** on the connection specified by the first parameter. Only
+** changes that are directly specified by the INSERT, UPDATE, or
+** DELETE statement are counted. Auxiliary changes caused by
+** triggers are not counted. Use the [sqlite3_total_changes()] function
+** to find the total number of changes including changes caused by triggers.
+**
+** A "row change" is a change to a single row of a single table
+** caused by an INSERT, DELETE, or UPDATE statement. Rows that
+** are changed as side effects of REPLACE constraint resolution,
+** rollback, ABORT processing, DROP TABLE, or by any other
+** mechanisms do not count as direct row changes.
+**
+** A "trigger context" is a scope of execution that begins and
+** ends with the script of a trigger. Most SQL statements are
+** evaluated outside of any trigger. This is the "top level"
+** trigger context. If a trigger fires from the top level, a
+** new trigger context is entered for the duration of that one
+** trigger. Subtriggers create subcontexts for their duration.
+**
+** Calling [sqlite3_exec()] or [sqlite3_step()] recursively does
+** not create a new trigger context.
+**
+** This function returns the number of direct row changes in the
+** most recent INSERT, UPDATE, or DELETE statement within the same
+** trigger context.
+**
+** So when called from the top level, this function returns the
+** number of changes in the most recent INSERT, UPDATE, or DELETE
+** that also occurred at the top level.
+** Within the body of a trigger, the sqlite3_changes() interface
+** can be called to find the number of
+** changes in the most recently completed INSERT, UPDATE, or DELETE
+** statement within the body of the same trigger.
+** However, the number returned does not include in changes
+** caused by subtriggers since they have their own context.
+**
+** SQLite implements the command "DELETE FROM table" without
+** a WHERE clause by dropping and recreating the table. (This is much
+** faster than going through and deleting individual elements from the
+** table.) Because of this optimization, the deletions in
+** "DELETE FROM table" are not row changes and will not be counted
+** by the sqlite3_changes() or [sqlite3_total_changes()] functions.
+** To get an accurate count of the number of rows deleted, use
+** "DELETE FROM table WHERE 1" instead.
+**
+** INVARIANTS:
+**
+** {F12241} The [sqlite3_changes()] function returns the number of
+** row changes caused by the most recent INSERT, UPDATE,
+** or DELETE statement on the same database connection and
+** within the same trigger context, or zero if there have
+** not been any qualifying row changes.
+**
+** LIMITATIONS:
+**
+** {U12252} If a separate thread makes changes on the same database connection
+** while [sqlite3_changes()] is running then the value returned
+** is unpredictable and unmeaningful.
+*/
+int sqlite3_changes(sqlite3*);
+
+/*
+** CAPI3REF: Total Number Of Rows Modified {F12260}
+***
+** This function returns the number of row changes caused
+** by INSERT, UPDATE or DELETE statements since the database handle
+** was opened. The count includes all changes from all trigger
+** contexts. But the count does not include changes used to
+** implement REPLACE constraints, do rollbacks or ABORT processing,
+** or DROP table processing.
+** The changes
+** are counted as soon as the statement that makes them is completed
+** (when the statement handle is passed to [sqlite3_reset()] or
+** [sqlite3_finalize()]).
+**
+** SQLite implements the command "DELETE FROM table" without
+** a WHERE clause by dropping and recreating the table. (This is much
+** faster than going
+** through and deleting individual elements from the table.) Because of
+** this optimization, the change count for "DELETE FROM table" will be
+** zero regardless of the number of elements that were originally in the
+** table. To get an accurate count of the number of rows deleted, use
+** "DELETE FROM table WHERE 1" instead.
+**
+** See also the [sqlite3_changes()] interface.
+**
+** INVARIANTS:
+**
+** {F12261} The [sqlite3_total_changes()] returns the total number
+** of row changes caused by INSERT, UPDATE, and/or DELETE
+** statements on the same [database connection], in any
+** trigger context, since the database connection was
+** created.
+**
+** LIMITATIONS:
+**
+** {U12264} If a separate thread makes changes on the same database connection
+** while [sqlite3_total_changes()] is running then the value
+** returned is unpredictable and unmeaningful.
+*/
+int sqlite3_total_changes(sqlite3*);
+
+/*
+** CAPI3REF: Interrupt A Long-Running Query {F12270}
+**
+** This function causes any pending database operation to abort and
+** return at its earliest opportunity. This routine is typically
+** called in response to a user action such as pressing "Cancel"
+** or Ctrl-C where the user wants a long query operation to halt
+** immediately.
+**
+** It is safe to call this routine from a thread different from the
+** thread that is currently running the database operation. But it
+** is not safe to call this routine with a database connection that
+** is closed or might close before sqlite3_interrupt() returns.
+**
+** If an SQL is very nearly finished at the time when sqlite3_interrupt()
+** is called, then it might not have an opportunity to be interrupted.
+** It might continue to completion.
+** An SQL operation that is interrupted will return
+** [SQLITE_INTERRUPT]. If the interrupted SQL operation is an
+** INSERT, UPDATE, or DELETE that is inside an explicit transaction,
+** then the entire transaction will be rolled back automatically.
+** A call to sqlite3_interrupt() has no effect on SQL statements
+** that are started after sqlite3_interrupt() returns.
+**
+** INVARIANTS:
+**
+** {F12271} The [sqlite3_interrupt()] interface will force all running
+** SQL statements associated with the same database connection
+** to halt after processing at most one additional row of
+** data.
+**
+** {F12272} Any SQL statement that is interrupted by [sqlite3_interrupt()]
+** will return [SQLITE_INTERRUPT].
+**
+** LIMITATIONS:
+**
+** {U12279} If the database connection closes while [sqlite3_interrupt()]
+** is running then bad things will likely happen.
+*/
+void sqlite3_interrupt(sqlite3*);
+
+/*
+** CAPI3REF: Determine If An SQL Statement Is Complete {F10510}
+**
+** These routines are useful for command-line input to determine if the
+** currently entered text seems to form complete a SQL statement or
+** if additional input is needed before sending the text into
+** SQLite for parsing. These routines return true if the input string
+** appears to be a complete SQL statement. A statement is judged to be
+** complete if it ends with a semicolon token and is not a fragment of a
+** CREATE TRIGGER statement. Semicolons that are embedded within
+** string literals or quoted identifier names or comments are not
+** independent tokens (they are part of the token in which they are
+** embedded) and thus do not count as a statement terminator.
+**
+** These routines do not parse the SQL and
+** so will not detect syntactically incorrect SQL.
+**
+** INVARIANTS:
+**
+** {F10511} The sqlite3_complete() and sqlite3_complete16() functions
+** return true (non-zero) if and only if the last
+** non-whitespace token in their input is a semicolon that
+** is not in between the BEGIN and END of a CREATE TRIGGER
+** statement.
+**
+** LIMITATIONS:
+**
+** {U10512} The input to sqlite3_complete() must be a zero-terminated
+** UTF-8 string.
+**
+** {U10513} The input to sqlite3_complete16() must be a zero-terminated
+** UTF-16 string in native byte order.
+*/
+int sqlite3_complete(const char *sql);
+int sqlite3_complete16(const void *sql);
+
+/*
+** CAPI3REF: Register A Callback To Handle SQLITE_BUSY Errors {F12310}
+**
+** This routine identifies a callback function that might be
+** invoked whenever an attempt is made to open a database table
+** that another thread or process has locked.
+** If the busy callback is NULL, then [SQLITE_BUSY]
+** or [SQLITE_IOERR_BLOCKED]
+** is returned immediately upon encountering the lock.
+** If the busy callback is not NULL, then the
+** callback will be invoked with two arguments. The
+** first argument to the handler is a copy of the void* pointer which
+** is the third argument to this routine. The second argument to
+** the handler is the number of times that the busy handler has
+** been invoked for this locking event. If the
+** busy callback returns 0, then no additional attempts are made to
+** access the database and [SQLITE_BUSY] or [SQLITE_IOERR_BLOCKED] is returned.
+** If the callback returns non-zero, then another attempt
+** is made to open the database for reading and the cycle repeats.
+**
+** The presence of a busy handler does not guarantee that
+** it will be invoked when there is lock contention.
+** If SQLite determines that invoking the busy handler could result in
+** a deadlock, it will go ahead and return [SQLITE_BUSY] or
+** [SQLITE_IOERR_BLOCKED] instead of invoking the
+** busy handler.
+** Consider a scenario where one process is holding a read lock that
+** it is trying to promote to a reserved lock and
+** a second process is holding a reserved lock that it is trying
+** to promote to an exclusive lock. The first process cannot proceed
+** because it is blocked by the second and the second process cannot
+** proceed because it is blocked by the first. If both processes
+** invoke the busy handlers, neither will make any progress. Therefore,
+** SQLite returns [SQLITE_BUSY] for the first process, hoping that this
+** will induce the first process to release its read lock and allow
+** the second process to proceed.
+**
+** The default busy callback is NULL.
+**
+** The [SQLITE_BUSY] error is converted to [SQLITE_IOERR_BLOCKED]
+** when SQLite is in the middle of a large transaction where all the
+** changes will not fit into the in-memory cache. SQLite will
+** already hold a RESERVED lock on the database file, but it needs
+** to promote this lock to EXCLUSIVE so that it can spill cache
+** pages into the database file without harm to concurrent
+** readers. If it is unable to promote the lock, then the in-memory
+** cache will be left in an inconsistent state and so the error
+** code is promoted from the relatively benign [SQLITE_BUSY] to
+** the more severe [SQLITE_IOERR_BLOCKED]. This error code promotion
+** forces an automatic rollback of the changes. See the
+** <a href="http://www.sqlite.org/cvstrac/wiki?p=CorruptionFollowingBusyError">
+** CorruptionFollowingBusyError</a> wiki page for a discussion of why
+** this is important.
+**
+** There can only be a single busy handler defined for each database
+** connection. Setting a new busy handler clears any previous one.
+** Note that calling [sqlite3_busy_timeout()] will also set or clear
+** the busy handler.
+**
+** INVARIANTS:
+**
+** {F12311} The [sqlite3_busy_handler()] function replaces the busy handler
+** callback in the database connection identified by the 1st
+** parameter with a new busy handler identified by the 2nd and 3rd
+** parameters.
+**
+** {F12312} The default busy handler for new database connections is NULL.
+**
+** {F12314} When two or more database connection share a common cache,
+** the busy handler for the database connection currently using
+** the cache is invoked when the cache encounters a lock.
+**
+** {F12316} If a busy handler callback returns zero, then the SQLite
+** interface that provoked the locking event will return
+** [SQLITE_BUSY].
+**
+** {F12318} SQLite will invokes the busy handler with two argument which
+** are a copy of the pointer supplied by the 3rd parameter to
+** [sqlite3_busy_handler()] and a count of the number of prior
+** invocations of the busy handler for the same locking event.
+**
+** LIMITATIONS:
+**
+** {U12319} A busy handler should not call close the database connection
+** or prepared statement that invoked the busy handler.
+*/
+int sqlite3_busy_handler(sqlite3*, int(*)(void*,int), void*);
+
+/*
+** CAPI3REF: Set A Busy Timeout {F12340}
+**
+** This routine sets a [sqlite3_busy_handler | busy handler]
+** that sleeps for a while when a
+** table is locked. The handler will sleep multiple times until
+** at least "ms" milliseconds of sleeping have been done. {F12343} After
+** "ms" milliseconds of sleeping, the handler returns 0 which
+** causes [sqlite3_step()] to return [SQLITE_BUSY] or [SQLITE_IOERR_BLOCKED].
+**
+** Calling this routine with an argument less than or equal to zero
+** turns off all busy handlers.
+**
+** There can only be a single busy handler for a particular database
+** connection. If another busy handler was defined
+** (using [sqlite3_busy_handler()]) prior to calling
+** this routine, that other busy handler is cleared.
+**
+** INVARIANTS:
+**
+** {F12341} The [sqlite3_busy_timeout()] function overrides any prior
+** [sqlite3_busy_timeout()] or [sqlite3_busy_handler()] setting
+** on the same database connection.
+**
+** {F12343} If the 2nd parameter to [sqlite3_busy_timeout()] is less than
+** or equal to zero, then the busy handler is cleared so that
+** all subsequent locking events immediately return [SQLITE_BUSY].
+**
+** {F12344} If the 2nd parameter to [sqlite3_busy_timeout()] is a positive
+** number N, then a busy handler is set that repeatedly calls
+** the xSleep() method in the VFS interface until either the
+** lock clears or until the cumulative sleep time reported back
+** by xSleep() exceeds N milliseconds.
+*/
+int sqlite3_busy_timeout(sqlite3*, int ms);
+
+/*
+** CAPI3REF: Convenience Routines For Running Queries {F12370}
+**
+** Definition: A <b>result table</b> is memory data structure created by the
+** [sqlite3_get_table()] interface. A result table records the
+** complete query results from one or more queries.
+**
+** The table conceptually has a number of rows and columns. But
+** these numbers are not part of the result table itself. These
+** numbers are obtained separately. Let N be the number of rows
+** and M be the number of columns.
+**
+** A result table is an array of pointers to zero-terminated
+** UTF-8 strings. There are (N+1)*M elements in the array.
+** The first M pointers point to zero-terminated strings that
+** contain the names of the columns.
+** The remaining entries all point to query results. NULL
+** values are give a NULL pointer. All other values are in
+** their UTF-8 zero-terminated string representation as returned by
+** [sqlite3_column_text()].
+**
+** A result table might consists of one or more memory allocations.
+** It is not safe to pass a result table directly to [sqlite3_free()].
+** A result table should be deallocated using [sqlite3_free_table()].
+**
+** As an example of the result table format, suppose a query result
+** is as follows:
+**
+** <blockquote><pre>
+** Name | Age
+** -----------------------
+** Alice | 43
+** Bob | 28
+** Cindy | 21
+** </pre></blockquote>
+**
+** There are two column (M==2) and three rows (N==3). Thus the
+** result table has 8 entries. Suppose the result table is stored
+** in an array names azResult. Then azResult holds this content:
+**
+** <blockquote><pre>
+** azResult&#91;0] = "Name";
+** azResult&#91;1] = "Age";
+** azResult&#91;2] = "Alice";
+** azResult&#91;3] = "43";
+** azResult&#91;4] = "Bob";
+** azResult&#91;5] = "28";
+** azResult&#91;6] = "Cindy";
+** azResult&#91;7] = "21";
+** </pre></blockquote>
+**
+** The sqlite3_get_table() function evaluates one or more
+** semicolon-separated SQL statements in the zero-terminated UTF-8
+** string of its 2nd parameter. It returns a result table to the
+** pointer given in its 3rd parameter.
+**
+** After the calling function has finished using the result, it should
+** pass the pointer to the result table to sqlite3_free_table() in order to
+** release the memory that was malloc-ed. Because of the way the
+** [sqlite3_malloc()] happens within sqlite3_get_table(), the calling
+** function must not try to call [sqlite3_free()] directly. Only
+** [sqlite3_free_table()] is able to release the memory properly and safely.
+**
+** The sqlite3_get_table() interface is implemented as a wrapper around
+** [sqlite3_exec()]. The sqlite3_get_table() routine does not have access
+** to any internal data structures of SQLite. It uses only the public
+** interface defined here. As a consequence, errors that occur in the
+** wrapper layer outside of the internal [sqlite3_exec()] call are not
+** reflected in subsequent calls to [sqlite3_errcode()] or
+** [sqlite3_errmsg()].
+**
+** INVARIANTS:
+**
+** {F12371} If a [sqlite3_get_table()] fails a memory allocation, then
+** it frees the result table under construction, aborts the
+** query in process, skips any subsequent queries, sets the
+** *resultp output pointer to NULL and returns [SQLITE_NOMEM].
+**
+** {F12373} If the ncolumn parameter to [sqlite3_get_table()] is not NULL
+** then [sqlite3_get_table()] write the number of columns in the
+** result set of the query into *ncolumn if the query is
+** successful (if the function returns SQLITE_OK).
+**
+** {F12374} If the nrow parameter to [sqlite3_get_table()] is not NULL
+** then [sqlite3_get_table()] write the number of rows in the
+** result set of the query into *nrow if the query is
+** successful (if the function returns SQLITE_OK).
+**
+** {F12376} The [sqlite3_get_table()] function sets its *ncolumn value
+** to the number of columns in the result set of the query in the
+** sql parameter, or to zero if the query in sql has an empty
+** result set.
+*/
+int sqlite3_get_table(
+ sqlite3*, /* An open database */
+ const char *sql, /* SQL to be evaluated */
+ char ***pResult, /* Results of the query */
+ int *nrow, /* Number of result rows written here */
+ int *ncolumn, /* Number of result columns written here */
+ char **errmsg /* Error msg written here */
+);
+void sqlite3_free_table(char **result);
+
+/*
+** CAPI3REF: Formatted String Printing Functions {F17400}
+**
+** These routines are workalikes of the "printf()" family of functions
+** from the standard C library.
+**
+** The sqlite3_mprintf() and sqlite3_vmprintf() routines write their
+** results into memory obtained from [sqlite3_malloc()].
+** The strings returned by these two routines should be
+** released by [sqlite3_free()]. Both routines return a
+** NULL pointer if [sqlite3_malloc()] is unable to allocate enough
+** memory to hold the resulting string.
+**
+** In sqlite3_snprintf() routine is similar to "snprintf()" from
+** the standard C library. The result is written into the
+** buffer supplied as the second parameter whose size is given by
+** the first parameter. Note that the order of the
+** first two parameters is reversed from snprintf(). This is an
+** historical accident that cannot be fixed without breaking
+** backwards compatibility. Note also that sqlite3_snprintf()
+** returns a pointer to its buffer instead of the number of
+** characters actually written into the buffer. We admit that
+** the number of characters written would be a more useful return
+** value but we cannot change the implementation of sqlite3_snprintf()
+** now without breaking compatibility.
+**
+** As long as the buffer size is greater than zero, sqlite3_snprintf()
+** guarantees that the buffer is always zero-terminated. The first
+** parameter "n" is the total size of the buffer, including space for
+** the zero terminator. So the longest string that can be completely
+** written will be n-1 characters.
+**
+** These routines all implement some additional formatting
+** options that are useful for constructing SQL statements.
+** All of the usual printf formatting options apply. In addition, there
+** is are "%q", "%Q", and "%z" options.
+**
+** The %q option works like %s in that it substitutes a null-terminated
+** string from the argument list. But %q also doubles every '\'' character.
+** %q is designed for use inside a string literal. By doubling each '\''
+** character it escapes that character and allows it to be inserted into
+** the string.
+**
+** For example, so some string variable contains text as follows:
+**
+** <blockquote><pre>
+** char *zText = "It's a happy day!";
+** </pre></blockquote>
+**
+** One can use this text in an SQL statement as follows:
+**
+** <blockquote><pre>
+** char *zSQL = sqlite3_mprintf("INSERT INTO table VALUES('%q')", zText);
+** sqlite3_exec(db, zSQL, 0, 0, 0);
+** sqlite3_free(zSQL);
+** </pre></blockquote>
+**
+** Because the %q format string is used, the '\'' character in zText
+** is escaped and the SQL generated is as follows:
+**
+** <blockquote><pre>
+** INSERT INTO table1 VALUES('It''s a happy day!')
+** </pre></blockquote>
+**
+** This is correct. Had we used %s instead of %q, the generated SQL
+** would have looked like this:
+**
+** <blockquote><pre>
+** INSERT INTO table1 VALUES('It's a happy day!');
+** </pre></blockquote>
+**
+** This second example is an SQL syntax error. As a general rule you
+** should always use %q instead of %s when inserting text into a string
+** literal.
+**
+** The %Q option works like %q except it also adds single quotes around
+** the outside of the total string. Or if the parameter in the argument
+** list is a NULL pointer, %Q substitutes the text "NULL" (without single
+** quotes) in place of the %Q option. {END} So, for example, one could say:
+**
+** <blockquote><pre>
+** char *zSQL = sqlite3_mprintf("INSERT INTO table VALUES(%Q)", zText);
+** sqlite3_exec(db, zSQL, 0, 0, 0);
+** sqlite3_free(zSQL);
+** </pre></blockquote>
+**
+** The code above will render a correct SQL statement in the zSQL
+** variable even if the zText variable is a NULL pointer.
+**
+** The "%z" formatting option works exactly like "%s" with the
+** addition that after the string has been read and copied into
+** the result, [sqlite3_free()] is called on the input string. {END}
+**
+** INVARIANTS:
+**
+** {F17403} The [sqlite3_mprintf()] and [sqlite3_vmprintf()] interfaces
+** return either pointers to zero-terminated UTF-8 strings held in
+** memory obtained from [sqlite3_malloc()] or NULL pointers if
+** a call to [sqlite3_malloc()] fails.
+**
+** {F17406} The [sqlite3_snprintf()] interface writes a zero-terminated
+** UTF-8 string into the buffer pointed to by the second parameter
+** provided that the first parameter is greater than zero.
+**
+** {F17407} The [sqlite3_snprintf()] interface does not writes slots of
+** its output buffer (the second parameter) outside the range
+** of 0 through N-1 (where N is the first parameter)
+** regardless of the length of the string
+** requested by the format specification.
+**
+*/
+char *sqlite3_mprintf(const char*,...);
+char *sqlite3_vmprintf(const char*, va_list);
+char *sqlite3_snprintf(int,char*,const char*, ...);
+
+/*
+** CAPI3REF: Memory Allocation Subsystem {F17300}
+**
+** The SQLite core uses these three routines for all of its own
+** internal memory allocation needs. "Core" in the previous sentence
+** does not include operating-system specific VFS implementation. The
+** windows VFS uses native malloc and free for some operations.
+**
+** The sqlite3_malloc() routine returns a pointer to a block
+** of memory at least N bytes in length, where N is the parameter.
+** If sqlite3_malloc() is unable to obtain sufficient free
+** memory, it returns a NULL pointer. If the parameter N to
+** sqlite3_malloc() is zero or negative then sqlite3_malloc() returns
+** a NULL pointer.
+**
+** Calling sqlite3_free() with a pointer previously returned
+** by sqlite3_malloc() or sqlite3_realloc() releases that memory so
+** that it might be reused. The sqlite3_free() routine is
+** a no-op if is called with a NULL pointer. Passing a NULL pointer
+** to sqlite3_free() is harmless. After being freed, memory
+** should neither be read nor written. Even reading previously freed
+** memory might result in a segmentation fault or other severe error.
+** Memory corruption, a segmentation fault, or other severe error
+** might result if sqlite3_free() is called with a non-NULL pointer that
+** was not obtained from sqlite3_malloc() or sqlite3_free().
+**
+** The sqlite3_realloc() interface attempts to resize a
+** prior memory allocation to be at least N bytes, where N is the
+** second parameter. The memory allocation to be resized is the first
+** parameter. If the first parameter to sqlite3_realloc()
+** is a NULL pointer then its behavior is identical to calling
+** sqlite3_malloc(N) where N is the second parameter to sqlite3_realloc().
+** If the second parameter to sqlite3_realloc() is zero or
+** negative then the behavior is exactly the same as calling
+** sqlite3_free(P) where P is the first parameter to sqlite3_realloc().
+** Sqlite3_realloc() returns a pointer to a memory allocation
+** of at least N bytes in size or NULL if sufficient memory is unavailable.
+** If M is the size of the prior allocation, then min(N,M) bytes
+** of the prior allocation are copied into the beginning of buffer returned
+** by sqlite3_realloc() and the prior allocation is freed.
+** If sqlite3_realloc() returns NULL, then the prior allocation
+** is not freed.
+**
+** The memory returned by sqlite3_malloc() and sqlite3_realloc()
+** is always aligned to at least an 8 byte boundary. {END}
+**
+** The default implementation
+** of the memory allocation subsystem uses the malloc(), realloc()
+** and free() provided by the standard C library. {F17382} However, if
+** SQLite is compiled with the following C preprocessor macro
+**
+** <blockquote> SQLITE_MEMORY_SIZE=<i>NNN</i> </blockquote>
+**
+** where <i>NNN</i> is an integer, then SQLite create a static
+** array of at least <i>NNN</i> bytes in size and use that array
+** for all of its dynamic memory allocation needs. {END} Additional
+** memory allocator options may be added in future releases.
+**
+** In SQLite version 3.5.0 and 3.5.1, it was possible to define
+** the SQLITE_OMIT_MEMORY_ALLOCATION which would cause the built-in
+** implementation of these routines to be omitted. That capability
+** is no longer provided. Only built-in memory allocators can be
+** used.
+**
+** The windows OS interface layer calls
+** the system malloc() and free() directly when converting
+** filenames between the UTF-8 encoding used by SQLite
+** and whatever filename encoding is used by the particular windows
+** installation. Memory allocation errors are detected, but
+** they are reported back as [SQLITE_CANTOPEN] or
+** [SQLITE_IOERR] rather than [SQLITE_NOMEM].
+**
+** INVARIANTS:
+**
+** {F17303} The [sqlite3_malloc(N)] interface returns either a pointer to
+** newly checked-out block of at least N bytes of memory
+** that is 8-byte aligned,
+** or it returns NULL if it is unable to fulfill the request.
+**
+** {F17304} The [sqlite3_malloc(N)] interface returns a NULL pointer if
+** N is less than or equal to zero.
+**
+** {F17305} The [sqlite3_free(P)] interface releases memory previously
+** returned from [sqlite3_malloc()] or [sqlite3_realloc()],
+** making it available for reuse.
+**
+** {F17306} A call to [sqlite3_free(NULL)] is a harmless no-op.
+**
+** {F17310} A call to [sqlite3_realloc(0,N)] is equivalent to a call
+** to [sqlite3_malloc(N)].
+**
+** {F17312} A call to [sqlite3_realloc(P,0)] is equivalent to a call
+** to [sqlite3_free(P)].
