summaryrefslogtreecommitdiffstats
path: root/kstars/kstars/indi/apogee/CameraIO_Linux.cpp
blob: 0481ecfcfb725eb5bc7e77d731067e2e8a15e634 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
// CameraIO.cpp: implementation of the CCameraIO class.
//
// Copyright (c) 2000 Apogee Instruments Inc.
//////////////////////////////////////////////////////////////////////

#include <assert.h>
#include <sys/time.h>
#include <sys/resource.h>
#include <sys/ioctl.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <string.h>
#include <sched.h>
#include <unistd.h>
#include <fcntl.h>
#define HANDLE int
#define FALSE 0
#define DWORD long
#define _ASSERT assert
#define REALTIME_PRIORITY_CLASS 1  
#define GetCurrentProcess getpid
#define LOBYTE(x) ((x) & 0xff)
#define HIBYTE(x) ((x >> 8) & 0xff)

#define MIRQ1	0x21
#define MIRQ2	0xA1

#include "time.h"
//#include "tcl.h"
//#include "ccd.h"
#include "CameraIO_Linux.h"
#include "ApogeeLinux.h"

const int NUM_POSITIONS = 6;
const int NUM_STEPS_PER_FILTER = 48;
const int STEP_DELAY = 10;

const unsigned char Steps[] = { 0x10, 0x30, 0x20, 0x60, 0x40, 0xc0, 0x80, 0x90 };
const int NUM_STEPS = sizeof ( Steps );

//////////////////////////////////////////////////////////////////////
// Construction/Destruction
//////////////////////////////////////////////////////////////////////

CCameraIO::CCameraIO()
{
	InitDefaults();

	m_TDI = false;

	m_Shutter = false;
	m_FilterPosition = 0;
	m_FilterStepPos = 0;

	m_WaitingforImage = false;
	m_WaitingforLine = false;

	m_WaitingforTrigger = false;
	m_tqStatus = Camera_Status_Idle;
	m_CoolertqStatus = Camera_CoolerStatus_Off;	

	m_ExposureBinX = 0;
	m_ExposureBinY = 0;		
	m_ExposureStartX = 0;
	m_ExposureStartY = 0;
	m_ExposureNumX = 0;
	m_ExposureNumY = 0;	
	m_ExposureColumns = 0; 
	m_ExposureRows = 0;
	m_ExposureSkipC = 0;
	m_ExposureSkipR = 0;	
	m_ExposureHFlush = 0;
	m_ExposureVFlush = 0;
	m_ExposureBIC = 0;
	m_ExposureBIR = 0;		
	m_ExposureAIC = 0;					
	m_ExposureRemainingLines = 0;
	m_ExposureAIR = 0;					

	m_RegShadow[ Reg_Command ] = 0;
	m_RegShadow[ Reg_Timer ] = 0;
	m_RegShadow[ Reg_VBinning ] = 0;
	m_RegShadow[ Reg_AICCounter ] = 0;
	m_RegShadow[ Reg_TempSetPoint ] = 0;
	m_RegShadow[ Reg_PixelCounter ] = 0;
	m_RegShadow[ Reg_LineCounter ] = 0;
	m_RegShadow[ Reg_BICCounter ] = 0;

	m_FastShutterBits_Mode = 0;
	m_FastShutterBits_Test = 0;
        m_IRTQMask = 0;
        saveIRQS = 0;

}

CCameraIO::~CCameraIO()
{

  //::close(fileHandle);
  close(fileHandle);
}

////////////////////////////////////////////////////////////
// System methods

int  GetPriorityClass ( HANDLE /*hProcess*/ )
{
    int i;
    i = sched_getscheduler(0);
    return(i);
}

int  SetPriorityClass ( HANDLE /*hProcess*/, int hPriority)
{
    int i;
    sched_param p;

    if (hPriority) {
       i = sched_setscheduler(0,SCHED_RR,&p);
    } else {
       i = sched_setscheduler(0,SCHED_OTHER,&p);
    }
    return(i);
}

void Sleep (int hTime)
{
    timespec t;
    t.tv_sec= 0;
    t.tv_nsec = hTime*1000000;
//    nanosleep(&t);
}



void ATLTRACE (char * /*msg*/)
{
}


void CCameraIO::Reset()
{
	unsigned short val = 0;
	Read( Reg_CommandReadback, val );	// Take snapshot of currrent status
	m_RegShadow[ Reg_Command ] = val;	// remember it in our write shadow
	
	// In case these were left on, turn them off
	m_RegShadow[ Reg_Command ] &= ~RegBit_FIFOCache;	// set bit to 0
	m_RegShadow[ Reg_Command ] &= ~RegBit_TDIMode;		// set bit to 0

	m_RegShadow[ Reg_Command ] |= RegBit_ResetSystem;	// set bit to 1
	Write( Reg_Command, m_RegShadow[ Reg_Command ] );
	
	m_RegShadow[ Reg_Command ] &= ~RegBit_ResetSystem;	// set bit to 0
	Write( Reg_Command, m_RegShadow[ Reg_Command ] );

	m_WaitingforImage = false;
	m_WaitingforLine = false;
	m_WaitingforTrigger = false;
}

void CCameraIO::AuxOutput( unsigned char val )
{	
	// clear bits to 0
	m_RegShadow[ Reg_TempSetPoint ] &= ~( RegBitMask_PortControl << RegBitShift_PortControl );
	
	// set our new bits
	m_RegShadow[ Reg_TempSetPoint ] |= val << RegBitShift_PortControl;
	
	Write( Reg_TempSetPoint, m_RegShadow[ Reg_TempSetPoint ] );
}

// Input reg is from 0 to 7, val is any 16 bit number
void CCameraIO::RegWrite( short reg, unsigned short val )
{
	Write( reg, val );
	
