summaryrefslogtreecommitdiffstats
path: root/kdefx/kimageeffect.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'kdefx/kimageeffect.cpp')
-rw-r--r--kdefx/kimageeffect.cpp4980
1 files changed, 0 insertions, 4980 deletions
diff --git a/kdefx/kimageeffect.cpp b/kdefx/kimageeffect.cpp
deleted file mode 100644
index d2955403a..000000000
--- a/kdefx/kimageeffect.cpp
+++ /dev/null
@@ -1,4980 +0,0 @@
-/* This file is part of the KDE libraries
- Copyright (C) 1998, 1999, 2001, 2002 Daniel M. Duley <mosfet@kde.org>
- (C) 1998, 1999 Christian Tibirna <ctibirna@total.net>
- (C) 1998, 1999 Dirk Mueller <mueller@kde.org>
- (C) 1999 Geert Jansen <g.t.jansen@stud.tue.nl>
- (C) 2000 Josef Weidendorfer <weidendo@in.tum.de>
- (C) 2004 Zack Rusin <zack@kde.org>
-
-Redistribution and use in source and binary forms, with or without
-modification, are permitted provided that the following conditions
-are met:
-
-1. Redistributions of source code must retain the above copyright
- notice, this list of conditions and the following disclaimer.
-2. Redistributions in binary form must reproduce the above copyright
- notice, this list of conditions and the following disclaimer in the
- documentation and/or other materials provided with the distribution.
-
-THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
-IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
-OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
-IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
-INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
-NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
-DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
-THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
-(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
-THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-
-*/
-
-// $Id$
-
-#include <math.h>
-#include <assert.h>
-
-#include <tqimage.h>
-#include <stdlib.h>
-#include <iostream>
-
-#include "kimageeffect.h"
-#include "kcpuinfo.h"
-
-#include <config.h>
-
-#if 0
-//disabled until #74478 fixed.
-
-#if defined(__i386__) && ( defined(__GNUC__) || defined(__INTEL_COMPILER) )
-# if defined( HAVE_X86_MMX )
-# define USE_MMX_INLINE_ASM
-# endif
-# if defined( HAVE_X86_SSE2 )
-# define USE_SSE2_INLINE_ASM
-# endif
-#endif
-
-#endif
-//======================================================================
-//
-// Utility stuff for effects ported from ImageMagick to QImage
-//
-//======================================================================
-#define MaxRGB 255L
-#define DegreesToRadians(x) ((x)*M_PI/180.0)
-#define MagickSQ2PI 2.50662827463100024161235523934010416269302368164062
-#define MagickEpsilon 1.0e-12
-#define MagickPI 3.14159265358979323846264338327950288419716939937510
-#define MOD(x, y) ((x) < 0 ? ((y) - 1 - ((y) - 1 - (x)) % (y)) : (x) % (y))
-
-/**
- * \relates KGlobal
- * A typesafe function that returns x if it's between low and high values.
- * low if x is smaller than then low and high if x is bigger than high.
- */
-#define FXCLAMP(x,low,high) fxClamp(x,low,high)
-template<class T>
-inline const T& fxClamp( const T& x, const T& low, const T& high )
-{
- if ( x < low ) return low;
- else if ( x > high ) return high;
- else return x;
-}
-
-static inline unsigned int intensityValue(unsigned int color)
-{
- return((unsigned int)((0.299*tqRed(color) +
- 0.587*tqGreen(color) +
- 0.1140000000000001*tqBlue(color))));
-}
-
-template<typename T>
-static inline void liberateMemory(T **memory)
-{
- assert(memory != NULL);
- if(*memory == NULL) return;
- free((char*)*memory);
- *memory=NULL;
-}
-
-struct double_packet
-{
- double red;
- double green;
- double blue;
- double alpha;
-};
-
-struct short_packet
-{
- unsigned short int red;
- unsigned short int green;
- unsigned short int blue;
- unsigned short int alpha;
-};
-
-
-//======================================================================
-//
-// Gradient effects
-//
-//======================================================================
-
-TQImage KImageEffect::gradient(const TQSize &size, const TQColor &ca,
- const TQColor &cb, GradientType eff, int ncols)
-{
- int rDiff, gDiff, bDiff;
- int rca, gca, bca, rcb, gcb, bcb;
-
- TQImage image(size, 32);
-
- if (size.width() == 0 || size.height() == 0) {
-#ifndef NDEBUG
- std::cerr << "WARNING: KImageEffect::gradient: invalid image" << std::endl;
-#endif
- return image;
- }
-
- register int x, y;
-
- rDiff = (rcb = cb.red()) - (rca = ca.red());
- gDiff = (gcb = cb.green()) - (gca = ca.green());
- bDiff = (bcb = cb.blue()) - (bca = ca.blue());
-
- if( eff == VerticalGradient || eff == HorizontalGradient ){
-
- uint *p;
- uint rgb;
-
- register int rl = rca << 16;
- register int gl = gca << 16;
- register int bl = bca << 16;
-
- if( eff == VerticalGradient ) {
-
- int rcdelta = ((1<<16) / size.height()) * rDiff;
- int gcdelta = ((1<<16) / size.height()) * gDiff;
- int bcdelta = ((1<<16) / size.height()) * bDiff;
-
- for ( y = 0; y < size.height(); y++ ) {
- p = (uint *) image.scanLine(y);
-
- rl += rcdelta;
- gl += gcdelta;
- bl += bcdelta;
-
- rgb = tqRgb( (rl>>16), (gl>>16), (bl>>16) );
-
- for( x = 0; x < size.width(); x++ ) {
- *p = rgb;
- p++;
- }
- }
-
- }
- else { // must be HorizontalGradient
-
- unsigned int *o_src = (unsigned int *)image.scanLine(0);
- unsigned int *src = o_src;
-
- int rcdelta = ((1<<16) / size.width()) * rDiff;
- int gcdelta = ((1<<16) / size.width()) * gDiff;
- int bcdelta = ((1<<16) / size.width()) * bDiff;
-
- for( x = 0; x < size.width(); x++) {
-
- rl += rcdelta;
- gl += gcdelta;
- bl += bcdelta;
-
- *src++ = tqRgb( (rl>>16), (gl>>16), (bl>>16));
- }
-
- src = o_src;
-
- // Believe it or not, manually copying in a for loop is faster
- // than calling memcpy for each scanline (on the order of ms...).
- // I think this is due to the function call overhead (mosfet).
-
- for (y = 1; y < size.height(); ++y) {
-
- p = (unsigned int *)image.scanLine(y);
- src = o_src;
- for(x=0; x < size.width(); ++x)
- *p++ = *src++;
- }
- }
- }
-
- else {
-
- float rfd, gfd, bfd;
- float rd = rca, gd = gca, bd = bca;
-
- unsigned char *xtable[3];
- unsigned char *ytable[3];
-
- unsigned int w = size.width(), h = size.height();
- xtable[0] = new unsigned char[w];
- xtable[1] = new unsigned char[w];
- xtable[2] = new unsigned char[w];
- ytable[0] = new unsigned char[h];
- ytable[1] = new unsigned char[h];
- ytable[2] = new unsigned char[h];
- w*=2, h*=2;
-
- if ( eff == DiagonalGradient || eff == CrossDiagonalGradient) {
- // Diagonal dgradient code inspired by BlackBox (mosfet)
- // BlackBox dgradient is (C) Brad Hughes, <bhughes@tcac.net> and
- // Mike Cole <mike@mydot.com>.
-
- rfd = (float)rDiff/w;
- gfd = (float)gDiff/w;
- bfd = (float)bDiff/w;
-
- int dir;
- for (x = 0; x < size.width(); x++, rd+=rfd, gd+=gfd, bd+=bfd) {
- dir = eff == DiagonalGradient? x : size.width() - x - 1;
- xtable[0][dir] = (unsigned char) rd;
- xtable[1][dir] = (unsigned char) gd;
- xtable[2][dir] = (unsigned char) bd;
- }
- rfd = (float)rDiff/h;
- gfd = (float)gDiff/h;
- bfd = (float)bDiff/h;
- rd = gd = bd = 0;
- for (y = 0; y < size.height(); y++, rd+=rfd, gd+=gfd, bd+=bfd) {
- ytable[0][y] = (unsigned char) rd;
- ytable[1][y] = (unsigned char) gd;
- ytable[2][y] = (unsigned char) bd;
- }
-
- for (y = 0; y < size.height(); y++) {
- unsigned int *scanline = (unsigned int *)image.scanLine(y);
- for (x = 0; x < size.width(); x++) {
- scanline[x] = tqRgb(xtable[0][x] + ytable[0][y],
- xtable[1][x] + ytable[1][y],
- xtable[2][x] + ytable[2][y]);
- }
- }
- }
-
- else if (eff == RectangleGradient ||
- eff == PyramidGradient ||
- eff == PipeCrossGradient ||
- eff == EllipticGradient)
- {
- int rSign = rDiff>0? 1: -1;
- int gSign = gDiff>0? 1: -1;
- int bSign = bDiff>0? 1: -1;
-
- rfd = (float)rDiff / size.width();
- gfd = (float)gDiff / size.width();
- bfd = (float)bDiff / size.width();
-
- rd = (float)rDiff/2;
- gd = (float)gDiff/2;
- bd = (float)bDiff/2;
-
- for (x = 0; x < size.width(); x++, rd-=rfd, gd-=gfd, bd-=bfd)
- {
- xtable[0][x] = (unsigned char) abs((int)rd);
- xtable[1][x] = (unsigned char) abs((int)gd);
- xtable[2][x] = (unsigned char) abs((int)bd);
- }
-
- rfd = (float)rDiff/size.height();
- gfd = (float)gDiff/size.height();
- bfd = (float)bDiff/size.height();
-
- rd = (float)rDiff/2;
- gd = (float)gDiff/2;
- bd = (float)bDiff/2;
-
- for (y = 0; y < size.height(); y++, rd-=rfd, gd-=gfd, bd-=bfd)
- {
- ytable[0][y] = (unsigned char) abs((int)rd);
- ytable[1][y] = (unsigned char) abs((int)gd);
- ytable[2][y] = (unsigned char) abs((int)bd);
- }
-
- int h = (size.height()+1)>>1;
- for (y = 0; y < h; y++) {
- unsigned int *sl1 = (unsigned int *)image.scanLine(y);
- unsigned int *sl2 = (unsigned int *)image.scanLine(QMAX(size.height()-y-1, y));
-
- int w = (size.width()+1)>>1;
- int x2 = size.width()-1;
-
- for (x = 0; x < w; x++, x2--) {
- unsigned int rgb = 0;
- if (eff == PyramidGradient) {
- rgb = tqRgb(rcb-rSign*(xtable[0][x]+ytable[0][y]),
- gcb-gSign*(xtable[1][x]+ytable[1][y]),
- bcb-bSign*(xtable[2][x]+ytable[2][y]));
- }
- if (eff == RectangleGradient) {
- rgb = tqRgb(rcb - rSign *
- QMAX(xtable[0][x], ytable[0][y]) * 2,
- gcb - gSign *
- QMAX(xtable[1][x], ytable[1][y]) * 2,
- bcb - bSign *
- QMAX(xtable[2][x], ytable[2][y]) * 2);
- }
- if (eff == PipeCrossGradient) {
- rgb = tqRgb(rcb - rSign *
- QMIN(xtable[0][x], ytable[0][y]) * 2,
- gcb - gSign *
- QMIN(xtable[1][x], ytable[1][y]) * 2,
- bcb - bSign *
- QMIN(xtable[2][x], ytable[2][y]) * 2);
- }
- if (eff == EllipticGradient) {
- rgb = tqRgb(rcb - rSign *
- (int)sqrt((xtable[0][x]*xtable[0][x] +
- ytable[0][y]*ytable[0][y])*2.0),
- gcb - gSign *
- (int)sqrt((xtable[1][x]*xtable[1][x] +
- ytable[1][y]*ytable[1][y])*2.0),
- bcb - bSign *
- (int)sqrt((xtable[2][x]*xtable[2][x] +
- ytable[2][y]*ytable[2][y])*2.0));
- }
-
- sl1[x] = sl2[x] = rgb;
- sl1[x2] = sl2[x2] = rgb;
- }
- }
- }
-
- delete [] xtable[0];
- delete [] xtable[1];
- delete [] xtable[2];
- delete [] ytable[0];
- delete [] ytable[1];
- delete [] ytable[2];
- }
-
- // dither if necessary
- if (ncols && (TQPixmap::defaultDepth() < 15 )) {
- if ( ncols < 2 || ncols > 256 )
- ncols = 3;
- TQColor *dPal = new TQColor[ncols];
- for (int i=0; i<ncols; i++) {
- dPal[i].setRgb ( rca + rDiff * i / ( ncols - 1 ),
- gca + gDiff * i / ( ncols - 1 ),
- bca + bDiff * i / ( ncols - 1 ) );
- }
- dither(image, dPal, ncols);
- delete [] dPal;
- }
-
- return image;
-}
-
-
-// -----------------------------------------------------------------------------
-
-//CT this was (before Dirk A. Mueller's speedup changes)
-// merely the same code as in the above method, but it's supposedly
-// way less performant since it introduces a lot of supplementary tests
-// and simple math operations for the calculus of the balance.
-// (surprizingly, it isn't less performant, in the contrary :-)
-// Yes, I could have merged them, but then the excellent performance of
-// the balanced code would suffer with no other gain than a mere
-// source code and byte code size economy.
-
-TQImage KImageEffect::unbalancedGradient(const TQSize &size, const TQColor &ca,
- const TQColor &cb, GradientType eff, int xfactor, int yfactor,
- int ncols)
-{
- int dir; // general parameter used for direction switches
-
- bool _xanti = false , _yanti = false;
-
- if (xfactor < 0) _xanti = true; // negative on X direction
- if (yfactor < 0) _yanti = true; // negative on Y direction
-
- xfactor = abs(xfactor);
- yfactor = abs(yfactor);
-
- if (!xfactor) xfactor = 1;
- if (!yfactor) yfactor = 1;
-
- if (xfactor > 200 ) xfactor = 200;
- if (yfactor > 200 ) yfactor = 200;
-
-
- // float xbal = xfactor/5000.;
- // float ybal = yfactor/5000.;
- float xbal = xfactor/30./size.width();
- float ybal = yfactor/30./size.height();
- float rat;
-
- int rDiff, gDiff, bDiff;
- int rca, gca, bca, rcb, gcb, bcb;
-
- TQImage image(size, 32);
-
- if (size.width() == 0 || size.height() == 0) {
-#ifndef NDEBUG
- std::cerr << "WARNING: KImageEffect::unbalancedGradient : invalid image\n";
-#endif
- return image;
- }
-
- register int x, y;
- unsigned int *scanline;
-
- rDiff = (rcb = cb.red()) - (rca = ca.red());
- gDiff = (gcb = cb.green()) - (gca = ca.green());
- bDiff = (bcb = cb.blue()) - (bca = ca.blue());
-
- if( eff == VerticalGradient || eff == HorizontalGradient){
- TQColor cRow;
-
- uint *p;
- uint rgbRow;
-
- if( eff == VerticalGradient) {
- for ( y = 0; y < size.height(); y++ ) {
- dir = _yanti ? y : size.height() - 1 - y;
- p = (uint *) image.scanLine(dir);
- rat = 1 - exp( - (float)y * ybal );
-
- cRow.setRgb( rcb - (int) ( rDiff * rat ),
- gcb - (int) ( gDiff * rat ),
- bcb - (int) ( bDiff * rat ) );
-
- rgbRow = cRow.rgb();
-
- for( x = 0; x < size.width(); x++ ) {
- *p = rgbRow;
- p++;
- }
- }
- }
- else {
-
- unsigned int *src = (unsigned int *)image.scanLine(0);
- for(x = 0; x < size.width(); x++ )
- {
- dir = _xanti ? x : size.width() - 1 - x;
- rat = 1 - exp( - (float)x * xbal );
-
- src[dir] = tqRgb(rcb - (int) ( rDiff * rat ),
- gcb - (int) ( gDiff * rat ),
- bcb - (int) ( bDiff * rat ));
- }
-
- // Believe it or not, manually copying in a for loop is faster
- // than calling memcpy for each scanline (on the order of ms...).
- // I think this is due to the function call overhead (mosfet).