+**
+** {F17315} The SQLite core uses [sqlite3_malloc()], [sqlite3_realloc()],
+** and [sqlite3_free()] for all of its memory allocation and
+** deallocation needs.
+**
+** {F17318} The [sqlite3_realloc(P,N)] interface returns either a pointer
+** to a block of checked-out memory of at least N bytes in size
+** that is 8-byte aligned, or a NULL pointer.
+**
+** {F17321} When [sqlite3_realloc(P,N)] returns a non-NULL pointer, it first
+** copies the first K bytes of content from P into the newly allocated
+** where K is the lessor of N and the size of the buffer P.
+**
+** {F17322} When [sqlite3_realloc(P,N)] returns a non-NULL pointer, it first
+** releases the buffer P.
+**
+** {F17323} When [sqlite3_realloc(P,N)] returns NULL, the buffer P is
+** not modified or released.
+**
+** LIMITATIONS:
+**
+** {U17350} The pointer arguments to [sqlite3_free()] and [sqlite3_realloc()]
+** must be either NULL or else a pointer obtained from a prior
+** invocation of [sqlite3_malloc()] or [sqlite3_realloc()] that has
+** not been released.
+**
+** {U17351} The application must not read or write any part of
+** a block of memory after it has been released using
+** [sqlite3_free()] or [sqlite3_realloc()].
+**
+*/
+void *sqlite3_malloc(int);
+void *sqlite3_realloc(void*, int);
+void sqlite3_free(void*);
+
+/*
+** CAPI3REF: Memory Allocator Statistics {F17370}
+**
+** SQLite provides these two interfaces for reporting on the status
+** of the [sqlite3_malloc()], [sqlite3_free()], and [sqlite3_realloc()]
+** the memory allocation subsystem included within the SQLite.
+**
+** INVARIANTS:
+**
+** {F17371} The [sqlite3_memory_used()] routine returns the
+** number of bytes of memory currently outstanding
+** (malloced but not freed).
+**
+** {F17373} The [sqlite3_memory_highwater()] routine returns the maximum
+** value of [sqlite3_memory_used()]
+** since the highwater mark was last reset.
+**
+** {F17374} The values returned by [sqlite3_memory_used()] and
+** [sqlite3_memory_highwater()] include any overhead
+** added by SQLite in its implementation of [sqlite3_malloc()],
+** but not overhead added by the any underlying system library
+** routines that [sqlite3_malloc()] may call.
+**
+** {F17375} The memory highwater mark is reset to the current value of
+** [sqlite3_memory_used()] if and only if the parameter to
+** [sqlite3_memory_highwater()] is true. The value returned
+** by [sqlite3_memory_highwater(1)] is the highwater mark
+** prior to the reset.
+*/
+sqlite3_int64 sqlite3_memory_used(void);
+sqlite3_int64 sqlite3_memory_highwater(int resetFlag);
+
+/*
+** CAPI3REF: Pseudo-Random Number Generator {F17390}
+**
+** SQLite contains a high-quality pseudo-random number generator (PRNG) used to
+** select random ROWIDs when inserting new records into a table that
+** already uses the largest possible ROWID. The PRNG is also used for
+** the build-in random() and randomblob() SQL functions. This interface allows
+** appliations to access the same PRNG for other purposes.
+**
+** A call to this routine stores N bytes of randomness into buffer P.
+**
+** The first time this routine is invoked (either internally or by
+** the application) the PRNG is seeded using randomness obtained
+** from the xRandomness method of the default [sqlite3_vfs] object.
+** On all subsequent invocations, the pseudo-randomness is generated
+** internally and without recourse to the [sqlite3_vfs] xRandomness
+** method.
+**
+** INVARIANTS:
+**
+** {F17392} The [sqlite3_randomness(N,P)] interface writes N bytes of
+** high-quality pseudo-randomness into buffer P.
+*/
+void sqlite3_randomness(int N, void *P);
+
+/*
+** CAPI3REF: Compile-Time Authorization Callbacks {F12500}
+**
+** This routine registers a authorizer callback with a particular
+** [database connection], supplied in the first argument.
+** The authorizer callback is invoked as SQL statements are being compiled
+** by [sqlite3_prepare()] or its variants [sqlite3_prepare_v2()],
+** [sqlite3_prepare16()] and [sqlite3_prepare16_v2()]. At various
+** points during the compilation process, as logic is being created
+** to perform various actions, the authorizer callback is invoked to
+** see if those actions are allowed. The authorizer callback should
+** return [SQLITE_OK] to allow the action, [SQLITE_IGNORE] to disallow the
+** specific action but allow the SQL statement to continue to be
+** compiled, or [SQLITE_DENY] to cause the entire SQL statement to be
+** rejected with an error. If the authorizer callback returns
+** any value other than [SQLITE_IGNORE], [SQLITE_OK], or [SQLITE_DENY]
+** then [sqlite3_prepare_v2()] or equivalent call that triggered
+** the authorizer will fail with an error message.
+**
+** When the callback returns [SQLITE_OK], that means the operation
+** requested is ok. When the callback returns [SQLITE_DENY], the
+** [sqlite3_prepare_v2()] or equivalent call that triggered the
+** authorizer will fail with an error message explaining that
+** access is denied. If the authorizer code is [SQLITE_READ]
+** and the callback returns [SQLITE_IGNORE] then the
+** [prepared statement] statement is constructed to substitute
+** a NULL value in place of the table column that would have
+** been read if [SQLITE_OK] had been returned. The [SQLITE_IGNORE]
+** return can be used to deny an untrusted user access to individual
+** columns of a table.
+**
+** The first parameter to the authorizer callback is a copy of
+** the third parameter to the sqlite3_set_authorizer() interface.
+** The second parameter to the callback is an integer
+** [SQLITE_COPY | action code] that specifies the particular action
+** to be authorized. The third through sixth
+** parameters to the callback are zero-terminated strings that contain
+** additional details about the action to be authorized.
+**
+** An authorizer is used when [sqlite3_prepare | preparing]
+** SQL statements from an untrusted
+** source, to ensure that the SQL statements do not try to access data
+** that they are not allowed to see, or that they do not try to
+** execute malicious statements that damage the database. For
+** example, an application may allow a user to enter arbitrary
+** SQL queries for evaluation by a database. But the application does
+** not want the user to be able to make arbitrary changes to the
+** database. An authorizer could then be put in place while the
+** user-entered SQL is being [sqlite3_prepare | prepared] that
+** disallows everything except [SELECT] statements.
+**
+** Applications that need to process SQL from untrusted sources
+** might also consider lowering resource limits using [sqlite3_limit()]
+** and limiting database size using the [max_page_count] [PRAGMA]
+** in addition to using an authorizer.
+**
+** Only a single authorizer can be in place on a database connection
+** at a time. Each call to sqlite3_set_authorizer overrides the
+** previous call. Disable the authorizer by installing a NULL callback.
+** The authorizer is disabled by default.
+**
+** Note that the authorizer callback is invoked only during
+** [sqlite3_prepare()] or its variants. Authorization is not
+** performed during statement evaluation in [sqlite3_step()].
+**
+** INVARIANTS:
+**
+** {F12501} The [sqlite3_set_authorizer(D,...)] interface registers a
+** authorizer callback with database connection D.
+**
+** {F12502} The authorizer callback is invoked as SQL statements are
+** being compiled
+**
+** {F12503} If the authorizer callback returns any value other than
+** [SQLITE_IGNORE], [SQLITE_OK], or [SQLITE_DENY] then
+** the [sqlite3_prepare_v2()] or equivalent call that caused
+** the authorizer callback to run shall fail with an
+** [SQLITE_ERROR] error code and an appropriate error message.
+**
+** {F12504} When the authorizer callback returns [SQLITE_OK], the operation
+** described is coded normally.
+**
+** {F12505} When the authorizer callback returns [SQLITE_DENY], the
+** [sqlite3_prepare_v2()] or equivalent call that caused the
+** authorizer callback to run shall fail
+** with an [SQLITE_ERROR] error code and an error message
+** explaining that access is denied.
+**
+** {F12506} If the authorizer code (the 2nd parameter to the authorizer
+** callback) is [SQLITE_READ] and the authorizer callback returns
+** [SQLITE_IGNORE] then the prepared statement is constructed to
+** insert a NULL value in place of the table column that would have
+** been read if [SQLITE_OK] had been returned.
+**
+** {F12507} If the authorizer code (the 2nd parameter to the authorizer
+** callback) is anything other than [SQLITE_READ], then
+** a return of [SQLITE_IGNORE] has the same effect as [SQLITE_DENY].
+**
+** {F12510} The first parameter to the authorizer callback is a copy of
+** the third parameter to the [sqlite3_set_authorizer()] interface.
+**
+** {F12511} The second parameter to the callback is an integer
+** [SQLITE_COPY | action code] that specifies the particular action
+** to be authorized.
+**
+** {F12512} The third through sixth parameters to the callback are
+** zero-terminated strings that contain
+** additional details about the action to be authorized.
+**
+** {F12520} Each call to [sqlite3_set_authorizer()] overrides the
+** any previously installed authorizer.
+**
+** {F12521} A NULL authorizer means that no authorization
+** callback is invoked.
+**
+** {F12522} The default authorizer is NULL.
+*/
+int sqlite3_set_authorizer(
+ sqlite3*,
+ int (*xAuth)(void*,int,const char*,const char*,const char*,const char*),
+ void *pUserData
+);
+
+/*
+** CAPI3REF: Authorizer Return Codes {F12590}
+**
+** The [sqlite3_set_authorizer | authorizer callback function] must
+** return either [SQLITE_OK] or one of these two constants in order
+** to signal SQLite whether or not the action is permitted. See the
+** [sqlite3_set_authorizer | authorizer documentation] for additional
+** information.
+*/
+#define SQLITE_DENY 1 /* Abort the SQL statement with an error */
+#define SQLITE_IGNORE 2 /* Don't allow access, but don't generate an error */
+
+/*
+** CAPI3REF: Authorizer Action Codes {F12550}
+**
+** The [sqlite3_set_authorizer()] interface registers a callback function
+** that is invoked to authorizer certain SQL statement actions. The
+** second parameter to the callback is an integer code that specifies
+** what action is being authorized. These are the integer action codes that
+** the authorizer callback may be passed.
+**
+** These action code values signify what kind of operation is to be
+** authorized. The 3rd and 4th parameters to the authorization
+** callback function will be parameters or NULL depending on which of these
+** codes is used as the second parameter. The 5th parameter to the
+** authorizer callback is the name of the database ("main", "temp",
+** etc.) if applicable. The 6th parameter to the authorizer callback
+** is the name of the inner-most trigger or view that is responsible for
+** the access attempt or NULL if this access attempt is directly from
+** top-level SQL code.
+**
+** INVARIANTS:
+**
+** {F12551} The second parameter to an
+** [sqlite3_set_authorizer | authorizer callback is always an integer
+** [SQLITE_COPY | authorizer code] that specifies what action
+** is being authorized.
+**
+** {F12552} The 3rd and 4th parameters to the
+** [sqlite3_set_authorizer | authorization callback function]
+** will be parameters or NULL depending on which
+** [SQLITE_COPY | authorizer code] is used as the second parameter.
+**
+** {F12553} The 5th parameter to the
+** [sqlite3_set_authorizer | authorizer callback] is the name
+** of the database (example: "main", "temp", etc.) if applicable.
+**
+** {F12554} The 6th parameter to the
+** [sqlite3_set_authorizer | authorizer callback] is the name
+** of the inner-most trigger or view that is responsible for
+** the access attempt or NULL if this access attempt is directly from
+** top-level SQL code.
+*/
+/******************************************* 3rd ************ 4th ***********/
+#define SQLITE_CREATE_INDEX 1 /* Index Name Table Name */
+#define SQLITE_CREATE_TABLE 2 /* Table Name NULL */
+#define SQLITE_CREATE_TEMP_INDEX 3 /* Index Name Table Name */
+#define SQLITE_CREATE_TEMP_TABLE 4 /* Table Name NULL */
+#define SQLITE_CREATE_TEMP_TRIGGER 5 /* Trigger Name Table Name */
+#define SQLITE_CREATE_TEMP_VIEW 6 /* View Name NULL */
+#define SQLITE_CREATE_TRIGGER 7 /* Trigger Name Table Name */
+#define SQLITE_CREATE_VIEW 8 /* View Name NULL */
+#define SQLITE_DELETE 9 /* Table Name NULL */
+#define SQLITE_DROP_INDEX 10 /* Index Name Table Name */
+#define SQLITE_DROP_TABLE 11 /* Table Name NULL */
+#define SQLITE_DROP_TEMP_INDEX 12 /* Index Name Table Name */
+#define SQLITE_DROP_TEMP_TABLE 13 /* Table Name NULL */
+#define SQLITE_DROP_TEMP_TRIGGER 14 /* Trigger Name Table Name */
+#define SQLITE_DROP_TEMP_VIEW 15 /* View Name NULL */
+#define SQLITE_DROP_TRIGGER 16 /* Trigger Name Table Name */
+#define SQLITE_DROP_VIEW 17 /* View Name NULL */
+#define SQLITE_INSERT 18 /* Table Name NULL */
+#define SQLITE_PRAGMA 19 /* Pragma Name 1st arg or NULL */
+#define SQLITE_READ 20 /* Table Name Column Name */
+#define SQLITE_SELECT 21 /* NULL NULL */
+#define SQLITE_TRANSACTION 22 /* NULL NULL */
+#define SQLITE_UPDATE 23 /* Table Name Column Name */
+#define SQLITE_ATTACH 24 /* Filename NULL */
+#define SQLITE_DETACH 25 /* Database Name NULL */
+#define SQLITE_ALTER_TABLE 26 /* Database Name Table Name */
+#define SQLITE_REINDEX 27 /* Index Name NULL */
+#define SQLITE_ANALYZE 28 /* Table Name NULL */
+#define SQLITE_CREATE_VTABLE 29 /* Table Name Module Name */
+#define SQLITE_DROP_VTABLE 30 /* Table Name Module Name */
+#define SQLITE_FUNCTION 31 /* Function Name NULL */
+#define SQLITE_COPY 0 /* No longer used */
+
+/*
+** CAPI3REF: Tracing And Profiling Functions {F12280}
+**
+** These routines register callback functions that can be used for
+** tracing and profiling the execution of SQL statements.
+**
+** The callback function registered by sqlite3_trace() is invoked at
+** various times when an SQL statement is being run by [sqlite3_step()].
+** The callback returns a UTF-8 rendering of the SQL statement text
+** as the statement first begins executing. Additional callbacks occur
+** as each triggersubprogram is entered. The callbacks for triggers
+** contain a UTF-8 SQL comment that identifies the trigger.
+**
+** The callback function registered by sqlite3_profile() is invoked
+** as each SQL statement finishes. The profile callback contains
+** the original statement text and an estimate of wall-clock time
+** of how long that statement took to run.
+**
+** The sqlite3_profile() API is currently considered experimental and
+** is subject to change or removal in a future release.
+**
+** The trigger reporting feature of the trace callback is considered
+** experimental and is subject to change or removal in future releases.
+** Future versions of SQLite might also add new trace callback
+** invocations.
+**
+** INVARIANTS:
+**
+** {F12281} The callback function registered by [sqlite3_trace()] is
+** whenever an SQL statement first begins to execute and
+** whenever a trigger subprogram first begins to run.
+**
+** {F12282} Each call to [sqlite3_trace()] overrides the previously
+** registered trace callback.
+**
+** {F12283} A NULL trace callback disables tracing.
+**
+** {F12284} The first argument to the trace callback is a copy of
+** the pointer which was the 3rd argument to [sqlite3_trace()].
+**
+** {F12285} The second argument to the trace callback is a
+** zero-terminated UTF8 string containing the original text
+** of the SQL statement as it was passed into [sqlite3_prepare_v2()]
+** or the equivalent, or an SQL comment indicating the beginning
+** of a trigger subprogram.
+**
+** {F12287} The callback function registered by [sqlite3_profile()] is invoked
+** as each SQL statement finishes.
+**
+** {F12288} The first parameter to the profile callback is a copy of
+** the 3rd parameter to [sqlite3_profile()].
+**
+** {F12289} The second parameter to the profile callback is a
+** zero-terminated UTF-8 string that contains the complete text of
+** the SQL statement as it was processed by [sqlite3_prepare_v2()]
+** or the equivalent.
+**
+** {F12290} The third parameter to the profile callback is an estimate
+** of the number of nanoseconds of wall-clock time required to
+** run the SQL statement from start to finish.
+*/
+void *sqlite3_trace(sqlite3*, void(*xTrace)(void*,const char*), void*);
+void *sqlite3_profile(sqlite3*,
+ void(*xProfile)(void*,const char*,sqlite3_uint64), void*);
+
+/*
+** CAPI3REF: Query Progress Callbacks {F12910}
+**
+** This routine configures a callback function - the
+** progress callback - that is invoked periodically during long
+** running calls to [sqlite3_exec()], [sqlite3_step()] and
+** [sqlite3_get_table()]. An example use for this
+** interface is to keep a GUI updated during a large query.
+**
+** If the progress callback returns non-zero, the opertion is
+** interrupted. This feature can be used to implement a
+** "Cancel" button on a GUI dialog box.
+**
+** INVARIANTS:
+**
+** {F12911} The callback function registered by [sqlite3_progress_handler()]
+** is invoked periodically during long running calls to
+** [sqlite3_step()].
+**
+** {F12912} The progress callback is invoked once for every N virtual
+** machine opcodes, where N is the second argument to
+** the [sqlite3_progress_handler()] call that registered
+** the callback. <todo>What if N is less than 1?</todo>
+**
+** {F12913} The progress callback itself is identified by the third
+** argument to [sqlite3_progress_handler()].
+**
+** {F12914} The fourth argument [sqlite3_progress_handler()] is a
+*** void pointer passed to the progress callback
+** function each time it is invoked.
+**
+** {F12915} If a call to [sqlite3_step()] results in fewer than
+** N opcodes being executed,
+** then the progress callback is never invoked. {END}
+**
+** {F12916} Every call to [sqlite3_progress_handler()]
+** overwrites any previously registere progress handler.
+**
+** {F12917} If the progress handler callback is NULL then no progress
+** handler is invoked.
+**
+** {F12918} If the progress callback returns a result other than 0, then
+** the behavior is a if [sqlite3_interrupt()] had been called.
+*/
+void sqlite3_progress_handler(sqlite3*, int, int(*)(void*), void*);
+
+/*
+** CAPI3REF: Opening A New Database Connection {F12700}
+**
+** These routines open an SQLite database file whose name
+** is given by the filename argument.
+** The filename argument is interpreted as UTF-8
+** for [sqlite3_open()] and [sqlite3_open_v2()] and as UTF-16
+** in the native byte order for [sqlite3_open16()].
+** An [sqlite3*] handle is usually returned in *ppDb, even
+** if an error occurs. The only exception is if SQLite is unable
+** to allocate memory to hold the [sqlite3] object, a NULL will
+** be written into *ppDb instead of a pointer to the [sqlite3] object.
+** If the database is opened (and/or created)
+** successfully, then [SQLITE_OK] is returned. Otherwise an
+** error code is returned. The
+** [sqlite3_errmsg()] or [sqlite3_errmsg16()] routines can be used to obtain
+** an English language description of the error.
+**
+** The default encoding for the database will be UTF-8 if
+** [sqlite3_open()] or [sqlite3_open_v2()] is called and
+** UTF-16 in the native byte order if [sqlite3_open16()] is used.
+**
+** Whether or not an error occurs when it is opened, resources
+** associated with the [sqlite3*] handle should be released by passing it
+** to [sqlite3_close()] when it is no longer required.
+**
+** The [sqlite3_open_v2()] interface works like [sqlite3_open()]
+** except that it acccepts two additional parameters for additional control
+** over the new database connection. The flags parameter can be
+** one of:
+**
+** <ol>
+** <li> [SQLITE_OPEN_READONLY]
+** <li> [SQLITE_OPEN_READWRITE]
+** <li> [SQLITE_OPEN_READWRITE] | [SQLITE_OPEN_CREATE]
+** </ol>
+**
+** The first value opens the database read-only.
+** If the database does not previously exist, an error is returned.
+** The second option opens
+** the database for reading and writing if possible, or reading only if
+** if the file is write protected. In either case the database
+** must already exist or an error is returned. The third option
+** opens the database for reading and writing and creates it if it does
+** not already exist.
+** The third options is behavior that is always used for [sqlite3_open()]
+** and [sqlite3_open16()].
+**
+** If the 3rd parameter to [sqlite3_open_v2()] is not one of the
+** combinations shown above then the behavior is undefined.
+**
+** If the filename is ":memory:", then an private
+** in-memory database is created for the connection. This in-memory
+** database will vanish when the database connection is closed. Future
+** version of SQLite might make use of additional special filenames
+** that begin with the ":" character. It is recommended that
+** when a database filename really does begin with
+** ":" that you prefix the filename with a pathname like "./" to
+** avoid ambiguity.
+**
+** If the filename is an empty string, then a private temporary
+** on-disk database will be created. This private database will be
+** automatically deleted as soon as the database connection is closed.
+**
+** The fourth parameter to sqlite3_open_v2() is the name of the
+** [sqlite3_vfs] object that defines the operating system
+** interface that the new database connection should use. If the
+** fourth parameter is a NULL pointer then the default [sqlite3_vfs]
+** object is used.
+**
+** <b>Note to windows users:</b> The encoding used for the filename argument
+** of [sqlite3_open()] and [sqlite3_open_v2()] must be UTF-8, not whatever
+** codepage is currently defined. Filenames containing international
+** characters must be converted to UTF-8 prior to passing them into
+** [sqlite3_open()] or [sqlite3_open_v2()].
+**
+** INVARIANTS:
+**
+** {F12701} The [sqlite3_open()], [sqlite3_open16()], and
+** [sqlite3_open_v2()] interfaces create a new
+** [database connection] associated with
+** the database file given in their first parameter.
+**
+** {F12702} The filename argument is interpreted as UTF-8
+** for [sqlite3_open()] and [sqlite3_open_v2()] and as UTF-16
+** in the native byte order for [sqlite3_open16()].
+**
+** {F12703} A successful invocation of [sqlite3_open()], [sqlite3_open16()],
+** or [sqlite3_open_v2()] writes a pointer to a new
+** [database connection] into *ppDb.
+**
+** {F12704} The [sqlite3_open()], [sqlite3_open16()], and
+** [sqlite3_open_v2()] interfaces return [SQLITE_OK] upon success,
+** or an appropriate [error code] on failure.
+**
+** {F12706} The default text encoding for a new database created using
+** [sqlite3_open()] or [sqlite3_open_v2()] will be UTF-8.
+**
+** {F12707} The default text encoding for a new database created using
+** [sqlite3_open16()] will be UTF-16.
+**
+** {F12709} The [sqlite3_open(F,D)] interface is equivalent to
+** [sqlite3_open_v2(F,D,G,0)] where the G parameter is
+** [SQLITE_OPEN_READWRITE]|[SQLITE_OPEN_CREATE].
+**
+** {F12711} If the G parameter to [sqlite3_open_v2(F,D,G,V)] contains the
+** bit value [SQLITE_OPEN_READONLY] then the database is opened
+** for reading only.
+**
+** {F12712} If the G parameter to [sqlite3_open_v2(F,D,G,V)] contains the
+** bit value [SQLITE_OPEN_READWRITE] then the database is opened
+** reading and writing if possible, or for reading only if the
+** file is write protected by the operating system.
+**
+** {F12713} If the G parameter to [sqlite3_open(v2(F,D,G,V)] omits the
+** bit value [SQLITE_OPEN_CREATE] and the database does not
+** previously exist, an error is returned.
+**
+** {F12714} If the G parameter to [sqlite3_open(v2(F,D,G,V)] contains the
+** bit value [SQLITE_OPEN_CREATE] and the database does not
+** previously exist, then an attempt is made to create and
+** initialize the database.
+**
+** {F12717} If the filename argument to [sqlite3_open()], [sqlite3_open16()],
+** or [sqlite3_open_v2()] is ":memory:", then an private,
+** ephemeral, in-memory database is created for the connection.
+** <todo>Is SQLITE_OPEN_CREATE|SQLITE_OPEN_READWRITE required
+** in sqlite3_open_v2()?</todo>
+**
+** {F12719} If the filename is NULL or an empty string, then a private,
+** ephermeral on-disk database will be created.
+** <todo>Is SQLITE_OPEN_CREATE|SQLITE_OPEN_READWRITE required
+** in sqlite3_open_v2()?</todo>
+**
+** {F12721} The [database connection] created by
+** [sqlite3_open_v2(F,D,G,V)] will use the
+** [sqlite3_vfs] object identified by the V parameter, or
+** the default [sqlite3_vfs] object is V is a NULL pointer.
+*/
+int sqlite3_open(
+ const char *filename, /* Database filename (UTF-8) */
+ sqlite3 **ppDb /* OUT: SQLite db handle */
+);
+int sqlite3_open16(
+ const void *filename, /* Database filename (UTF-16) */
+ sqlite3 **ppDb /* OUT: SQLite db handle */
+);
+int sqlite3_open_v2(
+ const char *filename, /* Database filename (UTF-8) */
+ sqlite3 **ppDb, /* OUT: SQLite db handle */
+ int flags, /* Flags */
+ const char *zVfs /* Name of VFS module to use */
+);
+
+/*
+** CAPI3REF: Error Codes And Messages {F12800}
+**
+** The sqlite3_errcode() interface returns the numeric
+** [SQLITE_OK | result code] or [SQLITE_IOERR_READ | extended result code]
+** for the most recent failed sqlite3_* API call associated
+** with [sqlite3] handle 'db'. If a prior API call failed but the
+** most recent API call succeeded, the return value from sqlite3_errcode()
+** is undefined.
