diff options
| author | Timothy Pearson <kb9vqf@pearsoncomputing.net> | 2012-04-30 02:15:10 -0500 | 
|---|---|---|
| committer | Slávek Banko <slavek.banko@axis.cz> | 2012-08-04 14:53:33 +0200 | 
| commit | 485dab68a6bb572b3e377e2500944744b984f0be (patch) | |
| tree | 3f6204c4653b335ae5f2028c77b0462174dd0552 /src/3rdparty/libjpeg/jidctflt.c | |
| parent | 34681cac0d27ecfacb1d8832deb3891afa963204 (diff) | |
| download | qt3-485dab68a6bb572b3e377e2500944744b984f0be.tar.gz qt3-485dab68a6bb572b3e377e2500944744b984f0be.zip | |
Remove completely obsolete libjpeg directory
(cherry picked from commit 4e0674395047ad477209f57312f30cbf58375f8b)
Diffstat (limited to 'src/3rdparty/libjpeg/jidctflt.c')
| -rw-r--r-- | src/3rdparty/libjpeg/jidctflt.c | 242 | 
1 files changed, 0 insertions, 242 deletions
| diff --git a/src/3rdparty/libjpeg/jidctflt.c b/src/3rdparty/libjpeg/jidctflt.c deleted file mode 100644 index 0188ce3..0000000 --- a/src/3rdparty/libjpeg/jidctflt.c +++ /dev/null @@ -1,242 +0,0 @@ -/* - * jidctflt.c - * - * Copyright (C) 1994-1998, Thomas G. Lane. - * This file is part of the Independent JPEG Group's software. - * For conditions of distribution and use, see the accompanying README file. - * - * This file contains a floating-point implementation of the - * inverse DCT (Discrete Cosine Transform).  In the IJG code, this routine - * must also perform dequantization of the input coefficients. - * - * This implementation should be more accurate than either of the integer - * IDCT implementations.  However, it may not give the same results on all - * machines because of differences in roundoff behavior.  Speed will depend - * on the hardware's floating point capacity. - * - * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT - * on each row (or vice versa, but it's more convenient to emit a row at - * a time).  Direct algorithms are also available, but they are much more - * complex and seem not to be any faster when reduced to code. - * - * This implementation is based on Arai, Agui, and Nakajima's algorithm for - * scaled DCT.  Their original paper (Trans. IEICE E-71(11):1095) is in - * Japanese, but the algorithm is described in the Pennebaker & Mitchell - * JPEG textbook (see REFERENCES section in file README).  The following code - * is based directly on figure 4-8 in P&M. - * While an 8-point DCT cannot be done in less than 11 multiplies, it is - * possible to arrange the computation so that many of the multiplies are - * simple scalings of the final outputs.  These multiplies can then be - * folded into the multiplications or divisions by the JPEG quantization - * table entries.  The AA&N method leaves only 5 multiplies and 29 adds - * to be done in the DCT itself. - * The primary disadvantage of this method is that with a fixed-point - * implementation, accuracy is lost due to imprecise representation of the - * scaled quantization values.  However, that problem does not arise if - * we use floating point arithmetic. - */ - -#define JPEG_INTERNALS -#include "jinclude.h" -#include "jpeglib.h" -#include "jdct.h"		/* Private declarations for DCT subsystem */ - -#ifdef DCT_FLOAT_SUPPORTED - - -/* - * This module is specialized to the case DCTSIZE = 8. - */ - -#if DCTSIZE != 8 -  Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ -#endif - - -/* Dequantize a coefficient by multiplying it by the multiplier-table - * entry; produce a float result. - */ - -#define DEQUANTIZE(coef,quantval)  (((FAST_FLOAT) (coef)) * (quantval)) - - -/* - * Perform dequantization and inverse DCT on one block of coefficients. - */ - -GLOBAL(void) -jpeg_idct_float (j_decompress_ptr cinfo, jpeg_component_info * compptr, -		 JCOEFPTR coef_block, -		 JSAMPARRAY output_buf, JDIMENSION output_col) -{ -  FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; -  FAST_FLOAT tmp10, tmp11, tmp12, tmp13; -  FAST_FLOAT z5, z10, z11, z12, z13; -  JCOEFPTR inptr; -  FLOAT_MULT_TYPE * quantptr; -  FAST_FLOAT * wsptr; -  JSAMPROW outptr; -  JSAMPLE *range_limit = IDCT_range_limit(cinfo); -  int ctr; -  FAST_FLOAT workspace[DCTSIZE2]; /* buffers data between passes */ -  SHIFT_TEMPS - -  /* Pass 1: process columns from input, store into work array. */ - -  inptr = coef_block; -  quantptr = (FLOAT_MULT_TYPE *) compptr->dct_table; -  wsptr = workspace; -  for (ctr = DCTSIZE; ctr > 0; ctr--) { -    /* Due to quantization, we will usually find that many of the input -     * coefficients are zero, especially the AC terms.  We can exploit this -     * by short-circuiting the IDCT calculation for any column in which all -     * the AC terms are zero.  