	// Update our shadow register
	switch ( reg )
	{
	case Reg_Command:
		m_RegShadow[ Reg_Command ] = val;
		break;
	case Reg_Timer:
		m_RegShadow[ Reg_Timer ] = val;
		break;
	case Reg_VBinning:
		m_RegShadow[ Reg_VBinning ] = val;
		break;
	case Reg_AICCounter:
		m_RegShadow[ Reg_AICCounter ] = val;
		break;
	case Reg_TempSetPoint:
		m_RegShadow[ Reg_TempSetPoint ] = val;
		break;
	case Reg_PixelCounter:
		m_RegShadow[ Reg_PixelCounter ] = val;
		break;
	case Reg_LineCounter:
		m_RegShadow[ Reg_LineCounter ] = val;
		break;
	case Reg_BICCounter:
		m_RegShadow[ Reg_BICCounter ] = val;
		break;
	default:
		_ASSERT( FALSE );	// application program bug
	}
}

// Input reg is from 8 to 12, returned val is any 16 bit number
void CCameraIO::RegRead( short reg, unsigned short& val )
{
	Read( reg, val );
}

bool CCameraIO::FilterHome()
{
  	HANDLE hProcess(0);
	DWORD Class(0);

	if ( m_HighPriority )
	{	// Store current process class and priority
		hProcess = GetCurrentProcess();
		Class = GetPriorityClass ( hProcess );
		SetPriorityClass ( hProcess, REALTIME_PRIORITY_CLASS );
	}

	// Find the home position
	m_FilterPosition = 0;
	int Safety = 0;
	for (int I = 0; I < NUM_POSITIONS * NUM_STEPS_PER_FILTER * 2; I++)
	{
		// Advance the filter one step
		m_FilterStepPos += 1;
		if (m_FilterStepPos >= NUM_STEPS) m_FilterStepPos = 0;
		unsigned char Step = Steps[ m_FilterStepPos ];
				
		AuxOutput( Step );
		Sleep ( STEP_DELAY );

		// Check for strobe
		unsigned short val = 0;
		Read( Reg_tqStatus, val );
		if ( val & RegBit_GotTrigger )
		{
			// Cycle all the way around if it's on the first time
			if (I < NUM_STEPS_PER_FILTER) 
			{
				if (++Safety > NUM_STEPS_PER_FILTER * 2) 
				{
					// Restore normal priority
					if ( m_HighPriority ) SetPriorityClass ( hProcess, Class );
					return false;
				}
				I = 0;
				continue;
			}

			// Continue cycling until we get clear of the opto mirror
			for (int J = 0; J < NUM_STEPS_PER_FILTER; J++)
			{
				// Advance the filter one step
				m_FilterStepPos += 1;
				if (m_FilterStepPos >= NUM_STEPS) m_FilterStepPos = 0;
				unsigned char Step = Steps[ m_FilterStepPos ];
				
				AuxOutput( Step );
				Sleep ( STEP_DELAY );

				val = 0;
				Read( Reg_tqStatus, val );
				if ( val & RegBit_GotTrigger )
				{
					Sleep ( 10 );
					
					val = 0;
					Read( Reg_tqStatus, val );
					if ( val & RegBit_GotTrigger )
					{
						// Restore normal priority
						if ( m_HighPriority ) SetPriorityClass ( hProcess, Class );
						return true;
					}
				}
			}

			// Restore normal priority
			if ( m_HighPriority ) SetPriorityClass ( hProcess, Class );
			return true;
		}
	}

	// Restore normal priority
	if ( m_HighPriority ) SetPriorityClass ( hProcess, Class );
	return false;
}

void CCameraIO::FilterSet( short Slot )
{
	// Determine how far we have to move
	int Pos = Slot - m_FilterPosition;
	if (Pos < 0) Pos += NUM_POSITIONS;

	HANDLE hProcess(0);
	DWORD Class(0);

	if ( m_HighPriority )
	{	// Store current process class and priority
		hProcess = GetCurrentProcess();
		Class = GetPriorityClass ( hProcess );
		SetPriorityClass ( hProcess, REALTIME_PRIORITY_CLASS );
	}

	for (int I = 0; I < Pos; I++)
	{
		// Advance one position
		for (int J = 0; J < NUM_STEPS_PER_FILTER; J++)
		{
			m_FilterStepPos += 1;
			if (m_FilterStepPos >= NUM_STEPS) m_FilterStepPos = 0;
			unsigned char Step = Steps[ m_FilterStepPos ];
		
			AuxOutput( Step );
			Sleep ( STEP_DELAY );
		}
	}

	if ( m_HighPriority ) SetPriorityClass ( hProcess, Class );

	m_FilterPosition = Slot;
}

////////////////////////////////////////////////////////////
// Normal exposure methods

bool CCameraIO::Expose( double Duration, bool Light )
{
	if ( !m_TDI && ( Duration < m_MinExposure || Duration > m_MaxExposure ) ) return false;

	// Validate all input variables
	if ( m_Columns < 1 || m_Columns > MAXCOLUMNS ) return false;
	m_ExposureColumns = m_Columns; 
	
	if ( m_Rows < 1 || m_Rows > MAXROWS ) return false;
	m_ExposureRows = m_Rows;
	
	if ( m_SkipC < 0 ) return false;
	m_ExposureSkipC = m_SkipC;
	
	if ( m_SkipR < 0 ) return false;
	m_ExposureSkipR = m_SkipR;	
	
	if ( m_HFlush < 1 || m_HFlush > MAXHBIN ) return false;
	m_ExposureHFlush = m_HFlush;
	
	if ( m_VFlush < 1 || m_VFlush > MAXVBIN ) return false;
	m_ExposureVFlush = m_VFlush;

	if ( m_BIC < 1 || m_BIC > MAXCOLUMNS ) return false;
	m_ExposureBIC = m_BIC;
	
	if ( m_BIR < 1 || m_BIR > MAXROWS ) return false;
	m_ExposureBIR = m_BIR;		

	// Validate all input variables
	if ( m_BinX < 1 || m_BinX > MAXHBIN ) return false;
	m_ExposureBinX = m_BinX;

	if ( m_StartX < 0 || m_StartX >= MAXCOLUMNS ) return false;
	m_ExposureStartX = m_StartX;

	if ( m_NumX < 1 || m_NumX * m_BinX > m_ImgColumns ) return false;
	m_ExposureNumX = m_NumX;

