summaryrefslogtreecommitdiffstats
path: root/tqtinterface/qt4/src/3rdparty/sqlite/select.c
diff options
context:
space:
mode:
Diffstat (limited to 'tqtinterface/qt4/src/3rdparty/sqlite/select.c')
-rw-r--r--tqtinterface/qt4/src/3rdparty/sqlite/select.c2404
1 files changed, 0 insertions, 2404 deletions
diff --git a/tqtinterface/qt4/src/3rdparty/sqlite/select.c b/tqtinterface/qt4/src/3rdparty/sqlite/select.c
deleted file mode 100644
index d29c4a5..0000000
--- a/tqtinterface/qt4/src/3rdparty/sqlite/select.c
+++ /dev/null
@@ -1,2404 +0,0 @@
-/*
-** 2001 September 15
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-*************************************************************************
-** This file contains C code routines that are called by the parser
-** to handle SELECT statements in STQLite.
-**
-** $Id: select.c,v 1.160 2004/03/02 18:37:41 drh Exp $
-*/
-#include "sqliteInt.h"
-
-
-/*
-** Allocate a new Select structure and return a pointer to that
-** structure.
-*/
-Select *sqliteSelectNew(
- ExprList *pEList, /* which columns to include in the result */
- SrcList *pSrc, /* the FROM clause -- which tables to scan */
- Expr *pWhere, /* the WHERE clause */
- ExprList *pGroupBy, /* the GROUP BY clause */
- Expr *pHaving, /* the HAVING clause */
- ExprList *pOrderBy, /* the ORDER BY clause */
- int isDistinct, /* true if the DISTINCT keyword is present */
- int nLimit, /* LIMIT value. -1 means not used */
- int nOffset /* OFFSET value. 0 means no offset */
-){
- Select *pNew;
- pNew = sqliteMalloc( sizeof(*pNew) );
- if( pNew==0 ){
- sqliteExprListDelete(pEList);
- sqliteSrcListDelete(pSrc);
- sqliteExprDelete(pWhere);
- sqliteExprListDelete(pGroupBy);
- sqliteExprDelete(pHaving);
- sqliteExprListDelete(pOrderBy);
- }else{
- if( pEList==0 ){
- pEList = sqliteExprListAppend(0, sqliteExpr(TK_ALL,0,0,0), 0);
- }
- pNew->pEList = pEList;
- pNew->pSrc = pSrc;
- pNew->pWhere = pWhere;
- pNew->pGroupBy = pGroupBy;
- pNew->pHaving = pHaving;
- pNew->pOrderBy = pOrderBy;
- pNew->isDistinct = isDistinct;
- pNew->op = TK_SELECT;
- pNew->nLimit = nLimit;
- pNew->nOffset = nOffset;
- pNew->iLimit = -1;
- pNew->iOffset = -1;
- }
- return pNew;
-}
-
-/*
-** Given 1 to 3 identifiers preceeding the JOIN keyword, determine the
-** type of join. Return an integer constant that expresses that type
-** in terms of the following bit values:
-**
-** JT_INNER
-** JT_OUTER
-** JT_NATURAL
-** JT_LEFT
-** JT_RIGHT
-**
-** A full outer join is the combination of JT_LEFT and JT_RIGHT.
-**
-** If an illegal or unsupported join type is seen, then still return
-** a join type, but put an error in the pParse structure.
-*/
-int sqliteJoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
- int jointype = 0;
- Token *apAll[3];
- Token *p;
- static struct {
- const char *zKeyword;
- int nChar;
- int code;
- } keywords[] = {
- { "natural", 7, JT_NATURAL },
- { "left", 4, JT_LEFT|JT_OUTER },
- { "right", 5, JT_RIGHT|JT_OUTER },
- { "full", 4, JT_LEFT|JT_RIGHT|JT_OUTER },
- { "outer", 5, JT_OUTER },
- { "inner", 5, JT_INNER },
- { "cross", 5, JT_INNER },
- };
- int i, j;
- apAll[0] = pA;
- apAll[1] = pB;
- apAll[2] = pC;
- for(i=0; i<3 && apAll[i]; i++){
- p = apAll[i];
- for(j=0; j<sizeof(keywords)/sizeof(keywords[0]); j++){
- if( p->n==keywords[j].nChar
- && sqliteStrNICmp(p->z, keywords[j].zKeyword, p->n)==0 ){
- jointype |= keywords[j].code;
- break;
- }
- }
- if( j>=sizeof(keywords)/sizeof(keywords[0]) ){
- jointype |= JT_ERROR;
- break;
- }
- }
- if(
- (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
- (jointype & JT_ERROR)!=0
- ){
- static Token dummy = { 0, 0 };
- char *zSp1 = " ", *zSp2 = " ";
- if( pB==0 ){ pB = &dummy; zSp1 = 0; }
- if( pC==0 ){ pC = &dummy; zSp2 = 0; }
- sqliteSetNString(&pParse->zErrMsg, "unknown or unsupported join type: ", 0,
- pA->z, pA->n, zSp1, 1, pB->z, pB->n, zSp2, 1, pC->z, pC->n, 0);
- pParse->nErr++;
- jointype = JT_INNER;
- }else if( jointype & JT_RIGHT ){
- sqliteErrorMsg(pParse,
- "RIGHT and FULL OUTER JOINs are not currently supported");
- jointype = JT_INNER;
- }
- return jointype;
-}
-
-/*
-** Return the index of a column in a table. Return -1 if the column
-** is not contained in the table.
-*/
-static int columnIndex(Table *pTab, const char *zCol){
- int i;
- for(i=0; i<pTab->nCol; i++){
- if( sqliteStrICmp(pTab->aCol[i].zName, zCol)==0 ) return i;
- }
- return -1;
-}
-
-/*
-** Add a term to the WHERE expression in *ppExpr that requires the
-** zCol column to be equal in the two tables pTab1 and pTab2.
-*/
-static void addWhereTerm(
- const char *zCol, /* Name of the column */
- const Table *pTab1, /* First table */
- const Table *pTab2, /* Second table */
- Expr **ppExpr /* Add the equality term to this expression */
-){
- Token dummy;
- Expr *pE1a, *pE1b, *pE1c;
- Expr *pE2a, *pE2b, *pE2c;
- Expr *pE;
-
- dummy.z = zCol;
- dummy.n = strlen(zCol);
- dummy.dyn = 0;
- pE1a = sqliteExpr(TK_ID, 0, 0, &dummy);
- pE2a = sqliteExpr(TK_ID, 0, 0, &dummy);
- dummy.z = pTab1->zName;
- dummy.n = strlen(dummy.z);
- pE1b = sqliteExpr(TK_ID, 0, 0, &dummy);
- dummy.z = pTab2->zName;
- dummy.n = strlen(dummy.z);
- pE2b = sqliteExpr(TK_ID, 0, 0, &dummy);
- pE1c = sqliteExpr(TK_DOT, pE1b, pE1a, 0);
- pE2c = sqliteExpr(TK_DOT, pE2b, pE2a, 0);
- pE = sqliteExpr(TK_EQ, pE1c, pE2c, 0);
- ExprSetProperty(pE, EP_FromJoin);
- if( *ppExpr ){
- *ppExpr = sqliteExpr(TK_AND, *ppExpr, pE, 0);
- }else{
- *ppExpr = pE;
- }
-}
-
-/*
-** Set the EP_FromJoin property on all terms of the given expression.
-**
-** The EP_FromJoin property is used on terms of an expression to tell
-** the LEFT OUTER JOIN processing logic that this term is part of the
-** join restriction specified in the ON or USING clause and not a part
-** of the more general WHERE clause. These terms are moved over to the
-** WHERE clause during join processing but we need to remember that they
-** originated in the ON or USING clause.
-*/
-static void setJoinExpr(Expr *p){
- while( p ){
- ExprSetProperty(p, EP_FromJoin);
- setJoinExpr(p->pLeft);
- p = p->pRight;
- }
-}
-
-/*
-** This routine processes the join information for a SELECT statement.
-** ON and USING clauses are converted into extra terms of the WHERE clause.
-** NATURAL joins also create extra WHERE clause terms.
-**
-** This routine returns the number of errors encountered.
-*/
-static int sqliteProcessJoin(Parse *pParse, Select *p){
- SrcList *pSrc;
- int i, j;
- pSrc = p->pSrc;
- for(i=0; i<pSrc->nSrc-1; i++){
- struct SrcList_item *pTerm = &pSrc->a[i];
- struct SrcList_item *pOther = &pSrc->a[i+1];
-
- if( pTerm->pTab==0 || pOther->pTab==0 ) continue;
-
- /* When the NATURAL keyword is present, add WHERE clause terms for
- ** every column that the two tables have in common.
- */
- if( pTerm->jointype & JT_NATURAL ){
- Table *pTab;
- if( pTerm->pOn || pTerm->pUsing ){
- sqliteErrorMsg(pParse, "a NATURAL join may not have "
- "an ON or USING clause", 0);
- return 1;
- }
- pTab = pTerm->pTab;
- for(j=0; j<pTab->nCol; j++){
- if( columnIndex(pOther->pTab, pTab->aCol[j].zName)>=0 ){
- addWhereTerm(pTab->aCol[j].zName, pTab, pOther->pTab, &p->pWhere);
- }
- }
- }
-
- /* Disallow both ON and USING clauses in the same join
- */
- if( pTerm->pOn && pTerm->pUsing ){
- sqliteErrorMsg(pParse, "cannot have both ON and USING "
- "clauses in the same join");
- return 1;
- }
-
- /* Add the ON clause to the end of the WHERE clause, connected by
- ** and AND operator.
- */
- if( pTerm->pOn ){
- setJoinExpr(pTerm->pOn);
- if( p->pWhere==0 ){
- p->pWhere = pTerm->pOn;
- }else{
- p->pWhere = sqliteExpr(TK_AND, p->pWhere, pTerm->pOn, 0);
- }
- pTerm->pOn = 0;
- }
-
- /* Create extra terms on the WHERE clause for each column named
- ** in the USING clause. Example: If the two tables to be joined are
- ** A and B and the USING clause names X, Y, and Z, then add this
- ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
- ** Report an error if any column mentioned in the USING clause is
- ** not contained in both tables to be joined.
- */
- if( pTerm->pUsing ){
- IdList *pList;
- int j;
- assert( i<pSrc->nSrc-1 );
- pList = pTerm->pUsing;
- for(j=0; j<pList->nId; j++){
- if( columnIndex(pTerm->pTab, pList->a[j].zName)<0 ||
- columnIndex(pOther->pTab, pList->a[j].zName)<0 ){
- sqliteErrorMsg(pParse, "cannot join using column %s - column "
- "not present in both tables", pList->a[j].zName);
- return 1;
- }
- addWhereTerm(pList->a[j].zName, pTerm->pTab, pOther->pTab, &p->pWhere);
- }
- }
- }
- return 0;
-}
-
-/*
-** Delete the given Select structure and all of its substructures.
-*/
-void sqliteSelectDelete(Select *p){
- if( p==0 ) return;
- sqliteExprListDelete(p->pEList);
- sqliteSrcListDelete(p->pSrc);
- sqliteExprDelete(p->pWhere);
- sqliteExprListDelete(p->pGroupBy);
- sqliteExprDelete(p->pHaving);
- sqliteExprListDelete(p->pOrderBy);
- sqliteSelectDelete(p->pPrior);
- sqliteFree(p->zSelect);
- sqliteFree(p);
-}
-
-/*
-** Delete the aggregate information from the parse structure.
-*/
-static void sqliteAggregateInfoReset(Parse *pParse){
- sqliteFree(pParse->aAgg);
- pParse->aAgg = 0;
- pParse->nAgg = 0;
- pParse->useAgg = 0;
-}
-
-/*
-** Insert code into "v" that will push the record on the top of the
-** stack into the sorter.
