summaryrefslogtreecommitdiffstats
path: root/debian/lcms/lcms-1.19.dfsg2/src/cmspcs.c
diff options
context:
space:
mode:
Diffstat (limited to 'debian/lcms/lcms-1.19.dfsg2/src/cmspcs.c')
-rwxr-xr-xdebian/lcms/lcms-1.19.dfsg2/src/cmspcs.c601
1 files changed, 601 insertions, 0 deletions
diff --git a/debian/lcms/lcms-1.19.dfsg2/src/cmspcs.c b/debian/lcms/lcms-1.19.dfsg2/src/cmspcs.c
new file mode 100755
index 00000000..28644182
--- /dev/null
+++ b/debian/lcms/lcms-1.19.dfsg2/src/cmspcs.c
@@ -0,0 +1,601 @@
+//
+// Little cms
+// Copyright (C) 1998-2007 Marti Maria
+//
+// Permission is hereby granted, free of charge, to any person obtaining
+// a copy of this software and associated documentation files (the "Software"),
+// to deal in the Software without restriction, including without limitation
+// the rights to use, copy, modify, merge, publish, distribute, sublicense,
+// and/or sell copies of the Software, and to permit persons to whom the Software
+// is furnished to do so, subject to the following conditions:
+//
+// The above copyright notice and this permission notice shall be included in
+// all copies or substantial portions of the Software.
+//
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
+// THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
+// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
+// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
+// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+
+// inter PCS conversions XYZ <-> CIE L* a* b*
+
+#include "lcms.h"
+
+/*
+
+
+ CIE 15:2004 CIELab is defined as:
+
+ L* = 116*f(Y/Yn) - 16 0 <= L* <= 100
+ a* = 500*[f(X/Xn) - f(Y/Yn)]
+ b* = 200*[f(Y/Yn) - f(Z/Zn)]
+
+ and
+
+ f(t) = t^(1/3) 1 >= t > (24/116)^3
+ (841/108)*t + (16/116) 0 <= t <= (24/116)^3
+
+
+ Reverse transform is:
+
+ X = Xn*[a* / 500 + (L* + 16) / 116] ^ 3 if (X/Xn) > (24/116)
+ = Xn*(a* / 500 + L* / 116) / 7.787 if (X/Xn) <= (24/116)
+
+
+
+ Following ICC. PCS in Lab is coded as:
+
+ 8 bit Lab PCS:
+
+ L* 0..100 into a 0..ff byte.
+ a* t + 128 range is -128.0 +127.0
+ b*
+
+ 16 bit Lab PCS:
+
+ L* 0..100 into a 0..ff00 word.
+ a* t + 128 range is -128.0 +127.9961
+ b*
+
+
+ We are always playing with 16 bits-data, so I will ignore the
+ 8-bits encoding scheme.
+
+
+Interchange Space Component Actual Range Encoded Range
+CIE XYZ X 0 -> 1.99997 0x0000 -> 0xffff
+CIE XYZ Y 0 -> 1.99997 0x0000 -> 0xffff
+CIE XYZ Z 0 -> 1.99997 0x0000 -> 0xffff
+
+Version 2,3
+-----------
+
+CIELAB (16 bit) L* 0 -> 100.0 0x0000 -> 0xff00
+CIELAB (16 bit) a* -128.0 -> +127.996 0x0000 -> 0x8000 -> 0xffff
+CIELAB (16 bit) b* -128.0 -> +127.996 0x0000 -> 0x8000 -> 0xffff
+
+
+Version 4
+---------
+
+CIELAB (16 bit) L* 0 -> 100.0 0x0000 -> 0xffff
+CIELAB (16 bit) a* -128.0 -> +127 0x0000 -> 0x8080 -> 0xffff
+CIELAB (16 bit) b* -128.0 -> +127 0x0000 -> 0x8080 -> 0xffff
+
+*/
+
+
+
+
+// On most modern computers, D > 4 M (i.e. a division takes more than 4
+// multiplications worth of time), so it is probably preferable to compute
+// a 24 bit result directly.