	// Calculate BIC, RawPixelCount, AIC
	unsigned short BIC = m_ExposureBIC + m_ExposureStartX;		// unbinned columns
	unsigned short RawPixelCount = m_ExposureNumX * m_ExposureBinX;
	m_ExposureAIC = m_ExposureColumns - BIC - RawPixelCount;	// unbinned columns

	if ( m_BinY < 1 || m_BinY > MAXVBIN ) return false;
	m_ExposureBinY = m_BinY;		
		
	unsigned short VBin(0), row_offset(0);

	if ( m_TDI )
	{	// row_offset is the drift time in milliseconds when in TDI mode
		row_offset = (unsigned short) (Duration * 1000 + 0.5);
		Duration = 0.0;
	}
	else
	{
		if ( m_StartY < 0 || m_StartX >= MAXROWS ) return false;
		m_ExposureStartY = m_StartY;
			
		if ( m_NumY < 1 || m_NumY * m_BinY > m_ImgRows ) return false;
		m_ExposureNumY = m_NumY;	

		unsigned short BIR = m_ExposureBIR + m_ExposureStartY;		// unbinned rows
		if ( BIR >= MAXROWS ) return false;
		m_ExposureAIR = m_ExposureRows - BIR - m_ExposureNumY * m_ExposureBinY;	// unbinned rows

		if ( m_VFlush > BIR )
		{
			VBin = BIR;
			m_ExposureRemainingLines = 0;
		}
		else
		{
			VBin = m_VFlush;
			m_ExposureRemainingLines = BIR % VBin;	// unbinned rows
		}
		row_offset = BIR - m_ExposureRemainingLines; // unbinned rows
	}	
	
	StopFlushing();
	Reset();

	LoadColumnLayout( m_ExposureAIC, BIC, (unsigned short) m_ExposureNumX + m_ExposureSkipC );
	LoadTimerAndBinning( Duration, (unsigned short) m_ExposureHFlush, VBin );
	LoadLineCounter( row_offset );

	if ( m_TDI )
	{
		// Turn on TDI
		m_RegShadow[ Reg_Command ] |= RegBit_TDIMode;		// set bit to 1
		
		// Disable FIFO cache
		m_RegShadow[ Reg_Command ] &= ~RegBit_FIFOCache;	// set bit to 0

		// Set shutter override
		if ( Light )
			m_RegShadow[ Reg_Command ] |= RegBit_ShutterOverride;		// set bit to 1
		else
			m_RegShadow[ Reg_Command ] &= ~RegBit_ShutterOverride;		// set bit to 0

		Write( Reg_Command, m_RegShadow[ Reg_Command ] );
		
		// Update our status
		m_Shutter = Light;
		m_WaitingforTrigger = false;
		m_WaitingforLine = false;
	}
	else
	{
		// Set shutter
		if ( Light )
			m_RegShadow[ Reg_Command ] |= RegBit_ShutterEnable;		// set bit to 1
		else
			m_RegShadow[ Reg_Command ] &= ~RegBit_ShutterEnable;	// set bit to 0

		Write( Reg_Command, m_RegShadow[ Reg_Command ] );

		// Update our status
		unsigned short val = 0;
		Read( Reg_CommandReadback, val );
		if ( val & RegBit_ShutterOverride )
			m_Shutter = true;
		else
			m_Shutter = Light;

		if ( ( val & RegBit_TriggerEnable ) )
			m_WaitingforTrigger = true;
		else
			m_WaitingforTrigger = false;

		// Start the exposure
		m_RegShadow[ Reg_Command ] |= RegBit_StartTimer;	// set bit to 1
		Write( Reg_Command, m_RegShadow[ Reg_Command ] );
		
		m_RegShadow[ Reg_Command ] &= ~RegBit_StartTimer;	// set bit to 0
		Write( Reg_Command, m_RegShadow[ Reg_Command ] );
	
		m_WaitingforImage = true;
	}

	return true;
}

/*bool CCameraIO::BufferImage(char *bufferName )
{
    unsigned short *pImageData;
    bool status; 
    short cols,rows,hbin,vbin;
    short xSize, ySize;

    cols = m_NumX*m_BinX;
    rows = m_NumY*m_BinY;
    hbin = m_BinX;
    vbin = m_BinY;

    pImageData = (unsigned short *)CCD_locate_buffer(bufferName, 2 , cols, rows, hbin, vbin );
    if (pImageData == NULL) {
       return 0;
    }
    
    status = GetImage(pImageData, xSize, ySize);
    return status;
}*/

bool CCameraIO::GetImage( unsigned short* pImageData, short& xSize, short& ySize )
{
        int i;
	unsigned short BIC = m_ExposureBIC + m_ExposureStartX;

	// Update internal variables in case application did not poll read_tqStatus
	m_WaitingforTrigger = false;
	m_WaitingforLine = false;

	if ( m_WaitingforImage )
	{	// In case application did not poll read_tqStatus
		m_WaitingforImage = false;

		/////////////////////////////////////
		// Wait until camera is done flushing
		clock_t StopTime = clock() + long( m_Timeout * CLOCKS_PER_SEC );	// wait at most m_Timeout seconds
		while ( true )
		{
			unsigned short val = 0;
			Read( Reg_tqStatus, val );
			if ( ( val & RegBit_FrameDone ) != 0 ) break;
			
			if ( clock() > StopTime ) return false;		// Timed out
		}
	}

//        MaskIrqs();

	/////////////////////////////////////
	// Update our internal status
	unsigned short val = 0;
	Read( Reg_CommandReadback, val );
	if ( !( val & RegBit_ShutterOverride ) ) m_Shutter = false;

	StopFlushing();
	LoadColumnLayout( m_ExposureAIC, BIC, (unsigned short) m_ExposureNumX + m_ExposureSkipC );

	if ( m_ExposureRemainingLines > 0 )
	{
		LoadTimerAndBinning( 0.0, m_ExposureHFlush, m_ExposureRemainingLines );

