diff options
Diffstat (limited to 'src/libs/jpegutils/transupp.cpp')
| -rw-r--r-- | src/libs/jpegutils/transupp.cpp | 2527 | 
1 files changed, 2527 insertions, 0 deletions
| diff --git a/src/libs/jpegutils/transupp.cpp b/src/libs/jpegutils/transupp.cpp new file mode 100644 index 00000000..47a9aa8b --- /dev/null +++ b/src/libs/jpegutils/transupp.cpp @@ -0,0 +1,2527 @@ +/* Although this file really shouldn't have access to the library internals, + * it's helpful to let it call jround_up() and jcopy_block_row(). + */ +#define JPEG_INTERNALS + +// LibJPEG includes. + +extern "C" +{ +#include "jinclude.h" +#include "jpeglib.h" +} + +#if JPEG_LIB_VERSION >= 80 + +/* + * transupp.c + * + * Copyright (C) 1997-2009, Thomas G. Lane, Guido Vollbeding. + * This file is part of the Independent JPEG Group's software. + * For conditions of distribution and use, see the accompanying README file. + * + * This file contains image transformation routines and other utility code + * used by the jpegtran sample application.  These are NOT part of the core + * JPEG library.  But we keep these routines separate from jpegtran.c to + * ease the task of maintaining jpegtran-like programs that have other user + * interfaces. + */ + +#include "transupp.h"         /* My own external interface */ +#include <ctype.h>            /* to declare isdigit() */ + +namespace Digikam +{ + +#if TRANSFORMS_SUPPORTED + +/* + * Lossless image transformation routines.  These routines work on DCT + * coefficient arrays and thus do not require any lossy decompression + * or recompression of the image. + * Thanks to Guido Vollbeding for the initial design and code of this feature, + * and to Ben Jackson for introducing the cropping feature. + * + * Horizontal flipping is done in-place, using a single top-to-bottom + * pass through the virtual source array.  It will thus be much the + * fastest option for images larger than main memory. + * + * The other routines require a set of destination virtual arrays, so they + * need twice as much memory as jpegtran normally does.  The destination + * arrays are always written in normal scan order (top to bottom) because + * the virtual array manager expects this.  The source arrays will be scanned + * in the corresponding order, which means multiple passes through the source + * arrays for most of the transforms.  That could result in much thrashing + * if the image is larger than main memory. + * + * If cropping or trimming is involved, the destination arrays may be smaller + * than the source arrays.  Note it is not possible to do horizontal flip + * in-place when a nonzero Y crop offset is specified, since we'd have to move + * data from one block row to another but the virtual array manager doesn't + * guarantee we can touch more than one row at a time.  So in that case, + * we have to use a separate destination array. + * + * Some notes about the operating environment of the individual transform + * routines: + * 1. Both the source and destination virtual arrays are allocated from the + *    source JPEG object, and therefore should be manipulated by calling the + *    source's memory manager. + * 2. The destination's component count should be used.  It may be smaller + *    than the source's when forcing to grayscale. + * 3. Likewise the destination's sampling factors should be used.  When + *    forcing to grayscale the destination's sampling factors will be all 1, + *    and we may as well take that as the effective iMCU size. + * 4. When "trim" is in effect, the destination's dimensions will be the + *    trimmed values but the source's will be untrimmed. + * 5. When "crop" is in effect, the destination's dimensions will be the + *    cropped values but the source's will be uncropped.  Each transform + *    routine is responsible for picking up source data starting at the + *    correct X and Y offset for the crop region.  (The X and Y offsets + *    passed to the transform routines are measured in iMCU blocks of the + *    destination.) + * 6. All the routines assume that the source and destination buffers are + *    padded out to a full iMCU boundary.  This is true, although for the + *    source buffer it is an undocumented property of jdcoefct.c. + */ + + +LOCAL(void) +do_crop (j_decompress_ptr srcinfo, j_compress_ptr dstinfo, +       JDIMENSION x_crop_offset, JDIMENSION y_crop_offset, +       jvirt_barray_ptr *src_coef_arrays, +       jvirt_barray_ptr *dst_coef_arrays) +/* Crop.  This is only used when no rotate/flip is requested with the crop. */ +{ +  JDIMENSION dst_blk_y, x_crop_blocks, y_crop_blocks; +  int ci, offset_y; +  JBLOCKARRAY src_buffer, dst_buffer; +  jpeg_component_info *compptr; + +  /* We simply have to copy the right amount of data (the destination's +   * image size) starting at the given X and Y offsets in the source. +   */ +  for (ci = 0; ci < dstinfo->num_components; ci++) { +    compptr = dstinfo->comp_info + ci; +    x_crop_blocks = x_crop_offset * compptr->h_samp_factor; +    y_crop_blocks = y_crop_offset * compptr->v_samp_factor; +    for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks; +       dst_blk_y += compptr->v_samp_factor) { +      dst_buffer = (*srcinfo->mem->access_virt_barray) +      ((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y, +       (JDIMENSION) compptr->v_samp_factor, TRUE); +      src_buffer = (*srcinfo->mem->access_virt_barray) +      ((j_common_ptr) srcinfo, src_coef_arrays[ci], +       dst_blk_y + y_crop_blocks, +       (JDIMENSION) compptr->v_samp_factor, FALSE); +      for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { +      jcopy_block_row(src_buffer[offset_y] + x_crop_blocks, +                  dst_buffer[offset_y], +                  compptr->width_in_blocks); +      } +    } +  } +} + + +LOCAL(void) +do_flip_h_no_crop (j_decompress_ptr srcinfo, j_compress_ptr dstinfo, +               JDIMENSION x_crop_offset, +               jvirt_barray_ptr *src_coef_arrays) +/* Horizontal flip; done in-place, so no separate dest array is required. + * NB: this only works when y_crop_offset is zero. + */ +{ +  JDIMENSION MCU_cols, comp_width, blk_x, blk_y, x_crop_blocks; +  int ci, k, offset_y; +  JBLOCKARRAY buffer; +  JCOEFPTR ptr1, ptr2; +  JCOEF temp1, temp2; +  jpeg_component_info *compptr; + +  /* Horizontal mirroring of DCT blocks is accomplished by swapping +   * pairs of blocks in-place.  Within a DCT block, we perform horizontal +   * mirroring by changing the signs of odd-numbered columns. +   * Partial iMCUs at the right edge are left untouched. +   */ +  MCU_cols = srcinfo->output_width / +    (dstinfo->max_h_samp_factor * dstinfo->min_DCT_h_scaled_size); + +  for (ci = 0; ci < dstinfo->num_components; ci++) { +    compptr = dstinfo->comp_info + ci; +    comp_width = MCU_cols * compptr->h_samp_factor; +    x_crop_blocks = x_crop_offset * compptr->h_samp_factor; +    for (blk_y = 0; blk_y < compptr->height_in_blocks; +       blk_y += compptr->v_samp_factor) { +      buffer = (*srcinfo->mem->access_virt_barray) +      ((j_common_ptr) srcinfo, src_coef_arrays[ci], blk_y, +       (JDIMENSION) compptr->v_samp_factor, TRUE); +      for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { +      /* Do the mirroring */ +      for (blk_x = 0; blk_x * 2 < comp_width; blk_x++) { +        ptr1 = buffer[offset_y][blk_x]; +        ptr2 = buffer[offset_y][comp_width - blk_x - 1]; +        /* this unrolled loop doesn't need to know which row it's on... */ +        for (k = 0; k < DCTSIZE2; k += 2) { +          temp1 = *ptr1;      /* swap even column */ +          temp2 = *ptr2; +          *ptr1++ = temp2; +          *ptr2++ = temp1; +          temp1 = *ptr1;      /* swap odd column with sign change */ +          temp2 = *ptr2; +          *ptr1++ = -temp2; +          *ptr2++ = -temp1; +        } +      } +      if (x_crop_blocks > 0) { +        /* Now left-justify the portion of the data to be kept. +         * We can't use a single jcopy_block_row() call because that routine +         * depends on memcpy(), whose behavior is unspecified for overlapping +         * source and destination areas.  Sigh. +         */ +        for (blk_x = 0; blk_x < compptr->width_in_blocks; blk_x++) { +          jcopy_block_row(buffer[offset_y] + blk_x + x_crop_blocks, +                      buffer[offset_y] + blk_x, +                      (JDIMENSION) 1); +        } +      } +      } +    } +  } +} + + +LOCAL(void) +do_flip_h (j_decompress_ptr srcinfo, j_compress_ptr dstinfo, +         JDIMENSION x_crop_offset, JDIMENSION y_crop_offset, +         jvirt_barray_ptr *src_coef_arrays, +         jvirt_barray_ptr *dst_coef_arrays) +/* Horizontal flip in general cropping case */ +{ +  JDIMENSION MCU_cols, comp_width, dst_blk_x, dst_blk_y; +  JDIMENSION x_crop_blocks, y_crop_blocks; +  int ci, k, offset_y; +  JBLOCKARRAY src_buffer, dst_buffer; +  JBLOCKROW src_row_ptr, dst_row_ptr; +  JCOEFPTR src_ptr, dst_ptr; +  jpeg_component_info *compptr; + +  /* Here we must output into a separate array because we can't touch +   * different rows of a single virtual array simultaneously.  Otherwise, +   * this is essentially the same as the routine above. +   */ +  MCU_cols = srcinfo->output_width / +    (dstinfo->max_h_samp_factor * dstinfo->min_DCT_h_scaled_size); + +  for (ci = 0; ci < dstinfo->num_components; ci++) { +    compptr = dstinfo->comp_info + ci; +    comp_width = MCU_cols * compptr->h_samp_factor; +    x_crop_blocks = x_crop_offset * compptr->h_samp_factor; +    y_crop_blocks = y_crop_offset * compptr->v_samp_factor; +    for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks; +       dst_blk_y += compptr->v_samp_factor) { +      dst_buffer = (*srcinfo->mem->access_virt_barray) +      ((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y, +       (JDIMENSION) compptr->v_samp_factor, TRUE); +      src_buffer = (*srcinfo->mem->access_virt_barray) +      ((j_common_ptr) srcinfo, src_coef_arrays[ci], +       dst_blk_y + y_crop_blocks, +       (JDIMENSION) compptr->v_samp_factor, FALSE); +      for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { +      dst_row_ptr = dst_buffer[offset_y]; +      src_row_ptr = src_buffer[offset_y]; +      for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks; dst_blk_x++) { +        if (x_crop_blocks + dst_blk_x < comp_width) { +          /* Do the mirrorable blocks */ +          dst_ptr = dst_row_ptr[dst_blk_x]; +          src_ptr = src_row_ptr[comp_width - x_crop_blocks - dst_blk_x - 1]; +          /* this unrolled loop doesn't need to know which row it's on... */ +          for (k = 0; k < DCTSIZE2; k += 2) { +            *dst_ptr++ = *src_ptr++;       /* copy even column */ +            *dst_ptr++ = - *src_ptr++; /* copy odd column with sign change */ +          } +        } else { +          /* Copy last partial block(s) verbatim */ +          jcopy_block_row(src_row_ptr + dst_blk_x + x_crop_blocks, +                      dst_row_ptr + dst_blk_x, +                      (JDIMENSION) 1); +        } +      } +      } +    } +  } +} + + +LOCAL(void) +do_flip_v (j_decompress_ptr srcinfo, j_compress_ptr dstinfo, +         JDIMENSION x_crop_offset, JDIMENSION y_crop_offset, +         jvirt_barray_ptr *src_coef_arrays, +         jvirt_barray_ptr *dst_coef_arrays) +/* Vertical flip */ +{ +  JDIMENSION MCU_rows, comp_height, dst_blk_x, dst_blk_y; +  JDIMENSION x_crop_blocks, y_crop_blocks; +  int ci, i, j, offset_y; +  JBLOCKARRAY src_buffer, dst_buffer; +  JBLOCKROW src_row_ptr, dst_row_ptr; +  JCOEFPTR src_ptr, dst_ptr; +  jpeg_component_info *compptr; + +  /* We output into a separate array because we can't touch different +   * rows of the source virtual array simultaneously.  