+
+// #define ITERATE 1
+
+static
+float CubeRoot(float x)
+{
+ float fr, r;
+ int ex, shx;
+
+ /* Argument reduction */
+ fr = (float) frexp(x, &ex); /* separate into mantissa and exponent */
+ shx = ex % 3;
+
+ if (shx > 0)
+ shx -= 3; /* compute shx such that (ex - shx) is divisible by 3 */
+
+ ex = (ex - shx) / 3; /* exponent of cube root */
+ fr = (float) ldexp(fr, shx);
+
+ /* 0.125 <= fr < 1.0 */
+
+#ifdef ITERATE
+ /* Compute seed with a quadratic approximation */
+
+ fr = (-0.46946116F * fr + 1.072302F) * fr + 0.3812513F;/* 0.5<=fr<1 */
+ r = ldexp(fr, ex); /* 6 bits of precision */
+
+ /* Newton-Raphson iterations */
+
+ r = (float)(2.0/3.0) * r + (float)(1.0/3.0) * x / (r * r); /* 12 bits */
+ r = (float)(2.0/3.0) * r + (float)(1.0/3.0) * x / (r * r); /* 24 bits */
+#else /* ITERATE */
+
+ /* Use quartic rational polynomial with error < 2^(-24) */
+
+ fr = (float) (((((45.2548339756803022511987494 * fr +
+ 192.2798368355061050458134625) * fr +
+ 119.1654824285581628956914143) * fr +
+ 13.43250139086239872172837314) * fr +
+ 0.1636161226585754240958355063)
+ /
+ ((((14.80884093219134573786480845 * fr +
+ 151.9714051044435648658557668) * fr +
+ 168.5254414101568283957668343) * fr +
+ 33.9905941350215598754191872) * fr +
+ 1.0));
+ r = (float) ldexp(fr, ex); /* 24 bits of precision */
+#endif
+ return r;
+}
+
+static
+double f(double t)
+{
+
+ const double Limit = (24.0/116.0) * (24.0/116.0) * (24.0/116.0);
+
+ if (t <= Limit)
+ return (841.0/108.0) * t + (16.0/116.0);
+ else
+ return CubeRoot((float) t);
+}
+
+
+static
+double f_1(double t)
+{
+ const double Limit = (24.0/116.0);
+
+ if (t <= Limit)
+ {
+ double tmp;
+
+ tmp = (108.0/841.0) * (t - (16.0/116.0));
+ if (tmp <= 0.0) return 0.0;
+ else return tmp;
+ }
+
+ return t * t * t;
+}
+
+
+
+void LCMSEXPORT cmsXYZ2Lab(LPcmsCIEXYZ WhitePoint, LPcmsCIELab Lab, const cmsCIEXYZ* xyz)
+{
+ double fx, fy, fz;
+
+ if (xyz -> X == 0 && xyz -> Y == 0 && xyz -> Z == 0)
+ {
+ Lab -> L = 0;
+ Lab -> a = 0;
+ Lab -> b = 0;
+ return;
+ }
+
+ if (WhitePoint == NULL)
+ WhitePoint = cmsD50_XYZ();
+
+ fx = f(xyz->X / WhitePoint->X);
+ fy = f(xyz->Y / WhitePoint->Y);
+ fz = f(xyz->Z / WhitePoint->Z);
+
+ Lab->L = 116.0* fy - 16.;
+
+ Lab->a = 500.0*(fx - fy);
+ Lab->b = 200.0*(fy - fz);
+}
+
+
+
+void cmsXYZ2LabEncoded(WORD XYZ[3], WORD Lab[3])
+{
+ Fixed32 X, Y, Z;
+ double x, y, z, L, a, b;
+ double fx, fy, fz;
+ Fixed32 wL, wa, wb;
+
+ X = (Fixed32) XYZ[0] << 1;
+ Y = (Fixed32) XYZ[1] << 1;
+ Z = (Fixed32) XYZ[2] << 1;
+
+
+ if (X==0 && Y==0 && Z==0) {
+
+ Lab[0] = 0;
+ Lab[1] = Lab[2] = 0x8000;
+ return;
+ }
+
+ // PCS is in D50
+
+
+ x = FIXED_TO_DOUBLE(X) / D50X;
+ y = FIXED_TO_DOUBLE(Y) / D50Y;
+ z = FIXED_TO_DOUBLE(Z) / D50Z;
+
+
+ fx = f(x);
+ fy = f(y);
+ fz = f(z);
+
+ L = 116.* fy - 16.;
+
+ a = 500.*(fx - fy);