		/////////////////////////////////////
		// Clock out the remaining lines
		m_RegShadow[ Reg_Command ] |= RegBit_StartNextLine;		// set bit to 1
		Write( Reg_Command, m_RegShadow[ Reg_Command ] );
		
		m_RegShadow[ Reg_Command ] &= ~RegBit_StartNextLine;	// set bit to 0
		Write( Reg_Command, m_RegShadow[ Reg_Command ] );
		/////////////////////////////////////

		/////////////////////////////////////
		// Wait until camera is done clocking
		clock_t StopTime = clock() + CLOCKS_PER_SEC;	// wait at most one second
		while ( true )
		{
			unsigned short val = 0;
			Read( Reg_tqStatus, val );
			if ( ( val & RegBit_LineDone ) != 0 ) break;	// Line done
			
			if ( clock() > StopTime )
			{
				Flush();
				return false;		// Timed out, no image available
			}
		}
	}

	LoadTimerAndBinning( 0.0, m_ExposureBinX, m_ExposureBinY );
	
	bool ret = false;	// assume failure

	// NB Application must have allocated enough memory or else !!!
	if ( pImageData != NULL )
	{
	        HANDLE hProcess(0);
		DWORD Class(0);
		
		if ( m_HighPriority )
		{	// Store current process class and priority
			hProcess = GetCurrentProcess();
			Class = GetPriorityClass ( hProcess );
			SetPriorityClass ( hProcess, REALTIME_PRIORITY_CLASS );
		}

		m_RegShadow[ Reg_Command ] |= RegBit_FIFOCache;		// set bit to 1
		Write( Reg_Command, m_RegShadow[ Reg_Command ] );

		long XPixels = long( m_ExposureNumX );
		long SkipPixels = long( m_ExposureSkipC );
		for (i = 0; i < m_ExposureSkipR; i++)
		{
			if ( ReadLine( SkipPixels, XPixels, pImageData ) ) break;
		}
		
		if ( i == m_ExposureSkipR )
		{	// We have skipped all the lines
			long YPixels = long( m_ExposureNumY );
			unsigned short* pLineBuffer = pImageData;
			for (i = 0; i < YPixels; i++)
			{
				if ( ReadLine( SkipPixels, XPixels, pLineBuffer ) ) break;
				pLineBuffer += XPixels;
			}

			if ( i == YPixels ) ret = true;		// We have read all the lines
		}
		
		m_RegShadow[ Reg_Command ] &= ~RegBit_FIFOCache;	// set bit to 0
		Write( Reg_Command, m_RegShadow[ Reg_Command ] );

		//Restore priority
		if ( m_HighPriority ) SetPriorityClass ( hProcess, Class );
	}

//        UnmaskIrqs();

	if ( ret )
	{	// We were successfull
		Flush( m_ExposureAIR );	// flush after imaging rows

		xSize = m_ExposureNumX;
		ySize = m_ExposureNumY;

		if ( m_DataBits == 16 )
		{	// Take care of two's complement converters
			unsigned short *Ptr = pImageData;
			short *Ptr2 = (short *) pImageData;
			long Size = m_ExposureNumX * m_ExposureNumY;
			for (i = 0; i < Size; i++)
			{
				*Ptr++ = (unsigned short) *Ptr2++ + 32768 ;
			}
		}

	}
	else
	{	// Something went wrong
		xSize = 0;
		ySize = 0;
	}
	
	Flush();		// start normal flushing
	
	return ret;
}

////////////////////////////////////////////////////////////
// Drift scan methods

bool CCameraIO::DigitizeLine()
{
	/////////////////////////////////////
	// All of these are done just in case
	// since they are called in Expose()
	StopFlushing();
	
	unsigned short BIC = m_ExposureBIC + m_ExposureStartX;
	LoadColumnLayout( m_ExposureAIC, BIC, (unsigned short) m_ExposureNumX + m_ExposureSkipC );
	LoadTimerAndBinning( 0.0, m_ExposureBinX, m_ExposureBinY );

	// Disable FIFO cache
	m_RegShadow[ Reg_Command ] &= ~RegBit_FIFOCache;	// set bit to 0
	/////////////////////////////////////

	/////////////////////////////////////
	// Clock out the line
	m_RegShadow[ Reg_Command ] |= RegBit_StartNextLine;		// set bit to 1
	Write( Reg_Command, m_RegShadow[ Reg_Command ] );
	
	m_RegShadow[ Reg_Command ] &= ~RegBit_StartNextLine;	// set bit to 0
	Write( Reg_Command, m_RegShadow[ Reg_Command ] );
	/////////////////////////////////////
	
	m_WaitingforLine = true;
	return true;
}

bool CCameraIO::GetLine( unsigned short* pLineData, short& xSize )
{
        int i;

	if ( m_WaitingforLine )
	{	// In case application did not poll read_tqStatus
		m_WaitingforLine = false;
		
		/////////////////////////////////////
		// Wait until camera is done clocking
		clock_t StopTime = clock() + CLOCKS_PER_SEC;	// wait at most one second
		while ( true )
		{
			unsigned short val = 0;
			Read( Reg_tqStatus, val );
			if ( ( val & RegBit_LineDone ) != 0 ) break;	// Line done
			
			if ( clock() > StopTime )
			{
				Flush();
				return false;		// Timed out, no line available
			}
		}
	}

	bool ret = false;	// assume failure

//        MaskIrqs();

	// NB Application must have allocated enough memory or else !!!
	if ( pLineData != NULL )
	{
	        HANDLE hProcess(0);
		DWORD Class(0);
		
		if ( m_HighPriority )
		{	// Store current process class and priority
			hProcess = GetCurrentProcess();
			Class = GetPriorityClass ( hProcess );
			SetPriorityClass ( hProcess, REALTIME_PRIORITY_CLASS );
		}

		long XPixels = long( m_ExposureNumX );
		long SkipPixels = long( m_ExposureSkipC );
		
		if ( ReadLine( SkipPixels, XPixels, pLineData ) )
		{	// Something went wrong
			xSize = 0;
			ret = false;
		}
		else
		{
			xSize = m_ExposureNumX;

			if ( m_DataBits == 16 )
			{	// Take care of two's complement converters
				unsigned short *Ptr = pLineData;
				short *Ptr2 = (short *) pLineData;
				long Size = m_ExposureNumX;
				for (i = 0; i < Size; i++)
				{
					*Ptr++ = (unsigned short) *Ptr2++ + 32768 ;
				}
			}
			
			ret = true;
		}
		
		//Restore priority
		if ( m_HighPriority ) SetPriorityClass ( hProcess, Class );
	}
	