Otherwise, this +   * is a pretty straightforward analog of horizontal flip. +   * Within a DCT block, vertical mirroring is done by changing the signs +   * of odd-numbered rows. +   * Partial iMCUs at the bottom edge are copied verbatim. +   */ +  MCU_rows = srcinfo->output_height / +    (dstinfo->max_v_samp_factor * dstinfo->min_DCT_v_scaled_size); + +  for (ci = 0; ci < dstinfo->num_components; ci++) { +    compptr = dstinfo->comp_info + ci; +    comp_height = MCU_rows * compptr->v_samp_factor; +    x_crop_blocks = x_crop_offset * compptr->h_samp_factor; +    y_crop_blocks = y_crop_offset * compptr->v_samp_factor; +    for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks; +       dst_blk_y += compptr->v_samp_factor) { +      dst_buffer = (*srcinfo->mem->access_virt_barray) +      ((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y, +       (JDIMENSION) compptr->v_samp_factor, TRUE); +      if (y_crop_blocks + dst_blk_y < comp_height) { +      /* Row is within the mirrorable area. */ +      src_buffer = (*srcinfo->mem->access_virt_barray) +        ((j_common_ptr) srcinfo, src_coef_arrays[ci], +         comp_height - y_crop_blocks - dst_blk_y - +         (JDIMENSION) compptr->v_samp_factor, +         (JDIMENSION) compptr->v_samp_factor, FALSE); +      } else { +      /* Bottom-edge blocks will be copied verbatim. */ +      src_buffer = (*srcinfo->mem->access_virt_barray) +        ((j_common_ptr) srcinfo, src_coef_arrays[ci], +         dst_blk_y + y_crop_blocks, +         (JDIMENSION) compptr->v_samp_factor, FALSE); +      } +      for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { +      if (y_crop_blocks + dst_blk_y < comp_height) { +        /* Row is within the mirrorable area. */ +        dst_row_ptr = dst_buffer[offset_y]; +        src_row_ptr = src_buffer[compptr->v_samp_factor - offset_y - 1]; +        src_row_ptr += x_crop_blocks; +        for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks; +             dst_blk_x++) { +          dst_ptr = dst_row_ptr[dst_blk_x]; +          src_ptr = src_row_ptr[dst_blk_x]; +          for (i = 0; i < DCTSIZE; i += 2) { +            /* copy even row */ +            for (j = 0; j < DCTSIZE; j++) +            *dst_ptr++ = *src_ptr++; +            /* copy odd row with sign change */ +            for (j = 0; j < DCTSIZE; j++) +            *dst_ptr++ = - *src_ptr++; +          } +        } +      } else { +        /* Just copy row verbatim. */ +        jcopy_block_row(src_buffer[offset_y] + x_crop_blocks, +                    dst_buffer[offset_y], +                    compptr->width_in_blocks); +      } +      } +    } +  } +} + + +LOCAL(void) +do_transpose (j_decompress_ptr srcinfo, j_compress_ptr dstinfo, +            JDIMENSION x_crop_offset, JDIMENSION y_crop_offset, +            jvirt_barray_ptr *src_coef_arrays, +            jvirt_barray_ptr *dst_coef_arrays) +/* Transpose source into destination */ +{ +  JDIMENSION dst_blk_x, dst_blk_y, x_crop_blocks, y_crop_blocks; +  int ci, i, j, offset_x, offset_y; +  JBLOCKARRAY src_buffer, dst_buffer; +  JCOEFPTR src_ptr, dst_ptr; +  jpeg_component_info *compptr; + +  /* Transposing pixels within a block just requires transposing the +   * DCT coefficients. +   * Partial iMCUs at the edges require no special treatment; we simply +   * process all the available DCT blocks for every component. +   */ +  for (ci = 0; ci < dstinfo->num_components; ci++) { +    compptr = dstinfo->comp_info + ci; +    x_crop_blocks = x_crop_offset * compptr->h_samp_factor; +    y_crop_blocks = y_crop_offset * compptr->v_samp_factor; +    for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks; +       dst_blk_y += compptr->v_samp_factor) { +      dst_buffer = (*srcinfo->mem->access_virt_barray) +      ((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y, +       (JDIMENSION) compptr->v_samp_factor, TRUE); +      for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { +      for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks; +           dst_blk_x += compptr->h_samp_factor) { +        src_buffer = (*srcinfo->mem->access_virt_barray) +          ((j_common_ptr) srcinfo, src_coef_arrays[ci], +           dst_blk_x + x_crop_blocks, +           (JDIMENSION) compptr->h_samp_factor, FALSE); +        for (offset_x = 0; offset_x < compptr->h_samp_factor; offset_x++) { +          dst_ptr = dst_buffer[offset_y][dst_blk_x + offset_x]; +          src_ptr = src_buffer[offset_x][dst_blk_y + offset_y + y_crop_blocks]; +          for (i = 0; i < DCTSIZE; i++) +            for (j = 0; j < DCTSIZE; j++) +            dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j]; +        } +      } +      } +    } +  } +} + + +LOCAL(void) +do_rot_90 (j_decompress_ptr srcinfo, j_compress_ptr dstinfo, +         JDIMENSION x_crop_offset, JDIMENSION y_crop_offset, +         jvirt_barray_ptr *src_coef_arrays, +         jvirt_barray_ptr *dst_coef_arrays) +/* 90 degree rotation is equivalent to + *   1. Transposing the image; + *   2. Horizontal mirroring. + * These two steps are merged into a single processing routine. + */ +{ +  JDIMENSION MCU_cols, comp_width, dst_blk_x, dst_blk_y; +  JDIMENSION x_crop_blocks, y_crop_blocks; +  int ci, i, j, offset_x, offset_y; +  JBLOCKARRAY src_buffer, dst_buffer; +  JCOEFPTR src_ptr, dst_ptr; +  jpeg_component_info *compptr; + +  /* Because of the horizontal mirror step, we can't process partial iMCUs +   * at the (output) right edge properly.  They just get transposed and +   * not mirrored. +   */ +  MCU_cols = srcinfo->output_height / +    (dstinfo->max_h_samp_factor * dstinfo->min_DCT_h_scaled_size); + +  for (ci = 0; ci < dstinfo->num_components; ci++) { +    compptr = dstinfo->comp_info + ci; +    comp_width = MCU_cols * compptr->h_samp_factor; +    x_crop_blocks = x_crop_offset * compptr->h_samp_factor; +    y_crop_blocks = y_crop_offset * compptr->v_samp_factor; +    for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks; +       dst_blk_y += compptr->v_samp_factor) { +      dst_buffer = (*srcinfo->mem->access_virt_barray) +      ((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y, +       (JDIMENSION) compptr->v_samp_factor, TRUE); +      for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { +      for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks; +           dst_blk_x += compptr->h_samp_factor) { +        if (x_crop_blocks + dst_blk_x < comp_width) { +          /* Block is within the mirrorable area. */ +          src_buffer = (*srcinfo->mem->access_virt_barray) +            ((j_common_ptr) srcinfo, src_coef_arrays[ci], +             comp_width - x_crop_blocks - dst_blk_x - +             (JDIMENSION) compptr->h_samp_factor, +             (JDIMENSION) compptr->h_samp_factor, FALSE); +        } else { +          /* Edge blocks are transposed but not mirrored. */ +          src_buffer = (*srcinfo->mem->access_virt_barray) +            ((j_common_ptr) srcinfo, src_coef_arrays[ci], +             dst_blk_x + x_crop_blocks, +             (JDIMENSION) compptr->h_samp_factor, FALSE); +        } +        for (offset_x = 0; offset_x < compptr->h_samp_factor; offset_x++) { +          dst_ptr = dst_buffer[offset_y][dst_blk_x + offset_x]; +          if (x_crop_blocks + dst_blk_x < comp_width) { +            /* Block is within the mirrorable area. */ +            src_ptr = src_buffer[compptr->h_samp_factor - offset_x - 1] +            [dst_blk_y + offset_y + y_crop_blocks]; +            for (i = 0; i < DCTSIZE; i++) { +            for (j = 0; j < DCTSIZE; j++) +              dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j]; +            i++; +            for (j = 0; j < DCTSIZE; j++) +              dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j]; +            } +          } else { +            /* Edge blocks are transposed but not mirrored. */ +            src_ptr = src_buffer[offset_x] +            [dst_blk_y + offset_y + y_crop_blocks]; +            for (i = 0; i < DCTSIZE; i++) +            for (j = 0; j < DCTSIZE; j++) +              dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j]; +          } +        } +      } +      } +    } +  } +} + + +LOCAL(void) +do_rot_270 (j_decompress_ptr srcinfo, j_compress_ptr dstinfo, +          JDIMENSION x_crop_offset, JDIMENSION y_crop_offset, +          jvirt_barray_ptr *src_coef_arrays, +          jvirt_barray_ptr *dst_coef_arrays) +/* 270 degree rotation is equivalent to + *   1. Horizontal mirroring; + *   2. Transposing the image. + * These two steps are merged into a single processing routine. + */ +{ +  JDIMENSION MCU_rows, comp_height, dst_blk_x, dst_blk_y; +  JDIMENSION x_crop_blocks, y_crop_blocks; +  int ci, i, j, offset_x, offset_y; +  JBLOCKARRAY src_buffer, dst_buffer; +  JCOEFPTR src_ptr, dst_ptr; +  jpeg_component_info *compptr; + +  /* Because of the horizontal mirror step, we can't process partial iMCUs +   * at the (output) bottom edge properly.  They just get transposed and +   * not mirrored. +   */ +  MCU_rows = srcinfo->output_width / +    (dstinfo->max_v_samp_factor * dstinfo->min_DCT_v_scaled_size); + +  for (ci = 0; ci < dstinfo->num_components; ci++) { +    compptr = dstinfo->comp_info + ci; +    comp_height = MCU_rows * compptr->v_samp_factor; +    x_crop_blocks = x_crop_offset * compptr->h_samp_factor; +    y_crop_blocks = y_crop_offset * compptr->v_samp_factor; +    for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks; +       dst_blk_y += compptr->v_samp_factor) { +      dst_buffer = (*srcinfo->mem->access_virt_barray) +      ((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y, +       (JDIMENSION) compptr->v_samp_factor, TRUE); +      for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { +      for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks; +           dst_blk_x += compptr->h_samp_factor) { +        src_buffer = (*srcinfo->mem->access_virt_barray) +          ((j_common_ptr) srcinfo, src_coef_arrays[ci], +           dst_blk_x + x_crop_blocks, +           (JDIMENSION) compptr->h_samp_factor, FALSE); +        for (offset_x = 0; offset_x < compptr->h_samp_factor; offset_x++) { +          dst_ptr = dst_buffer[offset_y][dst_blk_x + offset_x]; +          if (y_crop_blocks + dst_blk_y < comp_height) { +            /* Block is within the mirrorable area. */ +            src_ptr = src_buffer[offset_x] +            [comp_height - y_crop_blocks - dst_blk_y - offset_y - 1]; +            for (i = 0; i < DCTSIZE; i++) { +            for (j = 0; j < DCTSIZE; j++) { +              dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j]; +              j++; +              dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j]; +            } +            } +          } else { +            /* Edge blocks are transposed but not mirrored. */ +            src_ptr = src_buffer[offset_x] +            [dst_blk_y + offset_y + y_crop_blocks]; +            for (i = 0; i < DCTSIZE; i++) +            for (j = 0; j < DCTSIZE; j++) +              dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j]; +          } +        } +      } +      } +    } +  } +} + + +LOCAL(void) +do_rot_180 (j_decompress_ptr srcinfo, j_compress_ptr dstinfo, +          JDIMENSION x_crop_offset, JDIMENSION y_crop_offset, +          jvirt_barray_ptr *src_coef_arrays, +          jvirt_barray_ptr *dst_coef_arrays) +/* 180 degree rotation is equivalent to + *   1. Vertical mirroring; + *   2. Horizontal mirroring. + * These two steps are merged into a single processing routine. + */ +{ +  JDIMENSION MCU_cols, MCU_rows, comp_width, comp_height, dst_blk_x, dst_blk_y; +  JDIMENSION x_crop_blocks, y_crop_blocks; +  int ci, i, j, offset_y; +  JBLOCKARRAY src_buffer, dst_buffer; +  JBLOCKROW src_row_ptr, dst_row_ptr; +  JCOEFPTR src_ptr, dst_ptr; +  jpeg_component_info *compptr; + +  MCU_cols = srcinfo->output_width / +    (dstinfo->max_h_samp_factor * dstinfo->min_DCT_h_scaled_size); +  MCU_rows = srcinfo->output_height / +    (dstinfo->max_v_samp_factor * dstinfo->min_DCT_v_scaled_size); + +  for (ci = 0; ci < dstinfo->num_components; ci++) { +    compptr = dstinfo->comp_info + ci; +    comp_width = MCU_cols * compptr->h_samp_factor; +    comp_height = MCU_rows * compptr->v_samp_factor; +    x_crop_blocks = x_crop_offset * compptr->h_samp_factor; +    y_crop_blocks = y_crop_offset * compptr->v_samp_factor; +    for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks; +       dst_blk_y += compptr->v_samp_factor) { +      dst_buffer = (*srcinfo->mem->access_virt_barray) +      ((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y, +       (JDIMENSION) compptr->v_samp_factor, TRUE); +      if (y_crop_blocks + dst_blk_y < comp_height) { +      /* Row is within the vertically mirrorable area. */ +      src_buffer = (*srcinfo->mem->access_virt_barray) +        ((j_common_ptr) srcinfo, src_coef_arrays[ci], +         comp_height - y_crop_blocks - dst_blk_y - +         (JDIMENSION) compptr->v_samp_factor, +         (JDIMENSION) compptr->v_samp_factor, FALSE); +      } else { +      /* Bottom-edge rows are only mirrored horizontally. */ +      src_buffer = (*srcinfo->mem->access_virt_barray) +        ((j_common_ptr) srcinfo, src_coef_arrays[ci], +         dst_blk_y + y_crop_blocks, +         (JDIMENSION) compptr->v_samp_factor, FALSE); +      } +      for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { +      dst_row_ptr = dst_buffer[offset_y]; +      if (y_crop_blocks + dst_blk_y < comp_height) { +        /* Row is within the mirrorable area. */ +        src_row_ptr = src_buffer[compptr->v_samp_factor - offset_y - 1]; +        for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks; dst_blk_x++) { +          dst_ptr = dst_row_ptr[dst_blk_x]; +          if (x_crop_blocks + dst_blk_x < comp_width) { +            /* Process the blocks that can be mirrored both ways. */ +            src_ptr = src_row_ptr[comp_width - x_crop_blocks - dst_blk_x - 1]; +            for (i = 0; i < DCTSIZE; i += 2) { +            /* For even row, negate every odd column. */ +            for (j = 0; j < DCTSIZE; j += 2) { +              *dst_ptr++ = *src_ptr++; +              *dst_ptr++ = - *src_ptr++; +            } +            /* For odd row, negate every even column. */ +            for (j = 0; j < DCTSIZE; j += 2) { +              *dst_ptr++ = - *src_ptr++; +              *dst_ptr++ = *src_ptr++; +            } +            } +          } else { +            /* Any remaining right-edge blocks are only mirrored vertically. */ +            src_ptr = src_row_ptr[x_crop_blocks + dst_blk_x]; +            for (i = 0; i < DCTSIZE; i += 2) { +            for (j = 0; j < DCTSIZE; j++) +              *dst_ptr++ = *src_ptr++; +            for (j = 0; j < DCTSIZE; j++) +              *dst_ptr++ = - *src_ptr++; +            } +          } +        } +      } else { +        /* Remaining rows are just mirrored horizontally. */ +        src_row_ptr = src_buffer[offset_y]; +        for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks; dst_blk_x++) { +          if (x_crop_blocks + dst_blk_x < comp_width) { +            /* Process the blocks that can be mirrored. */ +            dst_ptr = dst_row_ptr[dst_blk_x]; +            src_ptr = src_row_ptr[comp_width - x_crop_blocks - dst_blk_x - 1]; +            for (i = 0; i < DCTSIZE2; i += 2) { +            *dst_ptr++ = *src_ptr++; +            *dst_ptr++ = - *src_ptr++; +            } +          } else { +            /* Any remaining right-edge blocks are only copied. */ +            jcopy_block_row(src_row_ptr + dst_blk_x + x_crop_blocks, +                        dst_row_ptr + dst_blk_x, +                        (JDIMENSION) 1); +          } +        } +      } +      } +    } +  } +} + + +LOCAL(void) +do_transverse (j_decompress_ptr srcinfo, j_compress_ptr dstinfo, +             JDIMENSION x_crop_offset, JDIMENSION y_crop_offset, +             jvirt_barray_ptr *src_coef_arrays, +             jvirt_barray_ptr *dst_coef_arrays) +/* Transverse transpose is equivalent to + *   1. 180 degree rotation; + *   2. Transposition; + * or + *   1. Horizontal mirroring; + *   2. Transposition; + *   3. Horizontal mirroring. + * These steps are merged into a single processing routine. + */ +{ +  JDIMENSION MCU_cols, MCU_rows, comp_width, comp_height, dst_blk_x, dst_blk_y; +  JDIMENSION x_crop_blocks, y_crop_blocks; +  int ci, i, j, offset_x, offset_y; +  JBLOCKARRAY src_buffer, dst_buffer; +  JCOEFPTR src_ptr, dst_ptr; +  jpeg_component_info *compptr; + +  MCU_cols = srcinfo->output_height / +    (dstinfo->max_h_samp_factor * dstinfo->min_DCT_h_scaled_size); +  MCU_rows = srcinfo->output_width / +    (dstinfo->max_v_samp_factor * dstinfo->min_DCT_v_scaled_size); + +  for (ci = 0; ci < dstinfo->num_components; ci++) { +    compptr = dstinfo->comp_info + ci; +    comp_width = MCU_cols * compptr->h_samp_factor; +    comp_height = MCU_rows * compptr->v_samp_factor; +    x_crop_blocks = x_crop_offset * compptr->h_samp_factor; +    y_crop_blocks = y_crop_offset * compptr->v_samp_factor; +    for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks; +       dst_blk_y += compptr->v_samp_factor) { +      dst_buffer = (*srcinfo->mem->access_virt_barray) +      ((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y, +       (JDIMENSION) compptr->v_samp_factor, TRUE); +      for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { +      for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks; +           dst_blk_x += compptr->h_samp_factor) { +        if (x_crop_blocks + dst_blk_x < comp_width) { +          /* Block is within the mirrorable area. */ +          src_buffer = (*srcinfo->mem->access_virt_barray) +            ((j_common_ptr) srcinfo, src_coef_arrays[ci], +             comp_width - x_crop_blocks - dst_blk_x - +             (JDIMENSION) compptr->h_samp_factor, +             (JDIMENSION) compptr->h_samp_factor, FALSE); +        } else { +          src_buffer = (*srcinfo->mem->access_virt_barray) +            ((j_common_ptr) srcinfo, src_coef_arrays[ci], +             dst_blk_x + x_crop_blocks, +             (JDIMENSION) compptr->h_samp_factor, FALSE); +        } +        for (offset_x = 0; offset_x < compptr->h_samp_factor; offset_x++) { +          dst_ptr = dst_buffer[offset_y][dst_blk_x + offset_x]; +          if (y_crop_blocks + dst_blk_y < comp_height) { +            if (x_crop_blocks + dst_blk_x < comp_width) { +            /* Block is within the mirrorable area. */ +            src_ptr = src_buffer[compptr->h_samp_factor - offset_x - 1] +              [comp_height - y_crop_blocks - dst_blk_y - offset_y - 1]; +            for (i = 0; i < DCTSIZE; i++) { +              for (j = 0; j < DCTSIZE; j++) { +                dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j]; +                j++; +                dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j]; +              } +              i++; +              for (j = 0; j < DCTSIZE; j++) { +                dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j]; +                j++; +                dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j]; +              } +            } +            } else { +            /* Right-edge blocks are mirrored in y only */ +            src_ptr = src_buffer[offset_x] +              [comp_height - y_crop_blocks - dst_blk_y - offset_y - 1]; +            for (i = 0; i < DCTSIZE; i++) { +              for (j = 0; j < DCTSIZE; j++) { +                dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j]; +                j++; +                dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j]; +              } +            } +            } +          } else { +            if (x_crop_blocks + dst_blk_x < comp_width) { +            /* Bottom-edge blocks are mirrored in x only */ +            src_ptr = src_buffer[compptr->h_samp_factor - offset_x - 1] +              [dst_blk_y + offset_y + y_crop_blocks]; +            for (i = 0; i < DCTSIZE; i++) { +              for (j = 0; j < DCTSIZE; j++) +                dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j]; +              i++; +              for (j = 0; j < DCTSIZE; j++) +                dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j]; +            } +            } else { +            /* At lower right corner, just transpose, no mirroring */ +            src_ptr = src_buffer[offset_x] +              [dst_blk_y + offset_y + y_crop_blocks]; +            for (i = 0; i < DCTSIZE; i++) +              for (j = 0; j < DCTSIZE; j++) +                dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j]; +            } +          } +        } +      } +      } +    } +  } +} + + +/* Parse an unsigned integer: subroutine for jtransform_parse_crop_spec. + * Returns TRUE if valid integer found, FALSE if not. + * *strptr is advanced over the digit string, and *result is set to its value. + */ + +LOCAL(boolean) +jt_read_integer (const char ** strptr, JDIMENSION * result) +{ +  const char * ptr = *strptr; +  JDIMENSION val = 0; + +  for (; isdigit(*ptr); ptr++) { +    val = val * 10 + (JDIMENSION) (*ptr - '0'); +  } +  *result = val; +  if (ptr == *strptr) +    return FALSE;       /* oops, no digits */ +  *strptr = ptr; +  return TRUE; +} + + +/* Parse a crop specification (written in X11 geometry style). + * The routine returns TRUE if the spec string is valid, FALSE if not. + * + * The crop spec string should have the format + *    <width>x<height>{+-}<xoffset>{+-}<yoffset> + * where width, height, xoffset, and yoffset are unsigned integers. + * Each of the elements can be omitted to indicate a default value. + * (A weakness of this style is that it is not possible to omit xoffset + * while specifying yoffset, since they look alike.) + * + * This code is loosely based on XParseGeometry from the X11 distribution. + */ + +GLOBAL(boolean) +jtransform_parse_crop_spec (jpeg_transform_info *info, const char *spec) +{ +  info->crop = FALSE; +  info->crop_width_set = JCROP_UNSET; +  info->crop_height_set = JCROP_UNSET; +  info->crop_xoffset_set = JCROP_UNSET; +  info->crop_yoffset_set = JCROP_UNSET; + +  if (isdigit(*spec)) { +    /* fetch width */ +    if (! jt_read_integer(&spec, &info->crop_width)) +      return FALSE; +    info->crop_width_set = JCROP_POS; +  } +  if (*spec == 'x' || *spec == 'X') {      +    /* fetch height */ +    spec++; +    if (! jt_read_integer(&spec, &info->crop_height)) +      return FALSE; +    info->crop_height_set = JCROP_POS; +  } +  if (*spec == '+' || *spec == '-') { +    /* fetch xoffset */ +    info->crop_xoffset_set = (*spec == '-') ? JCROP_NEG : JCROP_POS; +    spec++; +    if (! jt_read_integer(&spec, &info->crop_xoffset)) +      return FALSE; +  } +  if (*spec == '+' || *spec == '-') { +    /* fetch yoffset */ +    info->crop_yoffset_set = (*spec == '-') ? JCROP_NEG : JCROP_POS; +    spec++; +    if (! jt_read_integer(&spec, &info->crop_yoffset)) +      return FALSE; +  } +  /* We had better have gotten to the end of the string. */ +  if (*spec != '\0') +    return FALSE; +  info->crop = TRUE; +  return TRUE; +} + + +/* Trim off any partial iMCUs on the indicated destination edge */ + +LOCAL(void) +trim_right_edge (jpeg_transform_info *info, JDIMENSION full_width) +{ +  JDIMENSION MCU_cols; + +  MCU_cols = info->output_width / info->iMCU_sample_width; +  if (MCU_cols > 0 && info->x_crop_offset + MCU_cols == +      full_width / info->iMCU_sample_width) +    info->output_width = MCU_cols * info->iMCU_sample_width; +} + +LOCAL(void) +trim_bottom_edge (jpeg_transform_info *info, JDIMENSION full_height) +{ +  JDIMENSION MCU_rows; + +  MCU_rows = info->output_height / info->iMCU_sample_height; +  if (MCU_rows > 0 && info->y_crop_offset + MCU_rows == +      full_height / info->iMCU_sample_height) +    info->output_height = MCU_rows * info->iMCU_sample_height; +} + + +/* Request any required workspace. + * + * This routine figures out the size that the output image will be + * (which implies that all the transform parameters must be set before + * it is called). + * + * We allocate the workspace virtual arrays from the source decompression + * object, so that all the arrays (both the original data and the workspace) + * will be taken into account while making memory management decisions. + * Hence, this routine must be called after jpeg_read_header (which reads + * the image dimensions) and before jpeg_read_coefficients (which realizes + * the source's virtual arrays). + * + * This function returns FALSE right away if -perfect is given + * and transformation is not perfect.  