-*/
-static void pushOntoSorter(Parse *pParse, Vdbe *v, ExprList *pOrderBy){
- char *zSortOrder;
- int i;
- zSortOrder = sqliteMalloc( pOrderBy->nExpr + 1 );
- if( zSortOrder==0 ) return;
- for(i=0; i<pOrderBy->nExpr; i++){
- int order = pOrderBy->a[i].sortOrder;
- int type;
- int c;
- if( (order & STQLITE_SO_TYPEMASK)==STQLITE_SO_TEXT ){
- type = STQLITE_SO_TEXT;
- }else if( (order & STQLITE_SO_TYPEMASK)==STQLITE_SO_NUM ){
- type = STQLITE_SO_NUM;
- }else if( pParse->db->file_format>=4 ){
- type = sqliteExprType(pOrderBy->a[i].pExpr);
- }else{
- type = STQLITE_SO_NUM;
- }
- if( (order & STQLITE_SO_DIRMASK)==STQLITE_SO_ASC ){
- c = type==STQLITE_SO_TEXT ? 'A' : '+';
- }else{
- c = type==STQLITE_SO_TEXT ? 'D' : '-';
- }
- zSortOrder[i] = c;
- sqliteExprCode(pParse, pOrderBy->a[i].pExpr);
- }
- zSortOrder[pOrderBy->nExpr] = 0;
- sqliteVdbeOp3(v, OP_SortMakeKey, pOrderBy->nExpr, 0, zSortOrder, P3_DYNAMIC);
- sqliteVdbeAddOp(v, OP_SortPut, 0, 0);
-}
-
-/*
-** This routine adds a P3 argument to the last VDBE opcode that was
-** inserted. The P3 argument added is a string suitable for the
-** OP_MakeKey or OP_MakeIdxKey opcodes. The string consists of
-** characters 't' or 'n' depending on whether or not the various
-** fields of the key to be generated should be treated as numeric
-** or as text. See the OP_MakeKey and OP_MakeIdxKey opcode
-** documentation for additional information about the P3 string.
-** See also the sqliteAddIdxKeyType() routine.
-*/
-void sqliteAddKeyType(Vdbe *v, ExprList *pEList){
- int nColumn = pEList->nExpr;
- char *zType = sqliteMalloc( nColumn+1 );
- int i;
- if( zType==0 ) return;
- for(i=0; i<nColumn; i++){
- zType[i] = sqliteExprType(pEList->a[i].pExpr)==STQLITE_SO_NUM ? 'n' : 't';
- }
- zType[i] = 0;
- sqliteVdbeChangeP3(v, -1, zType, P3_DYNAMIC);
-}
-
-/*
-** This routine generates the code for the inside of the inner loop
-** of a SELECT.
-**
-** If srcTab and nColumn are both zero, then the pEList expressions
-** are evaluated in order to get the data for this row. If nColumn>0
-** then data is pulled from srcTab and pEList is used only to get the
-** datatypes for each column.
-*/
-static int selectInnerLoop(
- Parse *pParse, /* The parser context */
- Select *p, /* The complete select statement being coded */
- ExprList *pEList, /* List of values being extracted */
- int srcTab, /* Pull data from this table */
- int nColumn, /* Number of columns in the source table */
- ExprList *pOrderBy, /* If not NULL, sort results using this key */
- int distinct, /* If >=0, make sure results are distinct */
- int eDest, /* How to dispose of the results */
- int iParm, /* An argument to the disposal method */
- int iContinue, /* Jump here to continue with next row */
- int iBreak /* Jump here to break out of the inner loop */
-){
- Vdbe *v = pParse->pVdbe;
- int i;
-
- if( v==0 ) return 0;
- assert( pEList!=0 );
-
- /* If there was a LIMIT clause on the SELECT statement, then do the check
- ** to see if this row should be output.
- */
- if( pOrderBy==0 ){
- if( p->iOffset>=0 ){
- int addr = sqliteVdbeCurrentAddr(v);
- sqliteVdbeAddOp(v, OP_MemIncr, p->iOffset, addr+2);
- sqliteVdbeAddOp(v, OP_Goto, 0, iContinue);
- }
- if( p->iLimit>=0 ){
- sqliteVdbeAddOp(v, OP_MemIncr, p->iLimit, iBreak);
- }
- }
-
- /* Pull the requested columns.
- */
- if( nColumn>0 ){
- for(i=0; i<nColumn; i++){
- sqliteVdbeAddOp(v, OP_Column, srcTab, i);
- }
- }else{
- nColumn = pEList->nExpr;
- for(i=0; i<pEList->nExpr; i++){
- sqliteExprCode(pParse, pEList->a[i].pExpr);
- }
- }
-
- /* If the DISTINCT keyword was present on the SELECT statement
- ** and this row has been seen before, then do not make this row
- ** part of the result.
- */
- if( distinct>=0 && pEList && pEList->nExpr>0 ){
-#if NULL_ALWAYS_DISTINCT
- sqliteVdbeAddOp(v, OP_IsNull, -pEList->nExpr, sqliteVdbeCurrentAddr(v)+7);
-#endif
- sqliteVdbeAddOp(v, OP_MakeKey, pEList->nExpr, 1);
- if( pParse->db->file_format>=4 ) sqliteAddKeyType(v, pEList);
- sqliteVdbeAddOp(v, OP_Distinct, distinct, sqliteVdbeCurrentAddr(v)+3);
- sqliteVdbeAddOp(v, OP_Pop, pEList->nExpr+1, 0);
- sqliteVdbeAddOp(v, OP_Goto, 0, iContinue);
- sqliteVdbeAddOp(v, OP_String, 0, 0);
- sqliteVdbeAddOp(v, OP_PutStrKey, distinct, 0);
- }
-
- switch( eDest ){
- /* In this mode, write each query result to the key of the temporary
- ** table iParm.
- */
- case SRT_Union: {
- sqliteVdbeAddOp(v, OP_MakeRecord, nColumn, NULL_ALWAYS_DISTINCT);
- sqliteVdbeAddOp(v, OP_String, 0, 0);
- sqliteVdbeAddOp(v, OP_PutStrKey, iParm, 0);
- break;
- }
-
- /* Store the result as data using a unique key.
- */
- case SRT_Table:
- case SRT_TempTable: {
- sqliteVdbeAddOp(v, OP_MakeRecord, nColumn, 0);
- if( pOrderBy ){
- pushOntoSorter(pParse, v, pOrderBy);
- }else{
- sqliteVdbeAddOp(v, OP_NewRecno, iParm, 0);
- sqliteVdbeAddOp(v, OP_Pull, 1, 0);
- sqliteVdbeAddOp(v, OP_PutIntKey, iParm, 0);
- }
- break;
- }
-
- /* Construct a record from the query result, but instead of
- ** saving that record, use it as a key to delete elements from
- ** the temporary table iParm.
- */
- case SRT_Except: {
- int addr;
- addr = sqliteVdbeAddOp(v, OP_MakeRecord, nColumn, NULL_ALWAYS_DISTINCT);
- sqliteVdbeAddOp(v, OP_NotFound, iParm, addr+3);
- sqliteVdbeAddOp(v, OP_Delete, iParm, 0);
- break;
- }
-
- /* If we are creating a set for an "expr IN (SELECT ...)" construct,
- ** then there should be a single item on the stack. Write this
- ** item into the set table with bogus data.
- */
- case SRT_Set: {
- int addr1 = sqliteVdbeCurrentAddr(v);
- int addr2;
- assert( nColumn==1 );
- sqliteVdbeAddOp(v, OP_NotNull, -1, addr1+3);
- sqliteVdbeAddOp(v, OP_Pop, 1, 0);
- addr2 = sqliteVdbeAddOp(v, OP_Goto, 0, 0);
- if( pOrderBy ){
- pushOntoSorter(pParse, v, pOrderBy);
- }else{
- sqliteVdbeAddOp(v, OP_String, 0, 0);
- sqliteVdbeAddOp(v, OP_PutStrKey, iParm, 0);
- }
- sqliteVdbeChangeP2(v, addr2, sqliteVdbeCurrentAddr(v));
- break;
- }
-
- /* If this is a scalar select that is part of an expression, then
- ** store the results in the appropriate memory cell and break out
- ** of the scan loop.
- */
- case SRT_Mem: {
- assert( nColumn==1 );
- if( pOrderBy ){
- pushOntoSorter(pParse, v, pOrderBy);
- }else{
- sqliteVdbeAddOp(v, OP_MemStore, iParm, 1);
- sqliteVdbeAddOp(v, OP_Goto, 0, iBreak);
- }
- break;
- }
-
- /* Send the data to the callback function.
- */
- case SRT_Callback:
- case SRT_Sorter: {
- if( pOrderBy ){
- sqliteVdbeAddOp(v, OP_SortMakeRec, nColumn, 0);
- pushOntoSorter(pParse, v, pOrderBy);
- }else{
- assert( eDest==SRT_Callback );
- sqliteVdbeAddOp(v, OP_Callback, nColumn, 0);
- }
- break;
- }
-
- /* Invoke a subroutine to handle the results. The subroutine itself
- ** is responsible for popping the results off of the stack.
- */
- case SRT_Subroutine: {
- if( pOrderBy ){
- sqliteVdbeAddOp(v, OP_MakeRecord, nColumn, 0);
- pushOntoSorter(pParse, v, pOrderBy);
- }else{
- sqliteVdbeAddOp(v, OP_Gosub, 0, iParm);
- }
- break;
- }
-
- /* Discard the results. This is used for SELECT statements inside
- ** the body of a TRIGGER. The purpose of such selects is to call
- ** user-defined functions that have side effects. We do not care
- ** about the actual results of the select.
- */
- default: {
- assert( eDest==SRT_Discard );
- sqliteVdbeAddOp(v, OP_Pop, nColumn, 0);
- break;
- }
- }
- return 0;
-}
-
-/*
-** If the inner loop was generated using a non-null pOrderBy argument,
-** then the results were placed in a sorter. After the loop is terminated
-** we need to run the sorter and output the results. The following
-** routine generates the code needed to do that.