In that case each output is equal to the -     * DC coefficient (with scale factor as needed). -     * With typical images and quantization tables, half or more of the -     * column DCT calculations can be simplified this way. -     */ -     -    if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 && -	inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 && -	inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 && -	inptr[DCTSIZE*7] == 0) { -      /* AC terms all zero */ -      FAST_FLOAT dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); -       -      wsptr[DCTSIZE*0] = dcval; -      wsptr[DCTSIZE*1] = dcval; -      wsptr[DCTSIZE*2] = dcval; -      wsptr[DCTSIZE*3] = dcval; -      wsptr[DCTSIZE*4] = dcval; -      wsptr[DCTSIZE*5] = dcval; -      wsptr[DCTSIZE*6] = dcval; -      wsptr[DCTSIZE*7] = dcval; -       -      inptr++;			/* advance pointers to next column */ -      quantptr++; -      wsptr++; -      continue; -    } -     -    /* Even part */ - -    tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); -    tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); -    tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]); -    tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]); - -    tmp10 = tmp0 + tmp2;	/* phase 3 */ -    tmp11 = tmp0 - tmp2; - -    tmp13 = tmp1 + tmp3;	/* phases 5-3 */ -    tmp12 = (tmp1 - tmp3) * ((FAST_FLOAT) 1.414213562) - tmp13; /* 2*c4 */ - -    tmp0 = tmp10 + tmp13;	/* phase 2 */ -    tmp3 = tmp10 - tmp13; -    tmp1 = tmp11 + tmp12; -    tmp2 = tmp11 - tmp12; -     -    /* Odd part */ - -    tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); -    tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); -    tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); -    tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]); - -    z13 = tmp6 + tmp5;		/* phase 6 */ -    z10 = tmp6 - tmp5; -    z11 = tmp4 + tmp7; -    z12 = tmp4 - tmp7; - -    tmp7 = z11 + z13;		/* phase 5 */ -    tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562); /* 2*c4 */ - -    z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */ -    tmp10 = ((FAST_FLOAT) 1.082392200) * z12 - z5; /* 2*(c2-c6) */ -    tmp12 = ((FAST_FLOAT) -2.613125930) * z10 + z5; /* -2*(c2+c6) */ - -    tmp6 = tmp12 - tmp7;	/* phase 2 */ -    tmp5 = tmp11 - tmp6; -    tmp4 = tmp10 + tmp5; - -    wsptr[DCTSIZE*0] = tmp0 + tmp7; -    wsptr[DCTSIZE*7] = tmp0 - tmp7; -    wsptr[DCTSIZE*1] = tmp1 + tmp6; -    wsptr[DCTSIZE*6] = tmp1 - tmp6; -    wsptr[DCTSIZE*2] = tmp2 + tmp5; -    wsptr[DCTSIZE*5] = tmp2 - tmp5; -    wsptr[DCTSIZE*4] = tmp3 + tmp4; -    wsptr[DCTSIZE*3] = tmp3 - tmp4; - -    inptr++;			/* advance pointers to next column */ -    quantptr++; -    wsptr++; -  } -   -  /* Pass 2: process rows from work array, store into output array. */ -  /* Note that we must descale the results by a factor of 8 == 2**3. */ - -  wsptr = workspace; -  for (ctr = 0; ctr < DCTSIZE; ctr++) { -    outptr = output_buf[ctr] + output_col; -    /* Rows of zeroes can be exploited in the same way as we did with columns. -     * However, the column calculation has created many nonzero AC terms, so -     * the simplification applies less often (typically 5% to 10% of the time). -     * And testing floats for zero is relatively expensive, so we don't bother. -     */ -     -    /* Even part */ - -    tmp10 = wsptr[0] + wsptr[4]; -    tmp11 = wsptr[0] - wsptr[4]; - -    tmp13 = wsptr[2] + wsptr[6]; -    tmp12 = (wsptr[2] - wsptr[6]) * ((FAST_FLOAT) 1.414213562) - tmp13; - -    tmp0 = tmp10 + tmp13; -    tmp3 = tmp10 - tmp13; -    tmp1 = tmp11 + tmp12; -    tmp2 = tmp11 - tmp12; - -    /* Odd part */ - -    z13 = wsptr[5] + wsptr[3]; -    z10 = wsptr[5] - wsptr[3]; -    z11 = wsptr[1] + wsptr[7]; -    z12 = wsptr[1] - wsptr[7]; - -    tmp7 = z11 + z13; -    tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562); - -    z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */ -    tmp10 = ((FAST_FLOAT) 1.082392200) * z12 - z5; /* 2*(c2-c6) */ -    tmp12 = ((FAST_FLOAT) -2.613125930) * z10 + z5; /* -2*(c2+c6) */ - -    tmp6 = tmp12 - tmp7; -    tmp5 = tmp11 - tmp6; -    tmp4 = tmp10 + tmp5; - -    /* Final output stage: scale down by a factor of 8 and range-limit */ - -    outptr[0] = range_limit[(int) DESCALE((INT32) (tmp0 + tmp7), 3) -			    & RANGE_MASK]; -    outptr[7] = range_limit[(int) DESCALE((INT32) (tmp0 - tmp7), 3) -			    & RANGE_MASK]; -    outptr[1] = range_limit[(int) DESCALE((INT32) (tmp1 + tmp6), 3) -			    & RANGE_MASK]; -    outptr[6] = range_limit[(int) DESCALE((INT32) (tmp1 - tmp6), 3) -			    & RANGE_MASK]; -    outptr[2] = range_limit[(int) DESCALE((INT32) (tmp2 + tmp5), 3) -			    & RANGE_MASK]; -    outptr[5] = range_limit[(int) DESCALE((INT32) (tmp2 - tmp5), 3) -			    & RANGE_MASK]; -    outptr[4] = range_limit[(int) DESCALE((INT32) (tmp3 + tmp4), 3) -			    & RANGE_MASK]; -    outptr[3] = range_limit[(int) DESCALE((INT32) (tmp3 - tmp4), 3) -			    & RANGE_MASK]; -     -    wsptr += DCTSIZE;		/* advance pointer to next row */ -  } -} - -#endif /* DCT_FLOAT_SUPPORTED */ | 