+**
+** The sqlite3_errmsg() and sqlite3_errmsg16() return English-language
+** text that describes the error, as either UTF8 or UTF16 respectively.
+** Memory to hold the error message string is managed internally.
+** The application does not need to worry with freeing the result.
+** However, the error string might be overwritten or deallocated by
+** subsequent calls to other SQLite interface functions.
+**
+** INVARIANTS:
+**
+** {F12801} The [sqlite3_errcode(D)] interface returns the numeric
+** [SQLITE_OK | result code] or
+** [SQLITE_IOERR_READ | extended result code]
+** for the most recently failed interface call associated
+** with [database connection] D.
+**
+** {F12803} The [sqlite3_errmsg(D)] and [sqlite3_errmsg16(D)]
+** interfaces return English-language text that describes
+** the error in the mostly recently failed interface call,
+** encoded as either UTF8 or UTF16 respectively.
+**
+** {F12807} The strings returned by [sqlite3_errmsg()] and [sqlite3_errmsg16()]
+** are valid until the next SQLite interface call.
+**
+** {F12808} Calls to API routines that do not return an error code
+** (example: [sqlite3_data_count()]) do not
+** change the error code or message returned by
+** [sqlite3_errcode()], [sqlite3_errmsg()], or [sqlite3_errmsg16()].
+**
+** {F12809} Interfaces that are not associated with a specific
+** [database connection] (examples:
+** [sqlite3_mprintf()] or [sqlite3_enable_shared_cache()]
+** do not change the values returned by
+** [sqlite3_errcode()], [sqlite3_errmsg()], or [sqlite3_errmsg16()].
+*/
+int sqlite3_errcode(sqlite3 *db);
+const char *sqlite3_errmsg(sqlite3*);
+const void *sqlite3_errmsg16(sqlite3*);
+
+/*
+** CAPI3REF: SQL Statement Object {F13000}
+** KEYWORDS: {prepared statement} {prepared statements}
+**
+** An instance of this object represent single SQL statements. This
+** object is variously known as a "prepared statement" or a
+** "compiled SQL statement" or simply as a "statement".
+**
+** The life of a statement object goes something like this:
+**
+** <ol>
+** <li> Create the object using [sqlite3_prepare_v2()] or a related
+** function.
+** <li> Bind values to host parameters using
+** [sqlite3_bind_blob | sqlite3_bind_* interfaces].
+** <li> Run the SQL by calling [sqlite3_step()] one or more times.
+** <li> Reset the statement using [sqlite3_reset()] then go back
+** to step 2. Do this zero or more times.
+** <li> Destroy the object using [sqlite3_finalize()].
+** </ol>
+**
+** Refer to documentation on individual methods above for additional
+** information.
+*/
+typedef struct sqlite3_stmt sqlite3_stmt;
+
+/*
+** CAPI3REF: Run-time Limits {F12760}
+**
+** This interface allows the size of various constructs to be limited
+** on a connection by connection basis. The first parameter is the
+** [database connection] whose limit is to be set or queried. The
+** second parameter is one of the [limit categories] that define a
+** class of constructs to be size limited. The third parameter is the
+** new limit for that construct. The function returns the old limit.
+**
+** If the new limit is a negative number, the limit is unchanged.
+** For the limit category of SQLITE_LIMIT_XYZ there is a hard upper
+** bound set by a compile-time C-preprocess macro named SQLITE_MAX_XYZ.
+** (The "_LIMIT_" in the name is changed to "_MAX_".)
+** Attempts to increase a limit above its hard upper bound are
+** silently truncated to the hard upper limit.
+**
+** Run time limits are intended for use in applications that manage
+** both their own internal database and also databases that are controlled
+** by untrusted external sources. An example application might be a
+** webbrowser that has its own databases for storing history and
+** separate databases controlled by javascript applications downloaded
+** off the internet. The internal databases can be given the
+** large, default limits. Databases managed by external sources can
+** be given much smaller limits designed to prevent a denial of service
+** attach. Developers might also want to use the [sqlite3_set_authorizer()]
+** interface to further control untrusted SQL. The size of the database
+** created by an untrusted script can be contained using the
+** [max_page_count] [PRAGMA].
+**
+** This interface is currently considered experimental and is subject
+** to change or removal without prior notice.
+**
+** INVARIANTS:
+**
+** {F12762} A successful call to [sqlite3_limit(D,C,V)] where V is
+** positive changes the
+** limit on the size of construct C in [database connection] D
+** to the lessor of V and the hard upper bound on the size
+** of C that is set at compile-time.
+**
+** {F12766} A successful call to [sqlite3_limit(D,C,V)] where V is negative
+** leaves the state of [database connection] D unchanged.
+**
+** {F12769} A successful call to [sqlite3_limit(D,C,V)] returns the
+** value of the limit on the size of construct C in
+** in [database connection] D as it was prior to the call.
+*/
+int sqlite3_limit(sqlite3*, int id, int newVal);
+
+/*
+** CAPI3REF: Run-Time Limit Categories {F12790}
+** KEYWORDS: {limit category} {limit categories}
+**
+** These constants define various aspects of a [database connection]
+** that can be limited in size by calls to [sqlite3_limit()].
+** The meanings of the various limits are as follows:
+**
+** <dl>
+** <dt>SQLITE_LIMIT_LENGTH</dt>
+** <dd>The maximum size of any
+** string or blob or table row.<dd>
+**
+** <dt>SQLITE_LIMIT_SQL_LENGTH</dt>
+** <dd>The maximum length of an SQL statement.</dd>
+**
+** <dt>SQLITE_LIMIT_COLUMN</dt>
+** <dd>The maximum number of columns in a table definition or in the
+** result set of a SELECT or the maximum number of columns in an index
+** or in an ORDER BY or GROUP BY clause.</dd>
+**
+** <dt>SQLITE_LIMIT_EXPR_DEPTH</dt>
+** <dd>The maximum depth of the parse tree on any expression.</dd>
+**
+** <dt>SQLITE_LIMIT_COMPOUND_SELECT</dt>
+** <dd>The maximum number of terms in a compound SELECT statement.</dd>
+**
+** <dt>SQLITE_LIMIT_VDBE_OP</dt>
+** <dd>The maximum number of instructions in a virtual machine program
+** used to implement an SQL statement.</dd>
+**
+** <dt>SQLITE_LIMIT_FUNCTION_ARG</dt>
+** <dd>The maximum number of arguments on a function.</dd>
+**
+** <dt>SQLITE_LIMIT_ATTACHED</dt>
+** <dd>The maximum number of attached databases.</dd>
+**
+** <dt>SQLITE_LIMIT_LIKE_PATTERN_LENGTH</dt>
+** <dd>The maximum length of the pattern argument to the LIKE or
+** GLOB operators.</dd>
+**
+** <dt>SQLITE_LIMIT_VARIABLE_NUMBER</dt>
+** <dd>The maximum number of variables in an SQL statement that can
+** be bound.</dd>
+** </dl>
+*/
+#define SQLITE_LIMIT_LENGTH 0
+#define SQLITE_LIMIT_SQL_LENGTH 1
+#define SQLITE_LIMIT_COLUMN 2
+#define SQLITE_LIMIT_EXPR_DEPTH 3
+#define SQLITE_LIMIT_COMPOUND_SELECT 4
+#define SQLITE_LIMIT_VDBE_OP 5
+#define SQLITE_LIMIT_FUNCTION_ARG 6
+#define SQLITE_LIMIT_ATTACHED 7
+#define SQLITE_LIMIT_LIKE_PATTERN_LENGTH 8
+#define SQLITE_LIMIT_VARIABLE_NUMBER 9
+
+/*
+** CAPI3REF: Compiling An SQL Statement {F13010}
+**
+** To execute an SQL query, it must first be compiled into a byte-code
+** program using one of these routines.
+**
+** The first argument "db" is an [database connection]
+** obtained from a prior call to [sqlite3_open()], [sqlite3_open_v2()]
+** or [sqlite3_open16()].
+** The second argument "zSql" is the statement to be compiled, encoded
+** as either UTF-8 or UTF-16. The sqlite3_prepare() and sqlite3_prepare_v2()
+** interfaces uses UTF-8 and sqlite3_prepare16() and sqlite3_prepare16_v2()
+** use UTF-16. {END}
+**
+** If the nByte argument is less
+** than zero, then zSql is read up to the first zero terminator.
+** If nByte is non-negative, then it is the maximum number of
+** bytes read from zSql. When nByte is non-negative, the
+** zSql string ends at either the first '\000' or '\u0000' character or
+** the nByte-th byte, whichever comes first. If the caller knows
+** that the supplied string is nul-terminated, then there is a small
+** performance advantage to be had by passing an nByte parameter that
+** is equal to the number of bytes in the input string <i>including</i>
+** the nul-terminator bytes.{END}
+**
+** *pzTail is made to point to the first byte past the end of the
+** first SQL statement in zSql. These routines only compiles the first
+** statement in zSql, so *pzTail is left pointing to what remains
+** uncompiled.
+**
+** *ppStmt is left pointing to a compiled [prepared statement] that can be
+** executed using [sqlite3_step()]. Or if there is an error, *ppStmt is
+** set to NULL. If the input text contains no SQL (if the input
+** is and empty string or a comment) then *ppStmt is set to NULL.
+** {U13018} The calling procedure is responsible for deleting the
+** compiled SQL statement
+** using [sqlite3_finalize()] after it has finished with it.
+**
+** On success, [SQLITE_OK] is returned. Otherwise an
+** [error code] is returned.
+**
+** The sqlite3_prepare_v2() and sqlite3_prepare16_v2() interfaces are
+** recommended for all new programs. The two older interfaces are retained
+** for backwards compatibility, but their use is discouraged.
+** In the "v2" interfaces, the prepared statement
+** that is returned (the [sqlite3_stmt] object) contains a copy of the
+** original SQL text. {END} This causes the [sqlite3_step()] interface to
+** behave a differently in two ways:
+**
+** <ol>
+** <li>
+** If the database schema changes, instead of returning [SQLITE_SCHEMA] as it
+** always used to do, [sqlite3_step()] will automatically recompile the SQL
+** statement and try to run it again. If the schema has changed in
+** a way that makes the statement no longer valid, [sqlite3_step()] will still
+** return [SQLITE_SCHEMA]. But unlike the legacy behavior,
+** [SQLITE_SCHEMA] is now a fatal error. Calling
+** [sqlite3_prepare_v2()] again will not make the
+** error go away. Note: use [sqlite3_errmsg()] to find the text
+** of the parsing error that results in an [SQLITE_SCHEMA] return. {END}
+** </li>
+**
+** <li>
+** When an error occurs,
+** [sqlite3_step()] will return one of the detailed
+** [error codes] or [extended error codes].
+** The legacy behavior was that [sqlite3_step()] would only return a generic
+** [SQLITE_ERROR] result code and you would have to make a second call to
+** [sqlite3_reset()] in order to find the underlying cause of the problem.
+** With the "v2" prepare interfaces, the underlying reason for the error is
+** returned immediately.
+** </li>
+** </ol>
+**
+** INVARIANTS:
+**
+** {F13011} The [sqlite3_prepare(db,zSql,...)] and
+** [sqlite3_prepare_v2(db,zSql,...)] interfaces interpret the
+** text in their zSql parameter as UTF-8.
+**
+** {F13012} The [sqlite3_prepare16(db,zSql,...)] and
+** [sqlite3_prepare16_v2(db,zSql,...)] interfaces interpret the
+** text in their zSql parameter as UTF-16 in the native byte order.
+**
+** {F13013} If the nByte argument to [sqlite3_prepare_v2(db,zSql,nByte,...)]
+** and its variants is less than zero, then SQL text is
+** read from zSql is read up to the first zero terminator.
+**
+** {F13014} If the nByte argument to [sqlite3_prepare_v2(db,zSql,nByte,...)]
+** and its variants is non-negative, then at most nBytes bytes
+** SQL text is read from zSql.
+**
+** {F13015} In [sqlite3_prepare_v2(db,zSql,N,P,pzTail)] and its variants
+** if the zSql input text contains more than one SQL statement
+** and pzTail is not NULL, then *pzTail is made to point to the
+** first byte past the end of the first SQL statement in zSql.
+** <todo>What does *pzTail point to if there is one statement?</todo>
+**
+** {F13016} A successful call to [sqlite3_prepare_v2(db,zSql,N,ppStmt,...)]
+** or one of its variants writes into *ppStmt a pointer to a new
+** [prepared statement] or a pointer to NULL
+** if zSql contains nothing other than whitespace or comments.
+**
+** {F13019} The [sqlite3_prepare_v2()] interface and its variants return
+** [SQLITE_OK] or an appropriate [error code] upon failure.
+**
+** {F13021} Before [sqlite3_prepare(db,zSql,nByte,ppStmt,pzTail)] or its
+** variants returns an error (any value other than [SQLITE_OK])
+** it first sets *ppStmt to NULL.
+*/
+int sqlite3_prepare(
+ sqlite3 *db, /* Database handle */
+ const char *zSql, /* SQL statement, UTF-8 encoded */
+ int nByte, /* Maximum length of zSql in bytes. */
+ sqlite3_stmt **ppStmt, /* OUT: Statement handle */
+ const char **pzTail /* OUT: Pointer to unused portion of zSql */
+);
+int sqlite3_prepare_v2(
+ sqlite3 *db, /* Database handle */
+ const char *zSql, /* SQL statement, UTF-8 encoded */
+ int nByte, /* Maximum length of zSql in bytes. */
+ sqlite3_stmt **ppStmt, /* OUT: Statement handle */
+ const char **pzTail /* OUT: Pointer to unused portion of zSql */
+);
+int sqlite3_prepare16(
+ sqlite3 *db, /* Database handle */
+ const void *zSql, /* SQL statement, UTF-16 encoded */
+ int nByte, /* Maximum length of zSql in bytes. */
+ sqlite3_stmt **ppStmt, /* OUT: Statement handle */
+ const void **pzTail /* OUT: Pointer to unused portion of zSql */
+);
+int sqlite3_prepare16_v2(
+ sqlite3 *db, /* Database handle */
+ const void *zSql, /* SQL statement, UTF-16 encoded */
+ int nByte, /* Maximum length of zSql in bytes. */
+ sqlite3_stmt **ppStmt, /* OUT: Statement handle */
+ const void **pzTail /* OUT: Pointer to unused portion of zSql */
+);
+
+/*
+** CAPIREF: Retrieving Statement SQL {F13100}
+**
+** This intereface can be used to retrieve a saved copy of the original
+** SQL text used to create a [prepared statement].
+**
+** INVARIANTS:
+**
+** {F13101} If the [prepared statement] passed as
+** the an argument to [sqlite3_sql()] was compiled
+** compiled using either [sqlite3_prepare_v2()] or
+** [sqlite3_prepare16_v2()],
+** then [sqlite3_sql()] function returns a pointer to a
+** zero-terminated string containing a UTF-8 rendering
+** of the original SQL statement.
+**
+** {F13102} If the [prepared statement] passed as
+** the an argument to [sqlite3_sql()] was compiled
+** compiled using either [sqlite3_prepare()] or
+** [sqlite3_prepare16()],
+** then [sqlite3_sql()] function returns a NULL pointer.
+**
+** {F13103} The string returned by [sqlite3_sql(S)] is valid until the
+** [prepared statement] S is deleted using [sqlite3_finalize(S)].
+*/
+const char *sqlite3_sql(sqlite3_stmt *pStmt);
+
+/*
+** CAPI3REF: Dynamically Typed Value Object {F15000}
+** KEYWORDS: {protected sqlite3_value} {unprotected sqlite3_value}
+**
+** SQLite uses the sqlite3_value object to represent all values
+** that can be stored in a database table.
+** SQLite uses dynamic typing for the values it stores.
+** Values stored in sqlite3_value objects can be
+** be integers, floating point values, strings, BLOBs, or NULL.
+**
+** An sqlite3_value object may be either "protected" or "unprotected".
+** Some interfaces require a protected sqlite3_value. Other interfaces
+** will accept either a protected or an unprotected sqlite3_value.
+** Every interface that accepts sqlite3_value arguments specifies
+** whether or not it requires a protected sqlite3_value.
+**
+** The terms "protected" and "unprotected" refer to whether or not
+** a mutex is held. A internal mutex is held for a protected
+** sqlite3_value object but no mutex is held for an unprotected
+** sqlite3_value object. If SQLite is compiled to be single-threaded
+** (with SQLITE_THREADSAFE=0 and with [sqlite3_threadsafe()] returning 0)
+** then there is no distinction between
+** protected and unprotected sqlite3_value objects and they can be
+** used interchangable. However, for maximum code portability it
+** is recommended that applications make the distinction between
+** between protected and unprotected sqlite3_value objects even if
+** they are single threaded.
+**
+** The sqlite3_value objects that are passed as parameters into the
+** implementation of application-defined SQL functions are protected.
+** The sqlite3_value object returned by
+** [sqlite3_column_value()] is unprotected.
+** Unprotected sqlite3_value objects may only be used with
+** [sqlite3_result_value()] and [sqlite3_bind_value()]. All other
+** interfaces that use sqlite3_value require protected sqlite3_value objects.
+*/
+typedef struct Mem sqlite3_value;
+
+/*
+** CAPI3REF: SQL Function Context Object {F16001}
+**
+** The context in which an SQL function executes is stored in an
+** sqlite3_context object. A pointer to an sqlite3_context
+** object is always first parameter to application-defined SQL functions.
+*/
+typedef struct sqlite3_context sqlite3_context;
+
+/*
+** CAPI3REF: Binding Values To Prepared Statements {F13500}
+**
+** In the SQL strings input to [sqlite3_prepare_v2()] and its
+** variants, literals may be replace by a parameter in one
+** of these forms:
+**
+** <ul>
+** <li> ?
+** <li> ?NNN
+** <li> :VVV
+** <li> @VVV
+** <li> $VVV
+** </ul>
+**
+** In the parameter forms shown above NNN is an integer literal,
+** VVV alpha-numeric parameter name.
+** The values of these parameters (also called "host parameter names"
+** or "SQL parameters")
+** can be set using the sqlite3_bind_*() routines defined here.
+**
+** The first argument to the sqlite3_bind_*() routines always
+** is a pointer to the [sqlite3_stmt] object returned from
+** [sqlite3_prepare_v2()] or its variants. The second
+** argument is the index of the parameter to be set. The
+** first parameter has an index of 1. When the same named
+** parameter is used more than once, second and subsequent
+** occurrences have the same index as the first occurrence.
+** The index for named parameters can be looked up using the
+** [sqlite3_bind_parameter_name()] API if desired. The index
+** for "?NNN" parameters is the value of NNN.
+** The NNN value must be between 1 and the compile-time
+** parameter SQLITE_MAX_VARIABLE_NUMBER (default value: 999).
+**
+** The third argument is the value to bind to the parameter.
+**
+** In those
+** routines that have a fourth argument, its value is the number of bytes
+** in the parameter. To be clear: the value is the number of <u>bytes</u>
+** in the value, not the number of characters.
+** If the fourth parameter is negative, the length of the string is
+** number of bytes up to the first zero terminator.
+**
+** The fifth argument to sqlite3_bind_blob(), sqlite3_bind_text(), and
+** sqlite3_bind_text16() is a destructor used to dispose of the BLOB or
+** string after SQLite has finished with it. If the fifth argument is
+** the special value [SQLITE_STATIC], then SQLite assumes that the
+** information is in static, unmanaged space and does not need to be freed.
+** If the fifth argument has the value [SQLITE_TRANSIENT], then
+** SQLite makes its own private copy of the data immediately, before
+** the sqlite3_bind_*() routine returns.
+**
+** The sqlite3_bind_zeroblob() routine binds a BLOB of length N that
+** is filled with zeros. A zeroblob uses a fixed amount of memory
+** (just an integer to hold it size) while it is being processed.
+** Zeroblobs are intended to serve as place-holders for BLOBs whose
+** content is later written using
+** [sqlite3_blob_open | increment BLOB I/O] routines. A negative
+** value for the zeroblob results in a zero-length BLOB.
+**
+** The sqlite3_bind_*() routines must be called after
+** [sqlite3_prepare_v2()] (and its variants) or [sqlite3_reset()] and
+** before [sqlite3_step()].
+** Bindings are not cleared by the [sqlite3_reset()] routine.
+** Unbound parameters are interpreted as NULL.
+**
+** These routines return [SQLITE_OK] on success or an error code if
+** anything goes wrong. [SQLITE_RANGE] is returned if the parameter
+** index is out of range. [SQLITE_NOMEM] is returned if malloc fails.
+** [SQLITE_MISUSE] might be returned if these routines are called on a
+** virtual machine that is the wrong state or which has already been finalized.
+** Detection of misuse is unreliable. Applications should not depend
+** on SQLITE_MISUSE returns. SQLITE_MISUSE is intended to indicate a
+** a logic error in the application. Future versions of SQLite might
+** panic rather than return SQLITE_MISUSE.
+**
+** See also: [sqlite3_bind_parameter_count()],
+** [sqlite3_bind_parameter_name()], and
+** [sqlite3_bind_parameter_index()].
+**
+** INVARIANTS:
+**
+** {F13506} The [sqlite3_prepare | SQL statement compiler] recognizes
+** tokens of the forms "?", "?NNN", "$VVV", ":VVV", and "@VVV"
+** as SQL parameters, where NNN is any sequence of one or more
+** digits and where VVV is any sequence of one or more
+** alphanumeric characters or "::" optionally followed by
+** a string containing no spaces and contained within parentheses.
+**
+** {F13509} The initial value of an SQL parameter is NULL.
+**
+** {F13512} The index of an "?" SQL parameter is one larger than the
+** largest index of SQL parameter to the left, or 1 if
+** the "?" is the leftmost SQL parameter.
+**
+** {F13515} The index of an "?NNN" SQL parameter is the integer NNN.
+**
+** {F13518} The index of an ":VVV", "$VVV", or "@VVV" SQL parameter is
+** the same as the index of leftmost occurances of the same
+** parameter, or one more than the largest index over all
+** parameters to the left if this is the first occurrance
+** of this parameter, or 1 if this is the leftmost parameter.
+**
+** {F13521} The [sqlite3_prepare | SQL statement compiler] fail with
+** an [SQLITE_RANGE] error if the index of an SQL parameter
+** is less than 1 or greater than SQLITE_MAX_VARIABLE_NUMBER.
+**
+** {F13524} Calls to [sqlite3_bind_text | sqlite3_bind(S,N,V,...)]
+** associate the value V with all SQL parameters having an
+** index of N in the [prepared statement] S.
+**
+** {F13527} Calls to [sqlite3_bind_text | sqlite3_bind(S,N,...)]
+** override prior calls with the same values of S and N.
+**
+** {F13530} Bindings established by [sqlite3_bind_text | sqlite3_bind(S,...)]
+** persist across calls to [sqlite3_reset(S)].
+**
+** {F13533} In calls to [sqlite3_bind_blob(S,N,V,L,D)],
+** [sqlite3_bind_text(S,N,V,L,D)], or
+** [sqlite3_bind_text16(S,N,V,L,D)] SQLite binds the first L
+** bytes of the blob or string pointed to by V, when L
+** is non-negative.
+**
+** {F13536} In calls to [sqlite3_bind_text(S,N,V,L,D)] or
+** [sqlite3_bind_text16(S,N,V,L,D)] SQLite binds characters
+** from V through the first zero character when L is negative.
+**
+** {F13539} In calls to [sqlite3_bind_blob(S,N,V,L,D)],
+** [sqlite3_bind_text(S,N,V,L,D)], or
+** [sqlite3_bind_text16(S,N,V,L,D)] when D is the special
+** constant [SQLITE_STATIC], SQLite assumes that the value V
+** is held in static unmanaged space that will not change
+** during the lifetime of the binding.
+**
+** {F13542} In calls to [sqlite3_bind_blob(S,N,V,L,D)],
+** [sqlite3_bind_text(S,N,V,L,D)], or
+** [sqlite3_bind_text16(S,N,V,L,D)] when D is the special
+** constant [SQLITE_TRANSIENT], the routine makes a
+** private copy of V value before it returns.
+**
+** {F13545} In calls to [sqlite3_bind_blob(S,N,V,L,D)],
+** [sqlite3_bind_text(S,N,V,L,D)], or
+** [sqlite3_bind_text16(S,N,V,L,D)] when D is a pointer to
+** a function, SQLite invokes that function to destroy the
+** V value after it has finished using the V value.
+**
+** {F13548} In calls to [sqlite3_bind_zeroblob(S,N,V,L)] the value bound
+** is a blob of L bytes, or a zero-length blob if L is negative.
+**
+** {F13551} In calls to [sqlite3_bind_value(S,N,V)] the V argument may
+** be either a [protected sqlite3_value] object or an
+** [unprotected sqlite3_value] object.
+*/
+int sqlite3_bind_blob(sqlite3_stmt*, int, const void*, int n, void(*)(void*));
+int sqlite3_bind_double(sqlite3_stmt*, int, double);
+int sqlite3_bind_int(sqlite3_stmt*, int, int);
+int sqlite3_bind_int64(sqlite3_stmt*, int, sqlite3_int64);
+int sqlite3_bind_null(sqlite3_stmt*, int);
+int sqlite3_bind_text(sqlite3_stmt*, int, const char*, int n, void(*)(void*));
+int sqlite3_bind_text16(sqlite3_stmt*, int, const void*, int, void(*)(void*));
+int sqlite3_bind_value(sqlite3_stmt*, int, const sqlite3_value*);
+int sqlite3_bind_zeroblob(sqlite3_stmt*, int, int n);
+
+/*
+** CAPI3REF: Number Of SQL Parameters {F13600}
+**
+** This routine can be used to find the number of SQL parameters
+** in a prepared statement. SQL parameters are tokens of the
+** form "?", "?NNN", ":AAA", "$AAA", or "@AAA" that serve as
+** place-holders for values that are [sqlite3_bind_blob | bound]
+** to the parameters at a later time.