-
- for(y = 1; y < size.height(); ++y)
- {
- scanline = (unsigned int *)image.scanLine(y);
- for(x=0; x < size.width(); ++x)
- scanline[x] = src[x];
- }
- }
- }
-
- else {
- int w=size.width(), h=size.height();
-
- unsigned char *xtable[3];
- unsigned char *ytable[3];
- xtable[0] = new unsigned char[w];
- xtable[1] = new unsigned char[w];
- xtable[2] = new unsigned char[w];
- ytable[0] = new unsigned char[h];
- ytable[1] = new unsigned char[h];
- ytable[2] = new unsigned char[h];
-
- if ( eff == DiagonalGradient || eff == CrossDiagonalGradient)
- {
- for (x = 0; x < w; x++) {
- dir = _xanti ? x : w - 1 - x;
- rat = 1 - exp( - (float)x * xbal );
-
- xtable[0][dir] = (unsigned char) ( rDiff/2 * rat );
- xtable[1][dir] = (unsigned char) ( gDiff/2 * rat );
- xtable[2][dir] = (unsigned char) ( bDiff/2 * rat );
- }
-
- for (y = 0; y < h; y++) {
- dir = _yanti ? y : h - 1 - y;
- rat = 1 - exp( - (float)y * ybal );
-
- ytable[0][dir] = (unsigned char) ( rDiff/2 * rat );
- ytable[1][dir] = (unsigned char) ( gDiff/2 * rat );
- ytable[2][dir] = (unsigned char) ( bDiff/2 * rat );
- }
-
- for (y = 0; y < h; y++) {
- unsigned int *scanline = (unsigned int *)image.scanLine(y);
- for (x = 0; x < w; x++) {
- scanline[x] = tqRgb(rcb - (xtable[0][x] + ytable[0][y]),
- gcb - (xtable[1][x] + ytable[1][y]),
- bcb - (xtable[2][x] + ytable[2][y]));
- }
- }
- }
-
- else if (eff == RectangleGradient ||
- eff == PyramidGradient ||
- eff == PipeCrossGradient ||
- eff == EllipticGradient)
- {
- int rSign = rDiff>0? 1: -1;
- int gSign = gDiff>0? 1: -1;
- int bSign = bDiff>0? 1: -1;
-
- for (x = 0; x < w; x++)
- {
- dir = _xanti ? x : w - 1 - x;
- rat = 1 - exp( - (float)x * xbal );
-
- xtable[0][dir] = (unsigned char) abs((int)(rDiff*(0.5-rat)));
- xtable[1][dir] = (unsigned char) abs((int)(gDiff*(0.5-rat)));
- xtable[2][dir] = (unsigned char) abs((int)(bDiff*(0.5-rat)));
- }
-
- for (y = 0; y < h; y++)
- {
- dir = _yanti ? y : h - 1 - y;
-
- rat = 1 - exp( - (float)y * ybal );
-
- ytable[0][dir] = (unsigned char) abs((int)(rDiff*(0.5-rat)));
- ytable[1][dir] = (unsigned char) abs((int)(gDiff*(0.5-rat)));
- ytable[2][dir] = (unsigned char) abs((int)(bDiff*(0.5-rat)));
- }
-
- for (y = 0; y < h; y++) {
- unsigned int *scanline = (unsigned int *)image.scanLine(y);
- for (x = 0; x < w; x++) {
- if (eff == PyramidGradient)
- {
- scanline[x] = tqRgb(rcb-rSign*(xtable[0][x]+ytable[0][y]),
- gcb-gSign*(xtable[1][x]+ytable[1][y]),
- bcb-bSign*(xtable[2][x]+ytable[2][y]));
- }
- else if (eff == RectangleGradient)
- {
- scanline[x] = tqRgb(rcb - rSign *
- QMAX(xtable[0][x], ytable[0][y]) * 2,
- gcb - gSign *
- QMAX(xtable[1][x], ytable[1][y]) * 2,
- bcb - bSign *
- QMAX(xtable[2][x], ytable[2][y]) * 2);
- }
- else if (eff == PipeCrossGradient)
- {
- scanline[x] = tqRgb(rcb - rSign *
- QMIN(xtable[0][x], ytable[0][y]) * 2,
- gcb - gSign *
- QMIN(xtable[1][x], ytable[1][y]) * 2,
- bcb - bSign *
- QMIN(xtable[2][x], ytable[2][y]) * 2);
- }
- else if (eff == EllipticGradient)
- {
- scanline[x] = tqRgb(rcb - rSign *
- (int)sqrt((xtable[0][x]*xtable[0][x] +
- ytable[0][y]*ytable[0][y])*2.0),
- gcb - gSign *
- (int)sqrt((xtable[1][x]*xtable[1][x] +
- ytable[1][y]*ytable[1][y])*2.0),
- bcb - bSign *
- (int)sqrt((xtable[2][x]*xtable[2][x] +
- ytable[2][y]*ytable[2][y])*2.0));
- }
- }
- }
- }
-
- if (ncols && (TQPixmap::defaultDepth() < 15 )) {
- if ( ncols < 2 || ncols > 256 )
- ncols = 3;
- TQColor *dPal = new TQColor[ncols];
- for (int i=0; i<ncols; i++) {
- dPal[i].setRgb ( rca + rDiff * i / ( ncols - 1 ),
- gca + gDiff * i / ( ncols - 1 ),
- bca + bDiff * i / ( ncols - 1 ) );
- }
- dither(image, dPal, ncols);
- delete [] dPal;
- }
-
- delete [] xtable[0];
- delete [] xtable[1];
- delete [] xtable[2];
- delete [] ytable[0];
- delete [] ytable[1];
- delete [] ytable[2];
-
- }
-
- return image;
-}
-
-/**
-Types for MMX and SSE packing of colors, for safe constraints
-*/
-namespace {
-
-struct KIE4Pack
-{
- TQ_UINT16 data[4];
-};
-
-struct KIE8Pack
-{
- TQ_UINT16 data[8];
-};
-
-}
-
-//======================================================================
-//
-// Intensity effects
-//
-//======================================================================
-
-
-/* This builds a 256 byte unsigned char lookup table with all
- * the possible percent values prior to applying the effect, then uses
- * integer math for the pixels. For any image larger than 9x9 this will be
- * less expensive than doing a float operation on the 3 color components of
- * each pixel. (mosfet)
- */
-TQImage& KImageEffect::intensity(TQImage &image, float percent)
-{
- if (image.width() == 0 || image.height() == 0) {
-#ifndef NDEBUG
- std::cerr << "WARNING: KImageEffect::intensity : invalid image\n";
-#endif
- return image;
- }
-
- int segColors = image.depth() > 8 ? 256 : image.numColors();
- int pixels = image.depth() > 8 ? image.width()*image.height() :
- image.numColors();
- unsigned int *data = image.depth() > 8 ? (unsigned int *)image.bits() :
- (unsigned int *)image.tqcolorTable();
-
- bool brighten = (percent >= 0);
- if(percent < 0)
- percent = -percent;
-
-#ifdef USE_MMX_INLINE_ASM
- bool haveMMX = KCPUInfo::haveExtension( KCPUInfo::IntelMMX );
-
- if(haveMMX)
- {
- TQ_UINT16 p = TQ_UINT16(256.0f*(percent));
- KIE4Pack mult = {{p,p,p,0}};
-
- __asm__ __volatile__(
- "pxor %%mm7, %%mm7\n\t" // zero mm7 for unpacking
- "movq (%0), %%mm6\n\t" // copy intensity change to mm6
- : : "r"(&mult), "m"(mult));
-
- unsigned int rem = pixels % 4;
- pixels -= rem;
- TQ_UINT32 *end = ( data + pixels );
-
- if (brighten)
- {
- while ( data != end ) {
- __asm__ __volatile__(
- "movq (%0), %%mm0\n\t"
- "movq 8(%0), %%mm4\n\t" // copy 4 pixels of data to mm0 and mm4
- "movq %%mm0, %%mm1\n\t"
- "movq %%mm0, %%mm3\n\t"
- "movq %%mm4, %%mm5\n\t" // copy to registers for unpacking
- "punpcklbw %%mm7, %%mm0\n\t"
- "punpckhbw %%mm7, %%mm1\n\t" // unpack the two pixels from mm0
- "pmullw %%mm6, %%mm0\n\t"
- "punpcklbw %%mm7, %%mm4\n\t"
- "pmullw %%mm6, %%mm1\n\t" // multiply by intensity*256
- "psrlw $8, %%mm0\n\t" // divide by 256
- "pmullw %%mm6, %%mm4\n\t"
- "psrlw $8, %%mm1\n\t"
- "psrlw $8, %%mm4\n\t"
- "packuswb %%mm1, %%mm0\n\t" // pack solution into mm0. saturates at 255
- "movq %%mm5, %%mm1\n\t"
-
- "punpckhbw %%mm7, %%mm1\n\t" // unpack 4th pixel in mm1
-
- "pmullw %%mm6, %%mm1\n\t"
- "paddusb %%mm3, %%mm0\n\t" // add intesity result to original of mm0
- "psrlw $8, %%mm1\n\t"
- "packuswb %%mm1, %%mm4\n\t" // pack upper two pixels into mm4
-
- "movq %%mm0, (%0)\n\t" // rewrite to memory lower two pixels
- "paddusb %%mm5, %%mm4\n\t"
- "movq %%mm4, 8(%0)\n\t" // rewrite upper two pixels
- : : "r"(data) );
- data += 4;
- }
-
- end += rem;
- while ( data != end ) {
- __asm__ __volatile__(
- "movd (%0), %%mm0\n\t" // repeat above but for
- "punpcklbw %%mm7, %%mm0\n\t" // one pixel at a time
- "movq %%mm0, %%mm3\n\t"
- "pmullw %%mm6, %%mm0\n\t"
- "psrlw $8, %%mm0\n\t"
- "paddw %%mm3, %%mm0\n\t"
- "packuswb %%mm0, %%mm0\n\t"
- "movd %%mm0, (%0)\n\t"
- : : "r"(data) );
- data++;
- }
- }
- else
- {
- while ( data != end ) {
- __asm__ __volatile__(
- "movq (%0), %%mm0\n\t"
- "movq 8(%0), %%mm4\n\t"
- "movq %%mm0, %%mm1\n\t"
- "movq %%mm0, %%mm3\n\t"
-
- "movq %%mm4, %%mm5\n\t"
-
- "punpcklbw %%mm7, %%mm0\n\t"
- "punpckhbw %%mm7, %%mm1\n\t"
- "pmullw %%mm6, %%mm0\n\t"
- "punpcklbw %%mm7, %%mm4\n\t"
- "pmullw %%mm6, %%mm1\n\t"
- "psrlw $8, %%mm0\n\t"
- "pmullw %%mm6, %%mm4\n\t"
- "psrlw $8, %%mm1\n\t"
- "psrlw $8, %%mm4\n\t"
- "packuswb %%mm1, %%mm0\n\t"
- "movq %%mm5, %%mm1\n\t"
-
- "punpckhbw %%mm7, %%mm1\n\t"
-
- "pmullw %%mm6, %%mm1\n\t"
- "psubusb %%mm0, %%mm3\n\t" // subtract darkening amount
- "psrlw $8, %%mm1\n\t"
- "packuswb %%mm1, %%mm4\n\t"
-
- "movq %%mm3, (%0)\n\t"
- "psubusb %%mm4, %%mm5\n\t" // only change for this version is
- "movq %%mm5, 8(%0)\n\t" // subtraction here as we are darkening image
- : : "r"(data) );
- data += 4;
- }
-
- end += rem;
- while ( data != end ) {
- __asm__ __volatile__(
- "movd (%0), %%mm0\n\t"
- "punpcklbw %%mm7, %%mm0\n\t"
- "movq %%mm0, %%mm3\n\t"
- "pmullw %%mm6, %%mm0\n\t"
- "psrlw $8, %%mm0\n\t"
- "psubusw %%mm0, %%mm3\n\t"
- "packuswb %%mm3, %%mm3\n\t"
- "movd %%mm3, (%0)\n\t"
- : : "r"(data) );
- data++;
- }
- }
- __asm__ __volatile__("emms"); // clear mmx state
- }
- else
-#endif // USE_MMX_INLINE_ASM
- {
- unsigned char *segTbl = new unsigned char[segColors];
- int tmp;
- if(brighten){ // keep overflow check out of loops
- for(int i=0; i < segColors; ++i){
- tmp = (int)(i*percent);
- if(tmp > 255)
- tmp = 255;
- segTbl[i] = tmp;
- }
- }
- else{
- for(int i=0; i < segColors; ++i){
- tmp = (int)(i*percent);
- if(tmp < 0)
- tmp = 0;
- segTbl[i] = tmp;
- }
- }
-
- if(brighten){ // same here
- for(int i=0; i < pixels; ++i){
- int r = tqRed(data[i]);
- int g = tqGreen(data[i]);
- int b = tqBlue(data[i]);
- int a = tqAlpha(data[i]);
- r = r + segTbl[r] > 255 ? 255 : r + segTbl[r];
- g = g + segTbl[g] > 255 ? 255 : g + segTbl[g];
- b = b + segTbl[b] > 255 ? 255 : b + segTbl[b];
- data[i] = tqRgba(r, g, b,a);
- }
- }
- else{
- for(int i=0; i < pixels; ++i){
- int r = tqRed(data[i]);
- int g = tqGreen(data[i]);
- int b = tqBlue(data[i]);
- int a = tqAlpha(data[i]);
- r = r - segTbl[r] < 0 ? 0 : r - segTbl[r];
- g = g - segTbl[g] < 0 ? 0 : g - segTbl[g];
- b = b - segTbl[b] < 0 ? 0 : b - segTbl[b];
- data[i] = tqRgba(r, g, b, a);
- }
- }
- delete [] segTbl;
- }
-
- return image;
-}
-
-TQImage& KImageEffect::channelIntensity(TQImage &image, float percent,
- RGBComponent channel)
-{
- if (image.width() == 0 || image.height() == 0) {
-#ifndef NDEBUG
- std::cerr << "WARNING: KImageEffect::channelIntensity : invalid image\n";
-#endif
- return image;
- }
-
- int segColors = image.depth() > 8 ? 256 : image.numColors();
- unsigned char *segTbl = new unsigned char[segColors];
- int pixels = image.depth() > 8 ? image.width()*image.height() :
- image.numColors();
- unsigned int *data = image.depth() > 8 ? (unsigned int *)image.bits() :
- (unsigned int *)image.tqcolorTable();
- bool brighten = (percent >= 0);
- if(percent < 0)
- percent = -percent;
-
- if(brighten){ // keep overflow check out of loops
- for(int i=0; i < segColors; ++i){
- int tmp = (int)(i*percent);
- if(tmp > 255)
- tmp = 255;
- segTbl[i] = tmp;
- }
- }
- else{
- for(int i=0; i < segColors; ++i){
- int tmp = (int)(i*percent);
- if(tmp < 0)
- tmp = 0;
- segTbl[i] = tmp;
- }
- }
-
- if(brighten){ // same here
- if(channel == Red){ // and here ;-)
- for(int i=0; i < pixels; ++i){
- int c = tqRed(data[i]);
- c = c + segTbl[c] > 255 ? 255 : c + segTbl[c];
- data[i] = tqRgba(c, tqGreen(data[i]), tqBlue(data[i]), tqAlpha(data[i]));
- }
- }
- else if(channel == Green){
- for(int i=0; i < pixels; ++i){
- int c = tqGreen(data[i]);
- c = c + segTbl[c] > 255 ? 255 : c + segTbl[c];
- data[i] = tqRgba(tqRed(data[i]), c, tqBlue(data[i]), tqAlpha(data[i]));
- }
- }
- else{
- for(int i=0; i < pixels; ++i){
- int c = tqBlue(data[i]);
- c = c + segTbl[c] > 255 ? 255 : c + segTbl[c];
- data[i] = tqRgba(tqRed(data[i]), tqGreen(data[i]), c, tqAlpha(data[i]));
- }
- }
-
- }
- else{
- if(channel == Red){
- for(int i=0; i < pixels; ++i){
- int c = tqRed(data[i]);
- c = c - segTbl[c] < 0 ? 0 : c - segTbl[c];
- data[i] = tqRgba(c, tqGreen(data[i]), tqBlue(data[i]), tqAlpha(data[i]));
- }
- }
- else if(channel == Green){
- for(int i=0; i < pixels; ++i){
- int c = tqGreen(data[i]);
- c = c - segTbl[c] < 0 ? 0 : c - segTbl[c];
- data[i] = tqRgba(tqRed(data[i]), c, tqBlue(data[i]), tqAlpha(data[i]));
- }
- }
- else{
- for(int i=0; i < pixels; ++i){
- int c = tqBlue(data[i]);
- c = c - segTbl[c] < 0 ? 0 : c - segTbl[c];
- data[i] = tqRgba(tqRed(data[i]), tqGreen(data[i]), c, tqAlpha(data[i]));
- }
- }
- }
- delete [] segTbl;
-
- return image;
-}
-
-// Modulate an image with an RBG channel of another image
-//
-TQImage& KImageEffect::modulate(TQImage &image, TQImage &modImage, bool reverse,
- ModulationType type, int factor, RGBComponent channel)
-{
- if (image.width() == 0 || image.height() == 0 ||
- modImage.width() == 0 || modImage.height() == 0) {
-#ifndef NDEBUG
- std::cerr << "WARNING: KImageEffect::modulate : invalid image\n";
-#endif
- return image;
- }
-
- int r, g, b, h, s, v, a;
- TQColor clr;
- int mod=0;
- unsigned int x1, x2, y1, y2;
- register int x, y;
-
- // for image, we handle only depth 32
- if (image.depth()<32) image = image.convertDepth(32);
-
- // for modImage, we handle depth 8 and 32
- if (modImage.depth()<8) modImage = modImage.convertDepth(8);
-
- unsigned int *colorTable2 = (modImage.depth()==8) ?
- modImage.tqcolorTable():0;
- unsigned int *data1, *data2;
- unsigned char *data2b;
- unsigned int color1, color2;
-
- x1 = image.width(); y1 = image.height();
- x2 = modImage.width(); y2 = modImage.height();
-
- for (y = 0; y < (int)y1; y++) {
- data1 = (unsigned int *) image.scanLine(y);
- data2 = (unsigned int *) modImage.scanLine( y%y2 );
- data2b = (unsigned char *) modImage.scanLine( y%y2 );
-
- x=0;
- while(x < (int)x1) {
- color2 = (colorTable2) ? colorTable2[*data2b] : *data2;
- if (reverse) {
- color1 = color2;
- color2 = *data1;
- }
- else
- color1 = *data1;
-
- if (type == Intensity || type == Contrast) {
- r = tqRed(color1);
- g = tqGreen(color1);
- b = tqBlue(color1);
- if (channel != All) {
- mod = (channel == Red) ? tqRed(color2) :
- (channel == Green) ? tqGreen(color2) :
- (channel == Blue) ? tqBlue(color2) :
- (channel == Gray) ? tqGray(color2) : 0;
- mod = mod*factor/50;
- }
-
- if (type == Intensity) {
- if (channel == All) {
- r += r * factor/50 * tqRed(color2)/256;
- g += g * factor/50 * tqGreen(color2)/256;
- b += b * factor/50 * tqBlue(color2)/256;
- }
- else {
- r += r * mod/256;
- g += g * mod/256;
- b += b * mod/256;
- }
- }
- else { // Contrast
- if (channel == All) {
- r += (r-128) * factor/50 * tqRed(color2)/128;
- g += (g-128) * factor/50 * tqGreen(color2)/128;
- b += (b-128) * factor/50 * tqBlue(color2)/128;
- }
- else {
- r += (r-128) * mod/128;
- g += (g-128) * mod/128;
- b += (b-128) * mod/128;
- }
- }
-
- if (r<0) r=0; if (r>255) r=255;
- if (g<0) g=0; if (g>255) g=255;
- if (b<0) b=0; if (b>255) b=255;
- a = tqAlpha(*data1);
- *data1 = tqRgba(r, g, b, a);
- }
- else if (type == Saturation || type == HueShift) {
- clr.setRgb(color1);
- clr.hsv(&h, &s, &v);
- mod = (channel == Red) ? tqRed(color2) :
- (channel == Green) ? tqGreen(color2) :
- (channel == Blue) ? tqBlue(color2) :
- (channel == Gray) ? tqGray(color2) : 0;
- mod = mod*factor/50;
-
- if (type == Saturation) {
- s -= s * mod/256;
- if (s<0) s=0; if (s>255) s=255;
- }
- else { // HueShift
- h += mod;
- while(h<0) h+=360;
- h %= 360;
- }
-
- clr.setHsv(h, s, v);
- a = tqAlpha(*data1);
- *data1 = clr.rgb() | ((uint)(a & 0xff) << 24);
- }
- data1++; data2++; data2b++; x++;
- if ( (x%x2) ==0) { data2 -= x2; data2b -= x2; }
- }
- }
- return image;
-}
-
-
-
-//======================================================================
-//
-// Blend effects
-//
-//======================================================================
-
-
-// Nice and fast direct pixel manipulation
-TQImage& KImageEffect::blend(const TQColor& clr, TQImage& dst, float opacity)
-{
- if (dst.width() <= 0 || dst.height() <= 0)
- return dst;
-
- if (opacity < 0.0 || opacity > 1.0) {
-#ifndef NDEBUG
- std::cerr << "WARNING: KImageEffect::blend : invalid opacity. Range [0, 1]\n";
-#endif
- return dst;
- }
-
- if (dst.depth() != 32)
- dst = dst.convertDepth(32);
-
-#ifdef USE_QT4
- if (dst.format() != QImage::Format_ARGB32)
- dst = dst.convertToFormat(QImage::Format_ARGB32); // This is needed because Qt4 has multiple variants with a 32 bit depth, and the routines below expect one specific variant (ARGB)
-#endif
-
- int pixels = dst.width() * dst.height();
-
-#ifdef USE_SSE2_INLINE_ASM
- if ( KCPUInfo::haveExtension( KCPUInfo::IntelSSE2 ) && pixels > 16 ) {
- TQ_UINT16 alpha = TQ_UINT16( ( 1.0 - opacity ) * 256.0 );
-
- KIE8Pack packedalpha = { { alpha, alpha, alpha, 256,
- alpha, alpha, alpha, 256 } };
-
- TQ_UINT16 red = TQ_UINT16( clr.red() * 256 * opacity );
- TQ_UINT16 green = TQ_UINT16( clr.green() * 256 * opacity );
- TQ_UINT16 blue = TQ_UINT16( clr.blue() * 256 * opacity );
-
- KIE8Pack packedcolor = { { blue, green, red, 0,
- blue, green, red, 0 } };
-
- // Prepare the XMM5, XMM6 and XMM7 registers for unpacking and blending
- __asm__ __volatile__(
- "pxor %%xmm7, %%xmm7\n\t" // Zero out XMM7 for unpacking
- "movdqu (%0), %%xmm6\n\t" // Set up (1 - alpha) * 256 in XMM6
- "movdqu (%1), %%xmm5\n\t" // Set up color * alpha * 256 in XMM5
- : : "r"(&packedalpha), "r"(&packedcolor),
- "m"(packedcolor), "m"(packedalpha) );
-
- TQ_UINT32 *data = reinterpret_cast<TQ_UINT32*>( dst.bits() );
-
- // Check how many pixels we need to process to achieve 16 byte tqalignment
- int offset = (16 - (TQ_UINT32( data ) & 0x0f)) / 4;
-
- // The main loop processes 8 pixels / iteration
- int remainder = (pixels - offset) % 8;
- pixels -= remainder;
-
- // Alignment loop
- for ( int i = 0; i < offset; i++ ) {
- __asm__ __volatile__(
- "movd (%0,%1,4), %%xmm0\n\t" // Load one pixel to XMM1
- "punpcklbw %%xmm7, %%xmm0\n\t" // Unpack the pixel
- "pmullw %%xmm6, %%xmm0\n\t" // Multiply the pixel with (1 - alpha) * 256
- "paddw %%xmm5, %%xmm0\n\t" // Add color * alpha * 256 to the result
- "psrlw $8, %%xmm0\n\t" // Divide by 256
- "packuswb %%xmm1, %%xmm0\n\t" // Pack the pixel to a dword
- "movd %%xmm0, (%0,%1,4)\n\t" // Write the pixel to the image
- : : "r"(data), "r"(i) );
- }
-
- // Main loop
- for ( int i = offset; i < pixels; i += 8 ) {
- __asm__ __volatile(
- // Load 8 pixels to XMM registers 1 - 4
- "movq (%0,%1,4), %%xmm0\n\t" // Load pixels 1 and 2 to XMM1
- "movq 8(%0,%1,4), %%xmm1\n\t" // Load pixels 3 and 4 to XMM2
- "movq 16(%0,%1,4), %%xmm2\n\t" // Load pixels 5 and 6 to XMM3
- "movq 24(%0,%1,4), %%xmm3\n\t" // Load pixels 7 and 8 to XMM4
-
- // Prefetch the pixels for next iteration
- "prefetchnta 32(%0,%1,4) \n\t"
-
- // Blend pixels 1 and 2
- "punpcklbw %%xmm7, %%xmm0\n\t" // Unpack the pixels
- "pmullw %%xmm6, %%xmm0\n\t" // Multiply the pixels with (1 - alpha) * 256
- "paddw %%xmm5, %%xmm0\n\t" // Add color * alpha * 256 to the result
- "psrlw $8, %%xmm0\n\t" // Divide by 256
-
- // Blend pixels 3 and 4
- "punpcklbw %%xmm7, %%xmm1\n\t" // Unpack the pixels
- "pmullw %%xmm6, %%xmm1\n\t" // Multiply the pixels with (1 - alpha) * 256
- "paddw %%xmm5, %%xmm1\n\t" // Add color * alpha * 256 to the result
- "psrlw $8, %%xmm1\n\t" // Divide by 256
-
- // Blend pixels 5 and 6
- "punpcklbw %%xmm7, %%xmm2\n\t" // Unpack the pixels
- "pmullw %%xmm6, %%xmm2\n\t" // Multiply the pixels with (1 - alpha) * 256
- "paddw %%xmm5, %%xmm2\n\t" // Add color * alpha * 256 to the result
- "psrlw $8, %%xmm2\n\t" // Divide by 256
-
- // Blend pixels 7 and 8
- "punpcklbw %%xmm7, %%xmm3\n\t" // Unpack the pixels
- "pmullw %%xmm6, %%xmm3\n\t" // Multiply the pixels with (1 - alpha) * 256
- "paddw %%xmm5, %%xmm3\n\t" // Add color * alpha * 256 to the result