//        UnmaskIrqs();
	return ret;
}

////////////////////////////////////////////////////////////
// Easy to use methods

bool CCameraIO::Snap( double Duration, bool Light, unsigned short* pImageData, short& xSize, short& ySize )
{
	// NB This also demonstrates how an application might use the
	// Expose and GetImage routines.

	bool ret = Expose( Duration, Light );
	if ( !ret  ) return false;

	if ( m_WaitingforTrigger )
	{
		Camera_tqStatus stat;
		while ( true )
		{	// This will wait forever if no trigger happens
			stat = read_tqStatus();
			if ( stat == Camera_Status_Exposing ) break;
			Sleep( 220 );	// dont bog down the CPU while polling
		}
		m_WaitingforTrigger = false;
	}

	// Only wait a time slightly greater than the duration of the exposure
	// but enough for the BIR to flush out
	clock_t StopTime = clock() + long( ( 1.2 * Duration + m_Timeout ) * CLOCKS_PER_SEC );
	while ( true )
	{
		Camera_tqStatus stat = read_tqStatus();
		if ( stat == Camera_Status_ImageReady ) break;
		
		if ( clock() > StopTime ) return false;	// Timed out, no image available
		Sleep( 220 );	// dont bog down the CPU while polling
	}

	return GetImage( pImageData, xSize, ySize );
}

////////////////////////////////////////////////////////////
// Camera Settings

Camera_tqStatus CCameraIO::read_tqStatus()
{
	unsigned short val = 0;
	Read( Reg_tqStatus, val );

	if ( val & RegBit_Exposing )		//11.0
	{
		ATLTRACE( "Exposing\r\n" );
		m_WaitingforTrigger = false;
		m_tqStatus = Camera_Status_Exposing;
	}

	else if ( m_WaitingforTrigger )
		m_tqStatus = Camera_Status_Waiting;

	else if ( m_WaitingforImage && ( val & RegBit_FrameDone ) )	//11.11
	{
		ATLTRACE( "ImageReady\r\n" );
		m_WaitingforImage = false;
		m_tqStatus = Camera_Status_ImageReady;
	}

	else if ( m_WaitingforLine && ( val & RegBit_LineDone ) )	//11.1
	{
		ATLTRACE( "LineReady\r\n" );
		m_WaitingforLine = false;
		m_tqStatus = Camera_Status_LineReady;
	}
	else if ( m_WaitingforImage || m_WaitingforLine )
	{
		ATLTRACE( "Flushing\r\n" );
		m_tqStatus = Camera_Status_Flushing;
	}
	else
		m_tqStatus = Camera_Status_Idle;

	return m_tqStatus;
}

bool CCameraIO::read_Present()
{
// This does not work on all cameras
/*
	m_RegShadow[ Reg_BICCounter ] |= RegBit_LoopbackTest;	// set bit to 1
	Write( Reg_BICCounter, m_RegShadow[ Reg_BICCounter ] );

	bool FailedLoopback = false;
	unsigned short val = 0;
	Read( Reg_tqStatus, val );
	if ( !( val & RegBit_LoopbackTest ) ) FailedLoopback = true;

	m_RegShadow[ Reg_BICCounter ] &= ~RegBit_LoopbackTest;	// clear bit to 0
	Write( Reg_BICCounter, m_RegShadow[ Reg_BICCounter ] );

	Read( Reg_tqStatus, val );
	if ( val & RegBit_LoopbackTest ) FailedLoopback = true;
*/

	unsigned short val = 0;
	Read( Reg_CommandReadback, val );	// Take snapshot of currrent status
	m_RegShadow[ Reg_Command ] = val;	// remember it in our write shadow
	
	bool TriggerEnabled = ( val & RegBit_TriggerEnable ) != 0;
		
	m_RegShadow[ Reg_Command ] &= ~RegBit_TriggerEnable;// clear bit to 0
	Write( Reg_Command, m_RegShadow[ Reg_Command ] );

	Read( Reg_CommandReadback, val );	// get currrent status
	if ( val & RegBit_TriggerEnable ) return false;

	m_RegShadow[ Reg_Command ] |= RegBit_TriggerEnable;	// set bit to 1
	Write( Reg_Command, m_RegShadow[ Reg_Command ] );

	Read( Reg_CommandReadback, val );	// get currrent status
	if ( !(val & RegBit_TriggerEnable) ) return false;

	m_RegShadow[ Reg_Command ] &= ~RegBit_TriggerEnable;// clear bit to 0
	Write( Reg_Command, m_RegShadow[ Reg_Command ] );

	Read( Reg_CommandReadback, val );	// get currrent status
	if ( val & RegBit_TriggerEnable ) return false;

	if ( TriggerEnabled )
	{	// Set it back the way it was
		m_RegShadow[ Reg_Command ] |= RegBit_TriggerEnable;	// set bit to 1
		Write( Reg_Command, m_RegShadow[ Reg_Command ] );
	}
	return true;
}

bool CCameraIO::read_Shutter()
{
	unsigned short regval = 0;
	Read( Reg_tqStatus, regval );
	if ( !( regval & RegBit_Exposing ) )
	{	// We are not exposing, but might have finnshed an exposure
		// and have not called GetImage yet, so update our internal variable
		regval = 0;
		Read( Reg_CommandReadback, regval );
		if ( !( regval & RegBit_ShutterOverride ) )
			// The shutter override is not on, so the shutter must be closed
			m_Shutter = false;
	}

	return m_Shutter;
}

bool CCameraIO::read_ForceShutterOpen()
{
	unsigned short val = 0;
	Read( Reg_CommandReadback, val );
	return ( ( val & RegBit_ShutterOverride ) != 0 );
}