+ b = 200.*(fy - fz);
+
+ a += 128.;
+ b += 128.;
+
+ wL = (int) (L * 652.800 + .5);
+ wa = (int) (a * 256.0 + .5);
+ wb = (int) (b * 256.0 + .5);
+
+
+ Lab[0] = Clamp_L(wL);
+ Lab[1] = Clamp_ab(wa);
+ Lab[2] = Clamp_ab(wb);
+
+
+}
+
+
+
+
+
+
+void LCMSEXPORT cmsLab2XYZ(LPcmsCIEXYZ WhitePoint, LPcmsCIEXYZ xyz, const cmsCIELab* Lab)
+{
+ double x, y, z;
+
+ if (Lab -> L <= 0) {
+ xyz -> X = 0;
+ xyz -> Y = 0;
+ xyz -> Z = 0;
+ return;
+ }
+
+
+ if (WhitePoint == NULL)
+ WhitePoint = cmsD50_XYZ();
+
+ y = (Lab-> L + 16.0) / 116.0;
+ x = y + 0.002 * Lab -> a;
+ z = y - 0.005 * Lab -> b;
+
+ xyz -> X = f_1(x) * WhitePoint -> X;
+ xyz -> Y = f_1(y) * WhitePoint -> Y;
+ xyz -> Z = f_1(z) * WhitePoint -> Z;
+
+}
+
+
+
+void cmsLab2XYZEncoded(WORD Lab[3], WORD XYZ[3])
+{
+ double L, a, b;
+ double X, Y, Z, x, y, z;
+
+
+ L = ((double) Lab[0] * 100.0) / 65280.0;
+ if (L==0.0) {
+
+ XYZ[0] = 0; XYZ[1] = 0; XYZ[2] = 0;
+ return;
+ }
+
+ a = ((double) Lab[1] / 256.0) - 128.0;
+ b = ((double) Lab[2] / 256.0) - 128.0;
+
+ y = (L + 16.) / 116.0;
+ x = y + 0.002 * a;
+ z = y - 0.005 * b;
+
+ X = f_1(x) * D50X;
+ Y = f_1(y) * D50Y;
+ Z = f_1(z) * D50Z;
+
+ // Convert to 1.15 fixed format PCS
+
+
+ XYZ[0] = _cmsClampWord((int) floor(X * 32768.0 + 0.5));
+ XYZ[1] = _cmsClampWord((int) floor(Y * 32768.0 + 0.5));
+ XYZ[2] = _cmsClampWord((int) floor(Z * 32768.0 + 0.5));
+
+
+}
+
+static
+double L2float3(WORD v)
+{
+ Fixed32 fix32;
+
+ fix32 = (Fixed32) v;
+ return (double) fix32 / 652.800;
+}
+
+
+// the a/b part
+
+static
+double ab2float3(WORD v)
+{
+ Fixed32 fix32;
+
+ fix32 = (Fixed32) v;
+ return ((double) fix32/256.0)-128.0;
+}
+
+static
+WORD L2Fix3(double L)
+{
+ return (WORD) (L * 652.800 + 0.5);
+}
+
+static
+WORD ab2Fix3(double ab)
+{
+ return (WORD) ((ab + 128.0) * 256.0 + 0.5);
+}
+
+
+// ICC 4.0 -- ICC has changed PCS Lab encoding.
+
+static
+WORD L2Fix4(double L)
+{
+ return (WORD) (L * 655.35 + 0.5);
+}
+
+static
+WORD ab2Fix4(double ab)
+{
+ return (WORD) ((ab + 128.0) * 257.0 + 0.5);
+}
+
+static
+double L2float4(WORD v)
+{
+ Fixed32 fix32;
+
+ fix32 = (Fixed32) v;
+ return (double) fix32 / 655.35;
+}
+
+
+// the a/b part
+
+static
+double ab2float4(WORD v)
+{
+ Fixed32 fix32;
+
+ fix32 = (Fixed32) v;
+ return ((double) fix32/257.0)-128.0;
+}
+
+
+void LCMSEXPORT cmsLabEncoded2Float(LPcmsCIELab Lab, const WORD wLab[3])
+{
+ Lab->L = L2float3(wLab[0]);
+ Lab->a = ab2float3(wLab[1]);
+ Lab->b = ab2float3(wLab[2]);
+}
+
+
+void LCMSEXPORT cmsLabEncoded2Float4(LPcmsCIELab Lab, const WORD wLab[3])
+{
+ Lab->L = L2float4(wLab[0]);
+ Lab->a = ab2float4(wLab[1]);
+ Lab->b = ab2float4(wLab[2]);
+}
+
+static
+double Clamp_L_double(double L)
+{
+ if (L < 0) L = 0;
+ if (L > 100) L = 100;
+
+ return L;
+}
+
+
+static
+double Clamp_ab_double(double ab)
+{