- "psrlw $8, %%xmm3\n\t" // Divide by 256
-
- // Pack the pixels into 2 double quadwords
- "packuswb %%xmm1, %%xmm0\n\t" // Pack pixels 1 - 4 to a double qword
- "packuswb %%xmm3, %%xmm2\n\t" // Pack pixles 5 - 8 to a double qword
-
- // Write the pixels back to the image
- "movdqa %%xmm0, (%0,%1,4)\n\t" // Store pixels 1 - 4
- "movdqa %%xmm2, 16(%0,%1,4)\n\t" // Store pixels 5 - 8
- : : "r"(data), "r"(i) );
- }
-
- // Cleanup loop
- for ( int i = pixels; i < pixels + remainder; i++ ) {
- __asm__ __volatile__(
- "movd (%0,%1,4), %%xmm0\n\t" // Load one pixel to XMM1
- "punpcklbw %%xmm7, %%xmm0\n\t" // Unpack the pixel
- "pmullw %%xmm6, %%xmm0\n\t" // Multiply the pixel with (1 - alpha) * 256
- "paddw %%xmm5, %%xmm0\n\t" // Add color * alpha * 256 to the result
- "psrlw $8, %%xmm0\n\t" // Divide by 256
- "packuswb %%xmm1, %%xmm0\n\t" // Pack the pixel to a dword
- "movd %%xmm0, (%0,%1,4)\n\t" // Write the pixel to the image
- : : "r"(data), "r"(i) );
- }
- } else
-#endif
-
-#ifdef USE_MMX_INLINE_ASM
- if ( KCPUInfo::haveExtension( KCPUInfo::IntelMMX ) && pixels > 1 ) {
- TQ_UINT16 alpha = TQ_UINT16( ( 1.0 - opacity ) * 256.0 );
- KIE4Pack packedalpha = { { alpha, alpha, alpha, 256 } };
-
- TQ_UINT16 red = TQ_UINT16( clr.red() * 256 * opacity );
- TQ_UINT16 green = TQ_UINT16( clr.green() * 256 * opacity );
- TQ_UINT16 blue = TQ_UINT16( clr.blue() * 256 * opacity );
-
- KIE4Pack packedcolor = { { blue, green, red, 0 } };
-
- __asm__ __volatile__(
- "pxor %%mm7, %%mm7\n\t" // Zero out MM7 for unpacking
- "movq (%0), %%mm6\n\t" // Set up (1 - alpha) * 256 in MM6
- "movq (%1), %%mm5\n\t" // Set up color * alpha * 256 in MM5
- : : "r"(&packedalpha), "r"(&packedcolor), "m"(packedcolor), "m"(packedalpha) );
-
- TQ_UINT32 *data = reinterpret_cast<TQ_UINT32*>( dst.bits() );
-
- // The main loop processes 4 pixels / iteration
- int remainder = pixels % 4;
- pixels -= remainder;
-
- // Main loop
- for ( int i = 0; i < pixels; i += 4 ) {
- __asm__ __volatile__(
- // Load 4 pixels to MM registers 1 - 4
- "movd (%0,%1,4), %%mm0\n\t" // Load the 1st pixel to MM0
- "movd 4(%0,%1,4), %%mm1\n\t" // Load the 2nd pixel to MM1
- "movd 8(%0,%1,4), %%mm2\n\t" // Load the 3rd pixel to MM2
- "movd 12(%0,%1,4), %%mm3\n\t" // Load the 4th pixel to MM3
-
- // Blend the first pixel
- "punpcklbw %%mm7, %%mm0\n\t" // Unpack the pixel
- "pmullw %%mm6, %%mm0\n\t" // Multiply the pixel with (1 - alpha) * 256
- "paddw %%mm5, %%mm0\n\t" // Add color * alpha * 256 to the result
- "psrlw $8, %%mm0\n\t" // Divide by 256
-
- // Blend the second pixel
- "punpcklbw %%mm7, %%mm1\n\t" // Unpack the pixel
- "pmullw %%mm6, %%mm1\n\t" // Multiply the pixel with (1 - alpha) * 256
- "paddw %%mm5, %%mm1\n\t" // Add color * alpha * 256 to the result
- "psrlw $8, %%mm1\n\t" // Divide by 256
-
- // Blend the third pixel
- "punpcklbw %%mm7, %%mm2\n\t" // Unpack the pixel
- "pmullw %%mm6, %%mm2\n\t" // Multiply the pixel with (1 - alpha) * 256
- "paddw %%mm5, %%mm2\n\t" // Add color * alpha * 256 to the result
- "psrlw $8, %%mm2\n\t" // Divide by 256
-
- // Blend the fourth pixel
- "punpcklbw %%mm7, %%mm3\n\t" // Unpack the pixel
- "pmullw %%mm6, %%mm3\n\t" // Multiply the pixel with (1 - alpha) * 256
- "paddw %%mm5, %%mm3\n\t" // Add color * alpha * 256 to the result
- "psrlw $8, %%mm3\n\t" // Divide by 256
-
- // Pack the pixels into 2 quadwords
- "packuswb %%mm1, %%mm0\n\t" // Pack pixels 1 and 2 to a qword
- "packuswb %%mm3, %%mm2\n\t" // Pack pixels 3 and 4 to a qword
-
- // Write the pixels back to the image
- "movq %%mm0, (%0,%1,4)\n\t" // Store pixels 1 and 2
- "movq %%mm2, 8(%0,%1,4)\n\t" // Store pixels 3 and 4
- : : "r"(data), "r"(i) );
- }
-
- // Cleanup loop
- for ( int i = pixels; i < pixels + remainder; i++ ) {
- __asm__ __volatile__(
- "movd (%0,%1,4), %%mm0\n\t" // Load one pixel to MM1
- "punpcklbw %%mm7, %%mm0\n\t" // Unpack the pixel
- "pmullw %%mm6, %%mm0\n\t" // Multiply the pixel with 1 - alpha * 256
- "paddw %%mm5, %%mm0\n\t" // Add color * alpha * 256 to the result
- "psrlw $8, %%mm0\n\t" // Divide by 256
- "packuswb %%mm0, %%mm0\n\t" // Pack the pixel to a dword
- "movd %%mm0, (%0,%1,4)\n\t" // Write the pixel to the image
- : : "r"(data), "r"(i) );
- }
-
- // Empty the MMX state
- __asm__ __volatile__("emms");
- } else
-#endif // USE_MMX_INLINE_ASM
-
- {
- int rcol, gcol, bcol;
- clr.rgb(&rcol, &gcol, &bcol);
-
-#ifdef WORDS_BIGENDIAN // ARGB (skip alpha)
- register unsigned char *data = (unsigned char *)dst.bits() + 1;
-#else // BGRA
- register unsigned char *data = (unsigned char *)dst.bits();
-#endif
-
- for (register int i=0; i<pixels; i++)
- {
-#ifdef WORDS_BIGENDIAN
- *data += (unsigned char)((rcol - *data) * opacity);
- data++;
- *data += (unsigned char)((gcol - *data) * opacity);
- data++;
- *data += (unsigned char)((bcol - *data) * opacity);
- data++;
-#else
- *data += (unsigned char)((bcol - *data) * opacity);
- data++;
- *data += (unsigned char)((gcol - *data) * opacity);
- data++;
- *data += (unsigned char)((rcol - *data) * opacity);
- data++;
-#endif
- data++; // skip alpha
- }
- }
-
- return dst;
-}
-
-// Nice and fast direct pixel manipulation
-TQImage& KImageEffect::blend(TQImage& src, TQImage& dst, float opacity)
-{
- if (src.width() <= 0 || src.height() <= 0)
- return dst;
- if (dst.width() <= 0 || dst.height() <= 0)
- return dst;
-
- if (src.width() != dst.width() || src.height() != dst.height()) {
-#ifndef NDEBUG
- std::cerr << "WARNING: KImageEffect::blend : src and destination images are not the same size\n";
-#endif
- return dst;
- }
-
- if (opacity < 0.0 || opacity > 1.0) {
-#ifndef NDEBUG
- std::cerr << "WARNING: KImageEffect::blend : invalid opacity. Range [0, 1]\n";
-#endif
- return dst;
- }
-
- if (src.depth() != 32) src = src.convertDepth(32);
- if (dst.depth() != 32) dst = dst.convertDepth(32);
-
-#ifdef USE_QT4
- if (src.format() != QImage::Format_ARGB32)
- src = dst.convertToFormat(QImage::Format_ARGB32); // This is needed because Qt4 has multiple variants with a 32 bit depth, and the routines below expect one specific variant (ARGB)
- if (dst.format() != QImage::Format_ARGB32)
- dst = dst.convertToFormat(QImage::Format_ARGB32); // This is needed because Qt4 has multiple variants with a 32 bit depth, and the routines below expect one specific variant (ARGB)
-#endif
-
- int pixels = src.width() * src.height();
-
-#ifdef USE_SSE2_INLINE_ASM
- if ( KCPUInfo::haveExtension( KCPUInfo::IntelSSE2 ) && pixels > 16 ) {
- TQ_UINT16 alpha = TQ_UINT16( opacity * 256.0 );
- KIE8Pack packedalpha = { { alpha, alpha, alpha, 0,
- alpha, alpha, alpha, 0 } };
-
- // Prepare the XMM6 and XMM7 registers for unpacking and blending
- __asm__ __volatile__(
- "pxor %%xmm7, %%xmm7\n\t" // Zero out XMM7 for unpacking
- "movdqu (%0), %%xmm6\n\t" // Set up alpha * 256 in XMM6
- : : "r"(&packedalpha), "m"(packedalpha) );
-
- TQ_UINT32 *data1 = reinterpret_cast<TQ_UINT32*>( src.bits() );
- TQ_UINT32 *data2 = reinterpret_cast<TQ_UINT32*>( dst.bits() );
-
- // Check how many pixels we need to process to achieve 16 byte tqalignment
- int offset = (16 - (TQ_UINT32( data2 ) & 0x0f)) / 4;
-
- // The main loop processes 4 pixels / iteration
- int remainder = (pixels - offset) % 4;
- pixels -= remainder;
-
- // Alignment loop
- for ( int i = 0; i < offset; i++ ) {
- __asm__ __volatile__(
- "movd (%1,%2,4), %%xmm1\n\t" // Load one dst pixel to XMM1
- "punpcklbw %%xmm7, %%xmm1\n\t" // Unpack the pixel
- "movd (%0,%2,4), %%xmm0\n\t" // Load one src pixel to XMM0
- "punpcklbw %%xmm7, %%xmm0\n\t" // Unpack the pixel
- "psubw %%xmm1, %%xmm0\n\t" // Subtract dst from src
- "pmullw %%xmm6, %%xmm0\n\t" // Multiply the result with alpha * 256
- "psllw $8, %%xmm1\n\t" // Multiply dst with 256
- "paddw %%xmm1, %%xmm0\n\t" // Add dst to result
- "psrlw $8, %%xmm0\n\t" // Divide by 256
- "packuswb %%xmm1, %%xmm0\n\t" // Pack the pixel to a dword
- "movd %%xmm0, (%1,%2,4)\n\t" // Write the pixel to the image
- : : "r"(data1), "r"(data2), "r"(i) );
- }
-
- // Main loop
- for ( int i = offset; i < pixels; i += 4 ) {
- __asm__ __volatile__(
- // Load 4 src pixels to XMM0 and XMM2 and 4 dst pixels to XMM1 and XMM3
- "movq (%0,%2,4), %%xmm0\n\t" // Load two src pixels to XMM0
- "movq (%1,%2,4), %%xmm1\n\t" // Load two dst pixels to XMM1
- "movq 8(%0,%2,4), %%xmm2\n\t" // Load two src pixels to XMM2
- "movq 8(%1,%2,4), %%xmm3\n\t" // Load two dst pixels to XMM3
-
- // Prefetch the pixels for the iteration after the next one
- "prefetchnta 32(%0,%2,4) \n\t"
- "prefetchnta 32(%1,%2,4) \n\t"
-
- // Blend the first two pixels
- "punpcklbw %%xmm7, %%xmm1\n\t" // Unpack the dst pixels
- "punpcklbw %%xmm7, %%xmm0\n\t" // Unpack the src pixels
- "psubw %%xmm1, %%xmm0\n\t" // Subtract dst from src
- "pmullw %%xmm6, %%xmm0\n\t" // Multiply the result with alpha * 256
- "psllw $8, %%xmm1\n\t" // Multiply dst with 256
- "paddw %%xmm1, %%xmm0\n\t" // Add dst to the result
- "psrlw $8, %%xmm0\n\t" // Divide by 256
-
- // Blend the next two pixels
- "punpcklbw %%xmm7, %%xmm3\n\t" // Unpack the dst pixels
- "punpcklbw %%xmm7, %%xmm2\n\t" // Unpack the src pixels
- "psubw %%xmm3, %%xmm2\n\t" // Subtract dst from src
- "pmullw %%xmm6, %%xmm2\n\t" // Multiply the result with alpha * 256
- "psllw $8, %%xmm3\n\t" // Multiply dst with 256
- "paddw %%xmm3, %%xmm2\n\t" // Add dst to the result
- "psrlw $8, %%xmm2\n\t" // Divide by 256
-
- // Write the pixels back to the image
- "packuswb %%xmm2, %%xmm0\n\t" // Pack the pixels to a double qword
- "movdqa %%xmm0, (%1,%2,4)\n\t" // Store the pixels
- : : "r"(data1), "r"(data2), "r"(i) );
- }
-
- // Cleanup loop
- for ( int i = pixels; i < pixels + remainder; i++ ) {
- __asm__ __volatile__(
- "movd (%1,%2,4), %%xmm1\n\t" // Load one dst pixel to XMM1
- "punpcklbw %%xmm7, %%xmm1\n\t" // Unpack the pixel
- "movd (%0,%2,4), %%xmm0\n\t" // Load one src pixel to XMM0
- "punpcklbw %%xmm7, %%xmm0\n\t" // Unpack the pixel
- "psubw %%xmm1, %%xmm0\n\t" // Subtract dst from src
- "pmullw %%xmm6, %%xmm0\n\t" // Multiply the result with alpha * 256
- "psllw $8, %%xmm1\n\t" // Multiply dst with 256
- "paddw %%xmm1, %%xmm0\n\t" // Add dst to result
- "psrlw $8, %%xmm0\n\t" // Divide by 256
- "packuswb %%xmm1, %%xmm0\n\t" // Pack the pixel to a dword
- "movd %%xmm0, (%1,%2,4)\n\t" // Write the pixel to the image
- : : "r"(data1), "r"(data2), "r"(i) );
- }
- } else
-#endif // USE_SSE2_INLINE_ASM
-
-#ifdef USE_MMX_INLINE_ASM
- if ( KCPUInfo::haveExtension( KCPUInfo::IntelMMX ) && pixels > 1 ) {
- TQ_UINT16 alpha = TQ_UINT16( opacity * 256.0 );
- KIE4Pack packedalpha = { { alpha, alpha, alpha, 0 } };
-
- // Prepare the MM6 and MM7 registers for blending and unpacking
- __asm__ __volatile__(
- "pxor %%mm7, %%mm7\n\t" // Zero out MM7 for unpacking
- "movq (%0), %%mm6\n\t" // Set up alpha * 256 in MM6
- : : "r"(&packedalpha), "m"(packedalpha) );
-
- TQ_UINT32 *data1 = reinterpret_cast<TQ_UINT32*>( src.bits() );
- TQ_UINT32 *data2 = reinterpret_cast<TQ_UINT32*>( dst.bits() );
-
- // The main loop processes 2 pixels / iteration
- int remainder = pixels % 2;
- pixels -= remainder;
-
- // Main loop
- for ( int i = 0; i < pixels; i += 2 ) {
- __asm__ __volatile__(
- // Load 2 src pixels to MM0 and MM2 and 2 dst pixels to MM1 and MM3
- "movd (%0,%2,4), %%mm0\n\t" // Load the 1st src pixel to MM0
- "movd (%1,%2,4), %%mm1\n\t" // Load the 1st dst pixel to MM1
- "movd 4(%0,%2,4), %%mm2\n\t" // Load the 2nd src pixel to MM2
- "movd 4(%1,%2,4), %%mm3\n\t" // Load the 2nd dst pixel to MM3
-
- // Blend the first pixel
- "punpcklbw %%mm7, %%mm0\n\t" // Unpack the src pixel
- "punpcklbw %%mm7, %%mm1\n\t" // Unpack the dst pixel
- "psubw %%mm1, %%mm0\n\t" // Subtract dst from src
- "pmullw %%mm6, %%mm0\n\t" // Multiply the result with alpha * 256
- "psllw $8, %%mm1\n\t" // Multiply dst with 256
- "paddw %%mm1, %%mm0\n\t" // Add dst to the result
- "psrlw $8, %%mm0\n\t" // Divide by 256
-
- // Blend the second pixel
- "punpcklbw %%mm7, %%mm2\n\t" // Unpack the src pixel
- "punpcklbw %%mm7, %%mm3\n\t" // Unpack the dst pixel
- "psubw %%mm3, %%mm2\n\t" // Subtract dst from src
- "pmullw %%mm6, %%mm2\n\t" // Multiply the result with alpha * 256
- "psllw $8, %%mm3\n\t" // Multiply dst with 256
- "paddw %%mm3, %%mm2\n\t" // Add dst to the result
- "psrlw $8, %%mm2\n\t" // Divide by 256
-
- // Write the pixels back to the image
- "packuswb %%mm2, %%mm0\n\t" // Pack the pixels to a qword
- "movq %%mm0, (%1,%2,4)\n\t" // Store the pixels
- : : "r"(data1), "r"(data2), "r"(i) );
- }
-
- // Blend the remaining pixel (if there is one)
- if ( remainder ) {
- __asm__ __volatile__(
- "movd (%0), %%mm0\n\t" // Load one src pixel to MM0
- "punpcklbw %%mm7, %%mm0\n\t" // Unpack the src pixel
- "movd (%1), %%mm1\n\t" // Load one dst pixel to MM1
- "punpcklbw %%mm7, %%mm1\n\t" // Unpack the dst pixel
- "psubw %%mm1, %%mm0\n\t" // Subtract dst from src
- "pmullw %%mm6, %%mm0\n\t" // Multiply the result with alpha * 256
- "psllw $8, %%mm1\n\t" // Multiply dst with 256
- "paddw %%mm1, %%mm0\n\t" // Add dst to result
- "psrlw $8, %%mm0\n\t" // Divide by 256
- "packuswb %%mm0, %%mm0\n\t" // Pack the pixel to a dword
- "movd %%mm0, (%1)\n\t" // Write the pixel to the image
- : : "r"(data1 + pixels), "r"(data2 + pixels) );
- }
-
- // Empty the MMX state
- __asm__ __volatile__("emms");
- } else
-#endif // USE_MMX_INLINE_ASM
-
- {
-#ifdef WORDS_BIGENDIAN // ARGB (skip alpha)
- register unsigned char *data1 = (unsigned char *)dst.bits() + 1;
- register unsigned char *data2 = (unsigned char *)src.bits() + 1;
-#else // BGRA
- register unsigned char *data1 = (unsigned char *)dst.bits();
- register unsigned char *data2 = (unsigned char *)src.bits();
-#endif
-
- for (register int i=0; i<pixels; i++)
- {
-#ifdef WORDS_BIGENDIAN
- *data1 += (unsigned char)((*(data2++) - *data1) * opacity);
- data1++;
- *data1 += (unsigned char)((*(data2++) - *data1) * opacity);
- data1++;
- *data1 += (unsigned char)((*(data2++) - *data1) * opacity);
- data1++;
-#else
- *data1 += (unsigned char)((*(data2++) - *data1) * opacity);
- data1++;
- *data1 += (unsigned char)((*(data2++) - *data1) * opacity);
- data1++;
- *data1 += (unsigned char)((*(data2++) - *data1) * opacity);
- data1++;
-#endif
- data1++; // skip alpha
- data2++;
- }
- }
-
- return dst;
-}
-
-
-TQImage& KImageEffect::blend(TQImage &image, float initial_intensity,
- const TQColor &bgnd, GradientType eff,
- bool anti_dir)
-{
- if (image.width() == 0 || image.height() == 0 || image.depth()!=32 ) {
-#ifndef NDEBUG
- std::cerr << "WARNING: KImageEffect::blend : invalid image\n";
-#endif
- return image;
- }
-
- int r_bgnd = bgnd.red(), g_bgnd = bgnd.green(), b_bgnd = bgnd.blue();
- int r, g, b;
- int ind;
-
- unsigned int xi, xf, yi, yf;
- unsigned int a;
-
- // check the boundaries of the initial intesity param
- float unaffected = 1;
- if (initial_intensity > 1) initial_intensity = 1;
- if (initial_intensity < -1) initial_intensity = -1;
- if (initial_intensity < 0) {
- unaffected = 1. + initial_intensity;
- initial_intensity = 0;
- }
-
-
- float intensity = initial_intensity;
- float var = 1. - initial_intensity;
-
- if (anti_dir) {
- initial_intensity = intensity = 1.;
- var = -var;
- }
-
- register int x, y;
-
- unsigned int *data = (unsigned int *)image.bits();
-
- int image_width = image.width(); //Those can't change
- int image_height = image.height();
-
-
- if( eff == VerticalGradient || eff == HorizontalGradient ) {
-
- // set the image domain to apply the effect to
- xi = 0, xf = image_width;
- yi = 0, yf = image_height;
- if (eff == VerticalGradient) {
- if (anti_dir) yf = (int)(image_height * unaffected);
- else yi = (int)(image_height * (1 - unaffected));
- }
- else {
- if (anti_dir) xf = (int)(image_width * unaffected);
- else xi = (int)(image_height * (1 - unaffected));
- }
-
- var /= (eff == VerticalGradient?yf-yi:xf-xi);
-
- int ind_base;
- for (y = yi; y < (int)yf; y++) {
- intensity = eff == VerticalGradient? intensity + var :
- initial_intensity;
- ind_base = image_width * y ;
- for (x = xi; x < (int)xf ; x++) {
- if (eff == HorizontalGradient) intensity += var;
- ind = x + ind_base;
- r = tqRed (data[ind]) + (int)(intensity *
- (r_bgnd - tqRed (data[ind])));
- g = tqGreen(data[ind]) + (int)(intensity *
- (g_bgnd - tqGreen(data[ind])));
- b = tqBlue (data[ind]) + (int)(intensity *
- (b_bgnd - tqBlue (data[ind])));
- if (r > 255) r = 255; if (r < 0 ) r = 0;
- if (g > 255) g = 255; if (g < 0 ) g = 0;
- if (b > 255) b = 255; if (b < 0 ) b = 0;
- a = tqAlpha(data[ind]);
- data[ind] = tqRgba(r, g, b, a);
- }
- }
- }
- else if (eff == DiagonalGradient || eff == CrossDiagonalGradient) {
- float xvar = var / 2 / image_width; // / unaffected;
- float yvar = var / 2 / image_height; // / unaffected;
- float tmp;
-
- for (x = 0; x < image_width ; x++) {
- tmp = xvar * (eff == DiagonalGradient? x : image.width()-x-1);
- ind = x;
- for (y = 0; y < image_height ; y++) {
- intensity = initial_intensity + tmp + yvar * y;
-
- r = tqRed (data[ind]) + (int)(intensity *
- (r_bgnd - tqRed (data[ind])));
- g = tqGreen(data[ind]) + (int)(intensity *
- (g_bgnd - tqGreen(data[ind])));
- b = tqBlue (data[ind]) + (int)(intensity *
- (b_bgnd - tqBlue (data[ind])));
- if (r > 255) r = 255; if (r < 0 ) r = 0;
- if (g > 255) g = 255; if (g < 0 ) g = 0;
- if (b > 255) b = 255; if (b < 0 ) b = 0;
- a = tqAlpha(data[ind]);
- data[ind] = tqRgba(r, g, b, a);
-
- ind += image_width;
- }
- }
- }
-
- else if (eff == RectangleGradient || eff == EllipticGradient) {
- float xvar;
- float yvar;
-
- for (x = 0; x < image_width / 2 + image_width % 2; x++) {
- xvar = var / image_width * (image_width - x*2/unaffected-1);
- for (y = 0; y < image_height / 2 + image_height % 2; y++) {
- yvar = var / image_height * (image_height - y*2/unaffected -1);
-
- if (eff == RectangleGradient)
- intensity = initial_intensity + QMAX(xvar, yvar);
- else
- intensity = initial_intensity + sqrt(xvar * xvar + yvar * yvar);
- if (intensity > 1) intensity = 1;
- if (intensity < 0) intensity = 0;
-
- //NW
- ind = x + image_width * y ;
- r = tqRed (data[ind]) + (int)(intensity *
- (r_bgnd - tqRed (data[ind])));
- g = tqGreen(data[ind]) + (int)(intensity *
- (g_bgnd - tqGreen(data[ind])));
- b = tqBlue (data[ind]) + (int)(intensity *
- (b_bgnd - tqBlue (data[ind])));
- if (r > 255) r = 255; if (r < 0 ) r = 0;
- if (g > 255) g = 255; if (g < 0 ) g = 0;
- if (b > 255) b = 255; if (b < 0 ) b = 0;
- a = tqAlpha(data[ind]);
- data[ind] = tqRgba(r, g, b, a);
-
- //NE
- ind = image_width - x - 1 + image_width * y ;
- r = tqRed (data[ind]) + (int)(intensity *
- (r_bgnd - tqRed (data[ind])));
- g = tqGreen(data[ind]) + (int)(intensity *
- (g_bgnd - tqGreen(data[ind])));
- b = tqBlue (data[ind]) + (int)(intensity *
- (b_bgnd - tqBlue (data[ind])));
- if (r > 255) r = 255; if (r < 0 ) r = 0;
- if (g > 255) g = 255; if (g < 0 ) g = 0;
- if (b > 255) b = 255; if (b < 0 ) b = 0;
- a = tqAlpha(data[ind]);
- data[ind] = tqRgba(r, g, b, a);
- }
- }
-
- //CT loop is doubled because of stupid central row/column issue.