-*/
-static void generateSortTail(
- Select *p, /* The SELECT statement */
- Vdbe *v, /* Generate code into this VDBE */
- int nColumn, /* Number of columns of data */
- int eDest, /* Write the sorted results here */
- int iParm /* Optional parameter associated with eDest */
-){
- int end1 = sqliteVdbeMakeLabel(v);
- int end2 = sqliteVdbeMakeLabel(v);
- int addr;
- if( eDest==SRT_Sorter ) return;
- sqliteVdbeAddOp(v, OP_Sort, 0, 0);
- addr = sqliteVdbeAddOp(v, OP_SortNext, 0, end1);
- if( p->iOffset>=0 ){
- sqliteVdbeAddOp(v, OP_MemIncr, p->iOffset, addr+4);
- sqliteVdbeAddOp(v, OP_Pop, 1, 0);
- sqliteVdbeAddOp(v, OP_Goto, 0, addr);
- }
- if( p->iLimit>=0 ){
- sqliteVdbeAddOp(v, OP_MemIncr, p->iLimit, end2);
- }
- switch( eDest ){
- case SRT_Callback: {
- sqliteVdbeAddOp(v, OP_SortCallback, nColumn, 0);
- break;
- }
- case SRT_Table:
- case SRT_TempTable: {
- sqliteVdbeAddOp(v, OP_NewRecno, iParm, 0);
- sqliteVdbeAddOp(v, OP_Pull, 1, 0);
- sqliteVdbeAddOp(v, OP_PutIntKey, iParm, 0);
- break;
- }
- case SRT_Set: {
- assert( nColumn==1 );
- sqliteVdbeAddOp(v, OP_NotNull, -1, sqliteVdbeCurrentAddr(v)+3);
- sqliteVdbeAddOp(v, OP_Pop, 1, 0);
- sqliteVdbeAddOp(v, OP_Goto, 0, sqliteVdbeCurrentAddr(v)+3);
- sqliteVdbeAddOp(v, OP_String, 0, 0);
- sqliteVdbeAddOp(v, OP_PutStrKey, iParm, 0);
- break;
- }
- case SRT_Mem: {
- assert( nColumn==1 );
- sqliteVdbeAddOp(v, OP_MemStore, iParm, 1);
- sqliteVdbeAddOp(v, OP_Goto, 0, end1);
- break;
- }
- case SRT_Subroutine: {
- int i;
- for(i=0; i<nColumn; i++){
- sqliteVdbeAddOp(v, OP_Column, -1-i, i);
- }
- sqliteVdbeAddOp(v, OP_Gosub, 0, iParm);
- sqliteVdbeAddOp(v, OP_Pop, 1, 0);
- break;
- }
- default: {
- /* Do nothing */
- break;
- }
- }
- sqliteVdbeAddOp(v, OP_Goto, 0, addr);
- sqliteVdbeResolveLabel(v, end2);
- sqliteVdbeAddOp(v, OP_Pop, 1, 0);
- sqliteVdbeResolveLabel(v, end1);
- sqliteVdbeAddOp(v, OP_SortReset, 0, 0);
-}
-
-/*
-** Generate code that will tell the VDBE the datatypes of
-** columns in the result set.
-**
-** This routine only generates code if the "PRAGMA show_datatypes=on"
-** has been executed. The datatypes are reported out in the azCol
-** parameter to the callback function. The first N azCol[] entries
-** are the names of the columns, and the second N entries are the
-** datatypes for the columns.
-**
-** The "datatype" for a result that is a column of a type is the
-** datatype definition extracted from the CREATE TABLE statement.
-** The datatype for an expression is either TEXT or NUMERIC. The
-** datatype for a ROWID field is INTEGER.
-*/
-static void generateColumnTypes(
- Parse *pParse, /* Parser context */
- SrcList *pTabList, /* List of tables */
- ExprList *pEList /* Expressions defining the result set */
-){
- Vdbe *v = pParse->pVdbe;
- int i, j;
- for(i=0; i<pEList->nExpr; i++){
- Expr *p = pEList->a[i].pExpr;
- char *zType = 0;
- if( p==0 ) continue;
- if( p->op==TK_COLUMN && pTabList ){
- Table *pTab;
- int iCol = p->iColumn;
- for(j=0; j<pTabList->nSrc && pTabList->a[j].iCursor!=p->iTable; j++){}
- assert( j<pTabList->nSrc );
- pTab = pTabList->a[j].pTab;
- if( iCol<0 ) iCol = pTab->iPKey;
- assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
- if( iCol<0 ){
- zType = "INTEGER";
- }else{
- zType = pTab->aCol[iCol].zType;
- }
- }else{
- if( sqliteExprType(p)==STQLITE_SO_TEXT ){
- zType = "TEXT";
- }else{
- zType = "NUMERIC";
- }
- }
- sqliteVdbeOp3(v, OP_ColumnName, i + pEList->nExpr, 0, zType, 0);
- }
-}
-
-/*
-** Generate code that will tell the VDBE the names of columns
-** in the result set. This information is used to provide the
-** azCol[] values in the callback.
-*/
-static void generateColumnNames(
- Parse *pParse, /* Parser context */
- SrcList *pTabList, /* List of tables */
- ExprList *pEList /* Expressions defining the result set */
-){
- Vdbe *v = pParse->pVdbe;
- int i, j;
- sqlite *db = pParse->db;
- int fullNames, shortNames;
-
- assert( v!=0 );
- if( pParse->colNamesSet || v==0 || sqlite_malloc_failed ) return;
- pParse->colNamesSet = 1;
- fullNames = (db->flags & STQLITE_FullColNames)!=0;
- shortNames = (db->flags & STQLITE_ShortColNames)!=0;
- for(i=0; i<pEList->nExpr; i++){
- Expr *p;
- int p2 = i==pEList->nExpr-1;
- p = pEList->a[i].pExpr;
- if( p==0 ) continue;
- if( pEList->a[i].zName ){
- char *zName = pEList->a[i].zName;
- sqliteVdbeOp3(v, OP_ColumnName, i, p2, zName, 0);
- continue;
- }
- if( p->op==TK_COLUMN && pTabList ){
- Table *pTab;
- char *zCol;
- int iCol = p->iColumn;
- for(j=0; j<pTabList->nSrc && pTabList->a[j].iCursor!=p->iTable; j++){}
- assert( j<pTabList->nSrc );
- pTab = pTabList->a[j].pTab;
- if( iCol<0 ) iCol = pTab->iPKey;
- assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
- if( iCol<0 ){
- zCol = "_ROWID_";
- }else{
- zCol = pTab->aCol[iCol].zName;
- }
- if( !shortNames && !fullNames && p->span.z && p->span.z[0] ){
- int addr = sqliteVdbeOp3(v,OP_ColumnName, i, p2, p->span.z, p->span.n);
- sqliteVdbeCompressSpace(v, addr);
- }else if( fullNames || (!shortNames && pTabList->nSrc>1) ){
- char *zName = 0;
- char *zTab;
-
- zTab = pTabList->a[j].zAlias;
- if( fullNames || zTab==0 ) zTab = pTab->zName;
- sqliteSetString(&zName, zTab, ".", zCol, 0);
- sqliteVdbeOp3(v, OP_ColumnName, i, p2, zName, P3_DYNAMIC);
- }else{
- sqliteVdbeOp3(v, OP_ColumnName, i, p2, zCol, 0);
- }
- }else if( p->span.z && p->span.z[0] ){
- int addr = sqliteVdbeOp3(v,OP_ColumnName, i, p2, p->span.z, p->span.n);
- sqliteVdbeCompressSpace(v, addr);
- }else{
- char zName[30];
- assert( p->op!=TK_COLUMN || pTabList==0 );
- sprintf(zName, "column%d", i+1);
- sqliteVdbeOp3(v, OP_ColumnName, i, p2, zName, 0);
- }
- }
-}
-
-/*
-** Name of the connection operator, used for error messages.
-*/
-static const char *selectOpName(int id){
- char *z;
- switch( id ){
- case TK_ALL: z = "UNION ALL"; break;
- case TK_INTERSECT: z = "INTERSECT"; break;
- case TK_EXCEPT: z = "EXCEPT"; break;
- default: z = "UNION"; break;
- }
- return z;
-}
-
-/*
-** Forward declaration
-*/
-static int fillInColumnList(Parse*, Select*);
-
-/*
-** Given a SELECT statement, generate a Table structure that describes
-** the result set of that SELECT.
-*/
-Table *sqliteResultSetOfSelect(Parse *pParse, char *zTabName, Select *pSelect){
- Table *pTab;
- int i, j;
- ExprList *pEList;
- Column *aCol;
-
- if( fillInColumnList(pParse, pSelect) ){
- return 0;
- }
- pTab = sqliteMalloc( sizeof(Table) );
- if( pTab==0 ){
- return 0;
- }
- pTab->zName = zTabName ? sqliteStrDup(zTabName) : 0;
- pEList = pSelect->pEList;
- pTab->nCol = pEList->nExpr;
- assert( pTab->nCol>0 );
- pTab->aCol = aCol = sqliteMalloc( sizeof(pTab->aCol[0])*pTab->nCol );
- for(i=0; i<pTab->nCol; i++){
- Expr *p, *pR;
- if( pEList->a[i].zName ){
- aCol[i].zName = sqliteStrDup(pEList->a[i].zName);
- }else if( (p=pEList->a[i].pExpr)->op==TK_DOT
- && (pR=p->pRight)!=0 && pR->token.z && pR->token.z[0] ){
- int cnt;
- sqliteSetNString(&aCol[i].zName, pR->token.z, pR->token.n, 0);
- for(j=cnt=0; j<i; j++){
- if( sqliteStrICmp(aCol[j].zName, aCol[i].zName)==0 ){
- int n;
- char zBuf[30];
- sprintf(zBuf,"_%d",++cnt);
- n = strlen(zBuf);
- sqliteSetNString(&aCol[i].zName, pR->token.z, pR->token.n, zBuf, n,0);
- j = -1;
- }
- }
- }else if( p->span.z && p->span.z[0] ){
- sqliteSetNString(&pTab->aCol[i].zName, p->span.z, p->span.n, 0);
- }else{
- char zBuf[30];
- sprintf(zBuf, "column%d", i+1);
- pTab->aCol[i].zName = sqliteStrDup(zBuf);
- }
- }
- pTab->iPKey = -1;
- return pTab;
-}
-
-/*
-** For the given SELECT statement, do three things.
-**
-** (1) Fill in the pTabList->a[].pTab fields in the SrcList that
-** defines the set of tables that should be scanned. For views,
-** fill pTabList->a[].pSelect with a copy of the SELECT statement
-** that implements the view. A copy is made of the view's SELECT
-** statement so that we can freely modify or delete that statement
-** without worrying about messing up the presistent representation
-** of the view.
-**
-** (2) Add terms to the WHERE clause to accomodate the NATURAL keyword
-** on joins and the ON and USING clause of joins.
-**
-** (3) Scan the list of columns in the result set (pEList) looking
-** for instances of the "*" operator or the TABLE.* operator.
-** If found, expand each "*" to be every column in every table
-** and TABLE.* to be every column in TABLE.
-**
-** Return 0 on success. If there are problems, leave an error message
-** in pParse and return non-zero.
-*/
-static int fillInColumnList(Parse *pParse, Select *p){
- int i, j, k, rc;
- SrcList *pTabList;
- ExprList *pEList;
- Table *pTab;
-
- if( p==0 || p->pSrc==0 ) return 1;
- pTabList = p->pSrc;
- pEList = p->pEList;
-
- /* Look up every table in the table list.
- */
- for(i=0; i<pTabList->nSrc; i++){
- if( pTabList->a[i].pTab ){
- /* This routine has run before! No need to continue */
- return 0;
- }
- if( pTabList->a[i].zName==0 ){
- /* A sub-query in the FROM clause of a SELECT */
- assert( pTabList->a[i].pSelect!=0 );
- if( pTabList->a[i].zAlias==0 ){
- char zFakeName[60];
- sprintf(zFakeName, "sqlite_subquery_%p_",
- (void*)pTabList->a[i].pSelect);
- sqliteSetString(&pTabList->a[i].zAlias, zFakeName, 0);
- }
- pTabList->a[i].pTab = pTab =
- sqliteResultSetOfSelect(pParse, pTabList->a[i].zAlias,
- pTabList->a[i].pSelect);
- if( pTab==0 ){
- return 1;
- }
- /* The isTransient flag indicates that the Table structure has been
- ** dynamically allocated and may be freed at any time. In other words,
- ** pTab is not pointing to a persistent table structure that defines
- ** part of the schema. */
- pTab->isTransient = 1;
- }else{
- /* An ordinary table or view name in the FROM clause */
- pTabList->a[i].pTab = pTab =
- sqliteLocateTable(pParse,pTabList->a[i].zName,pTabList->a[i].zDatabase);
- if( pTab==0 ){
- return 1;
- }
- if( pTab->pSelect ){
- /* We reach here if the named table is a really a view */
- if( sqliteViewGetColumnNames(pParse, pTab) ){
- return 1;
- }
- /* If pTabList->a[i].pSelect!=0 it means we are dealing with a
- ** view within a view. The SELECT structure has already been
- ** copied by the outer view so we can skip the copy step here
- ** in the inner view.