Otherwise returns TRUE. + */ + +GLOBAL(boolean) +jtransform_request_workspace (j_decompress_ptr srcinfo, +                        jpeg_transform_info *info) +{ +  jvirt_barray_ptr *coef_arrays; +  boolean need_workspace, transpose_it; +  jpeg_component_info *compptr; +  JDIMENSION xoffset, yoffset; +  JDIMENSION width_in_iMCUs, height_in_iMCUs; +  JDIMENSION width_in_blocks, height_in_blocks; +  int ci, h_samp_factor, v_samp_factor; + +  /* Determine number of components in output image */ +  if (info->force_grayscale && +      srcinfo->jpeg_color_space == JCS_YCbCr && +      srcinfo->num_components == 3) +    /* We'll only process the first component */ +    info->num_components = 1; +  else +    /* Process all the components */ +    info->num_components = srcinfo->num_components; + +  /* Compute output image dimensions and related values. */ +  jpeg_core_output_dimensions(srcinfo); + +  /* Return right away if -perfect is given and transformation is not perfect. +   */ +  if (info->perfect) { +    if (info->num_components == 1) { +      if (!jtransform_perfect_transform(srcinfo->output_width, +        srcinfo->output_height, +        srcinfo->min_DCT_h_scaled_size, +        srcinfo->min_DCT_v_scaled_size, +        info->transform)) +      return FALSE; +    } else { +      if (!jtransform_perfect_transform(srcinfo->output_width, +        srcinfo->output_height, +        srcinfo->max_h_samp_factor * srcinfo->min_DCT_h_scaled_size, +        srcinfo->max_v_samp_factor * srcinfo->min_DCT_v_scaled_size, +        info->transform)) +      return FALSE; +    } +  } + +  /* If there is only one output component, force the iMCU size to be 1; +   * else use the source iMCU size.  (This allows us to do the right thing +   * when reducing color to grayscale, and also provides a handy way of +   * cleaning up "funny" grayscale images whose sampling factors are not 1x1.) +   */ +  switch (info->transform) { +  case JXFORM_TRANSPOSE: +  case JXFORM_TRANSVERSE: +  case JXFORM_ROT_90: +  case JXFORM_ROT_270: +    info->output_width = srcinfo->output_height; +    info->output_height = srcinfo->output_width; +    if (info->num_components == 1) { +      info->iMCU_sample_width = srcinfo->min_DCT_v_scaled_size; +      info->iMCU_sample_height = srcinfo->min_DCT_h_scaled_size; +    } else { +      info->iMCU_sample_width = +      srcinfo->max_v_samp_factor * srcinfo->min_DCT_v_scaled_size; +      info->iMCU_sample_height = +      srcinfo->max_h_samp_factor * srcinfo->min_DCT_h_scaled_size; +    } +    break; +  default: +    info->output_width = srcinfo->output_width; +    info->output_height = srcinfo->output_height; +    if (info->num_components == 1) { +      info->iMCU_sample_width = srcinfo->min_DCT_h_scaled_size; +      info->iMCU_sample_height = srcinfo->min_DCT_v_scaled_size; +    } else { +      info->iMCU_sample_width = +      srcinfo->max_h_samp_factor * srcinfo->min_DCT_h_scaled_size; +      info->iMCU_sample_height = +      srcinfo->max_v_samp_factor * srcinfo->min_DCT_v_scaled_size; +    } +    break; +  } + +  /* If cropping has been requested, compute the crop area's position and +   * dimensions, ensuring that its upper left corner falls at an iMCU boundary. +   */ +  if (info->crop) { +    /* Insert default values for unset crop parameters */ +    if (info->crop_xoffset_set == JCROP_UNSET) +      info->crop_xoffset = 0; /* default to +0 */ +    if (info->crop_yoffset_set == JCROP_UNSET) +      info->crop_yoffset = 0; /* default to +0 */ +    if (info->crop_xoffset >= info->output_width || +      info->crop_yoffset >= info->output_height) +      ERREXIT(srcinfo, JERR_BAD_CROP_SPEC); +    if (info->crop_width_set == JCROP_UNSET) +      info->crop_width = info->output_width - info->crop_xoffset; +    if (info->crop_height_set == JCROP_UNSET) +      info->crop_height = info->output_height - info->crop_yoffset; +    /* Ensure parameters are valid */ +    if (info->crop_width <= 0 || info->crop_width > info->output_width || +      info->crop_height <= 0 || info->crop_height > info->output_height || +      info->crop_xoffset > info->output_width - info->crop_width || +      info->crop_yoffset > info->output_height - info->crop_height) +      ERREXIT(srcinfo, JERR_BAD_CROP_SPEC); +    /* Convert negative crop offsets into regular offsets */ +    if (info->crop_xoffset_set == JCROP_NEG) +      xoffset = info->output_width - info->crop_width - info->crop_xoffset; +    else +      xoffset = info->crop_xoffset; +    if (info->crop_yoffset_set == JCROP_NEG) +      yoffset = info->output_height - info->crop_height - info->crop_yoffset; +    else +      yoffset = info->crop_yoffset; +    /* Now adjust so that upper left corner falls at an iMCU boundary */ +    info->output_width = +      info->crop_width + (xoffset % info->iMCU_sample_width); +    info->output_height = +      info->crop_height + (yoffset % info->iMCU_sample_height); +    /* Save x/y offsets measured in iMCUs */ +    info->x_crop_offset = xoffset / info->iMCU_sample_width; +    info->y_crop_offset = yoffset / info->iMCU_sample_height; +  } else { +    info->x_crop_offset = 0; +    info->y_crop_offset = 0; +  } + +  /* Figure out whether we need workspace arrays, +   * and if so whether they are transposed relative to the source. +   */ +  need_workspace = FALSE; +  transpose_it = FALSE; +  switch (info->transform) { +  case JXFORM_NONE: +    if (info->x_crop_offset != 0 || info->y_crop_offset != 0) +      need_workspace = TRUE; +    /* No workspace needed if neither cropping nor transforming */ +    break; +  case JXFORM_FLIP_H: +    if (info->trim) +      trim_right_edge(info, srcinfo->output_width); +    if (info->y_crop_offset != 0) +      need_workspace = TRUE; +    /* do_flip_h_no_crop doesn't need a workspace array */ +    break; +  case JXFORM_FLIP_V: +    if (info->trim) +      trim_bottom_edge(info, srcinfo->output_height); +    /* Need workspace arrays having same dimensions as source image. */ +    need_workspace = TRUE; +    break; +  case JXFORM_TRANSPOSE: +    /* transpose does NOT have to trim anything */ +    /* Need workspace arrays having transposed dimensions. */ +    need_workspace = TRUE; +    transpose_it = TRUE; +    break; +  case JXFORM_TRANSVERSE: +    if (info->trim) { +      trim_right_edge(info, srcinfo->output_height); +      trim_bottom_edge(info, srcinfo->output_width); +    } +    /* Need workspace arrays having transposed dimensions. */ +    need_workspace = TRUE; +    transpose_it = TRUE; +    break; +  case JXFORM_ROT_90: +    if (info->trim) +      trim_right_edge(info, srcinfo->output_height); +    /* Need workspace arrays having transposed dimensions. */ +    need_workspace = TRUE; +    transpose_it = TRUE; +    break; +  case JXFORM_ROT_180: +    if (info->trim) { +      trim_right_edge(info, srcinfo->output_width); +      trim_bottom_edge(info, srcinfo->output_height); +    } +    /* Need workspace arrays having same dimensions as source image. */ +    need_workspace = TRUE; +    break; +  case JXFORM_ROT_270: +    if (info->trim) +      trim_bottom_edge(info, srcinfo->output_width); +    /* Need workspace arrays having transposed dimensions. */ +    need_workspace = TRUE; +    transpose_it = TRUE; +    break; +  } + +  /* Allocate workspace if needed. +   * Note that we allocate arrays padded out to the next iMCU boundary, +   * so that transform routines need not worry about missing edge blocks. +   */ +  if (need_workspace) { +    coef_arrays = (jvirt_barray_ptr *) +      (*srcinfo->mem->alloc_small) ((j_common_ptr) srcinfo, JPOOL_IMAGE, +            SIZEOF(jvirt_barray_ptr) * info->num_components); +    width_in_iMCUs = (JDIMENSION) +      jdiv_round_up((long) info->output_width, +                (long) info->iMCU_sample_width); +    height_in_iMCUs = (JDIMENSION) +      jdiv_round_up((long) info->output_height, +                (long) info->iMCU_sample_height); +    for (ci = 0; ci < info->num_components; ci++) { +      compptr = srcinfo->comp_info + ci; +      if (info->num_components == 1) { +      /* we're going to force samp factors to 1x1 in this case */ +      h_samp_factor = v_samp_factor = 1; +      } else if (transpose_it) { +      h_samp_factor = compptr->v_samp_factor; +      v_samp_factor = compptr->h_samp_factor; +      } else { +      h_samp_factor = compptr->h_samp_factor; +      v_samp_factor = compptr->v_samp_factor; +      } +      width_in_blocks = width_in_iMCUs * h_samp_factor; +      height_in_blocks = height_in_iMCUs * v_samp_factor; +      coef_arrays[ci] = (*srcinfo->mem->request_virt_barray) +      ((j_common_ptr) srcinfo, JPOOL_IMAGE, FALSE, +       width_in_blocks, height_in_blocks, (JDIMENSION) v_samp_factor); +    } +    info->workspace_coef_arrays = coef_arrays; +  } else +    info->workspace_coef_arrays = NULL; + +  return TRUE; +} + + +/* Transpose destination image parameters */ + +LOCAL(void) +transpose_critical_parameters (j_compress_ptr dstinfo) +{ +  int tblno, i, j, ci, itemp; +  jpeg_component_info *compptr; +  JQUANT_TBL *qtblptr; +  JDIMENSION jtemp; +  UINT16 qtemp; + +  /* Transpose image dimensions */ +  jtemp = dstinfo->image_width; +  dstinfo->image_width = dstinfo->image_height; +  dstinfo->image_height = jtemp; +  itemp = dstinfo->min_DCT_h_scaled_size; +  dstinfo->min_DCT_h_scaled_size = dstinfo->min_DCT_v_scaled_size; +  dstinfo->min_DCT_v_scaled_size = itemp; + +  /* Transpose sampling factors */ +  for (ci = 0; ci < dstinfo->num_components; ci++) { +    compptr = dstinfo->comp_info + ci; +    itemp = compptr->h_samp_factor; +    compptr->h_samp_factor = compptr->v_samp_factor; +    compptr->v_samp_factor = itemp; +  } + +  /* Transpose quantization tables */ +  for (tblno = 0; tblno < NUM_QUANT_TBLS; tblno++) { +    qtblptr = dstinfo->quant_tbl_ptrs[tblno]; +    if (qtblptr != NULL) { +      for (i = 0; i < DCTSIZE; i++) { +      for (j = 0; j < i; j++) { +        qtemp = qtblptr->quantval[i*DCTSIZE+j]; +        qtblptr->quantval[i*DCTSIZE+j] = qtblptr->quantval[j*DCTSIZE+i]; +        qtblptr->quantval[j*DCTSIZE+i] = qtemp; +      } +      } +    } +  } +} + + +/* Adjust Exif image parameters. + * + * We try to adjust the Tags ExifImageWidth and ExifImageHeight if possible. + */ + +LOCAL(void) +adjust_exif_parameters (JOCTET FAR * data, unsigned int length, +                  JDIMENSION new_width, JDIMENSION new_height) +{ +  boolean is_motorola; /* Flag for byte order */ +  unsigned int number_of_tags, tagnum; +  unsigned int firstoffset, offset; +  JDIMENSION new_value; + +  if (length < 12) return; /* Length of an IFD entry */ + +  /* Discover byte order */ +  if (GETJOCTET(data[0]) == 0x49 && GETJOCTET(data[1]) == 0x49) +    is_motorola = FALSE; +  else if (GETJOCTET(data[0]) == 0x4D && GETJOCTET(data[1]) == 0x4D) +    is_motorola = TRUE; +  else +    return; + +  /* Check Tag Mark */ +  if (is_motorola) { +    if (GETJOCTET(data[2]) != 0) return; +    if (GETJOCTET(data[3]) != 0x2A) return; +  } else { +    if (GETJOCTET(data[3]) != 0) return; +    if (GETJOCTET(data[2]) != 0x2A) return; +  } + +  /* Get first IFD offset (offset to IFD0) */ +  if (is_motorola) { +    if (GETJOCTET(data[4]) != 0) return; +    if (GETJOCTET(data[5]) != 0) return; +    firstoffset = GETJOCTET(data[6]); +    firstoffset <<= 8; +    firstoffset += GETJOCTET(data[7]); +  } else { +    if (GETJOCTET(data[7]) != 0) return; +    if (GETJOCTET(data[6]) != 0) return; +    firstoffset = GETJOCTET(data[5]); +    firstoffset <<= 8; +    firstoffset += GETJOCTET(data[4]); +  } +  if (firstoffset > length - 2) return; /* check end of data segment */ + +  /* Get the number of