+**
+** This routine actually returns the index of the largest parameter.
+** For all forms except ?NNN, this will correspond to the number of
+** unique parameters. If parameters of the ?NNN are used, there may
+** be gaps in the list.
+**
+** See also: [sqlite3_bind_blob|sqlite3_bind()],
+** [sqlite3_bind_parameter_name()], and
+** [sqlite3_bind_parameter_index()].
+**
+** INVARIANTS:
+**
+** {F13601} The [sqlite3_bind_parameter_count(S)] interface returns
+** the largest index of all SQL parameters in the
+** [prepared statement] S, or 0 if S
+** contains no SQL parameters.
+*/
+int sqlite3_bind_parameter_count(sqlite3_stmt*);
+
+/*
+** CAPI3REF: Name Of A Host Parameter {F13620}
+**
+** This routine returns a pointer to the name of the n-th
+** SQL parameter in a [prepared statement].
+** SQL parameters of the form "?NNN" or ":AAA" or "@AAA" or "$AAA"
+** have a name which is the string "?NNN" or ":AAA" or "@AAA" or "$AAA"
+** respectively.
+** In other words, the initial ":" or "$" or "@" or "?"
+** is included as part of the name.
+** Parameters of the form "?" without a following integer have no name.
+**
+** The first host parameter has an index of 1, not 0.
+**
+** If the value n is out of range or if the n-th parameter is
+** nameless, then NULL is returned. The returned string is
+** always in the UTF-8 encoding even if the named parameter was
+** originally specified as UTF-16 in [sqlite3_prepare16()] or
+** [sqlite3_prepare16_v2()].
+**
+** See also: [sqlite3_bind_blob|sqlite3_bind()],
+** [sqlite3_bind_parameter_count()], and
+** [sqlite3_bind_parameter_index()].
+**
+** INVARIANTS:
+**
+** {F13621} The [sqlite3_bind_parameter_name(S,N)] interface returns
+** a UTF-8 rendering of the name of the SQL parameter in
+** [prepared statement] S having index N, or
+** NULL if there is no SQL parameter with index N or if the
+** parameter with index N is an anonymous parameter "?".
+*/
+const char *sqlite3_bind_parameter_name(sqlite3_stmt*, int);
+
+/*
+** CAPI3REF: Index Of A Parameter With A Given Name {F13640}
+**
+** Return the index of an SQL parameter given its name. The
+** index value returned is suitable for use as the second
+** parameter to [sqlite3_bind_blob|sqlite3_bind()]. A zero
+** is returned if no matching parameter is found. The parameter
+** name must be given in UTF-8 even if the original statement
+** was prepared from UTF-16 text using [sqlite3_prepare16_v2()].
+**
+** See also: [sqlite3_bind_blob|sqlite3_bind()],
+** [sqlite3_bind_parameter_count()], and
+** [sqlite3_bind_parameter_index()].
+**
+** INVARIANTS:
+**
+** {F13641} The [sqlite3_bind_parameter_index(S,N)] interface returns
+** the index of SQL parameter in [prepared statement]
+** S whose name matches the UTF-8 string N, or 0 if there is
+** no match.
+*/
+int sqlite3_bind_parameter_index(sqlite3_stmt*, const char *zName);
+
+/*
+** CAPI3REF: Reset All Bindings On A Prepared Statement {F13660}
+**
+** Contrary to the intuition of many, [sqlite3_reset()] does not
+** reset the [sqlite3_bind_blob | bindings] on a
+** [prepared statement]. Use this routine to
+** reset all host parameters to NULL.
+**
+** INVARIANTS:
+**
+** {F13661} The [sqlite3_clear_bindings(S)] interface resets all
+** SQL parameter bindings in [prepared statement] S
+** back to NULL.
+*/
+int sqlite3_clear_bindings(sqlite3_stmt*);
+
+/*
+** CAPI3REF: Number Of Columns In A Result Set {F13710}
+**
+** Return the number of columns in the result set returned by the
+** [prepared statement]. This routine returns 0
+** if pStmt is an SQL statement that does not return data (for
+** example an UPDATE).
+**
+** INVARIANTS:
+**
+** {F13711} The [sqlite3_column_count(S)] interface returns the number of
+** columns in the result set generated by the
+** [prepared statement] S, or 0 if S does not generate
+** a result set.
+*/
+int sqlite3_column_count(sqlite3_stmt *pStmt);
+
+/*
+** CAPI3REF: Column Names In A Result Set {F13720}
+**
+** These routines return the name assigned to a particular column
+** in the result set of a SELECT statement. The sqlite3_column_name()
+** interface returns a pointer to a zero-terminated UTF8 string
+** and sqlite3_column_name16() returns a pointer to a zero-terminated
+** UTF16 string. The first parameter is the
+** [prepared statement] that implements the SELECT statement.
+** The second parameter is the column number. The left-most column is
+** number 0.
+**
+** The returned string pointer is valid until either the
+** [prepared statement] is destroyed by [sqlite3_finalize()]
+** or until the next call sqlite3_column_name() or sqlite3_column_name16()
+** on the same column.
+**
+** If sqlite3_malloc() fails during the processing of either routine
+** (for example during a conversion from UTF-8 to UTF-16) then a
+** NULL pointer is returned.
+**
+** The name of a result column is the value of the "AS" clause for
+** that column, if there is an AS clause. If there is no AS clause
+** then the name of the column is unspecified and may change from
+** one release of SQLite to the next.
+**
+** INVARIANTS:
+**
+** {F13721} A successful invocation of the [sqlite3_column_name(S,N)]
+** interface returns the name
+** of the Nth column (where 0 is the left-most column) for the
+** result set of [prepared statement] S as a
+** zero-terminated UTF-8 string.
+**
+** {F13723} A successful invocation of the [sqlite3_column_name16(S,N)]
+** interface returns the name
+** of the Nth column (where 0 is the left-most column) for the
+** result set of [prepared statement] S as a
+** zero-terminated UTF-16 string in the native byte order.
+**
+** {F13724} The [sqlite3_column_name()] and [sqlite3_column_name16()]
+** interfaces return a NULL pointer if they are unable to
+** allocate memory memory to hold there normal return strings.
+**
+** {F13725} If the N parameter to [sqlite3_column_name(S,N)] or
+** [sqlite3_column_name16(S,N)] is out of range, then the
+** interfaces returns a NULL pointer.
+**
+** {F13726} The strings returned by [sqlite3_column_name(S,N)] and
+** [sqlite3_column_name16(S,N)] are valid until the next
+** call to either routine with the same S and N parameters
+** or until [sqlite3_finalize(S)] is called.
+**
+** {F13727} When a result column of a [SELECT] statement contains
+** an AS clause, the name of that column is the indentifier
+** to the right of the AS keyword.
+*/
+const char *sqlite3_column_name(sqlite3_stmt*, int N);
+const void *sqlite3_column_name16(sqlite3_stmt*, int N);
+
+/*
+** CAPI3REF: Source Of Data In A Query Result {F13740}
+**
+** These routines provide a means to determine what column of what
+** table in which database a result of a SELECT statement comes from.
+** The name of the database or table or column can be returned as
+** either a UTF8 or UTF16 string. The _database_ routines return
+** the database name, the _table_ routines return the table name, and
+** the origin_ routines return the column name.
+** The returned string is valid until
+** the [prepared statement] is destroyed using
+** [sqlite3_finalize()] or until the same information is requested
+** again in a different encoding.
+**
+** The names returned are the original un-aliased names of the
+** database, table, and column.
+**
+** The first argument to the following calls is a [prepared statement].
+** These functions return information about the Nth column returned by
+** the statement, where N is the second function argument.
+**
+** If the Nth column returned by the statement is an expression
+** or subquery and is not a column value, then all of these functions
+** return NULL. These routine might also return NULL if a memory
+** allocation error occurs. Otherwise, they return the
+** name of the attached database, table and column that query result
+** column was extracted from.
+**
+** As with all other SQLite APIs, those postfixed with "16" return
+** UTF-16 encoded strings, the other functions return UTF-8. {END}
+**
+** These APIs are only available if the library was compiled with the
+** SQLITE_ENABLE_COLUMN_METADATA preprocessor symbol defined.
+**
+** {U13751}
+** If two or more threads call one or more of these routines against the same
+** prepared statement and column at the same time then the results are
+** undefined.
+**
+** INVARIANTS:
+**
+** {F13741} The [sqlite3_column_database_name(S,N)] interface returns either
+** the UTF-8 zero-terminated name of the database from which the
+** Nth result column of [prepared statement] S
+** is extracted, or NULL if the the Nth column of S is a
+** general expression or if unable to allocate memory
+** to store the name.
+**
+** {F13742} The [sqlite3_column_database_name16(S,N)] interface returns either
+** the UTF-16 native byte order
+** zero-terminated name of the database from which the
+** Nth result column of [prepared statement] S
+** is extracted, or NULL if the the Nth column of S is a
+** general expression or if unable to allocate memory
+** to store the name.
+**
+** {F13743} The [sqlite3_column_table_name(S,N)] interface returns either
+** the UTF-8 zero-terminated name of the table from which the
+** Nth result column of [prepared statement] S
+** is extracted, or NULL if the the Nth column of S is a
+** general expression or if unable to allocate memory
+** to store the name.
+**
+** {F13744} The [sqlite3_column_table_name16(S,N)] interface returns either
+** the UTF-16 native byte order
+** zero-terminated name of the table from which the
+** Nth result column of [prepared statement] S
+** is extracted, or NULL if the the Nth column of S is a
+** general expression or if unable to allocate memory
+** to store the name.
+**
+** {F13745} The [sqlite3_column_origin_name(S,N)] interface returns either
+** the UTF-8 zero-terminated name of the table column from which the
+** Nth result column of [prepared statement] S
+** is extracted, or NULL if the the Nth column of S is a
+** general expression or if unable to allocate memory
+** to store the name.
+**
+** {F13746} The [sqlite3_column_origin_name16(S,N)] interface returns either
+** the UTF-16 native byte order
+** zero-terminated name of the table column from which the
+** Nth result column of [prepared statement] S
+** is extracted, or NULL if the the Nth column of S is a
+** general expression or if unable to allocate memory
+** to store the name.
+**
+** {F13748} The return values from
+** [sqlite3_column_database_name|column metadata interfaces]
+** are valid
+** for the lifetime of the [prepared statement]
+** or until the encoding is changed by another metadata
+** interface call for the same prepared statement and column.
+**
+** LIMITATIONS:
+**
+** {U13751} If two or more threads call one or more
+** [sqlite3_column_database_name|column metadata interfaces]
+** the same [prepared statement] and result column
+** at the same time then the results are undefined.
+*/
+const char *sqlite3_column_database_name(sqlite3_stmt*,int);
+const void *sqlite3_column_database_name16(sqlite3_stmt*,int);
+const char *sqlite3_column_table_name(sqlite3_stmt*,int);
+const void *sqlite3_column_table_name16(sqlite3_stmt*,int);
+const char *sqlite3_column_origin_name(sqlite3_stmt*,int);
+const void *sqlite3_column_origin_name16(sqlite3_stmt*,int);
+
+/*
+** CAPI3REF: Declared Datatype Of A Query Result {F13760}
+**
+** The first parameter is a [prepared statement].
+** If this statement is a SELECT statement and the Nth column of the
+** returned result set of that SELECT is a table column (not an
+** expression or subquery) then the declared type of the table
+** column is returned. If the Nth column of the result set is an
+** expression or subquery, then a NULL pointer is returned.
+** The returned string is always UTF-8 encoded. {END}
+** For example, in the database schema:
+**
+** CREATE TABLE t1(c1 VARIANT);
+**
+** And the following statement compiled:
+**
+** SELECT c1 + 1, c1 FROM t1;
+**
+** Then this routine would return the string "VARIANT" for the second
+** result column (i==1), and a NULL pointer for the first result column
+** (i==0).
+**
+** SQLite uses dynamic run-time typing. So just because a column
+** is declared to contain a particular type does not mean that the
+** data stored in that column is of the declared type. SQLite is
+** strongly typed, but the typing is dynamic not static. Type
+** is associated with individual values, not with the containers
+** used to hold those values.
+**
+** INVARIANTS:
+**
+** {F13761} A successful call to [sqlite3_column_decltype(S,N)]
+** returns a zero-terminated UTF-8 string containing the
+** the declared datatype of the table column that appears
+** as the Nth column (numbered from 0) of the result set to the
+** [prepared statement] S.
+**
+** {F13762} A successful call to [sqlite3_column_decltype16(S,N)]
+** returns a zero-terminated UTF-16 native byte order string
+** containing the declared datatype of the table column that appears
+** as the Nth column (numbered from 0) of the result set to the
+** [prepared statement] S.
+**
+** {F13763} If N is less than 0 or N is greater than or equal to
+** the number of columns in [prepared statement] S
+** or if the Nth column of S is an expression or subquery rather
+** than a table column or if a memory allocation failure
+** occurs during encoding conversions, then
+** calls to [sqlite3_column_decltype(S,N)] or
+** [sqlite3_column_decltype16(S,N)] return NULL.
+*/
+const char *sqlite3_column_decltype(sqlite3_stmt*,int);
+const void *sqlite3_column_decltype16(sqlite3_stmt*,int);
+
+/*
+** CAPI3REF: Evaluate An SQL Statement {F13200}
+**
+** After an [prepared statement] has been prepared with a call
+** to either [sqlite3_prepare_v2()] or [sqlite3_prepare16_v2()] or to one of
+** the legacy interfaces [sqlite3_prepare()] or [sqlite3_prepare16()],
+** then this function must be called one or more times to evaluate the
+** statement.
+**
+** The details of the behavior of this sqlite3_step() interface depend
+** on whether the statement was prepared using the newer "v2" interface
+** [sqlite3_prepare_v2()] and [sqlite3_prepare16_v2()] or the older legacy
+** interface [sqlite3_prepare()] and [sqlite3_prepare16()]. The use of the
+** new "v2" interface is recommended for new applications but the legacy
+** interface will continue to be supported.
+**
+** In the legacy interface, the return value will be either [SQLITE_BUSY],
+** [SQLITE_DONE], [SQLITE_ROW], [SQLITE_ERROR], or [SQLITE_MISUSE].
+** With the "v2" interface, any of the other [SQLITE_OK | result code]
+** or [SQLITE_IOERR_READ | extended result code] might be returned as
+** well.
+**
+** [SQLITE_BUSY] means that the database engine was unable to acquire the
+** database locks it needs to do its job. If the statement is a COMMIT
+** or occurs outside of an explicit transaction, then you can retry the
+** statement. If the statement is not a COMMIT and occurs within a
+** explicit transaction then you should rollback the transaction before
+** continuing.
+**
+** [SQLITE_DONE] means that the statement has finished executing
+** successfully. sqlite3_step() should not be called again on this virtual
+** machine without first calling [sqlite3_reset()] to reset the virtual
+** machine back to its initial state.
+**
+** If the SQL statement being executed returns any data, then
+** [SQLITE_ROW] is returned each time a new row of data is ready
+** for processing by the caller. The values may be accessed using
+** the [sqlite3_column_int | column access functions].
+** sqlite3_step() is called again to retrieve the next row of data.
+**
+** [SQLITE_ERROR] means that a run-time error (such as a constraint
+** violation) has occurred. sqlite3_step() should not be called again on
+** the VM. More information may be found by calling [sqlite3_errmsg()].
+** With the legacy interface, a more specific error code (example:
+** [SQLITE_INTERRUPT], [SQLITE_SCHEMA], [SQLITE_CORRUPT], and so forth)
+** can be obtained by calling [sqlite3_reset()] on the
+** [prepared statement]. In the "v2" interface,
+** the more specific error code is returned directly by sqlite3_step().
+**
+** [SQLITE_MISUSE] means that the this routine was called inappropriately.
+** Perhaps it was called on a [prepared statement] that has
+** already been [sqlite3_finalize | finalized] or on one that had
+** previously returned [SQLITE_ERROR] or [SQLITE_DONE]. Or it could
+** be the case that the same database connection is being used by two or
+** more threads at the same moment in time.
+**
+** <b>Goofy Interface Alert:</b>
+** In the legacy interface,
+** the sqlite3_step() API always returns a generic error code,
+** [SQLITE_ERROR], following any error other than [SQLITE_BUSY]
+** and [SQLITE_MISUSE]. You must call [sqlite3_reset()] or
+** [sqlite3_finalize()] in order to find one of the specific
+** [error codes] that better describes the error.
+** We admit that this is a goofy design. The problem has been fixed
+** with the "v2" interface. If you prepare all of your SQL statements
+** using either [sqlite3_prepare_v2()] or [sqlite3_prepare16_v2()] instead
+** of the legacy [sqlite3_prepare()] and [sqlite3_prepare16()], then the
+** more specific [error codes] are returned directly
+** by sqlite3_step(). The use of the "v2" interface is recommended.
+**
+** INVARIANTS:
+**
+** {F13202} If [prepared statement] S is ready to be
+** run, then [sqlite3_step(S)] advances that prepared statement
+** until to completion or until it is ready to return another
+** row of the result set or an interrupt or run-time error occurs.
+**
+** {F15304} When a call to [sqlite3_step(S)] causes the
+** [prepared statement] S to run to completion,
+** the function returns [SQLITE_DONE].
+**
+** {F15306} When a call to [sqlite3_step(S)] stops because it is ready
+** to return another row of the result set, it returns
+** [SQLITE_ROW].
+**
+** {F15308} If a call to [sqlite3_step(S)] encounters an
+** [sqlite3_interrupt|interrupt] or a run-time error,
+** it returns an appropraite error code that is not one of
+** [SQLITE_OK], [SQLITE_ROW], or [SQLITE_DONE].
+**
+** {F15310} If an [sqlite3_interrupt|interrupt] or run-time error
+** occurs during a call to [sqlite3_step(S)]
+** for a [prepared statement] S created using
+** legacy interfaces [sqlite3_prepare()] or
+** [sqlite3_prepare16()] then the function returns either
+** [SQLITE_ERROR], [SQLITE_BUSY], or [SQLITE_MISUSE].
+*/
+int sqlite3_step(sqlite3_stmt*);
+
+/*
+** CAPI3REF: Number of columns in a result set {F13770}
+**
+** Return the number of values in the current row of the result set.
+**
+** INVARIANTS:
+**
+** {F13771} After a call to [sqlite3_step(S)] that returns
+** [SQLITE_ROW], the [sqlite3_data_count(S)] routine
+** will return the same value as the
+** [sqlite3_column_count(S)] function.
+**
+** {F13772} After [sqlite3_step(S)] has returned any value other than
+** [SQLITE_ROW] or before [sqlite3_step(S)] has been
+** called on the [prepared statement] for
+** the first time since it was [sqlite3_prepare|prepared]
+** or [sqlite3_reset|reset], the [sqlite3_data_count(S)]
+** routine returns zero.
+*/
+int sqlite3_data_count(sqlite3_stmt *pStmt);
+
+/*
+** CAPI3REF: Fundamental Datatypes {F10265}
+** KEYWORDS: SQLITE_TEXT
+**
+** {F10266}Every value in SQLite has one of five fundamental datatypes:
+**
+** <ul>
+** <li> 64-bit signed integer
+** <li> 64-bit IEEE floating point number
+** <li> string
+** <li> BLOB
+** <li> NULL
+** </ul> {END}
+**
+** These constants are codes for each of those types.
+**
+** Note that the SQLITE_TEXT constant was also used in SQLite version 2
+** for a completely different meaning. Software that links against both
+** SQLite version 2 and SQLite version 3 should use SQLITE3_TEXT not
+** SQLITE_TEXT.
+*/
+#define SQLITE_INTEGER 1
+#define SQLITE_FLOAT 2
+#define SQLITE_BLOB 4
+#define SQLITE_NULL 5
+#ifdef SQLITE_TEXT
+# undef SQLITE_TEXT
+#else
+# define SQLITE_TEXT 3
+#endif
+#define SQLITE3_TEXT 3
+
+/*
+** CAPI3REF: Results Values From A Query {F13800}
+**
+** These routines form the "result set query" interface.
+**
+** These routines return information about
+** a single column of the current result row of a query. In every
+** case the first argument is a pointer to the
+** [prepared statement] that is being
+** evaluated (the [sqlite3_stmt*] that was returned from
+** [sqlite3_prepare_v2()] or one of its variants) and
+** the second argument is the index of the column for which information
+** should be returned. The left-most column of the result set
+** has an index of 0.
+**
+** If the SQL statement is not currently point to a valid row, or if the
+** the column index is out of range, the result is undefined.
+** These routines may only be called when the most recent call to
+** [sqlite3_step()] has returned [SQLITE_ROW] and neither
+** [sqlite3_reset()] nor [sqlite3_finalize()] has been call subsequently.
+** If any of these routines are called after [sqlite3_reset()] or
+** [sqlite3_finalize()] or after [sqlite3_step()] has returned
+** something other than [SQLITE_ROW], the results are undefined.
+** If [sqlite3_step()] or [sqlite3_reset()] or [sqlite3_finalize()]
+** are called from a different thread while any of these routines
+** are pending, then the results are undefined.
+**
+** The sqlite3_column_type() routine returns
+** [SQLITE_INTEGER | datatype code] for the initial data type
+** of the result column. The returned value is one of [SQLITE_INTEGER],
+** [SQLITE_FLOAT], [SQLITE_TEXT], [SQLITE_BLOB], or [SQLITE_NULL]. The value
+** returned by sqlite3_column_type() is only meaningful if no type
+** conversions have occurred as described below. After a type conversion,
+** the value returned by sqlite3_column_type() is undefined. Future
+** versions of SQLite may change the behavior of sqlite3_column_type()
+** following a type conversion.
+**
+** If the result is a BLOB or UTF-8 string then the sqlite3_column_bytes()
+** routine returns the number of bytes in that BLOB or string.
+** If the result is a UTF-16 string, then sqlite3_column_bytes() converts
+** the string to UTF-8 and then returns the number of bytes.
+** If the result is a numeric value then sqlite3_column_bytes() uses
+** [sqlite3_snprintf()] to convert that value to a UTF-8 string and returns
+** the number of bytes in that string.
+** The value returned does not include the zero terminator at the end
+** of the string. For clarity: the value returned is the number of
+** bytes in the string, not the number of characters.
+**
+** Strings returned by sqlite3_column_text() and sqlite3_column_text16(),
+** even empty strings, are always zero terminated. The return
+** value from sqlite3_column_blob() for a zero-length blob is an arbitrary
+** pointer, possibly even a NULL pointer.
+**
+** The sqlite3_column_bytes16() routine is similar to sqlite3_column_bytes()
+** but leaves the result in UTF-16 in native byte order instead of UTF-8.
+** The zero terminator is not included in this count.
+**
+** The object returned by [sqlite3_column_value()] is an
+** [unprotected sqlite3_value] object. An unprotected sqlite3_value object
+** may only be used with [sqlite3_bind_value()] and [sqlite3_result_value()].
+** If the [unprotected sqlite3_value] object returned by
+** [sqlite3_column_value()] is used in any other way, including calls
+** to routines like
+** [sqlite3_value_int()], [sqlite3_value_text()], or [sqlite3_value_bytes()],
+** then the behavior is undefined.
+**
+** These routines attempt to convert the value where appropriate. For
+** example, if the internal representation is FLOAT and a text result
+** is requested, [sqlite3_snprintf()] is used internally to do the conversion
+** automatically. The following table details the conversions that
+** are applied:
+**
+** <blockquote>
+** <table border="1">
+** <tr><th> Internal<br>Type <th> Requested<br>Type <th> Conversion
+**
+** <tr><td> NULL <td> INTEGER <td> Result is 0
+** <tr><td> NULL <td> FLOAT <td> Result is 0.0
+** <tr><td> NULL <td> TEXT <td> Result is NULL pointer
+** <tr><td> NULL <td> BLOB <td> Result is NULL pointer
+** <tr><td> INTEGER <td> FLOAT <td> Convert from integer to float
+** <tr><td> INTEGER <td> TEXT <td> ASCII rendering of the integer
+** <tr><td> INTEGER <td> BLOB <td> Same as for INTEGER->TEXT
+** <tr><td> FLOAT <td> INTEGER <td> Convert from float to integer
+** <tr><td> FLOAT <td> TEXT <td> ASCII rendering of the float
+** <tr><td> FLOAT <td> BLOB <td> Same as FLOAT->TEXT
+** <tr><td> TEXT <td> INTEGER <td> Use atoi()
+** <tr><td> TEXT <td> FLOAT <td> Use atof()
+** <tr><td> TEXT <td> BLOB <td> No change
+** <tr><td> BLOB <td> INTEGER <td> Convert to TEXT then use atoi()
+** <tr><td> BLOB <td> FLOAT <td> Convert to TEXT then use atof()
+** <tr><td> BLOB <td> TEXT <td> Add a zero terminator if needed
+** </table>
+** </blockquote>
+**
+** The table above makes reference to standard C library functions atoi()
+** and atof(). SQLite does not really use these functions. It has its
+** on equavalent internal routines. The atoi() and atof() names are
+** used in the table for brevity and because they are familiar to most
+** C programmers.
+**
+** Note that when type conversions occur, pointers returned by prior
+** calls to sqlite3_column_blob(), sqlite3_column_text(), and/or
+** sqlite3_column_text16() may be invalidated.