- */
- if( pTabList->a[i].pSelect==0 ){
- pTabList->a[i].pSelect = sqliteSelectDup(pTab->pSelect);
- }
- }
- }
- }
-
- /* Process NATURAL keywords, and ON and USING clauses of joins.
- */
- if( sqliteProcessJoin(pParse, p) ) return 1;
-
- /* For every "*" that occurs in the column list, insert the names of
- ** all columns in all tables. And for every TABLE.* insert the names
- ** of all columns in TABLE. The parser inserted a special expression
- ** with the TK_ALL operator for each "*" that it found in the column list.
- ** The following code just has to locate the TK_ALL expressions and expand
- ** each one to the list of all columns in all tables.
- **
- ** The first loop just checks to see if there are any "*" operators
- ** that need expanding.
- */
- for(k=0; k<pEList->nExpr; k++){
- Expr *pE = pEList->a[k].pExpr;
- if( pE->op==TK_ALL ) break;
- if( pE->op==TK_DOT && pE->pRight && pE->pRight->op==TK_ALL
- && pE->pLeft && pE->pLeft->op==TK_ID ) break;
- }
- rc = 0;
- if( k<pEList->nExpr ){
- /*
- ** If we get here it means the result set contains one or more "*"
- ** operators that need to be expanded. Loop through each expression
- ** in the result set and expand them one by one.
- */
- struct ExprList_item *a = pEList->a;
- ExprList *pNew = 0;
- for(k=0; k<pEList->nExpr; k++){
- Expr *pE = a[k].pExpr;
- if( pE->op!=TK_ALL &&
- (pE->op!=TK_DOT || pE->pRight==0 || pE->pRight->op!=TK_ALL) ){
- /* This particular expression does not need to be expanded.
- */
- pNew = sqliteExprListAppend(pNew, a[k].pExpr, 0);
- pNew->a[pNew->nExpr-1].zName = a[k].zName;
- a[k].pExpr = 0;
- a[k].zName = 0;
- }else{
- /* This expression is a "*" or a "TABLE.*" and needs to be
- ** expanded. */
- int tableSeen = 0; /* Set to 1 when TABLE matches */
- Token *pName; /* text of name of TABLE */
- if( pE->op==TK_DOT && pE->pLeft ){
- pName = &pE->pLeft->token;
- }else{
- pName = 0;
- }
- for(i=0; i<pTabList->nSrc; i++){
- Table *pTab = pTabList->a[i].pTab;
- char *zTabName = pTabList->a[i].zAlias;
- if( zTabName==0 || zTabName[0]==0 ){
- zTabName = pTab->zName;
- }
- if( pName && (zTabName==0 || zTabName[0]==0 ||
- sqliteStrNICmp(pName->z, zTabName, pName->n)!=0 ||
- zTabName[pName->n]!=0) ){
- continue;
- }
- tableSeen = 1;
- for(j=0; j<pTab->nCol; j++){
- Expr *pExpr, *pLeft, *pRight;
- char *zName = pTab->aCol[j].zName;
-
- if( i>0 && (pTabList->a[i-1].jointype & JT_NATURAL)!=0 &&
- columnIndex(pTabList->a[i-1].pTab, zName)>=0 ){
- /* In a NATURAL join, omit the join columns from the
- ** table on the right */
- continue;
- }
- if( i>0 && sqliteIdListIndex(pTabList->a[i-1].pUsing, zName)>=0 ){
- /* In a join with a USING clause, omit columns in the
- ** using clause from the table on the right. */
- continue;
- }
- pRight = sqliteExpr(TK_ID, 0, 0, 0);
- if( pRight==0 ) break;
- pRight->token.z = zName;
- pRight->token.n = strlen(zName);
- pRight->token.dyn = 0;
- if( zTabName && pTabList->nSrc>1 ){
- pLeft = sqliteExpr(TK_ID, 0, 0, 0);
- pExpr = sqliteExpr(TK_DOT, pLeft, pRight, 0);
- if( pExpr==0 ) break;
- pLeft->token.z = zTabName;
- pLeft->token.n = strlen(zTabName);
- pLeft->token.dyn = 0;
- sqliteSetString((char**)&pExpr->span.z, zTabName, ".", zName, 0);
- pExpr->span.n = strlen(pExpr->span.z);
- pExpr->span.dyn = 1;
- pExpr->token.z = 0;
- pExpr->token.n = 0;
- pExpr->token.dyn = 0;
- }else{
- pExpr = pRight;
- pExpr->span = pExpr->token;
- }
- pNew = sqliteExprListAppend(pNew, pExpr, 0);
- }
- }
- if( !tableSeen ){
- if( pName ){
- sqliteErrorMsg(pParse, "no such table: %T", pName);
- }else{
- sqliteErrorMsg(pParse, "no tables specified");
- }
- rc = 1;
- }
- }
- }
- sqliteExprListDelete(pEList);
- p->pEList = pNew;
- }
- return rc;
-}
-
-/*
-** This routine recursively unlinks the Select.pSrc.a[].pTab pointers
-** in a select structure. It just sets the pointers to NULL. This
-** routine is recursive in the sense that if the Select.pSrc.a[].pSelect
-** pointer is not NULL, this routine is called recursively on that pointer.
-**
-** This routine is called on the Select structure that defines a
-** VIEW in order to undo any bindings to tables. This is necessary
-** because those tables might be DROPed by a subsequent SQL command.
-** If the bindings are not removed, then the Select.pSrc->a[].pTab field
-** will be left pointing to a deallocated Table structure after the
-** DROP and a coredump will occur the next time the VIEW is used.
-*/
-void sqliteSelectUnbind(Select *p){
- int i;
- SrcList *pSrc = p->pSrc;
- Table *pTab;
- if( p==0 ) return;
- for(i=0; i<pSrc->nSrc; i++){
- if( (pTab = pSrc->a[i].pTab)!=0 ){
- if( pTab->isTransient ){
- sqliteDeleteTable(0, pTab);
- }
- pSrc->a[i].pTab = 0;
- if( pSrc->a[i].pSelect ){
- sqliteSelectUnbind(pSrc->a[i].pSelect);
- }
- }
- }
-}
-
-/*
-** This routine associates entries in an ORDER BY expression list with
-** columns in a result. For each ORDER BY expression, the opcode of
-** the top-level node is changed to TK_COLUMN and the iColumn value of
-** the top-level node is filled in with column number and the iTable
-** value of the top-level node is filled with iTable parameter.
-**
-** If there are prior SELECT clauses, they are processed first. A match
-** in an earlier SELECT takes precedence over a later SELECT.
-**
-** Any entry that does not match is flagged as an error. The number
-** of errors is returned.
-**
-** This routine does NOT correctly initialize the Expr.dataType field
-** of the ORDER BY expressions. The multiSelectSortOrder() routine
-** must be called to do that after the individual select statements
-** have all been analyzed. This routine is unable to compute Expr.dataType
-** because it must be called before the individual select statements
-** have been analyzed.
-*/
-static int matchOrderbyToColumn(
- Parse *pParse, /* A place to leave error messages */
- Select *pSelect, /* Match to result columns of this SELECT */
- ExprList *pOrderBy, /* The ORDER BY values to match against columns */
- int iTable, /* Insert this value in iTable */
- int mustComplete /* If TRUE all ORDER BYs must match */
-){
- int nErr = 0;
- int i, j;
- ExprList *pEList;
-
- if( pSelect==0 || pOrderBy==0 ) return 1;
- if( mustComplete ){
- for(i=0; i<pOrderBy->nExpr; i++){ pOrderBy->a[i].done = 0; }
- }
- if( fillInColumnList(pParse, pSelect) ){
- return 1;
- }
- if( pSelect->pPrior ){
- if( matchOrderbyToColumn(pParse, pSelect->pPrior, pOrderBy, iTable, 0) ){
- return 1;
- }
- }
- pEList = pSelect->pEList;
- for(i=0; i<pOrderBy->nExpr; i++){
- Expr *pE = pOrderBy->a[i].pExpr;
- int iCol = -1;
- if( pOrderBy->a[i].done ) continue;
- if( sqliteExprIsInteger(pE, &iCol) ){
- if( iCol<=0 || iCol>pEList->nExpr ){
- sqliteErrorMsg(pParse,
- "ORDER BY position %d should be between 1 and %d",
- iCol, pEList->nExpr);
- nErr++;
- break;
- }
- if( !mustComplete ) continue;
- iCol--;
- }
- for(j=0; iCol<0 && j<pEList->nExpr; j++){
- if( pEList->a[j].zName && (pE->op==TK_ID || pE->op==TK_STRING) ){
- char *zName, *zLabel;
- zName = pEList->a[j].zName;
- assert( pE->token.z );
- zLabel = sqliteStrNDup(pE->token.z, pE->token.n);
- sqliteDequote(zLabel);
- if( sqliteStrICmp(zName, zLabel)==0 ){
- iCol = j;
- }
- sqliteFree(zLabel);
- }
- if( iCol<0 && sqliteExprCompare(pE, pEList->a[j].pExpr) ){
- iCol = j;
- }
- }
- if( iCol>=0 ){
- pE->op = TK_COLUMN;
- pE->iColumn = iCol;
- pE->iTable = iTable;
- pOrderBy->a[i].done = 1;
- }
- if( iCol<0 && mustComplete ){
- sqliteErrorMsg(pParse,
- "ORDER BY term number %d does not match any result column", i+1);
- nErr++;
- break;
- }
- }
- return nErr;
-}
-
-/*
-** Get a VDBE for the given parser context. Create a new one if necessary.
-** If an error occurs, return NULL and leave a message in pParse.
-*/
-Vdbe *sqliteGetVdbe(Parse *pParse){
- Vdbe *v = pParse->pVdbe;
- if( v==0 ){
- v = pParse->pVdbe = sqliteVdbeCreate(pParse->db);
- }
- return v;
-}
-
-/*
-** This routine sets the Expr.dataType field on all elements of
-** the pOrderBy expression list. The pOrderBy list will have been
-** set up by matchOrderbyToColumn(). Hence each expression has
-** a TK_COLUMN as its root node. The Expr.iColumn refers to a
-** column in the result set. The datatype is set to STQLITE_SO_TEXT
-** if the corresponding column in p and every SELECT to the left of
-** p has a datatype of STQLITE_SO_TEXT. If the cooressponding column
-** in p or any of the left SELECTs is STQLITE_SO_NUM, then the datatype
-** of the order-by expression is set to STQLITE_SO_NUM.
-**
-** Examples:
-**
-** CREATE TABLE one(a INTEGER, b TEXT);
-** CREATE TABLE two(c VARCHAR(5), d FLOAT);
-**
-** SELECT b, b FROM one UNION SELECT d, c FROM two ORDER BY 1, 2;
-**
-** The primary sort key will use STQLITE_SO_NUM because the "d" in
-** the second SELECT is numeric. The 1st column of the first SELECT
-** is text but that does not matter because a numeric always overrides
-** a text.
-**
-** The secondary key will use the STQLITE_SO_TEXT sort order because
-** both the (second) "b" in the first SELECT and the "c" in the second
-** SELECT have a datatype of text.