directory entries contained in this IFD */ +  if (is_motorola) { +    number_of_tags = GETJOCTET(data[firstoffset]); +    number_of_tags <<= 8; +    number_of_tags += GETJOCTET(data[firstoffset+1]); +  } else { +    number_of_tags = GETJOCTET(data[firstoffset+1]); +    number_of_tags <<= 8; +    number_of_tags += GETJOCTET(data[firstoffset]); +  } +  if (number_of_tags == 0) return; +  firstoffset += 2; + +  /* Search for ExifSubIFD offset Tag in IFD0 */ +  for (;;) { +    if (firstoffset > length - 12) return; /* check end of data segment */ +    /* Get Tag number */ +    if (is_motorola) { +      tagnum = GETJOCTET(data[firstoffset]); +      tagnum <<= 8; +      tagnum += GETJOCTET(data[firstoffset+1]); +    } else { +      tagnum = GETJOCTET(data[firstoffset+1]); +      tagnum <<= 8; +      tagnum += GETJOCTET(data[firstoffset]); +    } +    if (tagnum == 0x8769) break; /* found ExifSubIFD offset Tag */ +    if (--number_of_tags == 0) return; +    firstoffset += 12; +  } + +  /* Get the ExifSubIFD offset */ +  if (is_motorola) { +    if (GETJOCTET(data[firstoffset+8]) != 0) return; +    if (GETJOCTET(data[firstoffset+9]) != 0) return; +    offset = GETJOCTET(data[firstoffset+10]); +    offset <<= 8; +    offset += GETJOCTET(data[firstoffset+11]); +  } else { +    if (GETJOCTET(data[firstoffset+11]) != 0) return; +    if (GETJOCTET(data[firstoffset+10]) != 0) return; +    offset = GETJOCTET(data[firstoffset+9]); +    offset <<= 8; +    offset += GETJOCTET(data[firstoffset+8]); +  } +  if (offset > length - 2) return; /* check end of data segment */ + +  /* Get the number of directory entries contained in this SubIFD */ +  if (is_motorola) { +    number_of_tags = GETJOCTET(data[offset]); +    number_of_tags <<= 8; +    number_of_tags += GETJOCTET(data[offset+1]); +  } else { +    number_of_tags = GETJOCTET(data[offset+1]); +    number_of_tags <<= 8; +    number_of_tags += GETJOCTET(data[offset]); +  } +  if (number_of_tags < 2) return; +  offset += 2; + +  /* Search for ExifImageWidth and ExifImageHeight Tags in this SubIFD */ +  do { +    if (offset > length - 12) return; /* check end of data segment */ +    /* Get Tag number */ +    if (is_motorola) { +      tagnum = GETJOCTET(data[offset]); +      tagnum <<= 8; +      tagnum += GETJOCTET(data[offset+1]); +    } else { +      tagnum = GETJOCTET(data[offset+1]); +      tagnum <<= 8; +      tagnum += GETJOCTET(data[offset]); +    } +    if (tagnum == 0xA002 || tagnum == 0xA003) { +      if (tagnum == 0xA002) +      new_value = new_width; /* ExifImageWidth Tag */ +      else +      new_value = new_height; /* ExifImageHeight Tag */ +      if (is_motorola) { +      data[offset+2] = 0; /* Format = unsigned long (4 octets) */ +      data[offset+3] = 4; +      data[offset+4] = 0; /* Number Of Components = 1 */ +      data[offset+5] = 0; +      data[offset+6] = 0; +      data[offset+7] = 1; +      data[offset+8] = 0; +      data[offset+9] = 0; +      data[offset+10] = (JOCTET)((new_value >> 8) & 0xFF); +      data[offset+11] = (JOCTET)(new_value & 0xFF); +      } else { +      data[offset+2] = 4; /* Format = unsigned long (4 octets) */ +      data[offset+3] = 0; +      data[offset+4] = 1; /* Number Of Components = 1 */ +      data[offset+5] = 0; +      data[offset+6] = 0; +      data[offset+7] = 0; +      data[offset+8] = (JOCTET)(new_value & 0xFF); +      data[offset+9] = (JOCTET)((new_value >> 8) & 0xFF); +      data[offset+10] = 0; +      data[offset+11] = 0; +      } +    } +    offset += 12; +  } while (--number_of_tags); +} + + +/* Adjust output image parameters as needed. + * + * This must be called after jpeg_copy_critical_parameters() + * and before jpeg_write_coefficients(). + * + * The return value is the set of virtual coefficient arrays to be written + * (either the ones allocated by jtransform_request_workspace, or the + * original source data arrays).  The caller will need to pass this value + * to jpeg_write_coefficients(). + */ + +GLOBAL(jvirt_barray_ptr *) +jtransform_adjust_parameters (j_decompress_ptr srcinfo, +                        j_compress_ptr dstinfo, +                        jvirt_barray_ptr *src_coef_arrays, +                        jpeg_transform_info *info) +{ +  /* If force-to-grayscale is requested, adjust destination parameters */ +  if (info->force_grayscale) { +    /* First, ensure we have YCbCr or grayscale data, and that the source's +     * Y channel is full resolution.  (No reasonable person would make Y +     * be less than full resolution, so actually coping with that case +     * isn't worth extra code space.  But we check it to avoid crashing.) +     */ +    if (((dstinfo->jpeg_color_space == JCS_YCbCr && +        dstinfo->num_components == 3) || +       (dstinfo->jpeg_color_space == JCS_GRAYSCALE && +        dstinfo->num_components == 1)) && +      srcinfo->comp_info[0].h_samp_factor == srcinfo->max_h_samp_factor && +      srcinfo->comp_info[0].v_samp_factor == srcinfo->max_v_samp_factor) { +      /* We use jpeg_set_colorspace to make sure subsidiary settings get fixed +       * properly.  Among other things, it sets the target h_samp_factor & +       * v_samp_factor to 1, which typically won't match the source. +       * We have to preserve the source's quantization table number, however. +       */ +      int sv_quant_tbl_no = dstinfo->comp_info[0].quant_tbl_no; +      jpeg_set_colorspace(dstinfo, JCS_GRAYSCALE); +      dstinfo->comp_info[0].quant_tbl_no = sv_quant_tbl_no; +    } else { +      /* Sorry, can't do it */ +      ERREXIT(dstinfo, JERR_CONVERSION_NOTIMPL); +    } +  } else if (info->num_components == 1) { +    /* For a single-component source, we force the destination sampling factors +     * to 1x1, with or without force_grayscale.  This is useful because some +     * decoders choke on grayscale images with other sampling factors. +     */ +    dstinfo->comp_info[0].h_samp_factor = 1; +    dstinfo->comp_info[0].v_samp_factor = 1; +  } + +  /* Correct the destination's image dimensions as necessary +   * for rotate/flip, resize, and crop operations. +   */ +  dstinfo->jpeg_width = info->output_width; +  dstinfo->jpeg_height = info->output_height; + +  /* Transpose destination image parameters */ +  switch (info->transform) { +  case JXFORM_TRANSPOSE: +  case JXFORM_TRANSVERSE: +  case JXFORM_ROT_90: +  case JXFORM_ROT_270: +    transpose_critical_parameters(dstinfo); +    break; +  default: +    break; +  } + +  /* Adjust Exif properties */ +  if (srcinfo->marker_list != NULL && +      srcinfo->marker_list->marker == JPEG_APP0+1 && +      srcinfo->marker_list->data_length >= 6 && +      GETJOCTET(srcinfo->marker_list->data[0]) == 0x45 && +      GETJOCTET(srcinfo->marker_list->data[1]) == 0x78 && +      GETJOCTET(srcinfo->marker_list->data[2]) == 0x69 && +      GETJOCTET(srcinfo->marker_list->data[3]) == 0x66 && +      GETJOCTET(srcinfo->marker_list->data[4]) == 0 && +      GETJOCTET(srcinfo->marker_list->data[5]) == 0) { +    /* Suppress output of JFIF marker */ +    dstinfo->write_JFIF_header = FALSE; +    /* Adjust Exif image parameters */ +    if (dstinfo->jpeg_width != srcinfo->image_width || +      dstinfo->jpeg_height != srcinfo->image_height) +      /* Align data segment to start of TIFF structure for parsing */ +      adjust_exif_parameters(srcinfo->marker_list->data + 6, +      srcinfo->marker_list->data_length - 6, +      dstinfo->jpeg_width, dstinfo->jpeg_height); +  } + +  /* Return the appropriate output data set */ +  if (info->workspace_coef_arrays != NULL) +    return info->workspace_coef_arrays; +  return src_coef_arrays; +} + + +/* Execute the actual transformation, if any. + * + * This must be called *after* jpeg_write_coefficients, because it depends + * on jpeg_write_coefficients to have computed subsidiary values such as + * the per-component width and height fields in the destination object. + * + * Note that some transformations will modify the source data arrays! + */ + +GLOBAL(void) +jtransform_execute_transform (j_decompress_ptr srcinfo, +                        j_compress_ptr dstinfo, +                        jvirt_barray_ptr *src_coef_arrays, +                        jpeg_transform_info *info) +{ +  jvirt_barray_ptr *dst_coef_arrays = info->workspace_coef_arrays; + +  /* Note: conditions tested here should match those in switch statement +   * in jtransform_request_workspace() +   */ +  switch (info->transform) { +  case JXFORM_NONE: +    if (info->x_crop_offset != 0 || info->y_crop_offset != 0) +      do_crop(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset, +            src_coef_arrays, dst_coef_arrays); +    break; +  case JXFORM_FLIP_H: +    if (info->y_crop_offset != 0) +      do_flip_h(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset, +            src_coef_arrays, dst_coef_arrays); +    else +      do_flip_h_no_crop(srcinfo, dstinfo, info->x_crop_offset, +                  src_coef_arrays); +    break; +  case JXFORM_FLIP_V: +    do_flip_v(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset, +            src_coef_arrays, dst_coef_arrays); +    break; +  case JXFORM_TRANSPOSE: +    do_transpose(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset, +             src_coef_arrays, dst_coef_arrays); +    break; +  case JXFORM_TRANSVERSE: +    do_transverse(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset, +              src_coef_arrays, dst_coef_arrays); +    break; +  case JXFORM_ROT_90: +    do_rot_90(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset, +            src_coef_arrays, dst_coef_arrays); +    break; +  case JXFORM_ROT_180: +    do_rot_180(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset, +             src_coef_arrays, dst_coef_arrays); +    break; +  case JXFORM_ROT_270: +    do_rot_270(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset, +             src_coef_arrays, dst_coef_arrays); +    break; +  } +} + +/* jtransform_perfect_transform + * + * Determine whether lossless transformation is perfectly + * possible for a specified image and transformation. + * + * Inputs: + *   image_width, image_height: source image dimensions. + *   MCU_width, MCU_height: pixel dimensions of MCU. + *   transform: transformation identifier. + * Parameter sources from initialized jpeg_struct + * (after reading source header): + *   image_width = cinfo.image_width + *   image_height = cinfo.image_height + *   MCU_width = cinfo.max_h_samp_factor * cinfo.block_size + *   MCU_height = cinfo.max_v_samp_factor * cinfo.block_size + * Result: + *   TRUE = perfect transformation possible + *   FALSE = perfect transformation not possible + *           (may use custom action then) + */ + +GLOBAL(boolean) +jtransform_perfect_transform(JDIMENSION image_width, JDIMENSION image_height, +                       int MCU_width, int MCU_height, +                       JXFORM_CODE transform) +{ +  boolean result = TRUE; /* initialize TRUE */ + +  switch (transform) { +  case JXFORM_FLIP_H: +  case JXFORM_ROT_270: +    if (image_width % (JDIMENSION) MCU_width) +      result = FALSE; +    break; +  case JXFORM_FLIP_V: +  case JXFORM_ROT_90: +    if (image_height % (JDIMENSION) MCU_height) +      result = FALSE; +    break; +  case JXFORM_TRANSVERSE: +  case JXFORM_ROT_180: +    if (image_width % (JDIMENSION) MCU_width) +      result = FALSE; +    if (image_height % (JDIMENSION) MCU_height) +      result = FALSE; +    break; +  default: +    break; +  } + +  return result; +} + +#endif /* TRANSFORMS_SUPPORTED */ + + +/* Setup decompression object to save desired markers in memory. + * This must be called before jpeg_read_header() to have the desired effect. + */ + +GLOBAL(void) +jcopy_markers_setup (j_decompress_ptr srcinfo, JCOPY_OPTION option) +{ +#ifdef SAVE_MARKERS_SUPPORTED +  int m; + +  /* Save comments except under NONE option */ +  if (option != JCOPYOPT_NONE) { +    jpeg_save_markers(srcinfo, JPEG_COM, 0xFFFF); +  } +  /* Save all types of APPn markers iff ALL option */ +  if (option == JCOPYOPT_ALL) { +    for (m = 0; m < 16; m++) +      jpeg_save_markers(srcinfo, JPEG_APP0 + m, 0xFFFF); +  } +#endif /* SAVE_MARKERS_SUPPORTED */ +} + +/* Copy markers saved in the given source object to the destination object. + * This should be called just after jpeg_start_compress() or + * jpeg_write_coefficients(). + * Note that those routines will have written the SOI, and also the + * JFIF APP0 or Adobe APP14 markers if selected. + */ + +GLOBAL(void) +jcopy_markers_execute (j_decompress_ptr srcinfo, j_compress_ptr dstinfo, +                   JCOPY_OPTION option) +{ +  jpeg_saved_marker_ptr marker; + +  /* In the current implementation, we don't actually need to examine the +   * option flag here; we just copy everything that got saved. +   * But to avoid confusion, we do not output JFIF and Adobe APP14 markers +   * if the encoder library already wrote one. +   */ +  for (marker = srcinfo->marker_list; marker != NULL; marker = marker->next) { +    if (dstinfo->write_JFIF_header && +      marker->marker == JPEG_APP0 && +      marker->data_length >= 5 && +      GETJOCTET(marker->data[0]) == 0x4A && +      GETJOCTET(marker->data[1]) == 0x46 && +      GETJOCTET(marker->data[2]) == 0x49 && +      GETJOCTET(marker->data[3]) == 0x46 && +      GETJOCTET(marker->data[4]) == 0) +      continue;               /* reject duplicate JFIF */ +    if (dstinfo->write_Adobe_marker && +      marker->marker == JPEG_APP0+14 && +      marker->data_length >= 5 && +      GETJOCTET(marker->data[0]) == 0x41 && +      GETJOCTET(marker->data[1]) == 0x64 && +      GETJOCTET(marker->data[2]) == 0x6F && +      GETJOCTET(marker->data[3]) == 0x62 && +      GETJOCTET(marker->data[4]) == 0x65) +      continue;               /* reject duplicate Adobe */ +#ifdef NEED_FAR_POINTERS +    /* We could use jpeg_write_marker if the data weren't FAR... */ +    { +      unsigned int i; +      jpeg_write_m_header(dstinfo, marker->marker, marker->data_length); +      for (i = 0; i < marker->data_length; i++) +      jpeg_write_m_byte(dstinfo, marker->data[i]); +    } +#else +    jpeg_write_marker(dstinfo, marker->marker, +                  marker->data, marker->data_length); +#endif +  } +} + +} // namespace Digikam + +#else // JPEG_LIB_VERSION >= 80 + +/* + * transupp.c + * + * Copyright (C) 1997, Thomas G. Lane. <tgl@netcom.com> + * This file is part of the Independent JPEG Group's software. + * For conditions of distribution and use, see the accompanying README file. + * + * This file contains image transformation routines and other utility code + * used by the jpegtran sample application.  These are NOT part of the core + * JPEG library.  But we keep these routines separate from jpegtran.c to + * ease the task of maintaining jpegtran-like programs that have other user + * interfaces. + */ + +// Local includes. + +#include "transupp.h"		/* My own external interface */ + +namespace Digikam +{ + +#if TRANSFORMS_SUPPORTED + +/* + * Lossless image transformation routines.  These routines work on DCT + * coefficient arrays and thus do not require any lossy decompression + * or recompression of the image. + * Thanks to Guido Vollbeding for the initial design and code of this feature. + * + * Horizontal flipping is done in-place, using a single top-to-bottom + * pass through the virtual source array.  It will thus be much the + * fastest option for images larger than main memory. + * + * The other routines require a set of destination virtual arrays, so they + * need twice as much memory as jpegtran normally does.  The destination + * arrays are always written in normal scan order (top to bottom) because + * the virtual array manager expects this.  The source arrays will be scanned + * in the corresponding order, which means multiple passes through the source + * arrays for most of the transforms.  That could result in much thrashing + * if the image is larger than main memory. + * + * Some notes about the operating environment of the individual transform + * routines: + * 1. Both the source and destination virtual arrays are allocated from the + *    source JPEG object, and therefore should be manipulated by calling the + *    source's memory manager. + * 2. The destination's component count should be used.  It may be smaller + *    than the source's when forcing to grayscale. + * 3. Likewise the destination's sampling factors should be used.  When + *    forcing to grayscale the destination's sampling factors will be all 1, + *    and we may as well take that as the effective iMCU size. + * 4. When "trim" is in effect, the destination's dimensions will be the + *    trimmed values but the source's will be untrimmed. + * 5. All the routines assume that the source and destination buffers are + *    padded out to a full iMCU boundary.  This is true, although for the + *    source buffer it is an undocumented property of jdcoefct.c. + * Notes 2,3,4 boil down to this: generally we should use the destination's + * dimensions and ignore the source's. + */ + + +LOCAL(void) +do_flip_h (j_decompress_ptr srcinfo, j_compress_ptr dstinfo, +	   jvirt_barray_ptr *src_coef_arrays) +/* Horizontal flip; done in-place, so no separate dest array is required */ +{ +  JDIMENSION MCU_cols, comp_width, blk_x, blk_y; +  int ci, k, offset_y; +  JBLOCKARRAY buffer; +  JCOEFPTR ptr1, ptr2; +  JCOEF temp1, temp2; +  jpeg_component_info *compptr; + +  /* Horizontal mirroring of DCT blocks is accomplished by swapping +   * pairs of blocks in-place.  Within a DCT block, we perform horizontal +   * mirroring by changing the signs of odd-numbered columns. +   * Partial iMCUs at the right edge are left untouched. +   */ +  MCU_cols = dstinfo->image_width / (dstinfo->max_h_samp_factor * DCTSIZE); + +  for (ci = 0; ci < dstinfo->num_components; ci++) { +    compptr = dstinfo->comp_info + ci; +    comp_width = MCU_cols * compptr->h_samp_factor; +    for (blk_y = 0; blk_y < compptr->height_in_blocks; +	 blk_y += compptr->v_samp_factor) { +      buffer = (*srcinfo->mem->access_virt_barray) +	((j_common_ptr) srcinfo, src_coef_arrays[ci], blk_y, +	 (JDIMENSION) compptr->v_samp_factor, true); +      for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { +	for (blk_x = 0; blk_x * 2 < comp_width; blk_x++) { +	  ptr1 = buffer[offset_y][blk_x]; +	  ptr2 = buffer[offset_y][comp_width - blk_x - 1]; +	  /* this unrolled loop doesn't need to know which row it's on... */ +	  for (k = 0; k < DCTSIZE2; k += 2) { +	    temp1 = *ptr1;	/* swap even column */ +	    temp2 = *ptr2; +	    *ptr1++ = temp2; +	    *ptr2++ = temp1; +	    temp1 = *ptr1;	/* swap odd column with sign change */ +	    temp2 = *ptr2; +	    *ptr1++ = -temp2; +	    *ptr2++ = -temp1; +	  } +	} +      } +    } +  } +} + + +LOCAL(void) +do_flip_v (j_decompress_ptr srcinfo, j_compress_ptr dstinfo, +	   jvirt_barray_ptr *src_coef_arrays, +	   jvirt_barray_ptr *dst_coef_arrays) +/* Vertical flip */ +{ +  JDIMENSION MCU_rows, comp_height, dst_blk_x, dst_blk_y; +  int ci, i, j, offset_y; +  JBLOCKARRAY src_buffer, dst_buffer; +  JBLOCKROW src_row_ptr, dst_row_ptr; +  JCOEFPTR src_ptr, dst_ptr; +  jpeg_component_info *compptr; + +  /* We output into a separate array because we can't touch different +   * rows of the source virtual array simultaneously.  Otherwise, this +   * is a pretty straightforward analog of horizontal flip. +   * Within a DCT block, vertical mirroring is done by changing the signs +   * of odd-numbered rows. +   * Partial iMCUs at the bottom edge are copied verbatim. +   */ +  MCU_rows = dstinfo->image_height / (dstinfo->max_v_samp_factor * DCTSIZE); + +  for (ci = 0; ci < dstinfo->num_components; ci++) { +    compptr = dstinfo->comp_info + ci; +    comp_height = MCU_rows * compptr->v_samp_factor; +    for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks; +	 dst_blk_y += compptr->v_samp_factor) { +      dst_buffer = (*srcinfo->mem->access_virt_barray) +	((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y, +	 (JDIMENSION) compptr->v_samp_factor, true); +      if (dst_blk_y < comp_height) { +	/* Row is within the mirrorable area. */ +	src_buffer = (*srcinfo->mem->access_virt_barray) +	  ((j_common_ptr) srcinfo, src_coef_arrays[ci], +	   comp_height - dst_blk_y - (JDIMENSION) compptr->v_samp_factor, +	   (JDIMENSION) compptr->v_samp_factor, false); +      } else { +	/* Bottom-edge blocks will be copied verbatim. */ +	src_buffer = (*srcinfo->mem->access_virt_barray) +	  ((j_common_ptr) srcinfo, src_coef_arrays[ci], dst_blk_y, +	   (JDIMENSION) compptr->v_samp_factor, false); +      } +      for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { +	if (dst_blk_y < comp_height) { +	  /* Row is within the mirrorable area. */ +	  dst_row_ptr = dst_buffer[offset_y]; +	  src_row_ptr = src_buffer[compptr->v_samp_factor - offset_y - 1]; +	  for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks; +	       dst_blk_x++) { +	    dst_ptr = dst_row_ptr[dst_blk_x]; +	    src_ptr = src_row_ptr[dst_blk_x]; +	    for (i = 0; i < DCTSIZE; i += 2) { +	      /* copy even row */ +	      for (j = 0; j < DCTSIZE; j++) +		*dst_ptr++ = *src_ptr++; +	      /* copy odd row with sign change */ +	      for (j = 0; j < DCTSIZE; j++) +		*dst_ptr++ = - *src_ptr++; +	    } +	  } +	} else { +	  /* Just copy row verbatim. */ +	  jcopy_block_row(src_buffer[offset_y], dst_buffer[offset_y], +			  compptr->width_in_blocks); +	} +      } +    } +  } +} + + +LOCAL(void) +do_transpose (j_decompress_ptr srcinfo, j_compress_ptr dstinfo, +	      jvirt_barray_ptr *src_coef_arrays, +	      jvirt_barray_ptr *dst_coef_arrays) +/* Transpose source into destination */ +{ +  JDIMENSION dst_blk_x, dst_blk_y; +  int ci, i, j, offset_x, offset_y; +  JBLOCKARRAY src_buffer, dst_buffer; +  JCOEFPTR src_ptr, dst_ptr; +  jpeg_component_info *compptr; + +  /* Transposing pixels within a block just requires transposing the +   * DCT coefficients. +   * Partial iMCUs at the edges require no special treatment; we simply +   * process all the available DCT blocks for every component. +   */ +  for (ci = 0; ci < dstinfo->num_components; ci++) { +    compptr = dstinfo->comp_info + ci; +    for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks; +	 dst_blk_y += compptr->v_samp_factor) { +      dst_buffer = (*srcinfo->mem->access_virt_barray) +	((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y, +	 (JDIMENSION) compptr->v_samp_factor, true); +      for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { +	for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks; +	     dst_blk_x += compptr->h_samp_factor) { +	  src_buffer = (*srcinfo->mem->access_virt_barray) +	    ((j_common_ptr) srcinfo, src_coef_arrays[ci], dst_blk_x, +	     (JDIMENSION) compptr->h_samp_factor, false); +	  for (offset_x = 0; offset_x < compptr->h_samp_factor; offset_x++) { +	    src_ptr = src_buffer[offset_x][dst_blk_y + offset_y]; +	    dst_ptr = dst_buffer[offset_y][dst_blk_x + offset_x]; +	    for (i = 0; i < DCTSIZE; i++) +	      for (j = 0; j < DCTSIZE; j++) +		dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j]; +	  } +	} +      } +    } +  } +} + + +LOCAL(void) +do_rot_90 (j_decompress_ptr srcinfo, j_compress_ptr dstinfo, +	   jvirt_barray_ptr *src_coef_arrays, +	   jvirt_barray_ptr *dst_coef_arrays) +/* 90 degree rotation is equivalent to + *   1. Transposing the image; + *   2. Horizontal mirroring. + * These two steps are merged into a single processing routine. + */ +{ +  JDIMENSION MCU_cols, comp_width, dst_blk_x, dst_blk_y; +  int ci, i, j, offset_x, offset_y; +  JBLOCKARRAY src_buffer, dst_buffer; +  JCOEFPTR src_ptr, dst_ptr; +  jpeg_component_info *compptr; + +  /* Because of the horizontal mirror step, we can't process partial iMCUs +   * at the (output) right edge properly.  