- // other solution?
- for (x = 0; x < image_width / 2; x++) {
- xvar = var / image_width * (image_width - x*2/unaffected-1);
- for (y = 0; y < image_height / 2; y++) {
- yvar = var / image_height * (image_height - y*2/unaffected -1);
-
- if (eff == RectangleGradient)
- intensity = initial_intensity + QMAX(xvar, yvar);
- else
- intensity = initial_intensity + sqrt(xvar * xvar + yvar * yvar);
- if (intensity > 1) intensity = 1;
- if (intensity < 0) intensity = 0;
-
- //SW
- ind = x + image_width * (image_height - y -1) ;
- r = tqRed (data[ind]) + (int)(intensity *
- (r_bgnd - tqRed (data[ind])));
- g = tqGreen(data[ind]) + (int)(intensity *
- (g_bgnd - tqGreen(data[ind])));
- b = tqBlue (data[ind]) + (int)(intensity *
- (b_bgnd - tqBlue (data[ind])));
- if (r > 255) r = 255; if (r < 0 ) r = 0;
- if (g > 255) g = 255; if (g < 0 ) g = 0;
- if (b > 255) b = 255; if (b < 0 ) b = 0;
- a = tqAlpha(data[ind]);
- data[ind] = tqRgba(r, g, b, a);
-
- //SE
- ind = image_width-x-1 + image_width * (image_height - y - 1) ;
- r = tqRed (data[ind]) + (int)(intensity *
- (r_bgnd - tqRed (data[ind])));
- g = tqGreen(data[ind]) + (int)(intensity *
- (g_bgnd - tqGreen(data[ind])));
- b = tqBlue (data[ind]) + (int)(intensity *
- (b_bgnd - tqBlue (data[ind])));
- if (r > 255) r = 255; if (r < 0 ) r = 0;
- if (g > 255) g = 255; if (g < 0 ) g = 0;
- if (b > 255) b = 255; if (b < 0 ) b = 0;
- a = tqAlpha(data[ind]);
- data[ind] = tqRgba(r, g, b, a);
- }
- }
- }
-#ifndef NDEBUG
- else std::cerr << "KImageEffect::blend effect not implemented" << std::endl;
-#endif
- return image;
-}
-
-// Not very efficient as we create a third big image...
-//
-TQImage& KImageEffect::blend(TQImage &image1, TQImage &image2,
- GradientType gt, int xf, int yf)
-{
- if (image1.width() == 0 || image1.height() == 0 ||
- image2.width() == 0 || image2.height() == 0)
- return image1;
-
- TQImage image3;
-
- image3 = KImageEffect::unbalancedGradient(image1.size(),
- TQColor(0,0,0), TQColor(255,255,255),
- gt, xf, yf, 0);
-
- return blend(image1,image2,image3, Red); // Channel to use is arbitrary
-}
-
-// Blend image2 into image1, using an RBG channel of blendImage
-//
-TQImage& KImageEffect::blend(TQImage &image1, TQImage &image2,
- TQImage &blendImage, RGBComponent channel)
-{
- if (image1.width() == 0 || image1.height() == 0 ||
- image2.width() == 0 || image2.height() == 0 ||
- blendImage.width() == 0 || blendImage.height() == 0) {
-#ifndef NDEBUG
- std::cerr << "KImageEffect::blend effect invalid image" << std::endl;
-#endif
- return image1;
- }
-
- int r, g, b;
- int ind1, ind2, ind3;
-
- unsigned int x1, x2, x3, y1, y2, y3;
- unsigned int a;
-
- register int x, y;
-
- // for image1 and image2, we only handle depth 32
- if (image1.depth()<32) image1 = image1.convertDepth(32);
- if (image2.depth()<32) image2 = image2.convertDepth(32);
-
- // for blendImage, we handle depth 8 and 32
- if (blendImage.depth()<8) blendImage = blendImage.convertDepth(8);
-
- unsigned int *colorTable3 = (blendImage.depth()==8) ?
- blendImage.tqcolorTable():0;
-
- unsigned int *data1 = (unsigned int *)image1.bits();
- unsigned int *data2 = (unsigned int *)image2.bits();
- unsigned int *data3 = (unsigned int *)blendImage.bits();
- unsigned char *data3b = (unsigned char *)blendImage.bits();
- unsigned int color3;
-
- x1 = image1.width(); y1 = image1.height();
- x2 = image2.width(); y2 = image2.height();
- x3 = blendImage.width(); y3 = blendImage.height();
-
- for (y = 0; y < (int)y1; y++) {
- ind1 = x1*y;
- ind2 = x2*(y%y2);
- ind3 = x3*(y%y3);
-
- x=0;
- while(x < (int)x1) {
- color3 = (colorTable3) ? colorTable3[data3b[ind3]] : data3[ind3];
-
- a = (channel == Red) ? tqRed(color3) :
- (channel == Green) ? tqGreen(color3) :
- (channel == Blue) ? tqBlue(color3) : tqGray(color3);
-
- r = (a*tqRed(data1[ind1]) + (256-a)*tqRed(data2[ind2]))/256;
- g = (a*tqGreen(data1[ind1]) + (256-a)*tqGreen(data2[ind2]))/256;
- b = (a*tqBlue(data1[ind1]) + (256-a)*tqBlue(data2[ind2]))/256;
-
- a = tqAlpha(data1[ind1]);
- data1[ind1] = tqRgba(r, g, b, a);
-
- ind1++; ind2++; ind3++; x++;
- if ( (x%x2) ==0) ind2 -= x2;
- if ( (x%x3) ==0) ind3 -= x3;
- }
- }
- return image1;
-}
-
-
-//======================================================================
-//
-// Hash effects
-//
-//======================================================================
-
-unsigned int KImageEffect::lHash(unsigned int c)
-{
- unsigned char r = tqRed(c), g = tqGreen(c), b = tqBlue(c), a = tqAlpha(c);
- unsigned char nr, ng, nb;
- nr =(r >> 1) + (r >> 2); nr = nr > r ? 0 : nr;
- ng =(g >> 1) + (g >> 2); ng = ng > g ? 0 : ng;
- nb =(b >> 1) + (b >> 2); nb = nb > b ? 0 : nb;
-
- return tqRgba(nr, ng, nb, a);
-}
-
-
-// -----------------------------------------------------------------------------
-
-unsigned int KImageEffect::uHash(unsigned int c)
-{
- unsigned char r = tqRed(c), g = tqGreen(c), b = tqBlue(c), a = tqAlpha(c);
- unsigned char nr, ng, nb;
- nr = r + (r >> 3); nr = nr < r ? ~0 : nr;
- ng = g + (g >> 3); ng = ng < g ? ~0 : ng;
- nb = b + (b >> 3); nb = nb < b ? ~0 : nb;
-
- return tqRgba(nr, ng, nb, a);
-}
-
-
-// -----------------------------------------------------------------------------
-
-TQImage& KImageEffect::hash(TQImage &image, Lighting lite, unsigned int spacing)
-{
- if (image.width() == 0 || image.height() == 0) {
-#ifndef NDEBUG
- std::cerr << "KImageEffect::hash effect invalid image" << std::endl;
-#endif
- return image;
- }
-
- register int x, y;
- unsigned int *data = (unsigned int *)image.bits();
- unsigned int ind;
-
- //CT no need to do it if not enough space
- if ((lite == NorthLite ||
- lite == SouthLite)&&
- (unsigned)image.height() < 2+spacing) return image;
- if ((lite == EastLite ||
- lite == WestLite)&&
- (unsigned)image.height() < 2+spacing) return image;
-
- if (lite == NorthLite || lite == SouthLite) {
- for (y = 0 ; y < image.height(); y = y + 2 + spacing) {
- for (x = 0; x < image.width(); x++) {
- ind = x + image.width() * y;
- data[ind] = lite==NorthLite?uHash(data[ind]):lHash(data[ind]);
-
- ind = ind + image.width();
- data[ind] = lite==NorthLite?lHash(data[ind]):uHash(data[ind]);
- }
- }
- }
-
- else if (lite == EastLite || lite == WestLite) {
- for (y = 0 ; y < image.height(); y++) {
- for (x = 0; x < image.width(); x = x + 2 + spacing) {
- ind = x + image.width() * y;
- data[ind] = lite==EastLite?uHash(data[ind]):lHash(data[ind]);
-
- ind++;
- data[ind] = lite==EastLite?lHash(data[ind]):uHash(data[ind]);
- }
- }
- }
-
- else if (lite == NWLite || lite == SELite) {
- for (y = 0 ; y < image.height(); y++) {
- for (x = 0;
- x < (int)(image.width() - ((y & 1)? 1 : 0) * spacing);
- x = x + 2 + spacing) {
- ind = x + image.width() * y + ((y & 1)? 1 : 0);
- data[ind] = lite==NWLite?uHash(data[ind]):lHash(data[ind]);
-
- ind++;
- data[ind] = lite==NWLite?lHash(data[ind]):uHash(data[ind]);
- }
- }
- }
-
- else if (lite == SWLite || lite == NELite) {
- for (y = 0 ; y < image.height(); y++) {
- for (x = 0 + ((y & 1)? 1 : 0); x < image.width(); x = x + 2 + spacing) {
- ind = x + image.width() * y - ((y & 1)? 1 : 0);
- data[ind] = lite==SWLite?uHash(data[ind]):lHash(data[ind]);
-
- ind++;
- data[ind] = lite==SWLite?lHash(data[ind]):uHash(data[ind]);
- }
- }
- }
-
- return image;
-}
-
-
-//======================================================================
-//
-// Flatten effects
-//
-//======================================================================
-
-TQImage& KImageEffect::flatten(TQImage &img, const TQColor &ca,
- const TQColor &cb, int ncols)
-{
- if (img.width() == 0 || img.height() == 0)
- return img;
-
- // a bitmap is easy...
- if (img.depth() == 1) {
- img.setColor(0, ca.rgb());
- img.setColor(1, cb.rgb());
- return img;
- }
-
- int r1 = ca.red(); int r2 = cb.red();
- int g1 = ca.green(); int g2 = cb.green();
- int b1 = ca.blue(); int b2 = cb.blue();
- int min = 0, max = 255;
-
- QRgb col;
-
- // Get minimum and maximum greylevel.
- if (img.numColors()) {
- // pseudocolor
- for (int i = 0; i < img.numColors(); i++) {
- col = img.color(i);
- int mean = (tqRed(col) + tqGreen(col) + tqBlue(col)) / 3;
- min = QMIN(min, mean);
- max = QMAX(max, mean);
- }
- } else {
- // truecolor
- for (int y=0; y < img.height(); y++)
- for (int x=0; x < img.width(); x++) {
- col = img.pixel(x, y);
- int mean = (tqRed(col) + tqGreen(col) + tqBlue(col)) / 3;
- min = QMIN(min, mean);
- max = QMAX(max, mean);
- }
- }
-
- // Conversion factors
- float sr = ((float) r2 - r1) / (max - min);
- float sg = ((float) g2 - g1) / (max - min);
- float sb = ((float) b2 - b1) / (max - min);
-
-
- // Repaint the image
- if (img.numColors()) {
- for (int i=0; i < img.numColors(); i++) {
- col = img.color(i);
- int mean = (tqRed(col) + tqGreen(col) + tqBlue(col)) / 3;
- int r = (int) (sr * (mean - min) + r1 + 0.5);
- int g = (int) (sg * (mean - min) + g1 + 0.5);
- int b = (int) (sb * (mean - min) + b1 + 0.5);
- img.setColor(i, tqRgba(r, g, b, tqAlpha(col)));
- }
- } else {
- for (int y=0; y < img.height(); y++)
- for (int x=0; x < img.width(); x++) {
- col = img.pixel(x, y);
- int mean = (tqRed(col) + tqGreen(col) + tqBlue(col)) / 3;
- int r = (int) (sr * (mean - min) + r1 + 0.5);
- int g = (int) (sg * (mean - min) + g1 + 0.5);
- int b = (int) (sb * (mean - min) + b1 + 0.5);
- img.setPixel(x, y, tqRgba(r, g, b, tqAlpha(col)));
- }
- }
-
-
- // Dither if necessary
- if ( (ncols <= 0) || ((img.numColors() != 0) && (img.numColors() <= ncols)))
- return img;
-
- if (ncols == 1) ncols++;
- if (ncols > 256) ncols = 256;
-
- TQColor *pal = new TQColor[ncols];
- sr = ((float) r2 - r1) / (ncols - 1);
- sg = ((float) g2 - g1) / (ncols - 1);
- sb = ((float) b2 - b1) / (ncols - 1);
-
- for (int i=0; i<ncols; i++)
- pal[i] = TQColor(r1 + int(sr*i), g1 + int(sg*i), b1 + int(sb*i));
-
- dither(img, pal, ncols);
-
- delete[] pal;
- return img;
-}
-
-
-//======================================================================
-//
-// Fade effects
-//
-//======================================================================
-
-TQImage& KImageEffect::fade(TQImage &img, float val, const TQColor &color)
-{
- if (img.width() == 0 || img.height() == 0)
- return img;
-
- // We don't handle bitmaps
- if (img.depth() == 1)
- return img;
-
- unsigned char tbl[256];
- for (int i=0; i<256; i++)
- tbl[i] = (int) (val * i + 0.5);
-
- int red = color.red();
- int green = color.green();
- int blue = color.blue();
-
- QRgb col;
- int r, g, b, cr, cg, cb;
-
- if (img.depth() <= 8) {
- // pseudo color
- for (int i=0; i<img.numColors(); i++) {
- col = img.color(i);
- cr = tqRed(col); cg = tqGreen(col); cb = tqBlue(col);
- if (cr > red)
- r = cr - tbl[cr - red];
- else
- r = cr + tbl[red - cr];
- if (cg > green)
- g = cg - tbl[cg - green];
- else
- g = cg + tbl[green - cg];
- if (cb > blue)
- b = cb - tbl[cb - blue];
- else
- b = cb + tbl[blue - cb];
- img.setColor(i, tqRgba(r, g, b, tqAlpha(col)));
- }
-
- } else {
- // truecolor
- for (int y=0; y<img.height(); y++) {
- QRgb *data = (QRgb *) img.scanLine(y);
- for (int x=0; x<img.width(); x++) {
- col = *data;
- cr = tqRed(col); cg = tqGreen(col); cb = tqBlue(col);
- if (cr > red)
- r = cr - tbl[cr - red];
- else
- r = cr + tbl[red - cr];
- if (cg > green)
- g = cg - tbl[cg - green];
- else
- g = cg + tbl[green - cg];
- if (cb > blue)
- b = cb - tbl[cb - blue];
- else
- b = cb + tbl[blue - cb];
- *data++ = tqRgba(r, g, b, tqAlpha(col));
- }
- }
- }
-
- return img;
-}
-
-//======================================================================
-//
-// Color effects
-//
-//======================================================================
-
-// This code is adapted from code (C) Rik Hemsley <rik@kde.org>
-//
-// The formula used (r + b + g) /3 is different from the tqGray formula
-// used by Qt. This is because our formula is much much faster. If,
-// however, it turns out that this is producing sub-optimal images,
-// then it will have to change (kurt)
-//
-// It does produce lower quality grayscale ;-) Use fast == true for the fast
-// algorithm, false for the higher quality one (mosfet).
-TQImage& KImageEffect::toGray(TQImage &img, bool fast)
-{
- if (img.width() == 0 || img.height() == 0)
- return img;
-
- if(fast){
- if (img.depth() == 32) {
- register uchar * r(img.bits());
- register uchar * g(img.bits() + 1);
- register uchar * b(img.bits() + 2);
-
- uchar * end(img.bits() + img.numBytes());
-
- while (r != end) {
-
- *r = *g = *b = (((*r + *g) >> 1) + *b) >> 1; // (r + b + g) / 3
-
- r += 4;
- g += 4;
- b += 4;
- }
- }
- else
- {
- for (int i = 0; i < img.numColors(); i++)
- {
- register uint r = tqRed(img.color(i));
- register uint g = tqGreen(img.color(i));
- register uint b = tqBlue(img.color(i));
-
- register uint gray = (((r + g) >> 1) + b) >> 1;
- img.setColor(i, tqRgba(gray, gray, gray, tqAlpha(img.color(i))));
- }
- }
- }
- else{
- int pixels = img.depth() > 8 ? img.width()*img.height() :
- img.numColors();
- unsigned int *data = img.depth() > 8 ? (unsigned int *)img.bits() :
- (unsigned int *)img.tqcolorTable();
- int val, i;
- for(i=0; i < pixels; ++i){
- val = tqGray(data[i]);
- data[i] = tqRgba(val, val, val, tqAlpha(data[i]));
- }
- }
- return img;
-}
-
-// CT 29Jan2000 - desaturation algorithms
-TQImage& KImageEffect::desaturate(TQImage &img, float desat)
-{
- if (img.width() == 0 || img.height() == 0)
- return img;
-
- if (desat < 0) desat = 0.;
- if (desat > 1) desat = 1.;
- int pixels = img.depth() > 8 ? img.width()*img.height() :
- img.numColors();
- unsigned int *data = img.depth() > 8 ? (unsigned int *)img.bits() :
- (unsigned int *)img.tqcolorTable();
- int h, s, v, i;
- TQColor clr; // keep constructor out of loop (mosfet)
- for(i=0; i < pixels; ++i){
- clr.setRgb(data[i]);
- clr.hsv(&h, &s, &v);
- clr.setHsv(h, (int)(s * (1. - desat)), v);
- data[i] = clr.rgb();
- }
- return img;
-}
-
-// Contrast stuff (mosfet)
-TQImage& KImageEffect::contrast(TQImage &img, int c)
-{
- if (img.width() == 0 || img.height() == 0)
- return img;
-
- if(c > 255)
- c = 255;
- if(c < -255)
- c = -255;
- int pixels = img.depth() > 8 ? img.width()*img.height() :
- img.numColors();
- unsigned int *data = img.depth() > 8 ? (unsigned int *)img.bits() :
- (unsigned int *)img.tqcolorTable();
- int i, r, g, b;
- for(i=0; i < pixels; ++i){
- r = tqRed(data[i]);
- g = tqGreen(data[i]);
- b = tqBlue(data[i]);
- if(tqGray(data[i]) <= 127){
- if(r - c > 0)
- r -= c;
- else
- r = 0;
- if(g - c > 0)
- g -= c;
- else
- g = 0;
- if(b - c > 0)
- b -= c;
- else
- b = 0;
- }
- else{
- if(r + c <= 255)
- r += c;
- else
- r = 255;
- if(g + c <= 255)
- g += c;
- else
- g = 255;
- if(b + c <= 255)
- b += c;
- else
- b = 255;
- }
- data[i] = tqRgba(r, g, b, tqAlpha(data[i]));
- }
- return(img);
-}
-
-//======================================================================
-//
-// Dithering effects
-//
-//======================================================================
-
-// adapted from kFSDither (C) 1997 Martin Jones (mjones@kde.org)
-//
-// Floyd-Steinberg dithering
-// Ref: Bitmapped Graphics Programming in C++
-// Marv Luse, Addison-Wesley Publishing, 1993.