-*/
-static void multiSelectSortOrder(Select *p, ExprList *pOrderBy){
- int i;
- ExprList *pEList;
- if( pOrderBy==0 ) return;
- if( p==0 ){
- for(i=0; i<pOrderBy->nExpr; i++){
- pOrderBy->a[i].pExpr->dataType = STQLITE_SO_TEXT;
- }
- return;
- }
- multiSelectSortOrder(p->pPrior, pOrderBy);
- pEList = p->pEList;
- for(i=0; i<pOrderBy->nExpr; i++){
- Expr *pE = pOrderBy->a[i].pExpr;
- if( pE->dataType==STQLITE_SO_NUM ) continue;
- assert( pE->iColumn>=0 );
- if( pEList->nExpr>pE->iColumn ){
- pE->dataType = sqliteExprType(pEList->a[pE->iColumn].pExpr);
- }
- }
-}
-
-/*
-** Compute the iLimit and iOffset fields of the SELECT based on the
-** nLimit and nOffset fields. nLimit and nOffset hold the integers
-** that appear in the original SQL statement after the LIMIT and OFFSET
-** keywords. Or that hold -1 and 0 if those keywords are omitted.
-** iLimit and iOffset are the integer memory register numbers for
-** counters used to compute the limit and offset. If there is no
-** limit and/or offset, then iLimit and iOffset are negative.
-**
-** This routine changes the values if iLimit and iOffset only if
-** a limit or offset is defined by nLimit and nOffset. iLimit and
-** iOffset should have been preset to appropriate default values
-** (usually but not always -1) prior to calling this routine.
-** Only if nLimit>=0 or nOffset>0 do the limit registers get
-** redefined. The UNION ALL operator uses this property to force
-** the reuse of the same limit and offset registers across multiple
-** SELECT statements.
-*/
-static void computeLimitRegisters(Parse *pParse, Select *p){
- /*
- ** If the comparison is p->nLimit>0 then "LIMIT 0" shows
- ** all rows. It is the same as no limit. If the comparision is
- ** p->nLimit>=0 then "LIMIT 0" show no rows at all.
- ** "LIMIT -1" always shows all rows. There is some
- ** contraversy about what the correct behavior should be.
- ** The current implementation interprets "LIMIT 0" to mean
- ** no rows.
- */
- if( p->nLimit>=0 ){
- int iMem = pParse->nMem++;
- Vdbe *v = sqliteGetVdbe(pParse);
- if( v==0 ) return;
- sqliteVdbeAddOp(v, OP_Integer, -p->nLimit, 0);
- sqliteVdbeAddOp(v, OP_MemStore, iMem, 1);
- p->iLimit = iMem;
- }
- if( p->nOffset>0 ){
- int iMem = pParse->nMem++;
- Vdbe *v = sqliteGetVdbe(pParse);
- if( v==0 ) return;
- sqliteVdbeAddOp(v, OP_Integer, -p->nOffset, 0);
- sqliteVdbeAddOp(v, OP_MemStore, iMem, 1);
- p->iOffset = iMem;
- }
-}
-
-/*
-** This routine is called to process a query that is really the union
-** or intersection of two or more separate queries.
-**
-** "p" points to the right-most of the two queries. the query on the
-** left is p->pPrior. The left query could also be a compound query
-** in which case this routine will be called recursively.
-**
-** The results of the total query are to be written into a destination
-** of type eDest with parameter iParm.
-**
-** Example 1: Consider a three-way compound SQL statement.
-**
-** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
-**
-** This statement is parsed up as follows:
-**
-** SELECT c FROM t3
-** |
-** `-----> SELECT b FROM t2
-** |
-** `------> SELECT a FROM t1
-**
-** The arrows in the diagram above represent the Select.pPrior pointer.
-** So if this routine is called with p equal to the t3 query, then
-** pPrior will be the t2 query. p->op will be TK_UNION in this case.
-**
-** Notice that because of the way STQLite parses compound SELECTs, the
-** individual selects always group from left to right.
-*/
-static int multiSelect(Parse *pParse, Select *p, int eDest, int iParm){
- int rc; /* Success code from a subroutine */
- Select *pPrior; /* Another SELECT immediately to our left */
- Vdbe *v; /* Generate code to this VDBE */
-
- /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only
- ** the last SELECT in the series may have an ORDER BY or LIMIT.
- */
- if( p==0 || p->pPrior==0 ) return 1;
- pPrior = p->pPrior;
- if( pPrior->pOrderBy ){
- sqliteErrorMsg(pParse,"ORDER BY clause should come after %s not before",
- selectOpName(p->op));
- return 1;
- }
- if( pPrior->nLimit>=0 || pPrior->nOffset>0 ){
- sqliteErrorMsg(pParse,"LIMIT clause should come after %s not before",
- selectOpName(p->op));
- return 1;
- }
-
- /* Make sure we have a valid query engine. If not, create a new one.
- */
- v = sqliteGetVdbe(pParse);
- if( v==0 ) return 1;
-
- /* Create the destination temporary table if necessary
- */
- if( eDest==SRT_TempTable ){
- sqliteVdbeAddOp(v, OP_OpenTemp, iParm, 0);
- eDest = SRT_Table;
- }
-
- /* Generate code for the left and right SELECT statements.
- */
- switch( p->op ){
- case TK_ALL: {
- if( p->pOrderBy==0 ){
- pPrior->nLimit = p->nLimit;
- pPrior->nOffset = p->nOffset;
- rc = sqliteSelect(pParse, pPrior, eDest, iParm, 0, 0, 0);
- if( rc ) return rc;
- p->pPrior = 0;
- p->iLimit = pPrior->iLimit;
- p->iOffset = pPrior->iOffset;
- p->nLimit = -1;
- p->nOffset = 0;
- rc = sqliteSelect(pParse, p, eDest, iParm, 0, 0, 0);
- p->pPrior = pPrior;
- if( rc ) return rc;
- break;
- }
- /* For UNION ALL ... ORDER BY fall through to the next case */
- }
- case TK_EXCEPT:
- case TK_UNION: {
- int unionTab; /* Cursor number of the temporary table holding result */
- int op; /* One of the SRT_ operations to apply to self */
- int priorOp; /* The SRT_ operation to apply to prior selects */
- int nLimit, nOffset; /* Saved values of p->nLimit and p->nOffset */
- ExprList *pOrderBy; /* The ORDER BY clause for the right SELECT */
-
- priorOp = p->op==TK_ALL ? SRT_Table : SRT_Union;
- if( eDest==priorOp && p->pOrderBy==0 && p->nLimit<0 && p->nOffset==0 ){
- /* We can reuse a temporary table generated by a SELECT to our
- ** right.
- */
- unionTab = iParm;
- }else{
- /* We will need to create our own temporary table to hold the
- ** intermediate results.
- */
- unionTab = pParse->nTab++;
- if( p->pOrderBy
- && matchOrderbyToColumn(pParse, p, p->pOrderBy, unionTab, 1) ){
- return 1;
- }
- if( p->op!=TK_ALL ){
- sqliteVdbeAddOp(v, OP_OpenTemp, unionTab, 1);
- sqliteVdbeAddOp(v, OP_KeyAsData, unionTab, 1);
- }else{
- sqliteVdbeAddOp(v, OP_OpenTemp, unionTab, 0);
- }
- }
-
- /* Code the SELECT statements to our left
- */
- rc = sqliteSelect(pParse, pPrior, priorOp, unionTab, 0, 0, 0);
- if( rc ) return rc;
-
- /* Code the current SELECT statement
- */
- switch( p->op ){
- case TK_EXCEPT: op = SRT_Except; break;
- case TK_UNION: op = SRT_Union; break;
- case TK_ALL: op = SRT_Table; break;
- }
- p->pPrior = 0;
- pOrderBy = p->pOrderBy;
- p->pOrderBy = 0;
- nLimit = p->nLimit;
- p->nLimit = -1;
- nOffset = p->nOffset;
- p->nOffset = 0;
- rc = sqliteSelect(pParse, p, op, unionTab, 0, 0, 0);
- p->pPrior = pPrior;
- p->pOrderBy = pOrderBy;
- p->nLimit = nLimit;
- p->nOffset = nOffset;
- if( rc ) return rc;
-
- /* Convert the data in the temporary table into whatever form
- ** it is that we currently need.
- */
- if( eDest!=priorOp || unionTab!=iParm ){
- int iCont, iBreak, iStart;
- assert( p->pEList );
- if( eDest==SRT_Callback ){
- generateColumnNames(pParse, 0, p->pEList);
- generateColumnTypes(pParse, p->pSrc, p->pEList);
- }
- iBreak = sqliteVdbeMakeLabel(v);
- iCont = sqliteVdbeMakeLabel(v);
- sqliteVdbeAddOp(v, OP_Rewind, unionTab, iBreak);
- computeLimitRegisters(pParse, p);
- iStart = sqliteVdbeCurrentAddr(v);
- multiSelectSortOrder(p, p->pOrderBy);
- rc = selectInnerLoop(pParse, p, p->pEList, unionTab, p->pEList->nExpr,
- p->pOrderBy, -1, eDest, iParm,
- iCont, iBreak);
- if( rc ) return 1;
- sqliteVdbeResolveLabel(v, iCont);
- sqliteVdbeAddOp(v, OP_Next, unionTab, iStart);
- sqliteVdbeResolveLabel(v, iBreak);
- sqliteVdbeAddOp(v, OP_Close, unionTab, 0);
- if( p->pOrderBy ){
- generateSortTail(p, v, p->pEList->nExpr, eDest, iParm);
- }
- }
- break;
- }
- case TK_INTERSECT: {
- int tab1, tab2;
- int iCont, iBreak, iStart;
- int nLimit, nOffset;
-
- /* INTERSECT is different from the others since it requires
- ** two temporary tables. Hence it has its own case. Begin
- ** by allocating the tables we will need.
- */
- tab1 = pParse->nTab++;
- tab2 = pParse->nTab++;
- if( p->pOrderBy && matchOrderbyToColumn(pParse,p,p->pOrderBy,tab1,1) ){
- return 1;
- }
- sqliteVdbeAddOp(v, OP_OpenTemp, tab1, 1);
- sqliteVdbeAddOp(v, OP_KeyAsData, tab1, 1);
-
- /* Code the SELECTs to our left into temporary table "tab1".
- */
- rc = sqliteSelect(pParse, pPrior, SRT_Union, tab1, 0, 0, 0);
- if( rc ) return rc;
-
- /* Code the current SELECT into temporary table "tab2"
- */
- sqliteVdbeAddOp(v, OP_OpenTemp, tab2, 1);
- sqliteVdbeAddOp(v, OP_KeyAsData, tab2, 1);
- p->pPrior = 0;
- nLimit = p->nLimit;
- p->nLimit = -1;
- nOffset = p->nOffset;
- p->nOffset = 0;
- rc = sqliteSelect(pParse, p, SRT_Union, tab2, 0, 0, 0);
- p->pPrior = pPrior;
- p->nLimit = nLimit;
- p->nOffset = nOffset;
- if( rc ) return rc;
-
- /* Generate code to take the intersection of the two temporary
- ** tables.
- */
- assert( p->pEList );
- if( eDest==SRT_Callback ){
- generateColumnNames(pParse, 0, p->pEList);
- generateColumnTypes(pParse, p->pSrc, p->pEList);
- }
- iBreak = sqliteVdbeMakeLabel(v);
- iCont = sqliteVdbeMakeLabel(v);
- sqliteVdbeAddOp(v, OP_Rewind, tab1, iBreak);
- computeLimitRegisters(pParse, p);
- iStart = sqliteVdbeAddOp(v, OP_FullKey, tab1, 0);
- sqliteVdbeAddOp(v, OP_NotFound, tab2, iCont);
- multiSelectSortOrder(p, p->pOrderBy);
- rc = selectInnerLoop(pParse, p, p->pEList, tab1, p->pEList->nExpr,
- p->pOrderBy, -1, eDest, iParm,
- iCont, iBreak);
- if( rc ) return 1;
- sqliteVdbeResolveLabel(v, iCont);
- sqliteVdbeAddOp(v, OP_Next, tab1, iStart);
- sqliteVdbeResolveLabel(v, iBreak);
- sqliteVdbeAddOp(v, OP_Close, tab2, 0);
- sqliteVdbeAddOp(v, OP_Close, tab1, 0);
- if( p->pOrderBy ){
- generateSortTail(p, v, p->pEList->nExpr, eDest, iParm);
- }
- break;
- }
- }
- assert( p->pEList && pPrior->pEList );
- if( p->pEList->nExpr!=pPrior->pEList->nExpr ){
- sqliteErrorMsg(pParse, "SELECTs to the left and right of %s"
- " do not have the same number of result columns", selectOpName(p->op));
- return 1;
- }
- return 0;
-}
-
-/*
-** Scan through the expression pExpr. Replace every reference to
-** a column in table number iTable with a copy of the iColumn-th
-** entry in pEList. (But leave references to the ROWID column
-** unchanged.)