+** Type conversions and pointer invalidations might occur
+** in the following cases:
+**
+** <ul>
+** <li><p> The initial content is a BLOB and sqlite3_column_text()
+** or sqlite3_column_text16() is called. A zero-terminator might
+** need to be added to the string.</p></li>
+**
+** <li><p> The initial content is UTF-8 text and sqlite3_column_bytes16() or
+** sqlite3_column_text16() is called. The content must be converted
+** to UTF-16.</p></li>
+**
+** <li><p> The initial content is UTF-16 text and sqlite3_column_bytes() or
+** sqlite3_column_text() is called. The content must be converted
+** to UTF-8.</p></li>
+** </ul>
+**
+** Conversions between UTF-16be and UTF-16le are always done in place and do
+** not invalidate a prior pointer, though of course the content of the buffer
+** that the prior pointer points to will have been modified. Other kinds
+** of conversion are done in place when it is possible, but sometime it is
+** not possible and in those cases prior pointers are invalidated.
+**
+** The safest and easiest to remember policy is to invoke these routines
+** in one of the following ways:
+**
+** <ul>
+** <li>sqlite3_column_text() followed by sqlite3_column_bytes()</li>
+** <li>sqlite3_column_blob() followed by sqlite3_column_bytes()</li>
+** <li>sqlite3_column_text16() followed by sqlite3_column_bytes16()</li>
+** </ul>
+**
+** In other words, you should call sqlite3_column_text(), sqlite3_column_blob(),
+** or sqlite3_column_text16() first to force the result into the desired
+** format, then invoke sqlite3_column_bytes() or sqlite3_column_bytes16() to
+** find the size of the result. Do not mix call to sqlite3_column_text() or
+** sqlite3_column_blob() with calls to sqlite3_column_bytes16(). And do not
+** mix calls to sqlite3_column_text16() with calls to sqlite3_column_bytes().
+**
+** The pointers returned are valid until a type conversion occurs as
+** described above, or until [sqlite3_step()] or [sqlite3_reset()] or
+** [sqlite3_finalize()] is called. The memory space used to hold strings
+** and blobs is freed automatically. Do <b>not</b> pass the pointers returned
+** [sqlite3_column_blob()], [sqlite3_column_text()], etc. into
+** [sqlite3_free()].
+**
+** If a memory allocation error occurs during the evaluation of any
+** of these routines, a default value is returned. The default value
+** is either the integer 0, the floating point number 0.0, or a NULL
+** pointer. Subsequent calls to [sqlite3_errcode()] will return
+** [SQLITE_NOMEM].
+**
+** INVARIANTS:
+**
+** {F13803} The [sqlite3_column_blob(S,N)] interface converts the
+** Nth column in the current row of the result set for
+** [prepared statement] S into a blob and then returns a
+** pointer to the converted value.
+**
+** {F13806} The [sqlite3_column_bytes(S,N)] interface returns the
+** number of bytes in the blob or string (exclusive of the
+** zero terminator on the string) that was returned by the
+** most recent call to [sqlite3_column_blob(S,N)] or
+** [sqlite3_column_text(S,N)].
+**
+** {F13809} The [sqlite3_column_bytes16(S,N)] interface returns the
+** number of bytes in the string (exclusive of the
+** zero terminator on the string) that was returned by the
+** most recent call to [sqlite3_column_text16(S,N)].
+**
+** {F13812} The [sqlite3_column_double(S,N)] interface converts the
+** Nth column in the current row of the result set for
+** [prepared statement] S into a floating point value and
+** returns a copy of that value.
+**
+** {F13815} The [sqlite3_column_int(S,N)] interface converts the
+** Nth column in the current row of the result set for
+** [prepared statement] S into a 64-bit signed integer and
+** returns the lower 32 bits of that integer.
+**
+** {F13818} The [sqlite3_column_int64(S,N)] interface converts the
+** Nth column in the current row of the result set for
+** [prepared statement] S into a 64-bit signed integer and
+** returns a copy of that integer.
+**
+** {F13821} The [sqlite3_column_text(S,N)] interface converts the
+** Nth column in the current row of the result set for
+** [prepared statement] S into a zero-terminated UTF-8
+** string and returns a pointer to that string.
+**
+** {F13824} The [sqlite3_column_text16(S,N)] interface converts the
+** Nth column in the current row of the result set for
+** [prepared statement] S into a zero-terminated 2-byte
+** aligned UTF-16 native byte order
+** string and returns a pointer to that string.
+**
+** {F13827} The [sqlite3_column_type(S,N)] interface returns
+** one of [SQLITE_NULL], [SQLITE_INTEGER], [SQLITE_FLOAT],
+** [SQLITE_TEXT], or [SQLITE_BLOB] as appropriate for
+** the Nth column in the current row of the result set for
+** [prepared statement] S.
+**
+** {F13830} The [sqlite3_column_value(S,N)] interface returns a
+** pointer to an [unprotected sqlite3_value] object for the
+** Nth column in the current row of the result set for
+** [prepared statement] S.
+*/
+const void *sqlite3_column_blob(sqlite3_stmt*, int iCol);
+int sqlite3_column_bytes(sqlite3_stmt*, int iCol);
+int sqlite3_column_bytes16(sqlite3_stmt*, int iCol);
+double sqlite3_column_double(sqlite3_stmt*, int iCol);
+int sqlite3_column_int(sqlite3_stmt*, int iCol);
+sqlite3_int64 sqlite3_column_int64(sqlite3_stmt*, int iCol);
+const unsigned char *sqlite3_column_text(sqlite3_stmt*, int iCol);
+const void *sqlite3_column_text16(sqlite3_stmt*, int iCol);
+int sqlite3_column_type(sqlite3_stmt*, int iCol);
+sqlite3_value *sqlite3_column_value(sqlite3_stmt*, int iCol);
+
+/*
+** CAPI3REF: Destroy A Prepared Statement Object {F13300}
+**
+** The sqlite3_finalize() function is called to delete a
+** [prepared statement]. If the statement was
+** executed successfully, or not executed at all, then SQLITE_OK is returned.
+** If execution of the statement failed then an
+** [error code] or [extended error code]
+** is returned.
+**
+** This routine can be called at any point during the execution of the
+** [prepared statement]. If the virtual machine has not
+** completed execution when this routine is called, that is like
+** encountering an error or an interrupt. (See [sqlite3_interrupt()].)
+** Incomplete updates may be rolled back and transactions cancelled,
+** depending on the circumstances, and the
+** [error code] returned will be [SQLITE_ABORT].
+**
+** INVARIANTS:
+**
+** {F11302} The [sqlite3_finalize(S)] interface destroys the
+** [prepared statement] S and releases all
+** memory and file resources held by that object.
+**
+** {F11304} If the most recent call to [sqlite3_step(S)] for the
+** [prepared statement] S returned an error,
+** then [sqlite3_finalize(S)] returns that same error.
+*/
+int sqlite3_finalize(sqlite3_stmt *pStmt);
+
+/*
+** CAPI3REF: Reset A Prepared Statement Object {F13330}
+**
+** The sqlite3_reset() function is called to reset a
+** [prepared statement] object.
+** back to its initial state, ready to be re-executed.
+** Any SQL statement variables that had values bound to them using
+** the [sqlite3_bind_blob | sqlite3_bind_*() API] retain their values.
+** Use [sqlite3_clear_bindings()] to reset the bindings.
+**
+** {F11332} The [sqlite3_reset(S)] interface resets the [prepared statement] S
+** back to the beginning of its program.
+**
+** {F11334} If the most recent call to [sqlite3_step(S)] for
+** [prepared statement] S returned [SQLITE_ROW] or [SQLITE_DONE],
+** or if [sqlite3_step(S)] has never before been called on S,
+** then [sqlite3_reset(S)] returns [SQLITE_OK].
+**
+** {F11336} If the most recent call to [sqlite3_step(S)] for
+** [prepared statement] S indicated an error, then
+** [sqlite3_reset(S)] returns an appropriate [error code].
+**
+** {F11338} The [sqlite3_reset(S)] interface does not change the values
+** of any [sqlite3_bind_blob|bindings] on [prepared statement] S.
+*/
+int sqlite3_reset(sqlite3_stmt *pStmt);
+
+/*
+** CAPI3REF: Create Or Redefine SQL Functions {F16100}
+** KEYWORDS: {function creation routines}
+**
+** These two functions (collectively known as
+** "function creation routines") are used to add SQL functions or aggregates
+** or to redefine the behavior of existing SQL functions or aggregates. The
+** difference only between the two is that the second parameter, the
+** name of the (scalar) function or aggregate, is encoded in UTF-8 for
+** sqlite3_create_function() and UTF-16 for sqlite3_create_function16().
+**
+** The first parameter is the [database connection] to which the SQL
+** function is to be added. If a single
+** program uses more than one [database connection] internally, then SQL
+** functions must be added individually to each [database connection].
+**
+** The second parameter is the name of the SQL function to be created
+** or redefined.
+** The length of the name is limited to 255 bytes, exclusive of the
+** zero-terminator. Note that the name length limit is in bytes, not
+** characters. Any attempt to create a function with a longer name
+** will result in an SQLITE_ERROR error.
+**
+** The third parameter is the number of arguments that the SQL function or
+** aggregate takes. If this parameter is negative, then the SQL function or
+** aggregate may take any number of arguments.
+**
+** The fourth parameter, eTextRep, specifies what
+** [SQLITE_UTF8 | text encoding] this SQL function prefers for
+** its parameters. Any SQL function implementation should be able to work
+** work with UTF-8, UTF-16le, or UTF-16be. But some implementations may be
+** more efficient with one encoding than another. It is allowed to
+** invoke sqlite3_create_function() or sqlite3_create_function16() multiple
+** times with the same function but with different values of eTextRep.
+** When multiple implementations of the same function are available, SQLite
+** will pick the one that involves the least amount of data conversion.
+** If there is only a single implementation which does not care what
+** text encoding is used, then the fourth argument should be
+** [SQLITE_ANY].
+**
+** The fifth parameter is an arbitrary pointer. The implementation
+** of the function can gain access to this pointer using
+** [sqlite3_user_data()].
+**
+** The seventh, eighth and ninth parameters, xFunc, xStep and xFinal, are
+** pointers to C-language functions that implement the SQL
+** function or aggregate. A scalar SQL function requires an implementation of
+** the xFunc callback only, NULL pointers should be passed as the xStep
+** and xFinal parameters. An aggregate SQL function requires an implementation
+** of xStep and xFinal and NULL should be passed for xFunc. To delete an
+** existing SQL function or aggregate, pass NULL for all three function
+** callback.
+**
+** It is permitted to register multiple implementations of the same
+** functions with the same name but with either differing numbers of
+** arguments or differing perferred text encodings. SQLite will use
+** the implementation most closely matches the way in which the
+** SQL function is used.
+**
+** INVARIANTS:
+**
+** {F16103} The [sqlite3_create_function16()] interface behaves exactly
+** like [sqlite3_create_function()] in every way except that it
+** interprets the zFunctionName argument as
+** zero-terminated UTF-16 native byte order instead of as a
+** zero-terminated UTF-8.
+**
+** {F16106} A successful invocation of
+** the [sqlite3_create_function(D,X,N,E,...)] interface registers
+** or replaces callback functions in [database connection] D
+** used to implement the SQL function named X with N parameters
+** and having a perferred text encoding of E.
+**
+** {F16109} A successful call to [sqlite3_create_function(D,X,N,E,P,F,S,L)]
+** replaces the P, F, S, and L values from any prior calls with
+** the same D, X, N, and E values.
+**
+** {F16112} The [sqlite3_create_function(D,X,...)] interface fails with
+** a return code of [SQLITE_ERROR] if the SQL function name X is
+** longer than 255 bytes exclusive of the zero terminator.
+**
+** {F16118} Either F must be NULL and S and L are non-NULL or else F
+** is non-NULL and S and L are NULL, otherwise
+** [sqlite3_create_function(D,X,N,E,P,F,S,L)] returns [SQLITE_ERROR].
+**
+** {F16121} The [sqlite3_create_function(D,...)] interface fails with an
+** error code of [SQLITE_BUSY] if there exist [prepared statements]
+** associated with the [database connection] D.
+**
+** {F16124} The [sqlite3_create_function(D,X,N,...)] interface fails with an
+** error code of [SQLITE_ERROR] if parameter N (specifying the number
+** of arguments to the SQL function being registered) is less
+** than -1 or greater than 127.
+**
+** {F16127} When N is non-negative, the [sqlite3_create_function(D,X,N,...)]
+** interface causes callbacks to be invoked for the SQL function
+** named X when the number of arguments to the SQL function is
+** exactly N.
+**
+** {F16130} When N is -1, the [sqlite3_create_function(D,X,N,...)]
+** interface causes callbacks to be invoked for the SQL function
+** named X with any number of arguments.
+**
+** {F16133} When calls to [sqlite3_create_function(D,X,N,...)]
+** specify multiple implementations of the same function X
+** and when one implementation has N>=0 and the other has N=(-1)
+** the implementation with a non-zero N is preferred.
+**
+** {F16136} When calls to [sqlite3_create_function(D,X,N,E,...)]
+** specify multiple implementations of the same function X with
+** the same number of arguments N but with different
+** encodings E, then the implementation where E matches the
+** database encoding is preferred.
+**
+** {F16139} For an aggregate SQL function created using
+** [sqlite3_create_function(D,X,N,E,P,0,S,L)] the finializer
+** function L will always be invoked exactly once if the
+** step function S is called one or more times.
+**
+** {F16142} When SQLite invokes either the xFunc or xStep function of
+** an application-defined SQL function or aggregate created
+** by [sqlite3_create_function()] or [sqlite3_create_function16()],
+** then the array of [sqlite3_value] objects passed as the
+** third parameter are always [protected sqlite3_value] objects.
+*/
+int sqlite3_create_function(
+ sqlite3 *db,
+ const char *zFunctionName,
+ int nArg,
+ int eTextRep,
+ void *pApp,
+ void (*xFunc)(sqlite3_context*,int,sqlite3_value**),
+ void (*xStep)(sqlite3_context*,int,sqlite3_value**),
+ void (*xFinal)(sqlite3_context*)
+);
+int sqlite3_create_function16(
+ sqlite3 *db,
+ const void *zFunctionName,
+ int nArg,
+ int eTextRep,
+ void *pApp,
+ void (*xFunc)(sqlite3_context*,int,sqlite3_value**),
+ void (*xStep)(sqlite3_context*,int,sqlite3_value**),
+ void (*xFinal)(sqlite3_context*)
+);
+
+/*
+** CAPI3REF: Text Encodings {F10267}
+**
+** These constant define integer codes that represent the various
+** text encodings supported by SQLite.
+*/
+#define SQLITE_UTF8 1
+#define SQLITE_UTF16LE 2
+#define SQLITE_UTF16BE 3
+#define SQLITE_UTF16 4 /* Use native byte order */
+#define SQLITE_ANY 5 /* sqlite3_create_function only */
+#define SQLITE_UTF16_ALIGNED 8 /* sqlite3_create_collation only */
+
+/*
+** CAPI3REF: Obsolete Functions
+**
+** These functions are all now obsolete. In order to maintain
+** backwards compatibility with older code, we continue to support
+** these functions. However, new development projects should avoid
+** the use of these functions. To help encourage people to avoid
+** using these functions, we are not going to tell you want they do.
+*/
+int sqlite3_aggregate_count(sqlite3_context*);
+int sqlite3_expired(sqlite3_stmt*);
+int sqlite3_transfer_bindings(sqlite3_stmt*, sqlite3_stmt*);
+int sqlite3_global_recover(void);
+void sqlite3_thread_cleanup(void);
+int sqlite3_memory_alarm(void(*)(void*,sqlite3_int64,int),void*,sqlite3_int64);
+
+/*
+** CAPI3REF: Obtaining SQL Function Parameter Values {F15100}
+**
+** The C-language implementation of SQL functions and aggregates uses
+** this set of interface routines to access the parameter values on
+** the function or aggregate.
+**
+** The xFunc (for scalar functions) or xStep (for aggregates) parameters
+** to [sqlite3_create_function()] and [sqlite3_create_function16()]
+** define callbacks that implement the SQL functions and aggregates.
+** The 4th parameter to these callbacks is an array of pointers to
+** [protected sqlite3_value] objects. There is one [sqlite3_value] object for
+** each parameter to the SQL function. These routines are used to
+** extract values from the [sqlite3_value] objects.
+**
+** These routines work only with [protected sqlite3_value] objects.
+** Any attempt to use these routines on an [unprotected sqlite3_value]
+** object results in undefined behavior.
+**
+** These routines work just like the corresponding
+** [sqlite3_column_blob | sqlite3_column_* routines] except that
+** these routines take a single [protected sqlite3_value] object pointer
+** instead of an [sqlite3_stmt*] pointer and an integer column number.
+**
+** The sqlite3_value_text16() interface extracts a UTF16 string
+** in the native byte-order of the host machine. The
+** sqlite3_value_text16be() and sqlite3_value_text16le() interfaces
+** extract UTF16 strings as big-endian and little-endian respectively.
+**
+** The sqlite3_value_numeric_type() interface attempts to apply
+** numeric affinity to the value. This means that an attempt is
+** made to convert the value to an integer or floating point. If
+** such a conversion is possible without loss of information (in other
+** words if the value is a string that looks like a number)
+** then the conversion is done. Otherwise no conversion occurs. The
+** [SQLITE_INTEGER | datatype] after conversion is returned.
+**
+** Please pay particular attention to the fact that the pointer that
+** is returned from [sqlite3_value_blob()], [sqlite3_value_text()], or
+** [sqlite3_value_text16()] can be invalidated by a subsequent call to
+** [sqlite3_value_bytes()], [sqlite3_value_bytes16()], [sqlite3_value_text()],
+** or [sqlite3_value_text16()].
+**
+** These routines must be called from the same thread as
+** the SQL function that supplied the [sqlite3_value*] parameters.
+**
+**
+** INVARIANTS:
+**
+** {F15103} The [sqlite3_value_blob(V)] interface converts the
+** [protected sqlite3_value] object V into a blob and then returns a
+** pointer to the converted value.
+**
+** {F15106} The [sqlite3_value_bytes(V)] interface returns the
+** number of bytes in the blob or string (exclusive of the
+** zero terminator on the string) that was returned by the
+** most recent call to [sqlite3_value_blob(V)] or
+** [sqlite3_value_text(V)].
+**
+** {F15109} The [sqlite3_value_bytes16(V)] interface returns the
+** number of bytes in the string (exclusive of the
+** zero terminator on the string) that was returned by the
+** most recent call to [sqlite3_value_text16(V)],
+** [sqlite3_value_text16be(V)], or [sqlite3_value_text16le(V)].
+**
+** {F15112} The [sqlite3_value_double(V)] interface converts the
+** [protected sqlite3_value] object V into a floating point value and
+** returns a copy of that value.
+**
+** {F15115} The [sqlite3_value_int(V)] interface converts the
+** [protected sqlite3_value] object V into a 64-bit signed integer and
+** returns the lower 32 bits of that integer.
+**
+** {F15118} The [sqlite3_value_int64(V)] interface converts the
+** [protected sqlite3_value] object V into a 64-bit signed integer and
+** returns a copy of that integer.
+**
+** {F15121} The [sqlite3_value_text(V)] interface converts the
+** [protected sqlite3_value] object V into a zero-terminated UTF-8
+** string and returns a pointer to that string.
+**
+** {F15124} The [sqlite3_value_text16(V)] interface converts the
+** [protected sqlite3_value] object V into a zero-terminated 2-byte
+** aligned UTF-16 native byte order
+** string and returns a pointer to that string.
+**
+** {F15127} The [sqlite3_value_text16be(V)] interface converts the
+** [protected sqlite3_value] object V into a zero-terminated 2-byte
+** aligned UTF-16 big-endian
+** string and returns a pointer to that string.
+**
+** {F15130} The [sqlite3_value_text16le(V)] interface converts the
+** [protected sqlite3_value] object V into a zero-terminated 2-byte
+** aligned UTF-16 little-endian
+** string and returns a pointer to that string.
+**
+** {F15133} The [sqlite3_value_type(V)] interface returns
+** one of [SQLITE_NULL], [SQLITE_INTEGER], [SQLITE_FLOAT],
+** [SQLITE_TEXT], or [SQLITE_BLOB] as appropriate for
+** the [sqlite3_value] object V.
+**
+** {F15136} The [sqlite3_value_numeric_type(V)] interface converts
+** the [protected sqlite3_value] object V into either an integer or
+** a floating point value if it can do so without loss of
+** information, and returns one of [SQLITE_NULL],
+** [SQLITE_INTEGER], [SQLITE_FLOAT], [SQLITE_TEXT], or
+** [SQLITE_BLOB] as appropriate for
+** the [protected sqlite3_value] object V after the conversion attempt.
+*/
+const void *sqlite3_value_blob(sqlite3_value*);
+int sqlite3_value_bytes(sqlite3_value*);
+int sqlite3_value_bytes16(sqlite3_value*);
+double sqlite3_value_double(sqlite3_value*);
+int sqlite3_value_int(sqlite3_value*);
+sqlite3_int64 sqlite3_value_int64(sqlite3_value*);
+const unsigned char *sqlite3_value_text(sqlite3_value*);
+const void *sqlite3_value_text16(sqlite3_value*);
+const void *sqlite3_value_text16le(sqlite3_value*);
+const void *sqlite3_value_text16be(sqlite3_value*);
+int sqlite3_value_type(sqlite3_value*);
+int sqlite3_value_numeric_type(sqlite3_value*);
+
+/*
+** CAPI3REF: Obtain Aggregate Function Context {F16210}
+**
+** The implementation of aggregate SQL functions use this routine to allocate
+** a structure for storing their state.
+** The first time the sqlite3_aggregate_context() routine is
+** is called for a particular aggregate, SQLite allocates nBytes of memory
+** zeros that memory, and returns a pointer to it.
+** On second and subsequent calls to sqlite3_aggregate_context()
+** for the same aggregate function index, the same buffer is returned.
+** The implementation
+** of the aggregate can use the returned buffer to accumulate data.
+**
+** SQLite automatically frees the allocated buffer when the aggregate
+** query concludes.
+**
+** The first parameter should be a copy of the
+** [sqlite3_context | SQL function context] that is the first
+** parameter to the callback routine that implements the aggregate
+** function.
+**
+** This routine must be called from the same thread in which
+** the aggregate SQL function is running.
+**
+** INVARIANTS:
+**
+** {F16211} The first invocation of [sqlite3_aggregate_context(C,N)] for
+** a particular instance of an aggregate function (for a particular
+** context C) causes SQLite to allocation N bytes of memory,
+** zero that memory, and return a pointer to the allocationed
+** memory.
+**
+** {F16213} If a memory allocation error occurs during
+** [sqlite3_aggregate_context(C,N)] then the function returns 0.
+**
+** {F16215} Second and subsequent invocations of
+** [sqlite3_aggregate_context(C,N)] for the same context pointer C
+** ignore the N parameter and return a pointer to the same
+** block of memory returned by the first invocation.
+**
+** {F16217} The memory allocated by [sqlite3_aggregate_context(C,N)] is
+** automatically freed on the next call to [sqlite3_reset()]
+** or [sqlite3_finalize()] for the [prepared statement] containing
+** the aggregate function associated with context C.
+*/
+void *sqlite3_aggregate_context(sqlite3_context*, int nBytes);
+
+/*
+** CAPI3REF: User Data For Functions {F16240}
+**
+** The sqlite3_user_data() interface returns a copy of
+** the pointer that was the pUserData parameter (the 5th parameter)
+** of the the [sqlite3_create_function()]
+** and [sqlite3_create_function16()] routines that originally
+** registered the application defined function. {END}
+**
+** This routine must be called from the same thread in which
+** the application-defined function is running.
+**
+** INVARIANTS:
+**
+** {F16243} The [sqlite3_user_data(C)] interface returns a copy of the
+** P pointer from the [sqlite3_create_function(D,X,N,E,P,F,S,L)]
+** or [sqlite3_create_function16(D,X,N,E,P,F,S,L)] call that
+** registered the SQL function associated with
+** [sqlite3_context] C.
+*/
+void *sqlite3_user_data(sqlite3_context*);
+
+/*
+** CAPI3REF: Database Connection For Functions {F16250}
+**
+** The sqlite3_context_db_handle() interface returns a copy of
+** the pointer to the [database connection] (the 1st parameter)
+** of the the [sqlite3_create_function()]
+** and [sqlite3_create_function16()] routines that originally
+** registered the application defined function.
+**
+** INVARIANTS:
+**
+** {F16253} The [sqlite3_context_db_handle(C)] interface returns a copy of the
+** D pointer from the [sqlite3_create_function(D,X,N,E,P,F,S,L)]
+** or [sqlite3_create_function16(D,X,N,E,P,F,S,L)] call that
+** registered the SQL function associated with
+** [sqlite3_context] C.
+*/
+sqlite3 *sqlite3_context_db_handle(sqlite3_context*);
+
+/*
+** CAPI3REF: Function Auxiliary Data {F16270}
+**
+** The following two functions may be used by scalar SQL functions to
+** associate meta-data with argument values. If the same value is passed to
+** multiple invocations of the same SQL function during query execution, under
+** some circumstances the associated meta-data may be preserved. This may
+** be used, for example, to add a regular-expression matching scalar
+** function. The compiled version of the regular expression is stored as
+** meta-data associated with the SQL value passed as the regular expression
+** pattern. The compiled regular expression can be reused on multiple
+** invocations of the same function so that the original pattern string
+** does not need to be recompiled on each invocation.
+**
+** The sqlite3_get_auxdata() interface returns a pointer to the meta-data
+** associated by the sqlite3_set_auxdata() function with the Nth argument
+** value to the application-defined function.