They just get transposed and +   * not mirrored. +   */ +  MCU_cols = dstinfo->image_width / (dstinfo->max_h_samp_factor * DCTSIZE); + +  for (ci = 0; ci < dstinfo->num_components; ci++) { +    compptr = dstinfo->comp_info + ci; +    comp_width = MCU_cols * compptr->h_samp_factor; +    for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks; +	 dst_blk_y += compptr->v_samp_factor) { +      dst_buffer = (*srcinfo->mem->access_virt_barray) +	((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y, +	 (JDIMENSION) compptr->v_samp_factor, true); +      for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { +	for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks; +	     dst_blk_x += compptr->h_samp_factor) { +	  src_buffer = (*srcinfo->mem->access_virt_barray) +	    ((j_common_ptr) srcinfo, src_coef_arrays[ci], dst_blk_x, +	     (JDIMENSION) compptr->h_samp_factor, false); +	  for (offset_x = 0; offset_x < compptr->h_samp_factor; offset_x++) { +	    src_ptr = src_buffer[offset_x][dst_blk_y + offset_y]; +	    if (dst_blk_x < comp_width) { +	      /* Block is within the mirrorable area. */ +	      dst_ptr = dst_buffer[offset_y] +		[comp_width - dst_blk_x - offset_x - 1]; +	      for (i = 0; i < DCTSIZE; i++) { +		for (j = 0; j < DCTSIZE; j++) +		  dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j]; +		i++; +		for (j = 0; j < DCTSIZE; j++) +		  dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j]; +	      } +	    } else { +	      /* Edge blocks are transposed but not mirrored. */ +	      dst_ptr = dst_buffer[offset_y][dst_blk_x + offset_x]; +	      for (i = 0; i < DCTSIZE; i++) +		for (j = 0; j < DCTSIZE; j++) +		  dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j]; +	    } +	  } +	} +      } +    } +  } +} + + +LOCAL(void) +do_rot_270 (j_decompress_ptr srcinfo, j_compress_ptr dstinfo, +	    jvirt_barray_ptr *src_coef_arrays, +	    jvirt_barray_ptr *dst_coef_arrays) +/* 270 degree rotation is equivalent to + *   1. Horizontal mirroring; + *   2. Transposing the image. + * These two steps are merged into a single processing routine. + */ +{ +  JDIMENSION MCU_rows, comp_height, dst_blk_x, dst_blk_y; +  int ci, i, j, offset_x, offset_y; +  JBLOCKARRAY src_buffer, dst_buffer; +  JCOEFPTR src_ptr, dst_ptr; +  jpeg_component_info *compptr; + +  /* Because of the horizontal mirror step, we can't process partial iMCUs +   * at the (output) bottom edge properly.  They just get transposed and +   * not mirrored. +   */ +  MCU_rows = dstinfo->image_height / (dstinfo->max_v_samp_factor * DCTSIZE); + +  for (ci = 0; ci < dstinfo->num_components; ci++) { +    compptr = dstinfo->comp_info + ci; +    comp_height = MCU_rows * compptr->v_samp_factor; +    for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks; +	 dst_blk_y += compptr->v_samp_factor) { +      dst_buffer = (*srcinfo->mem->access_virt_barray) +	((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y, +	 (JDIMENSION) compptr->v_samp_factor, true); +      for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { +	for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks; +	     dst_blk_x += compptr->h_samp_factor) { +	  src_buffer = (*srcinfo->mem->access_virt_barray) +	    ((j_common_ptr) srcinfo, src_coef_arrays[ci], dst_blk_x, +	     (JDIMENSION) compptr->h_samp_factor, false); +	  for (offset_x = 0; offset_x < compptr->h_samp_factor; offset_x++) { +	    dst_ptr = dst_buffer[offset_y][dst_blk_x + offset_x]; +	    if (dst_blk_y < comp_height) { +	      /* Block is within the mirrorable area. */ +	      src_ptr = src_buffer[offset_x] +		[comp_height - dst_blk_y - offset_y - 1]; +	      for (i = 0; i < DCTSIZE; i++) { +		for (j = 0; j < DCTSIZE; j++) { +		  dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j]; +		  j++; +		  dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j]; +		} +	      } +	    } else { +	      /* Edge blocks are transposed but not mirrored. */ +	      src_ptr = src_buffer[offset_x][dst_blk_y + offset_y]; +	      for (i = 0; i < DCTSIZE; i++) +		for (j = 0; j < DCTSIZE; j++) +		  dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j]; +	    } +	  } +	} +      } +    } +  } +} + + +LOCAL(void) +do_rot_180 (j_decompress_ptr srcinfo, j_compress_ptr dstinfo, +	    jvirt_barray_ptr *src_coef_arrays, +	    jvirt_barray_ptr *dst_coef_arrays) +/* 180 degree rotation is equivalent to + *   1. Vertical mirroring; + *   2. Horizontal mirroring. + * These two steps are merged into a single processing routine. + */ +{ +  JDIMENSION MCU_cols, MCU_rows, comp_width, comp_height, dst_blk_x, dst_blk_y; +  int ci, i, j, offset_y; +  JBLOCKARRAY src_buffer, dst_buffer; +  JBLOCKROW src_row_ptr, dst_row_ptr; +  JCOEFPTR src_ptr, dst_ptr; +  jpeg_component_info *compptr; + +  MCU_cols = dstinfo->image_width / (dstinfo->max_h_samp_factor * DCTSIZE); +  MCU_rows = dstinfo->image_height / (dstinfo->max_v_samp_factor * DCTSIZE); + +  for (ci = 0; ci < dstinfo->num_components; ci++) { +    compptr = dstinfo->comp_info + ci; +    comp_width = MCU_cols * compptr->h_samp_factor; +    comp_height = MCU_rows * compptr->v_samp_factor; +    for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks; +	 dst_blk_y += compptr->v_samp_factor) { +      dst_buffer = (*srcinfo->mem->access_virt_barray) +	((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y, +	 (JDIMENSION) compptr->v_samp_factor, true); +      if (dst_blk_y < comp_height) { +	/* Row is within the vertically mirrorable area. */ +	src_buffer = (*srcinfo->mem->access_virt_barray) +	  ((j_common_ptr) srcinfo, src_coef_arrays[ci], +	   comp_height - dst_blk_y - (JDIMENSION) compptr->v_samp_factor, +	   (JDIMENSION) compptr->v_samp_factor, false); +      } else { +	/* Bottom-edge rows are only mirrored horizontally. */ +	src_buffer = (*srcinfo->mem->access_virt_barray) +	  ((j_common_ptr) srcinfo, src_coef_arrays[ci], dst_blk_y, +	   (JDIMENSION) compptr->v_samp_factor, false); +      } +      for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { +	if (dst_blk_y < comp_height) { +	  /* Row is within the mirrorable area. */ +	  dst_row_ptr = dst_buffer[offset_y]; +	  src_row_ptr = src_buffer[compptr->v_samp_factor - offset_y - 1]; +	  /* Process the blocks that can be mirrored both ways. */ +	  for (dst_blk_x = 0; dst_blk_x < comp_width; dst_blk_x++) { +	    dst_ptr = dst_row_ptr[dst_blk_x]; +	    src_ptr = src_row_ptr[comp_width - dst_blk_x - 1]; +	    for (i = 0; i < DCTSIZE; i += 2) { +	      /* For even row, negate every odd column. */ +	      for (j = 0; j < DCTSIZE; j += 2) { +		*dst_ptr++ = *src_ptr++; +		*dst_ptr++ = - *src_ptr++; +	      } +	      /* For odd row, negate every even column. */ +	      for (j = 0; j < DCTSIZE; j += 2) { +		*dst_ptr++ = - *src_ptr++; +		*dst_ptr++ = *src_ptr++; +	      } +	    } +	  } +	  /* Any remaining right-edge blocks are only mirrored vertically. */ +	  for (; dst_blk_x < compptr->width_in_blocks; dst_blk_x++) { +	    dst_ptr = dst_row_ptr[dst_blk_x]; +	    src_ptr = src_row_ptr[dst_blk_x]; +	    for (i = 0; i < DCTSIZE; i += 2) { +	      for (j = 0; j < DCTSIZE; j++) +		*dst_ptr++ = *src_ptr++; +	      for (j = 0; j < DCTSIZE; j++) +		*dst_ptr++ = - *src_ptr++; +	    } +	  } +	} else { +	  /* Remaining rows are just mirrored horizontally. */ +	  dst_row_ptr = dst_buffer[offset_y]; +	  src_row_ptr = src_buffer[offset_y]; +	  /* Process the blocks that can be mirrored. */ +	  for (dst_blk_x = 0; dst_blk_x < comp_width; dst_blk_x++) { +	    dst_ptr = dst_row_ptr[dst_blk_x]; +	    src_ptr = src_row_ptr[comp_width - dst_blk_x - 1]; +	    for (i = 0; i < DCTSIZE2; i += 2) { +	      *dst_ptr++ = *src_ptr++; +	      *dst_ptr++ = - *src_ptr++; +	    } +	  } +	  /* Any remaining right-edge blocks are only copied. */ +	  for (; dst_blk_x < compptr->width_in_blocks; dst_blk_x++) { +	    dst_ptr = dst_row_ptr[dst_blk_x]; +	    src_ptr = src_row_ptr[dst_blk_x]; +	    for (i = 0; i < DCTSIZE2; i++) +	      *dst_ptr++ = *src_ptr++; +	  } +	} +      } +    } +  } +} + + +LOCAL(void) +do_transverse (j_decompress_ptr srcinfo, j_compress_ptr dstinfo, +	       jvirt_barray_ptr *src_coef_arrays, +	       jvirt_barray_ptr *dst_coef_arrays) +/* Transverse transpose is equivalent to + *   1. 180 degree rotation; + *   2. Transposition; + * or + *   1. Horizontal mirroring; + *   2. Transposition; + *   3. Horizontal mirroring. + * These steps are merged into a single processing routine. + */ +{ +  JDIMENSION MCU_cols, MCU_rows, comp_width, comp_height, dst_blk_x, dst_blk_y; +  int ci, i, j, offset_x, offset_y; +  JBLOCKARRAY src_buffer, dst_buffer; +  JCOEFPTR src_ptr, dst_ptr; +  jpeg_component_info *compptr; + +  MCU_cols = dstinfo->image_width / (dstinfo->max_h_samp_factor * DCTSIZE); +  MCU_rows = dstinfo->image_height / (dstinfo->max_v_samp_factor * DCTSIZE); + +  for (ci = 0; ci < dstinfo->num_components; ci++) { +    compptr = dstinfo->comp_info + ci; +    comp_width = MCU_cols * compptr->h_samp_factor; +    comp_height = MCU_rows * compptr->v_samp_factor; +    for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks; +	 dst_blk_y += compptr->v_samp_factor) { +      dst_buffer = (*srcinfo->mem->access_virt_barray) +	((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y, +	 (JDIMENSION) compptr->v_samp_factor, true); +      for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { +	for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks; +	     dst_blk_x += compptr->h_samp_factor) { +	  src_buffer = (*srcinfo->mem->access_virt_barray) +	    ((j_common_ptr) srcinfo, src_coef_arrays[ci], dst_blk_x, +	     (JDIMENSION) compptr->h_samp_factor, false); +	  for (offset_x = 0; offset_x < compptr->h_samp_factor; offset_x++) { +	    if (dst_blk_y < comp_height) { +	      src_ptr = src_buffer[offset_x] +		[comp_height - dst_blk_y - offset_y - 1]; +	      if (dst_blk_x < comp_width) { +		/* Block is within the mirrorable area. */ +		dst_ptr = dst_buffer[offset_y] +		  [comp_width - dst_blk_x - offset_x - 1]; +		for (i = 0; i < DCTSIZE; i++) { +		  for (j = 0; j < DCTSIZE; j++) { +		    dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j]; +		    j++; +		    dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j]; +		  } +		  i++; +		  for (j = 0; j < DCTSIZE; j++) { +		    dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j]; +		    j++; +		    dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j]; +		  } +		} +	      } else { +		/* Right-edge blocks are mirrored in y only */ +		dst_ptr = dst_buffer[offset_y][dst_blk_x + offset_x]; +		for (i = 0; i < DCTSIZE; i++) { +		  for (j = 0; j < DCTSIZE; j++) { +		    dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j]; +		    j++; +		    dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j]; +		  } +		} +	      } +	    } else { +	      src_ptr = src_buffer[offset_x][dst_blk_y + offset_y]; +	      if (dst_blk_x < comp_width) { +		/* Bottom-edge blocks are mirrored in x only */ +		dst_ptr = dst_buffer[offset_y] +		  [comp_width - dst_blk_x - offset_x - 1]; +		for (i = 0; i < DCTSIZE; i++) { +		  for (j = 0; j < DCTSIZE; j++) +		    dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j]; +		  i++; +		  for (j = 0; j < DCTSIZE; j++) +		    dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j]; +		} +	      } else { +		/* At lower right corner, just transpose, no mirroring */ +		dst_ptr = dst_buffer[offset_y][dst_blk_x + offset_x]; +		for (i = 0; i < DCTSIZE; i++) +		  for (j = 0; j < DCTSIZE; j++) +		    dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j]; +	      } +	    } +	  } +	} +      } +    } +  } +} + + +/* Request any required workspace. + * + * We allocate the workspace virtual arrays from the source decompression + * object, so that all the arrays (both the original data and the workspace) + * will be taken into account while making memory management decisions. + * Hence, this routine must be called after jpeg_read_header (which reads + * the image dimensions) and before jpeg_read_coefficients (which realizes + * the source's virtual arrays). + */ + +GLOBAL(void) +jtransform_request_workspace (j_decompress_ptr srcinfo, +			      jpeg_transform_info *info) +{ +  jvirt_barray_ptr *coef_arrays = NULL; +  