-TQImage& KImageEffect::dither(TQImage &img, const TQColor *palette, int size)
-{
- if (img.width() == 0 || img.height() == 0 ||
- palette == 0 || img.depth() <= 8)
- return img;
-
- TQImage dImage( img.width(), img.height(), 8, size );
- int i;
-
- dImage.setNumColors( size );
- for ( i = 0; i < size; i++ )
- dImage.setColor( i, palette[ i ].rgb() );
-
- int *rerr1 = new int [ img.width() * 2 ];
- int *gerr1 = new int [ img.width() * 2 ];
- int *berr1 = new int [ img.width() * 2 ];
-
- memset( rerr1, 0, sizeof( int ) * img.width() * 2 );
- memset( gerr1, 0, sizeof( int ) * img.width() * 2 );
- memset( berr1, 0, sizeof( int ) * img.width() * 2 );
-
- int *rerr2 = rerr1 + img.width();
- int *gerr2 = gerr1 + img.width();
- int *berr2 = berr1 + img.width();
-
- for ( int j = 0; j < img.height(); j++ )
- {
- uint *ip = (uint * )img.scanLine( j );
- uchar *dp = dImage.scanLine( j );
-
- for ( i = 0; i < img.width(); i++ )
- {
- rerr1[i] = rerr2[i] + tqRed( *ip );
- rerr2[i] = 0;
- gerr1[i] = gerr2[i] + tqGreen( *ip );
- gerr2[i] = 0;
- berr1[i] = berr2[i] + tqBlue( *ip );
- berr2[i] = 0;
- ip++;
- }
-
- *dp++ = nearestColor( rerr1[0], gerr1[0], berr1[0], palette, size );
-
- for ( i = 1; i < img.width()-1; i++ )
- {
- int indx = nearestColor( rerr1[i], gerr1[i], berr1[i], palette, size );
- *dp = indx;
-
- int rerr = rerr1[i];
- rerr -= palette[indx].red();
- int gerr = gerr1[i];
- gerr -= palette[indx].green();
- int berr = berr1[i];
- berr -= palette[indx].blue();
-
- // diffuse red error
- rerr1[ i+1 ] += ( rerr * 7 ) >> 4;
- rerr2[ i-1 ] += ( rerr * 3 ) >> 4;
- rerr2[ i ] += ( rerr * 5 ) >> 4;
- rerr2[ i+1 ] += ( rerr ) >> 4;
-
- // diffuse green error
- gerr1[ i+1 ] += ( gerr * 7 ) >> 4;
- gerr2[ i-1 ] += ( gerr * 3 ) >> 4;
- gerr2[ i ] += ( gerr * 5 ) >> 4;
- gerr2[ i+1 ] += ( gerr ) >> 4;
-
- // diffuse red error
- berr1[ i+1 ] += ( berr * 7 ) >> 4;
- berr2[ i-1 ] += ( berr * 3 ) >> 4;
- berr2[ i ] += ( berr * 5 ) >> 4;
- berr2[ i+1 ] += ( berr ) >> 4;
-
- dp++;
- }
-
- *dp = nearestColor( rerr1[i], gerr1[i], berr1[i], palette, size );
- }
-
- delete [] rerr1;
- delete [] gerr1;
- delete [] berr1;
-
- img = dImage;
- return img;
-}
-
-int KImageEffect::nearestColor( int r, int g, int b, const TQColor *palette, int size )
-{
- if (palette == 0)
- return 0;
-
- int dr = palette[0].red() - r;
- int dg = palette[0].green() - g;
- int db = palette[0].blue() - b;
-
- int minDist = dr*dr + dg*dg + db*db;
- int nearest = 0;
-
- for (int i = 1; i < size; i++ )
- {
- dr = palette[i].red() - r;
- dg = palette[i].green() - g;
- db = palette[i].blue() - b;
-
- int dist = dr*dr + dg*dg + db*db;
-
- if ( dist < minDist )
- {
- minDist = dist;
- nearest = i;
- }
- }
-
- return nearest;
-}
-
-bool KImageEffect::blend(
- const TQImage & upper,
- const TQImage & lower,
- TQImage & output
-)
-{
- if (
- upper.width() > lower.width() ||
- upper.height() > lower.height() ||
- upper.depth() != 32 ||
- lower.depth() != 32
- )
- {
-#ifndef NDEBUG
- std::cerr << "KImageEffect::blend : Sizes not correct\n" ;
-#endif
- return false;
- }
-
- output = lower.copy();
-
- register uchar *i, *o;
- register int a;
- register int col;
- register int w = upper.width();
- int row(upper.height() - 1);
-
- do {
-
- i = const_cast<TQImage&>(upper).scanLine(row);
- o = const_cast<TQImage&>(output).scanLine(row);
-
- col = w << 2;
- --col;
-
- do {
-
- while (!(a = i[col]) && (col != 3)) {
- --col; --col; --col; --col;
- }
-
- --col;
- o[col] += ((i[col] - o[col]) * a) >> 8;
-
- --col;
- o[col] += ((i[col] - o[col]) * a) >> 8;
-
- --col;
- o[col] += ((i[col] - o[col]) * a) >> 8;
-
- } while (col--);
-
- } while (row--);
-
- return true;
-}
-
-#if 0
-// Not yet...
-bool KImageEffect::blend(
- const TQImage & upper,
- const TQImage & lower,
- TQImage & output,
- const TQRect & destRect
-)
-{
- output = lower.copy();
- return output;
-}
-
-#endif
-
-bool KImageEffect::blend(
- int &x, int &y,
- const TQImage & upper,
- const TQImage & lower,
- TQImage & output
-)
-{
- int cx=0, cy=0, cw=upper.width(), ch=upper.height();
-
- if ( upper.width() + x > lower.width() ||
- upper.height() + y > lower.height() ||
- x < 0 || y < 0 ||
- upper.depth() != 32 || lower.depth() != 32 )
- {
- if ( x > lower.width() || y > lower.height() ) return false;
- if ( upper.width()<=0 || upper.height() <= 0 ) return false;
- if ( lower.width()<=0 || lower.height() <= 0 ) return false;
-
- if (x<0) {cx=-x; cw+=x; x=0; };
- if (cw + x > lower.width()) { cw=lower.width()-x; };
- if (y<0) {cy=-y; ch+=y; y=0; };
- if (ch + y > lower.height()) { ch=lower.height()-y; };
-
- if ( cx >= upper.width() || cy >= upper.height() ) return true;
- if ( cw <= 0 || ch <= 0 ) return true;
- }
-
- output.create(cw,ch,32);
-// output.setAlphaBuffer(true); // I should do some benchmarks to see if
- // this is worth the effort
-
- register QRgb *i, *o, *b;
-
- register int a;
- register int j,k;
- for (j=0; j<ch; j++)
- {
- b=reinterpret_cast<QRgb *>(&const_cast<TQImage&>(lower).scanLine(y+j) [ (x+cw) << 2 ]);
- i=reinterpret_cast<QRgb *>(&const_cast<TQImage&>(upper).scanLine(cy+j)[ (cx+cw) << 2 ]);
- o=reinterpret_cast<QRgb *>(&const_cast<TQImage&>(output).scanLine(j) [ cw << 2 ]);
-
- k=cw-1;
- --b; --i; --o;
- do
- {
- while ( !(a=tqAlpha(*i)) && k>0 )
- {
- i--;
-// *o=0;
- *o=*b;
- --o; --b;
- k--;
- };
-// *o=0xFF;
- *o = tqRgb(tqRed(*b) + (((tqRed(*i) - tqRed(*b)) * a) >> 8),
- tqGreen(*b) + (((tqGreen(*i) - tqGreen(*b)) * a) >> 8),
- tqBlue(*b) + (((tqBlue(*i) - tqBlue(*b)) * a) >> 8));
- --i; --o; --b;
- } while (k--);
- }
-
- return true;
-}
-
-bool KImageEffect::blendOnLower(
- int x, int y,
- const TQImage & upper,
- const TQImage & lower
-)
-{
- int cx=0, cy=0, cw=upper.width(), ch=upper.height();
-
- if ( upper.depth() != 32 || lower.depth() != 32 ) return false;
- if ( x + cw > lower.width() ||
- y + ch > lower.height() ||
- x < 0 || y < 0 )
- {
- if ( x > lower.width() || y > lower.height() ) return true;
- if ( upper.width()<=0 || upper.height() <= 0 ) return true;
- if ( lower.width()<=0 || lower.height() <= 0 ) return true;
-
- if (x<0) {cx=-x; cw+=x; x=0; };
- if (cw + x > lower.width()) { cw=lower.width()-x; };
- if (y<0) {cy=-y; ch+=y; y=0; };
- if (ch + y > lower.height()) { ch=lower.height()-y; };
-
- if ( cx >= upper.width() || cy >= upper.height() ) return true;
- if ( cw <= 0 || ch <= 0 ) return true;
- }
-
- register uchar *i, *b;
- register int a;
- register int k;
-
- for (int j=0; j<ch; j++)
- {
- b=&const_cast<TQImage&>(lower).scanLine(y+j) [ (x+cw) << 2 ];
- i=&const_cast<TQImage&>(upper).scanLine(cy+j)[ (cx+cw) << 2 ];
-
- k=cw-1;
- --b; --i;
- do
- {
-#ifndef WORDS_BIGENDIAN
- while ( !(a=*i) && k>0 )
-#else
- while ( !(a=*(i-3)) && k>0 )
-#endif
- {
- i-=4; b-=4; k--;
- };
-
-#ifndef WORDS_BIGENDIAN
- --i; --b;
- *b += ( ((*i - *b) * a) >> 8 );
- --i; --b;
- *b += ( ((*i - *b) * a) >> 8 );
- --i; --b;
- *b += ( ((*i - *b) * a) >> 8 );
- --i; --b;
-#else
- *b += ( ((*i - *b) * a) >> 8 );
- --i; --b;
- *b += ( ((*i - *b) * a) >> 8 );
- --i; --b;
- *b += ( ((*i - *b) * a) >> 8 );
- i -= 2; b -= 2;
-#endif
- } while (k--);
- }
-
- return true;
-}
-
-void KImageEffect::blendOnLower(const TQImage &upper, const TQPoint &upperOffset,
- TQImage &lower, const TQRect &lowerRect)
-{
- // clip rect
- TQRect lr = lowerRect & lower.rect();
- lr.setWidth( QMIN(lr.width(), upper.width()-upperOffset.x()) );
- lr.setHeight( QMIN(lr.height(), upper.height()-upperOffset.y()) );
- if ( !lr.isValid() ) return;
-
- // blend
- for (int y = 0; y < lr.height(); y++) {
- for (int x = 0; x < lr.width(); x++) {
- QRgb *b = reinterpret_cast<QRgb*>(const_cast<TQImage&>(lower).scanLine(lr.y() + y)+ (lr.x() + x) * sizeof(QRgb));
- QRgb *d = reinterpret_cast<QRgb*>(const_cast<TQImage&>(upper).scanLine(upperOffset.y() + y) + (upperOffset.x() + x) * sizeof(QRgb));
- int a = tqAlpha(*d);
- *b = tqRgb(tqRed(*b) - (((tqRed(*b) - tqRed(*d)) * a) >> 8),
- tqGreen(*b) - (((tqGreen(*b) - tqGreen(*d)) * a) >> 8),
- tqBlue(*b) - (((tqBlue(*b) - tqBlue(*d)) * a) >> 8));
- }
- }
-}
-
-void KImageEffect::blendOnLower(const TQImage &upper, const TQPoint &upperOffset,
- TQImage &lower, const TQRect &lowerRect, float opacity)
-{
- // clip rect
- TQRect lr = lowerRect & lower.rect();
- lr.setWidth( QMIN(lr.width(), upper.width()-upperOffset.x()) );
- lr.setHeight( QMIN(lr.height(), upper.height()-upperOffset.y()) );
- if ( !lr.isValid() ) return;
-
- // blend
- for (int y = 0; y < lr.height(); y++) {
- for (int x = 0; x < lr.width(); x++) {
- QRgb *b = reinterpret_cast<QRgb*>(const_cast<TQImage&>(lower).scanLine(lr.y() + y)+ (lr.x() + x) * sizeof(QRgb));
- QRgb *d = reinterpret_cast<QRgb*>(const_cast<TQImage&>(upper).scanLine(upperOffset.y() + y) + (upperOffset.x() + x) * sizeof(QRgb));
- int a = tqRound(opacity * tqAlpha(*d));
- *b = tqRgb(tqRed(*b) - (((tqRed(*b) - tqRed(*d)) * a) >> 8),
- tqGreen(*b) - (((tqGreen(*b) - tqGreen(*d)) * a) >> 8),
- tqBlue(*b) - (((tqBlue(*b) - tqBlue(*d)) * a) >> 8));
- }
- }
-}
-
-TQRect KImageEffect::computeDestinationRect(const TQSize &lowerSize,
- Disposition disposition, TQImage &upper)
-{
- int w = lowerSize.width();
- int h = lowerSize.height();
- int ww = upper.width();
- int wh = upper.height();
- TQRect d;
-
- switch (disposition) {
- case NoImage:
- break;
- case Centered:
- d.setRect((w - ww) / 2, (h - wh) / 2, ww, wh);
- break;
- case Tiled:
- d.setRect(0, 0, w, h);
- break;
- case CenterTiled:
- d.setCoords(-ww + ((w - ww) / 2) % ww, -wh + ((h - wh) / 2) % wh,
- w-1, h-1);
- break;
- case Scaled:
- upper = upper.smoothScale(w, h);
- d.setRect(0, 0, w, h);
- break;
- case CenteredAutoFit:
- if( ww <= w && wh <= h ) {
- d.setRect((w - ww) / 2, (h - wh) / 2, ww, wh); // like Centered
- break;
- }
- // fall through
- case CenteredMaxpect: {
- double sx = (double) w / ww;
- double sy = (double) h / wh;
- if (sx > sy) {
- ww = (int)(sy * ww);
- wh = h;
- } else {
- wh = (int)(sx * wh);
- ww = w;
- }
- upper = upper.smoothScale(ww, wh);
- d.setRect((w - ww) / 2, (h - wh) / 2, ww, wh);
- break;
- }
- case TiledMaxpect: {
- double sx = (double) w / ww;
- double sy = (double) h / wh;
- if (sx > sy) {
- ww = (int)(sy * ww);
- wh = h;
- } else {
- wh = (int)(sx * wh);
- ww = w;
- }
- upper = upper.smoothScale(ww, wh);
- d.setRect(0, 0, w, h);
- break;
- }
- }
-
- return d;
-}
-
-void KImageEffect::blendOnLower(TQImage &upper, TQImage &lower,
- Disposition disposition, float opacity)
-{
- TQRect r = computeDestinationRect(lower.size(), disposition, upper);
- for (int y = r.top(); y<r.bottom(); y += upper.height())
- for (int x = r.left(); x<r.right(); x += upper.width())
- blendOnLower(upper, TQPoint(-QMIN(x, 0), -QMIN(y, 0)),
- lower, TQRect(x, y, upper.width(), upper.height()), opacity);
-}
-
-
-// For selected icons
-TQImage& KImageEffect::selectedImage( TQImage &img, const TQColor &col )
-{
- return blend( col, img, 0.5);
-}
-
-//
-// ===================================================================
-// Effects originally ported from ImageMagick for PixiePlus, plus a few
-// new ones. (mosfet 05/26/2003)
-// ===================================================================
-//
-/*
- Portions of this software are based on ImageMagick. Such portions are clearly
-marked as being ported from ImageMagick. ImageMagick is copyrighted under the
-following conditions:
-
-Copyright (C) 2003 ImageMagick Studio, a non-profit organization dedicated to
-making software imaging solutions freely available.
-
-Permission is hereby granted, free of charge, to any person obtaining a copy
-of this software and associated documentation files ("ImageMagick"), to deal
-in ImageMagick without restriction, including without limitation the rights
-to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
-copies of ImageMagick, and to permit persons to whom the ImageMagick is
-furnished to do so, subject to the following conditions:
-
-The above copyright notice and this permission notice shall be included in all
-copies or substantial portions of ImageMagick.
-
-The software is provided "as is", without warranty of any kind, express or
-implied, including but not limited to the warranties of merchantability,
-fitness for a particular purpose and noninfringement. In no event shall
-ImageMagick Studio be liable for any claim, damages or other liability,
-whether in an action of contract, tort or otherwise, arising from, out of or
-in connection with ImageMagick or the use or other dealings in ImageMagick.
-
-Except as contained in this notice, the name of the ImageMagick Studio shall
-not be used in advertising or otherwise to promote the sale, use or other
-dealings in ImageMagick without prior written authorization from the
-ImageMagick Studio.
-*/
-
-TQImage KImageEffect::sample(TQImage &src, int w, int h)
-{
- if(w == src.width() && h == src.height())
- return(src);
-
- int depth = src.depth();
- TQImage dest(w, h, depth, depth <= 8 ? src.numColors() : 0,
- depth == 1 ? TQImage::LittleEndian : TQImage::IgnoreEndian);
- int *x_offset = (int *)malloc(w*sizeof(int));
- int *y_offset = (int *)malloc(h*sizeof(int));
- if(!x_offset || !y_offset){
-#ifndef NDEBUG
- qWarning("KImageEffect::sample(): Unable to allocate pixel buffer");
-#endif
- free(x_offset);
- free(y_offset);
- return(src);
- }
-
- // init pixel offsets
- for(int x=0; x < w; ++x)
- x_offset[x] = (int)(x*src.width()/((double)w));
- for(int y=0; y < h; ++y)
- y_offset[y] = (int)(y*src.height()/((double)h));
-
- if(depth > 8){ // DirectClass source image
- for(int y=0; y < h; ++y){
- unsigned int *destData = (unsigned int *)dest.scanLine(y);
- unsigned int *srcData = (unsigned int *)src.scanLine(y_offset[y]);
- for(int x=0; x < w; ++x)
- destData[x] = srcData[x_offset[x]];
- }
- }
- else if(depth == 1) {
- int r = src.bitOrder() == TQImage::LittleEndian;
- memcpy(dest.tqcolorTable(), src.tqcolorTable(), src.numColors()*sizeof(QRgb));
- for(int y=0; y < h; ++y){
- unsigned char *destData = dest.scanLine(y);
- unsigned char *srcData = src.scanLine(y_offset[y]);
- for(int x=0; x < w; ++x){
- int k = x_offset[x];
- int l = r ? (k & 7) : (7 - (k&7));
- if(srcData[k >> 3] & (1 << l))
- destData[x >> 3] |= 1 << (x & 7);
- else
- destData[x >> 3] &= ~(1 << (x & 7));
- }
- }
- }
- else{ // PseudoClass source image
- memcpy(dest.tqcolorTable(), src.tqcolorTable(), src.numColors()*sizeof(QRgb));
- for(int y=0; y < h; ++y){
- unsigned char *destData = dest.scanLine(y);
- unsigned char *srcData = src.scanLine(y_offset[y]);
- for(int x=0; x < w; ++x)
- destData[x] = srcData[x_offset[x]];
- }
- }
- free(x_offset);
- free(y_offset);
- return(dest);
-}
-
-void KImageEffect::threshold(TQImage &img, unsigned int threshold)
-{
- int i, count;
- unsigned int *data;
- if(img.depth() > 8){ // DirectClass
- count = img.width()*img.height();
- data = (unsigned int *)img.bits();
- }
- else{ // PsudeoClass
- count = img.numColors();
- data = (unsigned int *)img.tqcolorTable();
- }
- for(i=0; i < count; ++i)
- data[i] = intensityValue(data[i]) < threshold ? QColor(Qt::black).rgb() : QColor(Qt::white).rgb();
-}
-
-void KImageEffect::hull(const int x_offset, const int y_offset,
- const int polarity, const int columns,
- const int rows,
- unsigned int *f, unsigned int *g)
-{
- int x, y;
-
- unsigned int *p, *q, *r, *s;
- unsigned int v;
- if(f == NULL || g == NULL)
- return;
- p=f+(columns+2);
- q=g+(columns+2);
- r=p+(y_offset*(columns+2)+x_offset);
- for (y=0; y < rows; y++){
- p++;
- q++;
- r++;
- if(polarity > 0)
- for (x=0; x < columns; x++){
- v=(*p);
- if (*r > v)
- v++;
- *q=v;
- p++;
- q++;
- r++;
- }
- else
- for(x=0; x < columns; x++){
- v=(*p);
- if (v > (unsigned int) (*r+1))
- v--;
- *q=v;
- p++;
- q++;
- r++;
- }
- p++;
- q++;
- r++;
- }
- p=f+(columns+2);
- q=g+(columns+2);
- r=q+(y_offset*(columns+2)+x_offset);
- s=q-(y_offset*(columns+2)+x_offset);
- for(y=0; y < rows; y++){
- p++;
- q++;
- r++;
- s++;
- if(polarity > 0)
- for(x=0; x < (int) columns; x++){
- v=(*q);
- if (((unsigned int) (*s+1) > v) && (*r > v))
- v++;
- *p=v;
- p++;
- q++;
- r++;
- s++;
- }
- else
- for (x=0; x < columns; x++){
- v=(*q);
- if (((unsigned int) (*s+1) < v) && (*r < v))
- v--;
- *p=v;
- p++;
- q++;
- r++;
- s++;
- }
- p++;
- q++;
- r++;
- s++;
- }
-}
-
-TQImage KImageEffect::despeckle(TQImage &src)
-{
- int i, j, x, y;
- unsigned int *blue_channel, *red_channel, *green_channel, *buffer,
- *alpha_channel;
- int packets;
- static const int
- X[4]= {0, 1, 1,-1},
- Y[4]= {1, 0, 1, 1};
-
- unsigned int *destData;
- TQImage dest(src.width(), src.height(), 32);
-
- packets = (src.width()+2)*(src.height()+2);
- red_channel = (unsigned int *)calloc(packets, sizeof(unsigned int));
- green_channel = (unsigned int *)calloc(packets, sizeof(unsigned int));
- blue_channel = (unsigned int *)calloc(packets, sizeof(unsigned int));
- alpha_channel = (unsigned int *)calloc(packets, sizeof(unsigned int));
- buffer = (unsigned int *)calloc(packets, sizeof(unsigned int));
- if(!red_channel || ! green_channel || ! blue_channel || ! alpha_channel ||
- !buffer){
- free(red_channel);
- free(green_channel);
- free(blue_channel);
- free(alpha_channel);
- free(buffer);
- return(src);
- }
-
- // copy image pixels to color component buffers
- j = src.width()+2;
- if(src.depth() > 8){ // DirectClass source image
- unsigned int *srcData;
- for(y=0; y < src.height(); ++y){
- srcData = (unsigned int *)src.scanLine(y);
- ++j;
- for(x=0; x < src.width(); ++x){
- red_channel[j] = tqRed(srcData[x]);
- green_channel[j] = tqGreen(srcData[x]);
- blue_channel[j] = tqBlue(srcData[x]);
- alpha_channel[j] = tqAlpha(srcData[x]);
- ++j;
- }
- ++j;
- }
- }
- else{ // PsudeoClass source image
- unsigned char *srcData;
- unsigned int *cTable = src.tqcolorTable();
- unsigned int pixel;
- for(y=0; y < src.height(); ++y){
- srcData = (unsigned char *)src.scanLine(y);
- ++j;
- for(x=0; x < src.width(); ++x){
- pixel = *(cTable+srcData[x]);
- red_channel[j] = tqRed(pixel);
- green_channel[j] = tqGreen(pixel);
- blue_channel[j] = tqBlue(pixel);
- alpha_channel[j] = tqAlpha(pixel);
- ++j;
- }
- ++j;
- }
- }
- // reduce speckle in red channel
- for(i=0; i < 4; i++){
- hull(X[i],Y[i],1,src.width(),src.height(),red_channel,buffer);
- hull(-X[i],-Y[i],1,src.width(),src.height(),red_channel,buffer);
- hull(-X[i],-Y[i],-1,src.width(),src.height(),red_channel,buffer);
- hull(X[i],Y[i],-1,src.width(),src.height(),red_channel,buffer);
- }
- // reduce speckle in green channel
- for (i=0; i < packets; i++)