-**
-** This routine is part of the flattening procedure. A subquery
-** whose result set is defined by pEList appears as entry in the
-** FROM clause of a SELECT such that the VDBE cursor assigned to that
-** FORM clause entry is iTable. This routine make the necessary
-** changes to pExpr so that it refers directly to the source table
-** of the subquery rather the result set of the subquery.
-*/
-static void substExprList(ExprList*,int,ExprList*); /* Forward Decl */
-static void substExpr(Expr *pExpr, int iTable, ExprList *pEList){
- if( pExpr==0 ) return;
- if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){
- if( pExpr->iColumn<0 ){
- pExpr->op = TK_NULL;
- }else{
- Expr *pNew;
- assert( pEList!=0 && pExpr->iColumn<pEList->nExpr );
- assert( pExpr->pLeft==0 && pExpr->pRight==0 && pExpr->pList==0 );
- pNew = pEList->a[pExpr->iColumn].pExpr;
- assert( pNew!=0 );
- pExpr->op = pNew->op;
- pExpr->dataType = pNew->dataType;
- assert( pExpr->pLeft==0 );
- pExpr->pLeft = sqliteExprDup(pNew->pLeft);
- assert( pExpr->pRight==0 );
- pExpr->pRight = sqliteExprDup(pNew->pRight);
- assert( pExpr->pList==0 );
- pExpr->pList = sqliteExprListDup(pNew->pList);
- pExpr->iTable = pNew->iTable;
- pExpr->iColumn = pNew->iColumn;
- pExpr->iAgg = pNew->iAgg;
- sqliteTokenCopy(&pExpr->token, &pNew->token);
- sqliteTokenCopy(&pExpr->span, &pNew->span);
- }
- }else{
- substExpr(pExpr->pLeft, iTable, pEList);
- substExpr(pExpr->pRight, iTable, pEList);
- substExprList(pExpr->pList, iTable, pEList);
- }
-}
-static void
-substExprList(ExprList *pList, int iTable, ExprList *pEList){
- int i;
- if( pList==0 ) return;
- for(i=0; i<pList->nExpr; i++){
- substExpr(pList->a[i].pExpr, iTable, pEList);
- }
-}
-
-/*
-** This routine attempts to flatten subqueries in order to speed
-** execution. It returns 1 if it makes changes and 0 if no flattening
-** occurs.
-**
-** To understand the concept of flattening, consider the following
-** query:
-**
-** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
-**
-** The default way of implementing this query is to execute the
-** subquery first and store the results in a temporary table, then
-** run the outer query on that temporary table. This requires two
-** passes over the data. Furthermore, because the temporary table
-** has no indices, the WHERE clause on the outer query cannot be
-** optimized.
-**
-** This routine attempts to rewrite queries such as the above into
-** a single flat select, like this:
-**
-** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
-**
-** The code generated for this simpification gives the same result
-** but only has to scan the data once. And because indices might
-** exist on the table t1, a complete scan of the data might be
-** avoided.
-**
-** Flattening is only attempted if all of the following are true:
-**
-** (1) The subquery and the outer query do not both use aggregates.
-**
-** (2) The subquery is not an aggregate or the outer query is not a join.
-**
-** (3) The subquery is not the right operand of a left outer join, or
-** the subquery is not itself a join. (Ticket #306)
-**
-** (4) The subquery is not DISTINCT or the outer query is not a join.
-**
-** (5) The subquery is not DISTINCT or the outer query does not use
-** aggregates.
-**
-** (6) The subquery does not use aggregates or the outer query is not
-** DISTINCT.
-**
-** (7) The subquery has a FROM clause.
-**
-** (8) The subquery does not use LIMIT or the outer query is not a join.
-**
-** (9) The subquery does not use LIMIT or the outer query does not use
-** aggregates.
-**
-** (10) The subquery does not use aggregates or the outer query does not
-** use LIMIT.
-**
-** (11) The subquery and the outer query do not both have ORDER BY clauses.
-**
-** (12) The subquery is not the right term of a LEFT OUTER JOIN or the
-** subquery has no WHERE clause. (added by ticket #350)
-**
-** In this routine, the "p" parameter is a pointer to the outer query.
-** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query
-** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates.
-**
-** If flattening is not attempted, this routine is a no-op and returns 0.
-** If flattening is attempted this routine returns 1.
-**
-** All of the expression analysis must occur on both the outer query and
-** the subquery before this routine runs.
-*/
-static int flattenSubquery(
- Parse *pParse, /* The parsing context */
- Select *p, /* The parent or outer SELECT statement */
- int iFrom, /* Index in p->pSrc->a[] of the inner subquery */
- int isAgg, /* True if outer SELECT uses aggregate functions */
- int subqueryIsAgg /* True if the subquery uses aggregate functions */
-){
- Select *pSub; /* The inner query or "subquery" */
- SrcList *pSrc; /* The FROM clause of the outer query */
- SrcList *pSubSrc; /* The FROM clause of the subquery */
- ExprList *pList; /* The result set of the outer query */
- int iParent; /* VDBE cursor number of the pSub result set temp table */
- int i;
- Expr *pWhere;
-
- /* Check to see if flattening is permitted. Return 0 if not.
- */
- if( p==0 ) return 0;
- pSrc = p->pSrc;
- assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
- pSub = pSrc->a[iFrom].pSelect;
- assert( pSub!=0 );
- if( isAgg && subqueryIsAgg ) return 0;
- if( subqueryIsAgg && pSrc->nSrc>1 ) return 0;
- pSubSrc = pSub->pSrc;
- assert( pSubSrc );
- if( pSubSrc->nSrc==0 ) return 0;
- if( (pSub->isDistinct || pSub->nLimit>=0) && (pSrc->nSrc>1 || isAgg) ){
- return 0;
- }
- if( (p->isDistinct || p->nLimit>=0) && subqueryIsAgg ) return 0;
- if( p->pOrderBy && pSub->pOrderBy ) return 0;
-
- /* Restriction 3: If the subquery is a join, make sure the subquery is
- ** not used as the right operand of an outer join. Examples of why this
- ** is not allowed:
- **
- ** t1 LEFT OUTER JOIN (t2 JOIN t3)
- **
- ** If we flatten the above, we would get
- **
- ** (t1 LEFT OUTER JOIN t2) JOIN t3
- **
- ** which is not at all the same thing.
- */
- if( pSubSrc->nSrc>1 && iFrom>0 && (pSrc->a[iFrom-1].jointype & JT_OUTER)!=0 ){
- return 0;
- }
-
- /* Restriction 12: If the subquery is the right operand of a left outer
- ** join, make sure the subquery has no WHERE clause.
- ** An examples of why this is not allowed:
- **
- ** t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0)
- **
- ** If we flatten the above, we would get
- **
- ** (t1 LEFT OUTER JOIN t2) WHERE t2.x>0
- **
- ** But the t2.x>0 test will always fail on a NULL row of t2, which
- ** effectively converts the OUTER JOIN into an INNER JOIN.
- */
- if( iFrom>0 && (pSrc->a[iFrom-1].jointype & JT_OUTER)!=0
- && pSub->pWhere!=0 ){
- return 0;
- }
-
- /* If we reach this point, it means flattening is permitted for the
- ** iFrom-th entry of the FROM clause in the outer query.
- */
-
- /* Move all of the FROM elements of the subquery into the
- ** the FROM clause of the outer query. Before doing this, remember
- ** the cursor number for the original outer query FROM element in
- ** iParent. The iParent cursor will never be used. Subsequent code
- ** will scan expressions looking for iParent references and replace
- ** those references with expressions that resolve to the subquery FROM
- ** elements we are now copying in.
- */
- iParent = pSrc->a[iFrom].iCursor;
- {
- int nSubSrc = pSubSrc->nSrc;
- int jointype = pSrc->a[iFrom].jointype;
-
- if( pSrc->a[iFrom].pTab && pSrc->a[iFrom].pTab->isTransient ){
- sqliteDeleteTable(0, pSrc->a[iFrom].pTab);
- }
- sqliteFree(pSrc->a[iFrom].zDatabase);
- sqliteFree(pSrc->a[iFrom].zName);
- sqliteFree(pSrc->a[iFrom].zAlias);
- if( nSubSrc>1 ){
- int extra = nSubSrc - 1;
- for(i=1; i<nSubSrc; i++){
- pSrc = sqliteSrcListAppend(pSrc, 0, 0);
- }
- p->pSrc = pSrc;
- for(i=pSrc->nSrc-1; i-extra>=iFrom; i--){
- pSrc->a[i] = pSrc->a[i-extra];
- }
- }
- for(i=0; i<nSubSrc; i++){
- pSrc->a[i+iFrom] = pSubSrc->a[i];
- memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
- }
- pSrc->a[iFrom+nSubSrc-1].jointype = jointype;
- }
-
- /* Now begin substituting subquery result set expressions for
- ** references to the iParent in the outer query.
- **
- ** Example:
- **
- ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
- ** \ \_____________ subquery __________/ /
- ** \_____________________ outer query ______________________________/
- **
- ** We look at every expression in the outer query and every place we see
- ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
- */
- substExprList(p->pEList, iParent, pSub->pEList);
- pList = p->pEList;
- for(i=0; i<pList->nExpr; i++){
- Expr *pExpr;
- if( pList->a[i].zName==0 && (pExpr = pList->a[i].pExpr)->span.z!=0 ){
- pList->a[i].zName = sqliteStrNDup(pExpr->span.z, pExpr->span.n);
- }
- }
- if( isAgg ){
- substExprList(p->pGroupBy, iParent, pSub->pEList);
- substExpr(p->pHaving, iParent, pSub->pEList);
- }
- if( pSub->pOrderBy ){
- assert( p->pOrderBy==0 );
- p->pOrderBy = pSub->pOrderBy;
- pSub->pOrderBy = 0;
- }else if( p->pOrderBy ){
- substExprList(p->pOrderBy, iParent, pSub->pEList);
- }
- if( pSub->pWhere ){
- pWhere = sqliteExprDup(pSub->pWhere);
- }else{
- pWhere = 0;
- }
- if( subqueryIsAgg ){
- assert( p->pHaving==0 );
- p->pHaving = p->pWhere;
- p->pWhere = pWhere;
- substExpr(p->pHaving, iParent, pSub->pEList);
- if( pSub->pHaving ){
- Expr *pHaving = sqliteExprDup(pSub->pHaving);
- if( p->pHaving ){
- p->pHaving = sqliteExpr(TK_AND, p->pHaving, pHaving, 0);
- }else{
- p->pHaving = pHaving;
- }
- }
- assert( p->pGroupBy==0 );
- p->pGroupBy = sqliteExprListDup(pSub->pGroupBy);
- }else if( p->pWhere==0 ){
- p->pWhere = pWhere;
- }else{
- substExpr(p->pWhere, iParent, pSub->pEList);
- if( pWhere ){
- p->pWhere = sqliteExpr(TK_AND, p->pWhere, pWhere, 0);
- }
- }
-
- /* The flattened query is distinct if either the inner or the
- ** outer query is distinct.