void CCameraIO::write_ForceShutterOpen( bool val )
{
	if ( val )
	{
		m_RegShadow[ Reg_Command ] |= RegBit_ShutterOverride;	// set bit to 1
		m_Shutter = true;	// shutter will open immediately now matter what is going on
	}
	else
	{
		m_RegShadow[ Reg_Command ] &= ~RegBit_ShutterOverride;	// clear bit to 0

		unsigned short regval = 0;
		Read( Reg_tqStatus, regval );
		if ( ( regval & RegBit_Exposing ) )
		{	
			// Shutter will remain open if a Light frame is being taken
			// however if a dark frame was being exposed while the
			// override was on or the override is turned on during the exposure
			// and now is turned off (dumb idea but some app might do it!)
			// we must update our variable since the shutter will close
			// when override gets turned off below
			regval = 0;
			Read( Reg_CommandReadback, regval );
			if ( !( regval & RegBit_ShutterEnable ) ) m_Shutter = false;
		}
		else
		{	// Not currently exposing so shutter will close
			// once override is turned off, update our variable
			m_Shutter = false;
		}
	}
	Write( Reg_Command, m_RegShadow[ Reg_Command ] );
}



bool CCameraIO::read_LongCable()
{
	unsigned short val = 0;
	Read( Reg_CommandReadback, val );
	return ( ( val & RegBit_CableLength ) != 0 );
}

void CCameraIO::write_Shutter( bool val )			
{
	if ( val )
		m_RegShadow[ Reg_Command ] |= RegBit_ShutterEnable;	// set bit to 1
	else
		m_RegShadow[ Reg_Command ] &= ~RegBit_ShutterEnable;	// clear bit to 0

	Write( Reg_Command, m_RegShadow[ Reg_Command ] );
}

void CCameraIO::write_LongCable( bool val )			 
{ 
	if ( val ) 
		m_RegShadow[ Reg_Command ] |= RegBit_CableLength;	// set bit to 1 
	else 
		m_RegShadow[ Reg_Command ] &= ~RegBit_CableLength;	// clear bit to 0 
 
	Write( Reg_Command, m_RegShadow[ Reg_Command ] ); 
} 


short CCameraIO::read_Mode()
{
	return ( ( m_RegShadow[ Reg_LineCounter ] >> RegBitShift_Mode ) & RegBitMask_Mode );
}

void CCameraIO::write_Mode( short val )
{
	// clear bits to 0
	m_RegShadow[ Reg_LineCounter ] &= ~( RegBitMask_Mode << RegBitShift_Mode );
	
	// set our new bits
	m_RegShadow[ Reg_LineCounter ] |= ( (unsigned short) val  & RegBitMask_Mode ) << RegBitShift_Mode;
	
	Write( Reg_LineCounter, m_RegShadow[ Reg_LineCounter ] );
}

short CCameraIO::read_TestBits()
{
	return ( ( m_RegShadow[ Reg_BICCounter ] >> RegBitShift_Test ) & RegBitMask_Test );
}

void CCameraIO::write_TestBits( short val )
{
	// clear bits to 0
	m_RegShadow[ Reg_BICCounter ] &= ~( RegBitMask_Test << RegBitShift_Test );
	
	// set our new bits
	m_RegShadow[ Reg_BICCounter ] |= ( (unsigned short) val  & RegBitMask_Test ) << RegBitShift_Test;
	
	Write( Reg_BICCounter, m_RegShadow[ Reg_BICCounter ] );
}


short CCameraIO::read_Test2Bits()
{
	return ( ( m_RegShadow[ Reg_AICCounter ] >> RegBitShift_Test2 ) & RegBitMask_Test2 );
}

void CCameraIO::write_Test2Bits( short val )
{
	// clear bits to 0
	m_RegShadow[ Reg_AICCounter ] &= ~( RegBitMask_Test2 << RegBitShift_Test2 );
	
	// set our new bits
	m_RegShadow[ Reg_AICCounter ] |= ( (unsigned short) val  & RegBitMask_Test2 ) << RegBitShift_Test2;
	
	Write( Reg_AICCounter, m_RegShadow[ Reg_AICCounter ] );
}

bool CCameraIO::read_FastReadout()
{
	unsigned short val = 0;
	Read( Reg_CommandReadback , val );
	return ( ( val & RegBit_Focus ) != 0 );
}

void CCameraIO::write_FastReadout( bool val )
{
	if ( val )
		m_RegShadow[ Reg_Command ] |= RegBit_Focus;		// set bit to 1
	else
		m_RegShadow[ Reg_Command ] &= ~RegBit_Focus;	// clear bit to 0

	Write( Reg_Command, m_RegShadow[ Reg_Command ] );
}

bool CCameraIO::read_UseTrigger()
{
	unsigned short val = 0;
	Read( Reg_CommandReadback , val );
	return ( ( val & RegBit_TriggerEnable ) != 0 );
}

void CCameraIO::write_UseTrigger( bool val )
{
	if ( val )
		m_RegShadow[ Reg_Command ] |= RegBit_TriggerEnable;		// set bit to 1
	else
		m_RegShadow[ Reg_Command ] &= ~RegBit_TriggerEnable;	// clear bit to 0

	Write( Reg_Command, m_RegShadow[ Reg_Command ] );
}

////////////////////////////////////////////////////////////
// Cooler Settings

double CCameraIO::read_CoolerSetPoint()
{
	// Get the setting from the shadow registers
	short DACunits = short( ( m_RegShadow[ Reg_TempSetPoint ] >> RegBitShift_TempSetPoint ) & RegBitMask_TempSetPoint );
	return ( DACunits - m_TempCalibration ) / m_TempScale;
}

void CCameraIO::write_CoolerSetPoint( double val )
{
	// clear bits to 0
	m_RegShadow[ Reg_TempSetPoint ] &= ~( RegBitMask_TempSetPoint << RegBitShift_TempSetPoint );
	
	// Calculate DAC units from degrees Celcius
	unsigned short DACunits = (unsigned )( m_TempScale * val ) + m_TempCalibration ;

	// set our new bits
	m_RegShadow[ Reg_TempSetPoint ] |= ( DACunits & RegBitMask_TempSetPoint ) << RegBitShift_TempSetPoint;
	