- buffer[i]=0;
- for (i=0; i < 4; i++){
- hull(X[i],Y[i],1,src.width(),src.height(),green_channel,buffer);
- hull(-X[i],-Y[i],1,src.width(),src.height(),green_channel,buffer);
- hull(-X[i],-Y[i],-1,src.width(),src.height(),green_channel,buffer);
- hull(X[i],Y[i],-1,src.width(),src.height(),green_channel,buffer);
- }
- // reduce speckle in blue channel
- for (i=0; i < packets; i++)
- buffer[i]=0;
- for (i=0; i < 4; i++){
- hull(X[i],Y[i],1,src.width(),src.height(),blue_channel,buffer);
- hull(-X[i],-Y[i],1,src.width(),src.height(),blue_channel,buffer);
- hull(-X[i],-Y[i],-1,src.width(),src.height(),blue_channel,buffer);
- hull(X[i],Y[i],-1,src.width(),src.height(),blue_channel,buffer);
- }
- // copy color component buffers to despeckled image
- j = dest.width()+2;
- for(y=0; y < dest.height(); ++y)
- {
- destData = (unsigned int *)dest.scanLine(y);
- ++j;
- for (x=0; x < dest.width(); ++x)
- {
- destData[x] = tqRgba(red_channel[j], green_channel[j],
- blue_channel[j], alpha_channel[j]);
- ++j;
- }
- ++j;
- }
- free(buffer);
- free(red_channel);
- free(green_channel);
- free(blue_channel);
- free(alpha_channel);
- return(dest);
-}
-
-unsigned int KImageEffect::generateNoise(unsigned int pixel,
- NoiseType noise_type)
-{
-#define NoiseEpsilon 1.0e-5
-#define NoiseMask 0x7fff
-#define SigmaUniform 4.0
-#define SigmaGaussian 4.0
-#define SigmaImpulse 0.10
-#define SigmaLaplacian 10.0
-#define SigmaMultiplicativeGaussian 0.5
-#define SigmaPoisson 0.05
-#define TauGaussian 20.0
-
- double alpha, beta, sigma, value;
- alpha=(double) (rand() & NoiseMask)/NoiseMask;
- if (alpha == 0.0)
- alpha=1.0;
- switch(noise_type){
- case UniformNoise:
- default:
- {
- value=(double) pixel+SigmaUniform*(alpha-0.5);
- break;
- }
- case GaussianNoise:
- {
- double tau;
-
- beta=(double) (rand() & NoiseMask)/NoiseMask;
- sigma=sqrt(-2.0*log(alpha))*cos(2.0*M_PI*beta);
- tau=sqrt(-2.0*log(alpha))*sin(2.0*M_PI*beta);
- value=(double) pixel+
- (sqrt((double) pixel)*SigmaGaussian*sigma)+(TauGaussian*tau);
- break;
- }
- case MultiplicativeGaussianNoise:
- {
- if (alpha <= NoiseEpsilon)
- sigma=MaxRGB;
- else
- sigma=sqrt(-2.0*log(alpha));
- beta=(rand() & NoiseMask)/NoiseMask;
- value=(double) pixel+
- pixel*SigmaMultiplicativeGaussian*sigma*cos(2.0*M_PI*beta);
- break;
- }
- case ImpulseNoise:
- {
- if (alpha < (SigmaImpulse/2.0))
- value=0;
- else
- if (alpha >= (1.0-(SigmaImpulse/2.0)))
- value=MaxRGB;
- else
- value=pixel;
- break;
- }
- case LaplacianNoise:
- {
- if (alpha <= 0.5)
- {
- if (alpha <= NoiseEpsilon)
- value=(double) pixel-MaxRGB;
- else
- value=(double) pixel+SigmaLaplacian*log(2.0*alpha);
- break;
- }
- beta=1.0-alpha;
- if (beta <= (0.5*NoiseEpsilon))
- value=(double) pixel+MaxRGB;
- else
- value=(double) pixel-SigmaLaplacian*log(2.0*beta);
- break;
- }
- case PoissonNoise:
- {
- register int
- i;
-
- for (i=0; alpha > exp(-SigmaPoisson*pixel); i++)
- {
- beta=(double) (rand() & NoiseMask)/NoiseMask;
- alpha=alpha*beta;
- }
- value=i/SigmaPoisson;
- break;
- }
- }
- if(value < 0.0)
- return(0);
- if(value > MaxRGB)
- return(MaxRGB);
- return((unsigned int) (value+0.5));
-}
-
-TQImage KImageEffect::addNoise(TQImage &src, NoiseType noise_type)
-{
- int x, y;
- TQImage dest(src.width(), src.height(), 32);
- unsigned int *destData;
-
- if(src.depth() > 8){ // DirectClass source image
- unsigned int *srcData;
- for(y=0; y < src.height(); ++y){
- srcData = (unsigned int *)src.scanLine(y);
- destData = (unsigned int *)dest.scanLine(y);
- for(x=0; x < src.width(); ++x){
- destData[x] = tqRgba(generateNoise(tqRed(srcData[x]), noise_type),
- generateNoise(tqGreen(srcData[x]), noise_type),
- generateNoise(tqBlue(srcData[x]), noise_type),
- tqAlpha(srcData[x]));
- }
- }
- }
- else{ // PsudeoClass source image
- unsigned char *srcData;
- unsigned int *cTable = src.tqcolorTable();
- unsigned int pixel;
- for(y=0; y < src.height(); ++y){
- srcData = (unsigned char *)src.scanLine(y);
- destData = (unsigned int *)dest.scanLine(y);
- for(x=0; x < src.width(); ++x){
- pixel = *(cTable+srcData[x]);
- destData[x] = tqRgba(generateNoise(tqRed(pixel), noise_type),
- generateNoise(tqGreen(pixel), noise_type),
- generateNoise(tqBlue(pixel), noise_type),
- tqAlpha(pixel));
- }
- }
-
- }
- return(dest);
-}
-
-unsigned int KImageEffect::interpolateColor(TQImage *image, double x_offset,
- double y_offset,
- unsigned int background)
-{
- double alpha, beta;
- unsigned int p, q, r, s;
- int x, y;
-
- x = (int)x_offset;
- y = (int)y_offset;
- if((x < -1) || (x >= image->width()) || (y < -1) || (y >= image->height()))
- return(background);
- if(image->depth() > 8){
- if((x >= 0) && (y >= 0) && (x < (image->width()-1)) && (y < (image->height()-1))) {
- unsigned int *t = (unsigned int *)image->scanLine(y);
- p = t[x];
- q = t[x+1];
- r = t[x+image->width()];
- s = t[x+image->width()+1];
- }
- else{
- unsigned int *t = (unsigned int *)image->scanLine(y);
- p = background;
- if((x >= 0) && (y >= 0)){
- p = t[x];
- }
- q = background;
- if(((x+1) < image->width()) && (y >= 0)){
- q = t[x+1];
- }
- r = background;
- if((x >= 0) && ((y+1) < image->height())){
- t = (unsigned int *)image->scanLine(y+1);
- r = t[x+image->width()];
- }
- s = background;
- if(((x+1) < image->width()) && ((y+1) < image->height())){
- t = (unsigned int *)image->scanLine(y+1);
- s = t[x+image->width()+1];
- }
-
- }
- }
- else{
- unsigned int *colorTable = (unsigned int *)image->tqcolorTable();
- if((x >= 0) && (y >= 0) && (x < (image->width()-1)) && (y < (image->height()-1))) {
- unsigned char *t;
- t = (unsigned char *)image->scanLine(y);
- p = *(colorTable+t[x]);
- q = *(colorTable+t[x+1]);
- t = (unsigned char *)image->scanLine(y+1);
- r = *(colorTable+t[x]);
- s = *(colorTable+t[x+1]);
- }
- else{
- unsigned char *t;
- p = background;
- if((x >= 0) && (y >= 0)){
- t = (unsigned char *)image->scanLine(y);
- p = *(colorTable+t[x]);
- }
- q = background;
- if(((x+1) < image->width()) && (y >= 0)){
- t = (unsigned char *)image->scanLine(y);
- q = *(colorTable+t[x+1]);
- }
- r = background;
- if((x >= 0) && ((y+1) < image->height())){
- t = (unsigned char *)image->scanLine(y+1);
- r = *(colorTable+t[x]);
- }
- s = background;
- if(((x+1) < image->width()) && ((y+1) < image->height())){
- t = (unsigned char *)image->scanLine(y+1);
- s = *(colorTable+t[x+1]);
- }
-
- }
-
- }
- x_offset -= floor(x_offset);
- y_offset -= floor(y_offset);
- alpha = 1.0-x_offset;
- beta = 1.0-y_offset;
-
- return(tqRgba((unsigned char)(beta*(alpha*tqRed(p)+x_offset*tqRed(q))+y_offset*(alpha*tqRed(r)+x_offset*tqRed(s))),
- (unsigned char)(beta*(alpha*tqGreen(p)+x_offset*tqGreen(q))+y_offset*(alpha*tqGreen(r)+x_offset*tqGreen(s))),
- (unsigned char)(beta*(alpha*tqBlue(p)+x_offset*tqBlue(q))+y_offset*(alpha*tqBlue(r)+x_offset*tqBlue(s))),
- (unsigned char)(beta*(alpha*tqAlpha(p)+x_offset*tqAlpha(q))+y_offset*(alpha*tqAlpha(r)+x_offset*tqAlpha(s)))));
-}
-
-TQImage KImageEffect::implode(TQImage &src, double factor,
- unsigned int background)
-{
- double amount, distance, radius;
- double x_center, x_distance, x_scale;
- double y_center, y_distance, y_scale;
- unsigned int *destData;
- int x, y;
-
- TQImage dest(src.width(), src.height(), 32);
-
- // compute scaling factor
- x_scale = 1.0;
- y_scale = 1.0;
- x_center = (double)0.5*src.width();
- y_center = (double)0.5*src.height();
- radius=x_center;
- if(src.width() > src.height())
- y_scale = (double)src.width()/src.height();
- else if(src.width() < src.height()){
- x_scale = (double) src.height()/src.width();
- radius = y_center;
- }
- amount=factor/10.0;
- if(amount >= 0)
- amount/=10.0;
- if(src.depth() > 8){ // DirectClass source image
- unsigned int *srcData;
- for(y=0; y < src.height(); ++y){
- srcData = (unsigned int *)src.scanLine(y);
- destData = (unsigned int *)dest.scanLine(y);
- y_distance=y_scale*(y-y_center);
- for(x=0; x < src.width(); ++x){
- destData[x] = srcData[x];
- x_distance = x_scale*(x-x_center);
- distance= x_distance*x_distance+y_distance*y_distance;
- if(distance < (radius*radius)){
- double factor;
- // Implode the pixel.
- factor=1.0;
- if(distance > 0.0)
- factor=
- pow(sin(0.5000000000000001*M_PI*sqrt(distance)/radius),-amount);
- destData[x] = interpolateColor(&src, factor*x_distance/x_scale+x_center,
- factor*y_distance/y_scale+y_center,
- background);
- }
- }
- }
- }
- else{ // PsudeoClass source image
- unsigned char *srcData;
- unsigned char idx;
- unsigned int *cTable = src.tqcolorTable();
- for(y=0; y < src.height(); ++y){
- srcData = (unsigned char *)src.scanLine(y);
- destData = (unsigned int *)dest.scanLine(y);
- y_distance=y_scale*(y-y_center);
- for(x=0; x < src.width(); ++x){
- idx = srcData[x];
- destData[x] = cTable[idx];
- x_distance = x_scale*(x-x_center);
- distance= x_distance*x_distance+y_distance*y_distance;
- if(distance < (radius*radius)){
- double factor;
- // Implode the pixel.
- factor=1.0;
- if(distance > 0.0)
- factor=
- pow(sin(0.5000000000000001*M_PI*sqrt(distance)/radius),-amount);
- destData[x] = interpolateColor(&src, factor*x_distance/x_scale+x_center,
- factor*y_distance/y_scale+y_center,
- background);
- }
- }
- }
-
- }
- return(dest);
-}
-
-TQImage KImageEffect::rotate(TQImage &img, RotateDirection r)
-{
- TQImage dest;
- int x, y;
- if(img.depth() > 8){
- unsigned int *srcData, *destData;
- switch(r){
- case Rotate90:
- dest.create(img.height(), img.width(), img.depth());
- for(y=0; y < img.height(); ++y){
- srcData = (unsigned int *)img.scanLine(y);
- for(x=0; x < img.width(); ++x){
- destData = (unsigned int *)dest.scanLine(x);
- destData[img.height()-y-1] = srcData[x];
- }
- }
- break;
- case Rotate180:
- dest.create(img.width(), img.height(), img.depth());
- for(y=0; y < img.height(); ++y){
- srcData = (unsigned int *)img.scanLine(y);
- destData = (unsigned int *)dest.scanLine(img.height()-y-1);
- for(x=0; x < img.width(); ++x)
- destData[img.width()-x-1] = srcData[x];
- }
- break;
- case Rotate270:
- dest.create(img.height(), img.width(), img.depth());
- for(y=0; y < img.height(); ++y){
- srcData = (unsigned int *)img.scanLine(y);
- for(x=0; x < img.width(); ++x){
- destData = (unsigned int *)dest.scanLine(img.width()-x-1);
- destData[y] = srcData[x];
- }
- }
- break;
- default:
- dest = img;
- break;
- }
- }
- else{
- unsigned char *srcData, *destData;
- unsigned int *srcTable, *destTable;
- switch(r){
- case Rotate90:
- dest.create(img.height(), img.width(), img.depth());
- dest.setNumColors(img.numColors());
- srcTable = (unsigned int *)img.tqcolorTable();
- destTable = (unsigned int *)dest.tqcolorTable();
- for(x=0; x < img.numColors(); ++x)
- destTable[x] = srcTable[x];
- for(y=0; y < img.height(); ++y){
- srcData = (unsigned char *)img.scanLine(y);
- for(x=0; x < img.width(); ++x){
- destData = (unsigned char *)dest.scanLine(x);
- destData[img.height()-y-1] = srcData[x];
- }
- }
- break;
- case Rotate180:
- dest.create(img.width(), img.height(), img.depth());
- dest.setNumColors(img.numColors());
- srcTable = (unsigned int *)img.tqcolorTable();
- destTable = (unsigned int *)dest.tqcolorTable();
- for(x=0; x < img.numColors(); ++x)
- destTable[x] = srcTable[x];
- for(y=0; y < img.height(); ++y){
- srcData = (unsigned char *)img.scanLine(y);
- destData = (unsigned char *)dest.scanLine(img.height()-y-1);
- for(x=0; x < img.width(); ++x)
- destData[img.width()-x-1] = srcData[x];
- }
- break;
- case Rotate270:
- dest.create(img.height(), img.width(), img.depth());
- dest.setNumColors(img.numColors());
- srcTable = (unsigned int *)img.tqcolorTable();
- destTable = (unsigned int *)dest.tqcolorTable();
- for(x=0; x < img.numColors(); ++x)
- destTable[x] = srcTable[x];
- for(y=0; y < img.height(); ++y){
- srcData = (unsigned char *)img.scanLine(y);
- for(x=0; x < img.width(); ++x){
- destData = (unsigned char *)dest.scanLine(img.width()-x-1);
- destData[y] = srcData[x];
- }
- }
- break;
- default:
- dest = img;
- break;
- }
-
- }
- return(dest);
-}
-
-void KImageEffect::solarize(TQImage &img, double factor)
-{
- int i, count;
- int threshold;
- unsigned int *data;
-
- threshold = (int)(factor*(MaxRGB+1)/100.0);
- if(img.depth() < 32){
- data = (unsigned int *)img.tqcolorTable();
- count = img.numColors();
- }
- else{
- data = (unsigned int *)img.bits();
- count = img.width()*img.height();
- }
- for(i=0; i < count; ++i){
- data[i] = tqRgba(tqRed(data[i]) > threshold ? MaxRGB-tqRed(data[i]) : tqRed(data[i]),
- tqGreen(data[i]) > threshold ? MaxRGB-tqGreen(data[i]) : tqGreen(data[i]),
- tqBlue(data[i]) > threshold ? MaxRGB-tqBlue(data[i]) : tqBlue(data[i]),
- tqAlpha(data[i]));
- }
-}
-
-TQImage KImageEffect::spread(TQImage &src, unsigned int amount)
-{
- int quantum, x, y;
- int x_distance, y_distance;
- if(src.width() < 3 || src.height() < 3)
- return(src);
- TQImage dest(src);
- dest.detach();
- quantum=(amount+1) >> 1;
- if(src.depth() > 8){ // DirectClass source image
- unsigned int *p, *q;
- for(y=0; y < src.height(); y++){
- q = (unsigned int *)dest.scanLine(y);
- for(x=0; x < src.width(); x++){
- x_distance = x + ((rand() & (amount+1))-quantum);
- y_distance = y + ((rand() & (amount+1))-quantum);
- x_distance = QMIN(x_distance, src.width()-1);
- y_distance = QMIN(y_distance, src.height()-1);
- if(x_distance < 0)
- x_distance = 0;
- if(y_distance < 0)
- y_distance = 0;
- p = (unsigned int *)src.scanLine(y_distance);
- p += x_distance;
- *q++=(*p);
- }
- }
- }
- else{ // PsudeoClass source image
- // just do colortable values
- unsigned char *p, *q;
- for(y=0; y < src.height(); y++){
- q = (unsigned char *)dest.scanLine(y);
- for(x=0; x < src.width(); x++){
- x_distance = x + ((rand() & (amount+1))-quantum);
- y_distance = y + ((rand() & (amount+1))-quantum);
- x_distance = QMIN(x_distance, src.width()-1);
- y_distance = QMIN(y_distance, src.height()-1);
- if(x_distance < 0)
- x_distance = 0;
- if(y_distance < 0)
- y_distance = 0;
- p = (unsigned char *)src.scanLine(y_distance);
- p += x_distance;
- *q++=(*p);
- }
- }
- }
- return(dest);
-}
-
-TQImage KImageEffect::swirl(TQImage &src, double degrees,
- unsigned int background)
-{
- double cosine, distance, factor, radius, sine, x_center, x_distance,
- x_scale, y_center, y_distance, y_scale;
- int x, y;
- unsigned int *q;
- TQImage dest(src.width(), src.height(), 32);
-
- // compute scaling factor
- x_center = src.width()/2.0;
- y_center = src.height()/2.0;
- radius = QMAX(x_center,y_center);
- x_scale=1.0;
- y_scale=1.0;
- if(src.width() > src.height())
- y_scale=(double)src.width()/src.height();
- else if(src.width() < src.height())
- x_scale=(double)src.height()/src.width();
- degrees=DegreesToRadians(degrees);
- // swirl each row
- if(src.depth() > 8){ // DirectClass source image
- unsigned int *p;
- for(y=0; y < src.height(); y++){
- p = (unsigned int *)src.scanLine(y);
- q = (unsigned int *)dest.scanLine(y);
- y_distance = y_scale*(y-y_center);
- for(x=0; x < src.width(); x++){
- // determine if the pixel is within an ellipse
- *q=(*p);
- x_distance = x_scale*(x-x_center);
- distance = x_distance*x_distance+y_distance*y_distance;
- if (distance < (radius*radius)){
- // swirl
- factor = 1.0-sqrt(distance)/radius;
- sine = sin(degrees*factor*factor);
- cosine = cos(degrees*factor*factor);
- *q = interpolateColor(&src,
- (cosine*x_distance-sine*y_distance)/x_scale+x_center,
- (sine*x_distance+cosine*y_distance)/y_scale+y_center,
- background);
- }
- p++;
- q++;
- }
- }
- }
- else{ // PsudeoClass source image
- unsigned char *p;
- unsigned int *cTable = (unsigned int *)src.tqcolorTable();
- for(y=0; y < src.height(); y++){
- p = (unsigned char *)src.scanLine(y);
- q = (unsigned int *)dest.scanLine(y);
- y_distance = y_scale*(y-y_center);
- for(x=0; x < src.width(); x++){
- // determine if the pixel is within an ellipse
- *q = *(cTable+(*p));
- x_distance = x_scale*(x-x_center);
- distance = x_distance*x_distance+y_distance*y_distance;
- if (distance < (radius*radius)){
- // swirl
- factor = 1.0-sqrt(distance)/radius;
- sine = sin(degrees*factor*factor);
- cosine = cos(degrees*factor*factor);
- *q = interpolateColor(&src,
- (cosine*x_distance-sine*y_distance)/x_scale+x_center,
- (sine*x_distance+cosine*y_distance)/y_scale+y_center,
- background);
- }
- p++;
- q++;
- }
- }
-
- }
- return(dest);
-}
-
-TQImage KImageEffect::wave(TQImage &src, double amplitude, double wavelength,
- unsigned int background)
-{
- double *sine_map;
- int x, y;
- unsigned int *q;
-
- TQImage dest(src.width(), src.height() + (int)(2*fabs(amplitude)), 32);
- // allocate sine map
- sine_map = (double *)malloc(dest.width()*sizeof(double));
- if(!sine_map)
- return(src);
- for(x=0; x < dest.width(); ++x)
- sine_map[x]=fabs(amplitude)+amplitude*sin((2*M_PI*x)/wavelength);
- // wave image
- for(y=0; y < dest.height(); ++y){
- q = (unsigned int *)dest.scanLine(y);
- for (x=0; x < dest.width(); x++){
- *q=interpolateColor(&src, x, (int)(y-sine_map[x]), background);
- ++q;
- }
- }
- free(sine_map);
- return(dest);
-}
-
-//
-// The following methods work by computing a value from neighboring pixels
-// (mosfet 05/26/03)
-//
-
-// New algorithms based on ImageMagick 5.5.6 (05/26/03)
-
-TQImage KImageEffect::oilPaint(TQImage &src, int /*radius*/)
-{
- /* binary compat method - remove me when possible! */
- return(oilPaintConvolve(src, 0));
-}
-
-TQImage KImageEffect::oilPaintConvolve(TQImage &src, double radius)
-{
- unsigned long count /*,*histogram*/;
- unsigned long histogram[256];
- unsigned int k;
- int width;
- int x, y, mx, my, sx, sy;
- int mcx, mcy;
- unsigned int *s=0, *q;
-
- if(src.depth() < 32)
- src.convertDepth(32);
- TQImage dest(src);
- dest.detach();
-
- width = getOptimalKernelWidth(radius, 0.5);
- if(src.width() < width){
- qWarning("KImageEffect::oilPaintConvolve(): Image is smaller than radius!");
- return(dest);
- }
- /*
- histogram = (unsigned long *)malloc(256*sizeof(unsigned long));
- if(!histogram){
- qWarning("KImageEffect::oilPaintColvolve(): Unable to allocate memory!");
- return(dest);
- }
- */
- unsigned int **jumpTable = (unsigned int **)src.jumpTable();
- for(y=0; y < dest.height(); ++y){
- sy = y-(width/2);
- q = (unsigned int *)dest.scanLine(y);
- for(x=0; x < dest.width(); ++x){
- count = 0;
- memset(histogram, 0, 256*sizeof(unsigned long));
- //memset(histogram, 0, 256);
- sy = y-(width/2);
- for(mcy=0; mcy < width; ++mcy, ++sy){
- my = sy < 0 ? 0 : sy > src.height()-1 ?
- src.height()-1 : sy;
- sx = x+(-width/2);
- for(mcx=0; mcx < width; ++mcx, ++sx){
- mx = sx < 0 ? 0 : sx > src.width()-1 ?