- */
- p->isDistinct = p->isDistinct || pSub->isDistinct;
-
- /* Transfer the limit expression from the subquery to the outer
- ** query.
- */
- if( pSub->nLimit>=0 ){
- if( p->nLimit<0 ){
- p->nLimit = pSub->nLimit;
- }else if( p->nLimit+p->nOffset > pSub->nLimit+pSub->nOffset ){
- p->nLimit = pSub->nLimit + pSub->nOffset - p->nOffset;
- }
- }
- p->nOffset += pSub->nOffset;
-
- /* Finially, delete what is left of the subquery and return
- ** success.
- */
- sqliteSelectDelete(pSub);
- return 1;
-}
-
-/*
-** Analyze the SELECT statement passed in as an argument to see if it
-** is a simple min() or max() query. If it is and this query can be
-** satisfied using a single seek to the beginning or end of an index,
-** then generate the code for this SELECT and return 1. If this is not a
-** simple min() or max() query, then return 0;
-**
-** A simply min() or max() query looks like this:
-**
-** SELECT min(a) FROM table;
-** SELECT max(a) FROM table;
-**
-** The query may have only a single table in its FROM argument. There
-** can be no GROUP BY or HAVING or WHERE clauses. The result set must
-** be the min() or max() of a single column of the table. The column
-** in the min() or max() function must be indexed.
-**
-** The parameters to this routine are the same as for sqliteSelect().
-** See the header comment on that routine for additional information.
-*/
-static int simpleMinMaxQuery(Parse *pParse, Select *p, int eDest, int iParm){
- Expr *pExpr;
- int iCol;
- Table *pTab;
- Index *pIdx;
- int base;
- Vdbe *v;
- int seekOp;
- int cont;
- ExprList eList;
- struct ExprList_item eListItem;
-
- /* Check to see if this query is a simple min() or max() query. Return
- ** zero if it is not.
- */
- if( p->pGroupBy || p->pHaving || p->pWhere ) return 0;
- if( p->pSrc->nSrc!=1 ) return 0;
- if( p->pEList->nExpr!=1 ) return 0;
- pExpr = p->pEList->a[0].pExpr;
- if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
- if( pExpr->pList==0 || pExpr->pList->nExpr!=1 ) return 0;
- if( pExpr->token.n!=3 ) return 0;
- if( sqliteStrNICmp(pExpr->token.z,"min",3)==0 ){
- seekOp = OP_Rewind;
- }else if( sqliteStrNICmp(pExpr->token.z,"max",3)==0 ){
- seekOp = OP_Last;
- }else{
- return 0;
- }
- pExpr = pExpr->pList->a[0].pExpr;
- if( pExpr->op!=TK_COLUMN ) return 0;
- iCol = pExpr->iColumn;
- pTab = p->pSrc->a[0].pTab;
-
- /* If we get to here, it means the query is of the correct form.
- ** Check to make sure we have an index and make pIdx point to the
- ** appropriate index. If the min() or max() is on an INTEGER PRIMARY
- ** key column, no index is necessary so set pIdx to NULL. If no
- ** usable index is found, return 0.
- */
- if( iCol<0 ){
- pIdx = 0;
- }else{
- for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
- assert( pIdx->nColumn>=1 );
- if( pIdx->aiColumn[0]==iCol ) break;
- }
- if( pIdx==0 ) return 0;
- }
-
- /* Identify column types if we will be using the callback. This
- ** step is skipped if the output is going to a table or a memory cell.
- ** The column names have already been generated in the calling function.
- */
- v = sqliteGetVdbe(pParse);
- if( v==0 ) return 0;
- if( eDest==SRT_Callback ){
- generateColumnTypes(pParse, p->pSrc, p->pEList);
- }
-
- /* If the output is destined for a temporary table, open that table.
- */
- if( eDest==SRT_TempTable ){
- sqliteVdbeAddOp(v, OP_OpenTemp, iParm, 0);
- }
-
- /* Generating code to find the min or the max. Basically all we have
- ** to do is find the first or the last entry in the chosen index. If
- ** the min() or max() is on the INTEGER PRIMARY KEY, then find the first
- ** or last entry in the main table.
- */
- sqliteCodeVerifySchema(pParse, pTab->iDb);
- base = p->pSrc->a[0].iCursor;
- computeLimitRegisters(pParse, p);
- sqliteVdbeAddOp(v, OP_Integer, pTab->iDb, 0);
- sqliteVdbeOp3(v, OP_OpenRead, base, pTab->tnum, pTab->zName, 0);
- cont = sqliteVdbeMakeLabel(v);
- if( pIdx==0 ){
- sqliteVdbeAddOp(v, seekOp, base, 0);
- }else{
- sqliteVdbeAddOp(v, OP_Integer, pIdx->iDb, 0);
- sqliteVdbeOp3(v, OP_OpenRead, base+1, pIdx->tnum, pIdx->zName, P3_STATIC);
- sqliteVdbeAddOp(v, seekOp, base+1, 0);
- sqliteVdbeAddOp(v, OP_IdxRecno, base+1, 0);
- sqliteVdbeAddOp(v, OP_Close, base+1, 0);
- sqliteVdbeAddOp(v, OP_MoveTo, base, 0);
- }
- eList.nExpr = 1;
- memset(&eListItem, 0, sizeof(eListItem));
- eList.a = &eListItem;
- eList.a[0].pExpr = pExpr;
- selectInnerLoop(pParse, p, &eList, 0, 0, 0, -1, eDest, iParm, cont, cont);
- sqliteVdbeResolveLabel(v, cont);
- sqliteVdbeAddOp(v, OP_Close, base, 0);
- return 1;
-}
-
-/*
-** Generate code for the given SELECT statement.
-**
-** The results are distributed in various ways depending on the
-** value of eDest and iParm.
-**
-** eDest Value Result
-** ------------ -------------------------------------------
-** SRT_Callback Invoke the callback for each row of the result.
-**
-** SRT_Mem Store first result in memory cell iParm
-**
-** SRT_Set Store results as keys of a table with cursor iParm
-**
-** SRT_Union Store results as a key in a temporary table iParm
-**
-** SRT_Except Remove results from the temporary table iParm.
-**
-** SRT_Table Store results in temporary table iParm
-**
-** The table above is incomplete. Additional eDist value have be added
-** since this comment was written. See the selectInnerLoop() function for
-** a complete listing of the allowed values of eDest and their meanings.
-**
-** This routine returns the number of errors. If any errors are
-** encountered, then an appropriate error message is left in
-** pParse->zErrMsg.
-**
-** This routine does NOT free the Select structure passed in. The
-** calling function needs to do that.
-**
-** The pParent, parentTab, and *pParentAgg fields are filled in if this
-** SELECT is a subquery. This routine may try to combine this SELECT
-** with its parent to form a single flat query. In so doing, it might
-** change the parent query from a non-aggregate to an aggregate query.
-** For that reason, the pParentAgg flag is passed as a pointer, so it
-** can be changed.
-**
-** Example 1: The meaning of the pParent parameter.
-**
-** SELECT * FROM t1 JOIN (SELECT x, count(*) FROM t2) JOIN t3;
-** \ \_______ subquery _______/ /
-** \ /
-** \____________________ outer query ___________________/
-**
-** This routine is called for the outer query first. For that call,
-** pParent will be NULL. During the processing of the outer query, this
-** routine is called recursively to handle the subquery. For the recursive
-** call, pParent will point to the outer query. Because the subquery is
-** the second element in a three-way join, the parentTab parameter will
-** be 1 (the 2nd value of a 0-indexed array.)
-*/
-int sqliteSelect(
- Parse *pParse, /* The parser context */
- Select *p, /* The SELECT statement being coded. */
- int eDest, /* How to dispose of the results */
- int iParm, /* A parameter used by the eDest disposal method */
- Select *pParent, /* Another SELECT for which this is a sub-query */
- int parentTab, /* Index in pParent->pSrc of this query */
- int *pParentAgg /* True if pParent uses aggregate functions */
-){
- int i;
- WhereInfo *pWInfo;
- Vdbe *v;
- int isAgg = 0; /* True for select lists like "count(*)" */
- ExprList *pEList; /* List of columns to extract. */
- SrcList *pTabList; /* List of tables to select from */
- Expr *pWhere; /* The WHERE clause. May be NULL */
- ExprList *pOrderBy; /* The ORDER BY clause. May be NULL */
- ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */
- Expr *pHaving; /* The HAVING clause. May be NULL */
- int isDistinct; /* True if the DISTINCT keyword is present */
- int distinct; /* Table to use for the distinct set */
- int rc = 1; /* Value to return from this function */
-
- if( sqlite_malloc_failed || pParse->nErr || p==0 ) return 1;
- if( sqliteAuthCheck(pParse, STQLITE_SELECT, 0, 0, 0) ) return 1;
-
- /* If there is are a sequence of queries, do the earlier ones first.
- */
- if( p->pPrior ){
- return multiSelect(pParse, p, eDest, iParm);
- }
-
- /* Make local copies of the parameters for this query.
- */
- pTabList = p->pSrc;
- pWhere = p->pWhere;
- pOrderBy = p->pOrderBy;
- pGroupBy = p->pGroupBy;
- pHaving = p->pHaving;
- isDistinct = p->isDistinct;
-
- /* Allocate VDBE cursors for each table in the FROM clause
- */
- sqliteSrcListAssignCursors(pParse, pTabList);
-
- /*
- ** Do not even attempt to generate any code if we have already seen
- ** errors before this routine starts.
- */
- if( pParse->nErr>0 ) goto select_end;
-
- /* Expand any "*" terms in the result set. (For example the "*" in
- ** "SELECT * FROM t1") The fillInColumnlist() routine also does some
- ** other housekeeping - see the header comment for details.
- */
- if( fillInColumnList(pParse, p) ){
- goto select_end;
- }
- pWhere = p->pWhere;
- pEList = p->pEList;
- if( pEList==0 ) goto select_end;
-
- /* If writing to memory or generating a set
- ** only a single column may be output.
- */
- if( (eDest==SRT_Mem || eDest==SRT_Set) && pEList->nExpr>1 ){
- sqliteErrorMsg(pParse, "only a single result allowed for "
- "a SELECT that is part of an expression");
- goto select_end;
- }
-
- /* ORDER BY is ignored for some destinations.
- */
- switch( eDest ){
- case SRT_Union:
- case SRT_Except:
- case SRT_Discard:
- pOrderBy = 0;
- break;
- default:
- break;
- }
-
- /* At this point, we should have allocated all the cursors that we
- ** need to handle subquerys and temporary tables.
- **
- ** Resolve the column names and do a semantics check on all the expressions.