+ if (ab < -128) ab = -128.0;
+ if (ab > +127.9961) ab = +127.9961;
+
+ return ab;
+}
+
+void LCMSEXPORT cmsFloat2LabEncoded(WORD wLab[3], const cmsCIELab* fLab)
+{
+ cmsCIELab Lab;
+
+
+ Lab.L = Clamp_L_double(fLab ->L);
+ Lab.a = Clamp_ab_double(fLab ->a);
+ Lab.b = Clamp_ab_double(fLab ->b);
+
+ wLab[0] = L2Fix3(Lab.L);
+ wLab[1] = ab2Fix3(Lab.a);
+ wLab[2] = ab2Fix3(Lab.b);
+}
+
+
+void LCMSEXPORT cmsFloat2LabEncoded4(WORD wLab[3], const cmsCIELab* fLab)
+{
+ cmsCIELab Lab;
+
+
+ Lab.L = fLab ->L;
+ Lab.a = fLab ->a;
+ Lab.b = fLab ->b;
+
+
+ if (Lab.L < 0) Lab.L = 0;
+ if (Lab.L > 100.) Lab.L = 100.;
+
+ if (Lab.a < -128.) Lab.a = -128.;
+ if (Lab.a > 127.) Lab.a = 127.;
+ if (Lab.b < -128.) Lab.b = -128.;
+ if (Lab.b > 127.) Lab.b = 127.;
+
+
+ wLab[0] = L2Fix4(Lab.L);
+ wLab[1] = ab2Fix4(Lab.a);
+ wLab[2] = ab2Fix4(Lab.b);
+}
+
+
+
+
+void LCMSEXPORT cmsLab2LCh(LPcmsCIELCh LCh, const cmsCIELab* Lab)
+{
+ double a, b;
+
+ LCh -> L = Clamp_L_double(Lab -> L);
+
+ a = Clamp_ab_double(Lab -> a);
+ b = Clamp_ab_double(Lab -> b);
+
+ LCh -> C = pow(a * a + b * b, 0.5);
+
+ if (a == 0 && b == 0)
+ LCh -> h = 0;
+ else
+ LCh -> h = atan2(b, a);
+
+
+ LCh -> h *= (180. / M_PI);
+
+
+ while (LCh -> h >= 360.) // Not necessary, but included as a check.
+ LCh -> h -= 360.;
+
+ while (LCh -> h < 0)
+ LCh -> h += 360.;
+
+}
+
+
+
+
+void LCMSEXPORT cmsLCh2Lab(LPcmsCIELab Lab, const cmsCIELCh* LCh)
+{
+
+ double h = (LCh -> h * M_PI) / 180.0;
+
+ Lab -> L = Clamp_L_double(LCh -> L);
+ Lab -> a = Clamp_ab_double(LCh -> C * cos(h));
+ Lab -> b = Clamp_ab_double(LCh -> C * sin(h));
+
+}
+
+
+
+
+
+// In XYZ All 3 components are encoded using 1.15 fixed point
+
+static
+WORD XYZ2Fix(double d)
+{
+ return (WORD) floor(d * 32768.0 + 0.5);
+}
+
+
+void LCMSEXPORT cmsFloat2XYZEncoded(WORD XYZ[3], const cmsCIEXYZ* fXYZ)
+{
+ cmsCIEXYZ xyz;
+
+ xyz.X = fXYZ -> X;
+ xyz.Y = fXYZ -> Y;
+ xyz.Z = fXYZ -> Z;
+
+
+ // Clamp to encodeable values.
+ // 1.99997 is reserved as out-of-gamut marker
+
+
+ if (xyz.Y <= 0) {
+
+ xyz.X = 0;
+ xyz.Y = 0;
+ xyz.Z = 0;
+ }
+
+
+ if (xyz.X > 1.99996)
+ xyz.X = 1.99996;
+
+ if (xyz.X < 0)
+ xyz.X = 0;
+
+ if (xyz.Y > 1.99996)
+ xyz.Y = 1.99996;
+
+ if (xyz.Y < 0)
+ xyz.Y = 0;
+
+
+ if (xyz.Z > 1.99996)
+ xyz.Z = 1.99996;
+
+ if (xyz.Z < 0)
+ xyz.Z = 0;
+
+
+
+ XYZ[0] = XYZ2Fix(xyz.X);
+ XYZ[1] = XYZ2Fix(xyz.Y);
+ XYZ[2] = XYZ2Fix(xyz.Z);
+
+}
+
+
+// To convert from Fixed 1.15 point to double
+
+static
+double XYZ2float(WORD v)
+{
+ Fixed32 fix32;
+
+ // From 1.15 to 15.16
+
+ fix32 = v << 1;
+
+ // From fixed 15.16 to double
+
+ return FIXED_TO_DOUBLE(fix32);
+}
+
+
+void LCMSEXPORT cmsXYZEncoded2Float(LPcmsCIEXYZ fXYZ, const WORD XYZ[3])
+{
+
+ fXYZ -> X = XYZ2float(XYZ[0]);
+ fXYZ -> Y = XYZ2float(XYZ[1]);
+ fXYZ -> Z = XYZ2float(XYZ[2]);
+
+}
+
+
+
+