+** If no meta-data has been ever been set for the Nth
+** argument of the function, or if the cooresponding function parameter
+** has changed since the meta-data was set, then sqlite3_get_auxdata()
+** returns a NULL pointer.
+**
+** The sqlite3_set_auxdata() interface saves the meta-data
+** pointed to by its 3rd parameter as the meta-data for the N-th
+** argument of the application-defined function. Subsequent
+** calls to sqlite3_get_auxdata() might return this data, if it has
+** not been destroyed.
+** If it is not NULL, SQLite will invoke the destructor
+** function given by the 4th parameter to sqlite3_set_auxdata() on
+** the meta-data when the corresponding function parameter changes
+** or when the SQL statement completes, whichever comes first.
+**
+** SQLite is free to call the destructor and drop meta-data on
+** any parameter of any function at any time. The only guarantee
+** is that the destructor will be called before the metadata is
+** dropped.
+**
+** In practice, meta-data is preserved between function calls for
+** expressions that are constant at compile time. This includes literal
+** values and SQL variables.
+**
+** These routines must be called from the same thread in which
+** the SQL function is running.
+**
+** INVARIANTS:
+**
+** {F16272} The [sqlite3_get_auxdata(C,N)] interface returns a pointer
+** to metadata associated with the Nth parameter of the SQL function
+** whose context is C, or NULL if there is no metadata associated
+** with that parameter.
+**
+** {F16274} The [sqlite3_set_auxdata(C,N,P,D)] interface assigns a metadata
+** pointer P to the Nth parameter of the SQL function with context
+** C.
+**
+** {F16276} SQLite will invoke the destructor D with a single argument
+** which is the metadata pointer P following a call to
+** [sqlite3_set_auxdata(C,N,P,D)] when SQLite ceases to hold
+** the metadata.
+**
+** {F16277} SQLite ceases to hold metadata for an SQL function parameter
+** when the value of that parameter changes.
+**
+** {F16278} When [sqlite3_set_auxdata(C,N,P,D)] is invoked, the destructor
+** is called for any prior metadata associated with the same function
+** context C and parameter N.
+**
+** {F16279} SQLite will call destructors for any metadata it is holding
+** in a particular [prepared statement] S when either
+** [sqlite3_reset(S)] or [sqlite3_finalize(S)] is called.
+*/
+void *sqlite3_get_auxdata(sqlite3_context*, int N);
+void sqlite3_set_auxdata(sqlite3_context*, int N, void*, void (*)(void*));
+
+
+/*
+** CAPI3REF: Constants Defining Special Destructor Behavior {F10280}
+**
+** These are special value for the destructor that is passed in as the
+** final argument to routines like [sqlite3_result_blob()]. If the destructor
+** argument is SQLITE_STATIC, it means that the content pointer is constant
+** and will never change. It does not need to be destroyed. The
+** SQLITE_TRANSIENT value means that the content will likely change in
+** the near future and that SQLite should make its own private copy of
+** the content before returning.
+**
+** The typedef is necessary to work around problems in certain
+** C++ compilers. See ticket #2191.
+*/
+typedef void (*sqlite3_destructor_type)(void*);
+#define SQLITE_STATIC ((sqlite3_destructor_type)0)
+#define SQLITE_TRANSIENT ((sqlite3_destructor_type)-1)
+
+/*
+** CAPI3REF: Setting The Result Of An SQL Function {F16400}
+**
+** These routines are used by the xFunc or xFinal callbacks that
+** implement SQL functions and aggregates. See
+** [sqlite3_create_function()] and [sqlite3_create_function16()]
+** for additional information.
+**
+** These functions work very much like the
+** [sqlite3_bind_blob | sqlite3_bind_*] family of functions used
+** to bind values to host parameters in prepared statements.
+** Refer to the
+** [sqlite3_bind_blob | sqlite3_bind_* documentation] for
+** additional information.
+**
+** The sqlite3_result_blob() interface sets the result from
+** an application defined function to be the BLOB whose content is pointed
+** to by the second parameter and which is N bytes long where N is the
+** third parameter.
+** The sqlite3_result_zeroblob() inerfaces set the result of
+** the application defined function to be a BLOB containing all zero
+** bytes and N bytes in size, where N is the value of the 2nd parameter.
+**
+** The sqlite3_result_double() interface sets the result from
+** an application defined function to be a floating point value specified
+** by its 2nd argument.
+**
+** The sqlite3_result_error() and sqlite3_result_error16() functions
+** cause the implemented SQL function to throw an exception.
+** SQLite uses the string pointed to by the
+** 2nd parameter of sqlite3_result_error() or sqlite3_result_error16()
+** as the text of an error message. SQLite interprets the error
+** message string from sqlite3_result_error() as UTF8. SQLite
+** interprets the string from sqlite3_result_error16() as UTF16 in native
+** byte order. If the third parameter to sqlite3_result_error()
+** or sqlite3_result_error16() is negative then SQLite takes as the error
+** message all text up through the first zero character.
+** If the third parameter to sqlite3_result_error() or
+** sqlite3_result_error16() is non-negative then SQLite takes that many
+** bytes (not characters) from the 2nd parameter as the error message.
+** The sqlite3_result_error() and sqlite3_result_error16()
+** routines make a copy private copy of the error message text before
+** they return. Hence, the calling function can deallocate or
+** modify the text after they return without harm.
+** The sqlite3_result_error_code() function changes the error code
+** returned by SQLite as a result of an error in a function. By default,
+** the error code is SQLITE_ERROR. A subsequent call to sqlite3_result_error()
+** or sqlite3_result_error16() resets the error code to SQLITE_ERROR.
+**
+** The sqlite3_result_toobig() interface causes SQLite
+** to throw an error indicating that a string or BLOB is to long
+** to represent. The sqlite3_result_nomem() interface
+** causes SQLite to throw an exception indicating that the a
+** memory allocation failed.
+**
+** The sqlite3_result_int() interface sets the return value
+** of the application-defined function to be the 32-bit signed integer
+** value given in the 2nd argument.
+** The sqlite3_result_int64() interface sets the return value
+** of the application-defined function to be the 64-bit signed integer
+** value given in the 2nd argument.
+**
+** The sqlite3_result_null() interface sets the return value
+** of the application-defined function to be NULL.
+**
+** The sqlite3_result_text(), sqlite3_result_text16(),
+** sqlite3_result_text16le(), and sqlite3_result_text16be() interfaces
+** set the return value of the application-defined function to be
+** a text string which is represented as UTF-8, UTF-16 native byte order,
+** UTF-16 little endian, or UTF-16 big endian, respectively.
+** SQLite takes the text result from the application from
+** the 2nd parameter of the sqlite3_result_text* interfaces.
+** If the 3rd parameter to the sqlite3_result_text* interfaces
+** is negative, then SQLite takes result text from the 2nd parameter
+** through the first zero character.
+** If the 3rd parameter to the sqlite3_result_text* interfaces
+** is non-negative, then as many bytes (not characters) of the text
+** pointed to by the 2nd parameter are taken as the application-defined
+** function result.
+** If the 4th parameter to the sqlite3_result_text* interfaces
+** or sqlite3_result_blob is a non-NULL pointer, then SQLite calls that
+** function as the destructor on the text or blob result when it has
+** finished using that result.
+** If the 4th parameter to the sqlite3_result_text* interfaces
+** or sqlite3_result_blob is the special constant SQLITE_STATIC, then
+** SQLite assumes that the text or blob result is constant space and
+** does not copy the space or call a destructor when it has
+** finished using that result.
+** If the 4th parameter to the sqlite3_result_text* interfaces
+** or sqlite3_result_blob is the special constant SQLITE_TRANSIENT
+** then SQLite makes a copy of the result into space obtained from
+** from [sqlite3_malloc()] before it returns.
+**
+** The sqlite3_result_value() interface sets the result of
+** the application-defined function to be a copy the
+** [unprotected sqlite3_value] object specified by the 2nd parameter. The
+** sqlite3_result_value() interface makes a copy of the [sqlite3_value]
+** so that [sqlite3_value] specified in the parameter may change or
+** be deallocated after sqlite3_result_value() returns without harm.
+** A [protected sqlite3_value] object may always be used where an
+** [unprotected sqlite3_value] object is required, so either
+** kind of [sqlite3_value] object can be used with this interface.
+**
+** If these routines are called from within the different thread
+** than the one containing the application-defined function that recieved
+** the [sqlite3_context] pointer, the results are undefined.
+**
+** INVARIANTS:
+**
+** {F16403} The default return value from any SQL function is NULL.
+**
+** {F16406} The [sqlite3_result_blob(C,V,N,D)] interface changes the
+** return value of function C to be a blob that is N bytes
+** in length and with content pointed to by V.
+**
+** {F16409} The [sqlite3_result_double(C,V)] interface changes the
+** return value of function C to be the floating point value V.
+**
+** {F16412} The [sqlite3_result_error(C,V,N)] interface changes the return
+** value of function C to be an exception with error code
+** [SQLITE_ERROR] and a UTF8 error message copied from V up to the
+** first zero byte or until N bytes are read if N is positive.
+**
+** {F16415} The [sqlite3_result_error16(C,V,N)] interface changes the return
+** value of function C to be an exception with error code
+** [SQLITE_ERROR] and a UTF16 native byte order error message
+** copied from V up to the first zero terminator or until N bytes
+** are read if N is positive.
+**
+** {F16418} The [sqlite3_result_error_toobig(C)] interface changes the return
+** value of the function C to be an exception with error code
+** [SQLITE_TOOBIG] and an appropriate error message.
+**
+** {F16421} The [sqlite3_result_error_nomem(C)] interface changes the return
+** value of the function C to be an exception with error code
+** [SQLITE_NOMEM] and an appropriate error message.
+**
+** {F16424} The [sqlite3_result_error_code(C,E)] interface changes the return
+** value of the function C to be an exception with error code E.
+** The error message text is unchanged.
+**
+** {F16427} The [sqlite3_result_int(C,V)] interface changes the
+** return value of function C to be the 32-bit integer value V.
+**
+** {F16430} The [sqlite3_result_int64(C,V)] interface changes the
+** return value of function C to be the 64-bit integer value V.
+**
+** {F16433} The [sqlite3_result_null(C)] interface changes the
+** return value of function C to be NULL.
+**
+** {F16436} The [sqlite3_result_text(C,V,N,D)] interface changes the
+** return value of function C to be the UTF8 string
+** V up to the first zero if N is negative
+** or the first N bytes of V if N is non-negative.
+**
+** {F16439} The [sqlite3_result_text16(C,V,N,D)] interface changes the
+** return value of function C to be the UTF16 native byte order
+** string V up to the first zero if N is
+** negative or the first N bytes of V if N is non-negative.
+**
+** {F16442} The [sqlite3_result_text16be(C,V,N,D)] interface changes the
+** return value of function C to be the UTF16 big-endian
+** string V up to the first zero if N is
+** is negative or the first N bytes or V if N is non-negative.
+**
+** {F16445} The [sqlite3_result_text16le(C,V,N,D)] interface changes the
+** return value of function C to be the UTF16 little-endian
+** string V up to the first zero if N is
+** negative or the first N bytes of V if N is non-negative.
+**
+** {F16448} The [sqlite3_result_value(C,V)] interface changes the
+** return value of function C to be [unprotected sqlite3_value]
+** object V.
+**
+** {F16451} The [sqlite3_result_zeroblob(C,N)] interface changes the
+** return value of function C to be an N-byte blob of all zeros.
+**
+** {F16454} The [sqlite3_result_error()] and [sqlite3_result_error16()]
+** interfaces make a copy of their error message strings before
+** returning.
+**
+** {F16457} If the D destructor parameter to [sqlite3_result_blob(C,V,N,D)],
+** [sqlite3_result_text(C,V,N,D)], [sqlite3_result_text16(C,V,N,D)],
+** [sqlite3_result_text16be(C,V,N,D)], or
+** [sqlite3_result_text16le(C,V,N,D)] is the constant [SQLITE_STATIC]
+** then no destructor is ever called on the pointer V and SQLite
+** assumes that V is immutable.
+**
+** {F16460} If the D destructor parameter to [sqlite3_result_blob(C,V,N,D)],
+** [sqlite3_result_text(C,V,N,D)], [sqlite3_result_text16(C,V,N,D)],
+** [sqlite3_result_text16be(C,V,N,D)], or
+** [sqlite3_result_text16le(C,V,N,D)] is the constant
+** [SQLITE_TRANSIENT] then the interfaces makes a copy of the
+** content of V and retains the copy.
+**
+** {F16463} If the D destructor parameter to [sqlite3_result_blob(C,V,N,D)],
+** [sqlite3_result_text(C,V,N,D)], [sqlite3_result_text16(C,V,N,D)],
+** [sqlite3_result_text16be(C,V,N,D)], or
+** [sqlite3_result_text16le(C,V,N,D)] is some value other than
+** the constants [SQLITE_STATIC] and [SQLITE_TRANSIENT] then
+** SQLite will invoke the destructor D with V as its only argument
+** when it has finished with the V value.
+*/
+void sqlite3_result_blob(sqlite3_context*, const void*, int, void(*)(void*));
+void sqlite3_result_double(sqlite3_context*, double);
+void sqlite3_result_error(sqlite3_context*, const char*, int);
+void sqlite3_result_error16(sqlite3_context*, const void*, int);
+void sqlite3_result_error_toobig(sqlite3_context*);
+void sqlite3_result_error_nomem(sqlite3_context*);
+void sqlite3_result_error_code(sqlite3_context*, int);
+void sqlite3_result_int(sqlite3_context*, int);
+void sqlite3_result_int64(sqlite3_context*, sqlite3_int64);
+void sqlite3_result_null(sqlite3_context*);
+void sqlite3_result_text(sqlite3_context*, const char*, int, void(*)(void*));
+void sqlite3_result_text16(sqlite3_context*, const void*, int, void(*)(void*));
+void sqlite3_result_text16le(sqlite3_context*, const void*, int,void(*)(void*));
+void sqlite3_result_text16be(sqlite3_context*, const void*, int,void(*)(void*));
+void sqlite3_result_value(sqlite3_context*, sqlite3_value*);
+void sqlite3_result_zeroblob(sqlite3_context*, int n);
+
+/*
+** CAPI3REF: Define New Collating Sequences {F16600}
+**
+** These functions are used to add new collation sequences to the
+** [sqlite3*] handle specified as the first argument.
+**
+** The name of the new collation sequence is specified as a UTF-8 string
+** for sqlite3_create_collation() and sqlite3_create_collation_v2()
+** and a UTF-16 string for sqlite3_create_collation16(). In all cases
+** the name is passed as the second function argument.
+**
+** The third argument may be one of the constants [SQLITE_UTF8],
+** [SQLITE_UTF16LE] or [SQLITE_UTF16BE], indicating that the user-supplied
+** routine expects to be passed pointers to strings encoded using UTF-8,
+** UTF-16 little-endian or UTF-16 big-endian respectively. The
+** third argument might also be [SQLITE_UTF16_ALIGNED] to indicate that
+** the routine expects pointers to 16-bit word aligned strings
+** of UTF16 in the native byte order of the host computer.
+**
+** A pointer to the user supplied routine must be passed as the fifth
+** argument. If it is NULL, this is the same as deleting the collation
+** sequence (so that SQLite cannot call it anymore).
+** Each time the application
+** supplied function is invoked, it is passed a copy of the void* passed as
+** the fourth argument to sqlite3_create_collation() or
+** sqlite3_create_collation16() as its first parameter.
+**
+** The remaining arguments to the application-supplied routine are two strings,
+** each represented by a (length, data) pair and encoded in the encoding
+** that was passed as the third argument when the collation sequence was
+** registered. {END} The application defined collation routine should
+** return negative, zero or positive if
+** the first string is less than, equal to, or greater than the second
+** string. i.e. (STRING1 - STRING2).
+**
+** The sqlite3_create_collation_v2() works like sqlite3_create_collation()
+** excapt that it takes an extra argument which is a destructor for
+** the collation. The destructor is called when the collation is
+** destroyed and is passed a copy of the fourth parameter void* pointer
+** of the sqlite3_create_collation_v2().
+** Collations are destroyed when
+** they are overridden by later calls to the collation creation functions
+** or when the [sqlite3*] database handle is closed using [sqlite3_close()].
+**
+** INVARIANTS:
+**
+** {F16603} A successful call to the
+** [sqlite3_create_collation_v2(B,X,E,P,F,D)] interface
+** registers function F as the comparison function used to
+** implement collation X on [database connection] B for
+** databases having encoding E.
+**
+** {F16604} SQLite understands the X parameter to
+** [sqlite3_create_collation_v2(B,X,E,P,F,D)] as a zero-terminated
+** UTF-8 string in which case is ignored for ASCII characters and
+** is significant for non-ASCII characters.
+**
+** {F16606} Successive calls to [sqlite3_create_collation_v2(B,X,E,P,F,D)]
+** with the same values for B, X, and E, override prior values
+** of P, F, and D.
+**
+** {F16609} The destructor D in [sqlite3_create_collation_v2(B,X,E,P,F,D)]
+** is not NULL then it is called with argument P when the
+** collating function is dropped by SQLite.
+**
+** {F16612} A collating function is dropped when it is overloaded.
+**
+** {F16615} A collating function is dropped when the database connection
+** is closed using [sqlite3_close()].
+**
+** {F16618} The pointer P in [sqlite3_create_collation_v2(B,X,E,P,F,D)]
+** is passed through as the first parameter to the comparison
+** function F for all subsequent invocations of F.
+**
+** {F16621} A call to [sqlite3_create_collation(B,X,E,P,F)] is exactly
+** the same as a call to [sqlite3_create_collation_v2()] with
+** the same parameters and a NULL destructor.
+**
+** {F16624} Following a [sqlite3_create_collation_v2(B,X,E,P,F,D)],
+** SQLite uses the comparison function F for all text comparison
+** operations on [database connection] B on text values that
+** use the collating sequence name X.
+**
+** {F16627} The [sqlite3_create_collation16(B,X,E,P,F)] works the same
+** as [sqlite3_create_collation(B,X,E,P,F)] except that the
+** collation name X is understood as UTF-16 in native byte order
+** instead of UTF-8.
+**
+** {F16630} When multiple comparison functions are available for the same
+** collating sequence, SQLite chooses the one whose text encoding
+** requires the least amount of conversion from the default
+** text encoding of the database.
+*/
+int sqlite3_create_collation(
+ sqlite3*,
+ const char *zName,
+ int eTextRep,
+ void*,
+ int(*xCompare)(void*,int,const void*,int,const void*)
+);
+int sqlite3_create_collation_v2(
+ sqlite3*,
+ const char *zName,
+ int eTextRep,
+ void*,
+ int(*xCompare)(void*,int,const void*,int,const void*),
+ void(*xDestroy)(void*)
+);
+int sqlite3_create_collation16(
+ sqlite3*,
+ const char *zName,
+ int eTextRep,
+ void*,
+ int(*xCompare)(void*,int,const void*,int,const void*)
+);
+
+/*
+** CAPI3REF: Collation Needed Callbacks {F16700}
+**
+** To avoid having to register all collation sequences before a database
+** can be used, a single callback function may be registered with the
+** database handle to be called whenever an undefined collation sequence is
+** required.
+**
+** If the function is registered using the sqlite3_collation_needed() API,
+** then it is passed the names of undefined collation sequences as strings
+** encoded in UTF-8. {F16703} If sqlite3_collation_needed16() is used, the names
+** are passed as UTF-16 in machine native byte order. A call to either
+** function replaces any existing callback.
+**
+** When the callback is invoked, the first argument passed is a copy
+** of the second argument to sqlite3_collation_needed() or
+** sqlite3_collation_needed16(). The second argument is the database
+** handle. The third argument is one of [SQLITE_UTF8],
+** [SQLITE_UTF16BE], or [SQLITE_UTF16LE], indicating the most
+** desirable form of the collation sequence function required.
+** The fourth parameter is the name of the
+** required collation sequence.
+**
+** The callback function should register the desired collation using
+** [sqlite3_create_collation()], [sqlite3_create_collation16()], or
+** [sqlite3_create_collation_v2()].
+**
+** INVARIANTS:
+**
+** {F16702} A successful call to [sqlite3_collation_needed(D,P,F)]
+** or [sqlite3_collation_needed16(D,P,F)] causes
+** the [database connection] D to invoke callback F with first
+** parameter P whenever it needs a comparison function for a
+** collating sequence that it does not know about.
+**
+** {F16704} Each successful call to [sqlite3_collation_needed()] or
+** [sqlite3_collation_needed16()] overrides the callback registered
+** on the same [database connection] by prior calls to either
+** interface.
+**
+** {F16706} The name of the requested collating function passed in the
+** 4th parameter to the callback is in UTF-8 if the callback
+** was registered using [sqlite3_collation_needed()] and
+** is in UTF-16 native byte order if the callback was
+** registered using [sqlite3_collation_needed16()].
+**
+**
+*/
+int sqlite3_collation_needed(
+ sqlite3*,
+ void*,
+ void(*)(void*,sqlite3*,int eTextRep,const char*)
+);
+int sqlite3_collation_needed16(
+ sqlite3*,
+ void*,
+ void(*)(void*,sqlite3*,int eTextRep,const void*)
+);
+
+/*
+** Specify the key for an encrypted database. This routine should be
+** called right after sqlite3_open().
+**
+** The code to implement this API is not available in the public release
+** of SQLite.
+*/
+int sqlite3_key(
+ sqlite3 *db, /* Database to be rekeyed */
+ const void *pKey, int nKey /* The key */
+);
+
+/*
+** Change the key on an open database. If the current database is not
+** encrypted, this routine will encrypt it. If pNew==0 or nNew==0, the
+** database is decrypted.
+**
+** The code to implement this API is not available in the public release
+** of SQLite.
+*/
+int sqlite3_rekey(
+ sqlite3 *db, /* Database to be rekeyed */
+ const void *pKey, int nKey /* The new key */
+);
+
+/*
+** CAPI3REF: Suspend Execution For A Short Time {F10530}
+**
+** The sqlite3_sleep() function
+** causes the current thread to suspend execution
+** for at least a number of milliseconds specified in its parameter.
+**
+** If the operating system does not support sleep requests with
+** millisecond time resolution, then the time will be rounded up to
+** the nearest second. The number of milliseconds of sleep actually
+** requested from the operating system is returned.
+**
+** SQLite implements this interface by calling the xSleep()
+** method of the default [sqlite3_vfs] object.
+**
+** INVARIANTS:
+**
+** {F10533} The [sqlite3_sleep(M)] interface invokes the xSleep
+** method of the default [sqlite3_vfs|VFS] in order to
+** suspend execution of the current thread for at least
+** M milliseconds.
+**
+** {F10536} The [sqlite3_sleep(M)] interface returns the number of
+** milliseconds of sleep actually requested of the operating
+** system, which might be larger than the parameter M.
+*/
+int sqlite3_sleep(int);
+
+/*
+** CAPI3REF: Name Of The Folder Holding Temporary Files {F10310}
+**
+** If this global variable is made to point to a string which is
+** the name of a folder (a.ka. directory), then all temporary files
+** created by SQLite will be placed in that directory. If this variable
+** is NULL pointer, then SQLite does a search for an appropriate temporary
+** file directory.
+**
+** It is not safe to modify this variable once a database connection
+** has been opened. It is intended that this variable be set once
+** as part of process initialization and before any SQLite interface
+** routines have been call and remain unchanged thereafter.
+*/
+SQLITE_EXTERN char *sqlite3_temp_directory;
+
+/*
+** CAPI3REF: Test To See If The Database Is In Auto-Commit Mode {F12930}
+**
+** The sqlite3_get_autocommit() interfaces returns non-zero or
+** zero if the given database connection is or is not in autocommit mode,
+** respectively. Autocommit mode is on
+** by default. Autocommit mode is disabled by a [BEGIN] statement.
+** Autocommit mode is reenabled by a [COMMIT] or [ROLLBACK].
+**
+** If certain kinds of errors occur on a statement within a multi-statement
+** transactions (errors including [SQLITE_FULL], [SQLITE_IOERR],
+** [SQLITE_NOMEM], [SQLITE_BUSY], and [SQLITE_INTERRUPT]) then the
+** transaction might be rolled back automatically. The only way to
+** find out if SQLite automatically rolled back the transaction after
+** an error is to use this function.
+**
+** INVARIANTS:
+**
+** {F12931} The [sqlite3_get_autocommit(D)] interface returns non-zero or
+** zero if the [database connection] D is or is not in autocommit
+** mode, respectively.
+**
+** {F12932} Autocommit mode is on by default.
+**
+** {F12933} Autocommit mode is disabled by a successful [BEGIN] statement.
+**
+** {F12934} Autocommit mode is enabled by a successful [COMMIT] or [ROLLBACK]
+** statement.
+**
+**
+** LIMITATIONS:
+***
+** {U12936} If another thread changes the autocommit status of the database
+** connection while this routine is running, then the return value
+** is undefined.
+*/
+int sqlite3_get_autocommit(sqlite3*);
+
+/*
+** CAPI3REF: Find The Database Handle Of A Prepared Statement {F13120}
+**
+** The sqlite3_db_handle interface
+** returns the [sqlite3*] database handle to which a
+** [prepared statement] belongs.
+** The database handle returned by sqlite3_db_handle
+** is the same database handle that was
+** the first argument to the [sqlite3_prepare_v2()] or its variants
+** that was used to create the statement in the first place.
+**
+** INVARIANTS:
+**
+** {F13123} The [sqlite3_db_handle(S)] interface returns a pointer
+** to the [database connection] associated with
+** [prepared statement] S.
+*/
+sqlite3 *sqlite3_db_handle(sqlite3_stmt*);
+
+
+/*
+** CAPI3REF: Commit And Rollback Notification Callbacks {F12950}
+**
+** The sqlite3_commit_hook() interface registers a callback
+** function to be invoked whenever a transaction is committed.