- */
- for(i=0; i<pEList->nExpr; i++){
- if( sqliteExprResolveIds(pParse, pTabList, 0, pEList->a[i].pExpr) ){
- goto select_end;
- }
- if( sqliteExprCheck(pParse, pEList->a[i].pExpr, 1, &isAgg) ){
- goto select_end;
- }
- }
- if( pWhere ){
- if( sqliteExprResolveIds(pParse, pTabList, pEList, pWhere) ){
- goto select_end;
- }
- if( sqliteExprCheck(pParse, pWhere, 0, 0) ){
- goto select_end;
- }
- }
- if( pHaving ){
- if( pGroupBy==0 ){
- sqliteErrorMsg(pParse, "a GROUP BY clause is required before HAVING");
- goto select_end;
- }
- if( sqliteExprResolveIds(pParse, pTabList, pEList, pHaving) ){
- goto select_end;
- }
- if( sqliteExprCheck(pParse, pHaving, 1, &isAgg) ){
- goto select_end;
- }
- }
- if( pOrderBy ){
- for(i=0; i<pOrderBy->nExpr; i++){
- int iCol;
- Expr *pE = pOrderBy->a[i].pExpr;
- if( sqliteExprIsInteger(pE, &iCol) && iCol>0 && iCol<=pEList->nExpr ){
- sqliteExprDelete(pE);
- pE = pOrderBy->a[i].pExpr = sqliteExprDup(pEList->a[iCol-1].pExpr);
- }
- if( sqliteExprResolveIds(pParse, pTabList, pEList, pE) ){
- goto select_end;
- }
- if( sqliteExprCheck(pParse, pE, isAgg, 0) ){
- goto select_end;
- }
- if( sqliteExprIsConstant(pE) ){
- if( sqliteExprIsInteger(pE, &iCol)==0 ){
- sqliteErrorMsg(pParse,
- "ORDER BY terms must not be non-integer constants");
- goto select_end;
- }else if( iCol<=0 || iCol>pEList->nExpr ){
- sqliteErrorMsg(pParse,
- "ORDER BY column number %d out of range - should be "
- "between 1 and %d", iCol, pEList->nExpr);
- goto select_end;
- }
- }
- }
- }
- if( pGroupBy ){
- for(i=0; i<pGroupBy->nExpr; i++){
- int iCol;
- Expr *pE = pGroupBy->a[i].pExpr;
- if( sqliteExprIsInteger(pE, &iCol) && iCol>0 && iCol<=pEList->nExpr ){
- sqliteExprDelete(pE);
- pE = pGroupBy->a[i].pExpr = sqliteExprDup(pEList->a[iCol-1].pExpr);
- }
- if( sqliteExprResolveIds(pParse, pTabList, pEList, pE) ){
- goto select_end;
- }
- if( sqliteExprCheck(pParse, pE, isAgg, 0) ){
- goto select_end;
- }
- if( sqliteExprIsConstant(pE) ){
- if( sqliteExprIsInteger(pE, &iCol)==0 ){
- sqliteErrorMsg(pParse,
- "GROUP BY terms must not be non-integer constants");
- goto select_end;
- }else if( iCol<=0 || iCol>pEList->nExpr ){
- sqliteErrorMsg(pParse,
- "GROUP BY column number %d out of range - should be "
- "between 1 and %d", iCol, pEList->nExpr);
- goto select_end;
- }
- }
- }
- }
-
- /* Begin generating code.
- */
- v = sqliteGetVdbe(pParse);
- if( v==0 ) goto select_end;
-
- /* Identify column names if we will be using them in a callback. This
- ** step is skipped if the output is going to some other destination.
- */
- if( eDest==SRT_Callback ){
- generateColumnNames(pParse, pTabList, pEList);
- }
-
- /* Check for the special case of a min() or max() function by itself
- ** in the result set.
- */
- if( simpleMinMaxQuery(pParse, p, eDest, iParm) ){
- rc = 0;
- goto select_end;
- }
-
- /* Generate code for all sub-queries in the FROM clause
- */
- for(i=0; i<pTabList->nSrc; i++){
- const char *zSavedAuthContext;
- int needRestoreContext;
-
- if( pTabList->a[i].pSelect==0 ) continue;
- if( pTabList->a[i].zName!=0 ){
- zSavedAuthContext = pParse->zAuthContext;
- pParse->zAuthContext = pTabList->a[i].zName;
- needRestoreContext = 1;
- }else{
- needRestoreContext = 0;
- }
- sqliteSelect(pParse, pTabList->a[i].pSelect, SRT_TempTable,
- pTabList->a[i].iCursor, p, i, &isAgg);
- if( needRestoreContext ){
- pParse->zAuthContext = zSavedAuthContext;
- }
- pTabList = p->pSrc;
- pWhere = p->pWhere;
- if( eDest!=SRT_Union && eDest!=SRT_Except && eDest!=SRT_Discard ){
- pOrderBy = p->pOrderBy;
- }
- pGroupBy = p->pGroupBy;
- pHaving = p->pHaving;
- isDistinct = p->isDistinct;
- }
-
- /* Check to see if this is a subquery that can be "flattened" into its parent.
- ** If flattening is a possiblity, do so and return immediately.
- */
- if( pParent && pParentAgg &&
- flattenSubquery(pParse, pParent, parentTab, *pParentAgg, isAgg) ){
- if( isAgg ) *pParentAgg = 1;
- return rc;
- }
-
- /* Set the limiter.
- */
- computeLimitRegisters(pParse, p);
-
- /* Identify column types if we will be using a callback. This
- ** step is skipped if the output is going to a destination other
- ** than a callback.
- **
- ** We have to do this separately from the creation of column names
- ** above because if the pTabList contains views then they will not
- ** have been resolved and we will not know the column types until
- ** now.
- */
- if( eDest==SRT_Callback ){
- generateColumnTypes(pParse, pTabList, pEList);
- }
-
- /* If the output is destined for a temporary table, open that table.
- */
- if( eDest==SRT_TempTable ){
- sqliteVdbeAddOp(v, OP_OpenTemp, iParm, 0);
- }
-
- /* Do an analysis of aggregate expressions.
- */
- sqliteAggregateInfoReset(pParse);
- if( isAgg || pGroupBy ){
- assert( pParse->nAgg==0 );
- isAgg = 1;
- for(i=0; i<pEList->nExpr; i++){
- if( sqliteExprAnalyzeAggregates(pParse, pEList->a[i].pExpr) ){
- goto select_end;
- }
- }
- if( pGroupBy ){
- for(i=0; i<pGroupBy->nExpr; i++){
- if( sqliteExprAnalyzeAggregates(pParse, pGroupBy->a[i].pExpr) ){
- goto select_end;
- }
- }
- }
- if( pHaving && sqliteExprAnalyzeAggregates(pParse, pHaving) ){
- goto select_end;
- }
- if( pOrderBy ){
- for(i=0; i<pOrderBy->nExpr; i++){
- if( sqliteExprAnalyzeAggregates(pParse, pOrderBy->a[i].pExpr) ){
- goto select_end;
- }
- }
- }
- }
-
- /* Reset the aggregator
- */
- if( isAgg ){
- sqliteVdbeAddOp(v, OP_AggReset, 0, pParse->nAgg);
- for(i=0; i<pParse->nAgg; i++){
- FuncDef *pFunc;
- if( (pFunc = pParse->aAgg[i].pFunc)!=0 && pFunc->xFinalize!=0 ){
- sqliteVdbeOp3(v, OP_AggInit, 0, i, (char*)pFunc, P3_POINTER);
- }
- }
- if( pGroupBy==0 ){
- sqliteVdbeAddOp(v, OP_String, 0, 0);
- sqliteVdbeAddOp(v, OP_AggFocus, 0, 0);
- }
- }
-
- /* Initialize the memory cell to NULL
- */
- if( eDest==SRT_Mem ){
- sqliteVdbeAddOp(v, OP_String, 0, 0);
- sqliteVdbeAddOp(v, OP_MemStore, iParm, 1);
- }
-
- /* Open a temporary table to use for the distinct set.
- */
- if( isDistinct ){
- distinct = pParse->nTab++;
- sqliteVdbeAddOp(v, OP_OpenTemp, distinct, 1);
- }else{
- distinct = -1;
- }
-
- /* Begin the database scan
- */
- pWInfo = sqliteWhereBegin(pParse, pTabList, pWhere, 0,
- pGroupBy ? 0 : &pOrderBy);
- if( pWInfo==0 ) goto select_end;
-
- /* Use the standard inner loop if we are not dealing with
- ** aggregates
- */
- if( !isAgg ){
- if( selectInnerLoop(pParse, p, pEList, 0, 0, pOrderBy, distinct, eDest,
- iParm, pWInfo->iContinue, pWInfo->iBreak) ){
- goto select_end;
- }
- }
-
- /* If we are dealing with aggregates, then do the special aggregate
- ** processing.
- */
- else{
- AggExpr *pAgg;
- if( pGroupBy ){
- int lbl1;
- for(i=0; i<pGroupBy->nExpr; i++){
- sqliteExprCode(pParse, pGroupBy->a[i].pExpr);
- }
- sqliteVdbeAddOp(v, OP_MakeKey, pGroupBy->nExpr, 0);
- if( pParse->db->file_format>=4 ) sqliteAddKeyType(v, pGroupBy);
- lbl1 = sqliteVdbeMakeLabel(v);
- sqliteVdbeAddOp(v, OP_AggFocus, 0, lbl1);
- for(i=0, pAgg=pParse->aAgg; i<pParse->nAgg; i++, pAgg++){
- if( pAgg->isAgg ) continue;
- sqliteExprCode(pParse, pAgg->pExpr);
- sqliteVdbeAddOp(v, OP_AggSet, 0, i);
- }
- sqliteVdbeResolveLabel(v, lbl1);
- }
- for(i=0, pAgg=pParse->aAgg; i<pParse->nAgg; i++, pAgg++){
- Expr *pE;
- int nExpr;
- FuncDef *pDef;
- if( !pAgg->isAgg ) continue;
- assert( pAgg->pFunc!=0 );
- assert( pAgg->pFunc->xStep!=0 );
- pDef = pAgg->pFunc;
- pE = pAgg->pExpr;
- assert( pE!=0 );
- assert( pE->op==TK_AGG_FUNCTION );
- nExpr = sqliteExprCodeExprList(pParse, pE->pList, pDef->includeTypes);
- sqliteVdbeAddOp(v, OP_Integer, i, 0);
- sqliteVdbeOp3(v, OP_AggFunc, 0, nExpr, (char*)pDef, P3_POINTER);
- }
- }
-
- /* End the database scan loop.
- */
- sqliteWhereEnd(pWInfo);
-
- /* If we are processing aggregates, we need to set up a second loop
- ** over all of the aggregate values and process them.
- */
- if( isAgg ){
- int endagg = sqliteVdbeMakeLabel(v);
- int startagg;
- startagg = sqliteVdbeAddOp(v, OP_AggNext, 0, endagg);
- pParse->useAgg = 1;
- if( pHaving ){
- sqliteExprIfFalse(pParse, pHaving, startagg, 1);
- }
- if( selectInnerLoop(pParse, p, pEList, 0, 0, pOrderBy, distinct, eDest,
- iParm, startagg, endagg) ){
- goto select_end;
- }
- sqliteVdbeAddOp(v, OP_Goto, 0, startagg);
- sqliteVdbeResolveLabel(v, endagg);
- sqliteVdbeAddOp(v, OP_Noop, 0, 0);
- pParse->useAgg = 0;
- }
-
- /* If there is an ORDER BY clause, then we need to sort the results
- ** and send them to the callback one by one.
- */
- if( pOrderBy ){
- generateSortTail(p, v, pEList->nExpr, eDest, iParm);
- }
-
- /* If this was a subquery, we have now converted the subquery into a
- ** temporary table. So delete the subquery structure from the parent
- ** to prevent this subquery from being evaluated again and to force the
- ** the use of the temporary table.
- */
- if( pParent ){
- assert( pParent->pSrc->nSrc>parentTab );
- assert( pParent->pSrc->a[parentTab].pSelect==p );
- sqliteSelectDelete(p);
- pParent->pSrc->a[parentTab].pSelect = 0;
- }
-
- /* The SELECT was successfully coded. Set the return code to 0
- ** to indicate no errors.
- */
- rc = 0;
-
- /* Control jumps to here if an error is encountered above, or upon
- ** successful coding of the SELECT.
- */
-select_end:
- sqliteAggregateInfoReset(pParse);
- return rc;
-}