1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
|
/*
* ultra.c
*
* Routines to implement ultra based encoding (minilzo).
* ultrazip supports packed rectangles if the rects are tiny...
* This improves performance as lzo has more data to work with at once
* This is 'UltraZip' and is currently not implemented.
*/
#include <rfb/rfb.h>
#include "minilzo.h"
/*
* cl->beforeEncBuf contains pixel data in the client's format.
* cl->afterEncBuf contains the lzo (deflated) encoding version.
* If the lzo compressed/encoded version is
* larger than the raw data or if it exceeds cl->afterEncBufSize then
* raw encoding is used instead.
*/
/*
* rfbSendOneRectEncodingZlib - send a given rectangle using one Zlib
* rectangle encoding.
*/
#define MAX_WRKMEM ((LZO1X_1_MEM_COMPRESS) + (sizeof(lzo_align_t) - 1)) / sizeof(lzo_align_t)
void rfbFreeUltraData(rfbClientPtr cl) {
if (cl->compStreamInitedLZO) {
free(cl->lzoWrkMem);
cl->compStreamInitedLZO=FALSE;
}
}
static rfbBool
rfbSendOneRectEncodingUltra(rfbClientPtr cl,
int x,
int y,
int w,
int h)
{
rfbFramebufferUpdateRectHeader rect;
rfbZlibHeader hdr;
int deflateResult;
int i;
char *fbptr = (cl->scaledScreen->frameBuffer + (cl->scaledScreen->paddedWidthInBytes * y)
+ (x * (cl->scaledScreen->bitsPerPixel / 8)));
int maxRawSize;
lzo_uint maxCompSize;
maxRawSize = (w * h * (cl->format.bitsPerPixel / 8));
if (cl->beforeEncBufSize < maxRawSize) {
cl->beforeEncBufSize = maxRawSize;
if (cl->beforeEncBuf == NULL)
cl->beforeEncBuf = (char *)malloc(cl->beforeEncBufSize);
else
cl->beforeEncBuf = (char *)realloc(cl->beforeEncBuf, cl->beforeEncBufSize);
}
/*
* lzo requires output buffer to be slightly larger than the input
* buffer, in the worst case.
*/
maxCompSize = (maxRawSize + maxRawSize / 16 + 64 + 3);
if (cl->afterEncBufSize < (int)maxCompSize) {
cl->afterEncBufSize = maxCompSize;
if (cl->afterEncBuf == NULL)
cl->afterEncBuf = (char *)malloc(cl->afterEncBufSize);
else
cl->afterEncBuf = (char *)realloc(cl->afterEncBuf, cl->afterEncBufSize);
}
/*
* Convert pixel data to client format.
*/
(*cl->translateFn)(cl->translateLookupTable, &cl->screen->serverFormat,
&cl->format, fbptr, cl->beforeEncBuf,
cl->scaledScreen->paddedWidthInBytes, w, h);
if ( cl->compStreamInitedLZO == FALSE ) {
cl->compStreamInitedLZO = TRUE;
/* Work-memory needed for compression. Allocate memory in units
* of `lzo_align_t' (instead of `char') to make sure it is properly aligned.
*/
cl->lzoWrkMem = malloc(sizeof(lzo_align_t) * (((LZO1X_1_MEM_COMPRESS) + (sizeof(lzo_align_t) - 1)) / sizeof(lzo_align_t)));
}
/* Perform the compression here. */
deflateResult = lzo1x_1_compress((unsigned char *)cl->beforeEncBuf, (lzo_uint)(w * h * (cl->format.bitsPerPixel / 8)), (unsigned char *)cl->afterEncBuf, &maxCompSize, cl->lzoWrkMem);
/* maxCompSize now contains the compressed size */
/* Find the total size of the resulting compressed data. */
cl->afterEncBufLen = maxCompSize;
if ( deflateResult != LZO_E_OK ) {
rfbErr("lzo deflation error: %d\n", deflateResult);
return FALSE;
}
/* Update statics */
rfbStatRecordEncodingSent(cl, rfbEncodingUltra, sz_rfbFramebufferUpdateRectHeader + sz_rfbZlibHeader + cl->afterEncBufLen, maxRawSize);
if (cl->ublen + sz_rfbFramebufferUpdateRectHeader + sz_rfbZlibHeader
> UPDATE_BUF_SIZE)
{
if (!rfbSendUpdateBuf(cl))
return FALSE;
}
rect.r.x = Swap16IfLE(x);
rect.r.y = Swap16IfLE(y);
rect.r.w = Swap16IfLE(w);
rect.r.h = Swap16IfLE(h);
rect.encoding = Swap32IfLE(rfbEncodingUltra);
memcpy(&cl->updateBuf[cl->ublen], (char *)&rect,
sz_rfbFramebufferUpdateRectHeader);
cl->ublen += sz_rfbFramebufferUpdateRectHeader;
hdr.nBytes = Swap32IfLE(cl->afterEncBufLen);
memcpy(&cl->updateBuf[cl->ublen], (char *)&hdr, sz_rfbZlibHeader);
cl->ublen += sz_rfbZlibHeader;
/* We might want to try sending the data directly... */
for (i = 0; i < cl->afterEncBufLen;) {
int bytesToCopy = UPDATE_BUF_SIZE - cl->ublen;
if (i + bytesToCopy > cl->afterEncBufLen) {
bytesToCopy = cl->afterEncBufLen - i;
}
memcpy(&cl->updateBuf[cl->ublen], &cl->afterEncBuf[i], bytesToCopy);
cl->ublen += bytesToCopy;
i += bytesToCopy;
if (cl->ublen == UPDATE_BUF_SIZE) {
if (!rfbSendUpdateBuf(cl))
return FALSE;
}
}
return TRUE;
}
/*
* rfbSendRectEncodingUltra - send a given rectangle using one or more
* LZO encoding rectangles.
*/
rfbBool
rfbSendRectEncodingUltra(rfbClientPtr cl,
int x,
int y,
int w,
int h)
{
int maxLines;
int linesRemaining;
rfbRectangle partialRect;
partialRect.x = x;
partialRect.y = y;
partialRect.w = w;
partialRect.h = h;
/* Determine maximum pixel/scan lines allowed per rectangle. */
maxLines = ( ULTRA_MAX_SIZE(w) / w );
/* Initialize number of scan lines left to do. */
linesRemaining = h;
/* Loop until all work is done. */
while ( linesRemaining > 0 ) {
int linesToComp;
if ( maxLines < linesRemaining )
linesToComp = maxLines;
else
linesToComp = linesRemaining;
partialRect.h = linesToComp;
/* Encode (compress) and send the next rectangle. */
if ( ! rfbSendOneRectEncodingUltra( cl,
partialRect.x,
partialRect.y,
partialRect.w,
partialRect.h )) {
return FALSE;
}
/* Technically, flushing the buffer here is not extrememly
* efficient. However, this improves the overall throughput
* of the system over very slow networks. By flushing
* the buffer with every maximum size lzo rectangle, we
* improve the pipelining usage of the server CPU, network,
* and viewer CPU components. Insuring that these components
* are working in parallel actually improves the performance
* seen by the user.
* Since, lzo is most useful for slow networks, this flush
* is appropriate for the desired behavior of the lzo encoding.
*/
if (( cl->ublen > 0 ) &&
( linesToComp == maxLines )) {
if (!rfbSendUpdateBuf(cl)) {
return FALSE;
}
}
/* Update remaining and incremental rectangle location. */
linesRemaining -= linesToComp;
partialRect.y += linesToComp;
}
return TRUE;
}
|