	Write( Reg_TempSetPoint, m_RegShadow[ Reg_TempSetPoint ] );
}

Camera_CoolertqStatus CCameraIO::read_CoolertqStatus()
{
	unsigned short val = 0;
	Read( Reg_CommandReadback, val );

	if ( val & RegBit_CoolerEnable )				//12.15
	{
		unsigned short val2 = 0;
		Read( Reg_tqStatus, val2 );
		
		if ( val & RegBit_CoolerShutdown )			//12.8
		{
			if ( val2 & RegBit_ShutdownComplete )	//11.6
				m_CoolertqStatus = Camera_CoolerStatus_AtAmbient;
			else
				m_CoolertqStatus = Camera_CoolerStatus_RampingToAmbient;
		}
		else
		{
			if ( val2 & RegBit_TempAtMax )			//11.5
				m_CoolertqStatus = Camera_CoolerStatus_AtMax;
			else if ( val2 & RegBit_TempAtMin )		//11.4
				m_CoolertqStatus = Camera_CoolerStatus_AtMin;
			else if ( val2 & RegBit_TempAtSetPoint )	//11.7
				m_CoolertqStatus = Camera_CoolerStatus_AtSetPoint;
			// Check against last known cooler status
			else if ( m_CoolertqStatus == Camera_CoolerStatus_AtSetPoint )
				m_CoolertqStatus = Camera_CoolerStatus_Correcting;
			else
				m_CoolertqStatus = Camera_CoolerStatus_RampingToSetPoint;
		}
	}
	else
		m_CoolertqStatus = Camera_CoolerStatus_Off;

	return m_CoolertqStatus;
}

Camera_CoolerMode CCameraIO::read_CoolerMode()
{
	unsigned short val = 0;
	Read( Reg_CommandReadback, val );

	if ( val & RegBit_CoolerShutdown )
		return Camera_CoolerMode_Shutdown;
	else if ( val & RegBit_CoolerEnable )
		return Camera_CoolerMode_On;
	else
		return Camera_CoolerMode_Off;
}

void CCameraIO::write_CoolerMode( Camera_CoolerMode val )
{
	switch ( val )
	{
	case Camera_CoolerMode_Off:
		m_RegShadow[ Reg_Command ] &= ~( RegBit_CoolerEnable );		// clear bit to 0
		m_RegShadow[ Reg_Command ] &= ~( RegBit_CoolerShutdown );	// clear bit to 0
		break;
	case Camera_CoolerMode_On:
		m_RegShadow[ Reg_Command ] |= RegBit_CoolerEnable;		// set bit to 1
		break;
	case Camera_CoolerMode_Shutdown:
		m_RegShadow[ Reg_Command ] |= RegBit_CoolerShutdown;	// set bit to 1
		break;
	default:
		return;
	}

	Write( Reg_Command, m_RegShadow[ Reg_Command ] );
}

double CCameraIO::read_Temperature()
{
	if ( m_TempScale == 0.0 )
		return 0.0;
	else
	{
		unsigned short val = 0;
		Read( Reg_TempData, val );

		short DACunits = short( ( val >> RegBitShift_TempData ) & RegBitMask_TempData );
	
		return ( DACunits - m_TempCalibration ) / m_TempScale;
	}
}

// Load line counter
void CCameraIO::LoadLineCounter( unsigned short rows ) 
{
	/////////////////////////////////////
	// Write out Line_Count  - in unbinned rows
	// clear bits to 0
	m_RegShadow[ Reg_LineCounter ] &= ~( RegBitMask_LineCounter << RegBitShift_LineCounter );
	// set our new bits
	m_RegShadow[ Reg_LineCounter ] |= ( rows & RegBitMask_LineCounter ) << RegBitShift_LineCounter;
	
	Write( Reg_LineCounter, m_RegShadow[ Reg_LineCounter ] );
	/////////////////////////////////////
}

// Load AIC, BIC and pixel count into registers
void CCameraIO::LoadColumnLayout( unsigned short aic, unsigned short bic, unsigned short pixels ) 
{
	/////////////////////////////////////
	// Write out AIC - in unbinned columns
	// clear bits to 0
	m_RegShadow[ Reg_AICCounter ] &= ~( RegBitMask_AICCounter << RegBitShift_AICCounter );
	// set our new bits
	m_RegShadow[ Reg_AICCounter ] |= ( aic & RegBitMask_AICCounter ) << RegBitShift_AICCounter;
	
	Write( Reg_AICCounter, m_RegShadow[ Reg_AICCounter ] );
	/////////////////////////////////////

	/////////////////////////////////////
	// Write out BIC - in unbinned columns
	// clear bits to 0
	m_RegShadow[ Reg_BICCounter ] &= ~( RegBitMask_BICCounter << RegBitShift_BICCounter );
	// set our new bits
	m_RegShadow[ Reg_BICCounter ] |= ( bic & RegBitMask_BICCounter ) << RegBitShift_BICCounter;
	
	Write( Reg_BICCounter, m_RegShadow[ Reg_BICCounter ] );
	/////////////////////////////////////

	/////////////////////////////////////
	// Write out pixel count - in binned columns
	// clear bits to 0
	m_RegShadow[ Reg_PixelCounter ] &= ~( RegBitMask_PixelCounter << RegBitShift_PixelCounter );
	// set our new bits
	m_RegShadow[ Reg_PixelCounter ] |= ( pixels & RegBitMask_PixelCounter ) << RegBitShift_PixelCounter;
	
	Write( Reg_PixelCounter, m_RegShadow[ Reg_PixelCounter ] );
	/////////////////////////////////////
}

// Load timer, vertical binning and horizontal binning in to registers
// If Duration parameter is 0 the current timer value will be retained.
// The VBin and HBin parameters are one based, the HBin value
// is converted to zero base inside this routine.
void CCameraIO::LoadTimerAndBinning( double Duration, unsigned short HBin, unsigned short VBin )
{
	/////////////////////////////////////
	// Write out HBin for flushing
	// clear bits to 0
	m_RegShadow[ Reg_PixelCounter ] &= ~( RegBitMask_HBinning << RegBitShift_HBinning );
	// set our new bits
	m_RegShadow[ Reg_PixelCounter ] |= ( ( HBin - 1 ) & RegBitMask_HBinning ) << RegBitShift_HBinning;
	