+** Any callback set by a previous call to sqlite3_commit_hook()
+** for the same database connection is overridden.
+** The sqlite3_rollback_hook() interface registers a callback
+** function to be invoked whenever a transaction is committed.
+** Any callback set by a previous call to sqlite3_commit_hook()
+** for the same database connection is overridden.
+** The pArg argument is passed through
+** to the callback. If the callback on a commit hook function
+** returns non-zero, then the commit is converted into a rollback.
+**
+** If another function was previously registered, its
+** pArg value is returned. Otherwise NULL is returned.
+**
+** Registering a NULL function disables the callback.
+**
+** For the purposes of this API, a transaction is said to have been
+** rolled back if an explicit "ROLLBACK" statement is executed, or
+** an error or constraint causes an implicit rollback to occur.
+** The rollback callback is not invoked if a transaction is
+** automatically rolled back because the database connection is closed.
+** The rollback callback is not invoked if a transaction is
+** rolled back because a commit callback returned non-zero.
+** <todo> Check on this </todo>
+**
+** These are experimental interfaces and are subject to change.
+**
+** INVARIANTS:
+**
+** {F12951} The [sqlite3_commit_hook(D,F,P)] interface registers the
+** callback function F to be invoked with argument P whenever
+** a transaction commits on [database connection] D.
+**
+** {F12952} The [sqlite3_commit_hook(D,F,P)] interface returns the P
+** argument from the previous call with the same
+** [database connection ] D , or NULL on the first call
+** for a particular [database connection] D.
+**
+** {F12953} Each call to [sqlite3_commit_hook()] overwrites the callback
+** registered by prior calls.
+**
+** {F12954} If the F argument to [sqlite3_commit_hook(D,F,P)] is NULL
+** then the commit hook callback is cancelled and no callback
+** is invoked when a transaction commits.
+**
+** {F12955} If the commit callback returns non-zero then the commit is
+** converted into a rollback.
+**
+** {F12961} The [sqlite3_rollback_hook(D,F,P)] interface registers the
+** callback function F to be invoked with argument P whenever
+** a transaction rolls back on [database connection] D.
+**
+** {F12962} The [sqlite3_rollback_hook(D,F,P)] interface returns the P
+** argument from the previous call with the same
+** [database connection ] D , or NULL on the first call
+** for a particular [database connection] D.
+**
+** {F12963} Each call to [sqlite3_rollback_hook()] overwrites the callback
+** registered by prior calls.
+**
+** {F12964} If the F argument to [sqlite3_rollback_hook(D,F,P)] is NULL
+** then the rollback hook callback is cancelled and no callback
+** is invoked when a transaction rolls back.
+*/
+void *sqlite3_commit_hook(sqlite3*, int(*)(void*), void*);
+void *sqlite3_rollback_hook(sqlite3*, void(*)(void *), void*);
+
+/*
+** CAPI3REF: Data Change Notification Callbacks {F12970}
+**
+** The sqlite3_update_hook() interface
+** registers a callback function with the database connection identified by the
+** first argument to be invoked whenever a row is updated, inserted or deleted.
+** Any callback set by a previous call to this function for the same
+** database connection is overridden.
+**
+** The second argument is a pointer to the function to invoke when a
+** row is updated, inserted or deleted.
+** The first argument to the callback is
+** a copy of the third argument to sqlite3_update_hook().
+** The second callback
+** argument is one of [SQLITE_INSERT], [SQLITE_DELETE] or [SQLITE_UPDATE],
+** depending on the operation that caused the callback to be invoked.
+** The third and
+** fourth arguments to the callback contain pointers to the database and
+** table name containing the affected row.
+** The final callback parameter is
+** the rowid of the row.
+** In the case of an update, this is the rowid after
+** the update takes place.
+**
+** The update hook is not invoked when internal system tables are
+** modified (i.e. sqlite_master and sqlite_sequence).
+**
+** If another function was previously registered, its pArg value
+** is returned. Otherwise NULL is returned.
+**
+** INVARIANTS:
+**
+** {F12971} The [sqlite3_update_hook(D,F,P)] interface causes callback
+** function F to be invoked with first parameter P whenever
+** a table row is modified, inserted, or deleted on
+** [database connection] D.
+**
+** {F12973} The [sqlite3_update_hook(D,F,P)] interface returns the value
+** of P for the previous call on the same [database connection] D,
+** or NULL for the first call.
+**
+** {F12975} If the update hook callback F in [sqlite3_update_hook(D,F,P)]
+** is NULL then the no update callbacks are made.
+**
+** {F12977} Each call to [sqlite3_update_hook(D,F,P)] overrides prior calls
+** to the same interface on the same [database connection] D.
+**
+** {F12979} The update hook callback is not invoked when internal system
+** tables such as sqlite_master and sqlite_sequence are modified.
+**
+** {F12981} The second parameter to the update callback
+** is one of [SQLITE_INSERT], [SQLITE_DELETE] or [SQLITE_UPDATE],
+** depending on the operation that caused the callback to be invoked.
+**
+** {F12983} The third and fourth arguments to the callback contain pointers
+** to zero-terminated UTF-8 strings which are the names of the
+** database and table that is being updated.
+
+** {F12985} The final callback parameter is the rowid of the row after
+** the change occurs.
+*/
+void *sqlite3_update_hook(
+ sqlite3*,
+ void(*)(void *,int ,char const *,char const *,sqlite3_int64),
+ void*
+);
+
+/*
+** CAPI3REF: Enable Or Disable Shared Pager Cache {F10330}
+**
+** This routine enables or disables the sharing of the database cache
+** and schema data structures between connections to the same database.
+** Sharing is enabled if the argument is true and disabled if the argument
+** is false.
+**
+** Cache sharing is enabled and disabled
+** for an entire process. {END} This is a change as of SQLite version 3.5.0.
+** In prior versions of SQLite, sharing was
+** enabled or disabled for each thread separately.
+**
+** The cache sharing mode set by this interface effects all subsequent
+** calls to [sqlite3_open()], [sqlite3_open_v2()], and [sqlite3_open16()].
+** Existing database connections continue use the sharing mode
+** that was in effect at the time they were opened.
+**
+** Virtual tables cannot be used with a shared cache. When shared
+** cache is enabled, the [sqlite3_create_module()] API used to register
+** virtual tables will always return an error.
+**
+** This routine returns [SQLITE_OK] if shared cache was
+** enabled or disabled successfully. An [error code]
+** is returned otherwise.
+**
+** Shared cache is disabled by default. But this might change in
+** future releases of SQLite. Applications that care about shared
+** cache setting should set it explicitly.
+**
+** INVARIANTS:
+**
+** {F10331} A successful invocation of [sqlite3_enable_shared_cache(B)]
+** will enable or disable shared cache mode for any subsequently
+** created [database connection] in the same process.
+**
+** {F10336} When shared cache is enabled, the [sqlite3_create_module()]
+** interface will always return an error.
+**
+** {F10337} The [sqlite3_enable_shared_cache(B)] interface returns
+** [SQLITE_OK] if shared cache was enabled or disabled successfully.
+**
+** {F10339} Shared cache is disabled by default.
+*/
+int sqlite3_enable_shared_cache(int);
+
+/*
+** CAPI3REF: Attempt To Free Heap Memory {F17340}
+**
+** The sqlite3_release_memory() interface attempts to
+** free N bytes of heap memory by deallocating non-essential memory
+** allocations held by the database labrary. {END} Memory used
+** to cache database pages to improve performance is an example of
+** non-essential memory. Sqlite3_release_memory() returns
+** the number of bytes actually freed, which might be more or less
+** than the amount requested.
+**
+** INVARIANTS:
+**
+** {F17341} The [sqlite3_release_memory(N)] interface attempts to
+** free N bytes of heap memory by deallocating non-essential
+** memory allocations held by the database labrary.
+**
+** {F16342} The [sqlite3_release_memory(N)] returns the number
+** of bytes actually freed, which might be more or less
+** than the amount requested.
+*/
+int sqlite3_release_memory(int);
+
+/*
+** CAPI3REF: Impose A Limit On Heap Size {F17350}
+**
+** The sqlite3_soft_heap_limit() interface
+** places a "soft" limit on the amount of heap memory that may be allocated
+** by SQLite. If an internal allocation is requested
+** that would exceed the soft heap limit, [sqlite3_release_memory()] is
+** invoked one or more times to free up some space before the allocation
+** is made.
+**
+** The limit is called "soft", because if
+** [sqlite3_release_memory()] cannot
+** free sufficient memory to prevent the limit from being exceeded,
+** the memory is allocated anyway and the current operation proceeds.
+**
+** A negative or zero value for N means that there is no soft heap limit and
+** [sqlite3_release_memory()] will only be called when memory is exhausted.
+** The default value for the soft heap limit is zero.
+**
+** SQLite makes a best effort to honor the soft heap limit.
+** But if the soft heap limit cannot honored, execution will
+** continue without error or notification. This is why the limit is
+** called a "soft" limit. It is advisory only.
+**
+** Prior to SQLite version 3.5.0, this routine only constrained the memory
+** allocated by a single thread - the same thread in which this routine
+** runs. Beginning with SQLite version 3.5.0, the soft heap limit is
+** applied to all threads. The value specified for the soft heap limit
+** is an upper bound on the total memory allocation for all threads. In
+** version 3.5.0 there is no mechanism for limiting the heap usage for
+** individual threads.
+**
+** INVARIANTS:
+**
+** {F16351} The [sqlite3_soft_heap_limit(N)] interface places a soft limit
+** of N bytes on the amount of heap memory that may be allocated
+** using [sqlite3_malloc()] or [sqlite3_realloc()] at any point
+** in time.
+**
+** {F16352} If a call to [sqlite3_malloc()] or [sqlite3_realloc()] would
+** cause the total amount of allocated memory to exceed the
+** soft heap limit, then [sqlite3_release_memory()] is invoked
+** in an attempt to reduce the memory usage prior to proceeding
+** with the memory allocation attempt.
+**
+** {F16353} Calls to [sqlite3_malloc()] or [sqlite3_realloc()] that trigger
+** attempts to reduce memory usage through the soft heap limit
+** mechanism continue even if the attempt to reduce memory
+** usage is unsuccessful.
+**
+** {F16354} A negative or zero value for N in a call to
+** [sqlite3_soft_heap_limit(N)] means that there is no soft
+** heap limit and [sqlite3_release_memory()] will only be
+** called when memory is completely exhausted.
+**
+** {F16355} The default value for the soft heap limit is zero.
+**
+** {F16358} Each call to [sqlite3_soft_heap_limit(N)] overrides the
+** values set by all prior calls.
+*/
+void sqlite3_soft_heap_limit(int);
+
+/*
+** CAPI3REF: Extract Metadata About A Column Of A Table {F12850}
+**
+** This routine
+** returns meta-data about a specific column of a specific database
+** table accessible using the connection handle passed as the first function
+** argument.
+**
+** The column is identified by the second, third and fourth parameters to
+** this function. The second parameter is either the name of the database
+** (i.e. "main", "temp" or an attached database) containing the specified
+** table or NULL. If it is NULL, then all attached databases are searched
+** for the table using the same algorithm as the database engine uses to
+** resolve unqualified table references.
+**
+** The third and fourth parameters to this function are the table and column
+** name of the desired column, respectively. Neither of these parameters
+** may be NULL.
+**
+** Meta information is returned by writing to the memory locations passed as
+** the 5th and subsequent parameters to this function. Any of these
+** arguments may be NULL, in which case the corresponding element of meta
+** information is ommitted.
+**
+** <pre>
+** Parameter Output Type Description
+** -----------------------------------
+**
+** 5th const char* Data type
+** 6th const char* Name of the default collation sequence
+** 7th int True if the column has a NOT NULL constraint
+** 8th int True if the column is part of the PRIMARY KEY
+** 9th int True if the column is AUTOINCREMENT
+** </pre>
+**
+**
+** The memory pointed to by the character pointers returned for the
+** declaration type and collation sequence is valid only until the next
+** call to any sqlite API function.
+**
+** If the specified table is actually a view, then an error is returned.
+**
+** If the specified column is "rowid", "oid" or "_rowid_" and an
+** INTEGER PRIMARY KEY column has been explicitly declared, then the output
+** parameters are set for the explicitly declared column. If there is no
+** explicitly declared IPK column, then the output parameters are set as
+** follows:
+**
+** <pre>
+** data type: "INTEGER"
+** collation sequence: "BINARY"
+** not null: 0
+** primary key: 1
+** auto increment: 0
+** </pre>
+**
+** This function may load one or more schemas from database files. If an
+** error occurs during this process, or if the requested table or column
+** cannot be found, an SQLITE error code is returned and an error message
+** left in the database handle (to be retrieved using sqlite3_errmsg()).
+**
+** This API is only available if the library was compiled with the
+** SQLITE_ENABLE_COLUMN_METADATA preprocessor symbol defined.
+*/
+int sqlite3_table_column_metadata(
+ sqlite3 *db, /* Connection handle */
+ const char *zDbName, /* Database name or NULL */
+ const char *zTableName, /* Table name */
+ const char *zColumnName, /* Column name */
+ char const **pzDataType, /* OUTPUT: Declared data type */
+ char const **pzCollSeq, /* OUTPUT: Collation sequence name */
+ int *pNotNull, /* OUTPUT: True if NOT NULL constraint exists */
+ int *pPrimaryKey, /* OUTPUT: True if column part of PK */
+ int *pAutoinc /* OUTPUT: True if column is auto-increment */
+);
+
+/*
+** CAPI3REF: Load An Extension {F12600}
+**
+** {F12601} The sqlite3_load_extension() interface
+** attempts to load an SQLite extension library contained in the file
+** zFile. {F12602} The entry point is zProc. {F12603} zProc may be 0
+** in which case the name of the entry point defaults
+** to "sqlite3_extension_init".
+**
+** {F12604} The sqlite3_load_extension() interface shall
+** return [SQLITE_OK] on success and [SQLITE_ERROR] if something goes wrong.
+**
+** {F12605}
+** If an error occurs and pzErrMsg is not 0, then the
+** sqlite3_load_extension() interface shall attempt to fill *pzErrMsg with
+** error message text stored in memory obtained from [sqlite3_malloc()].
+** {END} The calling function should free this memory
+** by calling [sqlite3_free()].
+**
+** {F12606}
+** Extension loading must be enabled using [sqlite3_enable_load_extension()]
+** prior to calling this API or an error will be returned.
+*/
+int sqlite3_load_extension(
+ sqlite3 *db, /* Load the extension into this database connection */
+ const char *zFile, /* Name of the shared library containing extension */
+ const char *zProc, /* Entry point. Derived from zFile if 0 */
+ char **pzErrMsg /* Put error message here if not 0 */
+);
+
+/*
+** CAPI3REF: Enable Or Disable Extension Loading {F12620}
+**
+** So as not to open security holes in older applications that are
+** unprepared to deal with extension loading, and as a means of disabling
+** extension loading while evaluating user-entered SQL, the following
+** API is provided to turn the [sqlite3_load_extension()] mechanism on and
+** off. {F12622} It is off by default. {END} See ticket #1863.
+**
+** {F12621} Call the sqlite3_enable_load_extension() routine
+** with onoff==1 to turn extension loading on
+** and call it with onoff==0 to turn it back off again. {END}
+*/
+int sqlite3_enable_load_extension(sqlite3 *db, int onoff);
+
+/*
+** CAPI3REF: Make Arrangements To Automatically Load An Extension {F12640}
+**
+** {F12641} This function
+** registers an extension entry point that is automatically invoked
+** whenever a new database connection is opened using
+** [sqlite3_open()], [sqlite3_open16()], or [sqlite3_open_v2()]. {END}
+**
+** This API can be invoked at program startup in order to register
+** one or more statically linked extensions that will be available
+** to all new database connections.
+**
+** {F12642} Duplicate extensions are detected so calling this routine multiple
+** times with the same extension is harmless.
+**
+** {F12643} This routine stores a pointer to the extension in an array
+** that is obtained from sqlite_malloc(). {END} If you run a memory leak
+** checker on your program and it reports a leak because of this
+** array, then invoke [sqlite3_reset_auto_extension()] prior
+** to shutdown to free the memory.
+**
+** {F12644} Automatic extensions apply across all threads. {END}
+**
+** This interface is experimental and is subject to change or
+** removal in future releases of SQLite.
+*/
+int sqlite3_auto_extension(void *xEntryPoint);
+
+
+/*
+** CAPI3REF: Reset Automatic Extension Loading {F12660}
+**
+** {F12661} This function disables all previously registered
+** automatic extensions. {END} This
+** routine undoes the effect of all prior [sqlite3_auto_extension()]
+** calls.
+**
+** {F12662} This call disabled automatic extensions in all threads. {END}
+**
+** This interface is experimental and is subject to change or
+** removal in future releases of SQLite.
+*/
+void sqlite3_reset_auto_extension(void);
+
+
+/*
+****** EXPERIMENTAL - subject to change without notice **************
+**
+** The interface to the virtual-table mechanism is currently considered
+** to be experimental. The interface might change in incompatible ways.
+** If this is a problem for you, do not use the interface at this time.
+**
+** When the virtual-table mechanism stablizes, we will declare the
+** interface fixed, support it indefinitely, and remove this comment.
+*/
+
+/*
+** Structures used by the virtual table interface
+*/
+typedef struct sqlite3_vtab sqlite3_vtab;
+typedef struct sqlite3_index_info sqlite3_index_info;
+typedef struct sqlite3_vtab_cursor sqlite3_vtab_cursor;
+typedef struct sqlite3_module sqlite3_module;
+
+/*
+** CAPI3REF: Virtual Table Object {F18000}
+** KEYWORDS: sqlite3_module
+**
+** A module is a class of virtual tables. Each module is defined
+** by an instance of the following structure. This structure consists
+** mostly of methods for the module.
+*/
+struct sqlite3_module {
+ int iVersion;
+ int (*xCreate)(sqlite3*, void *pAux,
+ int argc, const char *const*argv,
+ sqlite3_vtab **ppVTab, char**);
+ int (*xConnect)(sqlite3*, void *pAux,
+ int argc, const char *const*argv,
+ sqlite3_vtab **ppVTab, char**);
+ int (*xBestIndex)(sqlite3_vtab *pVTab, sqlite3_index_info*);
+ int (*xDisconnect)(sqlite3_vtab *pVTab);
+ int (*xDestroy)(sqlite3_vtab *pVTab);
+ int (*xOpen)(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor);
+ int (*xClose)(sqlite3_vtab_cursor*);
+ int (*xFilter)(sqlite3_vtab_cursor*, int idxNum, const char *idxStr,
+ int argc, sqlite3_value **argv);
+ int (*xNext)(sqlite3_vtab_cursor*);
+ int (*xEof)(sqlite3_vtab_cursor*);
+ int (*xColumn)(sqlite3_vtab_cursor*, sqlite3_context*, int);
+ int (*xRowid)(sqlite3_vtab_cursor*, sqlite3_int64 *pRowid);
+ int (*xUpdate)(sqlite3_vtab *, int, sqlite3_value **, sqlite3_int64 *);
+ int (*xBegin)(sqlite3_vtab *pVTab);
+ int (*xSync)(sqlite3_vtab *pVTab);
+ int (*xCommit)(sqlite3_vtab *pVTab);
+ int (*xRollback)(sqlite3_vtab *pVTab);
+ int (*xFindFunction)(sqlite3_vtab *pVtab, int nArg, const char *zName,
+ void (**pxFunc)(sqlite3_context*,int,sqlite3_value**),
+ void **ppArg);
+
+ int (*xRename)(sqlite3_vtab *pVtab, const char *zNew);
+};
+
+/*
+** CAPI3REF: Virtual Table Indexing Information {F18100}
+** KEYWORDS: sqlite3_index_info
+**
+** The sqlite3_index_info structure and its substructures is used to
+** pass information into and receive the reply from the xBestIndex
+** method of an sqlite3_module. The fields under **Inputs** are the
+** inputs to xBestIndex and are read-only. xBestIndex inserts its
+** results into the **Outputs** fields.
+**
+** The aConstraint[] array records WHERE clause constraints of the
+** form:
+**
+** column OP expr
+**
+** Where OP is =, &lt;, &lt;=, &gt;, or &gt;=.
+** The particular operator is stored
+** in aConstraint[].op. The index of the column is stored in
+** aConstraint[].iColumn. aConstraint[].usable is TRUE if the
+** expr on the right-hand side can be evaluated (and thus the constraint
+** is usable) and false if it cannot.
+**
+** The optimizer automatically inverts terms of the form "expr OP column"
+** and makes other simplifications to the WHERE clause in an attempt to
+** get as many WHERE clause terms into the form shown above as possible.
+** The aConstraint[] array only reports WHERE clause terms in the correct
+** form that refer to the particular virtual table being queried.
+**
+** Information about the ORDER BY clause is stored in aOrderBy[].
+** Each term of aOrderBy records a column of the ORDER BY clause.
+**
+** The xBestIndex method must fill aConstraintUsage[] with information
+** about what parameters to pass to xFilter. If argvIndex>0 then
+** the right-hand side of the corresponding aConstraint[] is evaluated
+** and becomes the argvIndex-th entry in argv. If aConstraintUsage[].omit
+** is true, then the constraint is assumed to be fully handled by the
+** virtual table and is not checked again by SQLite.
+**
+** The idxNum and idxPtr values are recorded and passed into xFilter.
+** sqlite3_free() is used to free idxPtr if needToFreeIdxPtr is true.
+**
+** The orderByConsumed means that output from xFilter will occur in
+** the correct order to satisfy the ORDER BY clause so that no separate
+** sorting step is required.
+**
+** The estimatedCost value is an estimate of the cost of doing the
+** particular lookup. A full scan of a table with N entries should have
+** a cost of N. A binary search of a table of N entries should have a
+** cost of approximately log(N).
+*/
+struct sqlite3_index_info {
+ /* Inputs */
+ int nConstraint; /* Number of entries in aConstraint */
+ struct sqlite3_index_constraint {
+ int iColumn; /* Column on left-hand side of constraint */
+ unsigned char op; /* Constraint operator */
+ unsigned char usable; /* True if this constraint is usable */
+ int iTermOffset; /* Used internally - xBestIndex should ignore */
+ } *aConstraint; /* Table of WHERE clause constraints */
+ int nOrderBy; /* Number of terms in the ORDER BY clause */
+ struct sqlite3_index_orderby {
+ int iColumn; /* Column number */
+ unsigned char desc; /* True for DESC. False for ASC. */
+ } *aOrderBy; /* The ORDER BY clause */
+
+ /* Outputs */
+ struct sqlite3_index_constraint_usage {
+ int argvIndex; /* if >0, constraint is part of argv to xFilter */
+ unsigned char omit; /* Do not code a test for this constraint */
+ } *aConstraintUsage;
+ int idxNum; /* Number used to identify the index */
+ char *idxStr; /* String, possibly obtained from sqlite3_malloc */
+ int needToFreeIdxStr; /* Free idxStr using sqlite3_free() if true */
+ int orderByConsumed; /* True if output is already ordered */
+ double estimatedCost; /* Estimated cost of using this index */
+};
+#define SQLITE_INDEX_CONSTRAINT_EQ 2
+#define SQLITE_INDEX_CONSTRAINT_GT 4
+#define SQLITE_INDEX_CONSTRAINT_LE 8
+#define SQLITE_INDEX_CONSTRAINT_LT 16
+#define SQLITE_INDEX_CONSTRAINT_GE 32
+#define SQLITE_INDEX_CONSTRAINT_MATCH 64
+
+/*
+** CAPI3REF: Register A Virtual Table Implementation {F18200}
+**
+** This routine is used to register a new module name with an SQLite
+** connection. Module names must be registered before creating new
+** virtual tables on the module, or before using preexisting virtual
+** tables of the module.
+*/
+int sqlite3_create_module(
+ sqlite3 *db, /* SQLite connection to register module with */
+ const char *zName, /* Name of the module */
+ const sqlite3_module *, /* Methods for the module */
+ void * /* Client data for xCreate/xConnect */
+);
+
+/*
+** CAPI3REF: Register A Virtual Table Implementation {F18210}
+**
+** This routine is identical to the sqlite3_create_module() method above,
+** except that it allows a destructor function to be specified. It is
+** even more experimental than the rest of the virtual tables API.
+*/
+int sqlite3_create_module_v2(
+ sqlite3 *db, /* SQLite connection to register module with */
+ const char *zName, /* Name of the module */
+ const sqlite3_module *, /* Methods for the module */
+ void *, /* Client data for xCreate/xConnect */
+ void(*xDestroy)(void*) /* Module destructor function */
+);
+
+/*
+** CAPI3REF: Virtual Table Instance Object {F18010}
+** KEYWORDS: sqlite3_vtab
+**
+** Every module implementation uses a subclass of the following structure
+** to describe a particular instance of the module. Each subclass will
+** be tailored to the specific needs of the module implementation. The
+** purpose of this superclass is to define certain fields that are common
+** to all module implementations.
+**
+** Virtual tables methods can set an error message by assigning a
+** string obtained from sqlite3_mprintf() to zErrMsg. The method should
+** take care that any prior string is freed by a call to sqlite3_free()
+** prior to assigning a new string to zErrMsg. After the error message
+** is delivered up to the client application, the string will be automatically
+** freed by sqlite3_free() and the zErrMsg field will be zeroed. Note
+** that sqlite3_mprintf() and sqlite3_free() are used on the zErrMsg field
+** since virtual tables are commonly implemented in loadable extensions which
+** do not have access to sqlite3MPrintf() or sqlite3Free().