jpeg_component_info *compptr; +  int ci; + +  if (info->force_grayscale && +      srcinfo->jpeg_color_space == JCS_YCbCr && +      srcinfo->num_components == 3) { +    /* We'll only process the first component */ +    info->num_components = 1; +  } else { +    /* Process all the components */ +    info->num_components = srcinfo->num_components; +  } + +  switch (info->transform) { +  case JXFORM_NONE: +  case JXFORM_FLIP_H: +    /* Don't need a workspace array */ +    break; +  case JXFORM_FLIP_V: +  case JXFORM_ROT_180: +    /* Need workspace arrays having same dimensions as source image. +     * Note that we allocate arrays padded out to the next iMCU boundary, +     * so that transform routines need not worry about missing edge blocks. +     */ +    coef_arrays = (jvirt_barray_ptr *) +      (*srcinfo->mem->alloc_small) ((j_common_ptr) srcinfo, JPOOL_IMAGE, +	SIZEOF(jvirt_barray_ptr) * info->num_components); +    for (ci = 0; ci < info->num_components; ci++) { +      compptr = srcinfo->comp_info + ci; +      coef_arrays[ci] = (*srcinfo->mem->request_virt_barray) +	((j_common_ptr) srcinfo, JPOOL_IMAGE, false, +	 (JDIMENSION) jround_up((long) compptr->width_in_blocks, +				(long) compptr->h_samp_factor), +	 (JDIMENSION) jround_up((long) compptr->height_in_blocks, +				(long) compptr->v_samp_factor), +	 (JDIMENSION) compptr->v_samp_factor); +    } +    break; +  case JXFORM_TRANSPOSE: +  case JXFORM_TRANSVERSE: +  case JXFORM_ROT_90: +  case JXFORM_ROT_270: +    /* Need workspace arrays having transposed dimensions. +     * Note that we allocate arrays padded out to the next iMCU boundary, +     * so that transform routines need not worry about missing edge blocks. +     */ +    coef_arrays = (jvirt_barray_ptr *) +      (*srcinfo->mem->alloc_small) ((j_common_ptr) srcinfo, JPOOL_IMAGE, +	SIZEOF(jvirt_barray_ptr) * info->num_components); +    for (ci = 0; ci < info->num_components; ci++) { +      compptr = srcinfo->comp_info + ci; +      coef_arrays[ci] = (*srcinfo->mem->request_virt_barray) +	((j_common_ptr) srcinfo, JPOOL_IMAGE, false, +	 (JDIMENSION) jround_up((long) compptr->height_in_blocks, +				(long) compptr->v_samp_factor), +	 (JDIMENSION) jround_up((long) compptr->width_in_blocks, +				(long) compptr->h_samp_factor), +	 (JDIMENSION) compptr->h_samp_factor); +    } +    break; +  } +  info->workspace_coef_arrays = coef_arrays; +} + + +/* Transpose destination image parameters */ + +LOCAL(void) +transpose_critical_parameters (j_compress_ptr dstinfo) +{ +  int tblno, i, j, ci, itemp; +  jpeg_component_info *compptr; +  JQUANT_TBL *qtblptr; +  JDIMENSION dtemp; +  UINT16 qtemp; + +  /* Transpose basic image dimensions */ +  dtemp = dstinfo->image_width; +  dstinfo->image_width = dstinfo->image_height; +  dstinfo->image_height = dtemp; + +  /* Transpose sampling factors */ +  for (ci = 0; ci < dstinfo->num_components; ci++) { +    compptr = dstinfo->comp_info + ci; +    itemp = compptr->h_samp_factor; +    compptr->h_samp_factor = compptr->v_samp_factor; +    compptr->v_samp_factor = itemp; +  } + +  /* Transpose quantization tables */ +  for (tblno = 0; tblno < NUM_QUANT_TBLS; tblno++) { +    qtblptr = dstinfo->quant_tbl_ptrs[tblno]; +    if (qtblptr != NULL) { +      for (i = 0; i < DCTSIZE; i++) { +	for (j = 0; j < i; j++) { +	  qtemp = qtblptr->quantval[i*DCTSIZE+j]; +	  qtblptr->quantval[i*DCTSIZE+j] = qtblptr->quantval[j*DCTSIZE+i]; +	  qtblptr->quantval[j*DCTSIZE+i] = qtemp; +	} +      } +    } +  } +} + + +/* Trim off any partial iMCUs on the indicated destination edge */ + +LOCAL(void) +trim_right_edge (j_compress_ptr dstinfo) +{ +  int ci, max_h_samp_factor; +  JDIMENSION MCU_cols; + +  /* We have to compute max_h_samp_factor ourselves, +   * because it hasn't been set yet in the destination +   * (and we don't want to use the source's value). +   */ +  max_h_samp_factor = 1; +  for (ci = 0; ci < dstinfo->num_components; ci++) { +    int h_samp_factor = dstinfo->comp_info[ci].h_samp_factor; +    max_h_samp_factor = MAX(max_h_samp_factor, h_samp_factor); +  } +  MCU_cols = dstinfo->image_width / (max_h_samp_factor * DCTSIZE); +  if (MCU_cols > 0)		/* can't trim to 0 pixels */ +    dstinfo->image_width = MCU_cols * (max_h_samp_factor * DCTSIZE); +} + +LOCAL(void) +trim_bottom_edge (j_compress_ptr dstinfo) +{ +  int ci, max_v_samp_factor; +  JDIMENSION MCU_rows; + +  /* We have to compute max_v_samp_factor ourselves, +   * because it hasn't been set yet in the destination +   * (and we don't want to use the source's value). +   */ +  max_v_samp_factor = 1; +  for (ci = 0; ci < dstinfo->num_components; ci++) { +    int v_samp_factor = dstinfo->comp_info[ci].v_samp_factor; +    max_v_samp_factor = MAX(max_v_samp_factor, v_samp_factor); +  } +  MCU_rows = dstinfo->image_height / (max_v_samp_factor * DCTSIZE); +  if (MCU_rows > 0)		/* can't trim to 0 pixels */ +    dstinfo->image_height = MCU_rows * (max_v_samp_factor * DCTSIZE); +} + + +/* Adjust output image parameters as needed. + * + * This must be called after jpeg_copy_critical_parameters() + * and before jpeg_write_coefficients(). + * + * The return value is the set of virtual coefficient arrays to be written + * (either the ones allocated by jtransform_request_workspace, or the + * original source data arrays).  The caller will need to pass this value + * to jpeg_write_coefficients(). + */ + +GLOBAL(jvirt_barray_ptr *) +jtransform_adjust_parameters (j_decompress_ptr /*srcinfo*/, +			      j_compress_ptr dstinfo, +			      jvirt_barray_ptr *src_coef_arrays, +			      jpeg_transform_info *info) +{ +  /* If force-to-grayscale is requested, adjust destination parameters */ +  if (info->force_grayscale) { +    /* We use jpeg_set_colorspace to make sure subsidiary settings get fixed +     * properly.  Among other things, the target h_samp_factor & v_samp_factor +     * will get set to 1, which typically won't match the source. +     * In fact we do this even if the source is already grayscale; that +     * provides an easy way of coercing a grayscale JPEG with funny sampling +     * factors to the customary 1,1.  (Some decoders fail on other factors.) +     */ +    if ((dstinfo->jpeg_color_space == JCS_YCbCr && +	 dstinfo->num_components == 3) || +	(dstinfo->jpeg_color_space == JCS_GRAYSCALE && +	 dstinfo->num_components == 1)) { +      /* We have to preserve the source's quantization table number. */ +      int sv_quant_tbl_no = dstinfo->comp_info[0].quant_tbl_no; +      jpeg_set_colorspace(dstinfo, JCS_GRAYSCALE); +      dstinfo->comp_info[0].quant_tbl_no = sv_quant_tbl_no; +    } else { +      /* Sorry, can't do it */ +      ERREXIT(dstinfo, JERR_CONVERSION_NOTIMPL); +    } +  } + +  /* Correct the destination's image dimensions etc if necessary */ +  switch (info->transform) { +  case JXFORM_NONE: +    /* Nothing to do */ +    break; +  case JXFORM_FLIP_H: +    if (info->trim) +      trim_right_edge(dstinfo); +    break; +  case JXFORM_FLIP_V: +    if (info->trim) +      trim_bottom_edge(dstinfo); +    break; +  case JXFORM_TRANSPOSE: +    transpose_critical_parameters(dstinfo); +    /* transpose does NOT have to trim anything */ +    break; +  case JXFORM_TRANSVERSE: +    transpose_critical_parameters(dstinfo); +    if (info->trim) { +      trim_right_edge(dstinfo); +      trim_bottom_edge(dstinfo); +    } +    break; +  case JXFORM_ROT_90: +    transpose_critical_parameters(dstinfo); +    if (info->trim) +      trim_right_edge(dstinfo); +    break; +  case JXFORM_ROT_180: +    if (info->trim) { +      trim_right_edge(dstinfo); +      trim_bottom_edge(dstinfo); +    } +    break; +  case JXFORM_ROT_270: +    transpose_critical_parameters(dstinfo); +    if (info->trim) +      trim_bottom_edge(dstinfo); +    break; +  } + +  /* Return the appropriate output data set */ +  if (info->workspace_coef_arrays != NULL) +    return info->workspace_coef_arrays; +  return src_coef_arrays; +} + + +/* Execute the actual transformation, if any. + * + * This must be called *after* jpeg_write_coefficients, because it depends + * on jpeg_write_coefficients to have computed subsidiary values such as + * the per-component width and height fields in the destination object. + * + * Note that some transformations will modify the source data arrays! + */ + +GLOBAL(void) +jtransform_execute_transformation (j_decompress_ptr srcinfo, +				   j_compress_ptr dstinfo, +				   jvirt_barray_ptr *src_coef_arrays, +				   jpeg_transform_info *info) +{ +  jvirt_barray_ptr *dst_coef_arrays = info->workspace_coef_arrays; + +  switch (info->transform) { +  case JXFORM_NONE: +    break; +  case JXFORM_FLIP_H: +    do_flip_h(srcinfo, dstinfo, src_coef_arrays); +    break; +  case JXFORM_FLIP_V: +    do_flip_v(srcinfo, dstinfo, src_coef_arrays, dst_coef_arrays); +    break; +  case JXFORM_TRANSPOSE: +    do_transpose(srcinfo, dstinfo, src_coef_arrays, dst_coef_arrays); +    break; +  case JXFORM_TRANSVERSE: +    do_transverse(srcinfo, dstinfo, src_coef_arrays, dst_coef_arrays); +    break; +  case JXFORM_ROT_90: +    do_rot_90(srcinfo, dstinfo, src_coef_arrays, dst_coef_arrays); +    break; +  case JXFORM_ROT_180: +    do_rot_180(srcinfo, dstinfo, src_coef_arrays, dst_coef_arrays); +    break; +  case JXFORM_ROT_270: +    do_rot_270(srcinfo, dstinfo, src_coef_arrays, dst_coef_arrays); +    break; +  } +} + +#endif /* TRANSFORMS_SUPPORTED */ + + +/* Setup decompression object to save desired markers in memory. + * This must be called before jpeg_read_header() to have the desired effect. + */ + +GLOBAL(void) +jcopy_markers_setup (j_decompress_ptr srcinfo, JCOPY_OPTION option) +{ +#ifdef SAVE_MARKERS_SUPPORTED +  int m; + +  /* Save comments except under NONE option */ +  if (option != JCOPYOPT_NONE) { +    jpeg_save_markers(srcinfo, JPEG_COM, 0xFFFF); +  } +  /* Save all types of APPn markers iff ALL option */ +  if (option == JCOPYOPT_ALL) { +    for (m = 0; m < 16; m++) +      jpeg_save_markers(srcinfo, JPEG_APP0 + m, 0xFFFF); +  } +#endif /* SAVE_MARKERS_SUPPORTED */ +} + +/* Copy markers saved in the given source object to the destination object. + * This should be called just after jpeg_start_compress() or + * jpeg_write_coefficients(). + * Note that those routines will have written the SOI, and also the + * JFIF APP0 or Adobe APP14 markers if selected. + */ + +GLOBAL(void) +jcopy_markers_execute (j_decompress_ptr srcinfo, j_compress_ptr dstinfo, +		       JCOPY_OPTION /*option*/) +{ +  jpeg_saved_marker_ptr marker; + +  /* In the current implementation, we don't actually need to examine the +   * option flag here; we just copy everything that got saved. +   * But to avoid confusion, we do not output JFIF and Adobe APP14 markers +   * if the encoder library already wrote one. +   */ +  for (marker = srcinfo->marker_list; marker != NULL; marker = marker->next) { +    if (dstinfo->write_JFIF_header && +	marker->marker == JPEG_APP0 && +	marker->data_length >= 5 && +	GETJOCTET(marker->data[0]) == 0x4A && +	GETJOCTET(marker->data[1]) == 0x46 && +	GETJOCTET(marker->data[2]) == 0x49 && +	GETJOCTET(marker->data[3]) == 0x46 && +	GETJOCTET(marker->data[4]) == 0) +      continue;			/* reject duplicate JFIF */ +    if (dstinfo->write_Adobe_marker && +	marker->marker == JPEG_APP0+14 && +	marker->data_length >= 5 && +	GETJOCTET(marker->data[0]) == 0x41 && +	GETJOCTET(marker->data[1]) == 0x64 && +	GETJOCTET(marker->data[2]) == 0x6F && +	GETJOCTET(marker->data[3]) == 0x62 && +	GETJOCTET(marker->data[4]) == 0x65) +      continue;			/* reject duplicate Adobe */ +#ifdef NEED_FAR_POINTERS +    /* We could use jpeg_write_marker if the data weren't FAR... */ +    { +      unsigned int i; +      jpeg_write_m_header(dstinfo, marker->marker, marker->data_length); +      for (i = 0; i < marker->data_length; i++) +	jpeg_write_m_byte(dstinfo, marker->data[i]); +    } +#else +    jpeg_write_marker(dstinfo, marker->marker, +		      marker->data, marker->data_length); +#endif +  } +} + +} // namespace Digikam + +#endif // JPEG_LIB_VERSION >= 80 | 