- src.width()-1 : sx;
-
- k = intensityValue(jumpTable[my][mx]);
- if(k > 255){
- qWarning("KImageEffect::oilPaintConvolve(): k is %d",
- k);
- k = 255;
- }
- histogram[k]++;
- if(histogram[k] > count){
- count = histogram[k];
- s = jumpTable[my]+mx;
- }
- }
- }
- if (s)
- *q++ = (*s);
- }
- }
- /* liberateMemory((histogram); */
- return(dest);
-}
-
-TQImage KImageEffect::charcoal(TQImage &src, double /*factor*/)
-{
- /* binary compat method - remove me when possible! */
- return(charcoal(src, 0, 1));
-}
-
-TQImage KImageEffect::charcoal(TQImage &src, double radius, double sigma)
-{
- TQImage img(edge(src, radius));
- img = blur(img, radius, sigma);
- normalize(img);
- img.tqinvertPixels(false);
- KImageEffect::toGray(img);
- return(img);
-}
-
-void KImageEffect::normalize(TQImage &image)
-{
- struct double_packet high, low, intensity, *histogram;
- struct short_packet *normalize_map;
- TQ_INT64 number_pixels;
- int x, y;
- unsigned int *p, *q;
- register long i;
- unsigned long threshold_intensity;
- unsigned char r, g, b, a;
-
- if(image.depth() < 32) // result will always be 32bpp
- image = image.convertDepth(32);
-
- histogram = (struct double_packet *)
- malloc(256*sizeof(struct double_packet));
- normalize_map = (struct short_packet *)
- malloc(256*sizeof(struct short_packet));
-
- if(!histogram || !normalize_map){
- if(histogram)
- liberateMemory(&histogram);
- if(normalize_map)
- liberateMemory(&normalize_map);
- qWarning("KImageEffect::normalize(): Unable to allocate memory!");
- return;
- }
-
- /*
- Form histogram.
- */
- memset(histogram, 0, 256*sizeof(struct double_packet));
- for(y=0; y < image.height(); ++y){
- p = (unsigned int *)image.scanLine(y);
- for(x=0; x < image.width(); ++x){
- histogram[(unsigned char)(tqRed(*p))].red++;
- histogram[(unsigned char)(tqGreen(*p))].green++;
- histogram[(unsigned char)(tqBlue(*p))].blue++;
- histogram[(unsigned char)(tqAlpha(*p))].alpha++;
- p++;
- }
- }
-
- /*
- Find the histogram boundaries by locating the 0.1 percent levels.
- */
- number_pixels = (TQ_INT64)image.width()*image.height();
- threshold_intensity = number_pixels/1000;
-
- /* red */
- memset(&intensity, 0, sizeof(struct double_packet));
- memset(&high, 0, sizeof(struct double_packet));
- memset(&low, 0, sizeof(struct double_packet));
- for(high.red=255; high.red != 0; high.red--){
- intensity.red+=histogram[(unsigned char)high.red].red;
- if(intensity.red > threshold_intensity)
- break;
- }
- if(low.red == high.red){
- threshold_intensity = 0;
- memset(&intensity, 0, sizeof(struct double_packet));
- for(low.red=0; low.red < 255; low.red++){
- intensity.red+=histogram[(unsigned char)low.red].red;
- if(intensity.red > threshold_intensity)
- break;
- }
- memset(&intensity, 0, sizeof(struct double_packet));
- for(high.red=255; high.red != 0; high.red--){
- intensity.red+=histogram[(unsigned char)high.red].red;
- if(intensity.red > threshold_intensity)
- break;
- }
- }
-
- /* green */
- memset(&intensity, 0, sizeof(struct double_packet));
- for(high.green=255; high.green != 0; high.green--){
- intensity.green+=histogram[(unsigned char)high.green].green;
- if(intensity.green > threshold_intensity)
- break;
- }
- if(low.green == high.green){
- threshold_intensity = 0;
- memset(&intensity, 0, sizeof(struct double_packet));
- for(low.green=0; low.green < 255; low.green++){
- intensity.green+=histogram[(unsigned char)low.green].green;
- if(intensity.green > threshold_intensity)
- break;
- }
- memset(&intensity,0,sizeof(struct double_packet));
- for(high.green=255; high.green != 0; high.green--){
- intensity.green+=histogram[(unsigned char)high.green].green;
- if(intensity.green > threshold_intensity)
- break;
- }
- }
-
- /* blue */
- memset(&intensity, 0, sizeof(struct double_packet));
- for(high.blue=255; high.blue != 0; high.blue--){
- intensity.blue+=histogram[(unsigned char)high.blue].blue;
- if(intensity.blue > threshold_intensity)
- break;
- }
- if(low.blue == high.blue){
- threshold_intensity = 0;
- memset(&intensity, 0, sizeof(struct double_packet));
- for(low.blue=0; low.blue < 255; low.blue++){
- intensity.blue+=histogram[(unsigned char)low.blue].blue;
- if(intensity.blue > threshold_intensity)
- break;
- }
- memset(&intensity,0,sizeof(struct double_packet));
- for(high.blue=255; high.blue != 0; high.blue--){
- intensity.blue+=histogram[(unsigned char)high.blue].blue;
- if(intensity.blue > threshold_intensity)
- break;
- }
- }
-
- /* alpha */
- memset(&intensity, 0, sizeof(struct double_packet));
- for(high.alpha=255; high.alpha != 0; high.alpha--){
- intensity.alpha+=histogram[(unsigned char)high.alpha].alpha;
- if(intensity.alpha > threshold_intensity)
- break;
- }
- if(low.alpha == high.alpha){
- threshold_intensity = 0;
- memset(&intensity, 0, sizeof(struct double_packet));
- for(low.alpha=0; low.alpha < 255; low.alpha++){
- intensity.alpha+=histogram[(unsigned char)low.alpha].alpha;
- if(intensity.alpha > threshold_intensity)
- break;
- }
- memset(&intensity,0,sizeof(struct double_packet));
- for(high.alpha=255; high.alpha != 0; high.alpha--){
- intensity.alpha+=histogram[(unsigned char)high.alpha].alpha;
- if(intensity.alpha > threshold_intensity)
- break;
- }
- }
- liberateMemory(&histogram);
-
- /*
- Stretch the histogram to create the normalized image mapping.
- */
-
- // should the maxes be 65535?
- memset(normalize_map, 0 ,256*sizeof(struct short_packet));
- for(i=0; i <= (long) 255; i++){
- if(i < (long) low.red)
- normalize_map[i].red=0;
- else if (i > (long) high.red)
- normalize_map[i].red=65535;
- else if (low.red != high.red)
- normalize_map[i].red =
- (unsigned short)((65535*(i-low.red))/(high.red-low.red));
-
- if(i < (long) low.green)
- normalize_map[i].green=0;
- else if (i > (long) high.green)
- normalize_map[i].green=65535;
- else if (low.green != high.green)
- normalize_map[i].green =
- (unsigned short)((65535*(i-low.green))/(high.green-low.green));
-
- if(i < (long) low.blue)
- normalize_map[i].blue=0;
- else if (i > (long) high.blue)
- normalize_map[i].blue=65535;
- else if (low.blue != high.blue)
- normalize_map[i].blue =
- (unsigned short)((65535*(i-low.blue))/(high.blue-low.blue));
-
- if(i < (long) low.alpha)
- normalize_map[i].alpha=0;
- else if (i > (long) high.alpha)
- normalize_map[i].alpha=65535;
- else if (low.alpha != high.alpha)
- normalize_map[i].alpha =
- (unsigned short)((65535*(i-low.alpha))/(high.alpha-low.alpha));
-
- }
-
- for(y=0; y < image.height(); ++y){
- q = (unsigned int *)image.scanLine(y);
- for(x=0; x < image.width(); ++x){
- if(low.red != high.red)
- r = (normalize_map[(unsigned short)(tqRed(q[x]))].red)/257;
- else
- r = tqRed(q[x]);
- if(low.green != high.green)
- g = (normalize_map[(unsigned short)(tqGreen(q[x]))].green)/257;
- else
- g = tqGreen(q[x]);
- if(low.blue != high.blue)
- b = (normalize_map[(unsigned short)(tqBlue(q[x]))].blue)/257;
- else
- b = tqBlue(q[x]);
- if(low.alpha != high.alpha)
- a = (normalize_map[(unsigned short)(tqAlpha(q[x]))].alpha)/257;
- else
- a = tqAlpha(q[x]);
- q[x] = tqRgba(r, g, b, a);
- }
- }
- liberateMemory(&normalize_map);
-}
-
-void KImageEffect::equalize(TQImage &image)
-{
- struct double_packet high, low, intensity, *map, *histogram;
- struct short_packet *equalize_map;
- int x, y;
- unsigned int *p, *q;
- long i;
- unsigned char r, g, b, a;
-
- if(image.depth() < 32) // result will always be 32bpp
- image = image.convertDepth(32);
-
- histogram=(struct double_packet *) malloc(256*sizeof(struct double_packet));
- map=(struct double_packet *) malloc(256*sizeof(struct double_packet));
- equalize_map=(struct short_packet *)malloc(256*sizeof(struct short_packet));
- if(!histogram || !map || !equalize_map){
- if(histogram)
- liberateMemory(&histogram);
- if(map)
- liberateMemory(&map);
- if(equalize_map)
- liberateMemory(&equalize_map);
- qWarning("KImageEffect::equalize(): Unable to allocate memory!");
- return;
- }
-
- /*
- Form histogram.
- */
- memset(histogram, 0, 256*sizeof(struct double_packet));
- for(y=0; y < image.height(); ++y){
- p = (unsigned int *)image.scanLine(y);
- for(x=0; x < image.width(); ++x){
- histogram[(unsigned char)(tqRed(*p))].red++;
- histogram[(unsigned char)(tqGreen(*p))].green++;
- histogram[(unsigned char)(tqBlue(*p))].blue++;
- histogram[(unsigned char)(tqAlpha(*p))].alpha++;
- p++;
- }
- }
- /*
- Integrate the histogram to get the equalization map.
- */
- memset(&intensity, 0 ,sizeof(struct double_packet));
- for(i=0; i <= 255; ++i){
- intensity.red += histogram[i].red;
- intensity.green += histogram[i].green;
- intensity.blue += histogram[i].blue;
- intensity.alpha += histogram[i].alpha;
- map[i]=intensity;
- }
- low=map[0];
- high=map[255];
- memset(equalize_map, 0, 256*sizeof(short_packet));
- for(i=0; i <= 255; ++i){
- if(high.red != low.red)
- equalize_map[i].red=(unsigned short)
- ((65535*(map[i].red-low.red))/(high.red-low.red));
- if(high.green != low.green)
- equalize_map[i].green=(unsigned short)
- ((65535*(map[i].green-low.green))/(high.green-low.green));
- if(high.blue != low.blue)
- equalize_map[i].blue=(unsigned short)
- ((65535*(map[i].blue-low.blue))/(high.blue-low.blue));
- if(high.alpha != low.alpha)
- equalize_map[i].alpha=(unsigned short)
- ((65535*(map[i].alpha-low.alpha))/(high.alpha-low.alpha));
- }
- liberateMemory(&histogram);
- liberateMemory(&map);
-
- /*
- Stretch the histogram.
- */
- for(y=0; y < image.height(); ++y){
- q = (unsigned int *)image.scanLine(y);
- for(x=0; x < image.width(); ++x){
- if(low.red != high.red)
- r = (equalize_map[(unsigned short)(tqRed(q[x]))].red/257);
- else
- r = tqRed(q[x]);
- if(low.green != high.green)
- g = (equalize_map[(unsigned short)(tqGreen(q[x]))].green/257);
- else
- g = tqGreen(q[x]);
- if(low.blue != high.blue)
- b = (equalize_map[(unsigned short)(tqBlue(q[x]))].blue/257);
- else
- b = tqBlue(q[x]);
- if(low.alpha != high.alpha)
- a = (equalize_map[(unsigned short)(tqAlpha(q[x]))].alpha/257);
- else
- a = tqAlpha(q[x]);
- q[x] = tqRgba(r, g, b, a);
- }
- }
- liberateMemory(&equalize_map);
-
-}
-
-TQImage KImageEffect::edge(TQImage &image, double radius)
-{
- double *kernel;
- int width;
- register long i;
- TQImage dest;
-
- if(radius == 50.0){
- /* For binary compatability! Remove me when possible! This used to
- * take a different parameter, a factor, and this was the default
- * value */
- radius = 0.0;
- }
-
- width = getOptimalKernelWidth(radius, 0.5);
- if(image.width() < width || image.height() < width){
- qWarning("KImageEffect::edge(): Image is smaller than radius!");
- return(dest);
- }
- kernel= (double *)malloc(width*width*sizeof(double));
- if(!kernel){
- qWarning("KImageEffect::edge(): Unable to allocate memory!");
- return(dest);
- }
- for(i=0; i < (width*width); i++)
- kernel[i]=(-1.0);
- kernel[i/2]=width*width-1.0;
- convolveImage(&image, &dest, width, kernel);
- free(kernel);
- return(dest);
-}
-
-TQImage KImageEffect::emboss(TQImage &src)
-{
- /* binary compat method - remove me when possible! */
- return(emboss(src, 0, 1));
-}
-
-TQImage KImageEffect::emboss(TQImage &image, double radius, double sigma)
-{
- double alpha, *kernel;
- int j, width;
- register long i, u, v;
- TQImage dest;
-
- if(sigma == 0.0){
- qWarning("KImageEffect::emboss(): Zero sigma is not permitted!");
- return(dest);
- }
-
- width = getOptimalKernelWidth(radius, sigma);
- if(image.width() < width || image.height() < width){
- qWarning("KImageEffect::emboss(): Image is smaller than radius!");
- return(dest);
- }
- kernel= (double *)malloc(width*width*sizeof(double));
- if(!kernel){
- qWarning("KImageEffect::emboss(): Unable to allocate memory!");
- return(dest);
- }
- if(image.depth() < 32)
- image = image.convertDepth(32);
-
- i=0;
- j=width/2;
- for(v=(-width/2); v <= (width/2); v++){
- for(u=(-width/2); u <= (width/2); u++){
- alpha=exp(-((double) u*u+v*v)/(2.0*sigma*sigma));
- kernel[i]=((u < 0) || (v < 0) ? -8.0 : 8.0)*alpha/
- (2.0*MagickPI*sigma*sigma);
- if (u == j)
- kernel[i]=0.0;
- i++;
- }
- j--;
- }
- convolveImage(&image, &dest, width, kernel);
- liberateMemory(&kernel);
-
- equalize(dest);
- return(dest);
-}
-
-void KImageEffect::blurScanLine(double *kernel, int width,
- unsigned int *src, unsigned int *dest,
- int columns)
-{
- register double *p;
- unsigned int *q;
- register int x;
- register long i;
- double red, green, blue, alpha;
- double scale = 0.0;
-
- if(width > columns){
- for(x=0; x < columns; ++x){
- scale = 0.0;
- red = blue = green = alpha = 0.0;
- p = kernel;
- q = src;
- for(i=0; i < columns; ++i){
- if((i >= (x-width/2)) && (i <= (x+width/2))){
- red += (*p)*(tqRed(*q)*257);
- green += (*p)*(tqGreen(*q)*257);
- blue += (*p)*(tqBlue(*q)*257);
- alpha += (*p)*(tqAlpha(*q)*257);
- }
- if(((i+width/2-x) >= 0) && ((i+width/2-x) < width))
- scale+=kernel[i+width/2-x];
- p++;
- q++;
- }
- scale = 1.0/scale;
- red = scale*(red+0.5);
- green = scale*(green+0.5);
- blue = scale*(blue+0.5);
- alpha = scale*(alpha+0.5);
-
- red = red < 0 ? 0 : red > 65535 ? 65535 : red;
- green = green < 0 ? 0 : green > 65535 ? 65535 : green;
- blue = blue < 0 ? 0 : blue > 65535 ? 65535 : blue;
- alpha = alpha < 0 ? 0 : alpha > 65535 ? 65535 : alpha;
-
- dest[x] = tqRgba((unsigned char)(red/257UL),
- (unsigned char)(green/257UL),
- (unsigned char)(blue/257UL),
- (unsigned char)(alpha/257UL));
- }
- return;
- }
-
- for(x=0; x < width/2; ++x){
- scale = 0.0;
- red = blue = green = alpha = 0.0;
- p = kernel+width/2-x;
- q = src;
- for(i=width/2-x; i < width; ++i){
- red += (*p)*(tqRed(*q)*257);
- green += (*p)*(tqGreen(*q)*257);
- blue += (*p)*(tqBlue(*q)*257);
- alpha += (*p)*(tqAlpha(*q)*257);
- scale += (*p);
- p++;
- q++;
- }
- scale=1.0/scale;
-
- red = scale*(red+0.5);
- green = scale*(green+0.5);
- blue = scale*(blue+0.5);
- alpha = scale*(alpha+0.5);
-
- red = red < 0 ? 0 : red > 65535 ? 65535 : red;
- green = green < 0 ? 0 : green > 65535 ? 65535 : green;
- blue = blue < 0 ? 0 : blue > 65535 ? 65535 : blue;
- alpha = alpha < 0 ? 0 : alpha > 65535 ? 65535 : alpha;
-
- dest[x] = tqRgba((unsigned char)(red/257UL),
- (unsigned char)(green/257UL),
- (unsigned char)(blue/257UL),
- (unsigned char)(alpha/257UL));
- }
-
- for(; x < columns-width/2; ++x){
- red = blue = green = alpha = 0.0;
- p = kernel;
- q = src+(x-width/2);
- for (i=0; i < (long) width; ++i){
- red += (*p)*(tqRed(*q)*257);
- green += (*p)*(tqGreen(*q)*257);
- blue += (*p)*(tqBlue(*q)*257);
- alpha += (*p)*(tqAlpha(*q)*257);
- p++;
- q++;
- }
- red = scale*(red+0.5);
- green = scale*(green+0.5);
- blue = scale*(blue+0.5);
- alpha = scale*(alpha+0.5);
-
- red = red < 0 ? 0 : red > 65535 ? 65535 : red;
- green = green < 0 ? 0 : green > 65535 ? 65535 : green;
- blue = blue < 0 ? 0 : blue > 65535 ? 65535 : blue;
- alpha = alpha < 0 ? 0 : alpha > 65535 ? 65535 : alpha;
-
- dest[x] = tqRgba((unsigned char)(red/257UL),
- (unsigned char)(green/257UL),
- (unsigned char)(blue/257UL),
- (unsigned char)(alpha/257UL));
- }
-
- for(; x < columns; ++x){
- red = blue = green = alpha = 0.0;
- scale=0;
- p = kernel;
- q = src+(x-width/2);
- for(i=0; i < columns-x+width/2; ++i){
- red += (*p)*(tqRed(*q)*257);
- green += (*p)*(tqGreen(*q)*257);
- blue += (*p)*(tqBlue(*q)*257);
- alpha += (*p)*(tqAlpha(*q)*257);
- scale += (*p);
- p++;
- q++;
- }
- scale=1.0/scale;
- red = scale*(red+0.5);
- green = scale*(green+0.5);
- blue = scale*(blue+0.5);
- alpha = scale*(alpha+0.5);
-
- red = red < 0 ? 0 : red > 65535 ? 65535 : red;
- green = green < 0 ? 0 : green > 65535 ? 65535 : green;
- blue = blue < 0 ? 0 : blue > 65535 ? 65535 : blue;
- alpha = alpha < 0 ? 0 : alpha > 65535 ? 65535 : alpha;
-
- dest[x] = tqRgba((unsigned char)(red/257UL),
- (unsigned char)(green/257UL),
- (unsigned char)(blue/257UL),
- (unsigned char)(alpha/257UL));
- }
-}
-
-int KImageEffect::getBlurKernel(int width, double sigma, double **kernel)
-{
-#define KernelRank 3
- double alpha, normalize;
- register long i;
- int bias;
-
- assert(sigma != 0.0);
- if(width == 0)
- width = 3;
- *kernel=(double *)malloc(width*sizeof(double));
- if(*kernel == (double *)NULL)
- return(0);
- memset(*kernel, 0, width*sizeof(double));
- bias = KernelRank*width/2;
- for(i=(-bias); i <= bias; i++){
- alpha=exp(-((double) i*i)/(2.0*KernelRank*KernelRank*sigma*sigma));
- (*kernel)[(i+bias)/KernelRank]+=alpha/(MagickSQ2PI*sigma);
- }
- normalize=0;
- for(i=0; i < width; i++)
- normalize+=(*kernel)[i];
- for(i=0; i < width; i++)
- (*kernel)[i]/=normalize;
-
- return(width);
-}
-
-TQImage KImageEffect::blur(TQImage &src, double /*factor*/)
-{
- /* binary compat method - remove me when possible! */
- return(blur(src, 0, 1));
-}
-
-TQImage KImageEffect::blur(TQImage &src, double radius, double sigma)
-{
- double *kernel;
- TQImage dest;
- int width;
- int x, y;
- unsigned int *scanline, *temp;
- unsigned int *p, *q;
-
- if(sigma == 0.0){
- qWarning("KImageEffect::blur(): Zero sigma is not permitted!");
- return(dest);
- }
- if(src.depth() < 32)
- src = src.convertDepth(32);
-
- kernel=(double *) NULL;
- if(radius > 0)
- width=getBlurKernel((int) (2*ceil(radius)+1),sigma,&kernel);
- else{
- double *last_kernel;
- last_kernel=(double *) NULL;
- width=getBlurKernel(3,sigma,&kernel);
-
- while ((long) (MaxRGB*kernel[0]) > 0){
- if(last_kernel != (double *)NULL){
- liberateMemory(&last_kernel);
- }
- last_kernel=kernel;
- kernel = (double *)NULL;
- width = getBlurKernel(width+2, sigma, &kernel);
- }
- if(last_kernel != (double *) NULL){
- liberateMemory(&kernel);
- width-=2;
- kernel = last_kernel;
- }
- }
-
- if(width < 3){
- qWarning("KImageEffect::blur(): Kernel radius is too small!");
- liberateMemory(&kernel);
- return(dest);
- }
-
- dest.create(src.width(), src.height(), 32);
-
- // Horizontal convolution
- scanline = (unsigned int *)malloc(sizeof(unsigned int)*src.height());
- temp = (unsigned int *)malloc(sizeof(unsigned int)*src.height());
- for(y=0; y < src.height(); ++y){
- p = (unsigned int *)src.scanLine(y);
- q = (unsigned int *)dest.scanLine(y);
- blurScanLine(kernel, width, p, q, src.width());
- }
-
- TQImage partial = dest;
-
- // Vertical convolution
- unsigned int **srcTable = (unsigned int **)partial.jumpTable();
- unsigned int **destTable = (unsigned int **)dest.jumpTable();
- for(x=0; x < partial.width(); ++x){
- for(y=0; y < partial.height(); ++y){
- scanline[y] = srcTable[y][x];
- }
- blurScanLine(kernel, width, scanline, temp, partial.height());
- for(y=0; y < partial.height(); ++y){
- destTable[y][x] = temp[y];
- }
- }
- free(scanline);
- free(temp);
- free(kernel);
- return(dest);
-}
-
-bool KImageEffect::convolveImage(TQImage *image, TQImage *dest,
- const unsigned int order,
- const double *kernel)
-{
- long width;
- double red, green, blue, alpha;
- double normalize, *normal_kernel;
- register const double *k;
- register unsigned int *q;
- int x, y, mx, my, sx, sy;
- long i;
- int mcx, mcy;
-
- width = order;
- if((width % 2) == 0){
- qWarning("KImageEffect: Kernel width must be an odd number!");
- return(false);
- }
- normal_kernel = (double *)malloc(width*width*sizeof(double));
- if(!normal_kernel){
- qWarning("KImageEffect: Unable to allocate memory!");
- return(false);
- }
- dest->reset();
- dest->create(image->width(), image->height(), 32);
- if(image->depth() < 32)
- *image = image->convertDepth(32);
-
- normalize=0.0;
- for(i=0; i < (width*width); i++)
- normalize += kernel[i];
- if(fabs(normalize) <= MagickEpsilon)
- normalize=1.0;
- normalize=1.0/normalize;
- for(i=0; i < (width*width); i++)
- normal_kernel[i] = normalize*kernel[i];
-
- unsigned int **jumpTable = (unsigned int **)image->jumpTable();
- for(y=0; y < dest->height(); ++y){
- sy = y-(width/2);
- q = (unsigned int *)dest->scanLine(y);
- for(x=0; x < dest->width(); ++x){
- k = normal_kernel;
- red = green = blue = alpha = 0;
- sy = y-(width/2);
- for(mcy=0; mcy < width; ++mcy, ++sy){
- my = sy < 0 ? 0 : sy > image->height()-1 ?