+*/
+struct sqlite3_vtab {
+ const sqlite3_module *pModule; /* The module for this virtual table */
+ int nRef; /* Used internally */
+ char *zErrMsg; /* Error message from sqlite3_mprintf() */
+ /* Virtual table implementations will typically add additional fields */
+};
+
+/*
+** CAPI3REF: Virtual Table Cursor Object {F18020}
+** KEYWORDS: sqlite3_vtab_cursor
+**
+** Every module implementation uses a subclass of the following structure
+** to describe cursors that point into the virtual table and are used
+** to loop through the virtual table. Cursors are created using the
+** xOpen method of the module. Each module implementation will define
+** the content of a cursor structure to suit its own needs.
+**
+** This superclass exists in order to define fields of the cursor that
+** are common to all implementations.
+*/
+struct sqlite3_vtab_cursor {
+ sqlite3_vtab *pVtab; /* Virtual table of this cursor */
+ /* Virtual table implementations will typically add additional fields */
+};
+
+/*
+** CAPI3REF: Declare The Schema Of A Virtual Table {F18280}
+**
+** The xCreate and xConnect methods of a module use the following API
+** to declare the format (the names and datatypes of the columns) of
+** the virtual tables they implement.
+*/
+int sqlite3_declare_vtab(sqlite3*, const char *zCreateTable);
+
+/*
+** CAPI3REF: Overload A Function For A Virtual Table {F18300}
+**
+** Virtual tables can provide alternative implementations of functions
+** using the xFindFunction method. But global versions of those functions
+** must exist in order to be overloaded.
+**
+** This API makes sure a global version of a function with a particular
+** name and number of parameters exists. If no such function exists
+** before this API is called, a new function is created. The implementation
+** of the new function always causes an exception to be thrown. So
+** the new function is not good for anything by itself. Its only
+** purpose is to be a place-holder function that can be overloaded
+** by virtual tables.
+**
+** This API should be considered part of the virtual table interface,
+** which is experimental and subject to change.
+*/
+int sqlite3_overload_function(sqlite3*, const char *zFuncName, int nArg);
+
+/*
+** The interface to the virtual-table mechanism defined above (back up
+** to a comment remarkably similar to this one) is currently considered
+** to be experimental. The interface might change in incompatible ways.
+** If this is a problem for you, do not use the interface at this time.
+**
+** When the virtual-table mechanism stabilizes, we will declare the
+** interface fixed, support it indefinitely, and remove this comment.
+**
+****** EXPERIMENTAL - subject to change without notice **************
+*/
+
+/*
+** CAPI3REF: A Handle To An Open BLOB {F17800}
+**
+** An instance of this object represents an open BLOB on which
+** incremental I/O can be preformed.
+** Objects of this type are created by
+** [sqlite3_blob_open()] and destroyed by [sqlite3_blob_close()].
+** The [sqlite3_blob_read()] and [sqlite3_blob_write()] interfaces
+** can be used to read or write small subsections of the blob.
+** The [sqlite3_blob_bytes()] interface returns the size of the
+** blob in bytes.
+*/
+typedef struct sqlite3_blob sqlite3_blob;
+
+/*
+** CAPI3REF: Open A BLOB For Incremental I/O {F17810}
+**
+** This interfaces opens a handle to the blob located
+** in row iRow, column zColumn, table zTable in database zDb;
+** in other words, the same blob that would be selected by:
+**
+** <pre>
+** SELECT zColumn FROM zDb.zTable WHERE rowid = iRow;
+** </pre> {END}
+**
+** If the flags parameter is non-zero, the blob is opened for
+** read and write access. If it is zero, the blob is opened for read
+** access.
+**
+** Note that the database name is not the filename that contains
+** the database but rather the symbolic name of the database that
+** is assigned when the database is connected using [ATTACH].
+** For the main database file, the database name is "main". For
+** TEMP tables, the database name is "temp".
+**
+** On success, [SQLITE_OK] is returned and the new
+** [sqlite3_blob | blob handle] is written to *ppBlob.
+** Otherwise an error code is returned and
+** any value written to *ppBlob should not be used by the caller.
+** This function sets the database-handle error code and message
+** accessible via [sqlite3_errcode()] and [sqlite3_errmsg()].
+**
+** INVARIANTS:
+**
+** {F17813} A successful invocation of the [sqlite3_blob_open(D,B,T,C,R,F,P)]
+** interface opens an [sqlite3_blob] object P on the blob
+** in column C of table T in database B on [database connection] D.
+**
+** {F17814} A successful invocation of [sqlite3_blob_open(D,...)] starts
+** a new transaction on [database connection] D if that connection
+** is not already in a transaction.
+**
+** {F17816} The [sqlite3_blob_open(D,B,T,C,R,F,P)] interface opens the blob
+** for read and write access if and only if the F parameter
+** is non-zero.
+**
+** {F17819} The [sqlite3_blob_open()] interface returns [SQLITE_OK] on
+** success and an appropriate [error code] on failure.
+**
+** {F17821} If an error occurs during evaluation of [sqlite3_blob_open(D,...)]
+** then subsequent calls to [sqlite3_errcode(D)],
+** [sqlite3_errmsg(D)], and [sqlite3_errmsg16(D)] will return
+** information approprate for that error.
+*/
+int sqlite3_blob_open(
+ sqlite3*,
+ const char *zDb,
+ const char *zTable,
+ const char *zColumn,
+ sqlite3_int64 iRow,
+ int flags,
+ sqlite3_blob **ppBlob
+);
+
+/*
+** CAPI3REF: Close A BLOB Handle {F17830}
+**
+** Close an open [sqlite3_blob | blob handle].
+**
+** Closing a BLOB shall cause the current transaction to commit
+** if there are no other BLOBs, no pending prepared statements, and the
+** database connection is in autocommit mode.
+** If any writes were made to the BLOB, they might be held in cache
+** until the close operation if they will fit. {END}
+** Closing the BLOB often forces the changes
+** out to disk and so if any I/O errors occur, they will likely occur
+** at the time when the BLOB is closed. {F17833} Any errors that occur during
+** closing are reported as a non-zero return value.
+**
+** The BLOB is closed unconditionally. Even if this routine returns
+** an error code, the BLOB is still closed.
+**
+** INVARIANTS:
+**
+** {F17833} The [sqlite3_blob_close(P)] interface closes an
+** [sqlite3_blob] object P previously opened using
+** [sqlite3_blob_open()].
+**
+** {F17836} Closing an [sqlite3_blob] object using
+** [sqlite3_blob_close()] shall cause the current transaction to
+** commit if there are no other open [sqlite3_blob] objects
+** or [prepared statements] on the same [database connection] and
+** the [database connection] is in
+** [sqlite3_get_autocommit | autocommit mode].
+**
+** {F17839} The [sqlite3_blob_close(P)] interfaces closes the
+** [sqlite3_blob] object P unconditionally, even if
+** [sqlite3_blob_close(P)] returns something other than [SQLITE_OK].
+**
+*/
+int sqlite3_blob_close(sqlite3_blob *);
+
+/*
+** CAPI3REF: Return The Size Of An Open BLOB {F17840}
+**
+** Return the size in bytes of the blob accessible via the open
+** [sqlite3_blob] object in its only argument.
+**
+** INVARIANTS:
+**
+** {F17843} The [sqlite3_blob_bytes(P)] interface returns the size
+** in bytes of the BLOB that the [sqlite3_blob] object P
+** refers to.
+*/
+int sqlite3_blob_bytes(sqlite3_blob *);
+
+/*
+** CAPI3REF: Read Data From A BLOB Incrementally {F17850}
+**
+** This function is used to read data from an open
+** [sqlite3_blob | blob-handle] into a caller supplied buffer.
+** N bytes of data are copied into buffer
+** Z from the open blob, starting at offset iOffset.
+**
+** If offset iOffset is less than N bytes from the end of the blob,
+** [SQLITE_ERROR] is returned and no data is read. If N or iOffset is
+** less than zero [SQLITE_ERROR] is returned and no data is read.
+**
+** On success, SQLITE_OK is returned. Otherwise, an
+** [error code] or an [extended error code] is returned.
+**
+** INVARIANTS:
+**
+** {F17853} The [sqlite3_blob_read(P,Z,N,X)] interface reads N bytes
+** beginning at offset X from
+** the blob that [sqlite3_blob] object P refers to
+** and writes those N bytes into buffer Z.
+**
+** {F17856} In [sqlite3_blob_read(P,Z,N,X)] if the size of the blob
+** is less than N+X bytes, then the function returns [SQLITE_ERROR]
+** and nothing is read from the blob.
+**
+** {F17859} In [sqlite3_blob_read(P,Z,N,X)] if X or N is less than zero
+** then the function returns [SQLITE_ERROR]
+** and nothing is read from the blob.
+**
+** {F17862} The [sqlite3_blob_read(P,Z,N,X)] interface returns [SQLITE_OK]
+** if N bytes where successfully read into buffer Z.
+**
+** {F17865} If the requested read could not be completed,
+** the [sqlite3_blob_read(P,Z,N,X)] interface returns an
+** appropriate [error code] or [extended error code].
+**
+** {F17868} If an error occurs during evaluation of [sqlite3_blob_read(P,...)]
+** then subsequent calls to [sqlite3_errcode(D)],
+** [sqlite3_errmsg(D)], and [sqlite3_errmsg16(D)] will return
+** information approprate for that error, where D is the
+** database handle that was used to open blob handle P.
+*/
+int sqlite3_blob_read(sqlite3_blob *, void *Z, int N, int iOffset);
+
+/*
+** CAPI3REF: Write Data Into A BLOB Incrementally {F17870}
+**
+** This function is used to write data into an open
+** [sqlite3_blob | blob-handle] from a user supplied buffer.
+** n bytes of data are copied from the buffer
+** pointed to by z into the open blob, starting at offset iOffset.
+**
+** If the [sqlite3_blob | blob-handle] passed as the first argument
+** was not opened for writing (the flags parameter to [sqlite3_blob_open()]
+*** was zero), this function returns [SQLITE_READONLY].
+**
+** This function may only modify the contents of the blob; it is
+** not possible to increase the size of a blob using this API.
+** If offset iOffset is less than n bytes from the end of the blob,
+** [SQLITE_ERROR] is returned and no data is written. If n is
+** less than zero [SQLITE_ERROR] is returned and no data is written.
+**
+** On success, SQLITE_OK is returned. Otherwise, an
+** [error code] or an [extended error code] is returned.
+**
+** INVARIANTS:
+**
+** {F17873} The [sqlite3_blob_write(P,Z,N,X)] interface writes N bytes
+** from buffer Z into
+** the blob that [sqlite3_blob] object P refers to
+** beginning at an offset of X into the blob.
+**
+** {F17875} The [sqlite3_blob_write(P,Z,N,X)] interface returns
+** [SQLITE_READONLY] if the [sqlite3_blob] object P was
+** [sqlite3_blob_open | opened] for reading only.
+**
+** {F17876} In [sqlite3_blob_write(P,Z,N,X)] if the size of the blob
+** is less than N+X bytes, then the function returns [SQLITE_ERROR]
+** and nothing is written into the blob.
+**
+** {F17879} In [sqlite3_blob_write(P,Z,N,X)] if X or N is less than zero
+** then the function returns [SQLITE_ERROR]
+** and nothing is written into the blob.
+**
+** {F17882} The [sqlite3_blob_write(P,Z,N,X)] interface returns [SQLITE_OK]
+** if N bytes where successfully written into blob.
+**
+** {F17885} If the requested write could not be completed,
+** the [sqlite3_blob_write(P,Z,N,X)] interface returns an
+** appropriate [error code] or [extended error code].
+**
+** {F17888} If an error occurs during evaluation of [sqlite3_blob_write(D,...)]
+** then subsequent calls to [sqlite3_errcode(D)],
+** [sqlite3_errmsg(D)], and [sqlite3_errmsg16(D)] will return
+** information approprate for that error.
+*/
+int sqlite3_blob_write(sqlite3_blob *, const void *z, int n, int iOffset);
+
+/*
+** CAPI3REF: Virtual File System Objects {F11200}
+**
+** A virtual filesystem (VFS) is an [sqlite3_vfs] object
+** that SQLite uses to interact
+** with the underlying operating system. Most SQLite builds come with a
+** single default VFS that is appropriate for the host computer.
+** New VFSes can be registered and existing VFSes can be unregistered.
+** The following interfaces are provided.
+**
+** The sqlite3_vfs_find() interface returns a pointer to
+** a VFS given its name. Names are case sensitive.
+** Names are zero-terminated UTF-8 strings.
+** If there is no match, a NULL
+** pointer is returned. If zVfsName is NULL then the default
+** VFS is returned.
+**
+** New VFSes are registered with sqlite3_vfs_register().
+** Each new VFS becomes the default VFS if the makeDflt flag is set.
+** The same VFS can be registered multiple times without injury.
+** To make an existing VFS into the default VFS, register it again
+** with the makeDflt flag set. If two different VFSes with the
+** same name are registered, the behavior is undefined. If a
+** VFS is registered with a name that is NULL or an empty string,
+** then the behavior is undefined.
+**
+** Unregister a VFS with the sqlite3_vfs_unregister() interface.
+** If the default VFS is unregistered, another VFS is chosen as
+** the default. The choice for the new VFS is arbitrary.
+**
+** INVARIANTS:
+**
+** {F11203} The [sqlite3_vfs_find(N)] interface returns a pointer to the
+** registered [sqlite3_vfs] object whose name exactly matches
+** the zero-terminated UTF-8 string N, or it returns NULL if
+** there is no match.
+**
+** {F11206} If the N parameter to [sqlite3_vfs_find(N)] is NULL then
+** the function returns a pointer to the default [sqlite3_vfs]
+** object if there is one, or NULL if there is no default
+** [sqlite3_vfs] object.
+**
+** {F11209} The [sqlite3_vfs_register(P,F)] interface registers the
+** well-formed [sqlite3_vfs] object P using the name given
+** by the zName field of the object.
+**
+** {F11212} Using the [sqlite3_vfs_register(P,F)] interface to register
+** the same [sqlite3_vfs] object multiple times is a harmless no-op.
+**
+** {F11215} The [sqlite3_vfs_register(P,F)] interface makes the
+** the [sqlite3_vfs] object P the default [sqlite3_vfs] object
+** if F is non-zero.
+**
+** {F11218} The [sqlite3_vfs_unregister(P)] interface unregisters the
+** [sqlite3_vfs] object P so that it is no longer returned by
+** subsequent calls to [sqlite3_vfs_find()].
+*/
+sqlite3_vfs *sqlite3_vfs_find(const char *zVfsName);
+int sqlite3_vfs_register(sqlite3_vfs*, int makeDflt);
+int sqlite3_vfs_unregister(sqlite3_vfs*);
+
+/*
+** CAPI3REF: Mutexes {F17000}
+**
+** The SQLite core uses these routines for thread
+** synchronization. Though they are intended for internal
+** use by SQLite, code that links against SQLite is
+** permitted to use any of these routines.
+**
+** The SQLite source code contains multiple implementations
+** of these mutex routines. An appropriate implementation
+** is selected automatically at compile-time. The following
+** implementations are available in the SQLite core:
+**
+** <ul>
+** <li> SQLITE_MUTEX_OS2
+** <li> SQLITE_MUTEX_PTHREAD
+** <li> SQLITE_MUTEX_W32
+** <li> SQLITE_MUTEX_NOOP
+** </ul>
+**
+** The SQLITE_MUTEX_NOOP implementation is a set of routines
+** that does no real locking and is appropriate for use in
+** a single-threaded application. The SQLITE_MUTEX_OS2,
+** SQLITE_MUTEX_PTHREAD, and SQLITE_MUTEX_W32 implementations
+** are appropriate for use on os/2, unix, and windows.
+**
+** If SQLite is compiled with the SQLITE_MUTEX_APPDEF preprocessor
+** macro defined (with "-DSQLITE_MUTEX_APPDEF=1"), then no mutex
+** implementation is included with the library. The
+** mutex interface routines defined here become external
+** references in the SQLite library for which implementations
+** must be provided by the application. This facility allows an
+** application that links against SQLite to provide its own mutex
+** implementation without having to modify the SQLite core.
+**
+** {F17011} The sqlite3_mutex_alloc() routine allocates a new
+** mutex and returns a pointer to it. {F17012} If it returns NULL
+** that means that a mutex could not be allocated. {F17013} SQLite
+** will unwind its stack and return an error. {F17014} The argument
+** to sqlite3_mutex_alloc() is one of these integer constants:
+**
+** <ul>
+** <li> SQLITE_MUTEX_FAST
+** <li> SQLITE_MUTEX_RECURSIVE
+** <li> SQLITE_MUTEX_STATIC_MASTER
+** <li> SQLITE_MUTEX_STATIC_MEM
+** <li> SQLITE_MUTEX_STATIC_MEM2
+** <li> SQLITE_MUTEX_STATIC_PRNG
+** <li> SQLITE_MUTEX_STATIC_LRU
+** <li> SQLITE_MUTEX_STATIC_LRU2
+** </ul> {END}
+**
+** {F17015} The first two constants cause sqlite3_mutex_alloc() to create
+** a new mutex. The new mutex is recursive when SQLITE_MUTEX_RECURSIVE
+** is used but not necessarily so when SQLITE_MUTEX_FAST is used. {END}
+** The mutex implementation does not need to make a distinction
+** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does
+** not want to. {F17016} But SQLite will only request a recursive mutex in
+** cases where it really needs one. {END} If a faster non-recursive mutex
+** implementation is available on the host platform, the mutex subsystem
+** might return such a mutex in response to SQLITE_MUTEX_FAST.
+**
+** {F17017} The other allowed parameters to sqlite3_mutex_alloc() each return
+** a pointer to a static preexisting mutex. {END} Four static mutexes are
+** used by the current version of SQLite. Future versions of SQLite
+** may add additional static mutexes. Static mutexes are for internal
+** use by SQLite only. Applications that use SQLite mutexes should
+** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or
+** SQLITE_MUTEX_RECURSIVE.
+**
+** {F17018} Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST
+** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc()
+** returns a different mutex on every call. {F17034} But for the static
+** mutex types, the same mutex is returned on every call that has
+** the same type number. {END}
+**
+** {F17019} The sqlite3_mutex_free() routine deallocates a previously
+** allocated dynamic mutex. {F17020} SQLite is careful to deallocate every
+** dynamic mutex that it allocates. {U17021} The dynamic mutexes must not be in
+** use when they are deallocated. {U17022} Attempting to deallocate a static
+** mutex results in undefined behavior. {F17023} SQLite never deallocates
+** a static mutex. {END}
+**
+** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt
+** to enter a mutex. {F17024} If another thread is already within the mutex,
+** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return
+** SQLITE_BUSY. {F17025} The sqlite3_mutex_try() interface returns SQLITE_OK
+** upon successful entry. {F17026} Mutexes created using
+** SQLITE_MUTEX_RECURSIVE can be entered multiple times by the same thread.
+** {F17027} In such cases the,
+** mutex must be exited an equal number of times before another thread
+** can enter. {U17028} If the same thread tries to enter any other
+** kind of mutex more than once, the behavior is undefined.
+** {F17029} SQLite will never exhibit
+** such behavior in its own use of mutexes. {END}
+**
+** Some systems (ex: windows95) do not the operation implemented by
+** sqlite3_mutex_try(). On those systems, sqlite3_mutex_try() will
+** always return SQLITE_BUSY. {F17030} The SQLite core only ever uses
+** sqlite3_mutex_try() as an optimization so this is acceptable behavior. {END}
+**
+** {F17031} The sqlite3_mutex_leave() routine exits a mutex that was
+** previously entered by the same thread. {U17032} The behavior
+** is undefined if the mutex is not currently entered by the
+** calling thread or is not currently allocated. {F17033} SQLite will
+** never do either. {END}
+**
+** See also: [sqlite3_mutex_held()] and [sqlite3_mutex_notheld()].
+*/
+sqlite3_mutex *sqlite3_mutex_alloc(int);
+void sqlite3_mutex_free(sqlite3_mutex*);
+void sqlite3_mutex_enter(sqlite3_mutex*);
+int sqlite3_mutex_try(sqlite3_mutex*);
+void sqlite3_mutex_leave(sqlite3_mutex*);
+
+/*
+** CAPI3REF: Mutex Verifcation Routines {F17080}
+**
+** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routines
+** are intended for use inside assert() statements. {F17081} The SQLite core
+** never uses these routines except inside an assert() and applications
+** are advised to follow the lead of the core. {F17082} The core only
+** provides implementations for these routines when it is compiled
+** with the SQLITE_DEBUG flag. {U17087} External mutex implementations
+** are only required to provide these routines if SQLITE_DEBUG is
+** defined and if NDEBUG is not defined.
+**
+** {F17083} These routines should return true if the mutex in their argument
+** is held or not held, respectively, by the calling thread. {END}
+**
+** {X17084} The implementation is not required to provided versions of these
+** routines that actually work.
+** If the implementation does not provide working
+** versions of these routines, it should at least provide stubs
+** that always return true so that one does not get spurious
+** assertion failures. {END}
+**
+** {F17085} If the argument to sqlite3_mutex_held() is a NULL pointer then
+** the routine should return 1. {END} This seems counter-intuitive since
+** clearly the mutex cannot be held if it does not exist. But the
+** the reason the mutex does not exist is because the build is not
+** using mutexes. And we do not want the assert() containing the
+** call to sqlite3_mutex_held() to fail, so a non-zero return is
+** the appropriate thing to do. {F17086} The sqlite3_mutex_notheld()
+** interface should also return 1 when given a NULL pointer.
+*/
+int sqlite3_mutex_held(sqlite3_mutex*);
+int sqlite3_mutex_notheld(sqlite3_mutex*);
+
+/*
+** CAPI3REF: Mutex Types {F17001}
+**
+** {F17002} The [sqlite3_mutex_alloc()] interface takes a single argument
+** which is one of these integer constants. {END}
+*/
+#define SQLITE_MUTEX_FAST 0
+#define SQLITE_MUTEX_RECURSIVE 1
+#define SQLITE_MUTEX_STATIC_MASTER 2
+#define SQLITE_MUTEX_STATIC_MEM 3 /* sqlite3_malloc() */
+#define SQLITE_MUTEX_STATIC_MEM2 4 /* sqlite3_release_memory() */
+#define SQLITE_MUTEX_STATIC_PRNG 5 /* sqlite3_random() */
+#define SQLITE_MUTEX_STATIC_LRU 6 /* lru page list */
+#define SQLITE_MUTEX_STATIC_LRU2 7 /* lru page list */
+
+/*
+** CAPI3REF: Low-Level Control Of Database Files {F11300}
+**
+** {F11301} The [sqlite3_file_control()] interface makes a direct call to the
+** xFileControl method for the [sqlite3_io_methods] object associated
+** with a particular database identified by the second argument. {F11302} The
+** name of the database is the name assigned to the database by the
+** <a href="lang_attach.html">ATTACH</a> SQL command that opened the
+** database. {F11303} To control the main database file, use the name "main"
+** or a NULL pointer. {F11304} The third and fourth parameters to this routine
+** are passed directly through to the second and third parameters of
+** the xFileControl method. {F11305} The return value of the xFileControl
+** method becomes the return value of this routine.
+**
+** {F11306} If the second parameter (zDbName) does not match the name of any
+** open database file, then SQLITE_ERROR is returned. {F11307} This error
+** code is not remembered and will not be recalled by [sqlite3_errcode()]
+** or [sqlite3_errmsg()]. {U11308} The underlying xFileControl method might
+** also return SQLITE_ERROR. {U11309} There is no way to distinguish between
+** an incorrect zDbName and an SQLITE_ERROR return from the underlying
+** xFileControl method. {END}
+**
+** See also: [SQLITE_FCNTL_LOCKSTATE]
+*/
+int sqlite3_file_control(sqlite3*, const char *zDbName, int op, void*);
+
+/*
+** CAPI3REF: Testing Interface {F11400}
+**
+** The sqlite3_test_control() interface is used to read out internal
+** state of SQLite and to inject faults into SQLite for testing
+** purposes. The first parameter a operation code that determines
+** the number, meaning, and operation of all subsequent parameters.
+**
+** This interface is not for use by applications. It exists solely
+** for verifying the correct operation of the SQLite library. Depending
+** on how the SQLite library is compiled, this interface might not exist.
+**
+** The details of the operation codes, their meanings, the parameters
+** they take, and what they do are all subject to change without notice.
+** Unlike most of the SQLite API, this function is not guaranteed to
+** operate consistently from one release to the next.
+*/
+int sqlite3_test_control(int op, ...);
+
+/*
+** CAPI3REF: Testing Interface Operation Codes {F11410}
+**
+** These constants are the valid operation code parameters used
+** as the first argument to [sqlite3_test_control()].
+**
+** These parameters and their meansing are subject to change
+** without notice. These values are for testing purposes only.
+** Applications should not use any of these parameters or the
+** [sqlite3_test_control()] interface.
+*/
+#define SQLITE_TESTCTRL_FAULT_CONFIG 1
+#define SQLITE_TESTCTRL_FAULT_FAILURES 2
+#define SQLITE_TESTCTRL_FAULT_BENIGN_FAILURES 3
+#define SQLITE_TESTCTRL_FAULT_PENDING 4
+#define SQLITE_TESTCTRL_PRNG_SAVE 5
+#define SQLITE_TESTCTRL_PRNG_RESTORE 6
+#define SQLITE_TESTCTRL_PRNG_RESET 7
+#define SQLITE_TESTCTRL_BITVEC_TEST 8
+
+
+/*
+** Undo the hack that converts floating point types to integer for
+** builds on processors without floating point support.
+*/
+#ifdef SQLITE_OMIT_FLOATING_POINT
+# undef double
+#endif
+
+#ifdef __cplusplus
+} /* End of the 'extern "C"' block */
+#endif
+#endif