summaryrefslogtreecommitdiffstats
path: root/src/sound/WAVAudioFile.cpp
blob: 585fca9786374b652fe33bafd08a671f33806d77 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
/*
    Rosegarden
    A sequencer and musical notation editor.
 
    This program is Copyright 2000-2008
        Guillaume Laurent   <glaurent@telegraph-road.org>,
        Chris Cannam        <cannam@all-day-breakfast.com>,
        Richard Bown        <bownie@bownie.com>
 
    The moral right of the authors to claim authorship of this work
    has been asserted.
 
    This program is free software; you can redistribute it and/or
    modify it under the terms of the GNU General Public License as
    published by the Free Software Foundation; either version 2 of the
    License, or (at your option) any later version.  See the file
    COPYING included with this distribution for more information.
*/

#include <sstream>

#include "WAVAudioFile.h"
#include "RealTime.h"

using std::cout;
using std::cerr;
using std::endl;

//#define DEBUG_DECODE 1

namespace Rosegarden
{

WAVAudioFile::WAVAudioFile(const unsigned int &id,
                           const std::string &name,
                           const std::string &fileName):
        RIFFAudioFile(id, name, fileName)
{
    m_type = WAV;
}

WAVAudioFile::WAVAudioFile(const std::string &fileName,
                           unsigned int channels = 1,
                           unsigned int sampleRate = 48000,
                           unsigned int bytesPerSecond = 6000,
                           unsigned int bytesPerFrame = 2,
                           unsigned int bitsPerSample = 16):
        RIFFAudioFile(fileName, channels, sampleRate, bytesPerSecond, bytesPerFrame, bitsPerSample)
{
    m_type = WAV;
}

WAVAudioFile::~WAVAudioFile()
{}

bool
WAVAudioFile::open()
{
    // if already open
    if (m_inFile && (*m_inFile))
        return true;

    m_inFile = new std::ifstream(m_fileName.c_str(),
                                 std::ios::in | std::ios::binary);

    if (!(*m_inFile)) {
        m_type = UNKNOWN;
        return false;
    }

    // Get the file size and store it for comparison later
    m_fileSize = m_fileInfo->size();

    try {
        parseHeader();
    } catch (BadSoundFileException e) {
        std::cerr << "ERROR: WAVAudioFile::open(): parseHeader: " << e.getMessage() << endl;
        return false;
    }

    return true;
}

// Open the file for writing, write out the header and move
// to the data chunk to accept samples.  We fill in all the
// totals when we close().
//
bool
WAVAudioFile::write()
{
    // close if we're open
    if (m_outFile) {
        m_outFile->close();
        delete m_outFile;
    }

    // open for writing
    m_outFile = new std::ofstream(m_fileName.c_str(),
                                  std::ios::out | std::ios::binary);

    if (!(*m_outFile))
        return false;

    // write out format header chunk and prepare for sample writing
    //
    writeFormatChunk();

    return true;
}

void
WAVAudioFile::close()
{
    if (m_outFile == 0)
        return ;

    m_outFile->seekp(0, std::ios::end);
    unsigned int totalSize = m_outFile->tellp();

    // seek to first length position
    m_outFile->seekp(4, std::ios::beg);

    // write complete file size minus 8 bytes to here
    putBytes(m_outFile, getLittleEndianFromInteger(totalSize - 8, 4));

    // reseek from start forward 40
    m_outFile->seekp(40, std::ios::beg);

    // write the data chunk size to end
    putBytes(m_outFile, getLittleEndianFromInteger(totalSize - 44, 4));

    m_outFile->close();

    delete m_outFile;
    m_outFile = 0;
}

// Set the AudioFile meta data according to WAV file format specification.
//
void
WAVAudioFile::parseHeader()
{
    // Read the format chunk and populate the file data.  A plain WAV
    // file only has this chunk.  Exceptions tumble through.
    //
    readFormatChunk();

}

std::streampos
WAVAudioFile::getDataOffset()
{
    return 0;
}

bool
WAVAudioFile::decode(const unsigned char *ubuf,
                     size_t sourceBytes,
                     size_t targetSampleRate,
                     size_t targetChannels,
                     size_t nframes,
                     std::vector<float *> &target,
                     bool adding)
{
    size_t sourceChannels = getChannels();
    size_t sourceSampleRate = getSampleRate();
    size_t fileFrames = sourceBytes / getBytesPerFrame();

    int bitsPerSample = getBitsPerSample();
    if (bitsPerSample != 8 &&
            bitsPerSample != 16 &&
            bitsPerSample != 24 &&
            bitsPerSample != 32) { // 32-bit is IEEE-float (enforced in RIFFAudioFile)
        std::cerr << "WAVAudioFile::decode: unsupported " <<
        bitsPerSample << "-bit sample size" << std::endl;
        return false;
    }

#ifdef DEBUG_DECODE
    std::cerr << "WAVAudioFile::decode: " << sourceBytes << " bytes -> " << nframes << " frames, SSR " << getSampleRate() << ", TSR " << targetSampleRate << ", sch " << getChannels() << ", tch " << targetChannels << std::endl;
#endif

    // If we're reading a stereo file onto a mono target, we mix the
    // two channels.  If we're reading mono to stereo, we duplicate
    // the mono channel.  Otherwise if the numbers of channels differ,
    // we just copy across the ones that do match and zero the rest.

    bool reduceToMono = (targetChannels == 1 && sourceChannels == 2);

    for (size_t ch = 0; ch < sourceChannels; ++ch) {

        if (!reduceToMono || ch == 0) {
            if (ch >= targetChannels)
                break;
            if (!adding)
                memset(target[ch], 0, nframes * sizeof(float));
        }

        int tch = ch; // target channel for this data
        if (reduceToMono && ch == 1) {
            tch = 0;
        }

        float ratio = 1.0;
        if (sourceSampleRate != targetSampleRate) {
            ratio = float(sourceSampleRate) / float(targetSampleRate);
        }

        for (size_t i = 0; i < nframes; ++i) {

            size_t j = i;
            if (sourceSampleRate != targetSampleRate) {
                j = size_t(i * ratio);
            }
            if (j >= fileFrames)
                j = fileFrames - 1;

	    float sample = convertBytesToSample
		(&ubuf[(bitsPerSample / 8) * (ch + j * sourceChannels)]);

            target[tch][i] += sample;
        }
    }

    // Now deal with any excess target channels

    for (int ch = sourceChannels; ch < targetChannels; ++ch) {
        if (ch == 1 && targetChannels == 2) {
            // copy mono to stereo
            if (!adding) {
                memcpy(target[ch], target[ch - 1], nframes * sizeof(float));
            } else {
                for (size_t i = 0; i < nframes; ++i) {
                    target[ch][i] += target[ch - 1][i];
                }
            }
        } else {
            if (!adding) {
                memset(target[ch], 0, nframes * sizeof(float));
            }
        }
    }

    return true;
}


}