- image->height()-1 : sy;
- sx = x+(-width/2);
- for(mcx=0; mcx < width; ++mcx, ++sx){
- mx = sx < 0 ? 0 : sx > image->width()-1 ?
- image->width()-1 : sx;
- red += (*k)*(tqRed(jumpTable[my][mx])*257);
- green += (*k)*(tqGreen(jumpTable[my][mx])*257);
- blue += (*k)*(tqBlue(jumpTable[my][mx])*257);
- alpha += (*k)*(tqAlpha(jumpTable[my][mx])*257);
- ++k;
- }
- }
-
- red = red < 0 ? 0 : red > 65535 ? 65535 : red+0.5;
- green = green < 0 ? 0 : green > 65535 ? 65535 : green+0.5;
- blue = blue < 0 ? 0 : blue > 65535 ? 65535 : blue+0.5;
- alpha = alpha < 0 ? 0 : alpha > 65535 ? 65535 : alpha+0.5;
-
- *q++ = tqRgba((unsigned char)(red/257UL),
- (unsigned char)(green/257UL),
- (unsigned char)(blue/257UL),
- (unsigned char)(alpha/257UL));
- }
- }
- free(normal_kernel);
- return(true);
-
-}
-
-int KImageEffect::getOptimalKernelWidth(double radius, double sigma)
-{
- double normalize, value;
- long width;
- register long u;
-
- assert(sigma != 0.0);
- if(radius > 0.0)
- return((int)(2.0*ceil(radius)+1.0));
- for(width=5; ;){
- normalize=0.0;
- for(u=(-width/2); u <= (width/2); u++)
- normalize+=exp(-((double) u*u)/(2.0*sigma*sigma))/(MagickSQ2PI*sigma);
- u=width/2;
- value=exp(-((double) u*u)/(2.0*sigma*sigma))/(MagickSQ2PI*sigma)/normalize;
- if((long)(65535*value) <= 0)
- break;
- width+=2;
- }
- return((int)width-2);
-}
-
-TQImage KImageEffect::sharpen(TQImage &src, double /*factor*/)
-{
- /* binary compat method - remove me when possible! */
- return(sharpen(src, 0, 1));
-}
-
-TQImage KImageEffect::sharpen(TQImage &image, double radius, double sigma)
-{
- double alpha, normalize, *kernel;
- int width;
- register long i, u, v;
- TQImage dest;
-
- if(sigma == 0.0){
- qWarning("KImageEffect::sharpen(): Zero sigma is not permitted!");
- return(dest);
- }
- width = getOptimalKernelWidth(radius, sigma);
- if(image.width() < width){
- qWarning("KImageEffect::sharpen(): Image is smaller than radius!");
- return(dest);
- }
- kernel = (double *)malloc(width*width*sizeof(double));
- if(!kernel){
- qWarning("KImageEffect::sharpen(): Unable to allocate memory!");
- return(dest);
- }
-
- i = 0;
- normalize=0.0;
- for(v=(-width/2); v <= (width/2); v++){
- for(u=(-width/2); u <= (width/2); u++){
- alpha=exp(-((double) u*u+v*v)/(2.0*sigma*sigma));
- kernel[i]=alpha/(2.0*MagickPI*sigma*sigma);
- normalize+=kernel[i];
- i++;
- }
- }
- kernel[i/2]=(-2.0)*normalize;
- convolveImage(&image, &dest, width, kernel);
- free(kernel);
- return(dest);
-}
-
-// End of new algorithms
-
-TQImage KImageEffect::shade(TQImage &src, bool color_shading, double azimuth,
- double elevation)
-{
- struct PointInfo{
- double x, y, z;
- };
-
- double distance, normal_distance, shade;
- int x, y;
-
- struct PointInfo light, normal;
-
- unsigned int *q;
-
- TQImage dest(src.width(), src.height(), 32);
-
- azimuth = DegreesToRadians(azimuth);
- elevation = DegreesToRadians(elevation);
- light.x = MaxRGB*cos(azimuth)*cos(elevation);
- light.y = MaxRGB*sin(azimuth)*cos(elevation);
- light.z = MaxRGB*sin(elevation);
- normal.z= 2*MaxRGB; // constant Z of surface normal
-
- if(src.depth() > 8){ // DirectClass source image
- unsigned int *p, *s0, *s1, *s2;
- for(y=0; y < src.height(); ++y){
- p = (unsigned int *)src.scanLine(QMIN(QMAX(y-1,0),src.height()-3));
- q = (unsigned int *)dest.scanLine(y);
- // shade this row of pixels.
- *q++=(*(p+src.width()));
- p++;
- s0 = p;
- s1 = p + src.width();
- s2 = p + 2*src.width();
- for(x=1; x < src.width()-1; ++x){
- // determine the surface normal and compute shading.
- normal.x=intensityValue(*(s0-1))+intensityValue(*(s1-1))+intensityValue(*(s2-1))-
- (double) intensityValue(*(s0+1))-(double) intensityValue(*(s1+1))-
- (double) intensityValue(*(s2+1));
- normal.y=intensityValue(*(s2-1))+intensityValue(*s2)+intensityValue(*(s2+1))-
- (double) intensityValue(*(s0-1))-(double) intensityValue(*s0)-
- (double) intensityValue(*(s0+1));
- if((normal.x == 0) && (normal.y == 0))
- shade=light.z;
- else{
- shade=0.0;
- distance=normal.x*light.x+normal.y*light.y+normal.z*light.z;
- if (distance > 0.0){
- normal_distance=
- normal.x*normal.x+normal.y*normal.y+normal.z*normal.z;
- if(fabs(normal_distance) > 0.0000001)
- shade=distance/sqrt(normal_distance);
- }
- }
- if(!color_shading){
- *q = tqRgba((unsigned char)(shade),
- (unsigned char)(shade),
- (unsigned char)(shade),
- tqAlpha(*s1));
- }
- else{
- *q = tqRgba((unsigned char)((shade*tqRed(*s1))/(MaxRGB+1)),
- (unsigned char)((shade*tqGreen(*s1))/(MaxRGB+1)),
- (unsigned char)((shade*tqBlue(*s1))/(MaxRGB+1)),
- tqAlpha(*s1));
- }
- ++s0;
- ++s1;
- ++s2;
- q++;
- }
- *q++=(*s1);
- }
- }
- else{ // PsudeoClass source image
- unsigned char *p, *s0, *s1, *s2;
- int scanLineIdx;
- unsigned int *cTable = (unsigned int *)src.tqcolorTable();
- for(y=0; y < src.height(); ++y){
- scanLineIdx = QMIN(QMAX(y-1,0),src.height()-3);
- p = (unsigned char *)src.scanLine(scanLineIdx);
- q = (unsigned int *)dest.scanLine(y);
- // shade this row of pixels.
- s0 = p;
- s1 = (unsigned char *) src.scanLine(scanLineIdx+1);
- s2 = (unsigned char *) src.scanLine(scanLineIdx+2);
- *q++=(*(cTable+(*s1)));
- ++p;
- ++s0;
- ++s1;
- ++s2;
- for(x=1; x < src.width()-1; ++x){
- // determine the surface normal and compute shading.
- normal.x=intensityValue(*(cTable+(*(s0-1))))+intensityValue(*(cTable+(*(s1-1))))+intensityValue(*(cTable+(*(s2-1))))-
- (double) intensityValue(*(cTable+(*(s0+1))))-(double) intensityValue(*(cTable+(*(s1+1))))-
- (double) intensityValue(*(cTable+(*(s2+1))));
- normal.y=intensityValue(*(cTable+(*(s2-1))))+intensityValue(*(cTable+(*s2)))+intensityValue(*(cTable+(*(s2+1))))-
- (double) intensityValue(*(cTable+(*(s0-1))))-(double) intensityValue(*(cTable+(*s0)))-
- (double) intensityValue(*(cTable+(*(s0+1))));
- if((normal.x == 0) && (normal.y == 0))
- shade=light.z;
- else{
- shade=0.0;
- distance=normal.x*light.x+normal.y*light.y+normal.z*light.z;
- if (distance > 0.0){
- normal_distance=
- normal.x*normal.x+normal.y*normal.y+normal.z*normal.z;
- if(fabs(normal_distance) > 0.0000001)
- shade=distance/sqrt(normal_distance);
- }
- }
- if(!color_shading){
- *q = tqRgba((unsigned char)(shade),
- (unsigned char)(shade),
- (unsigned char)(shade),
- tqAlpha(*(cTable+(*s1))));
- }
- else{
- *q = tqRgba((unsigned char)((shade*tqRed(*(cTable+(*s1))))/(MaxRGB+1)),
- (unsigned char)((shade*tqGreen(*(cTable+(*s1))))/(MaxRGB+1)),
- (unsigned char)((shade*tqBlue(*(cTable+(*s1))))/(MaxRGB+1)),
- tqAlpha(*s1));
- }
- ++s0;
- ++s1;
- ++s2;
- q++;
- }
- *q++=(*(cTable+(*s1)));
- }
- }
- return(dest);
-}
-
-// High quality, expensive HSV contrast. You can do a faster one by just
-// taking a grayscale threshold (ie: 128) and incrementing RGB color
-// channels above it and decrementing those below it, but this gives much
-// better results. (mosfet 12/28/01)
-void KImageEffect::contrastHSV(TQImage &img, bool sharpen)
-{
- int i, sign;
- unsigned int *data;
- int count;
- double brightness, scale, theta;
- TQColor c;
- int h, s, v;
-
- sign = sharpen ? 1 : -1;
- scale=0.5000000000000001;
- if(img.depth() > 8){
- count = img.width()*img.height();
- data = (unsigned int *)img.bits();
- }
- else{
- count = img.numColors();
- data = (unsigned int *)img.tqcolorTable();
- }
- for(i=0; i < count; ++i){
- c.setRgb(data[i]);
- c.hsv(&h, &s, &v);
- brightness = v/255.0;
- theta=(brightness-0.5)*M_PI;
- brightness+=scale*(((scale*((sin(theta)+1.0)))-brightness)*sign);
- if (brightness > 1.0)
- brightness=1.0;
- else
- if (brightness < 0)
- brightness=0.0;
- v = (int)(brightness*255);
- c.setHsv(h, s, v);
- data[i] = tqRgba(c.red(), c.green(), c.blue(), tqAlpha(data[i]));
- }
-}
-
-
-struct BumpmapParams {
- BumpmapParams( double bm_azimuth, double bm_elevation,
- int bm_depth, KImageEffect::BumpmapType bm_type,
- bool invert ) {
- /* Convert to radians */
- double azimuth = DegreesToRadians( bm_azimuth );
- double elevation = DegreesToRadians( bm_elevation );
-
- /* Calculate the light vector */
- lx = (int)( cos(azimuth) * cos(elevation) * 255.0 );
- ly = (int)( sin(azimuth) * cos(elevation) * 255.0 );
- int lz = (int)( sin(elevation) * 255.0 );
-
- /* Calculate constant Z component of surface normal */
- int nz = (6 * 255) / bm_depth;
- nz2 = nz * nz;
- nzlz = nz * lz;
-
- /* Optimize for vertical normals */
- background = lz;
-
- /* Calculate darkness compensation factor */
- compensation = sin(elevation);
-
- /* Create look-up table for map type */
- for (int i = 0; i < 256; i++)
- {
- double n = 0;
- switch (bm_type)
- {
- case KImageEffect::Spherical:
- n = i / 255.0 - 1.0;
- lut[i] = (int) (255.0 * sqrt(1.0 - n * n) + 0.5);
- break;
-
- case KImageEffect::Sinuosidal:
- n = i / 255.0;
- lut[i] = (int) (255.0 * (sin((-M_PI / 2.0) + M_PI * n) + 1.0) /
- 2.0 + 0.5);
- break;
-
- case KImageEffect::Linear:
- default:
- lut[i] = i;
- }
-
- if (invert)
- lut[i] = 255 - lut[i];
- }
- }
- int lx, ly;
- int nz2, nzlz;
- int background;
- double compensation;
- uchar lut[256];
-};
-
-
-static void bumpmap_convert_row( uint *row,
- int width,
- int bpp,
- int has_alpha,
- uchar *lut,
- int waterlevel )
-{
- uint *p;
-
- p = row;
-
- has_alpha = has_alpha ? 1 : 0;
-
- if (bpp >= 3)
- for (; width; width--)
- {
- if (has_alpha) {
- unsigned int idx = (unsigned int)(intensityValue( *row ) + 0.5);
- *p++ = lut[(unsigned int) ( waterlevel +
- ( ( idx -
- waterlevel) * tqBlue( *row )) / 255.0 )];
- } else {
- unsigned int idx = (unsigned int)(intensityValue( *row ) + 0.5);
- *p++ = lut[idx];
- }
-
- ++row;
- }
-}
-
-static void bumpmap_row( uint *src,
- uint *dest,
- int width,
- int bpp,
- int has_alpha,
- uint *bm_row1,
- uint *bm_row2,
- uint *bm_row3,
- int bm_width,
- int bm_xofs,
- bool tiled,
- bool row_in_bumpmap,
- int ambient,
- bool compensate,
- BumpmapParams *params )
-{
- int xofs1, xofs2, xofs3;
- int shade;
- int ndotl;
- int nx, ny;
- int x;
- int tmp;
-
- tmp = bm_xofs;
- xofs2 = MOD(tmp, bm_width);
-
- for (x = 0; x < width; x++)
- {
- /* Calculate surface normal from bump map */
-
- if (tiled || (row_in_bumpmap &&
- x >= - tmp && x < - tmp + bm_width)) {
- if (tiled) {
- xofs1 = MOD(xofs2 - 1, bm_width);
- xofs3 = MOD(xofs2 + 1, bm_width);
- } else {
- xofs1 = FXCLAMP(xofs2 - 1, 0, bm_width - 1);
- xofs3 = FXCLAMP(xofs2 + 1, 0, bm_width - 1);
- }
- nx = (bm_row1[xofs1] + bm_row2[xofs1] + bm_row3[xofs1] -
- bm_row1[xofs3] - bm_row2[xofs3] - bm_row3[xofs3]);
- ny = (bm_row3[xofs1] + bm_row3[xofs2] + bm_row3[xofs3] -
- bm_row1[xofs1] - bm_row1[xofs2] - bm_row1[xofs3]);
- } else {
- nx = ny = 0;
- }
-
- /* Shade */
-
- if ((nx == 0) && (ny == 0))
- shade = params->background;
- else {
- ndotl = nx * params->lx + ny * params->ly + params->nzlz;
-
- if (ndotl < 0)
- shade = (int)( params->compensation * ambient );
- else {
- shade = (int)( ndotl / sqrt(double(nx * nx + ny * ny + params->nz2)) );
-
- shade = (int)( shade + QMAX(0.0, (255 * params->compensation - shade)) *
- ambient / 255 );
- }
- }
-
- /* Paint */
-
- /**
- * NOTE: if we want to work with non-32bit images the alpha handling would
- * also change
- */
- if (compensate) {
- int red = (int)((tqRed( *src ) * shade) / (params->compensation * 255));
- int green = (int)((tqGreen( *src ) * shade) / (params->compensation * 255));
- int blue = (int)((tqBlue( *src ) * shade) / (params->compensation * 255));
- int alpha = (int)((tqAlpha( *src ) * shade) / (params->compensation * 255));
- ++src;
- *dest++ = tqRgba( red, green, blue, alpha );
- } else {
- int red = tqRed( *src ) * shade / 255;
- int green = tqGreen( *src ) * shade / 255;
- int blue = tqBlue( *src ) * shade / 255;
- int alpha = tqAlpha( *src ) * shade / 255;
- ++src;
- *dest++ = tqRgba( red, green, blue, alpha );
- }
-
- /* Next pixel */
-
- if (++xofs2 == bm_width)
- xofs2 = 0;
- }
-}
-
-/**
- * A bumpmapping algorithm.
- *
- * @param img the image you want bumpmap
- * @param map the map used
- * @param azimuth azimuth
- * @param elevation elevation
- * @param depth depth (not the depth of the image, but of the map)
- * @param xofs X offset
- * @param yofs Y offset
- * @param waterlevel level that full transparency should represent
- * @param ambient ambient lighting factor
- * @param compensate compensate for darkening
- * @param invert invert bumpmap
- * @param type type of the bumpmap
- *
- * @return The destination image (dst) containing the result.
- * @author Zack Rusin <zack@kde.org>
- */
-TQImage KImageEffect::bumpmap(TQImage &img, TQImage &map, double azimuth, double elevation,
- int depth, int xofs, int yofs, int waterlevel,
- int ambient, bool compensate, bool invert,
- BumpmapType type, bool tiled)
-{
- TQImage dst;
-
- if ( img.depth() != 32 || img.depth() != 32 ) {
- qWarning( "Bump-mapping effect works only with 32 bit images");
- return dst;
- }
-
- dst.create( img.width(), img.height(), img.depth() );
- int bm_width = map.width();
- int bm_height = map.height();
- int bm_bpp = map.depth();
- int bm_has_alpha = map.hasAlphaBuffer();
-
- int yofs1, yofs2, yofs3;
-
- if ( tiled ) {
- yofs2 = MOD( yofs, bm_height );
- yofs1 = MOD( yofs2 - 1, bm_height);
- yofs3 = MOD( yofs2 + 1, bm_height);
- } else {
- yofs1 = 0;
- yofs2 = 0;
- yofs3 = FXCLAMP( yofs2+1, 0, bm_height - 1 );
- }
-
- BumpmapParams params( azimuth, elevation, depth, type, invert );
-
- uint* bm_row1 = (unsigned int*)map.scanLine( yofs1 );
- uint* bm_row2 = (unsigned int*)map.scanLine( yofs2 );
- uint* bm_row3 = (unsigned int*)map.scanLine( yofs3 );
-
- bumpmap_convert_row( bm_row1, bm_width, bm_bpp, bm_has_alpha, params.lut, waterlevel );
- bumpmap_convert_row( bm_row2, bm_width, bm_bpp, bm_has_alpha, params.lut, waterlevel );
- bumpmap_convert_row( bm_row3, bm_width, bm_bpp, bm_has_alpha, params.lut, waterlevel );
-
- for (int y = 0; y < img.height(); ++y)
- {
- int row_in_bumpmap = (y >= - yofs && y < - yofs + bm_height);
-
- uint* src_row = (unsigned int*)img.scanLine( y );
- uint* dest_row = (unsigned int*)dst.scanLine( y );
-
- bumpmap_row( src_row, dest_row, img.width(), img.depth(), img.hasAlphaBuffer(),
- bm_row1, bm_row2, bm_row3, bm_width, xofs,
- tiled,
- row_in_bumpmap, ambient, compensate,
- &params );
-
- /* Next line */
-
- if (tiled || row_in_bumpmap)
- {
- uint* bm_tmprow = bm_row1;
- bm_row1 = bm_row2;
- bm_row2 = bm_row3;
- bm_row3 = bm_tmprow;
-
- if (++yofs2 == bm_height)
- yofs2 = 0;
-
- if (tiled)
- yofs3 = MOD(yofs2 + 1, bm_height);
- else
- yofs3 = FXCLAMP(yofs2 + 1, 0, bm_height - 1);
-
- bm_row3 = (unsigned int*)map.scanLine( yofs3 );
- bumpmap_convert_row( bm_row3, bm_width, bm_bpp, bm_has_alpha,
- params.lut, waterlevel );
- }
- }
- return dst;
-}
-
-/**
- * Convert an image with standard alpha to premultiplied alpha
- *
- * @param img the image you want convert
- *
- * @return The destination image (dst) containing the result.
- * @author Timothy Pearson <kb9vqf@pearsoncomputing.net>
- */
-TQImage KImageEffect::convertToPremultipliedAlpha(TQImage input) {
- TQImage alphaImage = input;
- if (!alphaImage.isNull()) alphaImage = alphaImage.convertDepth( 32 );
-
- int w = alphaImage.width();
- int h = alphaImage.height();
-
- register int r;
- register int g;
- register int b;
- register int a;
- register float alpha_adjust;
- register TQRgb l;
- TQRgb *ls;
- for (int y = 0; y < h; ++y) {
- ls = (TQRgb *)alphaImage.scanLine( y );
- for (int x = 0; x < w; ++x) {
- l = ls[x];
- alpha_adjust = (tqAlpha( l )/255.0);
- r = int( tqRed( l ) * alpha_adjust );
- g = int( tqGreen( l ) * alpha_adjust );
- b = int( tqBlue( l ) * alpha_adjust );
- a = int( tqAlpha( l ) * 1.0 );
- ls[x] = tqRgba( r, g, b, a );
- }
- }
- return alphaImage;
-} \ No newline at end of file