	Write( Reg_PixelCounter, m_RegShadow[ Reg_PixelCounter ] );
	/////////////////////////////////////

	/////////////////////////////////////
	// Write out VBin for flushing and Timer
	if ( Duration > 0.0 )
	{
		if ( Duration > m_MaxExposure ) Duration = m_MaxExposure;
		
		long valTimer;
		if ( m_FastShutter && Duration <= 1048.575 )
		{	// Automatically switch to high precision mode
			valTimer = long( ( Duration * 1000 ) + 0.5 );
			m_RegShadow[ Reg_LineCounter ] |= ( m_FastShutterBits_Mode & RegBitMask_Mode ) << RegBitShift_Mode;
			m_RegShadow[ Reg_BICCounter ] |= ( m_FastShutterBits_Test & RegBitMask_Test ) << RegBitShift_Test;
		}
		else
		{
			valTimer = long( ( Duration * 100 ) + 0.5 );
			if ( m_FastShutter )
			{	// Disable high precision mode
				m_RegShadow[ Reg_LineCounter ] &= ~( m_FastShutterBits_Mode & RegBitMask_Mode ) << RegBitShift_Mode;
				m_RegShadow[ Reg_BICCounter ] &= ~( m_FastShutterBits_Test & RegBitMask_Test ) << RegBitShift_Test;
			}
		}
		
		if ( m_FastShutter )
		{
			Write( Reg_LineCounter, m_RegShadow[ Reg_LineCounter ] );
			Write( Reg_BICCounter, m_RegShadow[ Reg_BICCounter ] );
		}

		if ( valTimer <= 0 ) valTimer = 1;		// Safety since firmware doesnt like zero

		unsigned short valTimerLow = (unsigned short) (valTimer & 0x0000FFFF);
		unsigned short valTimerHigh = (unsigned short) (valTimer >> 16);

		// Enable loading of timer values
		m_RegShadow[ Reg_Command ] |= RegBit_TimerLoad;	// set bit to 1
		Write( Reg_Command, m_RegShadow[ Reg_Command ] );

			// clear bits to 0
			m_RegShadow[ Reg_Timer ] = 0;
			// set our new bits
			m_RegShadow[ Reg_Timer ] |= ( valTimerLow & RegBitMask_Timer )<< RegBitShift_Timer;
			Write( Reg_Timer, m_RegShadow[ Reg_Timer ] );

			// clear bits to 0
			m_RegShadow[ Reg_VBinning ] = 0;

			// set our new bits
			m_RegShadow[ Reg_VBinning ] |= ( VBin & RegBitMask_VBinning ) << RegBitShift_VBinning;
			m_RegShadow[ Reg_VBinning ] |= ( valTimerHigh & RegBitMask_Timer2 ) << RegBitShift_Timer2;
			Write( Reg_VBinning, m_RegShadow[ Reg_VBinning ] );

		// Disable loading of timer values
		m_RegShadow[ Reg_Command ] &= ~RegBit_TimerLoad;	// set bit to 0
		Write( Reg_Command, m_RegShadow[ Reg_Command ] );
		/////////////////////////////////////
	}
	else
	{
		// clear bits to 0
		m_RegShadow[ Reg_VBinning ] &= ~( RegBitMask_VBinning << RegBitShift_VBinning );

		// set our new bits
		m_RegShadow[ Reg_VBinning ] |= ( VBin & RegBitMask_VBinning ) << RegBitShift_VBinning;
		Write( Reg_VBinning, m_RegShadow[ Reg_VBinning ] );
	}

}

// Start flushing the entire CCD (rows = -1) or a specific number or rows
void CCameraIO::Flush( short Rows )
{
	if ( Rows == 0 ) return;

	unsigned short AIC = (unsigned short) ( m_Columns - m_BIC - m_ImgColumns );
	unsigned short Pixels = (unsigned short) ( m_ImgColumns / m_HFlush );
	if ( m_ImgColumns % m_HFlush > 0 ) Pixels++;	// round up if necessary
	LoadColumnLayout( AIC, (unsigned short) m_BIC, Pixels );

	LoadTimerAndBinning( 0.0, m_HFlush, m_VFlush );

	if ( Rows > 0 )
	{		
		LoadLineCounter( (unsigned short) Rows );	
		StartFlushing();

		/////////////////////////////////////
		// Wait until camera is done flushing
		clock_t StopTime = clock() + long( m_Timeout * CLOCKS_PER_SEC );	// wait at most m_Timeout seconds
		while ( true )
		{
			unsigned short val = 0;
			Read( Reg_tqStatus, val );
			if ( ( val & RegBit_FrameDone ) != 0 ) break;
			
			if ( clock() > StopTime ) break;		// Timed out
		}
	}
	else
	{
		LoadLineCounter( (unsigned short) m_ImgRows );
		StartFlushing();
	}
}

void CCameraIO::StartFlushing()
{
	/////////////////////////////////////
	// Start flushing
	m_RegShadow[ Reg_Command ] |= RegBit_StartFlushing;	// set bit to 1
	Write( Reg_Command, m_RegShadow[ Reg_Command ] );
	
	m_RegShadow[ Reg_Command ] &= ~RegBit_StartFlushing;// set bit to 0
	Write( Reg_Command, m_RegShadow[ Reg_Command ] );
	/////////////////////////////////////
}

void CCameraIO::StopFlushing()
{
	/////////////////////////////////////
	// Stop flushing
	m_RegShadow[ Reg_Command ] |= RegBit_StopFlushing;	// set bit to 1
	Write( Reg_Command, m_RegShadow[ Reg_Command ] );
	
	m_RegShadow[ Reg_Command ] &= ~RegBit_StopFlushing;	// set bit to 0
	Write( Reg_Command, m_RegShadow[ Reg_Command ] );
	/////////////////////////////////////
}